xref: /linux/security/keys/keyring.c (revision 9abdb50cda0ffe33bbb2e40cbad97b32fb7ff892)
1 /* Keyring handling
2  *
3  * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
24 
25 /*
26  * When plumbing the depths of the key tree, this sets a hard limit
27  * set on how deep we're willing to go.
28  */
29 #define KEYRING_SEARCH_MAX_DEPTH 6
30 
31 /*
32  * We keep all named keyrings in a hash to speed looking them up.
33  */
34 #define KEYRING_NAME_HASH_SIZE	(1 << 5)
35 
36 /*
37  * We mark pointers we pass to the associative array with bit 1 set if
38  * they're keyrings and clear otherwise.
39  */
40 #define KEYRING_PTR_SUBTYPE	0x2UL
41 
42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
43 {
44 	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
45 }
46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
47 {
48 	void *object = assoc_array_ptr_to_leaf(x);
49 	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
50 }
51 static inline void *keyring_key_to_ptr(struct key *key)
52 {
53 	if (key->type == &key_type_keyring)
54 		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 	return key;
56 }
57 
58 static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
60 
61 static inline unsigned keyring_hash(const char *desc)
62 {
63 	unsigned bucket = 0;
64 
65 	for (; *desc; desc++)
66 		bucket += (unsigned char)*desc;
67 
68 	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
69 }
70 
71 /*
72  * The keyring key type definition.  Keyrings are simply keys of this type and
73  * can be treated as ordinary keys in addition to having their own special
74  * operations.
75  */
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 			       struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 			 char __user *buffer, size_t buflen);
85 
86 struct key_type key_type_keyring = {
87 	.name		= "keyring",
88 	.def_datalen	= 0,
89 	.preparse	= keyring_preparse,
90 	.free_preparse	= keyring_free_preparse,
91 	.instantiate	= keyring_instantiate,
92 	.revoke		= keyring_revoke,
93 	.destroy	= keyring_destroy,
94 	.describe	= keyring_describe,
95 	.read		= keyring_read,
96 };
97 EXPORT_SYMBOL(key_type_keyring);
98 
99 /*
100  * Semaphore to serialise link/link calls to prevent two link calls in parallel
101  * introducing a cycle.
102  */
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
104 
105 /*
106  * Publish the name of a keyring so that it can be found by name (if it has
107  * one).
108  */
109 static void keyring_publish_name(struct key *keyring)
110 {
111 	int bucket;
112 
113 	if (keyring->description) {
114 		bucket = keyring_hash(keyring->description);
115 
116 		write_lock(&keyring_name_lock);
117 
118 		if (!keyring_name_hash[bucket].next)
119 			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
120 
121 		list_add_tail(&keyring->name_link,
122 			      &keyring_name_hash[bucket]);
123 
124 		write_unlock(&keyring_name_lock);
125 	}
126 }
127 
128 /*
129  * Preparse a keyring payload
130  */
131 static int keyring_preparse(struct key_preparsed_payload *prep)
132 {
133 	return prep->datalen != 0 ? -EINVAL : 0;
134 }
135 
136 /*
137  * Free a preparse of a user defined key payload
138  */
139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
140 {
141 }
142 
143 /*
144  * Initialise a keyring.
145  *
146  * Returns 0 on success, -EINVAL if given any data.
147  */
148 static int keyring_instantiate(struct key *keyring,
149 			       struct key_preparsed_payload *prep)
150 {
151 	assoc_array_init(&keyring->keys);
152 	/* make the keyring available by name if it has one */
153 	keyring_publish_name(keyring);
154 	return 0;
155 }
156 
157 /*
158  * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
159  * fold the carry back too, but that requires inline asm.
160  */
161 static u64 mult_64x32_and_fold(u64 x, u32 y)
162 {
163 	u64 hi = (u64)(u32)(x >> 32) * y;
164 	u64 lo = (u64)(u32)(x) * y;
165 	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
166 }
167 
168 /*
169  * Hash a key type and description.
170  */
171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
172 {
173 	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 	const char *description = index_key->description;
176 	unsigned long hash, type;
177 	u32 piece;
178 	u64 acc;
179 	int n, desc_len = index_key->desc_len;
180 
181 	type = (unsigned long)index_key->type;
182 
183 	acc = mult_64x32_and_fold(type, desc_len + 13);
184 	acc = mult_64x32_and_fold(acc, 9207);
185 	for (;;) {
186 		n = desc_len;
187 		if (n <= 0)
188 			break;
189 		if (n > 4)
190 			n = 4;
191 		piece = 0;
192 		memcpy(&piece, description, n);
193 		description += n;
194 		desc_len -= n;
195 		acc = mult_64x32_and_fold(acc, piece);
196 		acc = mult_64x32_and_fold(acc, 9207);
197 	}
198 
199 	/* Fold the hash down to 32 bits if need be. */
200 	hash = acc;
201 	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 		hash ^= acc >> 32;
203 
204 	/* Squidge all the keyrings into a separate part of the tree to
205 	 * ordinary keys by making sure the lowest level segment in the hash is
206 	 * zero for keyrings and non-zero otherwise.
207 	 */
208 	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 		return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 	if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 		return (hash + (hash << level_shift)) & ~fan_mask;
212 	return hash;
213 }
214 
215 /*
216  * Build the next index key chunk.
217  *
218  * On 32-bit systems the index key is laid out as:
219  *
220  *	0	4	5	9...
221  *	hash	desclen	typeptr	desc[]
222  *
223  * On 64-bit systems:
224  *
225  *	0	8	9	17...
226  *	hash	desclen	typeptr	desc[]
227  *
228  * We return it one word-sized chunk at a time.
229  */
230 static unsigned long keyring_get_key_chunk(const void *data, int level)
231 {
232 	const struct keyring_index_key *index_key = data;
233 	unsigned long chunk = 0;
234 	long offset = 0;
235 	int desc_len = index_key->desc_len, n = sizeof(chunk);
236 
237 	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 	switch (level) {
239 	case 0:
240 		return hash_key_type_and_desc(index_key);
241 	case 1:
242 		return ((unsigned long)index_key->type << 8) | desc_len;
243 	case 2:
244 		if (desc_len == 0)
245 			return (u8)((unsigned long)index_key->type >>
246 				    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 		n--;
248 		offset = 1;
249 	default:
250 		offset += sizeof(chunk) - 1;
251 		offset += (level - 3) * sizeof(chunk);
252 		if (offset >= desc_len)
253 			return 0;
254 		desc_len -= offset;
255 		if (desc_len > n)
256 			desc_len = n;
257 		offset += desc_len;
258 		do {
259 			chunk <<= 8;
260 			chunk |= ((u8*)index_key->description)[--offset];
261 		} while (--desc_len > 0);
262 
263 		if (level == 2) {
264 			chunk <<= 8;
265 			chunk |= (u8)((unsigned long)index_key->type >>
266 				      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
267 		}
268 		return chunk;
269 	}
270 }
271 
272 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
273 {
274 	const struct key *key = keyring_ptr_to_key(object);
275 	return keyring_get_key_chunk(&key->index_key, level);
276 }
277 
278 static bool keyring_compare_object(const void *object, const void *data)
279 {
280 	const struct keyring_index_key *index_key = data;
281 	const struct key *key = keyring_ptr_to_key(object);
282 
283 	return key->index_key.type == index_key->type &&
284 		key->index_key.desc_len == index_key->desc_len &&
285 		memcmp(key->index_key.description, index_key->description,
286 		       index_key->desc_len) == 0;
287 }
288 
289 /*
290  * Compare the index keys of a pair of objects and determine the bit position
291  * at which they differ - if they differ.
292  */
293 static int keyring_diff_objects(const void *object, const void *data)
294 {
295 	const struct key *key_a = keyring_ptr_to_key(object);
296 	const struct keyring_index_key *a = &key_a->index_key;
297 	const struct keyring_index_key *b = data;
298 	unsigned long seg_a, seg_b;
299 	int level, i;
300 
301 	level = 0;
302 	seg_a = hash_key_type_and_desc(a);
303 	seg_b = hash_key_type_and_desc(b);
304 	if ((seg_a ^ seg_b) != 0)
305 		goto differ;
306 
307 	/* The number of bits contributed by the hash is controlled by a
308 	 * constant in the assoc_array headers.  Everything else thereafter we
309 	 * can deal with as being machine word-size dependent.
310 	 */
311 	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
312 	seg_a = a->desc_len;
313 	seg_b = b->desc_len;
314 	if ((seg_a ^ seg_b) != 0)
315 		goto differ;
316 
317 	/* The next bit may not work on big endian */
318 	level++;
319 	seg_a = (unsigned long)a->type;
320 	seg_b = (unsigned long)b->type;
321 	if ((seg_a ^ seg_b) != 0)
322 		goto differ;
323 
324 	level += sizeof(unsigned long);
325 	if (a->desc_len == 0)
326 		goto same;
327 
328 	i = 0;
329 	if (((unsigned long)a->description | (unsigned long)b->description) &
330 	    (sizeof(unsigned long) - 1)) {
331 		do {
332 			seg_a = *(unsigned long *)(a->description + i);
333 			seg_b = *(unsigned long *)(b->description + i);
334 			if ((seg_a ^ seg_b) != 0)
335 				goto differ_plus_i;
336 			i += sizeof(unsigned long);
337 		} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
338 	}
339 
340 	for (; i < a->desc_len; i++) {
341 		seg_a = *(unsigned char *)(a->description + i);
342 		seg_b = *(unsigned char *)(b->description + i);
343 		if ((seg_a ^ seg_b) != 0)
344 			goto differ_plus_i;
345 	}
346 
347 same:
348 	return -1;
349 
350 differ_plus_i:
351 	level += i;
352 differ:
353 	i = level * 8 + __ffs(seg_a ^ seg_b);
354 	return i;
355 }
356 
357 /*
358  * Free an object after stripping the keyring flag off of the pointer.
359  */
360 static void keyring_free_object(void *object)
361 {
362 	key_put(keyring_ptr_to_key(object));
363 }
364 
365 /*
366  * Operations for keyring management by the index-tree routines.
367  */
368 static const struct assoc_array_ops keyring_assoc_array_ops = {
369 	.get_key_chunk		= keyring_get_key_chunk,
370 	.get_object_key_chunk	= keyring_get_object_key_chunk,
371 	.compare_object		= keyring_compare_object,
372 	.diff_objects		= keyring_diff_objects,
373 	.free_object		= keyring_free_object,
374 };
375 
376 /*
377  * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
378  * and dispose of its data.
379  *
380  * The garbage collector detects the final key_put(), removes the keyring from
381  * the serial number tree and then does RCU synchronisation before coming here,
382  * so we shouldn't need to worry about code poking around here with the RCU
383  * readlock held by this time.
384  */
385 static void keyring_destroy(struct key *keyring)
386 {
387 	if (keyring->description) {
388 		write_lock(&keyring_name_lock);
389 
390 		if (keyring->name_link.next != NULL &&
391 		    !list_empty(&keyring->name_link))
392 			list_del(&keyring->name_link);
393 
394 		write_unlock(&keyring_name_lock);
395 	}
396 
397 	if (keyring->restrict_link) {
398 		struct key_restriction *keyres = keyring->restrict_link;
399 
400 		key_put(keyres->key);
401 		kfree(keyres);
402 	}
403 
404 	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
405 }
406 
407 /*
408  * Describe a keyring for /proc.
409  */
410 static void keyring_describe(const struct key *keyring, struct seq_file *m)
411 {
412 	if (keyring->description)
413 		seq_puts(m, keyring->description);
414 	else
415 		seq_puts(m, "[anon]");
416 
417 	if (key_is_positive(keyring)) {
418 		if (keyring->keys.nr_leaves_on_tree != 0)
419 			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
420 		else
421 			seq_puts(m, ": empty");
422 	}
423 }
424 
425 struct keyring_read_iterator_context {
426 	size_t			buflen;
427 	size_t			count;
428 	key_serial_t __user	*buffer;
429 };
430 
431 static int keyring_read_iterator(const void *object, void *data)
432 {
433 	struct keyring_read_iterator_context *ctx = data;
434 	const struct key *key = keyring_ptr_to_key(object);
435 	int ret;
436 
437 	kenter("{%s,%d},,{%zu/%zu}",
438 	       key->type->name, key->serial, ctx->count, ctx->buflen);
439 
440 	if (ctx->count >= ctx->buflen)
441 		return 1;
442 
443 	ret = put_user(key->serial, ctx->buffer);
444 	if (ret < 0)
445 		return ret;
446 	ctx->buffer++;
447 	ctx->count += sizeof(key->serial);
448 	return 0;
449 }
450 
451 /*
452  * Read a list of key IDs from the keyring's contents in binary form
453  *
454  * The keyring's semaphore is read-locked by the caller.  This prevents someone
455  * from modifying it under us - which could cause us to read key IDs multiple
456  * times.
457  */
458 static long keyring_read(const struct key *keyring,
459 			 char __user *buffer, size_t buflen)
460 {
461 	struct keyring_read_iterator_context ctx;
462 	long ret;
463 
464 	kenter("{%d},,%zu", key_serial(keyring), buflen);
465 
466 	if (buflen & (sizeof(key_serial_t) - 1))
467 		return -EINVAL;
468 
469 	/* Copy as many key IDs as fit into the buffer */
470 	if (buffer && buflen) {
471 		ctx.buffer = (key_serial_t __user *)buffer;
472 		ctx.buflen = buflen;
473 		ctx.count = 0;
474 		ret = assoc_array_iterate(&keyring->keys,
475 					  keyring_read_iterator, &ctx);
476 		if (ret < 0) {
477 			kleave(" = %ld [iterate]", ret);
478 			return ret;
479 		}
480 	}
481 
482 	/* Return the size of the buffer needed */
483 	ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
484 	if (ret <= buflen)
485 		kleave("= %ld [ok]", ret);
486 	else
487 		kleave("= %ld [buffer too small]", ret);
488 	return ret;
489 }
490 
491 /*
492  * Allocate a keyring and link into the destination keyring.
493  */
494 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
495 			  const struct cred *cred, key_perm_t perm,
496 			  unsigned long flags,
497 			  struct key_restriction *restrict_link,
498 			  struct key *dest)
499 {
500 	struct key *keyring;
501 	int ret;
502 
503 	keyring = key_alloc(&key_type_keyring, description,
504 			    uid, gid, cred, perm, flags, restrict_link);
505 	if (!IS_ERR(keyring)) {
506 		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
507 		if (ret < 0) {
508 			key_put(keyring);
509 			keyring = ERR_PTR(ret);
510 		}
511 	}
512 
513 	return keyring;
514 }
515 EXPORT_SYMBOL(keyring_alloc);
516 
517 /**
518  * restrict_link_reject - Give -EPERM to restrict link
519  * @keyring: The keyring being added to.
520  * @type: The type of key being added.
521  * @payload: The payload of the key intended to be added.
522  * @data: Additional data for evaluating restriction.
523  *
524  * Reject the addition of any links to a keyring.  It can be overridden by
525  * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
526  * adding a key to a keyring.
527  *
528  * This is meant to be stored in a key_restriction structure which is passed
529  * in the restrict_link parameter to keyring_alloc().
530  */
531 int restrict_link_reject(struct key *keyring,
532 			 const struct key_type *type,
533 			 const union key_payload *payload,
534 			 struct key *restriction_key)
535 {
536 	return -EPERM;
537 }
538 
539 /*
540  * By default, we keys found by getting an exact match on their descriptions.
541  */
542 bool key_default_cmp(const struct key *key,
543 		     const struct key_match_data *match_data)
544 {
545 	return strcmp(key->description, match_data->raw_data) == 0;
546 }
547 
548 /*
549  * Iteration function to consider each key found.
550  */
551 static int keyring_search_iterator(const void *object, void *iterator_data)
552 {
553 	struct keyring_search_context *ctx = iterator_data;
554 	const struct key *key = keyring_ptr_to_key(object);
555 	unsigned long kflags = READ_ONCE(key->flags);
556 	short state = READ_ONCE(key->state);
557 
558 	kenter("{%d}", key->serial);
559 
560 	/* ignore keys not of this type */
561 	if (key->type != ctx->index_key.type) {
562 		kleave(" = 0 [!type]");
563 		return 0;
564 	}
565 
566 	/* skip invalidated, revoked and expired keys */
567 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
568 		time64_t expiry = READ_ONCE(key->expiry);
569 
570 		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
571 			      (1 << KEY_FLAG_REVOKED))) {
572 			ctx->result = ERR_PTR(-EKEYREVOKED);
573 			kleave(" = %d [invrev]", ctx->skipped_ret);
574 			goto skipped;
575 		}
576 
577 		if (expiry && ctx->now >= expiry) {
578 			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
579 				ctx->result = ERR_PTR(-EKEYEXPIRED);
580 			kleave(" = %d [expire]", ctx->skipped_ret);
581 			goto skipped;
582 		}
583 	}
584 
585 	/* keys that don't match */
586 	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
587 		kleave(" = 0 [!match]");
588 		return 0;
589 	}
590 
591 	/* key must have search permissions */
592 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
593 	    key_task_permission(make_key_ref(key, ctx->possessed),
594 				ctx->cred, KEY_NEED_SEARCH) < 0) {
595 		ctx->result = ERR_PTR(-EACCES);
596 		kleave(" = %d [!perm]", ctx->skipped_ret);
597 		goto skipped;
598 	}
599 
600 	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
601 		/* we set a different error code if we pass a negative key */
602 		if (state < 0) {
603 			ctx->result = ERR_PTR(state);
604 			kleave(" = %d [neg]", ctx->skipped_ret);
605 			goto skipped;
606 		}
607 	}
608 
609 	/* Found */
610 	ctx->result = make_key_ref(key, ctx->possessed);
611 	kleave(" = 1 [found]");
612 	return 1;
613 
614 skipped:
615 	return ctx->skipped_ret;
616 }
617 
618 /*
619  * Search inside a keyring for a key.  We can search by walking to it
620  * directly based on its index-key or we can iterate over the entire
621  * tree looking for it, based on the match function.
622  */
623 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
624 {
625 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
626 		const void *object;
627 
628 		object = assoc_array_find(&keyring->keys,
629 					  &keyring_assoc_array_ops,
630 					  &ctx->index_key);
631 		return object ? ctx->iterator(object, ctx) : 0;
632 	}
633 	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
634 }
635 
636 /*
637  * Search a tree of keyrings that point to other keyrings up to the maximum
638  * depth.
639  */
640 static bool search_nested_keyrings(struct key *keyring,
641 				   struct keyring_search_context *ctx)
642 {
643 	struct {
644 		struct key *keyring;
645 		struct assoc_array_node *node;
646 		int slot;
647 	} stack[KEYRING_SEARCH_MAX_DEPTH];
648 
649 	struct assoc_array_shortcut *shortcut;
650 	struct assoc_array_node *node;
651 	struct assoc_array_ptr *ptr;
652 	struct key *key;
653 	int sp = 0, slot;
654 
655 	kenter("{%d},{%s,%s}",
656 	       keyring->serial,
657 	       ctx->index_key.type->name,
658 	       ctx->index_key.description);
659 
660 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
661 	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
662 	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
663 
664 	/* Check to see if this top-level keyring is what we are looking for
665 	 * and whether it is valid or not.
666 	 */
667 	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
668 	    keyring_compare_object(keyring, &ctx->index_key)) {
669 		ctx->skipped_ret = 2;
670 		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
671 		case 1:
672 			goto found;
673 		case 2:
674 			return false;
675 		default:
676 			break;
677 		}
678 	}
679 
680 	ctx->skipped_ret = 0;
681 
682 	/* Start processing a new keyring */
683 descend_to_keyring:
684 	kdebug("descend to %d", keyring->serial);
685 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
686 			      (1 << KEY_FLAG_REVOKED)))
687 		goto not_this_keyring;
688 
689 	/* Search through the keys in this keyring before its searching its
690 	 * subtrees.
691 	 */
692 	if (search_keyring(keyring, ctx))
693 		goto found;
694 
695 	/* Then manually iterate through the keyrings nested in this one.
696 	 *
697 	 * Start from the root node of the index tree.  Because of the way the
698 	 * hash function has been set up, keyrings cluster on the leftmost
699 	 * branch of the root node (root slot 0) or in the root node itself.
700 	 * Non-keyrings avoid the leftmost branch of the root entirely (root
701 	 * slots 1-15).
702 	 */
703 	ptr = READ_ONCE(keyring->keys.root);
704 	if (!ptr)
705 		goto not_this_keyring;
706 
707 	if (assoc_array_ptr_is_shortcut(ptr)) {
708 		/* If the root is a shortcut, either the keyring only contains
709 		 * keyring pointers (everything clusters behind root slot 0) or
710 		 * doesn't contain any keyring pointers.
711 		 */
712 		shortcut = assoc_array_ptr_to_shortcut(ptr);
713 		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
714 			goto not_this_keyring;
715 
716 		ptr = READ_ONCE(shortcut->next_node);
717 		node = assoc_array_ptr_to_node(ptr);
718 		goto begin_node;
719 	}
720 
721 	node = assoc_array_ptr_to_node(ptr);
722 	ptr = node->slots[0];
723 	if (!assoc_array_ptr_is_meta(ptr))
724 		goto begin_node;
725 
726 descend_to_node:
727 	/* Descend to a more distal node in this keyring's content tree and go
728 	 * through that.
729 	 */
730 	kdebug("descend");
731 	if (assoc_array_ptr_is_shortcut(ptr)) {
732 		shortcut = assoc_array_ptr_to_shortcut(ptr);
733 		ptr = READ_ONCE(shortcut->next_node);
734 		BUG_ON(!assoc_array_ptr_is_node(ptr));
735 	}
736 	node = assoc_array_ptr_to_node(ptr);
737 
738 begin_node:
739 	kdebug("begin_node");
740 	slot = 0;
741 ascend_to_node:
742 	/* Go through the slots in a node */
743 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
744 		ptr = READ_ONCE(node->slots[slot]);
745 
746 		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
747 			goto descend_to_node;
748 
749 		if (!keyring_ptr_is_keyring(ptr))
750 			continue;
751 
752 		key = keyring_ptr_to_key(ptr);
753 
754 		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
755 			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
756 				ctx->result = ERR_PTR(-ELOOP);
757 				return false;
758 			}
759 			goto not_this_keyring;
760 		}
761 
762 		/* Search a nested keyring */
763 		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
764 		    key_task_permission(make_key_ref(key, ctx->possessed),
765 					ctx->cred, KEY_NEED_SEARCH) < 0)
766 			continue;
767 
768 		/* stack the current position */
769 		stack[sp].keyring = keyring;
770 		stack[sp].node = node;
771 		stack[sp].slot = slot;
772 		sp++;
773 
774 		/* begin again with the new keyring */
775 		keyring = key;
776 		goto descend_to_keyring;
777 	}
778 
779 	/* We've dealt with all the slots in the current node, so now we need
780 	 * to ascend to the parent and continue processing there.
781 	 */
782 	ptr = READ_ONCE(node->back_pointer);
783 	slot = node->parent_slot;
784 
785 	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
786 		shortcut = assoc_array_ptr_to_shortcut(ptr);
787 		ptr = READ_ONCE(shortcut->back_pointer);
788 		slot = shortcut->parent_slot;
789 	}
790 	if (!ptr)
791 		goto not_this_keyring;
792 	node = assoc_array_ptr_to_node(ptr);
793 	slot++;
794 
795 	/* If we've ascended to the root (zero backpointer), we must have just
796 	 * finished processing the leftmost branch rather than the root slots -
797 	 * so there can't be any more keyrings for us to find.
798 	 */
799 	if (node->back_pointer) {
800 		kdebug("ascend %d", slot);
801 		goto ascend_to_node;
802 	}
803 
804 	/* The keyring we're looking at was disqualified or didn't contain a
805 	 * matching key.
806 	 */
807 not_this_keyring:
808 	kdebug("not_this_keyring %d", sp);
809 	if (sp <= 0) {
810 		kleave(" = false");
811 		return false;
812 	}
813 
814 	/* Resume the processing of a keyring higher up in the tree */
815 	sp--;
816 	keyring = stack[sp].keyring;
817 	node = stack[sp].node;
818 	slot = stack[sp].slot + 1;
819 	kdebug("ascend to %d [%d]", keyring->serial, slot);
820 	goto ascend_to_node;
821 
822 	/* We found a viable match */
823 found:
824 	key = key_ref_to_ptr(ctx->result);
825 	key_check(key);
826 	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
827 		key->last_used_at = ctx->now;
828 		keyring->last_used_at = ctx->now;
829 		while (sp > 0)
830 			stack[--sp].keyring->last_used_at = ctx->now;
831 	}
832 	kleave(" = true");
833 	return true;
834 }
835 
836 /**
837  * keyring_search_aux - Search a keyring tree for a key matching some criteria
838  * @keyring_ref: A pointer to the keyring with possession indicator.
839  * @ctx: The keyring search context.
840  *
841  * Search the supplied keyring tree for a key that matches the criteria given.
842  * The root keyring and any linked keyrings must grant Search permission to the
843  * caller to be searchable and keys can only be found if they too grant Search
844  * to the caller. The possession flag on the root keyring pointer controls use
845  * of the possessor bits in permissions checking of the entire tree.  In
846  * addition, the LSM gets to forbid keyring searches and key matches.
847  *
848  * The search is performed as a breadth-then-depth search up to the prescribed
849  * limit (KEYRING_SEARCH_MAX_DEPTH).
850  *
851  * Keys are matched to the type provided and are then filtered by the match
852  * function, which is given the description to use in any way it sees fit.  The
853  * match function may use any attributes of a key that it wishes to to
854  * determine the match.  Normally the match function from the key type would be
855  * used.
856  *
857  * RCU can be used to prevent the keyring key lists from disappearing without
858  * the need to take lots of locks.
859  *
860  * Returns a pointer to the found key and increments the key usage count if
861  * successful; -EAGAIN if no matching keys were found, or if expired or revoked
862  * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
863  * specified keyring wasn't a keyring.
864  *
865  * In the case of a successful return, the possession attribute from
866  * @keyring_ref is propagated to the returned key reference.
867  */
868 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
869 			     struct keyring_search_context *ctx)
870 {
871 	struct key *keyring;
872 	long err;
873 
874 	ctx->iterator = keyring_search_iterator;
875 	ctx->possessed = is_key_possessed(keyring_ref);
876 	ctx->result = ERR_PTR(-EAGAIN);
877 
878 	keyring = key_ref_to_ptr(keyring_ref);
879 	key_check(keyring);
880 
881 	if (keyring->type != &key_type_keyring)
882 		return ERR_PTR(-ENOTDIR);
883 
884 	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
885 		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
886 		if (err < 0)
887 			return ERR_PTR(err);
888 	}
889 
890 	rcu_read_lock();
891 	ctx->now = ktime_get_real_seconds();
892 	if (search_nested_keyrings(keyring, ctx))
893 		__key_get(key_ref_to_ptr(ctx->result));
894 	rcu_read_unlock();
895 	return ctx->result;
896 }
897 
898 /**
899  * keyring_search - Search the supplied keyring tree for a matching key
900  * @keyring: The root of the keyring tree to be searched.
901  * @type: The type of keyring we want to find.
902  * @description: The name of the keyring we want to find.
903  *
904  * As keyring_search_aux() above, but using the current task's credentials and
905  * type's default matching function and preferred search method.
906  */
907 key_ref_t keyring_search(key_ref_t keyring,
908 			 struct key_type *type,
909 			 const char *description)
910 {
911 	struct keyring_search_context ctx = {
912 		.index_key.type		= type,
913 		.index_key.description	= description,
914 		.index_key.desc_len	= strlen(description),
915 		.cred			= current_cred(),
916 		.match_data.cmp		= key_default_cmp,
917 		.match_data.raw_data	= description,
918 		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
919 		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
920 	};
921 	key_ref_t key;
922 	int ret;
923 
924 	if (type->match_preparse) {
925 		ret = type->match_preparse(&ctx.match_data);
926 		if (ret < 0)
927 			return ERR_PTR(ret);
928 	}
929 
930 	key = keyring_search_aux(keyring, &ctx);
931 
932 	if (type->match_free)
933 		type->match_free(&ctx.match_data);
934 	return key;
935 }
936 EXPORT_SYMBOL(keyring_search);
937 
938 static struct key_restriction *keyring_restriction_alloc(
939 	key_restrict_link_func_t check)
940 {
941 	struct key_restriction *keyres =
942 		kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
943 
944 	if (!keyres)
945 		return ERR_PTR(-ENOMEM);
946 
947 	keyres->check = check;
948 
949 	return keyres;
950 }
951 
952 /*
953  * Semaphore to serialise restriction setup to prevent reference count
954  * cycles through restriction key pointers.
955  */
956 static DECLARE_RWSEM(keyring_serialise_restrict_sem);
957 
958 /*
959  * Check for restriction cycles that would prevent keyring garbage collection.
960  * keyring_serialise_restrict_sem must be held.
961  */
962 static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
963 					     struct key_restriction *keyres)
964 {
965 	while (keyres && keyres->key &&
966 	       keyres->key->type == &key_type_keyring) {
967 		if (keyres->key == dest_keyring)
968 			return true;
969 
970 		keyres = keyres->key->restrict_link;
971 	}
972 
973 	return false;
974 }
975 
976 /**
977  * keyring_restrict - Look up and apply a restriction to a keyring
978  *
979  * @keyring: The keyring to be restricted
980  * @restriction: The restriction options to apply to the keyring
981  */
982 int keyring_restrict(key_ref_t keyring_ref, const char *type,
983 		     const char *restriction)
984 {
985 	struct key *keyring;
986 	struct key_type *restrict_type = NULL;
987 	struct key_restriction *restrict_link;
988 	int ret = 0;
989 
990 	keyring = key_ref_to_ptr(keyring_ref);
991 	key_check(keyring);
992 
993 	if (keyring->type != &key_type_keyring)
994 		return -ENOTDIR;
995 
996 	if (!type) {
997 		restrict_link = keyring_restriction_alloc(restrict_link_reject);
998 	} else {
999 		restrict_type = key_type_lookup(type);
1000 
1001 		if (IS_ERR(restrict_type))
1002 			return PTR_ERR(restrict_type);
1003 
1004 		if (!restrict_type->lookup_restriction) {
1005 			ret = -ENOENT;
1006 			goto error;
1007 		}
1008 
1009 		restrict_link = restrict_type->lookup_restriction(restriction);
1010 	}
1011 
1012 	if (IS_ERR(restrict_link)) {
1013 		ret = PTR_ERR(restrict_link);
1014 		goto error;
1015 	}
1016 
1017 	down_write(&keyring->sem);
1018 	down_write(&keyring_serialise_restrict_sem);
1019 
1020 	if (keyring->restrict_link)
1021 		ret = -EEXIST;
1022 	else if (keyring_detect_restriction_cycle(keyring, restrict_link))
1023 		ret = -EDEADLK;
1024 	else
1025 		keyring->restrict_link = restrict_link;
1026 
1027 	up_write(&keyring_serialise_restrict_sem);
1028 	up_write(&keyring->sem);
1029 
1030 	if (ret < 0) {
1031 		key_put(restrict_link->key);
1032 		kfree(restrict_link);
1033 	}
1034 
1035 error:
1036 	if (restrict_type)
1037 		key_type_put(restrict_type);
1038 
1039 	return ret;
1040 }
1041 EXPORT_SYMBOL(keyring_restrict);
1042 
1043 /*
1044  * Search the given keyring for a key that might be updated.
1045  *
1046  * The caller must guarantee that the keyring is a keyring and that the
1047  * permission is granted to modify the keyring as no check is made here.  The
1048  * caller must also hold a lock on the keyring semaphore.
1049  *
1050  * Returns a pointer to the found key with usage count incremented if
1051  * successful and returns NULL if not found.  Revoked and invalidated keys are
1052  * skipped over.
1053  *
1054  * If successful, the possession indicator is propagated from the keyring ref
1055  * to the returned key reference.
1056  */
1057 key_ref_t find_key_to_update(key_ref_t keyring_ref,
1058 			     const struct keyring_index_key *index_key)
1059 {
1060 	struct key *keyring, *key;
1061 	const void *object;
1062 
1063 	keyring = key_ref_to_ptr(keyring_ref);
1064 
1065 	kenter("{%d},{%s,%s}",
1066 	       keyring->serial, index_key->type->name, index_key->description);
1067 
1068 	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1069 				  index_key);
1070 
1071 	if (object)
1072 		goto found;
1073 
1074 	kleave(" = NULL");
1075 	return NULL;
1076 
1077 found:
1078 	key = keyring_ptr_to_key(object);
1079 	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1080 			  (1 << KEY_FLAG_REVOKED))) {
1081 		kleave(" = NULL [x]");
1082 		return NULL;
1083 	}
1084 	__key_get(key);
1085 	kleave(" = {%d}", key->serial);
1086 	return make_key_ref(key, is_key_possessed(keyring_ref));
1087 }
1088 
1089 /*
1090  * Find a keyring with the specified name.
1091  *
1092  * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1093  * user in the current user namespace are considered.  If @uid_keyring is %true,
1094  * the keyring additionally must have been allocated as a user or user session
1095  * keyring; otherwise, it must grant Search permission directly to the caller.
1096  *
1097  * Returns a pointer to the keyring with the keyring's refcount having being
1098  * incremented on success.  -ENOKEY is returned if a key could not be found.
1099  */
1100 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1101 {
1102 	struct key *keyring;
1103 	int bucket;
1104 
1105 	if (!name)
1106 		return ERR_PTR(-EINVAL);
1107 
1108 	bucket = keyring_hash(name);
1109 
1110 	read_lock(&keyring_name_lock);
1111 
1112 	if (keyring_name_hash[bucket].next) {
1113 		/* search this hash bucket for a keyring with a matching name
1114 		 * that's readable and that hasn't been revoked */
1115 		list_for_each_entry(keyring,
1116 				    &keyring_name_hash[bucket],
1117 				    name_link
1118 				    ) {
1119 			if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1120 				continue;
1121 
1122 			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1123 				continue;
1124 
1125 			if (strcmp(keyring->description, name) != 0)
1126 				continue;
1127 
1128 			if (uid_keyring) {
1129 				if (!test_bit(KEY_FLAG_UID_KEYRING,
1130 					      &keyring->flags))
1131 					continue;
1132 			} else {
1133 				if (key_permission(make_key_ref(keyring, 0),
1134 						   KEY_NEED_SEARCH) < 0)
1135 					continue;
1136 			}
1137 
1138 			/* we've got a match but we might end up racing with
1139 			 * key_cleanup() if the keyring is currently 'dead'
1140 			 * (ie. it has a zero usage count) */
1141 			if (!refcount_inc_not_zero(&keyring->usage))
1142 				continue;
1143 			keyring->last_used_at = ktime_get_real_seconds();
1144 			goto out;
1145 		}
1146 	}
1147 
1148 	keyring = ERR_PTR(-ENOKEY);
1149 out:
1150 	read_unlock(&keyring_name_lock);
1151 	return keyring;
1152 }
1153 
1154 static int keyring_detect_cycle_iterator(const void *object,
1155 					 void *iterator_data)
1156 {
1157 	struct keyring_search_context *ctx = iterator_data;
1158 	const struct key *key = keyring_ptr_to_key(object);
1159 
1160 	kenter("{%d}", key->serial);
1161 
1162 	/* We might get a keyring with matching index-key that is nonetheless a
1163 	 * different keyring. */
1164 	if (key != ctx->match_data.raw_data)
1165 		return 0;
1166 
1167 	ctx->result = ERR_PTR(-EDEADLK);
1168 	return 1;
1169 }
1170 
1171 /*
1172  * See if a cycle will will be created by inserting acyclic tree B in acyclic
1173  * tree A at the topmost level (ie: as a direct child of A).
1174  *
1175  * Since we are adding B to A at the top level, checking for cycles should just
1176  * be a matter of seeing if node A is somewhere in tree B.
1177  */
1178 static int keyring_detect_cycle(struct key *A, struct key *B)
1179 {
1180 	struct keyring_search_context ctx = {
1181 		.index_key		= A->index_key,
1182 		.match_data.raw_data	= A,
1183 		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1184 		.iterator		= keyring_detect_cycle_iterator,
1185 		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
1186 					   KEYRING_SEARCH_NO_UPDATE_TIME |
1187 					   KEYRING_SEARCH_NO_CHECK_PERM |
1188 					   KEYRING_SEARCH_DETECT_TOO_DEEP),
1189 	};
1190 
1191 	rcu_read_lock();
1192 	search_nested_keyrings(B, &ctx);
1193 	rcu_read_unlock();
1194 	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1195 }
1196 
1197 /*
1198  * Preallocate memory so that a key can be linked into to a keyring.
1199  */
1200 int __key_link_begin(struct key *keyring,
1201 		     const struct keyring_index_key *index_key,
1202 		     struct assoc_array_edit **_edit)
1203 	__acquires(&keyring->sem)
1204 	__acquires(&keyring_serialise_link_sem)
1205 {
1206 	struct assoc_array_edit *edit;
1207 	int ret;
1208 
1209 	kenter("%d,%s,%s,",
1210 	       keyring->serial, index_key->type->name, index_key->description);
1211 
1212 	BUG_ON(index_key->desc_len == 0);
1213 
1214 	if (keyring->type != &key_type_keyring)
1215 		return -ENOTDIR;
1216 
1217 	down_write(&keyring->sem);
1218 
1219 	ret = -EKEYREVOKED;
1220 	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1221 		goto error_krsem;
1222 
1223 	/* serialise link/link calls to prevent parallel calls causing a cycle
1224 	 * when linking two keyring in opposite orders */
1225 	if (index_key->type == &key_type_keyring)
1226 		down_write(&keyring_serialise_link_sem);
1227 
1228 	/* Create an edit script that will insert/replace the key in the
1229 	 * keyring tree.
1230 	 */
1231 	edit = assoc_array_insert(&keyring->keys,
1232 				  &keyring_assoc_array_ops,
1233 				  index_key,
1234 				  NULL);
1235 	if (IS_ERR(edit)) {
1236 		ret = PTR_ERR(edit);
1237 		goto error_sem;
1238 	}
1239 
1240 	/* If we're not replacing a link in-place then we're going to need some
1241 	 * extra quota.
1242 	 */
1243 	if (!edit->dead_leaf) {
1244 		ret = key_payload_reserve(keyring,
1245 					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1246 		if (ret < 0)
1247 			goto error_cancel;
1248 	}
1249 
1250 	*_edit = edit;
1251 	kleave(" = 0");
1252 	return 0;
1253 
1254 error_cancel:
1255 	assoc_array_cancel_edit(edit);
1256 error_sem:
1257 	if (index_key->type == &key_type_keyring)
1258 		up_write(&keyring_serialise_link_sem);
1259 error_krsem:
1260 	up_write(&keyring->sem);
1261 	kleave(" = %d", ret);
1262 	return ret;
1263 }
1264 
1265 /*
1266  * Check already instantiated keys aren't going to be a problem.
1267  *
1268  * The caller must have called __key_link_begin(). Don't need to call this for
1269  * keys that were created since __key_link_begin() was called.
1270  */
1271 int __key_link_check_live_key(struct key *keyring, struct key *key)
1272 {
1273 	if (key->type == &key_type_keyring)
1274 		/* check that we aren't going to create a cycle by linking one
1275 		 * keyring to another */
1276 		return keyring_detect_cycle(keyring, key);
1277 	return 0;
1278 }
1279 
1280 /*
1281  * Link a key into to a keyring.
1282  *
1283  * Must be called with __key_link_begin() having being called.  Discards any
1284  * already extant link to matching key if there is one, so that each keyring
1285  * holds at most one link to any given key of a particular type+description
1286  * combination.
1287  */
1288 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1289 {
1290 	__key_get(key);
1291 	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1292 	assoc_array_apply_edit(*_edit);
1293 	*_edit = NULL;
1294 }
1295 
1296 /*
1297  * Finish linking a key into to a keyring.
1298  *
1299  * Must be called with __key_link_begin() having being called.
1300  */
1301 void __key_link_end(struct key *keyring,
1302 		    const struct keyring_index_key *index_key,
1303 		    struct assoc_array_edit *edit)
1304 	__releases(&keyring->sem)
1305 	__releases(&keyring_serialise_link_sem)
1306 {
1307 	BUG_ON(index_key->type == NULL);
1308 	kenter("%d,%s,", keyring->serial, index_key->type->name);
1309 
1310 	if (index_key->type == &key_type_keyring)
1311 		up_write(&keyring_serialise_link_sem);
1312 
1313 	if (edit) {
1314 		if (!edit->dead_leaf) {
1315 			key_payload_reserve(keyring,
1316 				keyring->datalen - KEYQUOTA_LINK_BYTES);
1317 		}
1318 		assoc_array_cancel_edit(edit);
1319 	}
1320 	up_write(&keyring->sem);
1321 }
1322 
1323 /*
1324  * Check addition of keys to restricted keyrings.
1325  */
1326 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1327 {
1328 	if (!keyring->restrict_link || !keyring->restrict_link->check)
1329 		return 0;
1330 	return keyring->restrict_link->check(keyring, key->type, &key->payload,
1331 					     keyring->restrict_link->key);
1332 }
1333 
1334 /**
1335  * key_link - Link a key to a keyring
1336  * @keyring: The keyring to make the link in.
1337  * @key: The key to link to.
1338  *
1339  * Make a link in a keyring to a key, such that the keyring holds a reference
1340  * on that key and the key can potentially be found by searching that keyring.
1341  *
1342  * This function will write-lock the keyring's semaphore and will consume some
1343  * of the user's key data quota to hold the link.
1344  *
1345  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1346  * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1347  * full, -EDQUOT if there is insufficient key data quota remaining to add
1348  * another link or -ENOMEM if there's insufficient memory.
1349  *
1350  * It is assumed that the caller has checked that it is permitted for a link to
1351  * be made (the keyring should have Write permission and the key Link
1352  * permission).
1353  */
1354 int key_link(struct key *keyring, struct key *key)
1355 {
1356 	struct assoc_array_edit *edit;
1357 	int ret;
1358 
1359 	kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1360 
1361 	key_check(keyring);
1362 	key_check(key);
1363 
1364 	ret = __key_link_begin(keyring, &key->index_key, &edit);
1365 	if (ret == 0) {
1366 		kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1367 		ret = __key_link_check_restriction(keyring, key);
1368 		if (ret == 0)
1369 			ret = __key_link_check_live_key(keyring, key);
1370 		if (ret == 0)
1371 			__key_link(key, &edit);
1372 		__key_link_end(keyring, &key->index_key, edit);
1373 	}
1374 
1375 	kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1376 	return ret;
1377 }
1378 EXPORT_SYMBOL(key_link);
1379 
1380 /**
1381  * key_unlink - Unlink the first link to a key from a keyring.
1382  * @keyring: The keyring to remove the link from.
1383  * @key: The key the link is to.
1384  *
1385  * Remove a link from a keyring to a key.
1386  *
1387  * This function will write-lock the keyring's semaphore.
1388  *
1389  * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1390  * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1391  * memory.
1392  *
1393  * It is assumed that the caller has checked that it is permitted for a link to
1394  * be removed (the keyring should have Write permission; no permissions are
1395  * required on the key).
1396  */
1397 int key_unlink(struct key *keyring, struct key *key)
1398 {
1399 	struct assoc_array_edit *edit;
1400 	int ret;
1401 
1402 	key_check(keyring);
1403 	key_check(key);
1404 
1405 	if (keyring->type != &key_type_keyring)
1406 		return -ENOTDIR;
1407 
1408 	down_write(&keyring->sem);
1409 
1410 	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1411 				  &key->index_key);
1412 	if (IS_ERR(edit)) {
1413 		ret = PTR_ERR(edit);
1414 		goto error;
1415 	}
1416 	ret = -ENOENT;
1417 	if (edit == NULL)
1418 		goto error;
1419 
1420 	assoc_array_apply_edit(edit);
1421 	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1422 	ret = 0;
1423 
1424 error:
1425 	up_write(&keyring->sem);
1426 	return ret;
1427 }
1428 EXPORT_SYMBOL(key_unlink);
1429 
1430 /**
1431  * keyring_clear - Clear a keyring
1432  * @keyring: The keyring to clear.
1433  *
1434  * Clear the contents of the specified keyring.
1435  *
1436  * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1437  */
1438 int keyring_clear(struct key *keyring)
1439 {
1440 	struct assoc_array_edit *edit;
1441 	int ret;
1442 
1443 	if (keyring->type != &key_type_keyring)
1444 		return -ENOTDIR;
1445 
1446 	down_write(&keyring->sem);
1447 
1448 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1449 	if (IS_ERR(edit)) {
1450 		ret = PTR_ERR(edit);
1451 	} else {
1452 		if (edit)
1453 			assoc_array_apply_edit(edit);
1454 		key_payload_reserve(keyring, 0);
1455 		ret = 0;
1456 	}
1457 
1458 	up_write(&keyring->sem);
1459 	return ret;
1460 }
1461 EXPORT_SYMBOL(keyring_clear);
1462 
1463 /*
1464  * Dispose of the links from a revoked keyring.
1465  *
1466  * This is called with the key sem write-locked.
1467  */
1468 static void keyring_revoke(struct key *keyring)
1469 {
1470 	struct assoc_array_edit *edit;
1471 
1472 	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1473 	if (!IS_ERR(edit)) {
1474 		if (edit)
1475 			assoc_array_apply_edit(edit);
1476 		key_payload_reserve(keyring, 0);
1477 	}
1478 }
1479 
1480 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1481 {
1482 	struct key *key = keyring_ptr_to_key(object);
1483 	time64_t *limit = iterator_data;
1484 
1485 	if (key_is_dead(key, *limit))
1486 		return false;
1487 	key_get(key);
1488 	return true;
1489 }
1490 
1491 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1492 {
1493 	const struct key *key = keyring_ptr_to_key(object);
1494 	time64_t *limit = iterator_data;
1495 
1496 	key_check(key);
1497 	return key_is_dead(key, *limit);
1498 }
1499 
1500 /*
1501  * Garbage collect pointers from a keyring.
1502  *
1503  * Not called with any locks held.  The keyring's key struct will not be
1504  * deallocated under us as only our caller may deallocate it.
1505  */
1506 void keyring_gc(struct key *keyring, time64_t limit)
1507 {
1508 	int result;
1509 
1510 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1511 
1512 	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1513 			      (1 << KEY_FLAG_REVOKED)))
1514 		goto dont_gc;
1515 
1516 	/* scan the keyring looking for dead keys */
1517 	rcu_read_lock();
1518 	result = assoc_array_iterate(&keyring->keys,
1519 				     keyring_gc_check_iterator, &limit);
1520 	rcu_read_unlock();
1521 	if (result == true)
1522 		goto do_gc;
1523 
1524 dont_gc:
1525 	kleave(" [no gc]");
1526 	return;
1527 
1528 do_gc:
1529 	down_write(&keyring->sem);
1530 	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1531 		       keyring_gc_select_iterator, &limit);
1532 	up_write(&keyring->sem);
1533 	kleave(" [gc]");
1534 }
1535 
1536 /*
1537  * Garbage collect restriction pointers from a keyring.
1538  *
1539  * Keyring restrictions are associated with a key type, and must be cleaned
1540  * up if the key type is unregistered. The restriction is altered to always
1541  * reject additional keys so a keyring cannot be opened up by unregistering
1542  * a key type.
1543  *
1544  * Not called with any keyring locks held. The keyring's key struct will not
1545  * be deallocated under us as only our caller may deallocate it.
1546  *
1547  * The caller is required to hold key_types_sem and dead_type->sem. This is
1548  * fulfilled by key_gc_keytype() holding the locks on behalf of
1549  * key_garbage_collector(), which it invokes on a workqueue.
1550  */
1551 void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1552 {
1553 	struct key_restriction *keyres;
1554 
1555 	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1556 
1557 	/*
1558 	 * keyring->restrict_link is only assigned at key allocation time
1559 	 * or with the key type locked, so the only values that could be
1560 	 * concurrently assigned to keyring->restrict_link are for key
1561 	 * types other than dead_type. Given this, it's ok to check
1562 	 * the key type before acquiring keyring->sem.
1563 	 */
1564 	if (!dead_type || !keyring->restrict_link ||
1565 	    keyring->restrict_link->keytype != dead_type) {
1566 		kleave(" [no restriction gc]");
1567 		return;
1568 	}
1569 
1570 	/* Lock the keyring to ensure that a link is not in progress */
1571 	down_write(&keyring->sem);
1572 
1573 	keyres = keyring->restrict_link;
1574 
1575 	keyres->check = restrict_link_reject;
1576 
1577 	key_put(keyres->key);
1578 	keyres->key = NULL;
1579 	keyres->keytype = NULL;
1580 
1581 	up_write(&keyring->sem);
1582 
1583 	kleave(" [restriction gc]");
1584 }
1585