xref: /linux/security/keys/key.c (revision 64fc2a947a9873700929ec0ef02b4654a04e0476)
1 /* Basic authentication token and access key management
2  *
3  * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
22 
23 struct kmem_cache *key_jar;
24 struct rb_root		key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
26 
27 struct rb_root	key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
29 
30 unsigned int key_quota_root_maxkeys = 1000000;	/* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200;		/* general key count quota */
33 unsigned int key_quota_maxbytes = 20000;	/* general key space quota */
34 
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
37 
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
40 
41 #ifdef KEY_DEBUGGING
42 void __key_check(const struct key *key)
43 {
44 	printk("__key_check: key %p {%08x} should be {%08x}\n",
45 	       key, key->magic, KEY_DEBUG_MAGIC);
46 	BUG();
47 }
48 #endif
49 
50 /*
51  * Get the key quota record for a user, allocating a new record if one doesn't
52  * already exist.
53  */
54 struct key_user *key_user_lookup(kuid_t uid)
55 {
56 	struct key_user *candidate = NULL, *user;
57 	struct rb_node *parent = NULL;
58 	struct rb_node **p;
59 
60 try_again:
61 	p = &key_user_tree.rb_node;
62 	spin_lock(&key_user_lock);
63 
64 	/* search the tree for a user record with a matching UID */
65 	while (*p) {
66 		parent = *p;
67 		user = rb_entry(parent, struct key_user, node);
68 
69 		if (uid_lt(uid, user->uid))
70 			p = &(*p)->rb_left;
71 		else if (uid_gt(uid, user->uid))
72 			p = &(*p)->rb_right;
73 		else
74 			goto found;
75 	}
76 
77 	/* if we get here, we failed to find a match in the tree */
78 	if (!candidate) {
79 		/* allocate a candidate user record if we don't already have
80 		 * one */
81 		spin_unlock(&key_user_lock);
82 
83 		user = NULL;
84 		candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 		if (unlikely(!candidate))
86 			goto out;
87 
88 		/* the allocation may have scheduled, so we need to repeat the
89 		 * search lest someone else added the record whilst we were
90 		 * asleep */
91 		goto try_again;
92 	}
93 
94 	/* if we get here, then the user record still hadn't appeared on the
95 	 * second pass - so we use the candidate record */
96 	atomic_set(&candidate->usage, 1);
97 	atomic_set(&candidate->nkeys, 0);
98 	atomic_set(&candidate->nikeys, 0);
99 	candidate->uid = uid;
100 	candidate->qnkeys = 0;
101 	candidate->qnbytes = 0;
102 	spin_lock_init(&candidate->lock);
103 	mutex_init(&candidate->cons_lock);
104 
105 	rb_link_node(&candidate->node, parent, p);
106 	rb_insert_color(&candidate->node, &key_user_tree);
107 	spin_unlock(&key_user_lock);
108 	user = candidate;
109 	goto out;
110 
111 	/* okay - we found a user record for this UID */
112 found:
113 	atomic_inc(&user->usage);
114 	spin_unlock(&key_user_lock);
115 	kfree(candidate);
116 out:
117 	return user;
118 }
119 
120 /*
121  * Dispose of a user structure
122  */
123 void key_user_put(struct key_user *user)
124 {
125 	if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
126 		rb_erase(&user->node, &key_user_tree);
127 		spin_unlock(&key_user_lock);
128 
129 		kfree(user);
130 	}
131 }
132 
133 /*
134  * Allocate a serial number for a key.  These are assigned randomly to avoid
135  * security issues through covert channel problems.
136  */
137 static inline void key_alloc_serial(struct key *key)
138 {
139 	struct rb_node *parent, **p;
140 	struct key *xkey;
141 
142 	/* propose a random serial number and look for a hole for it in the
143 	 * serial number tree */
144 	do {
145 		get_random_bytes(&key->serial, sizeof(key->serial));
146 
147 		key->serial >>= 1; /* negative numbers are not permitted */
148 	} while (key->serial < 3);
149 
150 	spin_lock(&key_serial_lock);
151 
152 attempt_insertion:
153 	parent = NULL;
154 	p = &key_serial_tree.rb_node;
155 
156 	while (*p) {
157 		parent = *p;
158 		xkey = rb_entry(parent, struct key, serial_node);
159 
160 		if (key->serial < xkey->serial)
161 			p = &(*p)->rb_left;
162 		else if (key->serial > xkey->serial)
163 			p = &(*p)->rb_right;
164 		else
165 			goto serial_exists;
166 	}
167 
168 	/* we've found a suitable hole - arrange for this key to occupy it */
169 	rb_link_node(&key->serial_node, parent, p);
170 	rb_insert_color(&key->serial_node, &key_serial_tree);
171 
172 	spin_unlock(&key_serial_lock);
173 	return;
174 
175 	/* we found a key with the proposed serial number - walk the tree from
176 	 * that point looking for the next unused serial number */
177 serial_exists:
178 	for (;;) {
179 		key->serial++;
180 		if (key->serial < 3) {
181 			key->serial = 3;
182 			goto attempt_insertion;
183 		}
184 
185 		parent = rb_next(parent);
186 		if (!parent)
187 			goto attempt_insertion;
188 
189 		xkey = rb_entry(parent, struct key, serial_node);
190 		if (key->serial < xkey->serial)
191 			goto attempt_insertion;
192 	}
193 }
194 
195 /**
196  * key_alloc - Allocate a key of the specified type.
197  * @type: The type of key to allocate.
198  * @desc: The key description to allow the key to be searched out.
199  * @uid: The owner of the new key.
200  * @gid: The group ID for the new key's group permissions.
201  * @cred: The credentials specifying UID namespace.
202  * @perm: The permissions mask of the new key.
203  * @flags: Flags specifying quota properties.
204  * @restrict_link: Optional link restriction method for new keyrings.
205  *
206  * Allocate a key of the specified type with the attributes given.  The key is
207  * returned in an uninstantiated state and the caller needs to instantiate the
208  * key before returning.
209  *
210  * The user's key count quota is updated to reflect the creation of the key and
211  * the user's key data quota has the default for the key type reserved.  The
212  * instantiation function should amend this as necessary.  If insufficient
213  * quota is available, -EDQUOT will be returned.
214  *
215  * The LSM security modules can prevent a key being created, in which case
216  * -EACCES will be returned.
217  *
218  * Returns a pointer to the new key if successful and an error code otherwise.
219  *
220  * Note that the caller needs to ensure the key type isn't uninstantiated.
221  * Internally this can be done by locking key_types_sem.  Externally, this can
222  * be done by either never unregistering the key type, or making sure
223  * key_alloc() calls don't race with module unloading.
224  */
225 struct key *key_alloc(struct key_type *type, const char *desc,
226 		      kuid_t uid, kgid_t gid, const struct cred *cred,
227 		      key_perm_t perm, unsigned long flags,
228 		      int (*restrict_link)(struct key *,
229 					   const struct key_type *,
230 					   const union key_payload *))
231 {
232 	struct key_user *user = NULL;
233 	struct key *key;
234 	size_t desclen, quotalen;
235 	int ret;
236 
237 	key = ERR_PTR(-EINVAL);
238 	if (!desc || !*desc)
239 		goto error;
240 
241 	if (type->vet_description) {
242 		ret = type->vet_description(desc);
243 		if (ret < 0) {
244 			key = ERR_PTR(ret);
245 			goto error;
246 		}
247 	}
248 
249 	desclen = strlen(desc);
250 	quotalen = desclen + 1 + type->def_datalen;
251 
252 	/* get hold of the key tracking for this user */
253 	user = key_user_lookup(uid);
254 	if (!user)
255 		goto no_memory_1;
256 
257 	/* check that the user's quota permits allocation of another key and
258 	 * its description */
259 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
260 		unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
261 			key_quota_root_maxkeys : key_quota_maxkeys;
262 		unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
263 			key_quota_root_maxbytes : key_quota_maxbytes;
264 
265 		spin_lock(&user->lock);
266 		if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
267 			if (user->qnkeys + 1 >= maxkeys ||
268 			    user->qnbytes + quotalen >= maxbytes ||
269 			    user->qnbytes + quotalen < user->qnbytes)
270 				goto no_quota;
271 		}
272 
273 		user->qnkeys++;
274 		user->qnbytes += quotalen;
275 		spin_unlock(&user->lock);
276 	}
277 
278 	/* allocate and initialise the key and its description */
279 	key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
280 	if (!key)
281 		goto no_memory_2;
282 
283 	key->index_key.desc_len = desclen;
284 	key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
285 	if (!key->index_key.description)
286 		goto no_memory_3;
287 
288 	atomic_set(&key->usage, 1);
289 	init_rwsem(&key->sem);
290 	lockdep_set_class(&key->sem, &type->lock_class);
291 	key->index_key.type = type;
292 	key->user = user;
293 	key->quotalen = quotalen;
294 	key->datalen = type->def_datalen;
295 	key->uid = uid;
296 	key->gid = gid;
297 	key->perm = perm;
298 	key->restrict_link = restrict_link;
299 
300 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
301 		key->flags |= 1 << KEY_FLAG_IN_QUOTA;
302 	if (flags & KEY_ALLOC_BUILT_IN)
303 		key->flags |= 1 << KEY_FLAG_BUILTIN;
304 
305 #ifdef KEY_DEBUGGING
306 	key->magic = KEY_DEBUG_MAGIC;
307 #endif
308 
309 	/* let the security module know about the key */
310 	ret = security_key_alloc(key, cred, flags);
311 	if (ret < 0)
312 		goto security_error;
313 
314 	/* publish the key by giving it a serial number */
315 	atomic_inc(&user->nkeys);
316 	key_alloc_serial(key);
317 
318 error:
319 	return key;
320 
321 security_error:
322 	kfree(key->description);
323 	kmem_cache_free(key_jar, key);
324 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
325 		spin_lock(&user->lock);
326 		user->qnkeys--;
327 		user->qnbytes -= quotalen;
328 		spin_unlock(&user->lock);
329 	}
330 	key_user_put(user);
331 	key = ERR_PTR(ret);
332 	goto error;
333 
334 no_memory_3:
335 	kmem_cache_free(key_jar, key);
336 no_memory_2:
337 	if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
338 		spin_lock(&user->lock);
339 		user->qnkeys--;
340 		user->qnbytes -= quotalen;
341 		spin_unlock(&user->lock);
342 	}
343 	key_user_put(user);
344 no_memory_1:
345 	key = ERR_PTR(-ENOMEM);
346 	goto error;
347 
348 no_quota:
349 	spin_unlock(&user->lock);
350 	key_user_put(user);
351 	key = ERR_PTR(-EDQUOT);
352 	goto error;
353 }
354 EXPORT_SYMBOL(key_alloc);
355 
356 /**
357  * key_payload_reserve - Adjust data quota reservation for the key's payload
358  * @key: The key to make the reservation for.
359  * @datalen: The amount of data payload the caller now wants.
360  *
361  * Adjust the amount of the owning user's key data quota that a key reserves.
362  * If the amount is increased, then -EDQUOT may be returned if there isn't
363  * enough free quota available.
364  *
365  * If successful, 0 is returned.
366  */
367 int key_payload_reserve(struct key *key, size_t datalen)
368 {
369 	int delta = (int)datalen - key->datalen;
370 	int ret = 0;
371 
372 	key_check(key);
373 
374 	/* contemplate the quota adjustment */
375 	if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
376 		unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
377 			key_quota_root_maxbytes : key_quota_maxbytes;
378 
379 		spin_lock(&key->user->lock);
380 
381 		if (delta > 0 &&
382 		    (key->user->qnbytes + delta >= maxbytes ||
383 		     key->user->qnbytes + delta < key->user->qnbytes)) {
384 			ret = -EDQUOT;
385 		}
386 		else {
387 			key->user->qnbytes += delta;
388 			key->quotalen += delta;
389 		}
390 		spin_unlock(&key->user->lock);
391 	}
392 
393 	/* change the recorded data length if that didn't generate an error */
394 	if (ret == 0)
395 		key->datalen = datalen;
396 
397 	return ret;
398 }
399 EXPORT_SYMBOL(key_payload_reserve);
400 
401 /*
402  * Instantiate a key and link it into the target keyring atomically.  Must be
403  * called with the target keyring's semaphore writelocked.  The target key's
404  * semaphore need not be locked as instantiation is serialised by
405  * key_construction_mutex.
406  */
407 static int __key_instantiate_and_link(struct key *key,
408 				      struct key_preparsed_payload *prep,
409 				      struct key *keyring,
410 				      struct key *authkey,
411 				      struct assoc_array_edit **_edit)
412 {
413 	int ret, awaken;
414 
415 	key_check(key);
416 	key_check(keyring);
417 
418 	awaken = 0;
419 	ret = -EBUSY;
420 
421 	mutex_lock(&key_construction_mutex);
422 
423 	/* can't instantiate twice */
424 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
425 		/* instantiate the key */
426 		ret = key->type->instantiate(key, prep);
427 
428 		if (ret == 0) {
429 			/* mark the key as being instantiated */
430 			atomic_inc(&key->user->nikeys);
431 			set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
432 
433 			if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
434 				awaken = 1;
435 
436 			/* and link it into the destination keyring */
437 			if (keyring) {
438 				if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
439 					set_bit(KEY_FLAG_KEEP, &key->flags);
440 
441 				__key_link(key, _edit);
442 			}
443 
444 			/* disable the authorisation key */
445 			if (authkey)
446 				key_revoke(authkey);
447 
448 			if (prep->expiry != TIME_T_MAX) {
449 				key->expiry = prep->expiry;
450 				key_schedule_gc(prep->expiry + key_gc_delay);
451 			}
452 		}
453 	}
454 
455 	mutex_unlock(&key_construction_mutex);
456 
457 	/* wake up anyone waiting for a key to be constructed */
458 	if (awaken)
459 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
460 
461 	return ret;
462 }
463 
464 /**
465  * key_instantiate_and_link - Instantiate a key and link it into the keyring.
466  * @key: The key to instantiate.
467  * @data: The data to use to instantiate the keyring.
468  * @datalen: The length of @data.
469  * @keyring: Keyring to create a link in on success (or NULL).
470  * @authkey: The authorisation token permitting instantiation.
471  *
472  * Instantiate a key that's in the uninstantiated state using the provided data
473  * and, if successful, link it in to the destination keyring if one is
474  * supplied.
475  *
476  * If successful, 0 is returned, the authorisation token is revoked and anyone
477  * waiting for the key is woken up.  If the key was already instantiated,
478  * -EBUSY will be returned.
479  */
480 int key_instantiate_and_link(struct key *key,
481 			     const void *data,
482 			     size_t datalen,
483 			     struct key *keyring,
484 			     struct key *authkey)
485 {
486 	struct key_preparsed_payload prep;
487 	struct assoc_array_edit *edit;
488 	int ret;
489 
490 	memset(&prep, 0, sizeof(prep));
491 	prep.data = data;
492 	prep.datalen = datalen;
493 	prep.quotalen = key->type->def_datalen;
494 	prep.expiry = TIME_T_MAX;
495 	if (key->type->preparse) {
496 		ret = key->type->preparse(&prep);
497 		if (ret < 0)
498 			goto error;
499 	}
500 
501 	if (keyring) {
502 		if (keyring->restrict_link) {
503 			ret = keyring->restrict_link(keyring, key->type,
504 						     &prep.payload);
505 			if (ret < 0)
506 				goto error;
507 		}
508 		ret = __key_link_begin(keyring, &key->index_key, &edit);
509 		if (ret < 0)
510 			goto error;
511 	}
512 
513 	ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
514 
515 	if (keyring)
516 		__key_link_end(keyring, &key->index_key, edit);
517 
518 error:
519 	if (key->type->preparse)
520 		key->type->free_preparse(&prep);
521 	return ret;
522 }
523 
524 EXPORT_SYMBOL(key_instantiate_and_link);
525 
526 /**
527  * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
528  * @key: The key to instantiate.
529  * @timeout: The timeout on the negative key.
530  * @error: The error to return when the key is hit.
531  * @keyring: Keyring to create a link in on success (or NULL).
532  * @authkey: The authorisation token permitting instantiation.
533  *
534  * Negatively instantiate a key that's in the uninstantiated state and, if
535  * successful, set its timeout and stored error and link it in to the
536  * destination keyring if one is supplied.  The key and any links to the key
537  * will be automatically garbage collected after the timeout expires.
538  *
539  * Negative keys are used to rate limit repeated request_key() calls by causing
540  * them to return the stored error code (typically ENOKEY) until the negative
541  * key expires.
542  *
543  * If successful, 0 is returned, the authorisation token is revoked and anyone
544  * waiting for the key is woken up.  If the key was already instantiated,
545  * -EBUSY will be returned.
546  */
547 int key_reject_and_link(struct key *key,
548 			unsigned timeout,
549 			unsigned error,
550 			struct key *keyring,
551 			struct key *authkey)
552 {
553 	struct assoc_array_edit *edit;
554 	struct timespec now;
555 	int ret, awaken, link_ret = 0;
556 
557 	key_check(key);
558 	key_check(keyring);
559 
560 	awaken = 0;
561 	ret = -EBUSY;
562 
563 	if (keyring) {
564 		if (keyring->restrict_link)
565 			return -EPERM;
566 
567 		link_ret = __key_link_begin(keyring, &key->index_key, &edit);
568 	}
569 
570 	mutex_lock(&key_construction_mutex);
571 
572 	/* can't instantiate twice */
573 	if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
574 		/* mark the key as being negatively instantiated */
575 		atomic_inc(&key->user->nikeys);
576 		key->reject_error = -error;
577 		smp_wmb();
578 		set_bit(KEY_FLAG_NEGATIVE, &key->flags);
579 		set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
580 		now = current_kernel_time();
581 		key->expiry = now.tv_sec + timeout;
582 		key_schedule_gc(key->expiry + key_gc_delay);
583 
584 		if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
585 			awaken = 1;
586 
587 		ret = 0;
588 
589 		/* and link it into the destination keyring */
590 		if (keyring && link_ret == 0)
591 			__key_link(key, &edit);
592 
593 		/* disable the authorisation key */
594 		if (authkey)
595 			key_revoke(authkey);
596 	}
597 
598 	mutex_unlock(&key_construction_mutex);
599 
600 	if (keyring && link_ret == 0)
601 		__key_link_end(keyring, &key->index_key, edit);
602 
603 	/* wake up anyone waiting for a key to be constructed */
604 	if (awaken)
605 		wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
606 
607 	return ret == 0 ? link_ret : ret;
608 }
609 EXPORT_SYMBOL(key_reject_and_link);
610 
611 /**
612  * key_put - Discard a reference to a key.
613  * @key: The key to discard a reference from.
614  *
615  * Discard a reference to a key, and when all the references are gone, we
616  * schedule the cleanup task to come and pull it out of the tree in process
617  * context at some later time.
618  */
619 void key_put(struct key *key)
620 {
621 	if (key) {
622 		key_check(key);
623 
624 		if (atomic_dec_and_test(&key->usage))
625 			schedule_work(&key_gc_work);
626 	}
627 }
628 EXPORT_SYMBOL(key_put);
629 
630 /*
631  * Find a key by its serial number.
632  */
633 struct key *key_lookup(key_serial_t id)
634 {
635 	struct rb_node *n;
636 	struct key *key;
637 
638 	spin_lock(&key_serial_lock);
639 
640 	/* search the tree for the specified key */
641 	n = key_serial_tree.rb_node;
642 	while (n) {
643 		key = rb_entry(n, struct key, serial_node);
644 
645 		if (id < key->serial)
646 			n = n->rb_left;
647 		else if (id > key->serial)
648 			n = n->rb_right;
649 		else
650 			goto found;
651 	}
652 
653 not_found:
654 	key = ERR_PTR(-ENOKEY);
655 	goto error;
656 
657 found:
658 	/* pretend it doesn't exist if it is awaiting deletion */
659 	if (atomic_read(&key->usage) == 0)
660 		goto not_found;
661 
662 	/* this races with key_put(), but that doesn't matter since key_put()
663 	 * doesn't actually change the key
664 	 */
665 	__key_get(key);
666 
667 error:
668 	spin_unlock(&key_serial_lock);
669 	return key;
670 }
671 
672 /*
673  * Find and lock the specified key type against removal.
674  *
675  * We return with the sem read-locked if successful.  If the type wasn't
676  * available -ENOKEY is returned instead.
677  */
678 struct key_type *key_type_lookup(const char *type)
679 {
680 	struct key_type *ktype;
681 
682 	down_read(&key_types_sem);
683 
684 	/* look up the key type to see if it's one of the registered kernel
685 	 * types */
686 	list_for_each_entry(ktype, &key_types_list, link) {
687 		if (strcmp(ktype->name, type) == 0)
688 			goto found_kernel_type;
689 	}
690 
691 	up_read(&key_types_sem);
692 	ktype = ERR_PTR(-ENOKEY);
693 
694 found_kernel_type:
695 	return ktype;
696 }
697 
698 void key_set_timeout(struct key *key, unsigned timeout)
699 {
700 	struct timespec now;
701 	time_t expiry = 0;
702 
703 	/* make the changes with the locks held to prevent races */
704 	down_write(&key->sem);
705 
706 	if (timeout > 0) {
707 		now = current_kernel_time();
708 		expiry = now.tv_sec + timeout;
709 	}
710 
711 	key->expiry = expiry;
712 	key_schedule_gc(key->expiry + key_gc_delay);
713 
714 	up_write(&key->sem);
715 }
716 EXPORT_SYMBOL_GPL(key_set_timeout);
717 
718 /*
719  * Unlock a key type locked by key_type_lookup().
720  */
721 void key_type_put(struct key_type *ktype)
722 {
723 	up_read(&key_types_sem);
724 }
725 
726 /*
727  * Attempt to update an existing key.
728  *
729  * The key is given to us with an incremented refcount that we need to discard
730  * if we get an error.
731  */
732 static inline key_ref_t __key_update(key_ref_t key_ref,
733 				     struct key_preparsed_payload *prep)
734 {
735 	struct key *key = key_ref_to_ptr(key_ref);
736 	int ret;
737 
738 	/* need write permission on the key to update it */
739 	ret = key_permission(key_ref, KEY_NEED_WRITE);
740 	if (ret < 0)
741 		goto error;
742 
743 	ret = -EEXIST;
744 	if (!key->type->update)
745 		goto error;
746 
747 	down_write(&key->sem);
748 
749 	ret = key->type->update(key, prep);
750 	if (ret == 0)
751 		/* updating a negative key instantiates it */
752 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
753 
754 	up_write(&key->sem);
755 
756 	if (ret < 0)
757 		goto error;
758 out:
759 	return key_ref;
760 
761 error:
762 	key_put(key);
763 	key_ref = ERR_PTR(ret);
764 	goto out;
765 }
766 
767 /**
768  * key_create_or_update - Update or create and instantiate a key.
769  * @keyring_ref: A pointer to the destination keyring with possession flag.
770  * @type: The type of key.
771  * @description: The searchable description for the key.
772  * @payload: The data to use to instantiate or update the key.
773  * @plen: The length of @payload.
774  * @perm: The permissions mask for a new key.
775  * @flags: The quota flags for a new key.
776  *
777  * Search the destination keyring for a key of the same description and if one
778  * is found, update it, otherwise create and instantiate a new one and create a
779  * link to it from that keyring.
780  *
781  * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
782  * concocted.
783  *
784  * Returns a pointer to the new key if successful, -ENODEV if the key type
785  * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
786  * caller isn't permitted to modify the keyring or the LSM did not permit
787  * creation of the key.
788  *
789  * On success, the possession flag from the keyring ref will be tacked on to
790  * the key ref before it is returned.
791  */
792 key_ref_t key_create_or_update(key_ref_t keyring_ref,
793 			       const char *type,
794 			       const char *description,
795 			       const void *payload,
796 			       size_t plen,
797 			       key_perm_t perm,
798 			       unsigned long flags)
799 {
800 	struct keyring_index_key index_key = {
801 		.description	= description,
802 	};
803 	struct key_preparsed_payload prep;
804 	struct assoc_array_edit *edit;
805 	const struct cred *cred = current_cred();
806 	struct key *keyring, *key = NULL;
807 	key_ref_t key_ref;
808 	int ret;
809 	int (*restrict_link)(struct key *,
810 			     const struct key_type *,
811 			     const union key_payload *) = NULL;
812 
813 	/* look up the key type to see if it's one of the registered kernel
814 	 * types */
815 	index_key.type = key_type_lookup(type);
816 	if (IS_ERR(index_key.type)) {
817 		key_ref = ERR_PTR(-ENODEV);
818 		goto error;
819 	}
820 
821 	key_ref = ERR_PTR(-EINVAL);
822 	if (!index_key.type->instantiate ||
823 	    (!index_key.description && !index_key.type->preparse))
824 		goto error_put_type;
825 
826 	keyring = key_ref_to_ptr(keyring_ref);
827 
828 	key_check(keyring);
829 
830 	key_ref = ERR_PTR(-EPERM);
831 	if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
832 		restrict_link = keyring->restrict_link;
833 
834 	key_ref = ERR_PTR(-ENOTDIR);
835 	if (keyring->type != &key_type_keyring)
836 		goto error_put_type;
837 
838 	memset(&prep, 0, sizeof(prep));
839 	prep.data = payload;
840 	prep.datalen = plen;
841 	prep.quotalen = index_key.type->def_datalen;
842 	prep.expiry = TIME_T_MAX;
843 	if (index_key.type->preparse) {
844 		ret = index_key.type->preparse(&prep);
845 		if (ret < 0) {
846 			key_ref = ERR_PTR(ret);
847 			goto error_free_prep;
848 		}
849 		if (!index_key.description)
850 			index_key.description = prep.description;
851 		key_ref = ERR_PTR(-EINVAL);
852 		if (!index_key.description)
853 			goto error_free_prep;
854 	}
855 	index_key.desc_len = strlen(index_key.description);
856 
857 	if (restrict_link) {
858 		ret = restrict_link(keyring, index_key.type, &prep.payload);
859 		if (ret < 0) {
860 			key_ref = ERR_PTR(ret);
861 			goto error_free_prep;
862 		}
863 	}
864 
865 	ret = __key_link_begin(keyring, &index_key, &edit);
866 	if (ret < 0) {
867 		key_ref = ERR_PTR(ret);
868 		goto error_free_prep;
869 	}
870 
871 	/* if we're going to allocate a new key, we're going to have
872 	 * to modify the keyring */
873 	ret = key_permission(keyring_ref, KEY_NEED_WRITE);
874 	if (ret < 0) {
875 		key_ref = ERR_PTR(ret);
876 		goto error_link_end;
877 	}
878 
879 	/* if it's possible to update this type of key, search for an existing
880 	 * key of the same type and description in the destination keyring and
881 	 * update that instead if possible
882 	 */
883 	if (index_key.type->update) {
884 		key_ref = find_key_to_update(keyring_ref, &index_key);
885 		if (key_ref)
886 			goto found_matching_key;
887 	}
888 
889 	/* if the client doesn't provide, decide on the permissions we want */
890 	if (perm == KEY_PERM_UNDEF) {
891 		perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
892 		perm |= KEY_USR_VIEW;
893 
894 		if (index_key.type->read)
895 			perm |= KEY_POS_READ;
896 
897 		if (index_key.type == &key_type_keyring ||
898 		    index_key.type->update)
899 			perm |= KEY_POS_WRITE;
900 	}
901 
902 	/* allocate a new key */
903 	key = key_alloc(index_key.type, index_key.description,
904 			cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
905 	if (IS_ERR(key)) {
906 		key_ref = ERR_CAST(key);
907 		goto error_link_end;
908 	}
909 
910 	/* instantiate it and link it into the target keyring */
911 	ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
912 	if (ret < 0) {
913 		key_put(key);
914 		key_ref = ERR_PTR(ret);
915 		goto error_link_end;
916 	}
917 
918 	key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
919 
920 error_link_end:
921 	__key_link_end(keyring, &index_key, edit);
922 error_free_prep:
923 	if (index_key.type->preparse)
924 		index_key.type->free_preparse(&prep);
925 error_put_type:
926 	key_type_put(index_key.type);
927 error:
928 	return key_ref;
929 
930  found_matching_key:
931 	/* we found a matching key, so we're going to try to update it
932 	 * - we can drop the locks first as we have the key pinned
933 	 */
934 	__key_link_end(keyring, &index_key, edit);
935 
936 	key_ref = __key_update(key_ref, &prep);
937 	goto error_free_prep;
938 }
939 EXPORT_SYMBOL(key_create_or_update);
940 
941 /**
942  * key_update - Update a key's contents.
943  * @key_ref: The pointer (plus possession flag) to the key.
944  * @payload: The data to be used to update the key.
945  * @plen: The length of @payload.
946  *
947  * Attempt to update the contents of a key with the given payload data.  The
948  * caller must be granted Write permission on the key.  Negative keys can be
949  * instantiated by this method.
950  *
951  * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
952  * type does not support updating.  The key type may return other errors.
953  */
954 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
955 {
956 	struct key_preparsed_payload prep;
957 	struct key *key = key_ref_to_ptr(key_ref);
958 	int ret;
959 
960 	key_check(key);
961 
962 	/* the key must be writable */
963 	ret = key_permission(key_ref, KEY_NEED_WRITE);
964 	if (ret < 0)
965 		goto error;
966 
967 	/* attempt to update it if supported */
968 	ret = -EOPNOTSUPP;
969 	if (!key->type->update)
970 		goto error;
971 
972 	memset(&prep, 0, sizeof(prep));
973 	prep.data = payload;
974 	prep.datalen = plen;
975 	prep.quotalen = key->type->def_datalen;
976 	prep.expiry = TIME_T_MAX;
977 	if (key->type->preparse) {
978 		ret = key->type->preparse(&prep);
979 		if (ret < 0)
980 			goto error;
981 	}
982 
983 	down_write(&key->sem);
984 
985 	ret = key->type->update(key, &prep);
986 	if (ret == 0)
987 		/* updating a negative key instantiates it */
988 		clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
989 
990 	up_write(&key->sem);
991 
992 error:
993 	if (key->type->preparse)
994 		key->type->free_preparse(&prep);
995 	return ret;
996 }
997 EXPORT_SYMBOL(key_update);
998 
999 /**
1000  * key_revoke - Revoke a key.
1001  * @key: The key to be revoked.
1002  *
1003  * Mark a key as being revoked and ask the type to free up its resources.  The
1004  * revocation timeout is set and the key and all its links will be
1005  * automatically garbage collected after key_gc_delay amount of time if they
1006  * are not manually dealt with first.
1007  */
1008 void key_revoke(struct key *key)
1009 {
1010 	struct timespec now;
1011 	time_t time;
1012 
1013 	key_check(key);
1014 
1015 	/* make sure no one's trying to change or use the key when we mark it
1016 	 * - we tell lockdep that we might nest because we might be revoking an
1017 	 *   authorisation key whilst holding the sem on a key we've just
1018 	 *   instantiated
1019 	 */
1020 	down_write_nested(&key->sem, 1);
1021 	if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1022 	    key->type->revoke)
1023 		key->type->revoke(key);
1024 
1025 	/* set the death time to no more than the expiry time */
1026 	now = current_kernel_time();
1027 	time = now.tv_sec;
1028 	if (key->revoked_at == 0 || key->revoked_at > time) {
1029 		key->revoked_at = time;
1030 		key_schedule_gc(key->revoked_at + key_gc_delay);
1031 	}
1032 
1033 	up_write(&key->sem);
1034 }
1035 EXPORT_SYMBOL(key_revoke);
1036 
1037 /**
1038  * key_invalidate - Invalidate a key.
1039  * @key: The key to be invalidated.
1040  *
1041  * Mark a key as being invalidated and have it cleaned up immediately.  The key
1042  * is ignored by all searches and other operations from this point.
1043  */
1044 void key_invalidate(struct key *key)
1045 {
1046 	kenter("%d", key_serial(key));
1047 
1048 	key_check(key);
1049 
1050 	if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1051 		down_write_nested(&key->sem, 1);
1052 		if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1053 			key_schedule_gc_links();
1054 		up_write(&key->sem);
1055 	}
1056 }
1057 EXPORT_SYMBOL(key_invalidate);
1058 
1059 /**
1060  * generic_key_instantiate - Simple instantiation of a key from preparsed data
1061  * @key: The key to be instantiated
1062  * @prep: The preparsed data to load.
1063  *
1064  * Instantiate a key from preparsed data.  We assume we can just copy the data
1065  * in directly and clear the old pointers.
1066  *
1067  * This can be pointed to directly by the key type instantiate op pointer.
1068  */
1069 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1070 {
1071 	int ret;
1072 
1073 	pr_devel("==>%s()\n", __func__);
1074 
1075 	ret = key_payload_reserve(key, prep->quotalen);
1076 	if (ret == 0) {
1077 		rcu_assign_keypointer(key, prep->payload.data[0]);
1078 		key->payload.data[1] = prep->payload.data[1];
1079 		key->payload.data[2] = prep->payload.data[2];
1080 		key->payload.data[3] = prep->payload.data[3];
1081 		prep->payload.data[0] = NULL;
1082 		prep->payload.data[1] = NULL;
1083 		prep->payload.data[2] = NULL;
1084 		prep->payload.data[3] = NULL;
1085 	}
1086 	pr_devel("<==%s() = %d\n", __func__, ret);
1087 	return ret;
1088 }
1089 EXPORT_SYMBOL(generic_key_instantiate);
1090 
1091 /**
1092  * register_key_type - Register a type of key.
1093  * @ktype: The new key type.
1094  *
1095  * Register a new key type.
1096  *
1097  * Returns 0 on success or -EEXIST if a type of this name already exists.
1098  */
1099 int register_key_type(struct key_type *ktype)
1100 {
1101 	struct key_type *p;
1102 	int ret;
1103 
1104 	memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1105 
1106 	ret = -EEXIST;
1107 	down_write(&key_types_sem);
1108 
1109 	/* disallow key types with the same name */
1110 	list_for_each_entry(p, &key_types_list, link) {
1111 		if (strcmp(p->name, ktype->name) == 0)
1112 			goto out;
1113 	}
1114 
1115 	/* store the type */
1116 	list_add(&ktype->link, &key_types_list);
1117 
1118 	pr_notice("Key type %s registered\n", ktype->name);
1119 	ret = 0;
1120 
1121 out:
1122 	up_write(&key_types_sem);
1123 	return ret;
1124 }
1125 EXPORT_SYMBOL(register_key_type);
1126 
1127 /**
1128  * unregister_key_type - Unregister a type of key.
1129  * @ktype: The key type.
1130  *
1131  * Unregister a key type and mark all the extant keys of this type as dead.
1132  * Those keys of this type are then destroyed to get rid of their payloads and
1133  * they and their links will be garbage collected as soon as possible.
1134  */
1135 void unregister_key_type(struct key_type *ktype)
1136 {
1137 	down_write(&key_types_sem);
1138 	list_del_init(&ktype->link);
1139 	downgrade_write(&key_types_sem);
1140 	key_gc_keytype(ktype);
1141 	pr_notice("Key type %s unregistered\n", ktype->name);
1142 	up_read(&key_types_sem);
1143 }
1144 EXPORT_SYMBOL(unregister_key_type);
1145 
1146 /*
1147  * Initialise the key management state.
1148  */
1149 void __init key_init(void)
1150 {
1151 	/* allocate a slab in which we can store keys */
1152 	key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1153 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1154 
1155 	/* add the special key types */
1156 	list_add_tail(&key_type_keyring.link, &key_types_list);
1157 	list_add_tail(&key_type_dead.link, &key_types_list);
1158 	list_add_tail(&key_type_user.link, &key_types_list);
1159 	list_add_tail(&key_type_logon.link, &key_types_list);
1160 
1161 	/* record the root user tracking */
1162 	rb_link_node(&root_key_user.node,
1163 		     NULL,
1164 		     &key_user_tree.rb_node);
1165 
1166 	rb_insert_color(&root_key_user.node,
1167 			&key_user_tree);
1168 }
1169