1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul@paul-moore.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kd.h> 28 #include <linux/kernel.h> 29 #include <linux/tracehook.h> 30 #include <linux/errno.h> 31 #include <linux/sched.h> 32 #include <linux/lsm_hooks.h> 33 #include <linux/xattr.h> 34 #include <linux/capability.h> 35 #include <linux/unistd.h> 36 #include <linux/mm.h> 37 #include <linux/mman.h> 38 #include <linux/slab.h> 39 #include <linux/pagemap.h> 40 #include <linux/proc_fs.h> 41 #include <linux/swap.h> 42 #include <linux/spinlock.h> 43 #include <linux/syscalls.h> 44 #include <linux/dcache.h> 45 #include <linux/file.h> 46 #include <linux/fdtable.h> 47 #include <linux/namei.h> 48 #include <linux/mount.h> 49 #include <linux/netfilter_ipv4.h> 50 #include <linux/netfilter_ipv6.h> 51 #include <linux/tty.h> 52 #include <net/icmp.h> 53 #include <net/ip.h> /* for local_port_range[] */ 54 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 55 #include <net/inet_connection_sock.h> 56 #include <net/net_namespace.h> 57 #include <net/netlabel.h> 58 #include <linux/uaccess.h> 59 #include <asm/ioctls.h> 60 #include <linux/atomic.h> 61 #include <linux/bitops.h> 62 #include <linux/interrupt.h> 63 #include <linux/netdevice.h> /* for network interface checks */ 64 #include <net/netlink.h> 65 #include <linux/tcp.h> 66 #include <linux/udp.h> 67 #include <linux/dccp.h> 68 #include <linux/quota.h> 69 #include <linux/un.h> /* for Unix socket types */ 70 #include <net/af_unix.h> /* for Unix socket types */ 71 #include <linux/parser.h> 72 #include <linux/nfs_mount.h> 73 #include <net/ipv6.h> 74 #include <linux/hugetlb.h> 75 #include <linux/personality.h> 76 #include <linux/audit.h> 77 #include <linux/string.h> 78 #include <linux/selinux.h> 79 #include <linux/mutex.h> 80 #include <linux/posix-timers.h> 81 #include <linux/syslog.h> 82 #include <linux/user_namespace.h> 83 #include <linux/export.h> 84 #include <linux/msg.h> 85 #include <linux/shm.h> 86 87 #include "avc.h" 88 #include "objsec.h" 89 #include "netif.h" 90 #include "netnode.h" 91 #include "netport.h" 92 #include "xfrm.h" 93 #include "netlabel.h" 94 #include "audit.h" 95 #include "avc_ss.h" 96 97 /* SECMARK reference count */ 98 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 99 100 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 101 int selinux_enforcing; 102 103 static int __init enforcing_setup(char *str) 104 { 105 unsigned long enforcing; 106 if (!kstrtoul(str, 0, &enforcing)) 107 selinux_enforcing = enforcing ? 1 : 0; 108 return 1; 109 } 110 __setup("enforcing=", enforcing_setup); 111 #endif 112 113 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 114 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 115 116 static int __init selinux_enabled_setup(char *str) 117 { 118 unsigned long enabled; 119 if (!kstrtoul(str, 0, &enabled)) 120 selinux_enabled = enabled ? 1 : 0; 121 return 1; 122 } 123 __setup("selinux=", selinux_enabled_setup); 124 #else 125 int selinux_enabled = 1; 126 #endif 127 128 static struct kmem_cache *sel_inode_cache; 129 static struct kmem_cache *file_security_cache; 130 131 /** 132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 133 * 134 * Description: 135 * This function checks the SECMARK reference counter to see if any SECMARK 136 * targets are currently configured, if the reference counter is greater than 137 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 138 * enabled, false (0) if SECMARK is disabled. If the always_check_network 139 * policy capability is enabled, SECMARK is always considered enabled. 140 * 141 */ 142 static int selinux_secmark_enabled(void) 143 { 144 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount)); 145 } 146 147 /** 148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 149 * 150 * Description: 151 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 152 * (1) if any are enabled or false (0) if neither are enabled. If the 153 * always_check_network policy capability is enabled, peer labeling 154 * is always considered enabled. 155 * 156 */ 157 static int selinux_peerlbl_enabled(void) 158 { 159 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled()); 160 } 161 162 static int selinux_netcache_avc_callback(u32 event) 163 { 164 if (event == AVC_CALLBACK_RESET) { 165 sel_netif_flush(); 166 sel_netnode_flush(); 167 sel_netport_flush(); 168 synchronize_net(); 169 } 170 return 0; 171 } 172 173 /* 174 * initialise the security for the init task 175 */ 176 static void cred_init_security(void) 177 { 178 struct cred *cred = (struct cred *) current->real_cred; 179 struct task_security_struct *tsec; 180 181 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 182 if (!tsec) 183 panic("SELinux: Failed to initialize initial task.\n"); 184 185 tsec->osid = tsec->sid = SECINITSID_KERNEL; 186 cred->security = tsec; 187 } 188 189 /* 190 * get the security ID of a set of credentials 191 */ 192 static inline u32 cred_sid(const struct cred *cred) 193 { 194 const struct task_security_struct *tsec; 195 196 tsec = cred->security; 197 return tsec->sid; 198 } 199 200 /* 201 * get the objective security ID of a task 202 */ 203 static inline u32 task_sid(const struct task_struct *task) 204 { 205 u32 sid; 206 207 rcu_read_lock(); 208 sid = cred_sid(__task_cred(task)); 209 rcu_read_unlock(); 210 return sid; 211 } 212 213 /* Allocate and free functions for each kind of security blob. */ 214 215 static int inode_alloc_security(struct inode *inode) 216 { 217 struct inode_security_struct *isec; 218 u32 sid = current_sid(); 219 220 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 221 if (!isec) 222 return -ENOMEM; 223 224 spin_lock_init(&isec->lock); 225 INIT_LIST_HEAD(&isec->list); 226 isec->inode = inode; 227 isec->sid = SECINITSID_UNLABELED; 228 isec->sclass = SECCLASS_FILE; 229 isec->task_sid = sid; 230 isec->initialized = LABEL_INVALID; 231 inode->i_security = isec; 232 233 return 0; 234 } 235 236 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 237 238 /* 239 * Try reloading inode security labels that have been marked as invalid. The 240 * @may_sleep parameter indicates when sleeping and thus reloading labels is 241 * allowed; when set to false, returns -ECHILD when the label is 242 * invalid. The @opt_dentry parameter should be set to a dentry of the inode; 243 * when no dentry is available, set it to NULL instead. 244 */ 245 static int __inode_security_revalidate(struct inode *inode, 246 struct dentry *opt_dentry, 247 bool may_sleep) 248 { 249 struct inode_security_struct *isec = inode->i_security; 250 251 might_sleep_if(may_sleep); 252 253 if (ss_initialized && isec->initialized != LABEL_INITIALIZED) { 254 if (!may_sleep) 255 return -ECHILD; 256 257 /* 258 * Try reloading the inode security label. This will fail if 259 * @opt_dentry is NULL and no dentry for this inode can be 260 * found; in that case, continue using the old label. 261 */ 262 inode_doinit_with_dentry(inode, opt_dentry); 263 } 264 return 0; 265 } 266 267 static struct inode_security_struct *inode_security_novalidate(struct inode *inode) 268 { 269 return inode->i_security; 270 } 271 272 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu) 273 { 274 int error; 275 276 error = __inode_security_revalidate(inode, NULL, !rcu); 277 if (error) 278 return ERR_PTR(error); 279 return inode->i_security; 280 } 281 282 /* 283 * Get the security label of an inode. 284 */ 285 static struct inode_security_struct *inode_security(struct inode *inode) 286 { 287 __inode_security_revalidate(inode, NULL, true); 288 return inode->i_security; 289 } 290 291 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry) 292 { 293 struct inode *inode = d_backing_inode(dentry); 294 295 return inode->i_security; 296 } 297 298 /* 299 * Get the security label of a dentry's backing inode. 300 */ 301 static struct inode_security_struct *backing_inode_security(struct dentry *dentry) 302 { 303 struct inode *inode = d_backing_inode(dentry); 304 305 __inode_security_revalidate(inode, dentry, true); 306 return inode->i_security; 307 } 308 309 static void inode_free_rcu(struct rcu_head *head) 310 { 311 struct inode_security_struct *isec; 312 313 isec = container_of(head, struct inode_security_struct, rcu); 314 kmem_cache_free(sel_inode_cache, isec); 315 } 316 317 static void inode_free_security(struct inode *inode) 318 { 319 struct inode_security_struct *isec = inode->i_security; 320 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 321 322 /* 323 * As not all inode security structures are in a list, we check for 324 * empty list outside of the lock to make sure that we won't waste 325 * time taking a lock doing nothing. 326 * 327 * The list_del_init() function can be safely called more than once. 328 * It should not be possible for this function to be called with 329 * concurrent list_add(), but for better safety against future changes 330 * in the code, we use list_empty_careful() here. 331 */ 332 if (!list_empty_careful(&isec->list)) { 333 spin_lock(&sbsec->isec_lock); 334 list_del_init(&isec->list); 335 spin_unlock(&sbsec->isec_lock); 336 } 337 338 /* 339 * The inode may still be referenced in a path walk and 340 * a call to selinux_inode_permission() can be made 341 * after inode_free_security() is called. Ideally, the VFS 342 * wouldn't do this, but fixing that is a much harder 343 * job. For now, simply free the i_security via RCU, and 344 * leave the current inode->i_security pointer intact. 345 * The inode will be freed after the RCU grace period too. 346 */ 347 call_rcu(&isec->rcu, inode_free_rcu); 348 } 349 350 static int file_alloc_security(struct file *file) 351 { 352 struct file_security_struct *fsec; 353 u32 sid = current_sid(); 354 355 fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL); 356 if (!fsec) 357 return -ENOMEM; 358 359 fsec->sid = sid; 360 fsec->fown_sid = sid; 361 file->f_security = fsec; 362 363 return 0; 364 } 365 366 static void file_free_security(struct file *file) 367 { 368 struct file_security_struct *fsec = file->f_security; 369 file->f_security = NULL; 370 kmem_cache_free(file_security_cache, fsec); 371 } 372 373 static int superblock_alloc_security(struct super_block *sb) 374 { 375 struct superblock_security_struct *sbsec; 376 377 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 378 if (!sbsec) 379 return -ENOMEM; 380 381 mutex_init(&sbsec->lock); 382 INIT_LIST_HEAD(&sbsec->isec_head); 383 spin_lock_init(&sbsec->isec_lock); 384 sbsec->sb = sb; 385 sbsec->sid = SECINITSID_UNLABELED; 386 sbsec->def_sid = SECINITSID_FILE; 387 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 388 sb->s_security = sbsec; 389 390 return 0; 391 } 392 393 static void superblock_free_security(struct super_block *sb) 394 { 395 struct superblock_security_struct *sbsec = sb->s_security; 396 sb->s_security = NULL; 397 kfree(sbsec); 398 } 399 400 /* The file system's label must be initialized prior to use. */ 401 402 static const char *labeling_behaviors[7] = { 403 "uses xattr", 404 "uses transition SIDs", 405 "uses task SIDs", 406 "uses genfs_contexts", 407 "not configured for labeling", 408 "uses mountpoint labeling", 409 "uses native labeling", 410 }; 411 412 static inline int inode_doinit(struct inode *inode) 413 { 414 return inode_doinit_with_dentry(inode, NULL); 415 } 416 417 enum { 418 Opt_error = -1, 419 Opt_context = 1, 420 Opt_fscontext = 2, 421 Opt_defcontext = 3, 422 Opt_rootcontext = 4, 423 Opt_labelsupport = 5, 424 Opt_nextmntopt = 6, 425 }; 426 427 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1) 428 429 static const match_table_t tokens = { 430 {Opt_context, CONTEXT_STR "%s"}, 431 {Opt_fscontext, FSCONTEXT_STR "%s"}, 432 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 433 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 434 {Opt_labelsupport, LABELSUPP_STR}, 435 {Opt_error, NULL}, 436 }; 437 438 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 439 440 static int may_context_mount_sb_relabel(u32 sid, 441 struct superblock_security_struct *sbsec, 442 const struct cred *cred) 443 { 444 const struct task_security_struct *tsec = cred->security; 445 int rc; 446 447 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 448 FILESYSTEM__RELABELFROM, NULL); 449 if (rc) 450 return rc; 451 452 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 453 FILESYSTEM__RELABELTO, NULL); 454 return rc; 455 } 456 457 static int may_context_mount_inode_relabel(u32 sid, 458 struct superblock_security_struct *sbsec, 459 const struct cred *cred) 460 { 461 const struct task_security_struct *tsec = cred->security; 462 int rc; 463 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 464 FILESYSTEM__RELABELFROM, NULL); 465 if (rc) 466 return rc; 467 468 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 469 FILESYSTEM__ASSOCIATE, NULL); 470 return rc; 471 } 472 473 static int selinux_is_sblabel_mnt(struct super_block *sb) 474 { 475 struct superblock_security_struct *sbsec = sb->s_security; 476 477 return sbsec->behavior == SECURITY_FS_USE_XATTR || 478 sbsec->behavior == SECURITY_FS_USE_TRANS || 479 sbsec->behavior == SECURITY_FS_USE_TASK || 480 sbsec->behavior == SECURITY_FS_USE_NATIVE || 481 /* Special handling. Genfs but also in-core setxattr handler */ 482 !strcmp(sb->s_type->name, "sysfs") || 483 !strcmp(sb->s_type->name, "cgroup") || 484 !strcmp(sb->s_type->name, "cgroup2") || 485 !strcmp(sb->s_type->name, "pstore") || 486 !strcmp(sb->s_type->name, "debugfs") || 487 !strcmp(sb->s_type->name, "tracefs") || 488 !strcmp(sb->s_type->name, "rootfs"); 489 } 490 491 static int sb_finish_set_opts(struct super_block *sb) 492 { 493 struct superblock_security_struct *sbsec = sb->s_security; 494 struct dentry *root = sb->s_root; 495 struct inode *root_inode = d_backing_inode(root); 496 int rc = 0; 497 498 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 499 /* Make sure that the xattr handler exists and that no 500 error other than -ENODATA is returned by getxattr on 501 the root directory. -ENODATA is ok, as this may be 502 the first boot of the SELinux kernel before we have 503 assigned xattr values to the filesystem. */ 504 if (!(root_inode->i_opflags & IOP_XATTR)) { 505 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 506 "xattr support\n", sb->s_id, sb->s_type->name); 507 rc = -EOPNOTSUPP; 508 goto out; 509 } 510 511 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0); 512 if (rc < 0 && rc != -ENODATA) { 513 if (rc == -EOPNOTSUPP) 514 printk(KERN_WARNING "SELinux: (dev %s, type " 515 "%s) has no security xattr handler\n", 516 sb->s_id, sb->s_type->name); 517 else 518 printk(KERN_WARNING "SELinux: (dev %s, type " 519 "%s) getxattr errno %d\n", sb->s_id, 520 sb->s_type->name, -rc); 521 goto out; 522 } 523 } 524 525 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 526 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 527 sb->s_id, sb->s_type->name); 528 529 sbsec->flags |= SE_SBINITIALIZED; 530 if (selinux_is_sblabel_mnt(sb)) 531 sbsec->flags |= SBLABEL_MNT; 532 533 /* Initialize the root inode. */ 534 rc = inode_doinit_with_dentry(root_inode, root); 535 536 /* Initialize any other inodes associated with the superblock, e.g. 537 inodes created prior to initial policy load or inodes created 538 during get_sb by a pseudo filesystem that directly 539 populates itself. */ 540 spin_lock(&sbsec->isec_lock); 541 next_inode: 542 if (!list_empty(&sbsec->isec_head)) { 543 struct inode_security_struct *isec = 544 list_entry(sbsec->isec_head.next, 545 struct inode_security_struct, list); 546 struct inode *inode = isec->inode; 547 list_del_init(&isec->list); 548 spin_unlock(&sbsec->isec_lock); 549 inode = igrab(inode); 550 if (inode) { 551 if (!IS_PRIVATE(inode)) 552 inode_doinit(inode); 553 iput(inode); 554 } 555 spin_lock(&sbsec->isec_lock); 556 goto next_inode; 557 } 558 spin_unlock(&sbsec->isec_lock); 559 out: 560 return rc; 561 } 562 563 /* 564 * This function should allow an FS to ask what it's mount security 565 * options were so it can use those later for submounts, displaying 566 * mount options, or whatever. 567 */ 568 static int selinux_get_mnt_opts(const struct super_block *sb, 569 struct security_mnt_opts *opts) 570 { 571 int rc = 0, i; 572 struct superblock_security_struct *sbsec = sb->s_security; 573 char *context = NULL; 574 u32 len; 575 char tmp; 576 577 security_init_mnt_opts(opts); 578 579 if (!(sbsec->flags & SE_SBINITIALIZED)) 580 return -EINVAL; 581 582 if (!ss_initialized) 583 return -EINVAL; 584 585 /* make sure we always check enough bits to cover the mask */ 586 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS)); 587 588 tmp = sbsec->flags & SE_MNTMASK; 589 /* count the number of mount options for this sb */ 590 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) { 591 if (tmp & 0x01) 592 opts->num_mnt_opts++; 593 tmp >>= 1; 594 } 595 /* Check if the Label support flag is set */ 596 if (sbsec->flags & SBLABEL_MNT) 597 opts->num_mnt_opts++; 598 599 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 600 if (!opts->mnt_opts) { 601 rc = -ENOMEM; 602 goto out_free; 603 } 604 605 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 606 if (!opts->mnt_opts_flags) { 607 rc = -ENOMEM; 608 goto out_free; 609 } 610 611 i = 0; 612 if (sbsec->flags & FSCONTEXT_MNT) { 613 rc = security_sid_to_context(sbsec->sid, &context, &len); 614 if (rc) 615 goto out_free; 616 opts->mnt_opts[i] = context; 617 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 618 } 619 if (sbsec->flags & CONTEXT_MNT) { 620 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 621 if (rc) 622 goto out_free; 623 opts->mnt_opts[i] = context; 624 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 625 } 626 if (sbsec->flags & DEFCONTEXT_MNT) { 627 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 628 if (rc) 629 goto out_free; 630 opts->mnt_opts[i] = context; 631 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 632 } 633 if (sbsec->flags & ROOTCONTEXT_MNT) { 634 struct dentry *root = sbsec->sb->s_root; 635 struct inode_security_struct *isec = backing_inode_security(root); 636 637 rc = security_sid_to_context(isec->sid, &context, &len); 638 if (rc) 639 goto out_free; 640 opts->mnt_opts[i] = context; 641 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 642 } 643 if (sbsec->flags & SBLABEL_MNT) { 644 opts->mnt_opts[i] = NULL; 645 opts->mnt_opts_flags[i++] = SBLABEL_MNT; 646 } 647 648 BUG_ON(i != opts->num_mnt_opts); 649 650 return 0; 651 652 out_free: 653 security_free_mnt_opts(opts); 654 return rc; 655 } 656 657 static int bad_option(struct superblock_security_struct *sbsec, char flag, 658 u32 old_sid, u32 new_sid) 659 { 660 char mnt_flags = sbsec->flags & SE_MNTMASK; 661 662 /* check if the old mount command had the same options */ 663 if (sbsec->flags & SE_SBINITIALIZED) 664 if (!(sbsec->flags & flag) || 665 (old_sid != new_sid)) 666 return 1; 667 668 /* check if we were passed the same options twice, 669 * aka someone passed context=a,context=b 670 */ 671 if (!(sbsec->flags & SE_SBINITIALIZED)) 672 if (mnt_flags & flag) 673 return 1; 674 return 0; 675 } 676 677 /* 678 * Allow filesystems with binary mount data to explicitly set mount point 679 * labeling information. 680 */ 681 static int selinux_set_mnt_opts(struct super_block *sb, 682 struct security_mnt_opts *opts, 683 unsigned long kern_flags, 684 unsigned long *set_kern_flags) 685 { 686 const struct cred *cred = current_cred(); 687 int rc = 0, i; 688 struct superblock_security_struct *sbsec = sb->s_security; 689 const char *name = sb->s_type->name; 690 struct dentry *root = sbsec->sb->s_root; 691 struct inode_security_struct *root_isec; 692 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 693 u32 defcontext_sid = 0; 694 char **mount_options = opts->mnt_opts; 695 int *flags = opts->mnt_opts_flags; 696 int num_opts = opts->num_mnt_opts; 697 698 mutex_lock(&sbsec->lock); 699 700 if (!ss_initialized) { 701 if (!num_opts) { 702 /* Defer initialization until selinux_complete_init, 703 after the initial policy is loaded and the security 704 server is ready to handle calls. */ 705 goto out; 706 } 707 rc = -EINVAL; 708 printk(KERN_WARNING "SELinux: Unable to set superblock options " 709 "before the security server is initialized\n"); 710 goto out; 711 } 712 if (kern_flags && !set_kern_flags) { 713 /* Specifying internal flags without providing a place to 714 * place the results is not allowed */ 715 rc = -EINVAL; 716 goto out; 717 } 718 719 /* 720 * Binary mount data FS will come through this function twice. Once 721 * from an explicit call and once from the generic calls from the vfs. 722 * Since the generic VFS calls will not contain any security mount data 723 * we need to skip the double mount verification. 724 * 725 * This does open a hole in which we will not notice if the first 726 * mount using this sb set explict options and a second mount using 727 * this sb does not set any security options. (The first options 728 * will be used for both mounts) 729 */ 730 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 731 && (num_opts == 0)) 732 goto out; 733 734 root_isec = backing_inode_security_novalidate(root); 735 736 /* 737 * parse the mount options, check if they are valid sids. 738 * also check if someone is trying to mount the same sb more 739 * than once with different security options. 740 */ 741 for (i = 0; i < num_opts; i++) { 742 u32 sid; 743 744 if (flags[i] == SBLABEL_MNT) 745 continue; 746 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL); 747 if (rc) { 748 printk(KERN_WARNING "SELinux: security_context_str_to_sid" 749 "(%s) failed for (dev %s, type %s) errno=%d\n", 750 mount_options[i], sb->s_id, name, rc); 751 goto out; 752 } 753 switch (flags[i]) { 754 case FSCONTEXT_MNT: 755 fscontext_sid = sid; 756 757 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 758 fscontext_sid)) 759 goto out_double_mount; 760 761 sbsec->flags |= FSCONTEXT_MNT; 762 break; 763 case CONTEXT_MNT: 764 context_sid = sid; 765 766 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 767 context_sid)) 768 goto out_double_mount; 769 770 sbsec->flags |= CONTEXT_MNT; 771 break; 772 case ROOTCONTEXT_MNT: 773 rootcontext_sid = sid; 774 775 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 776 rootcontext_sid)) 777 goto out_double_mount; 778 779 sbsec->flags |= ROOTCONTEXT_MNT; 780 781 break; 782 case DEFCONTEXT_MNT: 783 defcontext_sid = sid; 784 785 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 786 defcontext_sid)) 787 goto out_double_mount; 788 789 sbsec->flags |= DEFCONTEXT_MNT; 790 791 break; 792 default: 793 rc = -EINVAL; 794 goto out; 795 } 796 } 797 798 if (sbsec->flags & SE_SBINITIALIZED) { 799 /* previously mounted with options, but not on this attempt? */ 800 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 801 goto out_double_mount; 802 rc = 0; 803 goto out; 804 } 805 806 if (strcmp(sb->s_type->name, "proc") == 0) 807 sbsec->flags |= SE_SBPROC | SE_SBGENFS; 808 809 if (!strcmp(sb->s_type->name, "debugfs") || 810 !strcmp(sb->s_type->name, "sysfs") || 811 !strcmp(sb->s_type->name, "pstore")) 812 sbsec->flags |= SE_SBGENFS; 813 814 if (!sbsec->behavior) { 815 /* 816 * Determine the labeling behavior to use for this 817 * filesystem type. 818 */ 819 rc = security_fs_use(sb); 820 if (rc) { 821 printk(KERN_WARNING 822 "%s: security_fs_use(%s) returned %d\n", 823 __func__, sb->s_type->name, rc); 824 goto out; 825 } 826 } 827 828 /* 829 * If this is a user namespace mount and the filesystem type is not 830 * explicitly whitelisted, then no contexts are allowed on the command 831 * line and security labels must be ignored. 832 */ 833 if (sb->s_user_ns != &init_user_ns && 834 strcmp(sb->s_type->name, "tmpfs") && 835 strcmp(sb->s_type->name, "ramfs") && 836 strcmp(sb->s_type->name, "devpts")) { 837 if (context_sid || fscontext_sid || rootcontext_sid || 838 defcontext_sid) { 839 rc = -EACCES; 840 goto out; 841 } 842 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 843 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 844 rc = security_transition_sid(current_sid(), current_sid(), 845 SECCLASS_FILE, NULL, 846 &sbsec->mntpoint_sid); 847 if (rc) 848 goto out; 849 } 850 goto out_set_opts; 851 } 852 853 /* sets the context of the superblock for the fs being mounted. */ 854 if (fscontext_sid) { 855 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 856 if (rc) 857 goto out; 858 859 sbsec->sid = fscontext_sid; 860 } 861 862 /* 863 * Switch to using mount point labeling behavior. 864 * sets the label used on all file below the mountpoint, and will set 865 * the superblock context if not already set. 866 */ 867 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 868 sbsec->behavior = SECURITY_FS_USE_NATIVE; 869 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 870 } 871 872 if (context_sid) { 873 if (!fscontext_sid) { 874 rc = may_context_mount_sb_relabel(context_sid, sbsec, 875 cred); 876 if (rc) 877 goto out; 878 sbsec->sid = context_sid; 879 } else { 880 rc = may_context_mount_inode_relabel(context_sid, sbsec, 881 cred); 882 if (rc) 883 goto out; 884 } 885 if (!rootcontext_sid) 886 rootcontext_sid = context_sid; 887 888 sbsec->mntpoint_sid = context_sid; 889 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 890 } 891 892 if (rootcontext_sid) { 893 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 894 cred); 895 if (rc) 896 goto out; 897 898 root_isec->sid = rootcontext_sid; 899 root_isec->initialized = LABEL_INITIALIZED; 900 } 901 902 if (defcontext_sid) { 903 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 904 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 905 rc = -EINVAL; 906 printk(KERN_WARNING "SELinux: defcontext option is " 907 "invalid for this filesystem type\n"); 908 goto out; 909 } 910 911 if (defcontext_sid != sbsec->def_sid) { 912 rc = may_context_mount_inode_relabel(defcontext_sid, 913 sbsec, cred); 914 if (rc) 915 goto out; 916 } 917 918 sbsec->def_sid = defcontext_sid; 919 } 920 921 out_set_opts: 922 rc = sb_finish_set_opts(sb); 923 out: 924 mutex_unlock(&sbsec->lock); 925 return rc; 926 out_double_mount: 927 rc = -EINVAL; 928 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 929 "security settings for (dev %s, type %s)\n", sb->s_id, name); 930 goto out; 931 } 932 933 static int selinux_cmp_sb_context(const struct super_block *oldsb, 934 const struct super_block *newsb) 935 { 936 struct superblock_security_struct *old = oldsb->s_security; 937 struct superblock_security_struct *new = newsb->s_security; 938 char oldflags = old->flags & SE_MNTMASK; 939 char newflags = new->flags & SE_MNTMASK; 940 941 if (oldflags != newflags) 942 goto mismatch; 943 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 944 goto mismatch; 945 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 946 goto mismatch; 947 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 948 goto mismatch; 949 if (oldflags & ROOTCONTEXT_MNT) { 950 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root); 951 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root); 952 if (oldroot->sid != newroot->sid) 953 goto mismatch; 954 } 955 return 0; 956 mismatch: 957 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, " 958 "different security settings for (dev %s, " 959 "type %s)\n", newsb->s_id, newsb->s_type->name); 960 return -EBUSY; 961 } 962 963 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 964 struct super_block *newsb) 965 { 966 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 967 struct superblock_security_struct *newsbsec = newsb->s_security; 968 969 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 970 int set_context = (oldsbsec->flags & CONTEXT_MNT); 971 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 972 973 /* 974 * if the parent was able to be mounted it clearly had no special lsm 975 * mount options. thus we can safely deal with this superblock later 976 */ 977 if (!ss_initialized) 978 return 0; 979 980 /* how can we clone if the old one wasn't set up?? */ 981 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 982 983 /* if fs is reusing a sb, make sure that the contexts match */ 984 if (newsbsec->flags & SE_SBINITIALIZED) 985 return selinux_cmp_sb_context(oldsb, newsb); 986 987 mutex_lock(&newsbsec->lock); 988 989 newsbsec->flags = oldsbsec->flags; 990 991 newsbsec->sid = oldsbsec->sid; 992 newsbsec->def_sid = oldsbsec->def_sid; 993 newsbsec->behavior = oldsbsec->behavior; 994 995 if (set_context) { 996 u32 sid = oldsbsec->mntpoint_sid; 997 998 if (!set_fscontext) 999 newsbsec->sid = sid; 1000 if (!set_rootcontext) { 1001 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 1002 newisec->sid = sid; 1003 } 1004 newsbsec->mntpoint_sid = sid; 1005 } 1006 if (set_rootcontext) { 1007 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root); 1008 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 1009 1010 newisec->sid = oldisec->sid; 1011 } 1012 1013 sb_finish_set_opts(newsb); 1014 mutex_unlock(&newsbsec->lock); 1015 return 0; 1016 } 1017 1018 static int selinux_parse_opts_str(char *options, 1019 struct security_mnt_opts *opts) 1020 { 1021 char *p; 1022 char *context = NULL, *defcontext = NULL; 1023 char *fscontext = NULL, *rootcontext = NULL; 1024 int rc, num_mnt_opts = 0; 1025 1026 opts->num_mnt_opts = 0; 1027 1028 /* Standard string-based options. */ 1029 while ((p = strsep(&options, "|")) != NULL) { 1030 int token; 1031 substring_t args[MAX_OPT_ARGS]; 1032 1033 if (!*p) 1034 continue; 1035 1036 token = match_token(p, tokens, args); 1037 1038 switch (token) { 1039 case Opt_context: 1040 if (context || defcontext) { 1041 rc = -EINVAL; 1042 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 1043 goto out_err; 1044 } 1045 context = match_strdup(&args[0]); 1046 if (!context) { 1047 rc = -ENOMEM; 1048 goto out_err; 1049 } 1050 break; 1051 1052 case Opt_fscontext: 1053 if (fscontext) { 1054 rc = -EINVAL; 1055 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 1056 goto out_err; 1057 } 1058 fscontext = match_strdup(&args[0]); 1059 if (!fscontext) { 1060 rc = -ENOMEM; 1061 goto out_err; 1062 } 1063 break; 1064 1065 case Opt_rootcontext: 1066 if (rootcontext) { 1067 rc = -EINVAL; 1068 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 1069 goto out_err; 1070 } 1071 rootcontext = match_strdup(&args[0]); 1072 if (!rootcontext) { 1073 rc = -ENOMEM; 1074 goto out_err; 1075 } 1076 break; 1077 1078 case Opt_defcontext: 1079 if (context || defcontext) { 1080 rc = -EINVAL; 1081 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 1082 goto out_err; 1083 } 1084 defcontext = match_strdup(&args[0]); 1085 if (!defcontext) { 1086 rc = -ENOMEM; 1087 goto out_err; 1088 } 1089 break; 1090 case Opt_labelsupport: 1091 break; 1092 default: 1093 rc = -EINVAL; 1094 printk(KERN_WARNING "SELinux: unknown mount option\n"); 1095 goto out_err; 1096 1097 } 1098 } 1099 1100 rc = -ENOMEM; 1101 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL); 1102 if (!opts->mnt_opts) 1103 goto out_err; 1104 1105 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), 1106 GFP_KERNEL); 1107 if (!opts->mnt_opts_flags) { 1108 kfree(opts->mnt_opts); 1109 goto out_err; 1110 } 1111 1112 if (fscontext) { 1113 opts->mnt_opts[num_mnt_opts] = fscontext; 1114 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 1115 } 1116 if (context) { 1117 opts->mnt_opts[num_mnt_opts] = context; 1118 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 1119 } 1120 if (rootcontext) { 1121 opts->mnt_opts[num_mnt_opts] = rootcontext; 1122 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 1123 } 1124 if (defcontext) { 1125 opts->mnt_opts[num_mnt_opts] = defcontext; 1126 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 1127 } 1128 1129 opts->num_mnt_opts = num_mnt_opts; 1130 return 0; 1131 1132 out_err: 1133 kfree(context); 1134 kfree(defcontext); 1135 kfree(fscontext); 1136 kfree(rootcontext); 1137 return rc; 1138 } 1139 /* 1140 * string mount options parsing and call set the sbsec 1141 */ 1142 static int superblock_doinit(struct super_block *sb, void *data) 1143 { 1144 int rc = 0; 1145 char *options = data; 1146 struct security_mnt_opts opts; 1147 1148 security_init_mnt_opts(&opts); 1149 1150 if (!data) 1151 goto out; 1152 1153 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 1154 1155 rc = selinux_parse_opts_str(options, &opts); 1156 if (rc) 1157 goto out_err; 1158 1159 out: 1160 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL); 1161 1162 out_err: 1163 security_free_mnt_opts(&opts); 1164 return rc; 1165 } 1166 1167 static void selinux_write_opts(struct seq_file *m, 1168 struct security_mnt_opts *opts) 1169 { 1170 int i; 1171 char *prefix; 1172 1173 for (i = 0; i < opts->num_mnt_opts; i++) { 1174 char *has_comma; 1175 1176 if (opts->mnt_opts[i]) 1177 has_comma = strchr(opts->mnt_opts[i], ','); 1178 else 1179 has_comma = NULL; 1180 1181 switch (opts->mnt_opts_flags[i]) { 1182 case CONTEXT_MNT: 1183 prefix = CONTEXT_STR; 1184 break; 1185 case FSCONTEXT_MNT: 1186 prefix = FSCONTEXT_STR; 1187 break; 1188 case ROOTCONTEXT_MNT: 1189 prefix = ROOTCONTEXT_STR; 1190 break; 1191 case DEFCONTEXT_MNT: 1192 prefix = DEFCONTEXT_STR; 1193 break; 1194 case SBLABEL_MNT: 1195 seq_putc(m, ','); 1196 seq_puts(m, LABELSUPP_STR); 1197 continue; 1198 default: 1199 BUG(); 1200 return; 1201 }; 1202 /* we need a comma before each option */ 1203 seq_putc(m, ','); 1204 seq_puts(m, prefix); 1205 if (has_comma) 1206 seq_putc(m, '\"'); 1207 seq_escape(m, opts->mnt_opts[i], "\"\n\\"); 1208 if (has_comma) 1209 seq_putc(m, '\"'); 1210 } 1211 } 1212 1213 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1214 { 1215 struct security_mnt_opts opts; 1216 int rc; 1217 1218 rc = selinux_get_mnt_opts(sb, &opts); 1219 if (rc) { 1220 /* before policy load we may get EINVAL, don't show anything */ 1221 if (rc == -EINVAL) 1222 rc = 0; 1223 return rc; 1224 } 1225 1226 selinux_write_opts(m, &opts); 1227 1228 security_free_mnt_opts(&opts); 1229 1230 return rc; 1231 } 1232 1233 static inline u16 inode_mode_to_security_class(umode_t mode) 1234 { 1235 switch (mode & S_IFMT) { 1236 case S_IFSOCK: 1237 return SECCLASS_SOCK_FILE; 1238 case S_IFLNK: 1239 return SECCLASS_LNK_FILE; 1240 case S_IFREG: 1241 return SECCLASS_FILE; 1242 case S_IFBLK: 1243 return SECCLASS_BLK_FILE; 1244 case S_IFDIR: 1245 return SECCLASS_DIR; 1246 case S_IFCHR: 1247 return SECCLASS_CHR_FILE; 1248 case S_IFIFO: 1249 return SECCLASS_FIFO_FILE; 1250 1251 } 1252 1253 return SECCLASS_FILE; 1254 } 1255 1256 static inline int default_protocol_stream(int protocol) 1257 { 1258 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1259 } 1260 1261 static inline int default_protocol_dgram(int protocol) 1262 { 1263 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1264 } 1265 1266 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1267 { 1268 int extsockclass = selinux_policycap_extsockclass; 1269 1270 switch (family) { 1271 case PF_UNIX: 1272 switch (type) { 1273 case SOCK_STREAM: 1274 case SOCK_SEQPACKET: 1275 return SECCLASS_UNIX_STREAM_SOCKET; 1276 case SOCK_DGRAM: 1277 return SECCLASS_UNIX_DGRAM_SOCKET; 1278 } 1279 break; 1280 case PF_INET: 1281 case PF_INET6: 1282 switch (type) { 1283 case SOCK_STREAM: 1284 case SOCK_SEQPACKET: 1285 if (default_protocol_stream(protocol)) 1286 return SECCLASS_TCP_SOCKET; 1287 else if (extsockclass && protocol == IPPROTO_SCTP) 1288 return SECCLASS_SCTP_SOCKET; 1289 else 1290 return SECCLASS_RAWIP_SOCKET; 1291 case SOCK_DGRAM: 1292 if (default_protocol_dgram(protocol)) 1293 return SECCLASS_UDP_SOCKET; 1294 else if (extsockclass && (protocol == IPPROTO_ICMP || 1295 protocol == IPPROTO_ICMPV6)) 1296 return SECCLASS_ICMP_SOCKET; 1297 else 1298 return SECCLASS_RAWIP_SOCKET; 1299 case SOCK_DCCP: 1300 return SECCLASS_DCCP_SOCKET; 1301 default: 1302 return SECCLASS_RAWIP_SOCKET; 1303 } 1304 break; 1305 case PF_NETLINK: 1306 switch (protocol) { 1307 case NETLINK_ROUTE: 1308 return SECCLASS_NETLINK_ROUTE_SOCKET; 1309 case NETLINK_SOCK_DIAG: 1310 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1311 case NETLINK_NFLOG: 1312 return SECCLASS_NETLINK_NFLOG_SOCKET; 1313 case NETLINK_XFRM: 1314 return SECCLASS_NETLINK_XFRM_SOCKET; 1315 case NETLINK_SELINUX: 1316 return SECCLASS_NETLINK_SELINUX_SOCKET; 1317 case NETLINK_ISCSI: 1318 return SECCLASS_NETLINK_ISCSI_SOCKET; 1319 case NETLINK_AUDIT: 1320 return SECCLASS_NETLINK_AUDIT_SOCKET; 1321 case NETLINK_FIB_LOOKUP: 1322 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; 1323 case NETLINK_CONNECTOR: 1324 return SECCLASS_NETLINK_CONNECTOR_SOCKET; 1325 case NETLINK_NETFILTER: 1326 return SECCLASS_NETLINK_NETFILTER_SOCKET; 1327 case NETLINK_DNRTMSG: 1328 return SECCLASS_NETLINK_DNRT_SOCKET; 1329 case NETLINK_KOBJECT_UEVENT: 1330 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1331 case NETLINK_GENERIC: 1332 return SECCLASS_NETLINK_GENERIC_SOCKET; 1333 case NETLINK_SCSITRANSPORT: 1334 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; 1335 case NETLINK_RDMA: 1336 return SECCLASS_NETLINK_RDMA_SOCKET; 1337 case NETLINK_CRYPTO: 1338 return SECCLASS_NETLINK_CRYPTO_SOCKET; 1339 default: 1340 return SECCLASS_NETLINK_SOCKET; 1341 } 1342 case PF_PACKET: 1343 return SECCLASS_PACKET_SOCKET; 1344 case PF_KEY: 1345 return SECCLASS_KEY_SOCKET; 1346 case PF_APPLETALK: 1347 return SECCLASS_APPLETALK_SOCKET; 1348 } 1349 1350 if (extsockclass) { 1351 switch (family) { 1352 case PF_AX25: 1353 return SECCLASS_AX25_SOCKET; 1354 case PF_IPX: 1355 return SECCLASS_IPX_SOCKET; 1356 case PF_NETROM: 1357 return SECCLASS_NETROM_SOCKET; 1358 case PF_ATMPVC: 1359 return SECCLASS_ATMPVC_SOCKET; 1360 case PF_X25: 1361 return SECCLASS_X25_SOCKET; 1362 case PF_ROSE: 1363 return SECCLASS_ROSE_SOCKET; 1364 case PF_DECnet: 1365 return SECCLASS_DECNET_SOCKET; 1366 case PF_ATMSVC: 1367 return SECCLASS_ATMSVC_SOCKET; 1368 case PF_RDS: 1369 return SECCLASS_RDS_SOCKET; 1370 case PF_IRDA: 1371 return SECCLASS_IRDA_SOCKET; 1372 case PF_PPPOX: 1373 return SECCLASS_PPPOX_SOCKET; 1374 case PF_LLC: 1375 return SECCLASS_LLC_SOCKET; 1376 case PF_CAN: 1377 return SECCLASS_CAN_SOCKET; 1378 case PF_TIPC: 1379 return SECCLASS_TIPC_SOCKET; 1380 case PF_BLUETOOTH: 1381 return SECCLASS_BLUETOOTH_SOCKET; 1382 case PF_IUCV: 1383 return SECCLASS_IUCV_SOCKET; 1384 case PF_RXRPC: 1385 return SECCLASS_RXRPC_SOCKET; 1386 case PF_ISDN: 1387 return SECCLASS_ISDN_SOCKET; 1388 case PF_PHONET: 1389 return SECCLASS_PHONET_SOCKET; 1390 case PF_IEEE802154: 1391 return SECCLASS_IEEE802154_SOCKET; 1392 case PF_CAIF: 1393 return SECCLASS_CAIF_SOCKET; 1394 case PF_ALG: 1395 return SECCLASS_ALG_SOCKET; 1396 case PF_NFC: 1397 return SECCLASS_NFC_SOCKET; 1398 case PF_VSOCK: 1399 return SECCLASS_VSOCK_SOCKET; 1400 case PF_KCM: 1401 return SECCLASS_KCM_SOCKET; 1402 case PF_QIPCRTR: 1403 return SECCLASS_QIPCRTR_SOCKET; 1404 case PF_SMC: 1405 return SECCLASS_SMC_SOCKET; 1406 #if PF_MAX > 44 1407 #error New address family defined, please update this function. 1408 #endif 1409 } 1410 } 1411 1412 return SECCLASS_SOCKET; 1413 } 1414 1415 static int selinux_genfs_get_sid(struct dentry *dentry, 1416 u16 tclass, 1417 u16 flags, 1418 u32 *sid) 1419 { 1420 int rc; 1421 struct super_block *sb = dentry->d_sb; 1422 char *buffer, *path; 1423 1424 buffer = (char *)__get_free_page(GFP_KERNEL); 1425 if (!buffer) 1426 return -ENOMEM; 1427 1428 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1429 if (IS_ERR(path)) 1430 rc = PTR_ERR(path); 1431 else { 1432 if (flags & SE_SBPROC) { 1433 /* each process gets a /proc/PID/ entry. Strip off the 1434 * PID part to get a valid selinux labeling. 1435 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1436 while (path[1] >= '0' && path[1] <= '9') { 1437 path[1] = '/'; 1438 path++; 1439 } 1440 } 1441 rc = security_genfs_sid(sb->s_type->name, path, tclass, sid); 1442 } 1443 free_page((unsigned long)buffer); 1444 return rc; 1445 } 1446 1447 /* The inode's security attributes must be initialized before first use. */ 1448 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1449 { 1450 struct superblock_security_struct *sbsec = NULL; 1451 struct inode_security_struct *isec = inode->i_security; 1452 u32 task_sid, sid = 0; 1453 u16 sclass; 1454 struct dentry *dentry; 1455 #define INITCONTEXTLEN 255 1456 char *context = NULL; 1457 unsigned len = 0; 1458 int rc = 0; 1459 1460 if (isec->initialized == LABEL_INITIALIZED) 1461 return 0; 1462 1463 spin_lock(&isec->lock); 1464 if (isec->initialized == LABEL_INITIALIZED) 1465 goto out_unlock; 1466 1467 if (isec->sclass == SECCLASS_FILE) 1468 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1469 1470 sbsec = inode->i_sb->s_security; 1471 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1472 /* Defer initialization until selinux_complete_init, 1473 after the initial policy is loaded and the security 1474 server is ready to handle calls. */ 1475 spin_lock(&sbsec->isec_lock); 1476 if (list_empty(&isec->list)) 1477 list_add(&isec->list, &sbsec->isec_head); 1478 spin_unlock(&sbsec->isec_lock); 1479 goto out_unlock; 1480 } 1481 1482 sclass = isec->sclass; 1483 task_sid = isec->task_sid; 1484 sid = isec->sid; 1485 isec->initialized = LABEL_PENDING; 1486 spin_unlock(&isec->lock); 1487 1488 switch (sbsec->behavior) { 1489 case SECURITY_FS_USE_NATIVE: 1490 break; 1491 case SECURITY_FS_USE_XATTR: 1492 if (!(inode->i_opflags & IOP_XATTR)) { 1493 sid = sbsec->def_sid; 1494 break; 1495 } 1496 /* Need a dentry, since the xattr API requires one. 1497 Life would be simpler if we could just pass the inode. */ 1498 if (opt_dentry) { 1499 /* Called from d_instantiate or d_splice_alias. */ 1500 dentry = dget(opt_dentry); 1501 } else { 1502 /* Called from selinux_complete_init, try to find a dentry. */ 1503 dentry = d_find_alias(inode); 1504 } 1505 if (!dentry) { 1506 /* 1507 * this is can be hit on boot when a file is accessed 1508 * before the policy is loaded. When we load policy we 1509 * may find inodes that have no dentry on the 1510 * sbsec->isec_head list. No reason to complain as these 1511 * will get fixed up the next time we go through 1512 * inode_doinit with a dentry, before these inodes could 1513 * be used again by userspace. 1514 */ 1515 goto out; 1516 } 1517 1518 len = INITCONTEXTLEN; 1519 context = kmalloc(len+1, GFP_NOFS); 1520 if (!context) { 1521 rc = -ENOMEM; 1522 dput(dentry); 1523 goto out; 1524 } 1525 context[len] = '\0'; 1526 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); 1527 if (rc == -ERANGE) { 1528 kfree(context); 1529 1530 /* Need a larger buffer. Query for the right size. */ 1531 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0); 1532 if (rc < 0) { 1533 dput(dentry); 1534 goto out; 1535 } 1536 len = rc; 1537 context = kmalloc(len+1, GFP_NOFS); 1538 if (!context) { 1539 rc = -ENOMEM; 1540 dput(dentry); 1541 goto out; 1542 } 1543 context[len] = '\0'; 1544 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); 1545 } 1546 dput(dentry); 1547 if (rc < 0) { 1548 if (rc != -ENODATA) { 1549 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1550 "%d for dev=%s ino=%ld\n", __func__, 1551 -rc, inode->i_sb->s_id, inode->i_ino); 1552 kfree(context); 1553 goto out; 1554 } 1555 /* Map ENODATA to the default file SID */ 1556 sid = sbsec->def_sid; 1557 rc = 0; 1558 } else { 1559 rc = security_context_to_sid_default(context, rc, &sid, 1560 sbsec->def_sid, 1561 GFP_NOFS); 1562 if (rc) { 1563 char *dev = inode->i_sb->s_id; 1564 unsigned long ino = inode->i_ino; 1565 1566 if (rc == -EINVAL) { 1567 if (printk_ratelimit()) 1568 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1569 "context=%s. This indicates you may need to relabel the inode or the " 1570 "filesystem in question.\n", ino, dev, context); 1571 } else { 1572 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1573 "returned %d for dev=%s ino=%ld\n", 1574 __func__, context, -rc, dev, ino); 1575 } 1576 kfree(context); 1577 /* Leave with the unlabeled SID */ 1578 rc = 0; 1579 break; 1580 } 1581 } 1582 kfree(context); 1583 break; 1584 case SECURITY_FS_USE_TASK: 1585 sid = task_sid; 1586 break; 1587 case SECURITY_FS_USE_TRANS: 1588 /* Default to the fs SID. */ 1589 sid = sbsec->sid; 1590 1591 /* Try to obtain a transition SID. */ 1592 rc = security_transition_sid(task_sid, sid, sclass, NULL, &sid); 1593 if (rc) 1594 goto out; 1595 break; 1596 case SECURITY_FS_USE_MNTPOINT: 1597 sid = sbsec->mntpoint_sid; 1598 break; 1599 default: 1600 /* Default to the fs superblock SID. */ 1601 sid = sbsec->sid; 1602 1603 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) { 1604 /* We must have a dentry to determine the label on 1605 * procfs inodes */ 1606 if (opt_dentry) 1607 /* Called from d_instantiate or 1608 * d_splice_alias. */ 1609 dentry = dget(opt_dentry); 1610 else 1611 /* Called from selinux_complete_init, try to 1612 * find a dentry. */ 1613 dentry = d_find_alias(inode); 1614 /* 1615 * This can be hit on boot when a file is accessed 1616 * before the policy is loaded. When we load policy we 1617 * may find inodes that have no dentry on the 1618 * sbsec->isec_head list. No reason to complain as 1619 * these will get fixed up the next time we go through 1620 * inode_doinit() with a dentry, before these inodes 1621 * could be used again by userspace. 1622 */ 1623 if (!dentry) 1624 goto out; 1625 rc = selinux_genfs_get_sid(dentry, sclass, 1626 sbsec->flags, &sid); 1627 dput(dentry); 1628 if (rc) 1629 goto out; 1630 } 1631 break; 1632 } 1633 1634 out: 1635 spin_lock(&isec->lock); 1636 if (isec->initialized == LABEL_PENDING) { 1637 if (!sid || rc) { 1638 isec->initialized = LABEL_INVALID; 1639 goto out_unlock; 1640 } 1641 1642 isec->initialized = LABEL_INITIALIZED; 1643 isec->sid = sid; 1644 } 1645 1646 out_unlock: 1647 spin_unlock(&isec->lock); 1648 return rc; 1649 } 1650 1651 /* Convert a Linux signal to an access vector. */ 1652 static inline u32 signal_to_av(int sig) 1653 { 1654 u32 perm = 0; 1655 1656 switch (sig) { 1657 case SIGCHLD: 1658 /* Commonly granted from child to parent. */ 1659 perm = PROCESS__SIGCHLD; 1660 break; 1661 case SIGKILL: 1662 /* Cannot be caught or ignored */ 1663 perm = PROCESS__SIGKILL; 1664 break; 1665 case SIGSTOP: 1666 /* Cannot be caught or ignored */ 1667 perm = PROCESS__SIGSTOP; 1668 break; 1669 default: 1670 /* All other signals. */ 1671 perm = PROCESS__SIGNAL; 1672 break; 1673 } 1674 1675 return perm; 1676 } 1677 1678 #if CAP_LAST_CAP > 63 1679 #error Fix SELinux to handle capabilities > 63. 1680 #endif 1681 1682 /* Check whether a task is allowed to use a capability. */ 1683 static int cred_has_capability(const struct cred *cred, 1684 int cap, int audit, bool initns) 1685 { 1686 struct common_audit_data ad; 1687 struct av_decision avd; 1688 u16 sclass; 1689 u32 sid = cred_sid(cred); 1690 u32 av = CAP_TO_MASK(cap); 1691 int rc; 1692 1693 ad.type = LSM_AUDIT_DATA_CAP; 1694 ad.u.cap = cap; 1695 1696 switch (CAP_TO_INDEX(cap)) { 1697 case 0: 1698 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS; 1699 break; 1700 case 1: 1701 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS; 1702 break; 1703 default: 1704 printk(KERN_ERR 1705 "SELinux: out of range capability %d\n", cap); 1706 BUG(); 1707 return -EINVAL; 1708 } 1709 1710 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1711 if (audit == SECURITY_CAP_AUDIT) { 1712 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0); 1713 if (rc2) 1714 return rc2; 1715 } 1716 return rc; 1717 } 1718 1719 /* Check whether a task has a particular permission to an inode. 1720 The 'adp' parameter is optional and allows other audit 1721 data to be passed (e.g. the dentry). */ 1722 static int inode_has_perm(const struct cred *cred, 1723 struct inode *inode, 1724 u32 perms, 1725 struct common_audit_data *adp) 1726 { 1727 struct inode_security_struct *isec; 1728 u32 sid; 1729 1730 validate_creds(cred); 1731 1732 if (unlikely(IS_PRIVATE(inode))) 1733 return 0; 1734 1735 sid = cred_sid(cred); 1736 isec = inode->i_security; 1737 1738 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1739 } 1740 1741 /* Same as inode_has_perm, but pass explicit audit data containing 1742 the dentry to help the auditing code to more easily generate the 1743 pathname if needed. */ 1744 static inline int dentry_has_perm(const struct cred *cred, 1745 struct dentry *dentry, 1746 u32 av) 1747 { 1748 struct inode *inode = d_backing_inode(dentry); 1749 struct common_audit_data ad; 1750 1751 ad.type = LSM_AUDIT_DATA_DENTRY; 1752 ad.u.dentry = dentry; 1753 __inode_security_revalidate(inode, dentry, true); 1754 return inode_has_perm(cred, inode, av, &ad); 1755 } 1756 1757 /* Same as inode_has_perm, but pass explicit audit data containing 1758 the path to help the auditing code to more easily generate the 1759 pathname if needed. */ 1760 static inline int path_has_perm(const struct cred *cred, 1761 const struct path *path, 1762 u32 av) 1763 { 1764 struct inode *inode = d_backing_inode(path->dentry); 1765 struct common_audit_data ad; 1766 1767 ad.type = LSM_AUDIT_DATA_PATH; 1768 ad.u.path = *path; 1769 __inode_security_revalidate(inode, path->dentry, true); 1770 return inode_has_perm(cred, inode, av, &ad); 1771 } 1772 1773 /* Same as path_has_perm, but uses the inode from the file struct. */ 1774 static inline int file_path_has_perm(const struct cred *cred, 1775 struct file *file, 1776 u32 av) 1777 { 1778 struct common_audit_data ad; 1779 1780 ad.type = LSM_AUDIT_DATA_FILE; 1781 ad.u.file = file; 1782 return inode_has_perm(cred, file_inode(file), av, &ad); 1783 } 1784 1785 /* Check whether a task can use an open file descriptor to 1786 access an inode in a given way. Check access to the 1787 descriptor itself, and then use dentry_has_perm to 1788 check a particular permission to the file. 1789 Access to the descriptor is implicitly granted if it 1790 has the same SID as the process. If av is zero, then 1791 access to the file is not checked, e.g. for cases 1792 where only the descriptor is affected like seek. */ 1793 static int file_has_perm(const struct cred *cred, 1794 struct file *file, 1795 u32 av) 1796 { 1797 struct file_security_struct *fsec = file->f_security; 1798 struct inode *inode = file_inode(file); 1799 struct common_audit_data ad; 1800 u32 sid = cred_sid(cred); 1801 int rc; 1802 1803 ad.type = LSM_AUDIT_DATA_FILE; 1804 ad.u.file = file; 1805 1806 if (sid != fsec->sid) { 1807 rc = avc_has_perm(sid, fsec->sid, 1808 SECCLASS_FD, 1809 FD__USE, 1810 &ad); 1811 if (rc) 1812 goto out; 1813 } 1814 1815 /* av is zero if only checking access to the descriptor. */ 1816 rc = 0; 1817 if (av) 1818 rc = inode_has_perm(cred, inode, av, &ad); 1819 1820 out: 1821 return rc; 1822 } 1823 1824 /* 1825 * Determine the label for an inode that might be unioned. 1826 */ 1827 static int 1828 selinux_determine_inode_label(const struct task_security_struct *tsec, 1829 struct inode *dir, 1830 const struct qstr *name, u16 tclass, 1831 u32 *_new_isid) 1832 { 1833 const struct superblock_security_struct *sbsec = dir->i_sb->s_security; 1834 1835 if ((sbsec->flags & SE_SBINITIALIZED) && 1836 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { 1837 *_new_isid = sbsec->mntpoint_sid; 1838 } else if ((sbsec->flags & SBLABEL_MNT) && 1839 tsec->create_sid) { 1840 *_new_isid = tsec->create_sid; 1841 } else { 1842 const struct inode_security_struct *dsec = inode_security(dir); 1843 return security_transition_sid(tsec->sid, dsec->sid, tclass, 1844 name, _new_isid); 1845 } 1846 1847 return 0; 1848 } 1849 1850 /* Check whether a task can create a file. */ 1851 static int may_create(struct inode *dir, 1852 struct dentry *dentry, 1853 u16 tclass) 1854 { 1855 const struct task_security_struct *tsec = current_security(); 1856 struct inode_security_struct *dsec; 1857 struct superblock_security_struct *sbsec; 1858 u32 sid, newsid; 1859 struct common_audit_data ad; 1860 int rc; 1861 1862 dsec = inode_security(dir); 1863 sbsec = dir->i_sb->s_security; 1864 1865 sid = tsec->sid; 1866 1867 ad.type = LSM_AUDIT_DATA_DENTRY; 1868 ad.u.dentry = dentry; 1869 1870 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1871 DIR__ADD_NAME | DIR__SEARCH, 1872 &ad); 1873 if (rc) 1874 return rc; 1875 1876 rc = selinux_determine_inode_label(current_security(), dir, 1877 &dentry->d_name, tclass, &newsid); 1878 if (rc) 1879 return rc; 1880 1881 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1882 if (rc) 1883 return rc; 1884 1885 return avc_has_perm(newsid, sbsec->sid, 1886 SECCLASS_FILESYSTEM, 1887 FILESYSTEM__ASSOCIATE, &ad); 1888 } 1889 1890 #define MAY_LINK 0 1891 #define MAY_UNLINK 1 1892 #define MAY_RMDIR 2 1893 1894 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1895 static int may_link(struct inode *dir, 1896 struct dentry *dentry, 1897 int kind) 1898 1899 { 1900 struct inode_security_struct *dsec, *isec; 1901 struct common_audit_data ad; 1902 u32 sid = current_sid(); 1903 u32 av; 1904 int rc; 1905 1906 dsec = inode_security(dir); 1907 isec = backing_inode_security(dentry); 1908 1909 ad.type = LSM_AUDIT_DATA_DENTRY; 1910 ad.u.dentry = dentry; 1911 1912 av = DIR__SEARCH; 1913 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1914 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1915 if (rc) 1916 return rc; 1917 1918 switch (kind) { 1919 case MAY_LINK: 1920 av = FILE__LINK; 1921 break; 1922 case MAY_UNLINK: 1923 av = FILE__UNLINK; 1924 break; 1925 case MAY_RMDIR: 1926 av = DIR__RMDIR; 1927 break; 1928 default: 1929 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1930 __func__, kind); 1931 return 0; 1932 } 1933 1934 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1935 return rc; 1936 } 1937 1938 static inline int may_rename(struct inode *old_dir, 1939 struct dentry *old_dentry, 1940 struct inode *new_dir, 1941 struct dentry *new_dentry) 1942 { 1943 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1944 struct common_audit_data ad; 1945 u32 sid = current_sid(); 1946 u32 av; 1947 int old_is_dir, new_is_dir; 1948 int rc; 1949 1950 old_dsec = inode_security(old_dir); 1951 old_isec = backing_inode_security(old_dentry); 1952 old_is_dir = d_is_dir(old_dentry); 1953 new_dsec = inode_security(new_dir); 1954 1955 ad.type = LSM_AUDIT_DATA_DENTRY; 1956 1957 ad.u.dentry = old_dentry; 1958 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1959 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1960 if (rc) 1961 return rc; 1962 rc = avc_has_perm(sid, old_isec->sid, 1963 old_isec->sclass, FILE__RENAME, &ad); 1964 if (rc) 1965 return rc; 1966 if (old_is_dir && new_dir != old_dir) { 1967 rc = avc_has_perm(sid, old_isec->sid, 1968 old_isec->sclass, DIR__REPARENT, &ad); 1969 if (rc) 1970 return rc; 1971 } 1972 1973 ad.u.dentry = new_dentry; 1974 av = DIR__ADD_NAME | DIR__SEARCH; 1975 if (d_is_positive(new_dentry)) 1976 av |= DIR__REMOVE_NAME; 1977 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1978 if (rc) 1979 return rc; 1980 if (d_is_positive(new_dentry)) { 1981 new_isec = backing_inode_security(new_dentry); 1982 new_is_dir = d_is_dir(new_dentry); 1983 rc = avc_has_perm(sid, new_isec->sid, 1984 new_isec->sclass, 1985 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1986 if (rc) 1987 return rc; 1988 } 1989 1990 return 0; 1991 } 1992 1993 /* Check whether a task can perform a filesystem operation. */ 1994 static int superblock_has_perm(const struct cred *cred, 1995 struct super_block *sb, 1996 u32 perms, 1997 struct common_audit_data *ad) 1998 { 1999 struct superblock_security_struct *sbsec; 2000 u32 sid = cred_sid(cred); 2001 2002 sbsec = sb->s_security; 2003 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 2004 } 2005 2006 /* Convert a Linux mode and permission mask to an access vector. */ 2007 static inline u32 file_mask_to_av(int mode, int mask) 2008 { 2009 u32 av = 0; 2010 2011 if (!S_ISDIR(mode)) { 2012 if (mask & MAY_EXEC) 2013 av |= FILE__EXECUTE; 2014 if (mask & MAY_READ) 2015 av |= FILE__READ; 2016 2017 if (mask & MAY_APPEND) 2018 av |= FILE__APPEND; 2019 else if (mask & MAY_WRITE) 2020 av |= FILE__WRITE; 2021 2022 } else { 2023 if (mask & MAY_EXEC) 2024 av |= DIR__SEARCH; 2025 if (mask & MAY_WRITE) 2026 av |= DIR__WRITE; 2027 if (mask & MAY_READ) 2028 av |= DIR__READ; 2029 } 2030 2031 return av; 2032 } 2033 2034 /* Convert a Linux file to an access vector. */ 2035 static inline u32 file_to_av(struct file *file) 2036 { 2037 u32 av = 0; 2038 2039 if (file->f_mode & FMODE_READ) 2040 av |= FILE__READ; 2041 if (file->f_mode & FMODE_WRITE) { 2042 if (file->f_flags & O_APPEND) 2043 av |= FILE__APPEND; 2044 else 2045 av |= FILE__WRITE; 2046 } 2047 if (!av) { 2048 /* 2049 * Special file opened with flags 3 for ioctl-only use. 2050 */ 2051 av = FILE__IOCTL; 2052 } 2053 2054 return av; 2055 } 2056 2057 /* 2058 * Convert a file to an access vector and include the correct open 2059 * open permission. 2060 */ 2061 static inline u32 open_file_to_av(struct file *file) 2062 { 2063 u32 av = file_to_av(file); 2064 2065 if (selinux_policycap_openperm) 2066 av |= FILE__OPEN; 2067 2068 return av; 2069 } 2070 2071 /* Hook functions begin here. */ 2072 2073 static int selinux_binder_set_context_mgr(struct task_struct *mgr) 2074 { 2075 u32 mysid = current_sid(); 2076 u32 mgrsid = task_sid(mgr); 2077 2078 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER, 2079 BINDER__SET_CONTEXT_MGR, NULL); 2080 } 2081 2082 static int selinux_binder_transaction(struct task_struct *from, 2083 struct task_struct *to) 2084 { 2085 u32 mysid = current_sid(); 2086 u32 fromsid = task_sid(from); 2087 u32 tosid = task_sid(to); 2088 int rc; 2089 2090 if (mysid != fromsid) { 2091 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER, 2092 BINDER__IMPERSONATE, NULL); 2093 if (rc) 2094 return rc; 2095 } 2096 2097 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL, 2098 NULL); 2099 } 2100 2101 static int selinux_binder_transfer_binder(struct task_struct *from, 2102 struct task_struct *to) 2103 { 2104 u32 fromsid = task_sid(from); 2105 u32 tosid = task_sid(to); 2106 2107 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER, 2108 NULL); 2109 } 2110 2111 static int selinux_binder_transfer_file(struct task_struct *from, 2112 struct task_struct *to, 2113 struct file *file) 2114 { 2115 u32 sid = task_sid(to); 2116 struct file_security_struct *fsec = file->f_security; 2117 struct dentry *dentry = file->f_path.dentry; 2118 struct inode_security_struct *isec; 2119 struct common_audit_data ad; 2120 int rc; 2121 2122 ad.type = LSM_AUDIT_DATA_PATH; 2123 ad.u.path = file->f_path; 2124 2125 if (sid != fsec->sid) { 2126 rc = avc_has_perm(sid, fsec->sid, 2127 SECCLASS_FD, 2128 FD__USE, 2129 &ad); 2130 if (rc) 2131 return rc; 2132 } 2133 2134 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2135 return 0; 2136 2137 isec = backing_inode_security(dentry); 2138 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file), 2139 &ad); 2140 } 2141 2142 static int selinux_ptrace_access_check(struct task_struct *child, 2143 unsigned int mode) 2144 { 2145 u32 sid = current_sid(); 2146 u32 csid = task_sid(child); 2147 2148 if (mode & PTRACE_MODE_READ) 2149 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL); 2150 2151 return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL); 2152 } 2153 2154 static int selinux_ptrace_traceme(struct task_struct *parent) 2155 { 2156 return avc_has_perm(task_sid(parent), current_sid(), SECCLASS_PROCESS, 2157 PROCESS__PTRACE, NULL); 2158 } 2159 2160 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 2161 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2162 { 2163 return avc_has_perm(current_sid(), task_sid(target), SECCLASS_PROCESS, 2164 PROCESS__GETCAP, NULL); 2165 } 2166 2167 static int selinux_capset(struct cred *new, const struct cred *old, 2168 const kernel_cap_t *effective, 2169 const kernel_cap_t *inheritable, 2170 const kernel_cap_t *permitted) 2171 { 2172 return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS, 2173 PROCESS__SETCAP, NULL); 2174 } 2175 2176 /* 2177 * (This comment used to live with the selinux_task_setuid hook, 2178 * which was removed). 2179 * 2180 * Since setuid only affects the current process, and since the SELinux 2181 * controls are not based on the Linux identity attributes, SELinux does not 2182 * need to control this operation. However, SELinux does control the use of 2183 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2184 */ 2185 2186 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2187 int cap, int audit) 2188 { 2189 return cred_has_capability(cred, cap, audit, ns == &init_user_ns); 2190 } 2191 2192 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2193 { 2194 const struct cred *cred = current_cred(); 2195 int rc = 0; 2196 2197 if (!sb) 2198 return 0; 2199 2200 switch (cmds) { 2201 case Q_SYNC: 2202 case Q_QUOTAON: 2203 case Q_QUOTAOFF: 2204 case Q_SETINFO: 2205 case Q_SETQUOTA: 2206 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2207 break; 2208 case Q_GETFMT: 2209 case Q_GETINFO: 2210 case Q_GETQUOTA: 2211 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2212 break; 2213 default: 2214 rc = 0; /* let the kernel handle invalid cmds */ 2215 break; 2216 } 2217 return rc; 2218 } 2219 2220 static int selinux_quota_on(struct dentry *dentry) 2221 { 2222 const struct cred *cred = current_cred(); 2223 2224 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2225 } 2226 2227 static int selinux_syslog(int type) 2228 { 2229 switch (type) { 2230 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2231 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2232 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2233 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL); 2234 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2235 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2236 /* Set level of messages printed to console */ 2237 case SYSLOG_ACTION_CONSOLE_LEVEL: 2238 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2239 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE, 2240 NULL); 2241 } 2242 /* All other syslog types */ 2243 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2244 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL); 2245 } 2246 2247 /* 2248 * Check that a process has enough memory to allocate a new virtual 2249 * mapping. 0 means there is enough memory for the allocation to 2250 * succeed and -ENOMEM implies there is not. 2251 * 2252 * Do not audit the selinux permission check, as this is applied to all 2253 * processes that allocate mappings. 2254 */ 2255 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2256 { 2257 int rc, cap_sys_admin = 0; 2258 2259 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN, 2260 SECURITY_CAP_NOAUDIT, true); 2261 if (rc == 0) 2262 cap_sys_admin = 1; 2263 2264 return cap_sys_admin; 2265 } 2266 2267 /* binprm security operations */ 2268 2269 static u32 ptrace_parent_sid(void) 2270 { 2271 u32 sid = 0; 2272 struct task_struct *tracer; 2273 2274 rcu_read_lock(); 2275 tracer = ptrace_parent(current); 2276 if (tracer) 2277 sid = task_sid(tracer); 2278 rcu_read_unlock(); 2279 2280 return sid; 2281 } 2282 2283 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2284 const struct task_security_struct *old_tsec, 2285 const struct task_security_struct *new_tsec) 2286 { 2287 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2288 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt); 2289 int rc; 2290 2291 if (!nnp && !nosuid) 2292 return 0; /* neither NNP nor nosuid */ 2293 2294 if (new_tsec->sid == old_tsec->sid) 2295 return 0; /* No change in credentials */ 2296 2297 /* 2298 * The only transitions we permit under NNP or nosuid 2299 * are transitions to bounded SIDs, i.e. SIDs that are 2300 * guaranteed to only be allowed a subset of the permissions 2301 * of the current SID. 2302 */ 2303 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid); 2304 if (rc) { 2305 /* 2306 * On failure, preserve the errno values for NNP vs nosuid. 2307 * NNP: Operation not permitted for caller. 2308 * nosuid: Permission denied to file. 2309 */ 2310 if (nnp) 2311 return -EPERM; 2312 else 2313 return -EACCES; 2314 } 2315 return 0; 2316 } 2317 2318 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2319 { 2320 const struct task_security_struct *old_tsec; 2321 struct task_security_struct *new_tsec; 2322 struct inode_security_struct *isec; 2323 struct common_audit_data ad; 2324 struct inode *inode = file_inode(bprm->file); 2325 int rc; 2326 2327 /* SELinux context only depends on initial program or script and not 2328 * the script interpreter */ 2329 if (bprm->cred_prepared) 2330 return 0; 2331 2332 old_tsec = current_security(); 2333 new_tsec = bprm->cred->security; 2334 isec = inode_security(inode); 2335 2336 /* Default to the current task SID. */ 2337 new_tsec->sid = old_tsec->sid; 2338 new_tsec->osid = old_tsec->sid; 2339 2340 /* Reset fs, key, and sock SIDs on execve. */ 2341 new_tsec->create_sid = 0; 2342 new_tsec->keycreate_sid = 0; 2343 new_tsec->sockcreate_sid = 0; 2344 2345 if (old_tsec->exec_sid) { 2346 new_tsec->sid = old_tsec->exec_sid; 2347 /* Reset exec SID on execve. */ 2348 new_tsec->exec_sid = 0; 2349 2350 /* Fail on NNP or nosuid if not an allowed transition. */ 2351 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2352 if (rc) 2353 return rc; 2354 } else { 2355 /* Check for a default transition on this program. */ 2356 rc = security_transition_sid(old_tsec->sid, isec->sid, 2357 SECCLASS_PROCESS, NULL, 2358 &new_tsec->sid); 2359 if (rc) 2360 return rc; 2361 2362 /* 2363 * Fallback to old SID on NNP or nosuid if not an allowed 2364 * transition. 2365 */ 2366 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2367 if (rc) 2368 new_tsec->sid = old_tsec->sid; 2369 } 2370 2371 ad.type = LSM_AUDIT_DATA_FILE; 2372 ad.u.file = bprm->file; 2373 2374 if (new_tsec->sid == old_tsec->sid) { 2375 rc = avc_has_perm(old_tsec->sid, isec->sid, 2376 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2377 if (rc) 2378 return rc; 2379 } else { 2380 /* Check permissions for the transition. */ 2381 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2382 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2383 if (rc) 2384 return rc; 2385 2386 rc = avc_has_perm(new_tsec->sid, isec->sid, 2387 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2388 if (rc) 2389 return rc; 2390 2391 /* Check for shared state */ 2392 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2393 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2394 SECCLASS_PROCESS, PROCESS__SHARE, 2395 NULL); 2396 if (rc) 2397 return -EPERM; 2398 } 2399 2400 /* Make sure that anyone attempting to ptrace over a task that 2401 * changes its SID has the appropriate permit */ 2402 if (bprm->unsafe & 2403 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2404 u32 ptsid = ptrace_parent_sid(); 2405 if (ptsid != 0) { 2406 rc = avc_has_perm(ptsid, new_tsec->sid, 2407 SECCLASS_PROCESS, 2408 PROCESS__PTRACE, NULL); 2409 if (rc) 2410 return -EPERM; 2411 } 2412 } 2413 2414 /* Clear any possibly unsafe personality bits on exec: */ 2415 bprm->per_clear |= PER_CLEAR_ON_SETID; 2416 } 2417 2418 return 0; 2419 } 2420 2421 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2422 { 2423 const struct task_security_struct *tsec = current_security(); 2424 u32 sid, osid; 2425 int atsecure = 0; 2426 2427 sid = tsec->sid; 2428 osid = tsec->osid; 2429 2430 if (osid != sid) { 2431 /* Enable secure mode for SIDs transitions unless 2432 the noatsecure permission is granted between 2433 the two SIDs, i.e. ahp returns 0. */ 2434 atsecure = avc_has_perm(osid, sid, 2435 SECCLASS_PROCESS, 2436 PROCESS__NOATSECURE, NULL); 2437 } 2438 2439 return !!atsecure; 2440 } 2441 2442 static int match_file(const void *p, struct file *file, unsigned fd) 2443 { 2444 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2445 } 2446 2447 /* Derived from fs/exec.c:flush_old_files. */ 2448 static inline void flush_unauthorized_files(const struct cred *cred, 2449 struct files_struct *files) 2450 { 2451 struct file *file, *devnull = NULL; 2452 struct tty_struct *tty; 2453 int drop_tty = 0; 2454 unsigned n; 2455 2456 tty = get_current_tty(); 2457 if (tty) { 2458 spin_lock(&tty->files_lock); 2459 if (!list_empty(&tty->tty_files)) { 2460 struct tty_file_private *file_priv; 2461 2462 /* Revalidate access to controlling tty. 2463 Use file_path_has_perm on the tty path directly 2464 rather than using file_has_perm, as this particular 2465 open file may belong to another process and we are 2466 only interested in the inode-based check here. */ 2467 file_priv = list_first_entry(&tty->tty_files, 2468 struct tty_file_private, list); 2469 file = file_priv->file; 2470 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2471 drop_tty = 1; 2472 } 2473 spin_unlock(&tty->files_lock); 2474 tty_kref_put(tty); 2475 } 2476 /* Reset controlling tty. */ 2477 if (drop_tty) 2478 no_tty(); 2479 2480 /* Revalidate access to inherited open files. */ 2481 n = iterate_fd(files, 0, match_file, cred); 2482 if (!n) /* none found? */ 2483 return; 2484 2485 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2486 if (IS_ERR(devnull)) 2487 devnull = NULL; 2488 /* replace all the matching ones with this */ 2489 do { 2490 replace_fd(n - 1, devnull, 0); 2491 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2492 if (devnull) 2493 fput(devnull); 2494 } 2495 2496 /* 2497 * Prepare a process for imminent new credential changes due to exec 2498 */ 2499 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2500 { 2501 struct task_security_struct *new_tsec; 2502 struct rlimit *rlim, *initrlim; 2503 int rc, i; 2504 2505 new_tsec = bprm->cred->security; 2506 if (new_tsec->sid == new_tsec->osid) 2507 return; 2508 2509 /* Close files for which the new task SID is not authorized. */ 2510 flush_unauthorized_files(bprm->cred, current->files); 2511 2512 /* Always clear parent death signal on SID transitions. */ 2513 current->pdeath_signal = 0; 2514 2515 /* Check whether the new SID can inherit resource limits from the old 2516 * SID. If not, reset all soft limits to the lower of the current 2517 * task's hard limit and the init task's soft limit. 2518 * 2519 * Note that the setting of hard limits (even to lower them) can be 2520 * controlled by the setrlimit check. The inclusion of the init task's 2521 * soft limit into the computation is to avoid resetting soft limits 2522 * higher than the default soft limit for cases where the default is 2523 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2524 */ 2525 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2526 PROCESS__RLIMITINH, NULL); 2527 if (rc) { 2528 /* protect against do_prlimit() */ 2529 task_lock(current); 2530 for (i = 0; i < RLIM_NLIMITS; i++) { 2531 rlim = current->signal->rlim + i; 2532 initrlim = init_task.signal->rlim + i; 2533 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2534 } 2535 task_unlock(current); 2536 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2537 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2538 } 2539 } 2540 2541 /* 2542 * Clean up the process immediately after the installation of new credentials 2543 * due to exec 2544 */ 2545 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2546 { 2547 const struct task_security_struct *tsec = current_security(); 2548 struct itimerval itimer; 2549 u32 osid, sid; 2550 int rc, i; 2551 2552 osid = tsec->osid; 2553 sid = tsec->sid; 2554 2555 if (sid == osid) 2556 return; 2557 2558 /* Check whether the new SID can inherit signal state from the old SID. 2559 * If not, clear itimers to avoid subsequent signal generation and 2560 * flush and unblock signals. 2561 * 2562 * This must occur _after_ the task SID has been updated so that any 2563 * kill done after the flush will be checked against the new SID. 2564 */ 2565 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2566 if (rc) { 2567 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) { 2568 memset(&itimer, 0, sizeof itimer); 2569 for (i = 0; i < 3; i++) 2570 do_setitimer(i, &itimer, NULL); 2571 } 2572 spin_lock_irq(¤t->sighand->siglock); 2573 if (!fatal_signal_pending(current)) { 2574 flush_sigqueue(¤t->pending); 2575 flush_sigqueue(¤t->signal->shared_pending); 2576 flush_signal_handlers(current, 1); 2577 sigemptyset(¤t->blocked); 2578 recalc_sigpending(); 2579 } 2580 spin_unlock_irq(¤t->sighand->siglock); 2581 } 2582 2583 /* Wake up the parent if it is waiting so that it can recheck 2584 * wait permission to the new task SID. */ 2585 read_lock(&tasklist_lock); 2586 __wake_up_parent(current, current->real_parent); 2587 read_unlock(&tasklist_lock); 2588 } 2589 2590 /* superblock security operations */ 2591 2592 static int selinux_sb_alloc_security(struct super_block *sb) 2593 { 2594 return superblock_alloc_security(sb); 2595 } 2596 2597 static void selinux_sb_free_security(struct super_block *sb) 2598 { 2599 superblock_free_security(sb); 2600 } 2601 2602 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2603 { 2604 if (plen > olen) 2605 return 0; 2606 2607 return !memcmp(prefix, option, plen); 2608 } 2609 2610 static inline int selinux_option(char *option, int len) 2611 { 2612 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2613 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2614 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2615 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2616 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2617 } 2618 2619 static inline void take_option(char **to, char *from, int *first, int len) 2620 { 2621 if (!*first) { 2622 **to = ','; 2623 *to += 1; 2624 } else 2625 *first = 0; 2626 memcpy(*to, from, len); 2627 *to += len; 2628 } 2629 2630 static inline void take_selinux_option(char **to, char *from, int *first, 2631 int len) 2632 { 2633 int current_size = 0; 2634 2635 if (!*first) { 2636 **to = '|'; 2637 *to += 1; 2638 } else 2639 *first = 0; 2640 2641 while (current_size < len) { 2642 if (*from != '"') { 2643 **to = *from; 2644 *to += 1; 2645 } 2646 from += 1; 2647 current_size += 1; 2648 } 2649 } 2650 2651 static int selinux_sb_copy_data(char *orig, char *copy) 2652 { 2653 int fnosec, fsec, rc = 0; 2654 char *in_save, *in_curr, *in_end; 2655 char *sec_curr, *nosec_save, *nosec; 2656 int open_quote = 0; 2657 2658 in_curr = orig; 2659 sec_curr = copy; 2660 2661 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2662 if (!nosec) { 2663 rc = -ENOMEM; 2664 goto out; 2665 } 2666 2667 nosec_save = nosec; 2668 fnosec = fsec = 1; 2669 in_save = in_end = orig; 2670 2671 do { 2672 if (*in_end == '"') 2673 open_quote = !open_quote; 2674 if ((*in_end == ',' && open_quote == 0) || 2675 *in_end == '\0') { 2676 int len = in_end - in_curr; 2677 2678 if (selinux_option(in_curr, len)) 2679 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2680 else 2681 take_option(&nosec, in_curr, &fnosec, len); 2682 2683 in_curr = in_end + 1; 2684 } 2685 } while (*in_end++); 2686 2687 strcpy(in_save, nosec_save); 2688 free_page((unsigned long)nosec_save); 2689 out: 2690 return rc; 2691 } 2692 2693 static int selinux_sb_remount(struct super_block *sb, void *data) 2694 { 2695 int rc, i, *flags; 2696 struct security_mnt_opts opts; 2697 char *secdata, **mount_options; 2698 struct superblock_security_struct *sbsec = sb->s_security; 2699 2700 if (!(sbsec->flags & SE_SBINITIALIZED)) 2701 return 0; 2702 2703 if (!data) 2704 return 0; 2705 2706 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 2707 return 0; 2708 2709 security_init_mnt_opts(&opts); 2710 secdata = alloc_secdata(); 2711 if (!secdata) 2712 return -ENOMEM; 2713 rc = selinux_sb_copy_data(data, secdata); 2714 if (rc) 2715 goto out_free_secdata; 2716 2717 rc = selinux_parse_opts_str(secdata, &opts); 2718 if (rc) 2719 goto out_free_secdata; 2720 2721 mount_options = opts.mnt_opts; 2722 flags = opts.mnt_opts_flags; 2723 2724 for (i = 0; i < opts.num_mnt_opts; i++) { 2725 u32 sid; 2726 2727 if (flags[i] == SBLABEL_MNT) 2728 continue; 2729 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL); 2730 if (rc) { 2731 printk(KERN_WARNING "SELinux: security_context_str_to_sid" 2732 "(%s) failed for (dev %s, type %s) errno=%d\n", 2733 mount_options[i], sb->s_id, sb->s_type->name, rc); 2734 goto out_free_opts; 2735 } 2736 rc = -EINVAL; 2737 switch (flags[i]) { 2738 case FSCONTEXT_MNT: 2739 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2740 goto out_bad_option; 2741 break; 2742 case CONTEXT_MNT: 2743 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2744 goto out_bad_option; 2745 break; 2746 case ROOTCONTEXT_MNT: { 2747 struct inode_security_struct *root_isec; 2748 root_isec = backing_inode_security(sb->s_root); 2749 2750 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2751 goto out_bad_option; 2752 break; 2753 } 2754 case DEFCONTEXT_MNT: 2755 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2756 goto out_bad_option; 2757 break; 2758 default: 2759 goto out_free_opts; 2760 } 2761 } 2762 2763 rc = 0; 2764 out_free_opts: 2765 security_free_mnt_opts(&opts); 2766 out_free_secdata: 2767 free_secdata(secdata); 2768 return rc; 2769 out_bad_option: 2770 printk(KERN_WARNING "SELinux: unable to change security options " 2771 "during remount (dev %s, type=%s)\n", sb->s_id, 2772 sb->s_type->name); 2773 goto out_free_opts; 2774 } 2775 2776 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2777 { 2778 const struct cred *cred = current_cred(); 2779 struct common_audit_data ad; 2780 int rc; 2781 2782 rc = superblock_doinit(sb, data); 2783 if (rc) 2784 return rc; 2785 2786 /* Allow all mounts performed by the kernel */ 2787 if (flags & MS_KERNMOUNT) 2788 return 0; 2789 2790 ad.type = LSM_AUDIT_DATA_DENTRY; 2791 ad.u.dentry = sb->s_root; 2792 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2793 } 2794 2795 static int selinux_sb_statfs(struct dentry *dentry) 2796 { 2797 const struct cred *cred = current_cred(); 2798 struct common_audit_data ad; 2799 2800 ad.type = LSM_AUDIT_DATA_DENTRY; 2801 ad.u.dentry = dentry->d_sb->s_root; 2802 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2803 } 2804 2805 static int selinux_mount(const char *dev_name, 2806 const struct path *path, 2807 const char *type, 2808 unsigned long flags, 2809 void *data) 2810 { 2811 const struct cred *cred = current_cred(); 2812 2813 if (flags & MS_REMOUNT) 2814 return superblock_has_perm(cred, path->dentry->d_sb, 2815 FILESYSTEM__REMOUNT, NULL); 2816 else 2817 return path_has_perm(cred, path, FILE__MOUNTON); 2818 } 2819 2820 static int selinux_umount(struct vfsmount *mnt, int flags) 2821 { 2822 const struct cred *cred = current_cred(); 2823 2824 return superblock_has_perm(cred, mnt->mnt_sb, 2825 FILESYSTEM__UNMOUNT, NULL); 2826 } 2827 2828 /* inode security operations */ 2829 2830 static int selinux_inode_alloc_security(struct inode *inode) 2831 { 2832 return inode_alloc_security(inode); 2833 } 2834 2835 static void selinux_inode_free_security(struct inode *inode) 2836 { 2837 inode_free_security(inode); 2838 } 2839 2840 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2841 const struct qstr *name, void **ctx, 2842 u32 *ctxlen) 2843 { 2844 u32 newsid; 2845 int rc; 2846 2847 rc = selinux_determine_inode_label(current_security(), 2848 d_inode(dentry->d_parent), name, 2849 inode_mode_to_security_class(mode), 2850 &newsid); 2851 if (rc) 2852 return rc; 2853 2854 return security_sid_to_context(newsid, (char **)ctx, ctxlen); 2855 } 2856 2857 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode, 2858 struct qstr *name, 2859 const struct cred *old, 2860 struct cred *new) 2861 { 2862 u32 newsid; 2863 int rc; 2864 struct task_security_struct *tsec; 2865 2866 rc = selinux_determine_inode_label(old->security, 2867 d_inode(dentry->d_parent), name, 2868 inode_mode_to_security_class(mode), 2869 &newsid); 2870 if (rc) 2871 return rc; 2872 2873 tsec = new->security; 2874 tsec->create_sid = newsid; 2875 return 0; 2876 } 2877 2878 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2879 const struct qstr *qstr, 2880 const char **name, 2881 void **value, size_t *len) 2882 { 2883 const struct task_security_struct *tsec = current_security(); 2884 struct superblock_security_struct *sbsec; 2885 u32 sid, newsid, clen; 2886 int rc; 2887 char *context; 2888 2889 sbsec = dir->i_sb->s_security; 2890 2891 sid = tsec->sid; 2892 newsid = tsec->create_sid; 2893 2894 rc = selinux_determine_inode_label(current_security(), 2895 dir, qstr, 2896 inode_mode_to_security_class(inode->i_mode), 2897 &newsid); 2898 if (rc) 2899 return rc; 2900 2901 /* Possibly defer initialization to selinux_complete_init. */ 2902 if (sbsec->flags & SE_SBINITIALIZED) { 2903 struct inode_security_struct *isec = inode->i_security; 2904 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2905 isec->sid = newsid; 2906 isec->initialized = LABEL_INITIALIZED; 2907 } 2908 2909 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT)) 2910 return -EOPNOTSUPP; 2911 2912 if (name) 2913 *name = XATTR_SELINUX_SUFFIX; 2914 2915 if (value && len) { 2916 rc = security_sid_to_context_force(newsid, &context, &clen); 2917 if (rc) 2918 return rc; 2919 *value = context; 2920 *len = clen; 2921 } 2922 2923 return 0; 2924 } 2925 2926 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 2927 { 2928 return may_create(dir, dentry, SECCLASS_FILE); 2929 } 2930 2931 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2932 { 2933 return may_link(dir, old_dentry, MAY_LINK); 2934 } 2935 2936 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2937 { 2938 return may_link(dir, dentry, MAY_UNLINK); 2939 } 2940 2941 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2942 { 2943 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2944 } 2945 2946 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 2947 { 2948 return may_create(dir, dentry, SECCLASS_DIR); 2949 } 2950 2951 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2952 { 2953 return may_link(dir, dentry, MAY_RMDIR); 2954 } 2955 2956 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2957 { 2958 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2959 } 2960 2961 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2962 struct inode *new_inode, struct dentry *new_dentry) 2963 { 2964 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2965 } 2966 2967 static int selinux_inode_readlink(struct dentry *dentry) 2968 { 2969 const struct cred *cred = current_cred(); 2970 2971 return dentry_has_perm(cred, dentry, FILE__READ); 2972 } 2973 2974 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, 2975 bool rcu) 2976 { 2977 const struct cred *cred = current_cred(); 2978 struct common_audit_data ad; 2979 struct inode_security_struct *isec; 2980 u32 sid; 2981 2982 validate_creds(cred); 2983 2984 ad.type = LSM_AUDIT_DATA_DENTRY; 2985 ad.u.dentry = dentry; 2986 sid = cred_sid(cred); 2987 isec = inode_security_rcu(inode, rcu); 2988 if (IS_ERR(isec)) 2989 return PTR_ERR(isec); 2990 2991 return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad, 2992 rcu ? MAY_NOT_BLOCK : 0); 2993 } 2994 2995 static noinline int audit_inode_permission(struct inode *inode, 2996 u32 perms, u32 audited, u32 denied, 2997 int result, 2998 unsigned flags) 2999 { 3000 struct common_audit_data ad; 3001 struct inode_security_struct *isec = inode->i_security; 3002 int rc; 3003 3004 ad.type = LSM_AUDIT_DATA_INODE; 3005 ad.u.inode = inode; 3006 3007 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms, 3008 audited, denied, result, &ad, flags); 3009 if (rc) 3010 return rc; 3011 return 0; 3012 } 3013 3014 static int selinux_inode_permission(struct inode *inode, int mask) 3015 { 3016 const struct cred *cred = current_cred(); 3017 u32 perms; 3018 bool from_access; 3019 unsigned flags = mask & MAY_NOT_BLOCK; 3020 struct inode_security_struct *isec; 3021 u32 sid; 3022 struct av_decision avd; 3023 int rc, rc2; 3024 u32 audited, denied; 3025 3026 from_access = mask & MAY_ACCESS; 3027 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 3028 3029 /* No permission to check. Existence test. */ 3030 if (!mask) 3031 return 0; 3032 3033 validate_creds(cred); 3034 3035 if (unlikely(IS_PRIVATE(inode))) 3036 return 0; 3037 3038 perms = file_mask_to_av(inode->i_mode, mask); 3039 3040 sid = cred_sid(cred); 3041 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK); 3042 if (IS_ERR(isec)) 3043 return PTR_ERR(isec); 3044 3045 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd); 3046 audited = avc_audit_required(perms, &avd, rc, 3047 from_access ? FILE__AUDIT_ACCESS : 0, 3048 &denied); 3049 if (likely(!audited)) 3050 return rc; 3051 3052 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags); 3053 if (rc2) 3054 return rc2; 3055 return rc; 3056 } 3057 3058 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 3059 { 3060 const struct cred *cred = current_cred(); 3061 unsigned int ia_valid = iattr->ia_valid; 3062 __u32 av = FILE__WRITE; 3063 3064 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 3065 if (ia_valid & ATTR_FORCE) { 3066 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 3067 ATTR_FORCE); 3068 if (!ia_valid) 3069 return 0; 3070 } 3071 3072 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 3073 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 3074 return dentry_has_perm(cred, dentry, FILE__SETATTR); 3075 3076 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE) 3077 && !(ia_valid & ATTR_FILE)) 3078 av |= FILE__OPEN; 3079 3080 return dentry_has_perm(cred, dentry, av); 3081 } 3082 3083 static int selinux_inode_getattr(const struct path *path) 3084 { 3085 return path_has_perm(current_cred(), path, FILE__GETATTR); 3086 } 3087 3088 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 3089 { 3090 const struct cred *cred = current_cred(); 3091 3092 if (!strncmp(name, XATTR_SECURITY_PREFIX, 3093 sizeof XATTR_SECURITY_PREFIX - 1)) { 3094 if (!strcmp(name, XATTR_NAME_CAPS)) { 3095 if (!capable(CAP_SETFCAP)) 3096 return -EPERM; 3097 } else if (!capable(CAP_SYS_ADMIN)) { 3098 /* A different attribute in the security namespace. 3099 Restrict to administrator. */ 3100 return -EPERM; 3101 } 3102 } 3103 3104 /* Not an attribute we recognize, so just check the 3105 ordinary setattr permission. */ 3106 return dentry_has_perm(cred, dentry, FILE__SETATTR); 3107 } 3108 3109 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 3110 const void *value, size_t size, int flags) 3111 { 3112 struct inode *inode = d_backing_inode(dentry); 3113 struct inode_security_struct *isec; 3114 struct superblock_security_struct *sbsec; 3115 struct common_audit_data ad; 3116 u32 newsid, sid = current_sid(); 3117 int rc = 0; 3118 3119 if (strcmp(name, XATTR_NAME_SELINUX)) 3120 return selinux_inode_setotherxattr(dentry, name); 3121 3122 sbsec = inode->i_sb->s_security; 3123 if (!(sbsec->flags & SBLABEL_MNT)) 3124 return -EOPNOTSUPP; 3125 3126 if (!inode_owner_or_capable(inode)) 3127 return -EPERM; 3128 3129 ad.type = LSM_AUDIT_DATA_DENTRY; 3130 ad.u.dentry = dentry; 3131 3132 isec = backing_inode_security(dentry); 3133 rc = avc_has_perm(sid, isec->sid, isec->sclass, 3134 FILE__RELABELFROM, &ad); 3135 if (rc) 3136 return rc; 3137 3138 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL); 3139 if (rc == -EINVAL) { 3140 if (!capable(CAP_MAC_ADMIN)) { 3141 struct audit_buffer *ab; 3142 size_t audit_size; 3143 const char *str; 3144 3145 /* We strip a nul only if it is at the end, otherwise the 3146 * context contains a nul and we should audit that */ 3147 if (value) { 3148 str = value; 3149 if (str[size - 1] == '\0') 3150 audit_size = size - 1; 3151 else 3152 audit_size = size; 3153 } else { 3154 str = ""; 3155 audit_size = 0; 3156 } 3157 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 3158 audit_log_format(ab, "op=setxattr invalid_context="); 3159 audit_log_n_untrustedstring(ab, value, audit_size); 3160 audit_log_end(ab); 3161 3162 return rc; 3163 } 3164 rc = security_context_to_sid_force(value, size, &newsid); 3165 } 3166 if (rc) 3167 return rc; 3168 3169 rc = avc_has_perm(sid, newsid, isec->sclass, 3170 FILE__RELABELTO, &ad); 3171 if (rc) 3172 return rc; 3173 3174 rc = security_validate_transition(isec->sid, newsid, sid, 3175 isec->sclass); 3176 if (rc) 3177 return rc; 3178 3179 return avc_has_perm(newsid, 3180 sbsec->sid, 3181 SECCLASS_FILESYSTEM, 3182 FILESYSTEM__ASSOCIATE, 3183 &ad); 3184 } 3185 3186 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3187 const void *value, size_t size, 3188 int flags) 3189 { 3190 struct inode *inode = d_backing_inode(dentry); 3191 struct inode_security_struct *isec; 3192 u32 newsid; 3193 int rc; 3194 3195 if (strcmp(name, XATTR_NAME_SELINUX)) { 3196 /* Not an attribute we recognize, so nothing to do. */ 3197 return; 3198 } 3199 3200 rc = security_context_to_sid_force(value, size, &newsid); 3201 if (rc) { 3202 printk(KERN_ERR "SELinux: unable to map context to SID" 3203 "for (%s, %lu), rc=%d\n", 3204 inode->i_sb->s_id, inode->i_ino, -rc); 3205 return; 3206 } 3207 3208 isec = backing_inode_security(dentry); 3209 spin_lock(&isec->lock); 3210 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3211 isec->sid = newsid; 3212 isec->initialized = LABEL_INITIALIZED; 3213 spin_unlock(&isec->lock); 3214 3215 return; 3216 } 3217 3218 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3219 { 3220 const struct cred *cred = current_cred(); 3221 3222 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3223 } 3224 3225 static int selinux_inode_listxattr(struct dentry *dentry) 3226 { 3227 const struct cred *cred = current_cred(); 3228 3229 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3230 } 3231 3232 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 3233 { 3234 if (strcmp(name, XATTR_NAME_SELINUX)) 3235 return selinux_inode_setotherxattr(dentry, name); 3236 3237 /* No one is allowed to remove a SELinux security label. 3238 You can change the label, but all data must be labeled. */ 3239 return -EACCES; 3240 } 3241 3242 /* 3243 * Copy the inode security context value to the user. 3244 * 3245 * Permission check is handled by selinux_inode_getxattr hook. 3246 */ 3247 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 3248 { 3249 u32 size; 3250 int error; 3251 char *context = NULL; 3252 struct inode_security_struct *isec; 3253 3254 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3255 return -EOPNOTSUPP; 3256 3257 /* 3258 * If the caller has CAP_MAC_ADMIN, then get the raw context 3259 * value even if it is not defined by current policy; otherwise, 3260 * use the in-core value under current policy. 3261 * Use the non-auditing forms of the permission checks since 3262 * getxattr may be called by unprivileged processes commonly 3263 * and lack of permission just means that we fall back to the 3264 * in-core context value, not a denial. 3265 */ 3266 error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN, 3267 SECURITY_CAP_NOAUDIT); 3268 if (!error) 3269 error = cred_has_capability(current_cred(), CAP_MAC_ADMIN, 3270 SECURITY_CAP_NOAUDIT, true); 3271 isec = inode_security(inode); 3272 if (!error) 3273 error = security_sid_to_context_force(isec->sid, &context, 3274 &size); 3275 else 3276 error = security_sid_to_context(isec->sid, &context, &size); 3277 if (error) 3278 return error; 3279 error = size; 3280 if (alloc) { 3281 *buffer = context; 3282 goto out_nofree; 3283 } 3284 kfree(context); 3285 out_nofree: 3286 return error; 3287 } 3288 3289 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3290 const void *value, size_t size, int flags) 3291 { 3292 struct inode_security_struct *isec = inode_security_novalidate(inode); 3293 u32 newsid; 3294 int rc; 3295 3296 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3297 return -EOPNOTSUPP; 3298 3299 if (!value || !size) 3300 return -EACCES; 3301 3302 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL); 3303 if (rc) 3304 return rc; 3305 3306 spin_lock(&isec->lock); 3307 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3308 isec->sid = newsid; 3309 isec->initialized = LABEL_INITIALIZED; 3310 spin_unlock(&isec->lock); 3311 return 0; 3312 } 3313 3314 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3315 { 3316 const int len = sizeof(XATTR_NAME_SELINUX); 3317 if (buffer && len <= buffer_size) 3318 memcpy(buffer, XATTR_NAME_SELINUX, len); 3319 return len; 3320 } 3321 3322 static void selinux_inode_getsecid(struct inode *inode, u32 *secid) 3323 { 3324 struct inode_security_struct *isec = inode_security_novalidate(inode); 3325 *secid = isec->sid; 3326 } 3327 3328 static int selinux_inode_copy_up(struct dentry *src, struct cred **new) 3329 { 3330 u32 sid; 3331 struct task_security_struct *tsec; 3332 struct cred *new_creds = *new; 3333 3334 if (new_creds == NULL) { 3335 new_creds = prepare_creds(); 3336 if (!new_creds) 3337 return -ENOMEM; 3338 } 3339 3340 tsec = new_creds->security; 3341 /* Get label from overlay inode and set it in create_sid */ 3342 selinux_inode_getsecid(d_inode(src), &sid); 3343 tsec->create_sid = sid; 3344 *new = new_creds; 3345 return 0; 3346 } 3347 3348 static int selinux_inode_copy_up_xattr(const char *name) 3349 { 3350 /* The copy_up hook above sets the initial context on an inode, but we 3351 * don't then want to overwrite it by blindly copying all the lower 3352 * xattrs up. Instead, we have to filter out SELinux-related xattrs. 3353 */ 3354 if (strcmp(name, XATTR_NAME_SELINUX) == 0) 3355 return 1; /* Discard */ 3356 /* 3357 * Any other attribute apart from SELINUX is not claimed, supported 3358 * by selinux. 3359 */ 3360 return -EOPNOTSUPP; 3361 } 3362 3363 /* file security operations */ 3364 3365 static int selinux_revalidate_file_permission(struct file *file, int mask) 3366 { 3367 const struct cred *cred = current_cred(); 3368 struct inode *inode = file_inode(file); 3369 3370 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3371 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3372 mask |= MAY_APPEND; 3373 3374 return file_has_perm(cred, file, 3375 file_mask_to_av(inode->i_mode, mask)); 3376 } 3377 3378 static int selinux_file_permission(struct file *file, int mask) 3379 { 3380 struct inode *inode = file_inode(file); 3381 struct file_security_struct *fsec = file->f_security; 3382 struct inode_security_struct *isec; 3383 u32 sid = current_sid(); 3384 3385 if (!mask) 3386 /* No permission to check. Existence test. */ 3387 return 0; 3388 3389 isec = inode_security(inode); 3390 if (sid == fsec->sid && fsec->isid == isec->sid && 3391 fsec->pseqno == avc_policy_seqno()) 3392 /* No change since file_open check. */ 3393 return 0; 3394 3395 return selinux_revalidate_file_permission(file, mask); 3396 } 3397 3398 static int selinux_file_alloc_security(struct file *file) 3399 { 3400 return file_alloc_security(file); 3401 } 3402 3403 static void selinux_file_free_security(struct file *file) 3404 { 3405 file_free_security(file); 3406 } 3407 3408 /* 3409 * Check whether a task has the ioctl permission and cmd 3410 * operation to an inode. 3411 */ 3412 static int ioctl_has_perm(const struct cred *cred, struct file *file, 3413 u32 requested, u16 cmd) 3414 { 3415 struct common_audit_data ad; 3416 struct file_security_struct *fsec = file->f_security; 3417 struct inode *inode = file_inode(file); 3418 struct inode_security_struct *isec; 3419 struct lsm_ioctlop_audit ioctl; 3420 u32 ssid = cred_sid(cred); 3421 int rc; 3422 u8 driver = cmd >> 8; 3423 u8 xperm = cmd & 0xff; 3424 3425 ad.type = LSM_AUDIT_DATA_IOCTL_OP; 3426 ad.u.op = &ioctl; 3427 ad.u.op->cmd = cmd; 3428 ad.u.op->path = file->f_path; 3429 3430 if (ssid != fsec->sid) { 3431 rc = avc_has_perm(ssid, fsec->sid, 3432 SECCLASS_FD, 3433 FD__USE, 3434 &ad); 3435 if (rc) 3436 goto out; 3437 } 3438 3439 if (unlikely(IS_PRIVATE(inode))) 3440 return 0; 3441 3442 isec = inode_security(inode); 3443 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass, 3444 requested, driver, xperm, &ad); 3445 out: 3446 return rc; 3447 } 3448 3449 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3450 unsigned long arg) 3451 { 3452 const struct cred *cred = current_cred(); 3453 int error = 0; 3454 3455 switch (cmd) { 3456 case FIONREAD: 3457 /* fall through */ 3458 case FIBMAP: 3459 /* fall through */ 3460 case FIGETBSZ: 3461 /* fall through */ 3462 case FS_IOC_GETFLAGS: 3463 /* fall through */ 3464 case FS_IOC_GETVERSION: 3465 error = file_has_perm(cred, file, FILE__GETATTR); 3466 break; 3467 3468 case FS_IOC_SETFLAGS: 3469 /* fall through */ 3470 case FS_IOC_SETVERSION: 3471 error = file_has_perm(cred, file, FILE__SETATTR); 3472 break; 3473 3474 /* sys_ioctl() checks */ 3475 case FIONBIO: 3476 /* fall through */ 3477 case FIOASYNC: 3478 error = file_has_perm(cred, file, 0); 3479 break; 3480 3481 case KDSKBENT: 3482 case KDSKBSENT: 3483 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3484 SECURITY_CAP_AUDIT, true); 3485 break; 3486 3487 /* default case assumes that the command will go 3488 * to the file's ioctl() function. 3489 */ 3490 default: 3491 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3492 } 3493 return error; 3494 } 3495 3496 static int default_noexec; 3497 3498 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3499 { 3500 const struct cred *cred = current_cred(); 3501 u32 sid = cred_sid(cred); 3502 int rc = 0; 3503 3504 if (default_noexec && 3505 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || 3506 (!shared && (prot & PROT_WRITE)))) { 3507 /* 3508 * We are making executable an anonymous mapping or a 3509 * private file mapping that will also be writable. 3510 * This has an additional check. 3511 */ 3512 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3513 PROCESS__EXECMEM, NULL); 3514 if (rc) 3515 goto error; 3516 } 3517 3518 if (file) { 3519 /* read access is always possible with a mapping */ 3520 u32 av = FILE__READ; 3521 3522 /* write access only matters if the mapping is shared */ 3523 if (shared && (prot & PROT_WRITE)) 3524 av |= FILE__WRITE; 3525 3526 if (prot & PROT_EXEC) 3527 av |= FILE__EXECUTE; 3528 3529 return file_has_perm(cred, file, av); 3530 } 3531 3532 error: 3533 return rc; 3534 } 3535 3536 static int selinux_mmap_addr(unsigned long addr) 3537 { 3538 int rc = 0; 3539 3540 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3541 u32 sid = current_sid(); 3542 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3543 MEMPROTECT__MMAP_ZERO, NULL); 3544 } 3545 3546 return rc; 3547 } 3548 3549 static int selinux_mmap_file(struct file *file, unsigned long reqprot, 3550 unsigned long prot, unsigned long flags) 3551 { 3552 if (selinux_checkreqprot) 3553 prot = reqprot; 3554 3555 return file_map_prot_check(file, prot, 3556 (flags & MAP_TYPE) == MAP_SHARED); 3557 } 3558 3559 static int selinux_file_mprotect(struct vm_area_struct *vma, 3560 unsigned long reqprot, 3561 unsigned long prot) 3562 { 3563 const struct cred *cred = current_cred(); 3564 u32 sid = cred_sid(cred); 3565 3566 if (selinux_checkreqprot) 3567 prot = reqprot; 3568 3569 if (default_noexec && 3570 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3571 int rc = 0; 3572 if (vma->vm_start >= vma->vm_mm->start_brk && 3573 vma->vm_end <= vma->vm_mm->brk) { 3574 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3575 PROCESS__EXECHEAP, NULL); 3576 } else if (!vma->vm_file && 3577 ((vma->vm_start <= vma->vm_mm->start_stack && 3578 vma->vm_end >= vma->vm_mm->start_stack) || 3579 vma_is_stack_for_current(vma))) { 3580 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3581 PROCESS__EXECSTACK, NULL); 3582 } else if (vma->vm_file && vma->anon_vma) { 3583 /* 3584 * We are making executable a file mapping that has 3585 * had some COW done. Since pages might have been 3586 * written, check ability to execute the possibly 3587 * modified content. This typically should only 3588 * occur for text relocations. 3589 */ 3590 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3591 } 3592 if (rc) 3593 return rc; 3594 } 3595 3596 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3597 } 3598 3599 static int selinux_file_lock(struct file *file, unsigned int cmd) 3600 { 3601 const struct cred *cred = current_cred(); 3602 3603 return file_has_perm(cred, file, FILE__LOCK); 3604 } 3605 3606 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3607 unsigned long arg) 3608 { 3609 const struct cred *cred = current_cred(); 3610 int err = 0; 3611 3612 switch (cmd) { 3613 case F_SETFL: 3614 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3615 err = file_has_perm(cred, file, FILE__WRITE); 3616 break; 3617 } 3618 /* fall through */ 3619 case F_SETOWN: 3620 case F_SETSIG: 3621 case F_GETFL: 3622 case F_GETOWN: 3623 case F_GETSIG: 3624 case F_GETOWNER_UIDS: 3625 /* Just check FD__USE permission */ 3626 err = file_has_perm(cred, file, 0); 3627 break; 3628 case F_GETLK: 3629 case F_SETLK: 3630 case F_SETLKW: 3631 case F_OFD_GETLK: 3632 case F_OFD_SETLK: 3633 case F_OFD_SETLKW: 3634 #if BITS_PER_LONG == 32 3635 case F_GETLK64: 3636 case F_SETLK64: 3637 case F_SETLKW64: 3638 #endif 3639 err = file_has_perm(cred, file, FILE__LOCK); 3640 break; 3641 } 3642 3643 return err; 3644 } 3645 3646 static void selinux_file_set_fowner(struct file *file) 3647 { 3648 struct file_security_struct *fsec; 3649 3650 fsec = file->f_security; 3651 fsec->fown_sid = current_sid(); 3652 } 3653 3654 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3655 struct fown_struct *fown, int signum) 3656 { 3657 struct file *file; 3658 u32 sid = task_sid(tsk); 3659 u32 perm; 3660 struct file_security_struct *fsec; 3661 3662 /* struct fown_struct is never outside the context of a struct file */ 3663 file = container_of(fown, struct file, f_owner); 3664 3665 fsec = file->f_security; 3666 3667 if (!signum) 3668 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3669 else 3670 perm = signal_to_av(signum); 3671 3672 return avc_has_perm(fsec->fown_sid, sid, 3673 SECCLASS_PROCESS, perm, NULL); 3674 } 3675 3676 static int selinux_file_receive(struct file *file) 3677 { 3678 const struct cred *cred = current_cred(); 3679 3680 return file_has_perm(cred, file, file_to_av(file)); 3681 } 3682 3683 static int selinux_file_open(struct file *file, const struct cred *cred) 3684 { 3685 struct file_security_struct *fsec; 3686 struct inode_security_struct *isec; 3687 3688 fsec = file->f_security; 3689 isec = inode_security(file_inode(file)); 3690 /* 3691 * Save inode label and policy sequence number 3692 * at open-time so that selinux_file_permission 3693 * can determine whether revalidation is necessary. 3694 * Task label is already saved in the file security 3695 * struct as its SID. 3696 */ 3697 fsec->isid = isec->sid; 3698 fsec->pseqno = avc_policy_seqno(); 3699 /* 3700 * Since the inode label or policy seqno may have changed 3701 * between the selinux_inode_permission check and the saving 3702 * of state above, recheck that access is still permitted. 3703 * Otherwise, access might never be revalidated against the 3704 * new inode label or new policy. 3705 * This check is not redundant - do not remove. 3706 */ 3707 return file_path_has_perm(cred, file, open_file_to_av(file)); 3708 } 3709 3710 /* task security operations */ 3711 3712 static int selinux_task_create(unsigned long clone_flags) 3713 { 3714 u32 sid = current_sid(); 3715 3716 return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL); 3717 } 3718 3719 /* 3720 * allocate the SELinux part of blank credentials 3721 */ 3722 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3723 { 3724 struct task_security_struct *tsec; 3725 3726 tsec = kzalloc(sizeof(struct task_security_struct), gfp); 3727 if (!tsec) 3728 return -ENOMEM; 3729 3730 cred->security = tsec; 3731 return 0; 3732 } 3733 3734 /* 3735 * detach and free the LSM part of a set of credentials 3736 */ 3737 static void selinux_cred_free(struct cred *cred) 3738 { 3739 struct task_security_struct *tsec = cred->security; 3740 3741 /* 3742 * cred->security == NULL if security_cred_alloc_blank() or 3743 * security_prepare_creds() returned an error. 3744 */ 3745 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE); 3746 cred->security = (void *) 0x7UL; 3747 kfree(tsec); 3748 } 3749 3750 /* 3751 * prepare a new set of credentials for modification 3752 */ 3753 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3754 gfp_t gfp) 3755 { 3756 const struct task_security_struct *old_tsec; 3757 struct task_security_struct *tsec; 3758 3759 old_tsec = old->security; 3760 3761 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3762 if (!tsec) 3763 return -ENOMEM; 3764 3765 new->security = tsec; 3766 return 0; 3767 } 3768 3769 /* 3770 * transfer the SELinux data to a blank set of creds 3771 */ 3772 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3773 { 3774 const struct task_security_struct *old_tsec = old->security; 3775 struct task_security_struct *tsec = new->security; 3776 3777 *tsec = *old_tsec; 3778 } 3779 3780 /* 3781 * set the security data for a kernel service 3782 * - all the creation contexts are set to unlabelled 3783 */ 3784 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3785 { 3786 struct task_security_struct *tsec = new->security; 3787 u32 sid = current_sid(); 3788 int ret; 3789 3790 ret = avc_has_perm(sid, secid, 3791 SECCLASS_KERNEL_SERVICE, 3792 KERNEL_SERVICE__USE_AS_OVERRIDE, 3793 NULL); 3794 if (ret == 0) { 3795 tsec->sid = secid; 3796 tsec->create_sid = 0; 3797 tsec->keycreate_sid = 0; 3798 tsec->sockcreate_sid = 0; 3799 } 3800 return ret; 3801 } 3802 3803 /* 3804 * set the file creation context in a security record to the same as the 3805 * objective context of the specified inode 3806 */ 3807 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3808 { 3809 struct inode_security_struct *isec = inode_security(inode); 3810 struct task_security_struct *tsec = new->security; 3811 u32 sid = current_sid(); 3812 int ret; 3813 3814 ret = avc_has_perm(sid, isec->sid, 3815 SECCLASS_KERNEL_SERVICE, 3816 KERNEL_SERVICE__CREATE_FILES_AS, 3817 NULL); 3818 3819 if (ret == 0) 3820 tsec->create_sid = isec->sid; 3821 return ret; 3822 } 3823 3824 static int selinux_kernel_module_request(char *kmod_name) 3825 { 3826 struct common_audit_data ad; 3827 3828 ad.type = LSM_AUDIT_DATA_KMOD; 3829 ad.u.kmod_name = kmod_name; 3830 3831 return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, 3832 SYSTEM__MODULE_REQUEST, &ad); 3833 } 3834 3835 static int selinux_kernel_module_from_file(struct file *file) 3836 { 3837 struct common_audit_data ad; 3838 struct inode_security_struct *isec; 3839 struct file_security_struct *fsec; 3840 u32 sid = current_sid(); 3841 int rc; 3842 3843 /* init_module */ 3844 if (file == NULL) 3845 return avc_has_perm(sid, sid, SECCLASS_SYSTEM, 3846 SYSTEM__MODULE_LOAD, NULL); 3847 3848 /* finit_module */ 3849 3850 ad.type = LSM_AUDIT_DATA_FILE; 3851 ad.u.file = file; 3852 3853 fsec = file->f_security; 3854 if (sid != fsec->sid) { 3855 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); 3856 if (rc) 3857 return rc; 3858 } 3859 3860 isec = inode_security(file_inode(file)); 3861 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM, 3862 SYSTEM__MODULE_LOAD, &ad); 3863 } 3864 3865 static int selinux_kernel_read_file(struct file *file, 3866 enum kernel_read_file_id id) 3867 { 3868 int rc = 0; 3869 3870 switch (id) { 3871 case READING_MODULE: 3872 rc = selinux_kernel_module_from_file(file); 3873 break; 3874 default: 3875 break; 3876 } 3877 3878 return rc; 3879 } 3880 3881 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3882 { 3883 return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS, 3884 PROCESS__SETPGID, NULL); 3885 } 3886 3887 static int selinux_task_getpgid(struct task_struct *p) 3888 { 3889 return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS, 3890 PROCESS__GETPGID, NULL); 3891 } 3892 3893 static int selinux_task_getsid(struct task_struct *p) 3894 { 3895 return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS, 3896 PROCESS__GETSESSION, NULL); 3897 } 3898 3899 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3900 { 3901 *secid = task_sid(p); 3902 } 3903 3904 static int selinux_task_setnice(struct task_struct *p, int nice) 3905 { 3906 return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS, 3907 PROCESS__SETSCHED, NULL); 3908 } 3909 3910 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3911 { 3912 return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS, 3913 PROCESS__SETSCHED, NULL); 3914 } 3915 3916 static int selinux_task_getioprio(struct task_struct *p) 3917 { 3918 return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS, 3919 PROCESS__GETSCHED, NULL); 3920 } 3921 3922 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 3923 struct rlimit *new_rlim) 3924 { 3925 struct rlimit *old_rlim = p->signal->rlim + resource; 3926 3927 /* Control the ability to change the hard limit (whether 3928 lowering or raising it), so that the hard limit can 3929 later be used as a safe reset point for the soft limit 3930 upon context transitions. See selinux_bprm_committing_creds. */ 3931 if (old_rlim->rlim_max != new_rlim->rlim_max) 3932 return avc_has_perm(current_sid(), task_sid(p), 3933 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL); 3934 3935 return 0; 3936 } 3937 3938 static int selinux_task_setscheduler(struct task_struct *p) 3939 { 3940 return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS, 3941 PROCESS__SETSCHED, NULL); 3942 } 3943 3944 static int selinux_task_getscheduler(struct task_struct *p) 3945 { 3946 return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS, 3947 PROCESS__GETSCHED, NULL); 3948 } 3949 3950 static int selinux_task_movememory(struct task_struct *p) 3951 { 3952 return avc_has_perm(current_sid(), task_sid(p), SECCLASS_PROCESS, 3953 PROCESS__SETSCHED, NULL); 3954 } 3955 3956 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3957 int sig, u32 secid) 3958 { 3959 u32 perm; 3960 3961 if (!sig) 3962 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3963 else 3964 perm = signal_to_av(sig); 3965 if (!secid) 3966 secid = current_sid(); 3967 return avc_has_perm(secid, task_sid(p), SECCLASS_PROCESS, perm, NULL); 3968 } 3969 3970 static void selinux_task_to_inode(struct task_struct *p, 3971 struct inode *inode) 3972 { 3973 struct inode_security_struct *isec = inode->i_security; 3974 u32 sid = task_sid(p); 3975 3976 spin_lock(&isec->lock); 3977 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3978 isec->sid = sid; 3979 isec->initialized = LABEL_INITIALIZED; 3980 spin_unlock(&isec->lock); 3981 } 3982 3983 /* Returns error only if unable to parse addresses */ 3984 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3985 struct common_audit_data *ad, u8 *proto) 3986 { 3987 int offset, ihlen, ret = -EINVAL; 3988 struct iphdr _iph, *ih; 3989 3990 offset = skb_network_offset(skb); 3991 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3992 if (ih == NULL) 3993 goto out; 3994 3995 ihlen = ih->ihl * 4; 3996 if (ihlen < sizeof(_iph)) 3997 goto out; 3998 3999 ad->u.net->v4info.saddr = ih->saddr; 4000 ad->u.net->v4info.daddr = ih->daddr; 4001 ret = 0; 4002 4003 if (proto) 4004 *proto = ih->protocol; 4005 4006 switch (ih->protocol) { 4007 case IPPROTO_TCP: { 4008 struct tcphdr _tcph, *th; 4009 4010 if (ntohs(ih->frag_off) & IP_OFFSET) 4011 break; 4012 4013 offset += ihlen; 4014 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4015 if (th == NULL) 4016 break; 4017 4018 ad->u.net->sport = th->source; 4019 ad->u.net->dport = th->dest; 4020 break; 4021 } 4022 4023 case IPPROTO_UDP: { 4024 struct udphdr _udph, *uh; 4025 4026 if (ntohs(ih->frag_off) & IP_OFFSET) 4027 break; 4028 4029 offset += ihlen; 4030 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4031 if (uh == NULL) 4032 break; 4033 4034 ad->u.net->sport = uh->source; 4035 ad->u.net->dport = uh->dest; 4036 break; 4037 } 4038 4039 case IPPROTO_DCCP: { 4040 struct dccp_hdr _dccph, *dh; 4041 4042 if (ntohs(ih->frag_off) & IP_OFFSET) 4043 break; 4044 4045 offset += ihlen; 4046 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4047 if (dh == NULL) 4048 break; 4049 4050 ad->u.net->sport = dh->dccph_sport; 4051 ad->u.net->dport = dh->dccph_dport; 4052 break; 4053 } 4054 4055 default: 4056 break; 4057 } 4058 out: 4059 return ret; 4060 } 4061 4062 #if IS_ENABLED(CONFIG_IPV6) 4063 4064 /* Returns error only if unable to parse addresses */ 4065 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 4066 struct common_audit_data *ad, u8 *proto) 4067 { 4068 u8 nexthdr; 4069 int ret = -EINVAL, offset; 4070 struct ipv6hdr _ipv6h, *ip6; 4071 __be16 frag_off; 4072 4073 offset = skb_network_offset(skb); 4074 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 4075 if (ip6 == NULL) 4076 goto out; 4077 4078 ad->u.net->v6info.saddr = ip6->saddr; 4079 ad->u.net->v6info.daddr = ip6->daddr; 4080 ret = 0; 4081 4082 nexthdr = ip6->nexthdr; 4083 offset += sizeof(_ipv6h); 4084 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 4085 if (offset < 0) 4086 goto out; 4087 4088 if (proto) 4089 *proto = nexthdr; 4090 4091 switch (nexthdr) { 4092 case IPPROTO_TCP: { 4093 struct tcphdr _tcph, *th; 4094 4095 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4096 if (th == NULL) 4097 break; 4098 4099 ad->u.net->sport = th->source; 4100 ad->u.net->dport = th->dest; 4101 break; 4102 } 4103 4104 case IPPROTO_UDP: { 4105 struct udphdr _udph, *uh; 4106 4107 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4108 if (uh == NULL) 4109 break; 4110 4111 ad->u.net->sport = uh->source; 4112 ad->u.net->dport = uh->dest; 4113 break; 4114 } 4115 4116 case IPPROTO_DCCP: { 4117 struct dccp_hdr _dccph, *dh; 4118 4119 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4120 if (dh == NULL) 4121 break; 4122 4123 ad->u.net->sport = dh->dccph_sport; 4124 ad->u.net->dport = dh->dccph_dport; 4125 break; 4126 } 4127 4128 /* includes fragments */ 4129 default: 4130 break; 4131 } 4132 out: 4133 return ret; 4134 } 4135 4136 #endif /* IPV6 */ 4137 4138 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 4139 char **_addrp, int src, u8 *proto) 4140 { 4141 char *addrp; 4142 int ret; 4143 4144 switch (ad->u.net->family) { 4145 case PF_INET: 4146 ret = selinux_parse_skb_ipv4(skb, ad, proto); 4147 if (ret) 4148 goto parse_error; 4149 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 4150 &ad->u.net->v4info.daddr); 4151 goto okay; 4152 4153 #if IS_ENABLED(CONFIG_IPV6) 4154 case PF_INET6: 4155 ret = selinux_parse_skb_ipv6(skb, ad, proto); 4156 if (ret) 4157 goto parse_error; 4158 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 4159 &ad->u.net->v6info.daddr); 4160 goto okay; 4161 #endif /* IPV6 */ 4162 default: 4163 addrp = NULL; 4164 goto okay; 4165 } 4166 4167 parse_error: 4168 printk(KERN_WARNING 4169 "SELinux: failure in selinux_parse_skb()," 4170 " unable to parse packet\n"); 4171 return ret; 4172 4173 okay: 4174 if (_addrp) 4175 *_addrp = addrp; 4176 return 0; 4177 } 4178 4179 /** 4180 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 4181 * @skb: the packet 4182 * @family: protocol family 4183 * @sid: the packet's peer label SID 4184 * 4185 * Description: 4186 * Check the various different forms of network peer labeling and determine 4187 * the peer label/SID for the packet; most of the magic actually occurs in 4188 * the security server function security_net_peersid_cmp(). The function 4189 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 4190 * or -EACCES if @sid is invalid due to inconsistencies with the different 4191 * peer labels. 4192 * 4193 */ 4194 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 4195 { 4196 int err; 4197 u32 xfrm_sid; 4198 u32 nlbl_sid; 4199 u32 nlbl_type; 4200 4201 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 4202 if (unlikely(err)) 4203 return -EACCES; 4204 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 4205 if (unlikely(err)) 4206 return -EACCES; 4207 4208 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 4209 if (unlikely(err)) { 4210 printk(KERN_WARNING 4211 "SELinux: failure in selinux_skb_peerlbl_sid()," 4212 " unable to determine packet's peer label\n"); 4213 return -EACCES; 4214 } 4215 4216 return 0; 4217 } 4218 4219 /** 4220 * selinux_conn_sid - Determine the child socket label for a connection 4221 * @sk_sid: the parent socket's SID 4222 * @skb_sid: the packet's SID 4223 * @conn_sid: the resulting connection SID 4224 * 4225 * If @skb_sid is valid then the user:role:type information from @sk_sid is 4226 * combined with the MLS information from @skb_sid in order to create 4227 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy 4228 * of @sk_sid. Returns zero on success, negative values on failure. 4229 * 4230 */ 4231 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 4232 { 4233 int err = 0; 4234 4235 if (skb_sid != SECSID_NULL) 4236 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid); 4237 else 4238 *conn_sid = sk_sid; 4239 4240 return err; 4241 } 4242 4243 /* socket security operations */ 4244 4245 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4246 u16 secclass, u32 *socksid) 4247 { 4248 if (tsec->sockcreate_sid > SECSID_NULL) { 4249 *socksid = tsec->sockcreate_sid; 4250 return 0; 4251 } 4252 4253 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL, 4254 socksid); 4255 } 4256 4257 static int sock_has_perm(struct sock *sk, u32 perms) 4258 { 4259 struct sk_security_struct *sksec = sk->sk_security; 4260 struct common_audit_data ad; 4261 struct lsm_network_audit net = {0,}; 4262 4263 if (sksec->sid == SECINITSID_KERNEL) 4264 return 0; 4265 4266 ad.type = LSM_AUDIT_DATA_NET; 4267 ad.u.net = &net; 4268 ad.u.net->sk = sk; 4269 4270 return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms, 4271 &ad); 4272 } 4273 4274 static int selinux_socket_create(int family, int type, 4275 int protocol, int kern) 4276 { 4277 const struct task_security_struct *tsec = current_security(); 4278 u32 newsid; 4279 u16 secclass; 4280 int rc; 4281 4282 if (kern) 4283 return 0; 4284 4285 secclass = socket_type_to_security_class(family, type, protocol); 4286 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4287 if (rc) 4288 return rc; 4289 4290 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4291 } 4292 4293 static int selinux_socket_post_create(struct socket *sock, int family, 4294 int type, int protocol, int kern) 4295 { 4296 const struct task_security_struct *tsec = current_security(); 4297 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock)); 4298 struct sk_security_struct *sksec; 4299 u16 sclass = socket_type_to_security_class(family, type, protocol); 4300 u32 sid = SECINITSID_KERNEL; 4301 int err = 0; 4302 4303 if (!kern) { 4304 err = socket_sockcreate_sid(tsec, sclass, &sid); 4305 if (err) 4306 return err; 4307 } 4308 4309 isec->sclass = sclass; 4310 isec->sid = sid; 4311 isec->initialized = LABEL_INITIALIZED; 4312 4313 if (sock->sk) { 4314 sksec = sock->sk->sk_security; 4315 sksec->sclass = sclass; 4316 sksec->sid = sid; 4317 err = selinux_netlbl_socket_post_create(sock->sk, family); 4318 } 4319 4320 return err; 4321 } 4322 4323 /* Range of port numbers used to automatically bind. 4324 Need to determine whether we should perform a name_bind 4325 permission check between the socket and the port number. */ 4326 4327 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4328 { 4329 struct sock *sk = sock->sk; 4330 u16 family; 4331 int err; 4332 4333 err = sock_has_perm(sk, SOCKET__BIND); 4334 if (err) 4335 goto out; 4336 4337 /* 4338 * If PF_INET or PF_INET6, check name_bind permission for the port. 4339 * Multiple address binding for SCTP is not supported yet: we just 4340 * check the first address now. 4341 */ 4342 family = sk->sk_family; 4343 if (family == PF_INET || family == PF_INET6) { 4344 char *addrp; 4345 struct sk_security_struct *sksec = sk->sk_security; 4346 struct common_audit_data ad; 4347 struct lsm_network_audit net = {0,}; 4348 struct sockaddr_in *addr4 = NULL; 4349 struct sockaddr_in6 *addr6 = NULL; 4350 unsigned short snum; 4351 u32 sid, node_perm; 4352 4353 if (family == PF_INET) { 4354 addr4 = (struct sockaddr_in *)address; 4355 snum = ntohs(addr4->sin_port); 4356 addrp = (char *)&addr4->sin_addr.s_addr; 4357 } else { 4358 addr6 = (struct sockaddr_in6 *)address; 4359 snum = ntohs(addr6->sin6_port); 4360 addrp = (char *)&addr6->sin6_addr.s6_addr; 4361 } 4362 4363 if (snum) { 4364 int low, high; 4365 4366 inet_get_local_port_range(sock_net(sk), &low, &high); 4367 4368 if (snum < max(inet_prot_sock(sock_net(sk)), low) || 4369 snum > high) { 4370 err = sel_netport_sid(sk->sk_protocol, 4371 snum, &sid); 4372 if (err) 4373 goto out; 4374 ad.type = LSM_AUDIT_DATA_NET; 4375 ad.u.net = &net; 4376 ad.u.net->sport = htons(snum); 4377 ad.u.net->family = family; 4378 err = avc_has_perm(sksec->sid, sid, 4379 sksec->sclass, 4380 SOCKET__NAME_BIND, &ad); 4381 if (err) 4382 goto out; 4383 } 4384 } 4385 4386 switch (sksec->sclass) { 4387 case SECCLASS_TCP_SOCKET: 4388 node_perm = TCP_SOCKET__NODE_BIND; 4389 break; 4390 4391 case SECCLASS_UDP_SOCKET: 4392 node_perm = UDP_SOCKET__NODE_BIND; 4393 break; 4394 4395 case SECCLASS_DCCP_SOCKET: 4396 node_perm = DCCP_SOCKET__NODE_BIND; 4397 break; 4398 4399 default: 4400 node_perm = RAWIP_SOCKET__NODE_BIND; 4401 break; 4402 } 4403 4404 err = sel_netnode_sid(addrp, family, &sid); 4405 if (err) 4406 goto out; 4407 4408 ad.type = LSM_AUDIT_DATA_NET; 4409 ad.u.net = &net; 4410 ad.u.net->sport = htons(snum); 4411 ad.u.net->family = family; 4412 4413 if (family == PF_INET) 4414 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4415 else 4416 ad.u.net->v6info.saddr = addr6->sin6_addr; 4417 4418 err = avc_has_perm(sksec->sid, sid, 4419 sksec->sclass, node_perm, &ad); 4420 if (err) 4421 goto out; 4422 } 4423 out: 4424 return err; 4425 } 4426 4427 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 4428 { 4429 struct sock *sk = sock->sk; 4430 struct sk_security_struct *sksec = sk->sk_security; 4431 int err; 4432 4433 err = sock_has_perm(sk, SOCKET__CONNECT); 4434 if (err) 4435 return err; 4436 4437 /* 4438 * If a TCP or DCCP socket, check name_connect permission for the port. 4439 */ 4440 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4441 sksec->sclass == SECCLASS_DCCP_SOCKET) { 4442 struct common_audit_data ad; 4443 struct lsm_network_audit net = {0,}; 4444 struct sockaddr_in *addr4 = NULL; 4445 struct sockaddr_in6 *addr6 = NULL; 4446 unsigned short snum; 4447 u32 sid, perm; 4448 4449 if (sk->sk_family == PF_INET) { 4450 addr4 = (struct sockaddr_in *)address; 4451 if (addrlen < sizeof(struct sockaddr_in)) 4452 return -EINVAL; 4453 snum = ntohs(addr4->sin_port); 4454 } else { 4455 addr6 = (struct sockaddr_in6 *)address; 4456 if (addrlen < SIN6_LEN_RFC2133) 4457 return -EINVAL; 4458 snum = ntohs(addr6->sin6_port); 4459 } 4460 4461 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4462 if (err) 4463 goto out; 4464 4465 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ? 4466 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 4467 4468 ad.type = LSM_AUDIT_DATA_NET; 4469 ad.u.net = &net; 4470 ad.u.net->dport = htons(snum); 4471 ad.u.net->family = sk->sk_family; 4472 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 4473 if (err) 4474 goto out; 4475 } 4476 4477 err = selinux_netlbl_socket_connect(sk, address); 4478 4479 out: 4480 return err; 4481 } 4482 4483 static int selinux_socket_listen(struct socket *sock, int backlog) 4484 { 4485 return sock_has_perm(sock->sk, SOCKET__LISTEN); 4486 } 4487 4488 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4489 { 4490 int err; 4491 struct inode_security_struct *isec; 4492 struct inode_security_struct *newisec; 4493 u16 sclass; 4494 u32 sid; 4495 4496 err = sock_has_perm(sock->sk, SOCKET__ACCEPT); 4497 if (err) 4498 return err; 4499 4500 isec = inode_security_novalidate(SOCK_INODE(sock)); 4501 spin_lock(&isec->lock); 4502 sclass = isec->sclass; 4503 sid = isec->sid; 4504 spin_unlock(&isec->lock); 4505 4506 newisec = inode_security_novalidate(SOCK_INODE(newsock)); 4507 newisec->sclass = sclass; 4508 newisec->sid = sid; 4509 newisec->initialized = LABEL_INITIALIZED; 4510 4511 return 0; 4512 } 4513 4514 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4515 int size) 4516 { 4517 return sock_has_perm(sock->sk, SOCKET__WRITE); 4518 } 4519 4520 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4521 int size, int flags) 4522 { 4523 return sock_has_perm(sock->sk, SOCKET__READ); 4524 } 4525 4526 static int selinux_socket_getsockname(struct socket *sock) 4527 { 4528 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4529 } 4530 4531 static int selinux_socket_getpeername(struct socket *sock) 4532 { 4533 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4534 } 4535 4536 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4537 { 4538 int err; 4539 4540 err = sock_has_perm(sock->sk, SOCKET__SETOPT); 4541 if (err) 4542 return err; 4543 4544 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4545 } 4546 4547 static int selinux_socket_getsockopt(struct socket *sock, int level, 4548 int optname) 4549 { 4550 return sock_has_perm(sock->sk, SOCKET__GETOPT); 4551 } 4552 4553 static int selinux_socket_shutdown(struct socket *sock, int how) 4554 { 4555 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN); 4556 } 4557 4558 static int selinux_socket_unix_stream_connect(struct sock *sock, 4559 struct sock *other, 4560 struct sock *newsk) 4561 { 4562 struct sk_security_struct *sksec_sock = sock->sk_security; 4563 struct sk_security_struct *sksec_other = other->sk_security; 4564 struct sk_security_struct *sksec_new = newsk->sk_security; 4565 struct common_audit_data ad; 4566 struct lsm_network_audit net = {0,}; 4567 int err; 4568 4569 ad.type = LSM_AUDIT_DATA_NET; 4570 ad.u.net = &net; 4571 ad.u.net->sk = other; 4572 4573 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 4574 sksec_other->sclass, 4575 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4576 if (err) 4577 return err; 4578 4579 /* server child socket */ 4580 sksec_new->peer_sid = sksec_sock->sid; 4581 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid, 4582 &sksec_new->sid); 4583 if (err) 4584 return err; 4585 4586 /* connecting socket */ 4587 sksec_sock->peer_sid = sksec_new->sid; 4588 4589 return 0; 4590 } 4591 4592 static int selinux_socket_unix_may_send(struct socket *sock, 4593 struct socket *other) 4594 { 4595 struct sk_security_struct *ssec = sock->sk->sk_security; 4596 struct sk_security_struct *osec = other->sk->sk_security; 4597 struct common_audit_data ad; 4598 struct lsm_network_audit net = {0,}; 4599 4600 ad.type = LSM_AUDIT_DATA_NET; 4601 ad.u.net = &net; 4602 ad.u.net->sk = other->sk; 4603 4604 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 4605 &ad); 4606 } 4607 4608 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 4609 char *addrp, u16 family, u32 peer_sid, 4610 struct common_audit_data *ad) 4611 { 4612 int err; 4613 u32 if_sid; 4614 u32 node_sid; 4615 4616 err = sel_netif_sid(ns, ifindex, &if_sid); 4617 if (err) 4618 return err; 4619 err = avc_has_perm(peer_sid, if_sid, 4620 SECCLASS_NETIF, NETIF__INGRESS, ad); 4621 if (err) 4622 return err; 4623 4624 err = sel_netnode_sid(addrp, family, &node_sid); 4625 if (err) 4626 return err; 4627 return avc_has_perm(peer_sid, node_sid, 4628 SECCLASS_NODE, NODE__RECVFROM, ad); 4629 } 4630 4631 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4632 u16 family) 4633 { 4634 int err = 0; 4635 struct sk_security_struct *sksec = sk->sk_security; 4636 u32 sk_sid = sksec->sid; 4637 struct common_audit_data ad; 4638 struct lsm_network_audit net = {0,}; 4639 char *addrp; 4640 4641 ad.type = LSM_AUDIT_DATA_NET; 4642 ad.u.net = &net; 4643 ad.u.net->netif = skb->skb_iif; 4644 ad.u.net->family = family; 4645 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4646 if (err) 4647 return err; 4648 4649 if (selinux_secmark_enabled()) { 4650 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4651 PACKET__RECV, &ad); 4652 if (err) 4653 return err; 4654 } 4655 4656 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4657 if (err) 4658 return err; 4659 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4660 4661 return err; 4662 } 4663 4664 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4665 { 4666 int err; 4667 struct sk_security_struct *sksec = sk->sk_security; 4668 u16 family = sk->sk_family; 4669 u32 sk_sid = sksec->sid; 4670 struct common_audit_data ad; 4671 struct lsm_network_audit net = {0,}; 4672 char *addrp; 4673 u8 secmark_active; 4674 u8 peerlbl_active; 4675 4676 if (family != PF_INET && family != PF_INET6) 4677 return 0; 4678 4679 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4680 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4681 family = PF_INET; 4682 4683 /* If any sort of compatibility mode is enabled then handoff processing 4684 * to the selinux_sock_rcv_skb_compat() function to deal with the 4685 * special handling. We do this in an attempt to keep this function 4686 * as fast and as clean as possible. */ 4687 if (!selinux_policycap_netpeer) 4688 return selinux_sock_rcv_skb_compat(sk, skb, family); 4689 4690 secmark_active = selinux_secmark_enabled(); 4691 peerlbl_active = selinux_peerlbl_enabled(); 4692 if (!secmark_active && !peerlbl_active) 4693 return 0; 4694 4695 ad.type = LSM_AUDIT_DATA_NET; 4696 ad.u.net = &net; 4697 ad.u.net->netif = skb->skb_iif; 4698 ad.u.net->family = family; 4699 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4700 if (err) 4701 return err; 4702 4703 if (peerlbl_active) { 4704 u32 peer_sid; 4705 4706 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4707 if (err) 4708 return err; 4709 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 4710 addrp, family, peer_sid, &ad); 4711 if (err) { 4712 selinux_netlbl_err(skb, family, err, 0); 4713 return err; 4714 } 4715 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4716 PEER__RECV, &ad); 4717 if (err) { 4718 selinux_netlbl_err(skb, family, err, 0); 4719 return err; 4720 } 4721 } 4722 4723 if (secmark_active) { 4724 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4725 PACKET__RECV, &ad); 4726 if (err) 4727 return err; 4728 } 4729 4730 return err; 4731 } 4732 4733 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4734 int __user *optlen, unsigned len) 4735 { 4736 int err = 0; 4737 char *scontext; 4738 u32 scontext_len; 4739 struct sk_security_struct *sksec = sock->sk->sk_security; 4740 u32 peer_sid = SECSID_NULL; 4741 4742 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4743 sksec->sclass == SECCLASS_TCP_SOCKET) 4744 peer_sid = sksec->peer_sid; 4745 if (peer_sid == SECSID_NULL) 4746 return -ENOPROTOOPT; 4747 4748 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4749 if (err) 4750 return err; 4751 4752 if (scontext_len > len) { 4753 err = -ERANGE; 4754 goto out_len; 4755 } 4756 4757 if (copy_to_user(optval, scontext, scontext_len)) 4758 err = -EFAULT; 4759 4760 out_len: 4761 if (put_user(scontext_len, optlen)) 4762 err = -EFAULT; 4763 kfree(scontext); 4764 return err; 4765 } 4766 4767 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4768 { 4769 u32 peer_secid = SECSID_NULL; 4770 u16 family; 4771 struct inode_security_struct *isec; 4772 4773 if (skb && skb->protocol == htons(ETH_P_IP)) 4774 family = PF_INET; 4775 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4776 family = PF_INET6; 4777 else if (sock) 4778 family = sock->sk->sk_family; 4779 else 4780 goto out; 4781 4782 if (sock && family == PF_UNIX) { 4783 isec = inode_security_novalidate(SOCK_INODE(sock)); 4784 peer_secid = isec->sid; 4785 } else if (skb) 4786 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4787 4788 out: 4789 *secid = peer_secid; 4790 if (peer_secid == SECSID_NULL) 4791 return -EINVAL; 4792 return 0; 4793 } 4794 4795 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4796 { 4797 struct sk_security_struct *sksec; 4798 4799 sksec = kzalloc(sizeof(*sksec), priority); 4800 if (!sksec) 4801 return -ENOMEM; 4802 4803 sksec->peer_sid = SECINITSID_UNLABELED; 4804 sksec->sid = SECINITSID_UNLABELED; 4805 sksec->sclass = SECCLASS_SOCKET; 4806 selinux_netlbl_sk_security_reset(sksec); 4807 sk->sk_security = sksec; 4808 4809 return 0; 4810 } 4811 4812 static void selinux_sk_free_security(struct sock *sk) 4813 { 4814 struct sk_security_struct *sksec = sk->sk_security; 4815 4816 sk->sk_security = NULL; 4817 selinux_netlbl_sk_security_free(sksec); 4818 kfree(sksec); 4819 } 4820 4821 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4822 { 4823 struct sk_security_struct *sksec = sk->sk_security; 4824 struct sk_security_struct *newsksec = newsk->sk_security; 4825 4826 newsksec->sid = sksec->sid; 4827 newsksec->peer_sid = sksec->peer_sid; 4828 newsksec->sclass = sksec->sclass; 4829 4830 selinux_netlbl_sk_security_reset(newsksec); 4831 } 4832 4833 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4834 { 4835 if (!sk) 4836 *secid = SECINITSID_ANY_SOCKET; 4837 else { 4838 struct sk_security_struct *sksec = sk->sk_security; 4839 4840 *secid = sksec->sid; 4841 } 4842 } 4843 4844 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4845 { 4846 struct inode_security_struct *isec = 4847 inode_security_novalidate(SOCK_INODE(parent)); 4848 struct sk_security_struct *sksec = sk->sk_security; 4849 4850 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4851 sk->sk_family == PF_UNIX) 4852 isec->sid = sksec->sid; 4853 sksec->sclass = isec->sclass; 4854 } 4855 4856 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4857 struct request_sock *req) 4858 { 4859 struct sk_security_struct *sksec = sk->sk_security; 4860 int err; 4861 u16 family = req->rsk_ops->family; 4862 u32 connsid; 4863 u32 peersid; 4864 4865 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4866 if (err) 4867 return err; 4868 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 4869 if (err) 4870 return err; 4871 req->secid = connsid; 4872 req->peer_secid = peersid; 4873 4874 return selinux_netlbl_inet_conn_request(req, family); 4875 } 4876 4877 static void selinux_inet_csk_clone(struct sock *newsk, 4878 const struct request_sock *req) 4879 { 4880 struct sk_security_struct *newsksec = newsk->sk_security; 4881 4882 newsksec->sid = req->secid; 4883 newsksec->peer_sid = req->peer_secid; 4884 /* NOTE: Ideally, we should also get the isec->sid for the 4885 new socket in sync, but we don't have the isec available yet. 4886 So we will wait until sock_graft to do it, by which 4887 time it will have been created and available. */ 4888 4889 /* We don't need to take any sort of lock here as we are the only 4890 * thread with access to newsksec */ 4891 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 4892 } 4893 4894 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4895 { 4896 u16 family = sk->sk_family; 4897 struct sk_security_struct *sksec = sk->sk_security; 4898 4899 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4900 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4901 family = PF_INET; 4902 4903 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4904 } 4905 4906 static int selinux_secmark_relabel_packet(u32 sid) 4907 { 4908 const struct task_security_struct *__tsec; 4909 u32 tsid; 4910 4911 __tsec = current_security(); 4912 tsid = __tsec->sid; 4913 4914 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL); 4915 } 4916 4917 static void selinux_secmark_refcount_inc(void) 4918 { 4919 atomic_inc(&selinux_secmark_refcount); 4920 } 4921 4922 static void selinux_secmark_refcount_dec(void) 4923 { 4924 atomic_dec(&selinux_secmark_refcount); 4925 } 4926 4927 static void selinux_req_classify_flow(const struct request_sock *req, 4928 struct flowi *fl) 4929 { 4930 fl->flowi_secid = req->secid; 4931 } 4932 4933 static int selinux_tun_dev_alloc_security(void **security) 4934 { 4935 struct tun_security_struct *tunsec; 4936 4937 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 4938 if (!tunsec) 4939 return -ENOMEM; 4940 tunsec->sid = current_sid(); 4941 4942 *security = tunsec; 4943 return 0; 4944 } 4945 4946 static void selinux_tun_dev_free_security(void *security) 4947 { 4948 kfree(security); 4949 } 4950 4951 static int selinux_tun_dev_create(void) 4952 { 4953 u32 sid = current_sid(); 4954 4955 /* we aren't taking into account the "sockcreate" SID since the socket 4956 * that is being created here is not a socket in the traditional sense, 4957 * instead it is a private sock, accessible only to the kernel, and 4958 * representing a wide range of network traffic spanning multiple 4959 * connections unlike traditional sockets - check the TUN driver to 4960 * get a better understanding of why this socket is special */ 4961 4962 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 4963 NULL); 4964 } 4965 4966 static int selinux_tun_dev_attach_queue(void *security) 4967 { 4968 struct tun_security_struct *tunsec = security; 4969 4970 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 4971 TUN_SOCKET__ATTACH_QUEUE, NULL); 4972 } 4973 4974 static int selinux_tun_dev_attach(struct sock *sk, void *security) 4975 { 4976 struct tun_security_struct *tunsec = security; 4977 struct sk_security_struct *sksec = sk->sk_security; 4978 4979 /* we don't currently perform any NetLabel based labeling here and it 4980 * isn't clear that we would want to do so anyway; while we could apply 4981 * labeling without the support of the TUN user the resulting labeled 4982 * traffic from the other end of the connection would almost certainly 4983 * cause confusion to the TUN user that had no idea network labeling 4984 * protocols were being used */ 4985 4986 sksec->sid = tunsec->sid; 4987 sksec->sclass = SECCLASS_TUN_SOCKET; 4988 4989 return 0; 4990 } 4991 4992 static int selinux_tun_dev_open(void *security) 4993 { 4994 struct tun_security_struct *tunsec = security; 4995 u32 sid = current_sid(); 4996 int err; 4997 4998 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET, 4999 TUN_SOCKET__RELABELFROM, NULL); 5000 if (err) 5001 return err; 5002 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 5003 TUN_SOCKET__RELABELTO, NULL); 5004 if (err) 5005 return err; 5006 tunsec->sid = sid; 5007 5008 return 0; 5009 } 5010 5011 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 5012 { 5013 int err = 0; 5014 u32 perm; 5015 struct nlmsghdr *nlh; 5016 struct sk_security_struct *sksec = sk->sk_security; 5017 5018 if (skb->len < NLMSG_HDRLEN) { 5019 err = -EINVAL; 5020 goto out; 5021 } 5022 nlh = nlmsg_hdr(skb); 5023 5024 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm); 5025 if (err) { 5026 if (err == -EINVAL) { 5027 pr_warn_ratelimited("SELinux: unrecognized netlink" 5028 " message: protocol=%hu nlmsg_type=%hu sclass=%s" 5029 " pig=%d comm=%s\n", 5030 sk->sk_protocol, nlh->nlmsg_type, 5031 secclass_map[sksec->sclass - 1].name, 5032 task_pid_nr(current), current->comm); 5033 if (!selinux_enforcing || security_get_allow_unknown()) 5034 err = 0; 5035 } 5036 5037 /* Ignore */ 5038 if (err == -ENOENT) 5039 err = 0; 5040 goto out; 5041 } 5042 5043 err = sock_has_perm(sk, perm); 5044 out: 5045 return err; 5046 } 5047 5048 #ifdef CONFIG_NETFILTER 5049 5050 static unsigned int selinux_ip_forward(struct sk_buff *skb, 5051 const struct net_device *indev, 5052 u16 family) 5053 { 5054 int err; 5055 char *addrp; 5056 u32 peer_sid; 5057 struct common_audit_data ad; 5058 struct lsm_network_audit net = {0,}; 5059 u8 secmark_active; 5060 u8 netlbl_active; 5061 u8 peerlbl_active; 5062 5063 if (!selinux_policycap_netpeer) 5064 return NF_ACCEPT; 5065 5066 secmark_active = selinux_secmark_enabled(); 5067 netlbl_active = netlbl_enabled(); 5068 peerlbl_active = selinux_peerlbl_enabled(); 5069 if (!secmark_active && !peerlbl_active) 5070 return NF_ACCEPT; 5071 5072 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 5073 return NF_DROP; 5074 5075 ad.type = LSM_AUDIT_DATA_NET; 5076 ad.u.net = &net; 5077 ad.u.net->netif = indev->ifindex; 5078 ad.u.net->family = family; 5079 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 5080 return NF_DROP; 5081 5082 if (peerlbl_active) { 5083 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex, 5084 addrp, family, peer_sid, &ad); 5085 if (err) { 5086 selinux_netlbl_err(skb, family, err, 1); 5087 return NF_DROP; 5088 } 5089 } 5090 5091 if (secmark_active) 5092 if (avc_has_perm(peer_sid, skb->secmark, 5093 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 5094 return NF_DROP; 5095 5096 if (netlbl_active) 5097 /* we do this in the FORWARD path and not the POST_ROUTING 5098 * path because we want to make sure we apply the necessary 5099 * labeling before IPsec is applied so we can leverage AH 5100 * protection */ 5101 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 5102 return NF_DROP; 5103 5104 return NF_ACCEPT; 5105 } 5106 5107 static unsigned int selinux_ipv4_forward(void *priv, 5108 struct sk_buff *skb, 5109 const struct nf_hook_state *state) 5110 { 5111 return selinux_ip_forward(skb, state->in, PF_INET); 5112 } 5113 5114 #if IS_ENABLED(CONFIG_IPV6) 5115 static unsigned int selinux_ipv6_forward(void *priv, 5116 struct sk_buff *skb, 5117 const struct nf_hook_state *state) 5118 { 5119 return selinux_ip_forward(skb, state->in, PF_INET6); 5120 } 5121 #endif /* IPV6 */ 5122 5123 static unsigned int selinux_ip_output(struct sk_buff *skb, 5124 u16 family) 5125 { 5126 struct sock *sk; 5127 u32 sid; 5128 5129 if (!netlbl_enabled()) 5130 return NF_ACCEPT; 5131 5132 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 5133 * because we want to make sure we apply the necessary labeling 5134 * before IPsec is applied so we can leverage AH protection */ 5135 sk = skb->sk; 5136 if (sk) { 5137 struct sk_security_struct *sksec; 5138 5139 if (sk_listener(sk)) 5140 /* if the socket is the listening state then this 5141 * packet is a SYN-ACK packet which means it needs to 5142 * be labeled based on the connection/request_sock and 5143 * not the parent socket. unfortunately, we can't 5144 * lookup the request_sock yet as it isn't queued on 5145 * the parent socket until after the SYN-ACK is sent. 5146 * the "solution" is to simply pass the packet as-is 5147 * as any IP option based labeling should be copied 5148 * from the initial connection request (in the IP 5149 * layer). it is far from ideal, but until we get a 5150 * security label in the packet itself this is the 5151 * best we can do. */ 5152 return NF_ACCEPT; 5153 5154 /* standard practice, label using the parent socket */ 5155 sksec = sk->sk_security; 5156 sid = sksec->sid; 5157 } else 5158 sid = SECINITSID_KERNEL; 5159 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 5160 return NF_DROP; 5161 5162 return NF_ACCEPT; 5163 } 5164 5165 static unsigned int selinux_ipv4_output(void *priv, 5166 struct sk_buff *skb, 5167 const struct nf_hook_state *state) 5168 { 5169 return selinux_ip_output(skb, PF_INET); 5170 } 5171 5172 #if IS_ENABLED(CONFIG_IPV6) 5173 static unsigned int selinux_ipv6_output(void *priv, 5174 struct sk_buff *skb, 5175 const struct nf_hook_state *state) 5176 { 5177 return selinux_ip_output(skb, PF_INET6); 5178 } 5179 #endif /* IPV6 */ 5180 5181 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 5182 int ifindex, 5183 u16 family) 5184 { 5185 struct sock *sk = skb_to_full_sk(skb); 5186 struct sk_security_struct *sksec; 5187 struct common_audit_data ad; 5188 struct lsm_network_audit net = {0,}; 5189 char *addrp; 5190 u8 proto; 5191 5192 if (sk == NULL) 5193 return NF_ACCEPT; 5194 sksec = sk->sk_security; 5195 5196 ad.type = LSM_AUDIT_DATA_NET; 5197 ad.u.net = &net; 5198 ad.u.net->netif = ifindex; 5199 ad.u.net->family = family; 5200 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 5201 return NF_DROP; 5202 5203 if (selinux_secmark_enabled()) 5204 if (avc_has_perm(sksec->sid, skb->secmark, 5205 SECCLASS_PACKET, PACKET__SEND, &ad)) 5206 return NF_DROP_ERR(-ECONNREFUSED); 5207 5208 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 5209 return NF_DROP_ERR(-ECONNREFUSED); 5210 5211 return NF_ACCEPT; 5212 } 5213 5214 static unsigned int selinux_ip_postroute(struct sk_buff *skb, 5215 const struct net_device *outdev, 5216 u16 family) 5217 { 5218 u32 secmark_perm; 5219 u32 peer_sid; 5220 int ifindex = outdev->ifindex; 5221 struct sock *sk; 5222 struct common_audit_data ad; 5223 struct lsm_network_audit net = {0,}; 5224 char *addrp; 5225 u8 secmark_active; 5226 u8 peerlbl_active; 5227 5228 /* If any sort of compatibility mode is enabled then handoff processing 5229 * to the selinux_ip_postroute_compat() function to deal with the 5230 * special handling. We do this in an attempt to keep this function 5231 * as fast and as clean as possible. */ 5232 if (!selinux_policycap_netpeer) 5233 return selinux_ip_postroute_compat(skb, ifindex, family); 5234 5235 secmark_active = selinux_secmark_enabled(); 5236 peerlbl_active = selinux_peerlbl_enabled(); 5237 if (!secmark_active && !peerlbl_active) 5238 return NF_ACCEPT; 5239 5240 sk = skb_to_full_sk(skb); 5241 5242 #ifdef CONFIG_XFRM 5243 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 5244 * packet transformation so allow the packet to pass without any checks 5245 * since we'll have another chance to perform access control checks 5246 * when the packet is on it's final way out. 5247 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 5248 * is NULL, in this case go ahead and apply access control. 5249 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 5250 * TCP listening state we cannot wait until the XFRM processing 5251 * is done as we will miss out on the SA label if we do; 5252 * unfortunately, this means more work, but it is only once per 5253 * connection. */ 5254 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 5255 !(sk && sk_listener(sk))) 5256 return NF_ACCEPT; 5257 #endif 5258 5259 if (sk == NULL) { 5260 /* Without an associated socket the packet is either coming 5261 * from the kernel or it is being forwarded; check the packet 5262 * to determine which and if the packet is being forwarded 5263 * query the packet directly to determine the security label. */ 5264 if (skb->skb_iif) { 5265 secmark_perm = PACKET__FORWARD_OUT; 5266 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5267 return NF_DROP; 5268 } else { 5269 secmark_perm = PACKET__SEND; 5270 peer_sid = SECINITSID_KERNEL; 5271 } 5272 } else if (sk_listener(sk)) { 5273 /* Locally generated packet but the associated socket is in the 5274 * listening state which means this is a SYN-ACK packet. In 5275 * this particular case the correct security label is assigned 5276 * to the connection/request_sock but unfortunately we can't 5277 * query the request_sock as it isn't queued on the parent 5278 * socket until after the SYN-ACK packet is sent; the only 5279 * viable choice is to regenerate the label like we do in 5280 * selinux_inet_conn_request(). See also selinux_ip_output() 5281 * for similar problems. */ 5282 u32 skb_sid; 5283 struct sk_security_struct *sksec; 5284 5285 sksec = sk->sk_security; 5286 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5287 return NF_DROP; 5288 /* At this point, if the returned skb peerlbl is SECSID_NULL 5289 * and the packet has been through at least one XFRM 5290 * transformation then we must be dealing with the "final" 5291 * form of labeled IPsec packet; since we've already applied 5292 * all of our access controls on this packet we can safely 5293 * pass the packet. */ 5294 if (skb_sid == SECSID_NULL) { 5295 switch (family) { 5296 case PF_INET: 5297 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5298 return NF_ACCEPT; 5299 break; 5300 case PF_INET6: 5301 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5302 return NF_ACCEPT; 5303 break; 5304 default: 5305 return NF_DROP_ERR(-ECONNREFUSED); 5306 } 5307 } 5308 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5309 return NF_DROP; 5310 secmark_perm = PACKET__SEND; 5311 } else { 5312 /* Locally generated packet, fetch the security label from the 5313 * associated socket. */ 5314 struct sk_security_struct *sksec = sk->sk_security; 5315 peer_sid = sksec->sid; 5316 secmark_perm = PACKET__SEND; 5317 } 5318 5319 ad.type = LSM_AUDIT_DATA_NET; 5320 ad.u.net = &net; 5321 ad.u.net->netif = ifindex; 5322 ad.u.net->family = family; 5323 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5324 return NF_DROP; 5325 5326 if (secmark_active) 5327 if (avc_has_perm(peer_sid, skb->secmark, 5328 SECCLASS_PACKET, secmark_perm, &ad)) 5329 return NF_DROP_ERR(-ECONNREFUSED); 5330 5331 if (peerlbl_active) { 5332 u32 if_sid; 5333 u32 node_sid; 5334 5335 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid)) 5336 return NF_DROP; 5337 if (avc_has_perm(peer_sid, if_sid, 5338 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5339 return NF_DROP_ERR(-ECONNREFUSED); 5340 5341 if (sel_netnode_sid(addrp, family, &node_sid)) 5342 return NF_DROP; 5343 if (avc_has_perm(peer_sid, node_sid, 5344 SECCLASS_NODE, NODE__SENDTO, &ad)) 5345 return NF_DROP_ERR(-ECONNREFUSED); 5346 } 5347 5348 return NF_ACCEPT; 5349 } 5350 5351 static unsigned int selinux_ipv4_postroute(void *priv, 5352 struct sk_buff *skb, 5353 const struct nf_hook_state *state) 5354 { 5355 return selinux_ip_postroute(skb, state->out, PF_INET); 5356 } 5357 5358 #if IS_ENABLED(CONFIG_IPV6) 5359 static unsigned int selinux_ipv6_postroute(void *priv, 5360 struct sk_buff *skb, 5361 const struct nf_hook_state *state) 5362 { 5363 return selinux_ip_postroute(skb, state->out, PF_INET6); 5364 } 5365 #endif /* IPV6 */ 5366 5367 #endif /* CONFIG_NETFILTER */ 5368 5369 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5370 { 5371 return selinux_nlmsg_perm(sk, skb); 5372 } 5373 5374 static int ipc_alloc_security(struct kern_ipc_perm *perm, 5375 u16 sclass) 5376 { 5377 struct ipc_security_struct *isec; 5378 5379 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 5380 if (!isec) 5381 return -ENOMEM; 5382 5383 isec->sclass = sclass; 5384 isec->sid = current_sid(); 5385 perm->security = isec; 5386 5387 return 0; 5388 } 5389 5390 static void ipc_free_security(struct kern_ipc_perm *perm) 5391 { 5392 struct ipc_security_struct *isec = perm->security; 5393 perm->security = NULL; 5394 kfree(isec); 5395 } 5396 5397 static int msg_msg_alloc_security(struct msg_msg *msg) 5398 { 5399 struct msg_security_struct *msec; 5400 5401 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 5402 if (!msec) 5403 return -ENOMEM; 5404 5405 msec->sid = SECINITSID_UNLABELED; 5406 msg->security = msec; 5407 5408 return 0; 5409 } 5410 5411 static void msg_msg_free_security(struct msg_msg *msg) 5412 { 5413 struct msg_security_struct *msec = msg->security; 5414 5415 msg->security = NULL; 5416 kfree(msec); 5417 } 5418 5419 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5420 u32 perms) 5421 { 5422 struct ipc_security_struct *isec; 5423 struct common_audit_data ad; 5424 u32 sid = current_sid(); 5425 5426 isec = ipc_perms->security; 5427 5428 ad.type = LSM_AUDIT_DATA_IPC; 5429 ad.u.ipc_id = ipc_perms->key; 5430 5431 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 5432 } 5433 5434 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 5435 { 5436 return msg_msg_alloc_security(msg); 5437 } 5438 5439 static void selinux_msg_msg_free_security(struct msg_msg *msg) 5440 { 5441 msg_msg_free_security(msg); 5442 } 5443 5444 /* message queue security operations */ 5445 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 5446 { 5447 struct ipc_security_struct *isec; 5448 struct common_audit_data ad; 5449 u32 sid = current_sid(); 5450 int rc; 5451 5452 rc = ipc_alloc_security(&msq->q_perm, SECCLASS_MSGQ); 5453 if (rc) 5454 return rc; 5455 5456 isec = msq->q_perm.security; 5457 5458 ad.type = LSM_AUDIT_DATA_IPC; 5459 ad.u.ipc_id = msq->q_perm.key; 5460 5461 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5462 MSGQ__CREATE, &ad); 5463 if (rc) { 5464 ipc_free_security(&msq->q_perm); 5465 return rc; 5466 } 5467 return 0; 5468 } 5469 5470 static void selinux_msg_queue_free_security(struct msg_queue *msq) 5471 { 5472 ipc_free_security(&msq->q_perm); 5473 } 5474 5475 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 5476 { 5477 struct ipc_security_struct *isec; 5478 struct common_audit_data ad; 5479 u32 sid = current_sid(); 5480 5481 isec = msq->q_perm.security; 5482 5483 ad.type = LSM_AUDIT_DATA_IPC; 5484 ad.u.ipc_id = msq->q_perm.key; 5485 5486 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5487 MSGQ__ASSOCIATE, &ad); 5488 } 5489 5490 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 5491 { 5492 int err; 5493 int perms; 5494 5495 switch (cmd) { 5496 case IPC_INFO: 5497 case MSG_INFO: 5498 /* No specific object, just general system-wide information. */ 5499 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 5500 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 5501 case IPC_STAT: 5502 case MSG_STAT: 5503 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 5504 break; 5505 case IPC_SET: 5506 perms = MSGQ__SETATTR; 5507 break; 5508 case IPC_RMID: 5509 perms = MSGQ__DESTROY; 5510 break; 5511 default: 5512 return 0; 5513 } 5514 5515 err = ipc_has_perm(&msq->q_perm, perms); 5516 return err; 5517 } 5518 5519 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 5520 { 5521 struct ipc_security_struct *isec; 5522 struct msg_security_struct *msec; 5523 struct common_audit_data ad; 5524 u32 sid = current_sid(); 5525 int rc; 5526 5527 isec = msq->q_perm.security; 5528 msec = msg->security; 5529 5530 /* 5531 * First time through, need to assign label to the message 5532 */ 5533 if (msec->sid == SECINITSID_UNLABELED) { 5534 /* 5535 * Compute new sid based on current process and 5536 * message queue this message will be stored in 5537 */ 5538 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG, 5539 NULL, &msec->sid); 5540 if (rc) 5541 return rc; 5542 } 5543 5544 ad.type = LSM_AUDIT_DATA_IPC; 5545 ad.u.ipc_id = msq->q_perm.key; 5546 5547 /* Can this process write to the queue? */ 5548 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 5549 MSGQ__WRITE, &ad); 5550 if (!rc) 5551 /* Can this process send the message */ 5552 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 5553 MSG__SEND, &ad); 5554 if (!rc) 5555 /* Can the message be put in the queue? */ 5556 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 5557 MSGQ__ENQUEUE, &ad); 5558 5559 return rc; 5560 } 5561 5562 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 5563 struct task_struct *target, 5564 long type, int mode) 5565 { 5566 struct ipc_security_struct *isec; 5567 struct msg_security_struct *msec; 5568 struct common_audit_data ad; 5569 u32 sid = task_sid(target); 5570 int rc; 5571 5572 isec = msq->q_perm.security; 5573 msec = msg->security; 5574 5575 ad.type = LSM_AUDIT_DATA_IPC; 5576 ad.u.ipc_id = msq->q_perm.key; 5577 5578 rc = avc_has_perm(sid, isec->sid, 5579 SECCLASS_MSGQ, MSGQ__READ, &ad); 5580 if (!rc) 5581 rc = avc_has_perm(sid, msec->sid, 5582 SECCLASS_MSG, MSG__RECEIVE, &ad); 5583 return rc; 5584 } 5585 5586 /* Shared Memory security operations */ 5587 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 5588 { 5589 struct ipc_security_struct *isec; 5590 struct common_audit_data ad; 5591 u32 sid = current_sid(); 5592 int rc; 5593 5594 rc = ipc_alloc_security(&shp->shm_perm, SECCLASS_SHM); 5595 if (rc) 5596 return rc; 5597 5598 isec = shp->shm_perm.security; 5599 5600 ad.type = LSM_AUDIT_DATA_IPC; 5601 ad.u.ipc_id = shp->shm_perm.key; 5602 5603 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5604 SHM__CREATE, &ad); 5605 if (rc) { 5606 ipc_free_security(&shp->shm_perm); 5607 return rc; 5608 } 5609 return 0; 5610 } 5611 5612 static void selinux_shm_free_security(struct shmid_kernel *shp) 5613 { 5614 ipc_free_security(&shp->shm_perm); 5615 } 5616 5617 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 5618 { 5619 struct ipc_security_struct *isec; 5620 struct common_audit_data ad; 5621 u32 sid = current_sid(); 5622 5623 isec = shp->shm_perm.security; 5624 5625 ad.type = LSM_AUDIT_DATA_IPC; 5626 ad.u.ipc_id = shp->shm_perm.key; 5627 5628 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 5629 SHM__ASSOCIATE, &ad); 5630 } 5631 5632 /* Note, at this point, shp is locked down */ 5633 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 5634 { 5635 int perms; 5636 int err; 5637 5638 switch (cmd) { 5639 case IPC_INFO: 5640 case SHM_INFO: 5641 /* No specific object, just general system-wide information. */ 5642 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 5643 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 5644 case IPC_STAT: 5645 case SHM_STAT: 5646 perms = SHM__GETATTR | SHM__ASSOCIATE; 5647 break; 5648 case IPC_SET: 5649 perms = SHM__SETATTR; 5650 break; 5651 case SHM_LOCK: 5652 case SHM_UNLOCK: 5653 perms = SHM__LOCK; 5654 break; 5655 case IPC_RMID: 5656 perms = SHM__DESTROY; 5657 break; 5658 default: 5659 return 0; 5660 } 5661 5662 err = ipc_has_perm(&shp->shm_perm, perms); 5663 return err; 5664 } 5665 5666 static int selinux_shm_shmat(struct shmid_kernel *shp, 5667 char __user *shmaddr, int shmflg) 5668 { 5669 u32 perms; 5670 5671 if (shmflg & SHM_RDONLY) 5672 perms = SHM__READ; 5673 else 5674 perms = SHM__READ | SHM__WRITE; 5675 5676 return ipc_has_perm(&shp->shm_perm, perms); 5677 } 5678 5679 /* Semaphore security operations */ 5680 static int selinux_sem_alloc_security(struct sem_array *sma) 5681 { 5682 struct ipc_security_struct *isec; 5683 struct common_audit_data ad; 5684 u32 sid = current_sid(); 5685 int rc; 5686 5687 rc = ipc_alloc_security(&sma->sem_perm, SECCLASS_SEM); 5688 if (rc) 5689 return rc; 5690 5691 isec = sma->sem_perm.security; 5692 5693 ad.type = LSM_AUDIT_DATA_IPC; 5694 ad.u.ipc_id = sma->sem_perm.key; 5695 5696 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5697 SEM__CREATE, &ad); 5698 if (rc) { 5699 ipc_free_security(&sma->sem_perm); 5700 return rc; 5701 } 5702 return 0; 5703 } 5704 5705 static void selinux_sem_free_security(struct sem_array *sma) 5706 { 5707 ipc_free_security(&sma->sem_perm); 5708 } 5709 5710 static int selinux_sem_associate(struct sem_array *sma, int semflg) 5711 { 5712 struct ipc_security_struct *isec; 5713 struct common_audit_data ad; 5714 u32 sid = current_sid(); 5715 5716 isec = sma->sem_perm.security; 5717 5718 ad.type = LSM_AUDIT_DATA_IPC; 5719 ad.u.ipc_id = sma->sem_perm.key; 5720 5721 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 5722 SEM__ASSOCIATE, &ad); 5723 } 5724 5725 /* Note, at this point, sma is locked down */ 5726 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5727 { 5728 int err; 5729 u32 perms; 5730 5731 switch (cmd) { 5732 case IPC_INFO: 5733 case SEM_INFO: 5734 /* No specific object, just general system-wide information. */ 5735 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 5736 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 5737 case GETPID: 5738 case GETNCNT: 5739 case GETZCNT: 5740 perms = SEM__GETATTR; 5741 break; 5742 case GETVAL: 5743 case GETALL: 5744 perms = SEM__READ; 5745 break; 5746 case SETVAL: 5747 case SETALL: 5748 perms = SEM__WRITE; 5749 break; 5750 case IPC_RMID: 5751 perms = SEM__DESTROY; 5752 break; 5753 case IPC_SET: 5754 perms = SEM__SETATTR; 5755 break; 5756 case IPC_STAT: 5757 case SEM_STAT: 5758 perms = SEM__GETATTR | SEM__ASSOCIATE; 5759 break; 5760 default: 5761 return 0; 5762 } 5763 5764 err = ipc_has_perm(&sma->sem_perm, perms); 5765 return err; 5766 } 5767 5768 static int selinux_sem_semop(struct sem_array *sma, 5769 struct sembuf *sops, unsigned nsops, int alter) 5770 { 5771 u32 perms; 5772 5773 if (alter) 5774 perms = SEM__READ | SEM__WRITE; 5775 else 5776 perms = SEM__READ; 5777 5778 return ipc_has_perm(&sma->sem_perm, perms); 5779 } 5780 5781 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5782 { 5783 u32 av = 0; 5784 5785 av = 0; 5786 if (flag & S_IRUGO) 5787 av |= IPC__UNIX_READ; 5788 if (flag & S_IWUGO) 5789 av |= IPC__UNIX_WRITE; 5790 5791 if (av == 0) 5792 return 0; 5793 5794 return ipc_has_perm(ipcp, av); 5795 } 5796 5797 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5798 { 5799 struct ipc_security_struct *isec = ipcp->security; 5800 *secid = isec->sid; 5801 } 5802 5803 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5804 { 5805 if (inode) 5806 inode_doinit_with_dentry(inode, dentry); 5807 } 5808 5809 static int selinux_getprocattr(struct task_struct *p, 5810 char *name, char **value) 5811 { 5812 const struct task_security_struct *__tsec; 5813 u32 sid; 5814 int error; 5815 unsigned len; 5816 5817 rcu_read_lock(); 5818 __tsec = __task_cred(p)->security; 5819 5820 if (current != p) { 5821 error = avc_has_perm(current_sid(), __tsec->sid, 5822 SECCLASS_PROCESS, PROCESS__GETATTR, NULL); 5823 if (error) 5824 goto bad; 5825 } 5826 5827 if (!strcmp(name, "current")) 5828 sid = __tsec->sid; 5829 else if (!strcmp(name, "prev")) 5830 sid = __tsec->osid; 5831 else if (!strcmp(name, "exec")) 5832 sid = __tsec->exec_sid; 5833 else if (!strcmp(name, "fscreate")) 5834 sid = __tsec->create_sid; 5835 else if (!strcmp(name, "keycreate")) 5836 sid = __tsec->keycreate_sid; 5837 else if (!strcmp(name, "sockcreate")) 5838 sid = __tsec->sockcreate_sid; 5839 else { 5840 error = -EINVAL; 5841 goto bad; 5842 } 5843 rcu_read_unlock(); 5844 5845 if (!sid) 5846 return 0; 5847 5848 error = security_sid_to_context(sid, value, &len); 5849 if (error) 5850 return error; 5851 return len; 5852 5853 bad: 5854 rcu_read_unlock(); 5855 return error; 5856 } 5857 5858 static int selinux_setprocattr(const char *name, void *value, size_t size) 5859 { 5860 struct task_security_struct *tsec; 5861 struct cred *new; 5862 u32 mysid = current_sid(), sid = 0, ptsid; 5863 int error; 5864 char *str = value; 5865 5866 /* 5867 * Basic control over ability to set these attributes at all. 5868 */ 5869 if (!strcmp(name, "exec")) 5870 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 5871 PROCESS__SETEXEC, NULL); 5872 else if (!strcmp(name, "fscreate")) 5873 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 5874 PROCESS__SETFSCREATE, NULL); 5875 else if (!strcmp(name, "keycreate")) 5876 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 5877 PROCESS__SETKEYCREATE, NULL); 5878 else if (!strcmp(name, "sockcreate")) 5879 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 5880 PROCESS__SETSOCKCREATE, NULL); 5881 else if (!strcmp(name, "current")) 5882 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 5883 PROCESS__SETCURRENT, NULL); 5884 else 5885 error = -EINVAL; 5886 if (error) 5887 return error; 5888 5889 /* Obtain a SID for the context, if one was specified. */ 5890 if (size && str[0] && str[0] != '\n') { 5891 if (str[size-1] == '\n') { 5892 str[size-1] = 0; 5893 size--; 5894 } 5895 error = security_context_to_sid(value, size, &sid, GFP_KERNEL); 5896 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5897 if (!capable(CAP_MAC_ADMIN)) { 5898 struct audit_buffer *ab; 5899 size_t audit_size; 5900 5901 /* We strip a nul only if it is at the end, otherwise the 5902 * context contains a nul and we should audit that */ 5903 if (str[size - 1] == '\0') 5904 audit_size = size - 1; 5905 else 5906 audit_size = size; 5907 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 5908 audit_log_format(ab, "op=fscreate invalid_context="); 5909 audit_log_n_untrustedstring(ab, value, audit_size); 5910 audit_log_end(ab); 5911 5912 return error; 5913 } 5914 error = security_context_to_sid_force(value, size, 5915 &sid); 5916 } 5917 if (error) 5918 return error; 5919 } 5920 5921 new = prepare_creds(); 5922 if (!new) 5923 return -ENOMEM; 5924 5925 /* Permission checking based on the specified context is 5926 performed during the actual operation (execve, 5927 open/mkdir/...), when we know the full context of the 5928 operation. See selinux_bprm_set_creds for the execve 5929 checks and may_create for the file creation checks. The 5930 operation will then fail if the context is not permitted. */ 5931 tsec = new->security; 5932 if (!strcmp(name, "exec")) { 5933 tsec->exec_sid = sid; 5934 } else if (!strcmp(name, "fscreate")) { 5935 tsec->create_sid = sid; 5936 } else if (!strcmp(name, "keycreate")) { 5937 error = avc_has_perm(mysid, sid, SECCLASS_KEY, KEY__CREATE, 5938 NULL); 5939 if (error) 5940 goto abort_change; 5941 tsec->keycreate_sid = sid; 5942 } else if (!strcmp(name, "sockcreate")) { 5943 tsec->sockcreate_sid = sid; 5944 } else if (!strcmp(name, "current")) { 5945 error = -EINVAL; 5946 if (sid == 0) 5947 goto abort_change; 5948 5949 /* Only allow single threaded processes to change context */ 5950 error = -EPERM; 5951 if (!current_is_single_threaded()) { 5952 error = security_bounded_transition(tsec->sid, sid); 5953 if (error) 5954 goto abort_change; 5955 } 5956 5957 /* Check permissions for the transition. */ 5958 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5959 PROCESS__DYNTRANSITION, NULL); 5960 if (error) 5961 goto abort_change; 5962 5963 /* Check for ptracing, and update the task SID if ok. 5964 Otherwise, leave SID unchanged and fail. */ 5965 ptsid = ptrace_parent_sid(); 5966 if (ptsid != 0) { 5967 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 5968 PROCESS__PTRACE, NULL); 5969 if (error) 5970 goto abort_change; 5971 } 5972 5973 tsec->sid = sid; 5974 } else { 5975 error = -EINVAL; 5976 goto abort_change; 5977 } 5978 5979 commit_creds(new); 5980 return size; 5981 5982 abort_change: 5983 abort_creds(new); 5984 return error; 5985 } 5986 5987 static int selinux_ismaclabel(const char *name) 5988 { 5989 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 5990 } 5991 5992 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5993 { 5994 return security_sid_to_context(secid, secdata, seclen); 5995 } 5996 5997 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5998 { 5999 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL); 6000 } 6001 6002 static void selinux_release_secctx(char *secdata, u32 seclen) 6003 { 6004 kfree(secdata); 6005 } 6006 6007 static void selinux_inode_invalidate_secctx(struct inode *inode) 6008 { 6009 struct inode_security_struct *isec = inode->i_security; 6010 6011 spin_lock(&isec->lock); 6012 isec->initialized = LABEL_INVALID; 6013 spin_unlock(&isec->lock); 6014 } 6015 6016 /* 6017 * called with inode->i_mutex locked 6018 */ 6019 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 6020 { 6021 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); 6022 } 6023 6024 /* 6025 * called with inode->i_mutex locked 6026 */ 6027 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 6028 { 6029 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 6030 } 6031 6032 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 6033 { 6034 int len = 0; 6035 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 6036 ctx, true); 6037 if (len < 0) 6038 return len; 6039 *ctxlen = len; 6040 return 0; 6041 } 6042 #ifdef CONFIG_KEYS 6043 6044 static int selinux_key_alloc(struct key *k, const struct cred *cred, 6045 unsigned long flags) 6046 { 6047 const struct task_security_struct *tsec; 6048 struct key_security_struct *ksec; 6049 6050 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 6051 if (!ksec) 6052 return -ENOMEM; 6053 6054 tsec = cred->security; 6055 if (tsec->keycreate_sid) 6056 ksec->sid = tsec->keycreate_sid; 6057 else 6058 ksec->sid = tsec->sid; 6059 6060 k->security = ksec; 6061 return 0; 6062 } 6063 6064 static void selinux_key_free(struct key *k) 6065 { 6066 struct key_security_struct *ksec = k->security; 6067 6068 k->security = NULL; 6069 kfree(ksec); 6070 } 6071 6072 static int selinux_key_permission(key_ref_t key_ref, 6073 const struct cred *cred, 6074 unsigned perm) 6075 { 6076 struct key *key; 6077 struct key_security_struct *ksec; 6078 u32 sid; 6079 6080 /* if no specific permissions are requested, we skip the 6081 permission check. No serious, additional covert channels 6082 appear to be created. */ 6083 if (perm == 0) 6084 return 0; 6085 6086 sid = cred_sid(cred); 6087 6088 key = key_ref_to_ptr(key_ref); 6089 ksec = key->security; 6090 6091 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 6092 } 6093 6094 static int selinux_key_getsecurity(struct key *key, char **_buffer) 6095 { 6096 struct key_security_struct *ksec = key->security; 6097 char *context = NULL; 6098 unsigned len; 6099 int rc; 6100 6101 rc = security_sid_to_context(ksec->sid, &context, &len); 6102 if (!rc) 6103 rc = len; 6104 *_buffer = context; 6105 return rc; 6106 } 6107 6108 #endif 6109 6110 static struct security_hook_list selinux_hooks[] = { 6111 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr), 6112 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction), 6113 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder), 6114 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file), 6115 6116 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check), 6117 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme), 6118 LSM_HOOK_INIT(capget, selinux_capget), 6119 LSM_HOOK_INIT(capset, selinux_capset), 6120 LSM_HOOK_INIT(capable, selinux_capable), 6121 LSM_HOOK_INIT(quotactl, selinux_quotactl), 6122 LSM_HOOK_INIT(quota_on, selinux_quota_on), 6123 LSM_HOOK_INIT(syslog, selinux_syslog), 6124 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory), 6125 6126 LSM_HOOK_INIT(netlink_send, selinux_netlink_send), 6127 6128 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds), 6129 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds), 6130 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds), 6131 LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec), 6132 6133 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security), 6134 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security), 6135 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data), 6136 LSM_HOOK_INIT(sb_remount, selinux_sb_remount), 6137 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount), 6138 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options), 6139 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs), 6140 LSM_HOOK_INIT(sb_mount, selinux_mount), 6141 LSM_HOOK_INIT(sb_umount, selinux_umount), 6142 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts), 6143 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts), 6144 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str), 6145 6146 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security), 6147 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as), 6148 6149 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security), 6150 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security), 6151 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security), 6152 LSM_HOOK_INIT(inode_create, selinux_inode_create), 6153 LSM_HOOK_INIT(inode_link, selinux_inode_link), 6154 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink), 6155 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink), 6156 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir), 6157 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir), 6158 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod), 6159 LSM_HOOK_INIT(inode_rename, selinux_inode_rename), 6160 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink), 6161 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link), 6162 LSM_HOOK_INIT(inode_permission, selinux_inode_permission), 6163 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr), 6164 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr), 6165 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr), 6166 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr), 6167 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr), 6168 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr), 6169 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr), 6170 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity), 6171 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity), 6172 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity), 6173 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid), 6174 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up), 6175 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr), 6176 6177 LSM_HOOK_INIT(file_permission, selinux_file_permission), 6178 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security), 6179 LSM_HOOK_INIT(file_free_security, selinux_file_free_security), 6180 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl), 6181 LSM_HOOK_INIT(mmap_file, selinux_mmap_file), 6182 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr), 6183 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect), 6184 LSM_HOOK_INIT(file_lock, selinux_file_lock), 6185 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl), 6186 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner), 6187 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask), 6188 LSM_HOOK_INIT(file_receive, selinux_file_receive), 6189 6190 LSM_HOOK_INIT(file_open, selinux_file_open), 6191 6192 LSM_HOOK_INIT(task_create, selinux_task_create), 6193 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank), 6194 LSM_HOOK_INIT(cred_free, selinux_cred_free), 6195 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare), 6196 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer), 6197 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as), 6198 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as), 6199 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request), 6200 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file), 6201 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid), 6202 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid), 6203 LSM_HOOK_INIT(task_getsid, selinux_task_getsid), 6204 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid), 6205 LSM_HOOK_INIT(task_setnice, selinux_task_setnice), 6206 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio), 6207 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio), 6208 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit), 6209 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler), 6210 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler), 6211 LSM_HOOK_INIT(task_movememory, selinux_task_movememory), 6212 LSM_HOOK_INIT(task_kill, selinux_task_kill), 6213 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode), 6214 6215 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission), 6216 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid), 6217 6218 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security), 6219 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security), 6220 6221 LSM_HOOK_INIT(msg_queue_alloc_security, 6222 selinux_msg_queue_alloc_security), 6223 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security), 6224 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate), 6225 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl), 6226 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd), 6227 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv), 6228 6229 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security), 6230 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security), 6231 LSM_HOOK_INIT(shm_associate, selinux_shm_associate), 6232 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl), 6233 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat), 6234 6235 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security), 6236 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security), 6237 LSM_HOOK_INIT(sem_associate, selinux_sem_associate), 6238 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl), 6239 LSM_HOOK_INIT(sem_semop, selinux_sem_semop), 6240 6241 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate), 6242 6243 LSM_HOOK_INIT(getprocattr, selinux_getprocattr), 6244 LSM_HOOK_INIT(setprocattr, selinux_setprocattr), 6245 6246 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel), 6247 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx), 6248 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid), 6249 LSM_HOOK_INIT(release_secctx, selinux_release_secctx), 6250 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx), 6251 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx), 6252 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx), 6253 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx), 6254 6255 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect), 6256 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send), 6257 6258 LSM_HOOK_INIT(socket_create, selinux_socket_create), 6259 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create), 6260 LSM_HOOK_INIT(socket_bind, selinux_socket_bind), 6261 LSM_HOOK_INIT(socket_connect, selinux_socket_connect), 6262 LSM_HOOK_INIT(socket_listen, selinux_socket_listen), 6263 LSM_HOOK_INIT(socket_accept, selinux_socket_accept), 6264 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg), 6265 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg), 6266 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname), 6267 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername), 6268 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt), 6269 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt), 6270 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown), 6271 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb), 6272 LSM_HOOK_INIT(socket_getpeersec_stream, 6273 selinux_socket_getpeersec_stream), 6274 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram), 6275 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security), 6276 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security), 6277 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security), 6278 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid), 6279 LSM_HOOK_INIT(sock_graft, selinux_sock_graft), 6280 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request), 6281 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone), 6282 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established), 6283 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet), 6284 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc), 6285 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec), 6286 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow), 6287 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security), 6288 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security), 6289 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create), 6290 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue), 6291 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach), 6292 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open), 6293 6294 #ifdef CONFIG_SECURITY_NETWORK_XFRM 6295 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc), 6296 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone), 6297 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free), 6298 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete), 6299 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc), 6300 LSM_HOOK_INIT(xfrm_state_alloc_acquire, 6301 selinux_xfrm_state_alloc_acquire), 6302 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free), 6303 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete), 6304 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup), 6305 LSM_HOOK_INIT(xfrm_state_pol_flow_match, 6306 selinux_xfrm_state_pol_flow_match), 6307 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session), 6308 #endif 6309 6310 #ifdef CONFIG_KEYS 6311 LSM_HOOK_INIT(key_alloc, selinux_key_alloc), 6312 LSM_HOOK_INIT(key_free, selinux_key_free), 6313 LSM_HOOK_INIT(key_permission, selinux_key_permission), 6314 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity), 6315 #endif 6316 6317 #ifdef CONFIG_AUDIT 6318 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init), 6319 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known), 6320 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match), 6321 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free), 6322 #endif 6323 }; 6324 6325 static __init int selinux_init(void) 6326 { 6327 if (!security_module_enable("selinux")) { 6328 selinux_enabled = 0; 6329 return 0; 6330 } 6331 6332 if (!selinux_enabled) { 6333 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 6334 return 0; 6335 } 6336 6337 printk(KERN_INFO "SELinux: Initializing.\n"); 6338 6339 /* Set the security state for the initial task. */ 6340 cred_init_security(); 6341 6342 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 6343 6344 sel_inode_cache = kmem_cache_create("selinux_inode_security", 6345 sizeof(struct inode_security_struct), 6346 0, SLAB_PANIC, NULL); 6347 file_security_cache = kmem_cache_create("selinux_file_security", 6348 sizeof(struct file_security_struct), 6349 0, SLAB_PANIC, NULL); 6350 avc_init(); 6351 6352 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux"); 6353 6354 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 6355 panic("SELinux: Unable to register AVC netcache callback\n"); 6356 6357 if (selinux_enforcing) 6358 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 6359 else 6360 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 6361 6362 return 0; 6363 } 6364 6365 static void delayed_superblock_init(struct super_block *sb, void *unused) 6366 { 6367 superblock_doinit(sb, NULL); 6368 } 6369 6370 void selinux_complete_init(void) 6371 { 6372 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 6373 6374 /* Set up any superblocks initialized prior to the policy load. */ 6375 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 6376 iterate_supers(delayed_superblock_init, NULL); 6377 } 6378 6379 /* SELinux requires early initialization in order to label 6380 all processes and objects when they are created. */ 6381 security_initcall(selinux_init); 6382 6383 #if defined(CONFIG_NETFILTER) 6384 6385 static struct nf_hook_ops selinux_nf_ops[] = { 6386 { 6387 .hook = selinux_ipv4_postroute, 6388 .pf = NFPROTO_IPV4, 6389 .hooknum = NF_INET_POST_ROUTING, 6390 .priority = NF_IP_PRI_SELINUX_LAST, 6391 }, 6392 { 6393 .hook = selinux_ipv4_forward, 6394 .pf = NFPROTO_IPV4, 6395 .hooknum = NF_INET_FORWARD, 6396 .priority = NF_IP_PRI_SELINUX_FIRST, 6397 }, 6398 { 6399 .hook = selinux_ipv4_output, 6400 .pf = NFPROTO_IPV4, 6401 .hooknum = NF_INET_LOCAL_OUT, 6402 .priority = NF_IP_PRI_SELINUX_FIRST, 6403 }, 6404 #if IS_ENABLED(CONFIG_IPV6) 6405 { 6406 .hook = selinux_ipv6_postroute, 6407 .pf = NFPROTO_IPV6, 6408 .hooknum = NF_INET_POST_ROUTING, 6409 .priority = NF_IP6_PRI_SELINUX_LAST, 6410 }, 6411 { 6412 .hook = selinux_ipv6_forward, 6413 .pf = NFPROTO_IPV6, 6414 .hooknum = NF_INET_FORWARD, 6415 .priority = NF_IP6_PRI_SELINUX_FIRST, 6416 }, 6417 { 6418 .hook = selinux_ipv6_output, 6419 .pf = NFPROTO_IPV6, 6420 .hooknum = NF_INET_LOCAL_OUT, 6421 .priority = NF_IP6_PRI_SELINUX_FIRST, 6422 }, 6423 #endif /* IPV6 */ 6424 }; 6425 6426 static int __init selinux_nf_ip_init(void) 6427 { 6428 int err; 6429 6430 if (!selinux_enabled) 6431 return 0; 6432 6433 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 6434 6435 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); 6436 if (err) 6437 panic("SELinux: nf_register_hooks: error %d\n", err); 6438 6439 return 0; 6440 } 6441 6442 __initcall(selinux_nf_ip_init); 6443 6444 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6445 static void selinux_nf_ip_exit(void) 6446 { 6447 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 6448 6449 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops)); 6450 } 6451 #endif 6452 6453 #else /* CONFIG_NETFILTER */ 6454 6455 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6456 #define selinux_nf_ip_exit() 6457 #endif 6458 6459 #endif /* CONFIG_NETFILTER */ 6460 6461 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 6462 static int selinux_disabled; 6463 6464 int selinux_disable(void) 6465 { 6466 if (ss_initialized) { 6467 /* Not permitted after initial policy load. */ 6468 return -EINVAL; 6469 } 6470 6471 if (selinux_disabled) { 6472 /* Only do this once. */ 6473 return -EINVAL; 6474 } 6475 6476 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 6477 6478 selinux_disabled = 1; 6479 selinux_enabled = 0; 6480 6481 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks)); 6482 6483 /* Try to destroy the avc node cache */ 6484 avc_disable(); 6485 6486 /* Unregister netfilter hooks. */ 6487 selinux_nf_ip_exit(); 6488 6489 /* Unregister selinuxfs. */ 6490 exit_sel_fs(); 6491 6492 return 0; 6493 } 6494 #endif 6495