xref: /linux/sound/pci/pcxhr/pcxhr.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * Driver for Digigram pcxhr compatible soundcards
3  *
4  * main file with alsa callbacks
5  *
6  * Copyright (c) 2004 by Digigram <alsa@digigram.com>
7  *
8  *   This program is free software; you can redistribute it and/or modify
9  *   it under the terms of the GNU General Public License as published by
10  *   the Free Software Foundation; either version 2 of the License, or
11  *   (at your option) any later version.
12  *
13  *   This program is distributed in the hope that it will be useful,
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *   GNU General Public License for more details.
17  *
18  *   You should have received a copy of the GNU General Public License
19  *   along with this program; if not, write to the Free Software
20  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  */
22 
23 
24 #include <sound/driver.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/slab.h>
28 #include <linux/pci.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/delay.h>
31 #include <linux/moduleparam.h>
32 #include <linux/mutex.h>
33 #include <linux/dma-mapping.h>
34 
35 #include <sound/core.h>
36 #include <sound/initval.h>
37 #include <sound/info.h>
38 #include <sound/control.h>
39 #include <sound/pcm.h>
40 #include <sound/pcm_params.h>
41 #include "pcxhr.h"
42 #include "pcxhr_mixer.h"
43 #include "pcxhr_hwdep.h"
44 #include "pcxhr_core.h"
45 
46 #define DRIVER_NAME "pcxhr"
47 
48 MODULE_AUTHOR("Markus Bollinger <bollinger@digigram.com>");
49 MODULE_DESCRIPTION("Digigram " DRIVER_NAME " " PCXHR_DRIVER_VERSION_STRING);
50 MODULE_LICENSE("GPL");
51 MODULE_SUPPORTED_DEVICE("{{Digigram," DRIVER_NAME "}}");
52 
53 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;		/* Index 0-MAX */
54 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;		/* ID for this card */
55 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable this card */
56 static int mono[SNDRV_CARDS];					/* capture in mono only */
57 
58 module_param_array(index, int, NULL, 0444);
59 MODULE_PARM_DESC(index, "Index value for Digigram " DRIVER_NAME " soundcard");
60 module_param_array(id, charp, NULL, 0444);
61 MODULE_PARM_DESC(id, "ID string for Digigram " DRIVER_NAME " soundcard");
62 module_param_array(enable, bool, NULL, 0444);
63 MODULE_PARM_DESC(enable, "Enable Digigram " DRIVER_NAME " soundcard");
64 module_param_array(mono, bool, NULL, 0444);
65 MODULE_PARM_DESC(mono, "Mono capture mode (default is stereo)");
66 
67 enum {
68 	PCI_ID_VX882HR,
69 	PCI_ID_PCX882HR,
70 	PCI_ID_VX881HR,
71 	PCI_ID_PCX881HR,
72 	PCI_ID_PCX1222HR,
73 	PCI_ID_PCX1221HR,
74 	PCI_ID_LAST
75 };
76 
77 static struct pci_device_id pcxhr_ids[] = {
78 	{ 0x10b5, 0x9656, 0x1369, 0xb001, 0, 0, PCI_ID_VX882HR, },   /* VX882HR */
79 	{ 0x10b5, 0x9656, 0x1369, 0xb101, 0, 0, PCI_ID_PCX882HR, },  /* PCX882HR */
80 	{ 0x10b5, 0x9656, 0x1369, 0xb201, 0, 0, PCI_ID_VX881HR, },   /* VX881HR */
81 	{ 0x10b5, 0x9656, 0x1369, 0xb301, 0, 0, PCI_ID_PCX881HR, },  /* PCX881HR */
82 	{ 0x10b5, 0x9656, 0x1369, 0xb501, 0, 0, PCI_ID_PCX1222HR, }, /* PCX1222HR */
83 	{ 0x10b5, 0x9656, 0x1369, 0xb701, 0, 0, PCI_ID_PCX1221HR, }, /* PCX1221HR */
84 	{ 0, }
85 };
86 
87 MODULE_DEVICE_TABLE(pci, pcxhr_ids);
88 
89 struct board_parameters {
90 	char* board_name;
91 	short playback_chips;
92 	short capture_chips;
93 	short firmware_num;
94 };
95 static struct board_parameters pcxhr_board_params[] = {
96 [PCI_ID_VX882HR] =	{ "VX882HR",   4, 4, 41, },
97 [PCI_ID_PCX882HR] =	{ "PCX882HR",  4, 4, 41, },
98 [PCI_ID_VX881HR] =	{ "VX881HR",   4, 4, 41, },
99 [PCI_ID_PCX881HR] =	{ "PCX881HR",  4, 4, 41, },
100 [PCI_ID_PCX1222HR] =	{ "PCX1222HR", 6, 1, 42, },
101 [PCI_ID_PCX1221HR] =	{ "PCX1221HR", 6, 1, 42, },
102 };
103 
104 
105 static int pcxhr_pll_freq_register(unsigned int freq, unsigned int* pllreg,
106 				   unsigned int* realfreq)
107 {
108 	unsigned int reg;
109 
110 	if (freq < 6900 || freq > 110250)
111 		return -EINVAL;
112 	reg = (28224000 * 10) / freq;
113 	reg = (reg + 5) / 10;
114 	if (reg < 0x200)
115 		*pllreg = reg + 0x800;
116 	else if (reg < 0x400)
117 		*pllreg = reg & 0x1ff;
118 	else if (reg < 0x800) {
119 		*pllreg = ((reg >> 1) & 0x1ff) + 0x200;
120 		reg &= ~1;
121 	} else {
122 		*pllreg = ((reg >> 2) & 0x1ff) + 0x400;
123 		reg &= ~3;
124 	}
125 	if (realfreq)
126 		*realfreq = ((28224000 * 10) / reg + 5) / 10;
127 	return 0;
128 }
129 
130 
131 #define PCXHR_FREQ_REG_MASK		0x1f
132 #define PCXHR_FREQ_QUARTZ_48000		0x00
133 #define PCXHR_FREQ_QUARTZ_24000		0x01
134 #define PCXHR_FREQ_QUARTZ_12000		0x09
135 #define PCXHR_FREQ_QUARTZ_32000		0x08
136 #define PCXHR_FREQ_QUARTZ_16000		0x04
137 #define PCXHR_FREQ_QUARTZ_8000		0x0c
138 #define PCXHR_FREQ_QUARTZ_44100		0x02
139 #define PCXHR_FREQ_QUARTZ_22050		0x0a
140 #define PCXHR_FREQ_QUARTZ_11025		0x06
141 #define PCXHR_FREQ_PLL			0x05
142 #define PCXHR_FREQ_QUARTZ_192000	0x10
143 #define PCXHR_FREQ_QUARTZ_96000		0x18
144 #define PCXHR_FREQ_QUARTZ_176400	0x14
145 #define PCXHR_FREQ_QUARTZ_88200		0x1c
146 #define PCXHR_FREQ_QUARTZ_128000	0x12
147 #define PCXHR_FREQ_QUARTZ_64000		0x1a
148 
149 #define PCXHR_FREQ_WORD_CLOCK		0x0f
150 #define PCXHR_FREQ_SYNC_AES		0x0e
151 #define PCXHR_FREQ_AES_1		0x07
152 #define PCXHR_FREQ_AES_2		0x0b
153 #define PCXHR_FREQ_AES_3		0x03
154 #define PCXHR_FREQ_AES_4		0x0d
155 
156 #define PCXHR_MODIFY_CLOCK_S_BIT	0x04
157 
158 #define PCXHR_IRQ_TIMER_FREQ		92000
159 #define PCXHR_IRQ_TIMER_PERIOD		48
160 
161 static int pcxhr_get_clock_reg(struct pcxhr_mgr *mgr, unsigned int rate,
162 			       unsigned int *reg, unsigned int *freq)
163 {
164 	unsigned int val, realfreq, pllreg;
165 	struct pcxhr_rmh rmh;
166 	int err;
167 
168 	realfreq = rate;
169 	switch (mgr->use_clock_type) {
170 	case PCXHR_CLOCK_TYPE_INTERNAL :	/* clock by quartz or pll */
171 		switch (rate) {
172 		case 48000 :	val = PCXHR_FREQ_QUARTZ_48000;	break;
173 		case 24000 :	val = PCXHR_FREQ_QUARTZ_24000;	break;
174 		case 12000 :	val = PCXHR_FREQ_QUARTZ_12000;	break;
175 		case 32000 :	val = PCXHR_FREQ_QUARTZ_32000;	break;
176 		case 16000 :	val = PCXHR_FREQ_QUARTZ_16000;	break;
177 		case 8000 :	val = PCXHR_FREQ_QUARTZ_8000;	break;
178 		case 44100 :	val = PCXHR_FREQ_QUARTZ_44100;	break;
179 		case 22050 :	val = PCXHR_FREQ_QUARTZ_22050;	break;
180 		case 11025 :	val = PCXHR_FREQ_QUARTZ_11025;	break;
181 		case 192000 :	val = PCXHR_FREQ_QUARTZ_192000;	break;
182 		case 96000 :	val = PCXHR_FREQ_QUARTZ_96000;	break;
183 		case 176400 :	val = PCXHR_FREQ_QUARTZ_176400;	break;
184 		case 88200 :	val = PCXHR_FREQ_QUARTZ_88200;	break;
185 		case 128000 :	val = PCXHR_FREQ_QUARTZ_128000;	break;
186 		case 64000 :	val = PCXHR_FREQ_QUARTZ_64000;	break;
187 		default :
188 			val = PCXHR_FREQ_PLL;
189 			/* get the value for the pll register */
190 			err = pcxhr_pll_freq_register(rate, &pllreg, &realfreq);
191 			if (err)
192 				return err;
193 			pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);
194 			rmh.cmd[0] |= IO_NUM_REG_GENCLK;
195 			rmh.cmd[1]  = pllreg & MASK_DSP_WORD;
196 			rmh.cmd[2]  = pllreg >> 24;
197 			rmh.cmd_len = 3;
198 			err = pcxhr_send_msg(mgr, &rmh);
199 			if (err < 0) {
200 				snd_printk(KERN_ERR
201 					   "error CMD_ACCESS_IO_WRITE for PLL register : %x!\n",
202 					   err );
203 				return err;
204 			}
205 		}
206 		break;
207 	case PCXHR_CLOCK_TYPE_WORD_CLOCK :	val = PCXHR_FREQ_WORD_CLOCK;	break;
208 	case PCXHR_CLOCK_TYPE_AES_SYNC :	val = PCXHR_FREQ_SYNC_AES;	break;
209 	case PCXHR_CLOCK_TYPE_AES_1 :		val = PCXHR_FREQ_AES_1;		break;
210 	case PCXHR_CLOCK_TYPE_AES_2 :		val = PCXHR_FREQ_AES_2;		break;
211 	case PCXHR_CLOCK_TYPE_AES_3 :		val = PCXHR_FREQ_AES_3;		break;
212 	case PCXHR_CLOCK_TYPE_AES_4 :		val = PCXHR_FREQ_AES_4;		break;
213 	default : return -EINVAL;
214 	}
215 	*reg = val;
216 	*freq = realfreq;
217 	return 0;
218 }
219 
220 
221 int pcxhr_set_clock(struct pcxhr_mgr *mgr, unsigned int rate)
222 {
223 	unsigned int val, realfreq, speed;
224 	struct pcxhr_rmh rmh;
225 	int err, changed;
226 
227 	if (rate == 0)
228 		return 0; /* nothing to do */
229 
230 	err = pcxhr_get_clock_reg(mgr, rate, &val, &realfreq);
231 	if (err)
232 		return err;
233 
234 	/* codec speed modes */
235 	if (rate < 55000)
236 		speed = 0;	/* single speed */
237 	else if (rate < 100000)
238 		speed = 1;	/* dual speed */
239 	else
240 		speed = 2;	/* quad speed */
241 	if (mgr->codec_speed != speed) {
242 		pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);	/* mute outputs */
243 		rmh.cmd[0] |= IO_NUM_REG_MUTE_OUT;
244 		err = pcxhr_send_msg(mgr, &rmh);
245 		if (err)
246 			return err;
247 
248 		pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);	/* set speed ratio */
249 		rmh.cmd[0] |= IO_NUM_SPEED_RATIO;
250 		rmh.cmd[1] = speed;
251 		rmh.cmd_len = 2;
252 		err = pcxhr_send_msg(mgr, &rmh);
253 		if (err)
254 			return err;
255 	}
256 	/* set the new frequency */
257 	snd_printdd("clock register : set %x\n", val);
258 	err = pcxhr_write_io_num_reg_cont(mgr, PCXHR_FREQ_REG_MASK, val, &changed);
259 	if (err)
260 		return err;
261 	mgr->sample_rate_real = realfreq;
262 	mgr->cur_clock_type = mgr->use_clock_type;
263 
264 	/* unmute after codec speed modes */
265 	if (mgr->codec_speed != speed) {
266 		pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ);	/* unmute outputs */
267 		rmh.cmd[0] |= IO_NUM_REG_MUTE_OUT;
268 		err = pcxhr_send_msg(mgr, &rmh);
269 		if (err)
270 			return err;
271 		mgr->codec_speed = speed;			/* save new codec speed */
272 	}
273 
274 	if (changed) {
275 		pcxhr_init_rmh(&rmh, CMD_MODIFY_CLOCK);
276 		rmh.cmd[0] |= PCXHR_MODIFY_CLOCK_S_BIT;		/* resync fifos  */
277 		if (rate < PCXHR_IRQ_TIMER_FREQ)
278 			rmh.cmd[1] = PCXHR_IRQ_TIMER_PERIOD;
279 		else
280 			rmh.cmd[1] = PCXHR_IRQ_TIMER_PERIOD * 2;
281 		rmh.cmd[2] = rate;
282 		rmh.cmd_len = 3;
283 		err = pcxhr_send_msg(mgr, &rmh);
284 		if (err)
285 			return err;
286 	}
287 	snd_printdd("pcxhr_set_clock to %dHz (realfreq=%d)\n", rate, realfreq);
288 	return 0;
289 }
290 
291 
292 int pcxhr_get_external_clock(struct pcxhr_mgr *mgr, enum pcxhr_clock_type clock_type,
293 			     int *sample_rate)
294 {
295 	struct pcxhr_rmh rmh;
296 	unsigned char reg;
297 	int err, rate;
298 
299 	switch (clock_type) {
300 	case PCXHR_CLOCK_TYPE_WORD_CLOCK :	reg = REG_STATUS_WORD_CLOCK;	break;
301 	case PCXHR_CLOCK_TYPE_AES_SYNC :	reg = REG_STATUS_AES_SYNC;	break;
302 	case PCXHR_CLOCK_TYPE_AES_1 :		reg = REG_STATUS_AES_1;		break;
303 	case PCXHR_CLOCK_TYPE_AES_2 :		reg = REG_STATUS_AES_2;		break;
304 	case PCXHR_CLOCK_TYPE_AES_3 :		reg = REG_STATUS_AES_3;		break;
305 	case PCXHR_CLOCK_TYPE_AES_4 :		reg = REG_STATUS_AES_4;		break;
306 	default : return -EINVAL;
307 	}
308 	pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ);
309 	rmh.cmd_len = 2;
310 	rmh.cmd[0] |= IO_NUM_REG_STATUS;
311 	if (mgr->last_reg_stat != reg) {
312 		rmh.cmd[1]  = reg;
313 		err = pcxhr_send_msg(mgr, &rmh);
314 		if (err)
315 			return err;
316 		udelay(100);		/* wait minimum 2 sample_frames at 32kHz ! */
317 		mgr->last_reg_stat = reg;
318 	}
319 	rmh.cmd[1]  = REG_STATUS_CURRENT;
320 	err = pcxhr_send_msg(mgr, &rmh);
321 	if (err)
322 		return err;
323 	switch (rmh.stat[1] & 0x0f) {
324 	case REG_STATUS_SYNC_32000 :	rate = 32000; break;
325 	case REG_STATUS_SYNC_44100 :	rate = 44100; break;
326 	case REG_STATUS_SYNC_48000 :	rate = 48000; break;
327 	case REG_STATUS_SYNC_64000 :	rate = 64000; break;
328 	case REG_STATUS_SYNC_88200 :	rate = 88200; break;
329 	case REG_STATUS_SYNC_96000 :	rate = 96000; break;
330 	case REG_STATUS_SYNC_128000 :	rate = 128000; break;
331 	case REG_STATUS_SYNC_176400 :	rate = 176400; break;
332 	case REG_STATUS_SYNC_192000 :	rate = 192000; break;
333 	default: rate = 0;
334 	}
335 	snd_printdd("External clock is at %d Hz\n", rate);
336 	*sample_rate = rate;
337 	return 0;
338 }
339 
340 
341 /*
342  *  start or stop playback/capture substream
343  */
344 static int pcxhr_set_stream_state(struct pcxhr_stream *stream)
345 {
346 	int err;
347 	struct snd_pcxhr *chip;
348 	struct pcxhr_rmh rmh;
349 	int stream_mask, start;
350 
351 	if (stream->status == PCXHR_STREAM_STATUS_SCHEDULE_RUN)
352 		start = 1;
353 	else {
354 		if (stream->status != PCXHR_STREAM_STATUS_SCHEDULE_STOP) {
355 			snd_printk(KERN_ERR "ERROR pcxhr_set_stream_state CANNOT be stopped\n");
356 			return -EINVAL;
357 		}
358 		start = 0;
359 	}
360 	if (!stream->substream)
361 		return -EINVAL;
362 
363 	stream->timer_abs_periods = 0;
364 	stream->timer_period_frag = 0;            /* reset theoretical stream pos */
365 	stream->timer_buf_periods = 0;
366 	stream->timer_is_synced = 0;
367 
368 	stream_mask = stream->pipe->is_capture ? 1 : 1<<stream->substream->number;
369 
370 	pcxhr_init_rmh(&rmh, start ? CMD_START_STREAM : CMD_STOP_STREAM);
371 	pcxhr_set_pipe_cmd_params(&rmh, stream->pipe->is_capture,
372 				  stream->pipe->first_audio, 0, stream_mask);
373 
374 	chip = snd_pcm_substream_chip(stream->substream);
375 
376 	err = pcxhr_send_msg(chip->mgr, &rmh);
377 	if (err)
378 		snd_printk(KERN_ERR "ERROR pcxhr_set_stream_state err=%x;\n", err);
379 	stream->status = start ? PCXHR_STREAM_STATUS_STARTED : PCXHR_STREAM_STATUS_STOPPED;
380 	return err;
381 }
382 
383 #define HEADER_FMT_BASE_LIN		0xfed00000
384 #define HEADER_FMT_BASE_FLOAT		0xfad00000
385 #define HEADER_FMT_INTEL		0x00008000
386 #define HEADER_FMT_24BITS		0x00004000
387 #define HEADER_FMT_16BITS		0x00002000
388 #define HEADER_FMT_UPTO11		0x00000200
389 #define HEADER_FMT_UPTO32		0x00000100
390 #define HEADER_FMT_MONO			0x00000080
391 
392 static int pcxhr_set_format(struct pcxhr_stream *stream)
393 {
394 	int err, is_capture, sample_rate, stream_num;
395 	struct snd_pcxhr *chip;
396 	struct pcxhr_rmh rmh;
397 	unsigned int header;
398 
399 	switch (stream->format) {
400 	case SNDRV_PCM_FORMAT_U8:
401 		header = HEADER_FMT_BASE_LIN;
402 		break;
403 	case SNDRV_PCM_FORMAT_S16_LE:
404 		header = HEADER_FMT_BASE_LIN | HEADER_FMT_16BITS | HEADER_FMT_INTEL;
405 		break;
406 	case SNDRV_PCM_FORMAT_S16_BE:
407 		header = HEADER_FMT_BASE_LIN | HEADER_FMT_16BITS;
408 		break;
409 	case SNDRV_PCM_FORMAT_S24_3LE:
410 		header = HEADER_FMT_BASE_LIN | HEADER_FMT_24BITS | HEADER_FMT_INTEL;
411 		break;
412 	case SNDRV_PCM_FORMAT_S24_3BE:
413 		header = HEADER_FMT_BASE_LIN | HEADER_FMT_24BITS;
414 		break;
415 	case SNDRV_PCM_FORMAT_FLOAT_LE:
416 		header = HEADER_FMT_BASE_FLOAT | HEADER_FMT_INTEL;
417 		break;
418 	default:
419 		snd_printk(KERN_ERR "error pcxhr_set_format() : unknown format\n");
420 		return -EINVAL;
421 	}
422 	chip = snd_pcm_substream_chip(stream->substream);
423 
424 	sample_rate = chip->mgr->sample_rate;
425 	if (sample_rate <= 32000 && sample_rate !=0) {
426 		if (sample_rate <= 11025)
427 			header |= HEADER_FMT_UPTO11;
428 		else
429 			header |= HEADER_FMT_UPTO32;
430 	}
431 	if (stream->channels == 1)
432 		header |= HEADER_FMT_MONO;
433 
434 	is_capture = stream->pipe->is_capture;
435 	stream_num = is_capture ? 0 : stream->substream->number;
436 
437 	pcxhr_init_rmh(&rmh, is_capture ? CMD_FORMAT_STREAM_IN : CMD_FORMAT_STREAM_OUT);
438 	pcxhr_set_pipe_cmd_params(&rmh, is_capture, stream->pipe->first_audio, stream_num, 0);
439 	if (is_capture)
440 		rmh.cmd[0] |= 1<<12;
441 	rmh.cmd[1] = 0;
442 	rmh.cmd[2] = header >> 8;
443 	rmh.cmd[3] = (header & 0xff) << 16;
444 	rmh.cmd_len = 4;
445 	err = pcxhr_send_msg(chip->mgr, &rmh);
446 	if (err)
447 		snd_printk(KERN_ERR "ERROR pcxhr_set_format err=%x;\n", err);
448 	return err;
449 }
450 
451 static int pcxhr_update_r_buffer(struct pcxhr_stream *stream)
452 {
453 	int err, is_capture, stream_num;
454 	struct pcxhr_rmh rmh;
455 	struct snd_pcm_substream *subs = stream->substream;
456 	struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
457 
458 	is_capture = (subs->stream == SNDRV_PCM_STREAM_CAPTURE);
459 	stream_num = is_capture ? 0 : subs->number;
460 
461 	snd_printdd("pcxhr_update_r_buffer(pcm%c%d) : addr(%p) bytes(%zx) subs(%d)\n",
462 		    is_capture ? 'c' : 'p',
463 		    chip->chip_idx, (void*)subs->runtime->dma_addr,
464 		    subs->runtime->dma_bytes, subs->number);
465 
466 	pcxhr_init_rmh(&rmh, CMD_UPDATE_R_BUFFERS);
467 	pcxhr_set_pipe_cmd_params(&rmh, is_capture, stream->pipe->first_audio, stream_num, 0);
468 
469 	snd_assert(subs->runtime->dma_bytes < 0x200000);	/* max buffer size is 2 MByte */
470 	rmh.cmd[1] = subs->runtime->dma_bytes * 8;		/* size in bits */
471 	rmh.cmd[2] = subs->runtime->dma_addr >> 24;		/* most significant byte */
472 	rmh.cmd[2] |= 1<<19;					/* this is a circular buffer */
473 	rmh.cmd[3] = subs->runtime->dma_addr & MASK_DSP_WORD;	/* least 3 significant bytes */
474 	rmh.cmd_len = 4;
475 	err = pcxhr_send_msg(chip->mgr, &rmh);
476 	if (err)
477 		snd_printk(KERN_ERR "ERROR CMD_UPDATE_R_BUFFERS err=%x;\n", err);
478 	return err;
479 }
480 
481 
482 #if 0
483 static int pcxhr_pipe_sample_count(struct pcxhr_stream *stream, snd_pcm_uframes_t *sample_count)
484 {
485 	struct pcxhr_rmh rmh;
486 	int err;
487 	pcxhr_t *chip = snd_pcm_substream_chip(stream->substream);
488 	pcxhr_init_rmh(&rmh, CMD_PIPE_SAMPLE_COUNT);
489 	pcxhr_set_pipe_cmd_params(&rmh, stream->pipe->is_capture, 0, 0,
490 				  1<<stream->pipe->first_audio);
491 	err = pcxhr_send_msg(chip->mgr, &rmh);
492 	if (err == 0) {
493 		*sample_count = ((snd_pcm_uframes_t)rmh.stat[0]) << 24;
494 		*sample_count += (snd_pcm_uframes_t)rmh.stat[1];
495 	}
496 	snd_printdd("PIPE_SAMPLE_COUNT = %lx\n", *sample_count);
497 	return err;
498 }
499 #endif
500 
501 static inline int pcxhr_stream_scheduled_get_pipe(struct pcxhr_stream *stream,
502 						  struct pcxhr_pipe **pipe)
503 {
504 	if (stream->status == PCXHR_STREAM_STATUS_SCHEDULE_RUN) {
505 		*pipe = stream->pipe;
506 		return 1;
507 	}
508 	return 0;
509 }
510 
511 static void pcxhr_trigger_tasklet(unsigned long arg)
512 {
513 	unsigned long flags;
514 	int i, j, err;
515 	struct pcxhr_pipe *pipe;
516 	struct snd_pcxhr *chip;
517 	struct pcxhr_mgr *mgr = (struct pcxhr_mgr*)(arg);
518 	int capture_mask = 0;
519 	int playback_mask = 0;
520 
521 #ifdef CONFIG_SND_DEBUG_DETECT
522 	struct timeval my_tv1, my_tv2;
523 	do_gettimeofday(&my_tv1);
524 #endif
525 	mutex_lock(&mgr->setup_mutex);
526 
527 	/* check the pipes concerned and build pipe_array */
528 	for (i = 0; i < mgr->num_cards; i++) {
529 		chip = mgr->chip[i];
530 		for (j = 0; j < chip->nb_streams_capt; j++) {
531 			if (pcxhr_stream_scheduled_get_pipe(&chip->capture_stream[j], &pipe))
532 				capture_mask |= (1 << pipe->first_audio);
533 		}
534 		for (j = 0; j < chip->nb_streams_play; j++) {
535 			if (pcxhr_stream_scheduled_get_pipe(&chip->playback_stream[j], &pipe)) {
536 				playback_mask |= (1 << pipe->first_audio);
537 				break;	/* add only once, as all playback streams of
538 					 * one chip use the same pipe
539 					 */
540 			}
541 		}
542 	}
543 	if (capture_mask == 0 && playback_mask == 0) {
544 		mutex_unlock(&mgr->setup_mutex);
545 		snd_printk(KERN_ERR "pcxhr_trigger_tasklet : no pipes\n");
546 		return;
547 	}
548 
549 	snd_printdd("pcxhr_trigger_tasklet : playback_mask=%x capture_mask=%x\n",
550 		    playback_mask, capture_mask);
551 
552 	/* synchronous stop of all the pipes concerned */
553 	err = pcxhr_set_pipe_state(mgr,  playback_mask, capture_mask, 0);
554 	if (err) {
555 		mutex_unlock(&mgr->setup_mutex);
556 		snd_printk(KERN_ERR "pcxhr_trigger_tasklet : error stop pipes (P%x C%x)\n",
557 			   playback_mask, capture_mask);
558 		return;
559 	}
560 
561 	/* unfortunately the dsp lost format and buffer info with the stop pipe */
562 	for (i = 0; i < mgr->num_cards; i++) {
563 		struct pcxhr_stream *stream;
564 		chip = mgr->chip[i];
565 		for (j = 0; j < chip->nb_streams_capt; j++) {
566 			stream = &chip->capture_stream[j];
567 			if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) {
568 				err = pcxhr_set_format(stream);
569 				err = pcxhr_update_r_buffer(stream);
570 			}
571 		}
572 		for (j = 0; j < chip->nb_streams_play; j++) {
573 			stream = &chip->playback_stream[j];
574 			if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) {
575 				err = pcxhr_set_format(stream);
576 				err = pcxhr_update_r_buffer(stream);
577 			}
578 		}
579 	}
580 	/* start all the streams */
581 	for (i = 0; i < mgr->num_cards; i++) {
582 		struct pcxhr_stream *stream;
583 		chip = mgr->chip[i];
584 		for (j = 0; j < chip->nb_streams_capt; j++) {
585 			stream = &chip->capture_stream[j];
586 			if (pcxhr_stream_scheduled_get_pipe(stream, &pipe))
587 				err = pcxhr_set_stream_state(stream);
588 		}
589 		for (j = 0; j < chip->nb_streams_play; j++) {
590 			stream = &chip->playback_stream[j];
591 			if (pcxhr_stream_scheduled_get_pipe(stream, &pipe))
592 				err = pcxhr_set_stream_state(stream);
593 		}
594 	}
595 
596 	/* synchronous start of all the pipes concerned */
597 	err = pcxhr_set_pipe_state(mgr, playback_mask, capture_mask, 1);
598 	if (err) {
599 		mutex_unlock(&mgr->setup_mutex);
600 		snd_printk(KERN_ERR "pcxhr_trigger_tasklet : error start pipes (P%x C%x)\n",
601 			   playback_mask, capture_mask);
602 		return;
603 	}
604 
605 	/* put the streams into the running state now (increment pointer by interrupt) */
606 	spin_lock_irqsave(&mgr->lock, flags);
607 	for ( i =0; i < mgr->num_cards; i++) {
608 		struct pcxhr_stream *stream;
609 		chip = mgr->chip[i];
610 		for(j = 0; j < chip->nb_streams_capt; j++) {
611 			stream = &chip->capture_stream[j];
612 			if(stream->status == PCXHR_STREAM_STATUS_STARTED)
613 				stream->status = PCXHR_STREAM_STATUS_RUNNING;
614 		}
615 		for (j = 0; j < chip->nb_streams_play; j++) {
616 			stream = &chip->playback_stream[j];
617 			if (stream->status == PCXHR_STREAM_STATUS_STARTED) {
618 				/* playback will already have advanced ! */
619 				stream->timer_period_frag += PCXHR_GRANULARITY;
620 				stream->status = PCXHR_STREAM_STATUS_RUNNING;
621 			}
622 		}
623 	}
624 	spin_unlock_irqrestore(&mgr->lock, flags);
625 
626 	mutex_unlock(&mgr->setup_mutex);
627 
628 #ifdef CONFIG_SND_DEBUG_DETECT
629 	do_gettimeofday(&my_tv2);
630 	snd_printdd("***TRIGGER TASKLET*** TIME = %ld (err = %x)\n",
631 		    my_tv2.tv_usec - my_tv1.tv_usec, err);
632 #endif
633 }
634 
635 
636 /*
637  *  trigger callback
638  */
639 static int pcxhr_trigger(struct snd_pcm_substream *subs, int cmd)
640 {
641 	struct pcxhr_stream *stream;
642 	struct list_head *pos;
643 	struct snd_pcm_substream *s;
644 	int i;
645 
646 	switch (cmd) {
647 	case SNDRV_PCM_TRIGGER_START:
648 		snd_printdd("SNDRV_PCM_TRIGGER_START\n");
649 		i = 0;
650 		snd_pcm_group_for_each(pos, subs) {
651 			s = snd_pcm_group_substream_entry(pos);
652 			stream = s->runtime->private_data;
653 			stream->status = PCXHR_STREAM_STATUS_SCHEDULE_RUN;
654 			snd_pcm_trigger_done(s, subs);
655 			i++;
656 		}
657 		if (i==1) {
658 			snd_printdd("Only one Substream %c %d\n",
659 				    stream->pipe->is_capture ? 'C' : 'P',
660 				    stream->pipe->first_audio);
661 			if (pcxhr_set_format(stream))
662 				return -EINVAL;
663 			if (pcxhr_update_r_buffer(stream))
664 				return -EINVAL;
665 
666 			if (pcxhr_set_stream_state(stream))
667 				return -EINVAL;
668 			stream->status = PCXHR_STREAM_STATUS_RUNNING;
669 		} else {
670 			struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
671 			tasklet_hi_schedule(&chip->mgr->trigger_taskq);
672 		}
673 		break;
674 	case SNDRV_PCM_TRIGGER_STOP:
675 		snd_printdd("SNDRV_PCM_TRIGGER_STOP\n");
676 		snd_pcm_group_for_each(pos, subs) {
677 			s = snd_pcm_group_substream_entry(pos);
678 			stream = s->runtime->private_data;
679 			stream->status = PCXHR_STREAM_STATUS_SCHEDULE_STOP;
680 			if (pcxhr_set_stream_state(stream))
681 				return -EINVAL;
682 			snd_pcm_trigger_done(s, subs);
683 		}
684 		break;
685 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
686 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
687 		/* TODO */
688 	default:
689 		return -EINVAL;
690 	}
691 	return 0;
692 }
693 
694 
695 static int pcxhr_hardware_timer(struct pcxhr_mgr *mgr, int start)
696 {
697 	struct pcxhr_rmh rmh;
698 	int err;
699 
700 	pcxhr_init_rmh(&rmh, CMD_SET_TIMER_INTERRUPT);
701 	if (start) {
702 		mgr->dsp_time_last = PCXHR_DSP_TIME_INVALID;	/* last dsp time invalid */
703 		rmh.cmd[0] |= PCXHR_GRANULARITY;
704 	}
705 	err = pcxhr_send_msg(mgr, &rmh);
706 	if (err < 0)
707 		snd_printk(KERN_ERR "error pcxhr_hardware_timer err(%x)\n", err);
708 	return err;
709 }
710 
711 /*
712  *  prepare callback for all pcms
713  */
714 static int pcxhr_prepare(struct snd_pcm_substream *subs)
715 {
716 	struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
717 	struct pcxhr_mgr *mgr = chip->mgr;
718 	/*
719 	struct pcxhr_stream *stream = (pcxhr_stream_t*)subs->runtime->private_data;
720 	*/
721 	int err = 0;
722 
723 	snd_printdd("pcxhr_prepare : period_size(%lx) periods(%x) buffer_size(%lx)\n",
724 		    subs->runtime->period_size, subs->runtime->periods,
725 		    subs->runtime->buffer_size);
726 
727 	/*
728 	if(subs->runtime->period_size <= PCXHR_GRANULARITY) {
729 		snd_printk(KERN_ERR "pcxhr_prepare : error period_size too small (%x)\n",
730 			   (unsigned int)subs->runtime->period_size);
731 		return -EINVAL;
732 	}
733 	*/
734 
735 	mutex_lock(&mgr->setup_mutex);
736 
737 	do {
738 		/* if the stream was stopped before, format and buffer were reset */
739 		/*
740 		if(stream->status == PCXHR_STREAM_STATUS_STOPPED) {
741 			err = pcxhr_set_format(stream);
742 			if(err) break;
743 			err = pcxhr_update_r_buffer(stream);
744 			if(err) break;
745 		}
746 		*/
747 
748 		/* only the first stream can choose the sample rate */
749 		/* the further opened streams will be limited to its frequency (see open) */
750 		/* set the clock only once (first stream) */
751 		if (mgr->sample_rate != subs->runtime->rate) {
752 			err = pcxhr_set_clock(mgr, subs->runtime->rate);
753 			if (err)
754 				break;
755 			if (mgr->sample_rate == 0)
756 				/* start the DSP-timer */
757 				err = pcxhr_hardware_timer(mgr, 1);
758 			mgr->sample_rate = subs->runtime->rate;
759 		}
760 	} while(0);	/* do only once (so we can use break instead of goto) */
761 
762 	mutex_unlock(&mgr->setup_mutex);
763 
764 	return err;
765 }
766 
767 
768 /*
769  *  HW_PARAMS callback for all pcms
770  */
771 static int pcxhr_hw_params(struct snd_pcm_substream *subs,
772 			   struct snd_pcm_hw_params *hw)
773 {
774 	struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
775 	struct pcxhr_mgr *mgr = chip->mgr;
776 	struct pcxhr_stream *stream = subs->runtime->private_data;
777 	snd_pcm_format_t format;
778 	int err;
779 	int channels;
780 
781 	/* set up channels */
782 	channels = params_channels(hw);
783 
784 	/*  set up format for the stream */
785 	format = params_format(hw);
786 
787 	mutex_lock(&mgr->setup_mutex);
788 
789 	stream->channels = channels;
790 	stream->format = format;
791 
792 	/* set the format to the board */
793 	/*
794 	err = pcxhr_set_format(stream);
795 	if(err) {
796 		mutex_unlock(&mgr->setup_mutex);
797 		return err;
798 	}
799 	*/
800 	/* allocate buffer */
801 	err = snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw));
802 
803 	/*
804 	if (err > 0) {
805 		err = pcxhr_update_r_buffer(stream);
806 	}
807 	*/
808 	mutex_unlock(&mgr->setup_mutex);
809 
810 	return err;
811 }
812 
813 static int pcxhr_hw_free(struct snd_pcm_substream *subs)
814 {
815 	snd_pcm_lib_free_pages(subs);
816 	return 0;
817 }
818 
819 
820 /*
821  *  CONFIGURATION SPACE for all pcms, mono pcm must update channels_max
822  */
823 static struct snd_pcm_hardware pcxhr_caps =
824 {
825 	.info             = ( SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
826 			      SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START |
827 			      0 /*SNDRV_PCM_INFO_PAUSE*/),
828 	.formats	  = ( SNDRV_PCM_FMTBIT_U8 |
829 			      SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE |
830 			      SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE |
831 			      SNDRV_PCM_FMTBIT_FLOAT_LE ),
832 	.rates            = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_192000,
833 	.rate_min         = 8000,
834 	.rate_max         = 192000,
835 	.channels_min     = 1,
836 	.channels_max     = 2,
837 	.buffer_bytes_max = (32*1024),
838 	/* 1 byte == 1 frame U8 mono (PCXHR_GRANULARITY is frames!) */
839 	.period_bytes_min = (2*PCXHR_GRANULARITY),
840 	.period_bytes_max = (16*1024),
841 	.periods_min      = 2,
842 	.periods_max      = (32*1024/PCXHR_GRANULARITY),
843 };
844 
845 
846 static int pcxhr_open(struct snd_pcm_substream *subs)
847 {
848 	struct snd_pcxhr       *chip = snd_pcm_substream_chip(subs);
849 	struct pcxhr_mgr       *mgr = chip->mgr;
850 	struct snd_pcm_runtime *runtime = subs->runtime;
851 	struct pcxhr_stream    *stream;
852 	int                 is_capture;
853 
854 	mutex_lock(&mgr->setup_mutex);
855 
856 	/* copy the struct snd_pcm_hardware struct */
857 	runtime->hw = pcxhr_caps;
858 
859 	if( subs->stream == SNDRV_PCM_STREAM_PLAYBACK ) {
860 		snd_printdd("pcxhr_open playback chip%d subs%d\n",
861 			    chip->chip_idx, subs->number);
862 		is_capture = 0;
863 		stream = &chip->playback_stream[subs->number];
864 	} else {
865 		snd_printdd("pcxhr_open capture chip%d subs%d\n",
866 			    chip->chip_idx, subs->number);
867 		is_capture = 1;
868 		if (mgr->mono_capture)
869 			runtime->hw.channels_max = 1;
870 		else
871 			runtime->hw.channels_min = 2;
872 		stream = &chip->capture_stream[subs->number];
873 	}
874 	if (stream->status != PCXHR_STREAM_STATUS_FREE){
875 		/* streams in use */
876 		snd_printk(KERN_ERR "pcxhr_open chip%d subs%d in use\n",
877 			   chip->chip_idx, subs->number);
878 		mutex_unlock(&mgr->setup_mutex);
879 		return -EBUSY;
880 	}
881 
882 	/* if a sample rate is already used or fixed by external clock,
883 	 * the stream cannot change
884 	 */
885 	if (mgr->sample_rate)
886 		runtime->hw.rate_min = runtime->hw.rate_max = mgr->sample_rate;
887 	else {
888 		if (mgr->use_clock_type != PCXHR_CLOCK_TYPE_INTERNAL) {
889 			int external_rate;
890 			if (pcxhr_get_external_clock(mgr, mgr->use_clock_type,
891 						     &external_rate) ||
892 			    external_rate == 0) {
893 				/* cannot detect the external clock rate */
894 				mutex_unlock(&mgr->setup_mutex);
895 				return -EBUSY;
896 			}
897 			runtime->hw.rate_min = runtime->hw.rate_max = external_rate;
898 		}
899 	}
900 
901 	stream->status      = PCXHR_STREAM_STATUS_OPEN;
902 	stream->substream   = subs;
903 	stream->channels    = 0; /* not configured yet */
904 
905 	runtime->private_data = stream;
906 
907 	snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 4);
908 	snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 4);
909 
910 	mgr->ref_count_rate++;
911 
912 	mutex_unlock(&mgr->setup_mutex);
913 	return 0;
914 }
915 
916 
917 static int pcxhr_close(struct snd_pcm_substream *subs)
918 {
919 	struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
920 	struct pcxhr_mgr *mgr = chip->mgr;
921 	struct pcxhr_stream *stream = subs->runtime->private_data;
922 
923 	mutex_lock(&mgr->setup_mutex);
924 
925 	snd_printdd("pcxhr_close chip%d subs%d\n", chip->chip_idx, subs->number);
926 
927 	/* sample rate released */
928 	if (--mgr->ref_count_rate == 0) {
929 		mgr->sample_rate = 0;		/* the sample rate is no more locked */
930 		pcxhr_hardware_timer(mgr, 0);	/* stop the DSP-timer */
931 	}
932 
933 	stream->status    = PCXHR_STREAM_STATUS_FREE;
934 	stream->substream = NULL;
935 
936 	mutex_unlock(&mgr->setup_mutex);
937 
938 	return 0;
939 }
940 
941 
942 static snd_pcm_uframes_t pcxhr_stream_pointer(struct snd_pcm_substream *subs)
943 {
944 	unsigned long flags;
945 	u_int32_t timer_period_frag;
946 	int timer_buf_periods;
947 	struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
948 	struct snd_pcm_runtime *runtime = subs->runtime;
949 	struct pcxhr_stream *stream  = runtime->private_data;
950 
951 	spin_lock_irqsave(&chip->mgr->lock, flags);
952 
953 	/* get the period fragment and the nb of periods in the buffer */
954 	timer_period_frag = stream->timer_period_frag;
955 	timer_buf_periods = stream->timer_buf_periods;
956 
957 	spin_unlock_irqrestore(&chip->mgr->lock, flags);
958 
959 	return (snd_pcm_uframes_t)((timer_buf_periods * runtime->period_size) +
960 				   timer_period_frag);
961 }
962 
963 
964 static struct snd_pcm_ops pcxhr_ops = {
965 	.open      = pcxhr_open,
966 	.close     = pcxhr_close,
967 	.ioctl     = snd_pcm_lib_ioctl,
968 	.prepare   = pcxhr_prepare,
969 	.hw_params = pcxhr_hw_params,
970 	.hw_free   = pcxhr_hw_free,
971 	.trigger   = pcxhr_trigger,
972 	.pointer   = pcxhr_stream_pointer,
973 };
974 
975 /*
976  */
977 int pcxhr_create_pcm(struct snd_pcxhr *chip)
978 {
979 	int err;
980 	struct snd_pcm *pcm;
981 	char name[32];
982 
983 	sprintf(name, "pcxhr %d", chip->chip_idx);
984 	if ((err = snd_pcm_new(chip->card, name, 0,
985 			       chip->nb_streams_play,
986 			       chip->nb_streams_capt, &pcm)) < 0) {
987 		snd_printk(KERN_ERR "cannot create pcm %s\n", name);
988 		return err;
989 	}
990 	pcm->private_data = chip;
991 
992 	if (chip->nb_streams_play)
993 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &pcxhr_ops);
994 	if (chip->nb_streams_capt)
995 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &pcxhr_ops);
996 
997 	pcm->info_flags = 0;
998 	strcpy(pcm->name, name);
999 
1000 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1001 					      snd_dma_pci_data(chip->mgr->pci),
1002 					      32*1024, 32*1024);
1003 	chip->pcm = pcm;
1004 	return 0;
1005 }
1006 
1007 static int pcxhr_chip_free(struct snd_pcxhr *chip)
1008 {
1009 	kfree(chip);
1010 	return 0;
1011 }
1012 
1013 static int pcxhr_chip_dev_free(struct snd_device *device)
1014 {
1015 	struct snd_pcxhr *chip = device->device_data;
1016 	return pcxhr_chip_free(chip);
1017 }
1018 
1019 
1020 /*
1021  */
1022 static int __devinit pcxhr_create(struct pcxhr_mgr *mgr, struct snd_card *card, int idx)
1023 {
1024 	int err;
1025 	struct snd_pcxhr *chip;
1026 	static struct snd_device_ops ops = {
1027 		.dev_free = pcxhr_chip_dev_free,
1028 	};
1029 
1030 	mgr->chip[idx] = chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1031 	if (! chip) {
1032 		snd_printk(KERN_ERR "cannot allocate chip\n");
1033 		return -ENOMEM;
1034 	}
1035 
1036 	chip->card = card;
1037 	chip->chip_idx = idx;
1038 	chip->mgr = mgr;
1039 
1040 	if (idx < mgr->playback_chips)
1041 		/* stereo or mono streams */
1042 		chip->nb_streams_play = PCXHR_PLAYBACK_STREAMS;
1043 
1044 	if (idx < mgr->capture_chips) {
1045 		if (mgr->mono_capture)
1046 			chip->nb_streams_capt = 2;	/* 2 mono streams (left+right) */
1047 		else
1048 			chip->nb_streams_capt = 1;	/* or 1 stereo stream */
1049 	}
1050 
1051 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
1052 		pcxhr_chip_free(chip);
1053 		return err;
1054 	}
1055 
1056 	snd_card_set_dev(card, &mgr->pci->dev);
1057 
1058 	return 0;
1059 }
1060 
1061 /* proc interface */
1062 static void pcxhr_proc_info(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
1063 {
1064 	struct snd_pcxhr *chip = entry->private_data;
1065 	struct pcxhr_mgr *mgr = chip->mgr;
1066 
1067 	snd_iprintf(buffer, "\n%s\n", mgr->longname);
1068 
1069 	/* stats available when embedded DSP is running */
1070 	if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) {
1071 		struct pcxhr_rmh rmh;
1072 		short ver_maj = (mgr->dsp_version >> 16) & 0xff;
1073 		short ver_min = (mgr->dsp_version >> 8) & 0xff;
1074 		short ver_build = mgr->dsp_version & 0xff;
1075 		snd_iprintf(buffer, "module version %s\n", PCXHR_DRIVER_VERSION_STRING);
1076 		snd_iprintf(buffer, "dsp version %d.%d.%d\n", ver_maj, ver_min, ver_build);
1077 		if (mgr->board_has_analog)
1078 			snd_iprintf(buffer, "analog io available\n");
1079 		else
1080 			snd_iprintf(buffer, "digital only board\n");
1081 
1082 		/* calc cpu load of the dsp */
1083 		pcxhr_init_rmh(&rmh, CMD_GET_DSP_RESOURCES);
1084 		if( ! pcxhr_send_msg(mgr, &rmh) ) {
1085 			int cur = rmh.stat[0];
1086 			int ref = rmh.stat[1];
1087 			if (ref > 0) {
1088 				if (mgr->sample_rate_real != 0 &&
1089 				    mgr->sample_rate_real != 48000) {
1090 					ref = (ref * 48000) / mgr->sample_rate_real;
1091 					if (mgr->sample_rate_real >= PCXHR_IRQ_TIMER_FREQ)
1092 						ref *= 2;
1093 				}
1094 				cur = 100 - (100 * cur) / ref;
1095 				snd_iprintf(buffer, "cpu load    %d%%\n", cur);
1096 				snd_iprintf(buffer, "buffer pool %d/%d kWords\n",
1097 					    rmh.stat[2], rmh.stat[3]);
1098 			}
1099 		}
1100 		snd_iprintf(buffer, "dma granularity : %d\n", PCXHR_GRANULARITY);
1101 		snd_iprintf(buffer, "dsp time errors : %d\n", mgr->dsp_time_err);
1102 		snd_iprintf(buffer, "dsp async pipe xrun errors : %d\n",
1103 			    mgr->async_err_pipe_xrun);
1104 		snd_iprintf(buffer, "dsp async stream xrun errors : %d\n",
1105 			    mgr->async_err_stream_xrun);
1106 		snd_iprintf(buffer, "dsp async last other error : %x\n",
1107 			    mgr->async_err_other_last);
1108 		/* debug zone dsp */
1109 		rmh.cmd[0] = 0x4200 + PCXHR_SIZE_MAX_STATUS;
1110 		rmh.cmd_len = 1;
1111 		rmh.stat_len = PCXHR_SIZE_MAX_STATUS;
1112 		rmh.dsp_stat = 0;
1113 		rmh.cmd_idx = CMD_LAST_INDEX;
1114 		if( ! pcxhr_send_msg(mgr, &rmh) ) {
1115 			int i;
1116 			for (i = 0; i < rmh.stat_len; i++)
1117 				snd_iprintf(buffer, "debug[%02d] = %06x\n", i,  rmh.stat[i]);
1118 		}
1119 	} else
1120 		snd_iprintf(buffer, "no firmware loaded\n");
1121 	snd_iprintf(buffer, "\n");
1122 }
1123 static void pcxhr_proc_sync(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
1124 {
1125 	struct snd_pcxhr *chip = entry->private_data;
1126 	struct pcxhr_mgr *mgr = chip->mgr;
1127 	static char *texts[7] = {
1128 		"Internal", "Word", "AES Sync", "AES 1", "AES 2", "AES 3", "AES 4"
1129 	};
1130 
1131 	snd_iprintf(buffer, "\n%s\n", mgr->longname);
1132 	snd_iprintf(buffer, "Current Sample Clock\t: %s\n", texts[mgr->cur_clock_type]);
1133 	snd_iprintf(buffer, "Current Sample Rate\t= %d\n", mgr->sample_rate_real);
1134 
1135 	/* commands available when embedded DSP is running */
1136 	if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) {
1137 		int i, err, sample_rate;
1138 		for (i = PCXHR_CLOCK_TYPE_WORD_CLOCK; i< (3 + mgr->capture_chips); i++) {
1139 			err = pcxhr_get_external_clock(mgr, i, &sample_rate);
1140 			if (err)
1141 				break;
1142 			snd_iprintf(buffer, "%s Clock\t\t= %d\n", texts[i], sample_rate);
1143 		}
1144 	} else
1145 		snd_iprintf(buffer, "no firmware loaded\n");
1146 	snd_iprintf(buffer, "\n");
1147 }
1148 
1149 static void __devinit pcxhr_proc_init(struct snd_pcxhr *chip)
1150 {
1151 	struct snd_info_entry *entry;
1152 
1153 	if (! snd_card_proc_new(chip->card, "info", &entry))
1154 		snd_info_set_text_ops(entry, chip, 1024, pcxhr_proc_info);
1155 	if (! snd_card_proc_new(chip->card, "sync", &entry))
1156 		snd_info_set_text_ops(entry, chip, 1024, pcxhr_proc_sync);
1157 }
1158 /* end of proc interface */
1159 
1160 /*
1161  * release all the cards assigned to a manager instance
1162  */
1163 static int pcxhr_free(struct pcxhr_mgr *mgr)
1164 {
1165 	unsigned int i;
1166 
1167 	for (i = 0; i < mgr->num_cards; i++) {
1168 		if (mgr->chip[i])
1169 			snd_card_free(mgr->chip[i]->card);
1170 	}
1171 
1172 	/* reset board if some firmware was loaded */
1173 	if(mgr->dsp_loaded) {
1174 		pcxhr_reset_board(mgr);
1175 		snd_printdd("reset pcxhr !\n");
1176 	}
1177 
1178 	/* release irq  */
1179 	if (mgr->irq >= 0)
1180 		free_irq(mgr->irq, mgr);
1181 
1182 	pci_release_regions(mgr->pci);
1183 
1184 	/* free hostport purgebuffer */
1185 	if (mgr->hostport.area) {
1186 		snd_dma_free_pages(&mgr->hostport);
1187 		mgr->hostport.area = NULL;
1188 	}
1189 
1190 	kfree(mgr->prmh);
1191 
1192 	pci_disable_device(mgr->pci);
1193 	kfree(mgr);
1194 	return 0;
1195 }
1196 
1197 /*
1198  *    probe function - creates the card manager
1199  */
1200 static int __devinit pcxhr_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
1201 {
1202 	static int dev;
1203 	struct pcxhr_mgr *mgr;
1204 	unsigned int i;
1205 	int err;
1206 	size_t size;
1207 	char *card_name;
1208 
1209 	if (dev >= SNDRV_CARDS)
1210 		return -ENODEV;
1211 	if (! enable[dev]) {
1212 		dev++;
1213 		return -ENOENT;
1214 	}
1215 
1216 	/* enable PCI device */
1217 	if ((err = pci_enable_device(pci)) < 0)
1218 		return err;
1219 	pci_set_master(pci);
1220 
1221 	/* check if we can restrict PCI DMA transfers to 32 bits */
1222 	if (pci_set_dma_mask(pci, DMA_32BIT_MASK) < 0) {
1223 		snd_printk(KERN_ERR "architecture does not support 32bit PCI busmaster DMA\n");
1224 		pci_disable_device(pci);
1225 		return -ENXIO;
1226 	}
1227 
1228 	/* alloc card manager */
1229 	mgr = kzalloc(sizeof(*mgr), GFP_KERNEL);
1230 	if (! mgr) {
1231 		pci_disable_device(pci);
1232 		return -ENOMEM;
1233 	}
1234 
1235 	snd_assert(pci_id->driver_data < PCI_ID_LAST, return -ENODEV);
1236 	card_name = pcxhr_board_params[pci_id->driver_data].board_name;
1237 	mgr->playback_chips = pcxhr_board_params[pci_id->driver_data].playback_chips;
1238 	mgr->capture_chips  = pcxhr_board_params[pci_id->driver_data].capture_chips;
1239 	mgr->firmware_num  = pcxhr_board_params[pci_id->driver_data].firmware_num;
1240 	mgr->mono_capture = mono[dev];
1241 
1242 	/* resource assignment */
1243 	if ((err = pci_request_regions(pci, card_name)) < 0) {
1244 		kfree(mgr);
1245 		pci_disable_device(pci);
1246 		return err;
1247 	}
1248 	for (i = 0; i < 3; i++)
1249 		mgr->port[i] = pci_resource_start(pci, i);
1250 
1251 	mgr->pci = pci;
1252 	mgr->irq = -1;
1253 
1254 	if (request_irq(pci->irq, pcxhr_interrupt, SA_INTERRUPT|SA_SHIRQ,
1255 			card_name, mgr)) {
1256 		snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
1257 		pcxhr_free(mgr);
1258 		return -EBUSY;
1259 	}
1260 	mgr->irq = pci->irq;
1261 
1262 	sprintf(mgr->shortname, "Digigram %s", card_name);
1263 	sprintf(mgr->longname, "%s at 0x%lx & 0x%lx, 0x%lx irq %i", mgr->shortname,
1264 		mgr->port[0], mgr->port[1], mgr->port[2], mgr->irq);
1265 
1266 	/* ISR spinlock  */
1267 	spin_lock_init(&mgr->lock);
1268 	spin_lock_init(&mgr->msg_lock);
1269 
1270 	/* init setup mutex*/
1271 	mutex_init(&mgr->setup_mutex);
1272 
1273 	/* init taslket */
1274 	tasklet_init(&mgr->msg_taskq, pcxhr_msg_tasklet, (unsigned long) mgr);
1275 	tasklet_init(&mgr->trigger_taskq, pcxhr_trigger_tasklet, (unsigned long) mgr);
1276 	mgr->prmh = kmalloc(sizeof(*mgr->prmh) +
1277 			    sizeof(u32) * (PCXHR_SIZE_MAX_LONG_STATUS - PCXHR_SIZE_MAX_STATUS),
1278 			    GFP_KERNEL);
1279 	if (! mgr->prmh) {
1280 		pcxhr_free(mgr);
1281 		return -ENOMEM;
1282 	}
1283 
1284 	for (i=0; i < PCXHR_MAX_CARDS; i++) {
1285 		struct snd_card *card;
1286 		char tmpid[16];
1287 		int idx;
1288 
1289 		if (i >= max(mgr->playback_chips, mgr->capture_chips))
1290 			break;
1291 		mgr->num_cards++;
1292 
1293 		if (index[dev] < 0)
1294 			idx = index[dev];
1295 		else
1296 			idx = index[dev] + i;
1297 
1298 		snprintf(tmpid, sizeof(tmpid), "%s-%d", id[dev] ? id[dev] : card_name, i);
1299 		card = snd_card_new(idx, tmpid, THIS_MODULE, 0);
1300 
1301 		if (! card) {
1302 			snd_printk(KERN_ERR "cannot allocate the card %d\n", i);
1303 			pcxhr_free(mgr);
1304 			return -ENOMEM;
1305 		}
1306 
1307 		strcpy(card->driver, DRIVER_NAME);
1308 		sprintf(card->shortname, "%s [PCM #%d]", mgr->shortname, i);
1309 		sprintf(card->longname, "%s [PCM #%d]", mgr->longname, i);
1310 
1311 		if ((err = pcxhr_create(mgr, card, i)) < 0) {
1312 			pcxhr_free(mgr);
1313 			return err;
1314 		}
1315 
1316 		if (i == 0)
1317 			/* init proc interface only for chip0 */
1318 			pcxhr_proc_init(mgr->chip[i]);
1319 
1320 		if ((err = snd_card_register(card)) < 0) {
1321 			pcxhr_free(mgr);
1322 			return err;
1323 		}
1324 	}
1325 
1326 	/* create hostport purgebuffer */
1327 	size = PAGE_ALIGN(sizeof(struct pcxhr_hostport));
1328 	if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
1329 				size, &mgr->hostport) < 0) {
1330 		pcxhr_free(mgr);
1331 		return -ENOMEM;
1332 	}
1333 	/* init purgebuffer */
1334 	memset(mgr->hostport.area, 0, size);
1335 
1336 	/* create a DSP loader */
1337 	err = pcxhr_setup_firmware(mgr);
1338 	if (err < 0) {
1339 		pcxhr_free(mgr);
1340 		return err;
1341 	}
1342 
1343 	pci_set_drvdata(pci, mgr);
1344 	dev++;
1345 	return 0;
1346 }
1347 
1348 static void __devexit pcxhr_remove(struct pci_dev *pci)
1349 {
1350 	pcxhr_free(pci_get_drvdata(pci));
1351 	pci_set_drvdata(pci, NULL);
1352 }
1353 
1354 static struct pci_driver driver = {
1355 	.name = "Digigram pcxhr",
1356 	.id_table = pcxhr_ids,
1357 	.probe = pcxhr_probe,
1358 	.remove = __devexit_p(pcxhr_remove),
1359 };
1360 
1361 static int __init pcxhr_module_init(void)
1362 {
1363 	return pci_register_driver(&driver);
1364 }
1365 
1366 static void __exit pcxhr_module_exit(void)
1367 {
1368 	pci_unregister_driver(&driver);
1369 }
1370 
1371 module_init(pcxhr_module_init)
1372 module_exit(pcxhr_module_exit)
1373