xref: /linux/security/selinux/ss/policydb.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  * Implementation of the policy database.
3  *
4  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5  */
6 
7 /*
8  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9  *
10  *	Support for enhanced MLS infrastructure.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  * 	Added conditional policy language extensions
15  *
16  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
17  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18  *	This program is free software; you can redistribute it and/or modify
19  *  	it under the terms of the GNU General Public License as published by
20  *	the Free Software Foundation, version 2.
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/errno.h>
28 #include "security.h"
29 
30 #include "policydb.h"
31 #include "conditional.h"
32 #include "mls.h"
33 
34 #define _DEBUG_HASHES
35 
36 #ifdef DEBUG_HASHES
37 static char *symtab_name[SYM_NUM] = {
38 	"common prefixes",
39 	"classes",
40 	"roles",
41 	"types",
42 	"users",
43 	"bools",
44 	"levels",
45 	"categories",
46 };
47 #endif
48 
49 int selinux_mls_enabled = 0;
50 
51 static unsigned int symtab_sizes[SYM_NUM] = {
52 	2,
53 	32,
54 	16,
55 	512,
56 	128,
57 	16,
58 	16,
59 	16,
60 };
61 
62 struct policydb_compat_info {
63 	int version;
64 	int sym_num;
65 	int ocon_num;
66 };
67 
68 /* These need to be updated if SYM_NUM or OCON_NUM changes */
69 static struct policydb_compat_info policydb_compat[] = {
70 	{
71 		.version        = POLICYDB_VERSION_BASE,
72 		.sym_num        = SYM_NUM - 3,
73 		.ocon_num       = OCON_NUM - 1,
74 	},
75 	{
76 		.version        = POLICYDB_VERSION_BOOL,
77 		.sym_num        = SYM_NUM - 2,
78 		.ocon_num       = OCON_NUM - 1,
79 	},
80 	{
81 		.version        = POLICYDB_VERSION_IPV6,
82 		.sym_num        = SYM_NUM - 2,
83 		.ocon_num       = OCON_NUM,
84 	},
85 	{
86 		.version        = POLICYDB_VERSION_NLCLASS,
87 		.sym_num        = SYM_NUM - 2,
88 		.ocon_num       = OCON_NUM,
89 	},
90 	{
91 		.version        = POLICYDB_VERSION_MLS,
92 		.sym_num        = SYM_NUM,
93 		.ocon_num       = OCON_NUM,
94 	},
95 	{
96 		.version        = POLICYDB_VERSION_AVTAB,
97 		.sym_num        = SYM_NUM,
98 		.ocon_num       = OCON_NUM,
99 	},
100 	{
101 		.version        = POLICYDB_VERSION_RANGETRANS,
102 		.sym_num        = SYM_NUM,
103 		.ocon_num       = OCON_NUM,
104 	},
105 };
106 
107 static struct policydb_compat_info *policydb_lookup_compat(int version)
108 {
109 	int i;
110 	struct policydb_compat_info *info = NULL;
111 
112 	for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
113 		if (policydb_compat[i].version == version) {
114 			info = &policydb_compat[i];
115 			break;
116 		}
117 	}
118 	return info;
119 }
120 
121 /*
122  * Initialize the role table.
123  */
124 static int roles_init(struct policydb *p)
125 {
126 	char *key = NULL;
127 	int rc;
128 	struct role_datum *role;
129 
130 	role = kzalloc(sizeof(*role), GFP_KERNEL);
131 	if (!role) {
132 		rc = -ENOMEM;
133 		goto out;
134 	}
135 	role->value = ++p->p_roles.nprim;
136 	if (role->value != OBJECT_R_VAL) {
137 		rc = -EINVAL;
138 		goto out_free_role;
139 	}
140 	key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL);
141 	if (!key) {
142 		rc = -ENOMEM;
143 		goto out_free_role;
144 	}
145 	strcpy(key, OBJECT_R);
146 	rc = hashtab_insert(p->p_roles.table, key, role);
147 	if (rc)
148 		goto out_free_key;
149 out:
150 	return rc;
151 
152 out_free_key:
153 	kfree(key);
154 out_free_role:
155 	kfree(role);
156 	goto out;
157 }
158 
159 /*
160  * Initialize a policy database structure.
161  */
162 static int policydb_init(struct policydb *p)
163 {
164 	int i, rc;
165 
166 	memset(p, 0, sizeof(*p));
167 
168 	for (i = 0; i < SYM_NUM; i++) {
169 		rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
170 		if (rc)
171 			goto out_free_symtab;
172 	}
173 
174 	rc = avtab_init(&p->te_avtab);
175 	if (rc)
176 		goto out_free_symtab;
177 
178 	rc = roles_init(p);
179 	if (rc)
180 		goto out_free_avtab;
181 
182 	rc = cond_policydb_init(p);
183 	if (rc)
184 		goto out_free_avtab;
185 
186 out:
187 	return rc;
188 
189 out_free_avtab:
190 	avtab_destroy(&p->te_avtab);
191 
192 out_free_symtab:
193 	for (i = 0; i < SYM_NUM; i++)
194 		hashtab_destroy(p->symtab[i].table);
195 	goto out;
196 }
197 
198 /*
199  * The following *_index functions are used to
200  * define the val_to_name and val_to_struct arrays
201  * in a policy database structure.  The val_to_name
202  * arrays are used when converting security context
203  * structures into string representations.  The
204  * val_to_struct arrays are used when the attributes
205  * of a class, role, or user are needed.
206  */
207 
208 static int common_index(void *key, void *datum, void *datap)
209 {
210 	struct policydb *p;
211 	struct common_datum *comdatum;
212 
213 	comdatum = datum;
214 	p = datap;
215 	if (!comdatum->value || comdatum->value > p->p_commons.nprim)
216 		return -EINVAL;
217 	p->p_common_val_to_name[comdatum->value - 1] = key;
218 	return 0;
219 }
220 
221 static int class_index(void *key, void *datum, void *datap)
222 {
223 	struct policydb *p;
224 	struct class_datum *cladatum;
225 
226 	cladatum = datum;
227 	p = datap;
228 	if (!cladatum->value || cladatum->value > p->p_classes.nprim)
229 		return -EINVAL;
230 	p->p_class_val_to_name[cladatum->value - 1] = key;
231 	p->class_val_to_struct[cladatum->value - 1] = cladatum;
232 	return 0;
233 }
234 
235 static int role_index(void *key, void *datum, void *datap)
236 {
237 	struct policydb *p;
238 	struct role_datum *role;
239 
240 	role = datum;
241 	p = datap;
242 	if (!role->value || role->value > p->p_roles.nprim)
243 		return -EINVAL;
244 	p->p_role_val_to_name[role->value - 1] = key;
245 	p->role_val_to_struct[role->value - 1] = role;
246 	return 0;
247 }
248 
249 static int type_index(void *key, void *datum, void *datap)
250 {
251 	struct policydb *p;
252 	struct type_datum *typdatum;
253 
254 	typdatum = datum;
255 	p = datap;
256 
257 	if (typdatum->primary) {
258 		if (!typdatum->value || typdatum->value > p->p_types.nprim)
259 			return -EINVAL;
260 		p->p_type_val_to_name[typdatum->value - 1] = key;
261 	}
262 
263 	return 0;
264 }
265 
266 static int user_index(void *key, void *datum, void *datap)
267 {
268 	struct policydb *p;
269 	struct user_datum *usrdatum;
270 
271 	usrdatum = datum;
272 	p = datap;
273 	if (!usrdatum->value || usrdatum->value > p->p_users.nprim)
274 		return -EINVAL;
275 	p->p_user_val_to_name[usrdatum->value - 1] = key;
276 	p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
277 	return 0;
278 }
279 
280 static int sens_index(void *key, void *datum, void *datap)
281 {
282 	struct policydb *p;
283 	struct level_datum *levdatum;
284 
285 	levdatum = datum;
286 	p = datap;
287 
288 	if (!levdatum->isalias) {
289 		if (!levdatum->level->sens ||
290 		    levdatum->level->sens > p->p_levels.nprim)
291 			return -EINVAL;
292 		p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
293 	}
294 
295 	return 0;
296 }
297 
298 static int cat_index(void *key, void *datum, void *datap)
299 {
300 	struct policydb *p;
301 	struct cat_datum *catdatum;
302 
303 	catdatum = datum;
304 	p = datap;
305 
306 	if (!catdatum->isalias) {
307 		if (!catdatum->value || catdatum->value > p->p_cats.nprim)
308 			return -EINVAL;
309 		p->p_cat_val_to_name[catdatum->value - 1] = key;
310 	}
311 
312 	return 0;
313 }
314 
315 static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
316 {
317 	common_index,
318 	class_index,
319 	role_index,
320 	type_index,
321 	user_index,
322 	cond_index_bool,
323 	sens_index,
324 	cat_index,
325 };
326 
327 /*
328  * Define the common val_to_name array and the class
329  * val_to_name and val_to_struct arrays in a policy
330  * database structure.
331  *
332  * Caller must clean up upon failure.
333  */
334 static int policydb_index_classes(struct policydb *p)
335 {
336 	int rc;
337 
338 	p->p_common_val_to_name =
339 		kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
340 	if (!p->p_common_val_to_name) {
341 		rc = -ENOMEM;
342 		goto out;
343 	}
344 
345 	rc = hashtab_map(p->p_commons.table, common_index, p);
346 	if (rc)
347 		goto out;
348 
349 	p->class_val_to_struct =
350 		kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
351 	if (!p->class_val_to_struct) {
352 		rc = -ENOMEM;
353 		goto out;
354 	}
355 
356 	p->p_class_val_to_name =
357 		kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
358 	if (!p->p_class_val_to_name) {
359 		rc = -ENOMEM;
360 		goto out;
361 	}
362 
363 	rc = hashtab_map(p->p_classes.table, class_index, p);
364 out:
365 	return rc;
366 }
367 
368 #ifdef DEBUG_HASHES
369 static void symtab_hash_eval(struct symtab *s)
370 {
371 	int i;
372 
373 	for (i = 0; i < SYM_NUM; i++) {
374 		struct hashtab *h = s[i].table;
375 		struct hashtab_info info;
376 
377 		hashtab_stat(h, &info);
378 		printk(KERN_DEBUG "%s:  %d entries and %d/%d buckets used, "
379 		       "longest chain length %d\n", symtab_name[i], h->nel,
380 		       info.slots_used, h->size, info.max_chain_len);
381 	}
382 }
383 #endif
384 
385 /*
386  * Define the other val_to_name and val_to_struct arrays
387  * in a policy database structure.
388  *
389  * Caller must clean up on failure.
390  */
391 static int policydb_index_others(struct policydb *p)
392 {
393 	int i, rc = 0;
394 
395 	printk(KERN_DEBUG "security:  %d users, %d roles, %d types, %d bools",
396 	       p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
397 	if (selinux_mls_enabled)
398 		printk(", %d sens, %d cats", p->p_levels.nprim,
399 		       p->p_cats.nprim);
400 	printk("\n");
401 
402 	printk(KERN_DEBUG "security:  %d classes, %d rules\n",
403 	       p->p_classes.nprim, p->te_avtab.nel);
404 
405 #ifdef DEBUG_HASHES
406 	avtab_hash_eval(&p->te_avtab, "rules");
407 	symtab_hash_eval(p->symtab);
408 #endif
409 
410 	p->role_val_to_struct =
411 		kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
412 		        GFP_KERNEL);
413 	if (!p->role_val_to_struct) {
414 		rc = -ENOMEM;
415 		goto out;
416 	}
417 
418 	p->user_val_to_struct =
419 		kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
420 		        GFP_KERNEL);
421 	if (!p->user_val_to_struct) {
422 		rc = -ENOMEM;
423 		goto out;
424 	}
425 
426 	if (cond_init_bool_indexes(p)) {
427 		rc = -ENOMEM;
428 		goto out;
429 	}
430 
431 	for (i = SYM_ROLES; i < SYM_NUM; i++) {
432 		p->sym_val_to_name[i] =
433 			kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
434 		if (!p->sym_val_to_name[i]) {
435 			rc = -ENOMEM;
436 			goto out;
437 		}
438 		rc = hashtab_map(p->symtab[i].table, index_f[i], p);
439 		if (rc)
440 			goto out;
441 	}
442 
443 out:
444 	return rc;
445 }
446 
447 /*
448  * The following *_destroy functions are used to
449  * free any memory allocated for each kind of
450  * symbol data in the policy database.
451  */
452 
453 static int perm_destroy(void *key, void *datum, void *p)
454 {
455 	kfree(key);
456 	kfree(datum);
457 	return 0;
458 }
459 
460 static int common_destroy(void *key, void *datum, void *p)
461 {
462 	struct common_datum *comdatum;
463 
464 	kfree(key);
465 	comdatum = datum;
466 	hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
467 	hashtab_destroy(comdatum->permissions.table);
468 	kfree(datum);
469 	return 0;
470 }
471 
472 static int cls_destroy(void *key, void *datum, void *p)
473 {
474 	struct class_datum *cladatum;
475 	struct constraint_node *constraint, *ctemp;
476 	struct constraint_expr *e, *etmp;
477 
478 	kfree(key);
479 	cladatum = datum;
480 	hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
481 	hashtab_destroy(cladatum->permissions.table);
482 	constraint = cladatum->constraints;
483 	while (constraint) {
484 		e = constraint->expr;
485 		while (e) {
486 			ebitmap_destroy(&e->names);
487 			etmp = e;
488 			e = e->next;
489 			kfree(etmp);
490 		}
491 		ctemp = constraint;
492 		constraint = constraint->next;
493 		kfree(ctemp);
494 	}
495 
496 	constraint = cladatum->validatetrans;
497 	while (constraint) {
498 		e = constraint->expr;
499 		while (e) {
500 			ebitmap_destroy(&e->names);
501 			etmp = e;
502 			e = e->next;
503 			kfree(etmp);
504 		}
505 		ctemp = constraint;
506 		constraint = constraint->next;
507 		kfree(ctemp);
508 	}
509 
510 	kfree(cladatum->comkey);
511 	kfree(datum);
512 	return 0;
513 }
514 
515 static int role_destroy(void *key, void *datum, void *p)
516 {
517 	struct role_datum *role;
518 
519 	kfree(key);
520 	role = datum;
521 	ebitmap_destroy(&role->dominates);
522 	ebitmap_destroy(&role->types);
523 	kfree(datum);
524 	return 0;
525 }
526 
527 static int type_destroy(void *key, void *datum, void *p)
528 {
529 	kfree(key);
530 	kfree(datum);
531 	return 0;
532 }
533 
534 static int user_destroy(void *key, void *datum, void *p)
535 {
536 	struct user_datum *usrdatum;
537 
538 	kfree(key);
539 	usrdatum = datum;
540 	ebitmap_destroy(&usrdatum->roles);
541 	ebitmap_destroy(&usrdatum->range.level[0].cat);
542 	ebitmap_destroy(&usrdatum->range.level[1].cat);
543 	ebitmap_destroy(&usrdatum->dfltlevel.cat);
544 	kfree(datum);
545 	return 0;
546 }
547 
548 static int sens_destroy(void *key, void *datum, void *p)
549 {
550 	struct level_datum *levdatum;
551 
552 	kfree(key);
553 	levdatum = datum;
554 	ebitmap_destroy(&levdatum->level->cat);
555 	kfree(levdatum->level);
556 	kfree(datum);
557 	return 0;
558 }
559 
560 static int cat_destroy(void *key, void *datum, void *p)
561 {
562 	kfree(key);
563 	kfree(datum);
564 	return 0;
565 }
566 
567 static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
568 {
569 	common_destroy,
570 	cls_destroy,
571 	role_destroy,
572 	type_destroy,
573 	user_destroy,
574 	cond_destroy_bool,
575 	sens_destroy,
576 	cat_destroy,
577 };
578 
579 static void ocontext_destroy(struct ocontext *c, int i)
580 {
581 	context_destroy(&c->context[0]);
582 	context_destroy(&c->context[1]);
583 	if (i == OCON_ISID || i == OCON_FS ||
584 	    i == OCON_NETIF || i == OCON_FSUSE)
585 		kfree(c->u.name);
586 	kfree(c);
587 }
588 
589 /*
590  * Free any memory allocated by a policy database structure.
591  */
592 void policydb_destroy(struct policydb *p)
593 {
594 	struct ocontext *c, *ctmp;
595 	struct genfs *g, *gtmp;
596 	int i;
597 	struct role_allow *ra, *lra = NULL;
598 	struct role_trans *tr, *ltr = NULL;
599 	struct range_trans *rt, *lrt = NULL;
600 
601 	for (i = 0; i < SYM_NUM; i++) {
602 		cond_resched();
603 		hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
604 		hashtab_destroy(p->symtab[i].table);
605 	}
606 
607 	for (i = 0; i < SYM_NUM; i++)
608 		kfree(p->sym_val_to_name[i]);
609 
610 	kfree(p->class_val_to_struct);
611 	kfree(p->role_val_to_struct);
612 	kfree(p->user_val_to_struct);
613 
614 	avtab_destroy(&p->te_avtab);
615 
616 	for (i = 0; i < OCON_NUM; i++) {
617 		cond_resched();
618 		c = p->ocontexts[i];
619 		while (c) {
620 			ctmp = c;
621 			c = c->next;
622 			ocontext_destroy(ctmp,i);
623 		}
624 		p->ocontexts[i] = NULL;
625 	}
626 
627 	g = p->genfs;
628 	while (g) {
629 		cond_resched();
630 		kfree(g->fstype);
631 		c = g->head;
632 		while (c) {
633 			ctmp = c;
634 			c = c->next;
635 			ocontext_destroy(ctmp,OCON_FSUSE);
636 		}
637 		gtmp = g;
638 		g = g->next;
639 		kfree(gtmp);
640 	}
641 	p->genfs = NULL;
642 
643 	cond_policydb_destroy(p);
644 
645 	for (tr = p->role_tr; tr; tr = tr->next) {
646 		cond_resched();
647 		kfree(ltr);
648 		ltr = tr;
649 	}
650 	kfree(ltr);
651 
652 	for (ra = p->role_allow; ra; ra = ra -> next) {
653 		cond_resched();
654 		kfree(lra);
655 		lra = ra;
656 	}
657 	kfree(lra);
658 
659 	for (rt = p->range_tr; rt; rt = rt -> next) {
660 		cond_resched();
661 		if (lrt) {
662 			ebitmap_destroy(&lrt->target_range.level[0].cat);
663 			ebitmap_destroy(&lrt->target_range.level[1].cat);
664 			kfree(lrt);
665 		}
666 		lrt = rt;
667 	}
668 	if (lrt) {
669 		ebitmap_destroy(&lrt->target_range.level[0].cat);
670 		ebitmap_destroy(&lrt->target_range.level[1].cat);
671 		kfree(lrt);
672 	}
673 
674 	if (p->type_attr_map) {
675 		for (i = 0; i < p->p_types.nprim; i++)
676 			ebitmap_destroy(&p->type_attr_map[i]);
677 	}
678 	kfree(p->type_attr_map);
679 
680 	return;
681 }
682 
683 /*
684  * Load the initial SIDs specified in a policy database
685  * structure into a SID table.
686  */
687 int policydb_load_isids(struct policydb *p, struct sidtab *s)
688 {
689 	struct ocontext *head, *c;
690 	int rc;
691 
692 	rc = sidtab_init(s);
693 	if (rc) {
694 		printk(KERN_ERR "security:  out of memory on SID table init\n");
695 		goto out;
696 	}
697 
698 	head = p->ocontexts[OCON_ISID];
699 	for (c = head; c; c = c->next) {
700 		if (!c->context[0].user) {
701 			printk(KERN_ERR "security:  SID %s was never "
702 			       "defined.\n", c->u.name);
703 			rc = -EINVAL;
704 			goto out;
705 		}
706 		if (sidtab_insert(s, c->sid[0], &c->context[0])) {
707 			printk(KERN_ERR "security:  unable to load initial "
708 			       "SID %s.\n", c->u.name);
709 			rc = -EINVAL;
710 			goto out;
711 		}
712 	}
713 out:
714 	return rc;
715 }
716 
717 /*
718  * Return 1 if the fields in the security context
719  * structure `c' are valid.  Return 0 otherwise.
720  */
721 int policydb_context_isvalid(struct policydb *p, struct context *c)
722 {
723 	struct role_datum *role;
724 	struct user_datum *usrdatum;
725 
726 	if (!c->role || c->role > p->p_roles.nprim)
727 		return 0;
728 
729 	if (!c->user || c->user > p->p_users.nprim)
730 		return 0;
731 
732 	if (!c->type || c->type > p->p_types.nprim)
733 		return 0;
734 
735 	if (c->role != OBJECT_R_VAL) {
736 		/*
737 		 * Role must be authorized for the type.
738 		 */
739 		role = p->role_val_to_struct[c->role - 1];
740 		if (!ebitmap_get_bit(&role->types,
741 				     c->type - 1))
742 			/* role may not be associated with type */
743 			return 0;
744 
745 		/*
746 		 * User must be authorized for the role.
747 		 */
748 		usrdatum = p->user_val_to_struct[c->user - 1];
749 		if (!usrdatum)
750 			return 0;
751 
752 		if (!ebitmap_get_bit(&usrdatum->roles,
753 				     c->role - 1))
754 			/* user may not be associated with role */
755 			return 0;
756 	}
757 
758 	if (!mls_context_isvalid(p, c))
759 		return 0;
760 
761 	return 1;
762 }
763 
764 /*
765  * Read a MLS range structure from a policydb binary
766  * representation file.
767  */
768 static int mls_read_range_helper(struct mls_range *r, void *fp)
769 {
770 	__le32 buf[2];
771 	u32 items;
772 	int rc;
773 
774 	rc = next_entry(buf, fp, sizeof(u32));
775 	if (rc < 0)
776 		goto out;
777 
778 	items = le32_to_cpu(buf[0]);
779 	if (items > ARRAY_SIZE(buf)) {
780 		printk(KERN_ERR "security: mls:  range overflow\n");
781 		rc = -EINVAL;
782 		goto out;
783 	}
784 	rc = next_entry(buf, fp, sizeof(u32) * items);
785 	if (rc < 0) {
786 		printk(KERN_ERR "security: mls:  truncated range\n");
787 		goto out;
788 	}
789 	r->level[0].sens = le32_to_cpu(buf[0]);
790 	if (items > 1)
791 		r->level[1].sens = le32_to_cpu(buf[1]);
792 	else
793 		r->level[1].sens = r->level[0].sens;
794 
795 	rc = ebitmap_read(&r->level[0].cat, fp);
796 	if (rc) {
797 		printk(KERN_ERR "security: mls:  error reading low "
798 		       "categories\n");
799 		goto out;
800 	}
801 	if (items > 1) {
802 		rc = ebitmap_read(&r->level[1].cat, fp);
803 		if (rc) {
804 			printk(KERN_ERR "security: mls:  error reading high "
805 			       "categories\n");
806 			goto bad_high;
807 		}
808 	} else {
809 		rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
810 		if (rc) {
811 			printk(KERN_ERR "security: mls:  out of memory\n");
812 			goto bad_high;
813 		}
814 	}
815 
816 	rc = 0;
817 out:
818 	return rc;
819 bad_high:
820 	ebitmap_destroy(&r->level[0].cat);
821 	goto out;
822 }
823 
824 /*
825  * Read and validate a security context structure
826  * from a policydb binary representation file.
827  */
828 static int context_read_and_validate(struct context *c,
829 				     struct policydb *p,
830 				     void *fp)
831 {
832 	__le32 buf[3];
833 	int rc;
834 
835 	rc = next_entry(buf, fp, sizeof buf);
836 	if (rc < 0) {
837 		printk(KERN_ERR "security: context truncated\n");
838 		goto out;
839 	}
840 	c->user = le32_to_cpu(buf[0]);
841 	c->role = le32_to_cpu(buf[1]);
842 	c->type = le32_to_cpu(buf[2]);
843 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
844 		if (mls_read_range_helper(&c->range, fp)) {
845 			printk(KERN_ERR "security: error reading MLS range of "
846 			       "context\n");
847 			rc = -EINVAL;
848 			goto out;
849 		}
850 	}
851 
852 	if (!policydb_context_isvalid(p, c)) {
853 		printk(KERN_ERR "security:  invalid security context\n");
854 		context_destroy(c);
855 		rc = -EINVAL;
856 	}
857 out:
858 	return rc;
859 }
860 
861 /*
862  * The following *_read functions are used to
863  * read the symbol data from a policy database
864  * binary representation file.
865  */
866 
867 static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
868 {
869 	char *key = NULL;
870 	struct perm_datum *perdatum;
871 	int rc;
872 	__le32 buf[2];
873 	u32 len;
874 
875 	perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
876 	if (!perdatum) {
877 		rc = -ENOMEM;
878 		goto out;
879 	}
880 
881 	rc = next_entry(buf, fp, sizeof buf);
882 	if (rc < 0)
883 		goto bad;
884 
885 	len = le32_to_cpu(buf[0]);
886 	perdatum->value = le32_to_cpu(buf[1]);
887 
888 	key = kmalloc(len + 1,GFP_KERNEL);
889 	if (!key) {
890 		rc = -ENOMEM;
891 		goto bad;
892 	}
893 	rc = next_entry(key, fp, len);
894 	if (rc < 0)
895 		goto bad;
896 	key[len] = 0;
897 
898 	rc = hashtab_insert(h, key, perdatum);
899 	if (rc)
900 		goto bad;
901 out:
902 	return rc;
903 bad:
904 	perm_destroy(key, perdatum, NULL);
905 	goto out;
906 }
907 
908 static int common_read(struct policydb *p, struct hashtab *h, void *fp)
909 {
910 	char *key = NULL;
911 	struct common_datum *comdatum;
912 	__le32 buf[4];
913 	u32 len, nel;
914 	int i, rc;
915 
916 	comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
917 	if (!comdatum) {
918 		rc = -ENOMEM;
919 		goto out;
920 	}
921 
922 	rc = next_entry(buf, fp, sizeof buf);
923 	if (rc < 0)
924 		goto bad;
925 
926 	len = le32_to_cpu(buf[0]);
927 	comdatum->value = le32_to_cpu(buf[1]);
928 
929 	rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
930 	if (rc)
931 		goto bad;
932 	comdatum->permissions.nprim = le32_to_cpu(buf[2]);
933 	nel = le32_to_cpu(buf[3]);
934 
935 	key = kmalloc(len + 1,GFP_KERNEL);
936 	if (!key) {
937 		rc = -ENOMEM;
938 		goto bad;
939 	}
940 	rc = next_entry(key, fp, len);
941 	if (rc < 0)
942 		goto bad;
943 	key[len] = 0;
944 
945 	for (i = 0; i < nel; i++) {
946 		rc = perm_read(p, comdatum->permissions.table, fp);
947 		if (rc)
948 			goto bad;
949 	}
950 
951 	rc = hashtab_insert(h, key, comdatum);
952 	if (rc)
953 		goto bad;
954 out:
955 	return rc;
956 bad:
957 	common_destroy(key, comdatum, NULL);
958 	goto out;
959 }
960 
961 static int read_cons_helper(struct constraint_node **nodep, int ncons,
962                             int allowxtarget, void *fp)
963 {
964 	struct constraint_node *c, *lc;
965 	struct constraint_expr *e, *le;
966 	__le32 buf[3];
967 	u32 nexpr;
968 	int rc, i, j, depth;
969 
970 	lc = NULL;
971 	for (i = 0; i < ncons; i++) {
972 		c = kzalloc(sizeof(*c), GFP_KERNEL);
973 		if (!c)
974 			return -ENOMEM;
975 
976 		if (lc) {
977 			lc->next = c;
978 		} else {
979 			*nodep = c;
980 		}
981 
982 		rc = next_entry(buf, fp, (sizeof(u32) * 2));
983 		if (rc < 0)
984 			return rc;
985 		c->permissions = le32_to_cpu(buf[0]);
986 		nexpr = le32_to_cpu(buf[1]);
987 		le = NULL;
988 		depth = -1;
989 		for (j = 0; j < nexpr; j++) {
990 			e = kzalloc(sizeof(*e), GFP_KERNEL);
991 			if (!e)
992 				return -ENOMEM;
993 
994 			if (le) {
995 				le->next = e;
996 			} else {
997 				c->expr = e;
998 			}
999 
1000 			rc = next_entry(buf, fp, (sizeof(u32) * 3));
1001 			if (rc < 0)
1002 				return rc;
1003 			e->expr_type = le32_to_cpu(buf[0]);
1004 			e->attr = le32_to_cpu(buf[1]);
1005 			e->op = le32_to_cpu(buf[2]);
1006 
1007 			switch (e->expr_type) {
1008 			case CEXPR_NOT:
1009 				if (depth < 0)
1010 					return -EINVAL;
1011 				break;
1012 			case CEXPR_AND:
1013 			case CEXPR_OR:
1014 				if (depth < 1)
1015 					return -EINVAL;
1016 				depth--;
1017 				break;
1018 			case CEXPR_ATTR:
1019 				if (depth == (CEXPR_MAXDEPTH - 1))
1020 					return -EINVAL;
1021 				depth++;
1022 				break;
1023 			case CEXPR_NAMES:
1024 				if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1025 					return -EINVAL;
1026 				if (depth == (CEXPR_MAXDEPTH - 1))
1027 					return -EINVAL;
1028 				depth++;
1029 				if (ebitmap_read(&e->names, fp))
1030 					return -EINVAL;
1031 				break;
1032 			default:
1033 				return -EINVAL;
1034 			}
1035 			le = e;
1036 		}
1037 		if (depth != 0)
1038 			return -EINVAL;
1039 		lc = c;
1040 	}
1041 
1042 	return 0;
1043 }
1044 
1045 static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1046 {
1047 	char *key = NULL;
1048 	struct class_datum *cladatum;
1049 	__le32 buf[6];
1050 	u32 len, len2, ncons, nel;
1051 	int i, rc;
1052 
1053 	cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1054 	if (!cladatum) {
1055 		rc = -ENOMEM;
1056 		goto out;
1057 	}
1058 
1059 	rc = next_entry(buf, fp, sizeof(u32)*6);
1060 	if (rc < 0)
1061 		goto bad;
1062 
1063 	len = le32_to_cpu(buf[0]);
1064 	len2 = le32_to_cpu(buf[1]);
1065 	cladatum->value = le32_to_cpu(buf[2]);
1066 
1067 	rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1068 	if (rc)
1069 		goto bad;
1070 	cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1071 	nel = le32_to_cpu(buf[4]);
1072 
1073 	ncons = le32_to_cpu(buf[5]);
1074 
1075 	key = kmalloc(len + 1,GFP_KERNEL);
1076 	if (!key) {
1077 		rc = -ENOMEM;
1078 		goto bad;
1079 	}
1080 	rc = next_entry(key, fp, len);
1081 	if (rc < 0)
1082 		goto bad;
1083 	key[len] = 0;
1084 
1085 	if (len2) {
1086 		cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL);
1087 		if (!cladatum->comkey) {
1088 			rc = -ENOMEM;
1089 			goto bad;
1090 		}
1091 		rc = next_entry(cladatum->comkey, fp, len2);
1092 		if (rc < 0)
1093 			goto bad;
1094 		cladatum->comkey[len2] = 0;
1095 
1096 		cladatum->comdatum = hashtab_search(p->p_commons.table,
1097 						    cladatum->comkey);
1098 		if (!cladatum->comdatum) {
1099 			printk(KERN_ERR "security:  unknown common %s\n",
1100 			       cladatum->comkey);
1101 			rc = -EINVAL;
1102 			goto bad;
1103 		}
1104 	}
1105 	for (i = 0; i < nel; i++) {
1106 		rc = perm_read(p, cladatum->permissions.table, fp);
1107 		if (rc)
1108 			goto bad;
1109 	}
1110 
1111 	rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1112 	if (rc)
1113 		goto bad;
1114 
1115 	if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1116 		/* grab the validatetrans rules */
1117 		rc = next_entry(buf, fp, sizeof(u32));
1118 		if (rc < 0)
1119 			goto bad;
1120 		ncons = le32_to_cpu(buf[0]);
1121 		rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1122 		if (rc)
1123 			goto bad;
1124 	}
1125 
1126 	rc = hashtab_insert(h, key, cladatum);
1127 	if (rc)
1128 		goto bad;
1129 
1130 	rc = 0;
1131 out:
1132 	return rc;
1133 bad:
1134 	cls_destroy(key, cladatum, NULL);
1135 	goto out;
1136 }
1137 
1138 static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1139 {
1140 	char *key = NULL;
1141 	struct role_datum *role;
1142 	int rc;
1143 	__le32 buf[2];
1144 	u32 len;
1145 
1146 	role = kzalloc(sizeof(*role), GFP_KERNEL);
1147 	if (!role) {
1148 		rc = -ENOMEM;
1149 		goto out;
1150 	}
1151 
1152 	rc = next_entry(buf, fp, sizeof buf);
1153 	if (rc < 0)
1154 		goto bad;
1155 
1156 	len = le32_to_cpu(buf[0]);
1157 	role->value = le32_to_cpu(buf[1]);
1158 
1159 	key = kmalloc(len + 1,GFP_KERNEL);
1160 	if (!key) {
1161 		rc = -ENOMEM;
1162 		goto bad;
1163 	}
1164 	rc = next_entry(key, fp, len);
1165 	if (rc < 0)
1166 		goto bad;
1167 	key[len] = 0;
1168 
1169 	rc = ebitmap_read(&role->dominates, fp);
1170 	if (rc)
1171 		goto bad;
1172 
1173 	rc = ebitmap_read(&role->types, fp);
1174 	if (rc)
1175 		goto bad;
1176 
1177 	if (strcmp(key, OBJECT_R) == 0) {
1178 		if (role->value != OBJECT_R_VAL) {
1179 			printk(KERN_ERR "Role %s has wrong value %d\n",
1180 			       OBJECT_R, role->value);
1181 			rc = -EINVAL;
1182 			goto bad;
1183 		}
1184 		rc = 0;
1185 		goto bad;
1186 	}
1187 
1188 	rc = hashtab_insert(h, key, role);
1189 	if (rc)
1190 		goto bad;
1191 out:
1192 	return rc;
1193 bad:
1194 	role_destroy(key, role, NULL);
1195 	goto out;
1196 }
1197 
1198 static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1199 {
1200 	char *key = NULL;
1201 	struct type_datum *typdatum;
1202 	int rc;
1203 	__le32 buf[3];
1204 	u32 len;
1205 
1206 	typdatum = kzalloc(sizeof(*typdatum),GFP_KERNEL);
1207 	if (!typdatum) {
1208 		rc = -ENOMEM;
1209 		return rc;
1210 	}
1211 
1212 	rc = next_entry(buf, fp, sizeof buf);
1213 	if (rc < 0)
1214 		goto bad;
1215 
1216 	len = le32_to_cpu(buf[0]);
1217 	typdatum->value = le32_to_cpu(buf[1]);
1218 	typdatum->primary = le32_to_cpu(buf[2]);
1219 
1220 	key = kmalloc(len + 1,GFP_KERNEL);
1221 	if (!key) {
1222 		rc = -ENOMEM;
1223 		goto bad;
1224 	}
1225 	rc = next_entry(key, fp, len);
1226 	if (rc < 0)
1227 		goto bad;
1228 	key[len] = 0;
1229 
1230 	rc = hashtab_insert(h, key, typdatum);
1231 	if (rc)
1232 		goto bad;
1233 out:
1234 	return rc;
1235 bad:
1236 	type_destroy(key, typdatum, NULL);
1237 	goto out;
1238 }
1239 
1240 
1241 /*
1242  * Read a MLS level structure from a policydb binary
1243  * representation file.
1244  */
1245 static int mls_read_level(struct mls_level *lp, void *fp)
1246 {
1247 	__le32 buf[1];
1248 	int rc;
1249 
1250 	memset(lp, 0, sizeof(*lp));
1251 
1252 	rc = next_entry(buf, fp, sizeof buf);
1253 	if (rc < 0) {
1254 		printk(KERN_ERR "security: mls: truncated level\n");
1255 		goto bad;
1256 	}
1257 	lp->sens = le32_to_cpu(buf[0]);
1258 
1259 	if (ebitmap_read(&lp->cat, fp)) {
1260 		printk(KERN_ERR "security: mls:  error reading level "
1261 		       "categories\n");
1262 		goto bad;
1263 	}
1264 	return 0;
1265 
1266 bad:
1267 	return -EINVAL;
1268 }
1269 
1270 static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1271 {
1272 	char *key = NULL;
1273 	struct user_datum *usrdatum;
1274 	int rc;
1275 	__le32 buf[2];
1276 	u32 len;
1277 
1278 	usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1279 	if (!usrdatum) {
1280 		rc = -ENOMEM;
1281 		goto out;
1282 	}
1283 
1284 	rc = next_entry(buf, fp, sizeof buf);
1285 	if (rc < 0)
1286 		goto bad;
1287 
1288 	len = le32_to_cpu(buf[0]);
1289 	usrdatum->value = le32_to_cpu(buf[1]);
1290 
1291 	key = kmalloc(len + 1,GFP_KERNEL);
1292 	if (!key) {
1293 		rc = -ENOMEM;
1294 		goto bad;
1295 	}
1296 	rc = next_entry(key, fp, len);
1297 	if (rc < 0)
1298 		goto bad;
1299 	key[len] = 0;
1300 
1301 	rc = ebitmap_read(&usrdatum->roles, fp);
1302 	if (rc)
1303 		goto bad;
1304 
1305 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1306 		rc = mls_read_range_helper(&usrdatum->range, fp);
1307 		if (rc)
1308 			goto bad;
1309 		rc = mls_read_level(&usrdatum->dfltlevel, fp);
1310 		if (rc)
1311 			goto bad;
1312 	}
1313 
1314 	rc = hashtab_insert(h, key, usrdatum);
1315 	if (rc)
1316 		goto bad;
1317 out:
1318 	return rc;
1319 bad:
1320 	user_destroy(key, usrdatum, NULL);
1321 	goto out;
1322 }
1323 
1324 static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1325 {
1326 	char *key = NULL;
1327 	struct level_datum *levdatum;
1328 	int rc;
1329 	__le32 buf[2];
1330 	u32 len;
1331 
1332 	levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1333 	if (!levdatum) {
1334 		rc = -ENOMEM;
1335 		goto out;
1336 	}
1337 
1338 	rc = next_entry(buf, fp, sizeof buf);
1339 	if (rc < 0)
1340 		goto bad;
1341 
1342 	len = le32_to_cpu(buf[0]);
1343 	levdatum->isalias = le32_to_cpu(buf[1]);
1344 
1345 	key = kmalloc(len + 1,GFP_ATOMIC);
1346 	if (!key) {
1347 		rc = -ENOMEM;
1348 		goto bad;
1349 	}
1350 	rc = next_entry(key, fp, len);
1351 	if (rc < 0)
1352 		goto bad;
1353 	key[len] = 0;
1354 
1355 	levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1356 	if (!levdatum->level) {
1357 		rc = -ENOMEM;
1358 		goto bad;
1359 	}
1360 	if (mls_read_level(levdatum->level, fp)) {
1361 		rc = -EINVAL;
1362 		goto bad;
1363 	}
1364 
1365 	rc = hashtab_insert(h, key, levdatum);
1366 	if (rc)
1367 		goto bad;
1368 out:
1369 	return rc;
1370 bad:
1371 	sens_destroy(key, levdatum, NULL);
1372 	goto out;
1373 }
1374 
1375 static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1376 {
1377 	char *key = NULL;
1378 	struct cat_datum *catdatum;
1379 	int rc;
1380 	__le32 buf[3];
1381 	u32 len;
1382 
1383 	catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1384 	if (!catdatum) {
1385 		rc = -ENOMEM;
1386 		goto out;
1387 	}
1388 
1389 	rc = next_entry(buf, fp, sizeof buf);
1390 	if (rc < 0)
1391 		goto bad;
1392 
1393 	len = le32_to_cpu(buf[0]);
1394 	catdatum->value = le32_to_cpu(buf[1]);
1395 	catdatum->isalias = le32_to_cpu(buf[2]);
1396 
1397 	key = kmalloc(len + 1,GFP_ATOMIC);
1398 	if (!key) {
1399 		rc = -ENOMEM;
1400 		goto bad;
1401 	}
1402 	rc = next_entry(key, fp, len);
1403 	if (rc < 0)
1404 		goto bad;
1405 	key[len] = 0;
1406 
1407 	rc = hashtab_insert(h, key, catdatum);
1408 	if (rc)
1409 		goto bad;
1410 out:
1411 	return rc;
1412 
1413 bad:
1414 	cat_destroy(key, catdatum, NULL);
1415 	goto out;
1416 }
1417 
1418 static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1419 {
1420 	common_read,
1421 	class_read,
1422 	role_read,
1423 	type_read,
1424 	user_read,
1425 	cond_read_bool,
1426 	sens_read,
1427 	cat_read,
1428 };
1429 
1430 extern int ss_initialized;
1431 
1432 /*
1433  * Read the configuration data from a policy database binary
1434  * representation file into a policy database structure.
1435  */
1436 int policydb_read(struct policydb *p, void *fp)
1437 {
1438 	struct role_allow *ra, *lra;
1439 	struct role_trans *tr, *ltr;
1440 	struct ocontext *l, *c, *newc;
1441 	struct genfs *genfs_p, *genfs, *newgenfs;
1442 	int i, j, rc;
1443 	__le32 buf[8];
1444 	u32 len, len2, config, nprim, nel, nel2;
1445 	char *policydb_str;
1446 	struct policydb_compat_info *info;
1447 	struct range_trans *rt, *lrt;
1448 
1449 	config = 0;
1450 
1451 	rc = policydb_init(p);
1452 	if (rc)
1453 		goto out;
1454 
1455 	/* Read the magic number and string length. */
1456 	rc = next_entry(buf, fp, sizeof(u32)* 2);
1457 	if (rc < 0)
1458 		goto bad;
1459 
1460 	if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
1461 		printk(KERN_ERR "security:  policydb magic number 0x%x does "
1462 		       "not match expected magic number 0x%x\n",
1463 		       le32_to_cpu(buf[0]), POLICYDB_MAGIC);
1464 		goto bad;
1465 	}
1466 
1467 	len = le32_to_cpu(buf[1]);
1468 	if (len != strlen(POLICYDB_STRING)) {
1469 		printk(KERN_ERR "security:  policydb string length %d does not "
1470 		       "match expected length %Zu\n",
1471 		       len, strlen(POLICYDB_STRING));
1472 		goto bad;
1473 	}
1474 	policydb_str = kmalloc(len + 1,GFP_KERNEL);
1475 	if (!policydb_str) {
1476 		printk(KERN_ERR "security:  unable to allocate memory for policydb "
1477 		       "string of length %d\n", len);
1478 		rc = -ENOMEM;
1479 		goto bad;
1480 	}
1481 	rc = next_entry(policydb_str, fp, len);
1482 	if (rc < 0) {
1483 		printk(KERN_ERR "security:  truncated policydb string identifier\n");
1484 		kfree(policydb_str);
1485 		goto bad;
1486 	}
1487 	policydb_str[len] = 0;
1488 	if (strcmp(policydb_str, POLICYDB_STRING)) {
1489 		printk(KERN_ERR "security:  policydb string %s does not match "
1490 		       "my string %s\n", policydb_str, POLICYDB_STRING);
1491 		kfree(policydb_str);
1492 		goto bad;
1493 	}
1494 	/* Done with policydb_str. */
1495 	kfree(policydb_str);
1496 	policydb_str = NULL;
1497 
1498 	/* Read the version, config, and table sizes. */
1499 	rc = next_entry(buf, fp, sizeof(u32)*4);
1500 	if (rc < 0)
1501 		goto bad;
1502 
1503 	p->policyvers = le32_to_cpu(buf[0]);
1504 	if (p->policyvers < POLICYDB_VERSION_MIN ||
1505 	    p->policyvers > POLICYDB_VERSION_MAX) {
1506 	    	printk(KERN_ERR "security:  policydb version %d does not match "
1507 	    	       "my version range %d-%d\n",
1508 	    	       le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
1509 	    	goto bad;
1510 	}
1511 
1512 	if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
1513 		if (ss_initialized && !selinux_mls_enabled) {
1514 			printk(KERN_ERR "Cannot switch between non-MLS and MLS "
1515 			       "policies\n");
1516 			goto bad;
1517 		}
1518 		selinux_mls_enabled = 1;
1519 		config |= POLICYDB_CONFIG_MLS;
1520 
1521 		if (p->policyvers < POLICYDB_VERSION_MLS) {
1522 			printk(KERN_ERR "security policydb version %d (MLS) "
1523 			       "not backwards compatible\n", p->policyvers);
1524 			goto bad;
1525 		}
1526 	} else {
1527 		if (ss_initialized && selinux_mls_enabled) {
1528 			printk(KERN_ERR "Cannot switch between MLS and non-MLS "
1529 			       "policies\n");
1530 			goto bad;
1531 		}
1532 	}
1533 
1534 	info = policydb_lookup_compat(p->policyvers);
1535 	if (!info) {
1536 		printk(KERN_ERR "security:  unable to find policy compat info "
1537 		       "for version %d\n", p->policyvers);
1538 		goto bad;
1539 	}
1540 
1541 	if (le32_to_cpu(buf[2]) != info->sym_num ||
1542 		le32_to_cpu(buf[3]) != info->ocon_num) {
1543 		printk(KERN_ERR "security:  policydb table sizes (%d,%d) do "
1544 		       "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
1545 			le32_to_cpu(buf[3]),
1546 		       info->sym_num, info->ocon_num);
1547 		goto bad;
1548 	}
1549 
1550 	for (i = 0; i < info->sym_num; i++) {
1551 		rc = next_entry(buf, fp, sizeof(u32)*2);
1552 		if (rc < 0)
1553 			goto bad;
1554 		nprim = le32_to_cpu(buf[0]);
1555 		nel = le32_to_cpu(buf[1]);
1556 		for (j = 0; j < nel; j++) {
1557 			rc = read_f[i](p, p->symtab[i].table, fp);
1558 			if (rc)
1559 				goto bad;
1560 		}
1561 
1562 		p->symtab[i].nprim = nprim;
1563 	}
1564 
1565 	rc = avtab_read(&p->te_avtab, fp, p->policyvers);
1566 	if (rc)
1567 		goto bad;
1568 
1569 	if (p->policyvers >= POLICYDB_VERSION_BOOL) {
1570 		rc = cond_read_list(p, fp);
1571 		if (rc)
1572 			goto bad;
1573 	}
1574 
1575 	rc = next_entry(buf, fp, sizeof(u32));
1576 	if (rc < 0)
1577 		goto bad;
1578 	nel = le32_to_cpu(buf[0]);
1579 	ltr = NULL;
1580 	for (i = 0; i < nel; i++) {
1581 		tr = kzalloc(sizeof(*tr), GFP_KERNEL);
1582 		if (!tr) {
1583 			rc = -ENOMEM;
1584 			goto bad;
1585 		}
1586 		if (ltr) {
1587 			ltr->next = tr;
1588 		} else {
1589 			p->role_tr = tr;
1590 		}
1591 		rc = next_entry(buf, fp, sizeof(u32)*3);
1592 		if (rc < 0)
1593 			goto bad;
1594 		tr->role = le32_to_cpu(buf[0]);
1595 		tr->type = le32_to_cpu(buf[1]);
1596 		tr->new_role = le32_to_cpu(buf[2]);
1597 		ltr = tr;
1598 	}
1599 
1600 	rc = next_entry(buf, fp, sizeof(u32));
1601 	if (rc < 0)
1602 		goto bad;
1603 	nel = le32_to_cpu(buf[0]);
1604 	lra = NULL;
1605 	for (i = 0; i < nel; i++) {
1606 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1607 		if (!ra) {
1608 			rc = -ENOMEM;
1609 			goto bad;
1610 		}
1611 		if (lra) {
1612 			lra->next = ra;
1613 		} else {
1614 			p->role_allow = ra;
1615 		}
1616 		rc = next_entry(buf, fp, sizeof(u32)*2);
1617 		if (rc < 0)
1618 			goto bad;
1619 		ra->role = le32_to_cpu(buf[0]);
1620 		ra->new_role = le32_to_cpu(buf[1]);
1621 		lra = ra;
1622 	}
1623 
1624 	rc = policydb_index_classes(p);
1625 	if (rc)
1626 		goto bad;
1627 
1628 	rc = policydb_index_others(p);
1629 	if (rc)
1630 		goto bad;
1631 
1632 	for (i = 0; i < info->ocon_num; i++) {
1633 		rc = next_entry(buf, fp, sizeof(u32));
1634 		if (rc < 0)
1635 			goto bad;
1636 		nel = le32_to_cpu(buf[0]);
1637 		l = NULL;
1638 		for (j = 0; j < nel; j++) {
1639 			c = kzalloc(sizeof(*c), GFP_KERNEL);
1640 			if (!c) {
1641 				rc = -ENOMEM;
1642 				goto bad;
1643 			}
1644 			if (l) {
1645 				l->next = c;
1646 			} else {
1647 				p->ocontexts[i] = c;
1648 			}
1649 			l = c;
1650 			rc = -EINVAL;
1651 			switch (i) {
1652 			case OCON_ISID:
1653 				rc = next_entry(buf, fp, sizeof(u32));
1654 				if (rc < 0)
1655 					goto bad;
1656 				c->sid[0] = le32_to_cpu(buf[0]);
1657 				rc = context_read_and_validate(&c->context[0], p, fp);
1658 				if (rc)
1659 					goto bad;
1660 				break;
1661 			case OCON_FS:
1662 			case OCON_NETIF:
1663 				rc = next_entry(buf, fp, sizeof(u32));
1664 				if (rc < 0)
1665 					goto bad;
1666 				len = le32_to_cpu(buf[0]);
1667 				c->u.name = kmalloc(len + 1,GFP_KERNEL);
1668 				if (!c->u.name) {
1669 					rc = -ENOMEM;
1670 					goto bad;
1671 				}
1672 				rc = next_entry(c->u.name, fp, len);
1673 				if (rc < 0)
1674 					goto bad;
1675 				c->u.name[len] = 0;
1676 				rc = context_read_and_validate(&c->context[0], p, fp);
1677 				if (rc)
1678 					goto bad;
1679 				rc = context_read_and_validate(&c->context[1], p, fp);
1680 				if (rc)
1681 					goto bad;
1682 				break;
1683 			case OCON_PORT:
1684 				rc = next_entry(buf, fp, sizeof(u32)*3);
1685 				if (rc < 0)
1686 					goto bad;
1687 				c->u.port.protocol = le32_to_cpu(buf[0]);
1688 				c->u.port.low_port = le32_to_cpu(buf[1]);
1689 				c->u.port.high_port = le32_to_cpu(buf[2]);
1690 				rc = context_read_and_validate(&c->context[0], p, fp);
1691 				if (rc)
1692 					goto bad;
1693 				break;
1694 			case OCON_NODE:
1695 				rc = next_entry(buf, fp, sizeof(u32)* 2);
1696 				if (rc < 0)
1697 					goto bad;
1698 				c->u.node.addr = le32_to_cpu(buf[0]);
1699 				c->u.node.mask = le32_to_cpu(buf[1]);
1700 				rc = context_read_and_validate(&c->context[0], p, fp);
1701 				if (rc)
1702 					goto bad;
1703 				break;
1704 			case OCON_FSUSE:
1705 				rc = next_entry(buf, fp, sizeof(u32)*2);
1706 				if (rc < 0)
1707 					goto bad;
1708 				c->v.behavior = le32_to_cpu(buf[0]);
1709 				if (c->v.behavior > SECURITY_FS_USE_NONE)
1710 					goto bad;
1711 				len = le32_to_cpu(buf[1]);
1712 				c->u.name = kmalloc(len + 1,GFP_KERNEL);
1713 				if (!c->u.name) {
1714 					rc = -ENOMEM;
1715 					goto bad;
1716 				}
1717 				rc = next_entry(c->u.name, fp, len);
1718 				if (rc < 0)
1719 					goto bad;
1720 				c->u.name[len] = 0;
1721 				rc = context_read_and_validate(&c->context[0], p, fp);
1722 				if (rc)
1723 					goto bad;
1724 				break;
1725 			case OCON_NODE6: {
1726 				int k;
1727 
1728 				rc = next_entry(buf, fp, sizeof(u32) * 8);
1729 				if (rc < 0)
1730 					goto bad;
1731 				for (k = 0; k < 4; k++)
1732 					c->u.node6.addr[k] = le32_to_cpu(buf[k]);
1733 				for (k = 0; k < 4; k++)
1734 					c->u.node6.mask[k] = le32_to_cpu(buf[k+4]);
1735 				if (context_read_and_validate(&c->context[0], p, fp))
1736 					goto bad;
1737 				break;
1738 			}
1739 			}
1740 		}
1741 	}
1742 
1743 	rc = next_entry(buf, fp, sizeof(u32));
1744 	if (rc < 0)
1745 		goto bad;
1746 	nel = le32_to_cpu(buf[0]);
1747 	genfs_p = NULL;
1748 	rc = -EINVAL;
1749 	for (i = 0; i < nel; i++) {
1750 		rc = next_entry(buf, fp, sizeof(u32));
1751 		if (rc < 0)
1752 			goto bad;
1753 		len = le32_to_cpu(buf[0]);
1754 		newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1755 		if (!newgenfs) {
1756 			rc = -ENOMEM;
1757 			goto bad;
1758 		}
1759 
1760 		newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL);
1761 		if (!newgenfs->fstype) {
1762 			rc = -ENOMEM;
1763 			kfree(newgenfs);
1764 			goto bad;
1765 		}
1766 		rc = next_entry(newgenfs->fstype, fp, len);
1767 		if (rc < 0) {
1768 			kfree(newgenfs->fstype);
1769 			kfree(newgenfs);
1770 			goto bad;
1771 		}
1772 		newgenfs->fstype[len] = 0;
1773 		for (genfs_p = NULL, genfs = p->genfs; genfs;
1774 		     genfs_p = genfs, genfs = genfs->next) {
1775 			if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1776 				printk(KERN_ERR "security:  dup genfs "
1777 				       "fstype %s\n", newgenfs->fstype);
1778 				kfree(newgenfs->fstype);
1779 				kfree(newgenfs);
1780 				goto bad;
1781 			}
1782 			if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1783 				break;
1784 		}
1785 		newgenfs->next = genfs;
1786 		if (genfs_p)
1787 			genfs_p->next = newgenfs;
1788 		else
1789 			p->genfs = newgenfs;
1790 		rc = next_entry(buf, fp, sizeof(u32));
1791 		if (rc < 0)
1792 			goto bad;
1793 		nel2 = le32_to_cpu(buf[0]);
1794 		for (j = 0; j < nel2; j++) {
1795 			rc = next_entry(buf, fp, sizeof(u32));
1796 			if (rc < 0)
1797 				goto bad;
1798 			len = le32_to_cpu(buf[0]);
1799 
1800 			newc = kzalloc(sizeof(*newc), GFP_KERNEL);
1801 			if (!newc) {
1802 				rc = -ENOMEM;
1803 				goto bad;
1804 			}
1805 
1806 			newc->u.name = kmalloc(len + 1,GFP_KERNEL);
1807 			if (!newc->u.name) {
1808 				rc = -ENOMEM;
1809 				goto bad_newc;
1810 			}
1811 			rc = next_entry(newc->u.name, fp, len);
1812 			if (rc < 0)
1813 				goto bad_newc;
1814 			newc->u.name[len] = 0;
1815 			rc = next_entry(buf, fp, sizeof(u32));
1816 			if (rc < 0)
1817 				goto bad_newc;
1818 			newc->v.sclass = le32_to_cpu(buf[0]);
1819 			if (context_read_and_validate(&newc->context[0], p, fp))
1820 				goto bad_newc;
1821 			for (l = NULL, c = newgenfs->head; c;
1822 			     l = c, c = c->next) {
1823 				if (!strcmp(newc->u.name, c->u.name) &&
1824 				    (!c->v.sclass || !newc->v.sclass ||
1825 				     newc->v.sclass == c->v.sclass)) {
1826 					printk(KERN_ERR "security:  dup genfs "
1827 					       "entry (%s,%s)\n",
1828 					       newgenfs->fstype, c->u.name);
1829 					goto bad_newc;
1830 				}
1831 				len = strlen(newc->u.name);
1832 				len2 = strlen(c->u.name);
1833 				if (len > len2)
1834 					break;
1835 			}
1836 
1837 			newc->next = c;
1838 			if (l)
1839 				l->next = newc;
1840 			else
1841 				newgenfs->head = newc;
1842 		}
1843 	}
1844 
1845 	if (p->policyvers >= POLICYDB_VERSION_MLS) {
1846 		int new_rangetr = p->policyvers >= POLICYDB_VERSION_RANGETRANS;
1847 		rc = next_entry(buf, fp, sizeof(u32));
1848 		if (rc < 0)
1849 			goto bad;
1850 		nel = le32_to_cpu(buf[0]);
1851 		lrt = NULL;
1852 		for (i = 0; i < nel; i++) {
1853 			rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1854 			if (!rt) {
1855 				rc = -ENOMEM;
1856 				goto bad;
1857 			}
1858 			if (lrt)
1859 				lrt->next = rt;
1860 			else
1861 				p->range_tr = rt;
1862 			rc = next_entry(buf, fp, (sizeof(u32) * 2));
1863 			if (rc < 0)
1864 				goto bad;
1865 			rt->source_type = le32_to_cpu(buf[0]);
1866 			rt->target_type = le32_to_cpu(buf[1]);
1867 			if (new_rangetr) {
1868 				rc = next_entry(buf, fp, sizeof(u32));
1869 				if (rc < 0)
1870 					goto bad;
1871 				rt->target_class = le32_to_cpu(buf[0]);
1872 			} else
1873 				rt->target_class = SECCLASS_PROCESS;
1874 			rc = mls_read_range_helper(&rt->target_range, fp);
1875 			if (rc)
1876 				goto bad;
1877 			lrt = rt;
1878 		}
1879 	}
1880 
1881 	p->type_attr_map = kmalloc(p->p_types.nprim*sizeof(struct ebitmap), GFP_KERNEL);
1882 	if (!p->type_attr_map)
1883 		goto bad;
1884 
1885 	for (i = 0; i < p->p_types.nprim; i++) {
1886 		ebitmap_init(&p->type_attr_map[i]);
1887 		if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
1888 			if (ebitmap_read(&p->type_attr_map[i], fp))
1889 				goto bad;
1890 		}
1891 		/* add the type itself as the degenerate case */
1892 		if (ebitmap_set_bit(&p->type_attr_map[i], i, 1))
1893 				goto bad;
1894 	}
1895 
1896 	rc = 0;
1897 out:
1898 	return rc;
1899 bad_newc:
1900 	ocontext_destroy(newc,OCON_FSUSE);
1901 bad:
1902 	if (!rc)
1903 		rc = -EINVAL;
1904 	policydb_destroy(p);
1905 	goto out;
1906 }
1907