xref: /linux/net/wireless/reg.c (revision 957e3facd147510f2cf8780e38606f1d707f0e33)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * Permission to use, copy, modify, and/or distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  */
20 
21 
22 /**
23  * DOC: Wireless regulatory infrastructure
24  *
25  * The usual implementation is for a driver to read a device EEPROM to
26  * determine which regulatory domain it should be operating under, then
27  * looking up the allowable channels in a driver-local table and finally
28  * registering those channels in the wiphy structure.
29  *
30  * Another set of compliance enforcement is for drivers to use their
31  * own compliance limits which can be stored on the EEPROM. The host
32  * driver or firmware may ensure these are used.
33  *
34  * In addition to all this we provide an extra layer of regulatory
35  * conformance. For drivers which do not have any regulatory
36  * information CRDA provides the complete regulatory solution.
37  * For others it provides a community effort on further restrictions
38  * to enhance compliance.
39  *
40  * Note: When number of rules --> infinity we will not be able to
41  * index on alpha2 any more, instead we'll probably have to
42  * rely on some SHA1 checksum of the regdomain for example.
43  *
44  */
45 
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
47 
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
57 #include "core.h"
58 #include "reg.h"
59 #include "rdev-ops.h"
60 #include "regdb.h"
61 #include "nl80211.h"
62 
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...)			\
65 	printk(KERN_DEBUG pr_fmt(format), ##args)
66 #else
67 #define REG_DBG_PRINT(args...)
68 #endif
69 
70 /*
71  * Grace period we give before making sure all current interfaces reside on
72  * channels allowed by the current regulatory domain.
73  */
74 #define REG_ENFORCE_GRACE_MS 60000
75 
76 /**
77  * enum reg_request_treatment - regulatory request treatment
78  *
79  * @REG_REQ_OK: continue processing the regulatory request
80  * @REG_REQ_IGNORE: ignore the regulatory request
81  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82  *	be intersected with the current one.
83  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84  *	regulatory settings, and no further processing is required.
85  * @REG_REQ_USER_HINT_HANDLED: a non alpha2  user hint was handled and no
86  *	further processing is required, i.e., not need to update last_request
87  *	etc. This should be used for user hints that do not provide an alpha2
88  *	but some other type of regulatory hint, i.e., indoor operation.
89  */
90 enum reg_request_treatment {
91 	REG_REQ_OK,
92 	REG_REQ_IGNORE,
93 	REG_REQ_INTERSECT,
94 	REG_REQ_ALREADY_SET,
95 	REG_REQ_USER_HINT_HANDLED,
96 };
97 
98 static struct regulatory_request core_request_world = {
99 	.initiator = NL80211_REGDOM_SET_BY_CORE,
100 	.alpha2[0] = '0',
101 	.alpha2[1] = '0',
102 	.intersect = false,
103 	.processed = true,
104 	.country_ie_env = ENVIRON_ANY,
105 };
106 
107 /*
108  * Receipt of information from last regulatory request,
109  * protected by RTNL (and can be accessed with RCU protection)
110  */
111 static struct regulatory_request __rcu *last_request =
112 	(void __rcu *)&core_request_world;
113 
114 /* To trigger userspace events */
115 static struct platform_device *reg_pdev;
116 
117 /*
118  * Central wireless core regulatory domains, we only need two,
119  * the current one and a world regulatory domain in case we have no
120  * information to give us an alpha2.
121  * (protected by RTNL, can be read under RCU)
122  */
123 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
124 
125 /*
126  * Number of devices that registered to the core
127  * that support cellular base station regulatory hints
128  * (protected by RTNL)
129  */
130 static int reg_num_devs_support_basehint;
131 
132 /*
133  * State variable indicating if the platform on which the devices
134  * are attached is operating in an indoor environment. The state variable
135  * is relevant for all registered devices.
136  * (protected by RTNL)
137  */
138 static bool reg_is_indoor;
139 
140 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141 {
142 	return rtnl_dereference(cfg80211_regdomain);
143 }
144 
145 static const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
146 {
147 	return rtnl_dereference(wiphy->regd);
148 }
149 
150 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
151 {
152 	switch (dfs_region) {
153 	case NL80211_DFS_UNSET:
154 		return "unset";
155 	case NL80211_DFS_FCC:
156 		return "FCC";
157 	case NL80211_DFS_ETSI:
158 		return "ETSI";
159 	case NL80211_DFS_JP:
160 		return "JP";
161 	}
162 	return "Unknown";
163 }
164 
165 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
166 {
167 	const struct ieee80211_regdomain *regd = NULL;
168 	const struct ieee80211_regdomain *wiphy_regd = NULL;
169 
170 	regd = get_cfg80211_regdom();
171 	if (!wiphy)
172 		goto out;
173 
174 	wiphy_regd = get_wiphy_regdom(wiphy);
175 	if (!wiphy_regd)
176 		goto out;
177 
178 	if (wiphy_regd->dfs_region == regd->dfs_region)
179 		goto out;
180 
181 	REG_DBG_PRINT("%s: device specific dfs_region "
182 		      "(%s) disagrees with cfg80211's "
183 		      "central dfs_region (%s)\n",
184 		      dev_name(&wiphy->dev),
185 		      reg_dfs_region_str(wiphy_regd->dfs_region),
186 		      reg_dfs_region_str(regd->dfs_region));
187 
188 out:
189 	return regd->dfs_region;
190 }
191 
192 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
193 {
194 	if (!r)
195 		return;
196 	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
197 }
198 
199 static struct regulatory_request *get_last_request(void)
200 {
201 	return rcu_dereference_rtnl(last_request);
202 }
203 
204 /* Used to queue up regulatory hints */
205 static LIST_HEAD(reg_requests_list);
206 static spinlock_t reg_requests_lock;
207 
208 /* Used to queue up beacon hints for review */
209 static LIST_HEAD(reg_pending_beacons);
210 static spinlock_t reg_pending_beacons_lock;
211 
212 /* Used to keep track of processed beacon hints */
213 static LIST_HEAD(reg_beacon_list);
214 
215 struct reg_beacon {
216 	struct list_head list;
217 	struct ieee80211_channel chan;
218 };
219 
220 static void reg_check_chans_work(struct work_struct *work);
221 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
222 
223 static void reg_todo(struct work_struct *work);
224 static DECLARE_WORK(reg_work, reg_todo);
225 
226 static void reg_timeout_work(struct work_struct *work);
227 static DECLARE_DELAYED_WORK(reg_timeout, reg_timeout_work);
228 
229 /* We keep a static world regulatory domain in case of the absence of CRDA */
230 static const struct ieee80211_regdomain world_regdom = {
231 	.n_reg_rules = 6,
232 	.alpha2 =  "00",
233 	.reg_rules = {
234 		/* IEEE 802.11b/g, channels 1..11 */
235 		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
236 		/* IEEE 802.11b/g, channels 12..13. */
237 		REG_RULE(2467-10, 2472+10, 40, 6, 20,
238 			NL80211_RRF_NO_IR),
239 		/* IEEE 802.11 channel 14 - Only JP enables
240 		 * this and for 802.11b only */
241 		REG_RULE(2484-10, 2484+10, 20, 6, 20,
242 			NL80211_RRF_NO_IR |
243 			NL80211_RRF_NO_OFDM),
244 		/* IEEE 802.11a, channel 36..48 */
245 		REG_RULE(5180-10, 5240+10, 160, 6, 20,
246                         NL80211_RRF_NO_IR),
247 
248 		/* IEEE 802.11a, channel 52..64 - DFS required */
249 		REG_RULE(5260-10, 5320+10, 160, 6, 20,
250 			NL80211_RRF_NO_IR |
251 			NL80211_RRF_DFS),
252 
253 		/* IEEE 802.11a, channel 100..144 - DFS required */
254 		REG_RULE(5500-10, 5720+10, 160, 6, 20,
255 			NL80211_RRF_NO_IR |
256 			NL80211_RRF_DFS),
257 
258 		/* IEEE 802.11a, channel 149..165 */
259 		REG_RULE(5745-10, 5825+10, 80, 6, 20,
260 			NL80211_RRF_NO_IR),
261 
262 		/* IEEE 802.11ad (60gHz), channels 1..3 */
263 		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
264 	}
265 };
266 
267 /* protected by RTNL */
268 static const struct ieee80211_regdomain *cfg80211_world_regdom =
269 	&world_regdom;
270 
271 static char *ieee80211_regdom = "00";
272 static char user_alpha2[2];
273 
274 module_param(ieee80211_regdom, charp, 0444);
275 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
276 
277 static void reg_free_request(struct regulatory_request *request)
278 {
279 	if (request != get_last_request())
280 		kfree(request);
281 }
282 
283 static void reg_free_last_request(void)
284 {
285 	struct regulatory_request *lr = get_last_request();
286 
287 	if (lr != &core_request_world && lr)
288 		kfree_rcu(lr, rcu_head);
289 }
290 
291 static void reg_update_last_request(struct regulatory_request *request)
292 {
293 	struct regulatory_request *lr;
294 
295 	lr = get_last_request();
296 	if (lr == request)
297 		return;
298 
299 	reg_free_last_request();
300 	rcu_assign_pointer(last_request, request);
301 }
302 
303 static void reset_regdomains(bool full_reset,
304 			     const struct ieee80211_regdomain *new_regdom)
305 {
306 	const struct ieee80211_regdomain *r;
307 
308 	ASSERT_RTNL();
309 
310 	r = get_cfg80211_regdom();
311 
312 	/* avoid freeing static information or freeing something twice */
313 	if (r == cfg80211_world_regdom)
314 		r = NULL;
315 	if (cfg80211_world_regdom == &world_regdom)
316 		cfg80211_world_regdom = NULL;
317 	if (r == &world_regdom)
318 		r = NULL;
319 
320 	rcu_free_regdom(r);
321 	rcu_free_regdom(cfg80211_world_regdom);
322 
323 	cfg80211_world_regdom = &world_regdom;
324 	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
325 
326 	if (!full_reset)
327 		return;
328 
329 	reg_update_last_request(&core_request_world);
330 }
331 
332 /*
333  * Dynamic world regulatory domain requested by the wireless
334  * core upon initialization
335  */
336 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
337 {
338 	struct regulatory_request *lr;
339 
340 	lr = get_last_request();
341 
342 	WARN_ON(!lr);
343 
344 	reset_regdomains(false, rd);
345 
346 	cfg80211_world_regdom = rd;
347 }
348 
349 bool is_world_regdom(const char *alpha2)
350 {
351 	if (!alpha2)
352 		return false;
353 	return alpha2[0] == '0' && alpha2[1] == '0';
354 }
355 
356 static bool is_alpha2_set(const char *alpha2)
357 {
358 	if (!alpha2)
359 		return false;
360 	return alpha2[0] && alpha2[1];
361 }
362 
363 static bool is_unknown_alpha2(const char *alpha2)
364 {
365 	if (!alpha2)
366 		return false;
367 	/*
368 	 * Special case where regulatory domain was built by driver
369 	 * but a specific alpha2 cannot be determined
370 	 */
371 	return alpha2[0] == '9' && alpha2[1] == '9';
372 }
373 
374 static bool is_intersected_alpha2(const char *alpha2)
375 {
376 	if (!alpha2)
377 		return false;
378 	/*
379 	 * Special case where regulatory domain is the
380 	 * result of an intersection between two regulatory domain
381 	 * structures
382 	 */
383 	return alpha2[0] == '9' && alpha2[1] == '8';
384 }
385 
386 static bool is_an_alpha2(const char *alpha2)
387 {
388 	if (!alpha2)
389 		return false;
390 	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
391 }
392 
393 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
394 {
395 	if (!alpha2_x || !alpha2_y)
396 		return false;
397 	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
398 }
399 
400 static bool regdom_changes(const char *alpha2)
401 {
402 	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
403 
404 	if (!r)
405 		return true;
406 	return !alpha2_equal(r->alpha2, alpha2);
407 }
408 
409 /*
410  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
411  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
412  * has ever been issued.
413  */
414 static bool is_user_regdom_saved(void)
415 {
416 	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
417 		return false;
418 
419 	/* This would indicate a mistake on the design */
420 	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
421 		 "Unexpected user alpha2: %c%c\n",
422 		 user_alpha2[0], user_alpha2[1]))
423 		return false;
424 
425 	return true;
426 }
427 
428 static const struct ieee80211_regdomain *
429 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
430 {
431 	struct ieee80211_regdomain *regd;
432 	int size_of_regd;
433 	unsigned int i;
434 
435 	size_of_regd =
436 		sizeof(struct ieee80211_regdomain) +
437 		src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
438 
439 	regd = kzalloc(size_of_regd, GFP_KERNEL);
440 	if (!regd)
441 		return ERR_PTR(-ENOMEM);
442 
443 	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
444 
445 	for (i = 0; i < src_regd->n_reg_rules; i++)
446 		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
447 		       sizeof(struct ieee80211_reg_rule));
448 
449 	return regd;
450 }
451 
452 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
453 struct reg_regdb_search_request {
454 	char alpha2[2];
455 	struct list_head list;
456 };
457 
458 static LIST_HEAD(reg_regdb_search_list);
459 static DEFINE_MUTEX(reg_regdb_search_mutex);
460 
461 static void reg_regdb_search(struct work_struct *work)
462 {
463 	struct reg_regdb_search_request *request;
464 	const struct ieee80211_regdomain *curdom, *regdom = NULL;
465 	int i;
466 
467 	rtnl_lock();
468 
469 	mutex_lock(&reg_regdb_search_mutex);
470 	while (!list_empty(&reg_regdb_search_list)) {
471 		request = list_first_entry(&reg_regdb_search_list,
472 					   struct reg_regdb_search_request,
473 					   list);
474 		list_del(&request->list);
475 
476 		for (i = 0; i < reg_regdb_size; i++) {
477 			curdom = reg_regdb[i];
478 
479 			if (alpha2_equal(request->alpha2, curdom->alpha2)) {
480 				regdom = reg_copy_regd(curdom);
481 				break;
482 			}
483 		}
484 
485 		kfree(request);
486 	}
487 	mutex_unlock(&reg_regdb_search_mutex);
488 
489 	if (!IS_ERR_OR_NULL(regdom))
490 		set_regdom(regdom);
491 
492 	rtnl_unlock();
493 }
494 
495 static DECLARE_WORK(reg_regdb_work, reg_regdb_search);
496 
497 static void reg_regdb_query(const char *alpha2)
498 {
499 	struct reg_regdb_search_request *request;
500 
501 	if (!alpha2)
502 		return;
503 
504 	request = kzalloc(sizeof(struct reg_regdb_search_request), GFP_KERNEL);
505 	if (!request)
506 		return;
507 
508 	memcpy(request->alpha2, alpha2, 2);
509 
510 	mutex_lock(&reg_regdb_search_mutex);
511 	list_add_tail(&request->list, &reg_regdb_search_list);
512 	mutex_unlock(&reg_regdb_search_mutex);
513 
514 	schedule_work(&reg_regdb_work);
515 }
516 
517 /* Feel free to add any other sanity checks here */
518 static void reg_regdb_size_check(void)
519 {
520 	/* We should ideally BUILD_BUG_ON() but then random builds would fail */
521 	WARN_ONCE(!reg_regdb_size, "db.txt is empty, you should update it...");
522 }
523 #else
524 static inline void reg_regdb_size_check(void) {}
525 static inline void reg_regdb_query(const char *alpha2) {}
526 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
527 
528 /*
529  * This lets us keep regulatory code which is updated on a regulatory
530  * basis in userspace.
531  */
532 static int call_crda(const char *alpha2)
533 {
534 	char country[12];
535 	char *env[] = { country, NULL };
536 
537 	snprintf(country, sizeof(country), "COUNTRY=%c%c",
538 		 alpha2[0], alpha2[1]);
539 
540 	if (!is_world_regdom((char *) alpha2))
541 		pr_info("Calling CRDA for country: %c%c\n",
542 			alpha2[0], alpha2[1]);
543 	else
544 		pr_info("Calling CRDA to update world regulatory domain\n");
545 
546 	/* query internal regulatory database (if it exists) */
547 	reg_regdb_query(alpha2);
548 
549 	return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
550 }
551 
552 static enum reg_request_treatment
553 reg_call_crda(struct regulatory_request *request)
554 {
555 	if (call_crda(request->alpha2))
556 		return REG_REQ_IGNORE;
557 	return REG_REQ_OK;
558 }
559 
560 bool reg_is_valid_request(const char *alpha2)
561 {
562 	struct regulatory_request *lr = get_last_request();
563 
564 	if (!lr || lr->processed)
565 		return false;
566 
567 	return alpha2_equal(lr->alpha2, alpha2);
568 }
569 
570 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
571 {
572 	struct regulatory_request *lr = get_last_request();
573 
574 	/*
575 	 * Follow the driver's regulatory domain, if present, unless a country
576 	 * IE has been processed or a user wants to help complaince further
577 	 */
578 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
579 	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
580 	    wiphy->regd)
581 		return get_wiphy_regdom(wiphy);
582 
583 	return get_cfg80211_regdom();
584 }
585 
586 static unsigned int
587 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
588 				 const struct ieee80211_reg_rule *rule)
589 {
590 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
591 	const struct ieee80211_freq_range *freq_range_tmp;
592 	const struct ieee80211_reg_rule *tmp;
593 	u32 start_freq, end_freq, idx, no;
594 
595 	for (idx = 0; idx < rd->n_reg_rules; idx++)
596 		if (rule == &rd->reg_rules[idx])
597 			break;
598 
599 	if (idx == rd->n_reg_rules)
600 		return 0;
601 
602 	/* get start_freq */
603 	no = idx;
604 
605 	while (no) {
606 		tmp = &rd->reg_rules[--no];
607 		freq_range_tmp = &tmp->freq_range;
608 
609 		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
610 			break;
611 
612 		freq_range = freq_range_tmp;
613 	}
614 
615 	start_freq = freq_range->start_freq_khz;
616 
617 	/* get end_freq */
618 	freq_range = &rule->freq_range;
619 	no = idx;
620 
621 	while (no < rd->n_reg_rules - 1) {
622 		tmp = &rd->reg_rules[++no];
623 		freq_range_tmp = &tmp->freq_range;
624 
625 		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
626 			break;
627 
628 		freq_range = freq_range_tmp;
629 	}
630 
631 	end_freq = freq_range->end_freq_khz;
632 
633 	return end_freq - start_freq;
634 }
635 
636 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
637 				   const struct ieee80211_reg_rule *rule)
638 {
639 	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
640 
641 	if (rule->flags & NL80211_RRF_NO_160MHZ)
642 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
643 	if (rule->flags & NL80211_RRF_NO_80MHZ)
644 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
645 
646 	/*
647 	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
648 	 * are not allowed.
649 	 */
650 	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
651 	    rule->flags & NL80211_RRF_NO_HT40PLUS)
652 		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
653 
654 	return bw;
655 }
656 
657 /* Sanity check on a regulatory rule */
658 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
659 {
660 	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
661 	u32 freq_diff;
662 
663 	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
664 		return false;
665 
666 	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
667 		return false;
668 
669 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
670 
671 	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
672 	    freq_range->max_bandwidth_khz > freq_diff)
673 		return false;
674 
675 	return true;
676 }
677 
678 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
679 {
680 	const struct ieee80211_reg_rule *reg_rule = NULL;
681 	unsigned int i;
682 
683 	if (!rd->n_reg_rules)
684 		return false;
685 
686 	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
687 		return false;
688 
689 	for (i = 0; i < rd->n_reg_rules; i++) {
690 		reg_rule = &rd->reg_rules[i];
691 		if (!is_valid_reg_rule(reg_rule))
692 			return false;
693 	}
694 
695 	return true;
696 }
697 
698 static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
699 			    u32 center_freq_khz, u32 bw_khz)
700 {
701 	u32 start_freq_khz, end_freq_khz;
702 
703 	start_freq_khz = center_freq_khz - (bw_khz/2);
704 	end_freq_khz = center_freq_khz + (bw_khz/2);
705 
706 	if (start_freq_khz >= freq_range->start_freq_khz &&
707 	    end_freq_khz <= freq_range->end_freq_khz)
708 		return true;
709 
710 	return false;
711 }
712 
713 /**
714  * freq_in_rule_band - tells us if a frequency is in a frequency band
715  * @freq_range: frequency rule we want to query
716  * @freq_khz: frequency we are inquiring about
717  *
718  * This lets us know if a specific frequency rule is or is not relevant to
719  * a specific frequency's band. Bands are device specific and artificial
720  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
721  * however it is safe for now to assume that a frequency rule should not be
722  * part of a frequency's band if the start freq or end freq are off by more
723  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
724  * 60 GHz band.
725  * This resolution can be lowered and should be considered as we add
726  * regulatory rule support for other "bands".
727  **/
728 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
729 			      u32 freq_khz)
730 {
731 #define ONE_GHZ_IN_KHZ	1000000
732 	/*
733 	 * From 802.11ad: directional multi-gigabit (DMG):
734 	 * Pertaining to operation in a frequency band containing a channel
735 	 * with the Channel starting frequency above 45 GHz.
736 	 */
737 	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
738 			10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
739 	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
740 		return true;
741 	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
742 		return true;
743 	return false;
744 #undef ONE_GHZ_IN_KHZ
745 }
746 
747 /*
748  * Later on we can perhaps use the more restrictive DFS
749  * region but we don't have information for that yet so
750  * for now simply disallow conflicts.
751  */
752 static enum nl80211_dfs_regions
753 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
754 			 const enum nl80211_dfs_regions dfs_region2)
755 {
756 	if (dfs_region1 != dfs_region2)
757 		return NL80211_DFS_UNSET;
758 	return dfs_region1;
759 }
760 
761 /*
762  * Helper for regdom_intersect(), this does the real
763  * mathematical intersection fun
764  */
765 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
766 			       const struct ieee80211_regdomain *rd2,
767 			       const struct ieee80211_reg_rule *rule1,
768 			       const struct ieee80211_reg_rule *rule2,
769 			       struct ieee80211_reg_rule *intersected_rule)
770 {
771 	const struct ieee80211_freq_range *freq_range1, *freq_range2;
772 	struct ieee80211_freq_range *freq_range;
773 	const struct ieee80211_power_rule *power_rule1, *power_rule2;
774 	struct ieee80211_power_rule *power_rule;
775 	u32 freq_diff, max_bandwidth1, max_bandwidth2;
776 
777 	freq_range1 = &rule1->freq_range;
778 	freq_range2 = &rule2->freq_range;
779 	freq_range = &intersected_rule->freq_range;
780 
781 	power_rule1 = &rule1->power_rule;
782 	power_rule2 = &rule2->power_rule;
783 	power_rule = &intersected_rule->power_rule;
784 
785 	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
786 					 freq_range2->start_freq_khz);
787 	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
788 				       freq_range2->end_freq_khz);
789 
790 	max_bandwidth1 = freq_range1->max_bandwidth_khz;
791 	max_bandwidth2 = freq_range2->max_bandwidth_khz;
792 
793 	if (rule1->flags & NL80211_RRF_AUTO_BW)
794 		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
795 	if (rule2->flags & NL80211_RRF_AUTO_BW)
796 		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
797 
798 	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
799 
800 	intersected_rule->flags = rule1->flags | rule2->flags;
801 
802 	/*
803 	 * In case NL80211_RRF_AUTO_BW requested for both rules
804 	 * set AUTO_BW in intersected rule also. Next we will
805 	 * calculate BW correctly in handle_channel function.
806 	 * In other case remove AUTO_BW flag while we calculate
807 	 * maximum bandwidth correctly and auto calculation is
808 	 * not required.
809 	 */
810 	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
811 	    (rule2->flags & NL80211_RRF_AUTO_BW))
812 		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
813 	else
814 		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
815 
816 	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
817 	if (freq_range->max_bandwidth_khz > freq_diff)
818 		freq_range->max_bandwidth_khz = freq_diff;
819 
820 	power_rule->max_eirp = min(power_rule1->max_eirp,
821 		power_rule2->max_eirp);
822 	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
823 		power_rule2->max_antenna_gain);
824 
825 	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
826 					   rule2->dfs_cac_ms);
827 
828 	if (!is_valid_reg_rule(intersected_rule))
829 		return -EINVAL;
830 
831 	return 0;
832 }
833 
834 /* check whether old rule contains new rule */
835 static bool rule_contains(struct ieee80211_reg_rule *r1,
836 			  struct ieee80211_reg_rule *r2)
837 {
838 	/* for simplicity, currently consider only same flags */
839 	if (r1->flags != r2->flags)
840 		return false;
841 
842 	/* verify r1 is more restrictive */
843 	if ((r1->power_rule.max_antenna_gain >
844 	     r2->power_rule.max_antenna_gain) ||
845 	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
846 		return false;
847 
848 	/* make sure r2's range is contained within r1 */
849 	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
850 	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
851 		return false;
852 
853 	/* and finally verify that r1.max_bw >= r2.max_bw */
854 	if (r1->freq_range.max_bandwidth_khz <
855 	    r2->freq_range.max_bandwidth_khz)
856 		return false;
857 
858 	return true;
859 }
860 
861 /* add or extend current rules. do nothing if rule is already contained */
862 static void add_rule(struct ieee80211_reg_rule *rule,
863 		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
864 {
865 	struct ieee80211_reg_rule *tmp_rule;
866 	int i;
867 
868 	for (i = 0; i < *n_rules; i++) {
869 		tmp_rule = &reg_rules[i];
870 		/* rule is already contained - do nothing */
871 		if (rule_contains(tmp_rule, rule))
872 			return;
873 
874 		/* extend rule if possible */
875 		if (rule_contains(rule, tmp_rule)) {
876 			memcpy(tmp_rule, rule, sizeof(*rule));
877 			return;
878 		}
879 	}
880 
881 	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
882 	(*n_rules)++;
883 }
884 
885 /**
886  * regdom_intersect - do the intersection between two regulatory domains
887  * @rd1: first regulatory domain
888  * @rd2: second regulatory domain
889  *
890  * Use this function to get the intersection between two regulatory domains.
891  * Once completed we will mark the alpha2 for the rd as intersected, "98",
892  * as no one single alpha2 can represent this regulatory domain.
893  *
894  * Returns a pointer to the regulatory domain structure which will hold the
895  * resulting intersection of rules between rd1 and rd2. We will
896  * kzalloc() this structure for you.
897  */
898 static struct ieee80211_regdomain *
899 regdom_intersect(const struct ieee80211_regdomain *rd1,
900 		 const struct ieee80211_regdomain *rd2)
901 {
902 	int r, size_of_regd;
903 	unsigned int x, y;
904 	unsigned int num_rules = 0;
905 	const struct ieee80211_reg_rule *rule1, *rule2;
906 	struct ieee80211_reg_rule intersected_rule;
907 	struct ieee80211_regdomain *rd;
908 
909 	if (!rd1 || !rd2)
910 		return NULL;
911 
912 	/*
913 	 * First we get a count of the rules we'll need, then we actually
914 	 * build them. This is to so we can malloc() and free() a
915 	 * regdomain once. The reason we use reg_rules_intersect() here
916 	 * is it will return -EINVAL if the rule computed makes no sense.
917 	 * All rules that do check out OK are valid.
918 	 */
919 
920 	for (x = 0; x < rd1->n_reg_rules; x++) {
921 		rule1 = &rd1->reg_rules[x];
922 		for (y = 0; y < rd2->n_reg_rules; y++) {
923 			rule2 = &rd2->reg_rules[y];
924 			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
925 						 &intersected_rule))
926 				num_rules++;
927 		}
928 	}
929 
930 	if (!num_rules)
931 		return NULL;
932 
933 	size_of_regd = sizeof(struct ieee80211_regdomain) +
934 		       num_rules * sizeof(struct ieee80211_reg_rule);
935 
936 	rd = kzalloc(size_of_regd, GFP_KERNEL);
937 	if (!rd)
938 		return NULL;
939 
940 	for (x = 0; x < rd1->n_reg_rules; x++) {
941 		rule1 = &rd1->reg_rules[x];
942 		for (y = 0; y < rd2->n_reg_rules; y++) {
943 			rule2 = &rd2->reg_rules[y];
944 			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
945 						&intersected_rule);
946 			/*
947 			 * No need to memset here the intersected rule here as
948 			 * we're not using the stack anymore
949 			 */
950 			if (r)
951 				continue;
952 
953 			add_rule(&intersected_rule, rd->reg_rules,
954 				 &rd->n_reg_rules);
955 		}
956 	}
957 
958 	rd->alpha2[0] = '9';
959 	rd->alpha2[1] = '8';
960 	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
961 						  rd2->dfs_region);
962 
963 	return rd;
964 }
965 
966 /*
967  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
968  * want to just have the channel structure use these
969  */
970 static u32 map_regdom_flags(u32 rd_flags)
971 {
972 	u32 channel_flags = 0;
973 	if (rd_flags & NL80211_RRF_NO_IR_ALL)
974 		channel_flags |= IEEE80211_CHAN_NO_IR;
975 	if (rd_flags & NL80211_RRF_DFS)
976 		channel_flags |= IEEE80211_CHAN_RADAR;
977 	if (rd_flags & NL80211_RRF_NO_OFDM)
978 		channel_flags |= IEEE80211_CHAN_NO_OFDM;
979 	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
980 		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
981 	if (rd_flags & NL80211_RRF_GO_CONCURRENT)
982 		channel_flags |= IEEE80211_CHAN_GO_CONCURRENT;
983 	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
984 		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
985 	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
986 		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
987 	if (rd_flags & NL80211_RRF_NO_80MHZ)
988 		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
989 	if (rd_flags & NL80211_RRF_NO_160MHZ)
990 		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
991 	return channel_flags;
992 }
993 
994 static const struct ieee80211_reg_rule *
995 freq_reg_info_regd(struct wiphy *wiphy, u32 center_freq,
996 		   const struct ieee80211_regdomain *regd)
997 {
998 	int i;
999 	bool band_rule_found = false;
1000 	bool bw_fits = false;
1001 
1002 	if (!regd)
1003 		return ERR_PTR(-EINVAL);
1004 
1005 	for (i = 0; i < regd->n_reg_rules; i++) {
1006 		const struct ieee80211_reg_rule *rr;
1007 		const struct ieee80211_freq_range *fr = NULL;
1008 
1009 		rr = &regd->reg_rules[i];
1010 		fr = &rr->freq_range;
1011 
1012 		/*
1013 		 * We only need to know if one frequency rule was
1014 		 * was in center_freq's band, that's enough, so lets
1015 		 * not overwrite it once found
1016 		 */
1017 		if (!band_rule_found)
1018 			band_rule_found = freq_in_rule_band(fr, center_freq);
1019 
1020 		bw_fits = reg_does_bw_fit(fr, center_freq, MHZ_TO_KHZ(20));
1021 
1022 		if (band_rule_found && bw_fits)
1023 			return rr;
1024 	}
1025 
1026 	if (!band_rule_found)
1027 		return ERR_PTR(-ERANGE);
1028 
1029 	return ERR_PTR(-EINVAL);
1030 }
1031 
1032 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1033 					       u32 center_freq)
1034 {
1035 	const struct ieee80211_regdomain *regd;
1036 
1037 	regd = reg_get_regdomain(wiphy);
1038 
1039 	return freq_reg_info_regd(wiphy, center_freq, regd);
1040 }
1041 EXPORT_SYMBOL(freq_reg_info);
1042 
1043 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1044 {
1045 	switch (initiator) {
1046 	case NL80211_REGDOM_SET_BY_CORE:
1047 		return "core";
1048 	case NL80211_REGDOM_SET_BY_USER:
1049 		return "user";
1050 	case NL80211_REGDOM_SET_BY_DRIVER:
1051 		return "driver";
1052 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1053 		return "country IE";
1054 	default:
1055 		WARN_ON(1);
1056 		return "bug";
1057 	}
1058 }
1059 EXPORT_SYMBOL(reg_initiator_name);
1060 
1061 #ifdef CONFIG_CFG80211_REG_DEBUG
1062 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1063 				    struct ieee80211_channel *chan,
1064 				    const struct ieee80211_reg_rule *reg_rule)
1065 {
1066 	const struct ieee80211_power_rule *power_rule;
1067 	const struct ieee80211_freq_range *freq_range;
1068 	char max_antenna_gain[32], bw[32];
1069 
1070 	power_rule = &reg_rule->power_rule;
1071 	freq_range = &reg_rule->freq_range;
1072 
1073 	if (!power_rule->max_antenna_gain)
1074 		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "N/A");
1075 	else
1076 		snprintf(max_antenna_gain, sizeof(max_antenna_gain), "%d",
1077 			 power_rule->max_antenna_gain);
1078 
1079 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1080 		snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
1081 			 freq_range->max_bandwidth_khz,
1082 			 reg_get_max_bandwidth(regd, reg_rule));
1083 	else
1084 		snprintf(bw, sizeof(bw), "%d KHz",
1085 			 freq_range->max_bandwidth_khz);
1086 
1087 	REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1088 		      chan->center_freq);
1089 
1090 	REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1091 		      freq_range->start_freq_khz, freq_range->end_freq_khz,
1092 		      bw, max_antenna_gain,
1093 		      power_rule->max_eirp);
1094 }
1095 #else
1096 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain *regd,
1097 				    struct ieee80211_channel *chan,
1098 				    const struct ieee80211_reg_rule *reg_rule)
1099 {
1100 	return;
1101 }
1102 #endif
1103 
1104 /*
1105  * Note that right now we assume the desired channel bandwidth
1106  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1107  * per channel, the primary and the extension channel).
1108  */
1109 static void handle_channel(struct wiphy *wiphy,
1110 			   enum nl80211_reg_initiator initiator,
1111 			   struct ieee80211_channel *chan)
1112 {
1113 	u32 flags, bw_flags = 0;
1114 	const struct ieee80211_reg_rule *reg_rule = NULL;
1115 	const struct ieee80211_power_rule *power_rule = NULL;
1116 	const struct ieee80211_freq_range *freq_range = NULL;
1117 	struct wiphy *request_wiphy = NULL;
1118 	struct regulatory_request *lr = get_last_request();
1119 	const struct ieee80211_regdomain *regd;
1120 	u32 max_bandwidth_khz;
1121 
1122 	request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1123 
1124 	flags = chan->orig_flags;
1125 
1126 	reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1127 	if (IS_ERR(reg_rule)) {
1128 		/*
1129 		 * We will disable all channels that do not match our
1130 		 * received regulatory rule unless the hint is coming
1131 		 * from a Country IE and the Country IE had no information
1132 		 * about a band. The IEEE 802.11 spec allows for an AP
1133 		 * to send only a subset of the regulatory rules allowed,
1134 		 * so an AP in the US that only supports 2.4 GHz may only send
1135 		 * a country IE with information for the 2.4 GHz band
1136 		 * while 5 GHz is still supported.
1137 		 */
1138 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139 		    PTR_ERR(reg_rule) == -ERANGE)
1140 			return;
1141 
1142 		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1143 		    request_wiphy && request_wiphy == wiphy &&
1144 		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1145 			REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1146 				      chan->center_freq);
1147 			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1148 			chan->flags = chan->orig_flags;
1149 		} else {
1150 			REG_DBG_PRINT("Disabling freq %d MHz\n",
1151 				      chan->center_freq);
1152 			chan->flags |= IEEE80211_CHAN_DISABLED;
1153 		}
1154 		return;
1155 	}
1156 
1157 	regd = reg_get_regdomain(wiphy);
1158 	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1159 
1160 	power_rule = &reg_rule->power_rule;
1161 	freq_range = &reg_rule->freq_range;
1162 
1163 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1164 	/* Check if auto calculation requested */
1165 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1166 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1167 
1168 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1169 		bw_flags = IEEE80211_CHAN_NO_HT40;
1170 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1171 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1172 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1173 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1174 
1175 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1176 	    request_wiphy && request_wiphy == wiphy &&
1177 	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1178 		/*
1179 		 * This guarantees the driver's requested regulatory domain
1180 		 * will always be used as a base for further regulatory
1181 		 * settings
1182 		 */
1183 		chan->flags = chan->orig_flags =
1184 			map_regdom_flags(reg_rule->flags) | bw_flags;
1185 		chan->max_antenna_gain = chan->orig_mag =
1186 			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1187 		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1188 			(int) MBM_TO_DBM(power_rule->max_eirp);
1189 
1190 		if (chan->flags & IEEE80211_CHAN_RADAR) {
1191 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1192 			if (reg_rule->dfs_cac_ms)
1193 				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1194 		}
1195 
1196 		return;
1197 	}
1198 
1199 	chan->dfs_state = NL80211_DFS_USABLE;
1200 	chan->dfs_state_entered = jiffies;
1201 
1202 	chan->beacon_found = false;
1203 	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1204 	chan->max_antenna_gain =
1205 		min_t(int, chan->orig_mag,
1206 		      MBI_TO_DBI(power_rule->max_antenna_gain));
1207 	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1208 
1209 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1210 		if (reg_rule->dfs_cac_ms)
1211 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1212 		else
1213 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1214 	}
1215 
1216 	if (chan->orig_mpwr) {
1217 		/*
1218 		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1219 		 * will always follow the passed country IE power settings.
1220 		 */
1221 		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1222 		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1223 			chan->max_power = chan->max_reg_power;
1224 		else
1225 			chan->max_power = min(chan->orig_mpwr,
1226 					      chan->max_reg_power);
1227 	} else
1228 		chan->max_power = chan->max_reg_power;
1229 }
1230 
1231 static void handle_band(struct wiphy *wiphy,
1232 			enum nl80211_reg_initiator initiator,
1233 			struct ieee80211_supported_band *sband)
1234 {
1235 	unsigned int i;
1236 
1237 	if (!sband)
1238 		return;
1239 
1240 	for (i = 0; i < sband->n_channels; i++)
1241 		handle_channel(wiphy, initiator, &sband->channels[i]);
1242 }
1243 
1244 static bool reg_request_cell_base(struct regulatory_request *request)
1245 {
1246 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1247 		return false;
1248 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1249 }
1250 
1251 static bool reg_request_indoor(struct regulatory_request *request)
1252 {
1253 	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1254 		return false;
1255 	return request->user_reg_hint_type == NL80211_USER_REG_HINT_INDOOR;
1256 }
1257 
1258 bool reg_last_request_cell_base(void)
1259 {
1260 	return reg_request_cell_base(get_last_request());
1261 }
1262 
1263 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1264 /* Core specific check */
1265 static enum reg_request_treatment
1266 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1267 {
1268 	struct regulatory_request *lr = get_last_request();
1269 
1270 	if (!reg_num_devs_support_basehint)
1271 		return REG_REQ_IGNORE;
1272 
1273 	if (reg_request_cell_base(lr) &&
1274 	    !regdom_changes(pending_request->alpha2))
1275 		return REG_REQ_ALREADY_SET;
1276 
1277 	return REG_REQ_OK;
1278 }
1279 
1280 /* Device specific check */
1281 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1282 {
1283 	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1284 }
1285 #else
1286 static int reg_ignore_cell_hint(struct regulatory_request *pending_request)
1287 {
1288 	return REG_REQ_IGNORE;
1289 }
1290 
1291 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1292 {
1293 	return true;
1294 }
1295 #endif
1296 
1297 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1298 {
1299 	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1300 	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1301 		return true;
1302 	return false;
1303 }
1304 
1305 static bool ignore_reg_update(struct wiphy *wiphy,
1306 			      enum nl80211_reg_initiator initiator)
1307 {
1308 	struct regulatory_request *lr = get_last_request();
1309 
1310 	if (!lr) {
1311 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1312 			      "since last_request is not set\n",
1313 			      reg_initiator_name(initiator));
1314 		return true;
1315 	}
1316 
1317 	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1318 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1319 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1320 			      "since the driver uses its own custom "
1321 			      "regulatory domain\n",
1322 			      reg_initiator_name(initiator));
1323 		return true;
1324 	}
1325 
1326 	/*
1327 	 * wiphy->regd will be set once the device has its own
1328 	 * desired regulatory domain set
1329 	 */
1330 	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1331 	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1332 	    !is_world_regdom(lr->alpha2)) {
1333 		REG_DBG_PRINT("Ignoring regulatory request set by %s "
1334 			      "since the driver requires its own regulatory "
1335 			      "domain to be set first\n",
1336 			      reg_initiator_name(initiator));
1337 		return true;
1338 	}
1339 
1340 	if (reg_request_cell_base(lr))
1341 		return reg_dev_ignore_cell_hint(wiphy);
1342 
1343 	return false;
1344 }
1345 
1346 static bool reg_is_world_roaming(struct wiphy *wiphy)
1347 {
1348 	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1349 	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1350 	struct regulatory_request *lr = get_last_request();
1351 
1352 	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1353 		return true;
1354 
1355 	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1356 	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1357 		return true;
1358 
1359 	return false;
1360 }
1361 
1362 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1363 			      struct reg_beacon *reg_beacon)
1364 {
1365 	struct ieee80211_supported_band *sband;
1366 	struct ieee80211_channel *chan;
1367 	bool channel_changed = false;
1368 	struct ieee80211_channel chan_before;
1369 
1370 	sband = wiphy->bands[reg_beacon->chan.band];
1371 	chan = &sband->channels[chan_idx];
1372 
1373 	if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1374 		return;
1375 
1376 	if (chan->beacon_found)
1377 		return;
1378 
1379 	chan->beacon_found = true;
1380 
1381 	if (!reg_is_world_roaming(wiphy))
1382 		return;
1383 
1384 	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1385 		return;
1386 
1387 	chan_before.center_freq = chan->center_freq;
1388 	chan_before.flags = chan->flags;
1389 
1390 	if (chan->flags & IEEE80211_CHAN_NO_IR) {
1391 		chan->flags &= ~IEEE80211_CHAN_NO_IR;
1392 		channel_changed = true;
1393 	}
1394 
1395 	if (channel_changed)
1396 		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1397 }
1398 
1399 /*
1400  * Called when a scan on a wiphy finds a beacon on
1401  * new channel
1402  */
1403 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1404 				    struct reg_beacon *reg_beacon)
1405 {
1406 	unsigned int i;
1407 	struct ieee80211_supported_band *sband;
1408 
1409 	if (!wiphy->bands[reg_beacon->chan.band])
1410 		return;
1411 
1412 	sband = wiphy->bands[reg_beacon->chan.band];
1413 
1414 	for (i = 0; i < sband->n_channels; i++)
1415 		handle_reg_beacon(wiphy, i, reg_beacon);
1416 }
1417 
1418 /*
1419  * Called upon reg changes or a new wiphy is added
1420  */
1421 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1422 {
1423 	unsigned int i;
1424 	struct ieee80211_supported_band *sband;
1425 	struct reg_beacon *reg_beacon;
1426 
1427 	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1428 		if (!wiphy->bands[reg_beacon->chan.band])
1429 			continue;
1430 		sband = wiphy->bands[reg_beacon->chan.band];
1431 		for (i = 0; i < sband->n_channels; i++)
1432 			handle_reg_beacon(wiphy, i, reg_beacon);
1433 	}
1434 }
1435 
1436 /* Reap the advantages of previously found beacons */
1437 static void reg_process_beacons(struct wiphy *wiphy)
1438 {
1439 	/*
1440 	 * Means we are just firing up cfg80211, so no beacons would
1441 	 * have been processed yet.
1442 	 */
1443 	if (!last_request)
1444 		return;
1445 	wiphy_update_beacon_reg(wiphy);
1446 }
1447 
1448 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1449 {
1450 	if (!chan)
1451 		return false;
1452 	if (chan->flags & IEEE80211_CHAN_DISABLED)
1453 		return false;
1454 	/* This would happen when regulatory rules disallow HT40 completely */
1455 	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1456 		return false;
1457 	return true;
1458 }
1459 
1460 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1461 					 struct ieee80211_channel *channel)
1462 {
1463 	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1464 	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1465 	unsigned int i;
1466 
1467 	if (!is_ht40_allowed(channel)) {
1468 		channel->flags |= IEEE80211_CHAN_NO_HT40;
1469 		return;
1470 	}
1471 
1472 	/*
1473 	 * We need to ensure the extension channels exist to
1474 	 * be able to use HT40- or HT40+, this finds them (or not)
1475 	 */
1476 	for (i = 0; i < sband->n_channels; i++) {
1477 		struct ieee80211_channel *c = &sband->channels[i];
1478 
1479 		if (c->center_freq == (channel->center_freq - 20))
1480 			channel_before = c;
1481 		if (c->center_freq == (channel->center_freq + 20))
1482 			channel_after = c;
1483 	}
1484 
1485 	/*
1486 	 * Please note that this assumes target bandwidth is 20 MHz,
1487 	 * if that ever changes we also need to change the below logic
1488 	 * to include that as well.
1489 	 */
1490 	if (!is_ht40_allowed(channel_before))
1491 		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
1492 	else
1493 		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
1494 
1495 	if (!is_ht40_allowed(channel_after))
1496 		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
1497 	else
1498 		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
1499 }
1500 
1501 static void reg_process_ht_flags_band(struct wiphy *wiphy,
1502 				      struct ieee80211_supported_band *sband)
1503 {
1504 	unsigned int i;
1505 
1506 	if (!sband)
1507 		return;
1508 
1509 	for (i = 0; i < sband->n_channels; i++)
1510 		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
1511 }
1512 
1513 static void reg_process_ht_flags(struct wiphy *wiphy)
1514 {
1515 	enum ieee80211_band band;
1516 
1517 	if (!wiphy)
1518 		return;
1519 
1520 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1521 		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
1522 }
1523 
1524 static void reg_call_notifier(struct wiphy *wiphy,
1525 			      struct regulatory_request *request)
1526 {
1527 	if (wiphy->reg_notifier)
1528 		wiphy->reg_notifier(wiphy, request);
1529 }
1530 
1531 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
1532 {
1533 	struct ieee80211_channel *ch;
1534 	struct cfg80211_chan_def chandef;
1535 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1536 	bool ret = true;
1537 
1538 	wdev_lock(wdev);
1539 
1540 	if (!wdev->netdev || !netif_running(wdev->netdev))
1541 		goto out;
1542 
1543 	switch (wdev->iftype) {
1544 	case NL80211_IFTYPE_AP:
1545 	case NL80211_IFTYPE_P2P_GO:
1546 		if (!wdev->beacon_interval)
1547 			goto out;
1548 
1549 		ret = cfg80211_reg_can_beacon(wiphy,
1550 					      &wdev->chandef, wdev->iftype);
1551 		break;
1552 	case NL80211_IFTYPE_STATION:
1553 	case NL80211_IFTYPE_P2P_CLIENT:
1554 	case NL80211_IFTYPE_ADHOC:
1555 		if (!wdev->current_bss ||
1556 		    !wdev->current_bss->pub.channel)
1557 			goto out;
1558 
1559 		ch = wdev->current_bss->pub.channel;
1560 		if (rdev->ops->get_channel &&
1561 		    !rdev_get_channel(rdev, wdev, &chandef))
1562 			ret = cfg80211_chandef_usable(wiphy, &chandef,
1563 						      IEEE80211_CHAN_DISABLED);
1564 		else
1565 			ret = !(ch->flags & IEEE80211_CHAN_DISABLED);
1566 		break;
1567 	case NL80211_IFTYPE_MONITOR:
1568 	case NL80211_IFTYPE_AP_VLAN:
1569 	case NL80211_IFTYPE_P2P_DEVICE:
1570 		/* no enforcement required */
1571 		break;
1572 	default:
1573 		/* others not implemented for now */
1574 		WARN_ON(1);
1575 		break;
1576 	}
1577 
1578 out:
1579 	wdev_unlock(wdev);
1580 	return ret;
1581 }
1582 
1583 static void reg_leave_invalid_chans(struct wiphy *wiphy)
1584 {
1585 	struct wireless_dev *wdev;
1586 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1587 
1588 	ASSERT_RTNL();
1589 
1590 	list_for_each_entry(wdev, &rdev->wdev_list, list)
1591 		if (!reg_wdev_chan_valid(wiphy, wdev))
1592 			cfg80211_leave(rdev, wdev);
1593 }
1594 
1595 static void reg_check_chans_work(struct work_struct *work)
1596 {
1597 	struct cfg80211_registered_device *rdev;
1598 
1599 	REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1600 	rtnl_lock();
1601 
1602 	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1603 		if (!(rdev->wiphy.regulatory_flags &
1604 		      REGULATORY_IGNORE_STALE_KICKOFF))
1605 			reg_leave_invalid_chans(&rdev->wiphy);
1606 
1607 	rtnl_unlock();
1608 }
1609 
1610 static void reg_check_channels(void)
1611 {
1612 	/*
1613 	 * Give usermode a chance to do something nicer (move to another
1614 	 * channel, orderly disconnection), before forcing a disconnection.
1615 	 */
1616 	mod_delayed_work(system_power_efficient_wq,
1617 			 &reg_check_chans,
1618 			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
1619 }
1620 
1621 static void wiphy_update_regulatory(struct wiphy *wiphy,
1622 				    enum nl80211_reg_initiator initiator)
1623 {
1624 	enum ieee80211_band band;
1625 	struct regulatory_request *lr = get_last_request();
1626 
1627 	if (ignore_reg_update(wiphy, initiator)) {
1628 		/*
1629 		 * Regulatory updates set by CORE are ignored for custom
1630 		 * regulatory cards. Let us notify the changes to the driver,
1631 		 * as some drivers used this to restore its orig_* reg domain.
1632 		 */
1633 		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1634 		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1635 			reg_call_notifier(wiphy, lr);
1636 		return;
1637 	}
1638 
1639 	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
1640 
1641 	for (band = 0; band < IEEE80211_NUM_BANDS; band++)
1642 		handle_band(wiphy, initiator, wiphy->bands[band]);
1643 
1644 	reg_process_beacons(wiphy);
1645 	reg_process_ht_flags(wiphy);
1646 	reg_call_notifier(wiphy, lr);
1647 }
1648 
1649 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
1650 {
1651 	struct cfg80211_registered_device *rdev;
1652 	struct wiphy *wiphy;
1653 
1654 	ASSERT_RTNL();
1655 
1656 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
1657 		wiphy = &rdev->wiphy;
1658 		wiphy_update_regulatory(wiphy, initiator);
1659 	}
1660 
1661 	reg_check_channels();
1662 }
1663 
1664 static void handle_channel_custom(struct wiphy *wiphy,
1665 				  struct ieee80211_channel *chan,
1666 				  const struct ieee80211_regdomain *regd)
1667 {
1668 	u32 bw_flags = 0;
1669 	const struct ieee80211_reg_rule *reg_rule = NULL;
1670 	const struct ieee80211_power_rule *power_rule = NULL;
1671 	const struct ieee80211_freq_range *freq_range = NULL;
1672 	u32 max_bandwidth_khz;
1673 
1674 	reg_rule = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
1675 				      regd);
1676 
1677 	if (IS_ERR(reg_rule)) {
1678 		REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1679 			      chan->center_freq);
1680 		chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1681 		chan->flags = chan->orig_flags;
1682 		return;
1683 	}
1684 
1685 	chan_reg_rule_print_dbg(regd, chan, reg_rule);
1686 
1687 	power_rule = &reg_rule->power_rule;
1688 	freq_range = &reg_rule->freq_range;
1689 
1690 	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1691 	/* Check if auto calculation requested */
1692 	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1693 		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1694 
1695 	if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1696 		bw_flags = IEEE80211_CHAN_NO_HT40;
1697 	if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1698 		bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1699 	if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1700 		bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1701 
1702 	chan->dfs_state_entered = jiffies;
1703 	chan->dfs_state = NL80211_DFS_USABLE;
1704 
1705 	chan->beacon_found = false;
1706 	chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1707 	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1708 	chan->max_reg_power = chan->max_power =
1709 		(int) MBM_TO_DBM(power_rule->max_eirp);
1710 
1711 	if (chan->flags & IEEE80211_CHAN_RADAR) {
1712 		if (reg_rule->dfs_cac_ms)
1713 			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1714 		else
1715 			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1716 	}
1717 
1718 	chan->max_power = chan->max_reg_power;
1719 }
1720 
1721 static void handle_band_custom(struct wiphy *wiphy,
1722 			       struct ieee80211_supported_band *sband,
1723 			       const struct ieee80211_regdomain *regd)
1724 {
1725 	unsigned int i;
1726 
1727 	if (!sband)
1728 		return;
1729 
1730 	for (i = 0; i < sband->n_channels; i++)
1731 		handle_channel_custom(wiphy, &sband->channels[i], regd);
1732 }
1733 
1734 /* Used by drivers prior to wiphy registration */
1735 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1736 				   const struct ieee80211_regdomain *regd)
1737 {
1738 	enum ieee80211_band band;
1739 	unsigned int bands_set = 0;
1740 
1741 	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
1742 	     "wiphy should have REGULATORY_CUSTOM_REG\n");
1743 	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
1744 
1745 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1746 		if (!wiphy->bands[band])
1747 			continue;
1748 		handle_band_custom(wiphy, wiphy->bands[band], regd);
1749 		bands_set++;
1750 	}
1751 
1752 	/*
1753 	 * no point in calling this if it won't have any effect
1754 	 * on your device's supported bands.
1755 	 */
1756 	WARN_ON(!bands_set);
1757 }
1758 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1759 
1760 static void reg_set_request_processed(void)
1761 {
1762 	bool need_more_processing = false;
1763 	struct regulatory_request *lr = get_last_request();
1764 
1765 	lr->processed = true;
1766 
1767 	spin_lock(&reg_requests_lock);
1768 	if (!list_empty(&reg_requests_list))
1769 		need_more_processing = true;
1770 	spin_unlock(&reg_requests_lock);
1771 
1772 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
1773 		cancel_delayed_work(&reg_timeout);
1774 
1775 	if (need_more_processing)
1776 		schedule_work(&reg_work);
1777 }
1778 
1779 /**
1780  * reg_process_hint_core - process core regulatory requests
1781  * @pending_request: a pending core regulatory request
1782  *
1783  * The wireless subsystem can use this function to process
1784  * a regulatory request issued by the regulatory core.
1785  *
1786  * Returns one of the different reg request treatment values.
1787  */
1788 static enum reg_request_treatment
1789 reg_process_hint_core(struct regulatory_request *core_request)
1790 {
1791 
1792 	core_request->intersect = false;
1793 	core_request->processed = false;
1794 
1795 	reg_update_last_request(core_request);
1796 
1797 	return reg_call_crda(core_request);
1798 }
1799 
1800 static enum reg_request_treatment
1801 __reg_process_hint_user(struct regulatory_request *user_request)
1802 {
1803 	struct regulatory_request *lr = get_last_request();
1804 
1805 	if (reg_request_indoor(user_request)) {
1806 		reg_is_indoor = true;
1807 		return REG_REQ_USER_HINT_HANDLED;
1808 	}
1809 
1810 	if (reg_request_cell_base(user_request))
1811 		return reg_ignore_cell_hint(user_request);
1812 
1813 	if (reg_request_cell_base(lr))
1814 		return REG_REQ_IGNORE;
1815 
1816 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
1817 		return REG_REQ_INTERSECT;
1818 	/*
1819 	 * If the user knows better the user should set the regdom
1820 	 * to their country before the IE is picked up
1821 	 */
1822 	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
1823 	    lr->intersect)
1824 		return REG_REQ_IGNORE;
1825 	/*
1826 	 * Process user requests only after previous user/driver/core
1827 	 * requests have been processed
1828 	 */
1829 	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
1830 	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1831 	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
1832 	    regdom_changes(lr->alpha2))
1833 		return REG_REQ_IGNORE;
1834 
1835 	if (!regdom_changes(user_request->alpha2))
1836 		return REG_REQ_ALREADY_SET;
1837 
1838 	return REG_REQ_OK;
1839 }
1840 
1841 /**
1842  * reg_process_hint_user - process user regulatory requests
1843  * @user_request: a pending user regulatory request
1844  *
1845  * The wireless subsystem can use this function to process
1846  * a regulatory request initiated by userspace.
1847  *
1848  * Returns one of the different reg request treatment values.
1849  */
1850 static enum reg_request_treatment
1851 reg_process_hint_user(struct regulatory_request *user_request)
1852 {
1853 	enum reg_request_treatment treatment;
1854 
1855 	treatment = __reg_process_hint_user(user_request);
1856 	if (treatment == REG_REQ_IGNORE ||
1857 	    treatment == REG_REQ_ALREADY_SET ||
1858 	    treatment == REG_REQ_USER_HINT_HANDLED) {
1859 		reg_free_request(user_request);
1860 		return treatment;
1861 	}
1862 
1863 	user_request->intersect = treatment == REG_REQ_INTERSECT;
1864 	user_request->processed = false;
1865 
1866 	reg_update_last_request(user_request);
1867 
1868 	user_alpha2[0] = user_request->alpha2[0];
1869 	user_alpha2[1] = user_request->alpha2[1];
1870 
1871 	return reg_call_crda(user_request);
1872 }
1873 
1874 static enum reg_request_treatment
1875 __reg_process_hint_driver(struct regulatory_request *driver_request)
1876 {
1877 	struct regulatory_request *lr = get_last_request();
1878 
1879 	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
1880 		if (regdom_changes(driver_request->alpha2))
1881 			return REG_REQ_OK;
1882 		return REG_REQ_ALREADY_SET;
1883 	}
1884 
1885 	/*
1886 	 * This would happen if you unplug and plug your card
1887 	 * back in or if you add a new device for which the previously
1888 	 * loaded card also agrees on the regulatory domain.
1889 	 */
1890 	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1891 	    !regdom_changes(driver_request->alpha2))
1892 		return REG_REQ_ALREADY_SET;
1893 
1894 	return REG_REQ_INTERSECT;
1895 }
1896 
1897 /**
1898  * reg_process_hint_driver - process driver regulatory requests
1899  * @driver_request: a pending driver regulatory request
1900  *
1901  * The wireless subsystem can use this function to process
1902  * a regulatory request issued by an 802.11 driver.
1903  *
1904  * Returns one of the different reg request treatment values.
1905  */
1906 static enum reg_request_treatment
1907 reg_process_hint_driver(struct wiphy *wiphy,
1908 			struct regulatory_request *driver_request)
1909 {
1910 	const struct ieee80211_regdomain *regd;
1911 	enum reg_request_treatment treatment;
1912 
1913 	treatment = __reg_process_hint_driver(driver_request);
1914 
1915 	switch (treatment) {
1916 	case REG_REQ_OK:
1917 		break;
1918 	case REG_REQ_IGNORE:
1919 	case REG_REQ_USER_HINT_HANDLED:
1920 		reg_free_request(driver_request);
1921 		return treatment;
1922 	case REG_REQ_INTERSECT:
1923 		/* fall through */
1924 	case REG_REQ_ALREADY_SET:
1925 		regd = reg_copy_regd(get_cfg80211_regdom());
1926 		if (IS_ERR(regd)) {
1927 			reg_free_request(driver_request);
1928 			return REG_REQ_IGNORE;
1929 		}
1930 		rcu_assign_pointer(wiphy->regd, regd);
1931 	}
1932 
1933 
1934 	driver_request->intersect = treatment == REG_REQ_INTERSECT;
1935 	driver_request->processed = false;
1936 
1937 	reg_update_last_request(driver_request);
1938 
1939 	/*
1940 	 * Since CRDA will not be called in this case as we already
1941 	 * have applied the requested regulatory domain before we just
1942 	 * inform userspace we have processed the request
1943 	 */
1944 	if (treatment == REG_REQ_ALREADY_SET) {
1945 		nl80211_send_reg_change_event(driver_request);
1946 		reg_set_request_processed();
1947 		return treatment;
1948 	}
1949 
1950 	return reg_call_crda(driver_request);
1951 }
1952 
1953 static enum reg_request_treatment
1954 __reg_process_hint_country_ie(struct wiphy *wiphy,
1955 			      struct regulatory_request *country_ie_request)
1956 {
1957 	struct wiphy *last_wiphy = NULL;
1958 	struct regulatory_request *lr = get_last_request();
1959 
1960 	if (reg_request_cell_base(lr)) {
1961 		/* Trust a Cell base station over the AP's country IE */
1962 		if (regdom_changes(country_ie_request->alpha2))
1963 			return REG_REQ_IGNORE;
1964 		return REG_REQ_ALREADY_SET;
1965 	} else {
1966 		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
1967 			return REG_REQ_IGNORE;
1968 	}
1969 
1970 	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
1971 		return -EINVAL;
1972 
1973 	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
1974 		return REG_REQ_OK;
1975 
1976 	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1977 
1978 	if (last_wiphy != wiphy) {
1979 		/*
1980 		 * Two cards with two APs claiming different
1981 		 * Country IE alpha2s. We could
1982 		 * intersect them, but that seems unlikely
1983 		 * to be correct. Reject second one for now.
1984 		 */
1985 		if (regdom_changes(country_ie_request->alpha2))
1986 			return REG_REQ_IGNORE;
1987 		return REG_REQ_ALREADY_SET;
1988 	}
1989 	/*
1990 	 * Two consecutive Country IE hints on the same wiphy.
1991 	 * This should be picked up early by the driver/stack
1992 	 */
1993 	if (WARN_ON(regdom_changes(country_ie_request->alpha2)))
1994 		return REG_REQ_OK;
1995 	return REG_REQ_ALREADY_SET;
1996 }
1997 
1998 /**
1999  * reg_process_hint_country_ie - process regulatory requests from country IEs
2000  * @country_ie_request: a regulatory request from a country IE
2001  *
2002  * The wireless subsystem can use this function to process
2003  * a regulatory request issued by a country Information Element.
2004  *
2005  * Returns one of the different reg request treatment values.
2006  */
2007 static enum reg_request_treatment
2008 reg_process_hint_country_ie(struct wiphy *wiphy,
2009 			    struct regulatory_request *country_ie_request)
2010 {
2011 	enum reg_request_treatment treatment;
2012 
2013 	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2014 
2015 	switch (treatment) {
2016 	case REG_REQ_OK:
2017 		break;
2018 	case REG_REQ_IGNORE:
2019 	case REG_REQ_USER_HINT_HANDLED:
2020 		/* fall through */
2021 	case REG_REQ_ALREADY_SET:
2022 		reg_free_request(country_ie_request);
2023 		return treatment;
2024 	case REG_REQ_INTERSECT:
2025 		reg_free_request(country_ie_request);
2026 		/*
2027 		 * This doesn't happen yet, not sure we
2028 		 * ever want to support it for this case.
2029 		 */
2030 		WARN_ONCE(1, "Unexpected intersection for country IEs");
2031 		return REG_REQ_IGNORE;
2032 	}
2033 
2034 	country_ie_request->intersect = false;
2035 	country_ie_request->processed = false;
2036 
2037 	reg_update_last_request(country_ie_request);
2038 
2039 	return reg_call_crda(country_ie_request);
2040 }
2041 
2042 /* This processes *all* regulatory hints */
2043 static void reg_process_hint(struct regulatory_request *reg_request)
2044 {
2045 	struct wiphy *wiphy = NULL;
2046 	enum reg_request_treatment treatment;
2047 
2048 	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2049 		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2050 
2051 	switch (reg_request->initiator) {
2052 	case NL80211_REGDOM_SET_BY_CORE:
2053 		reg_process_hint_core(reg_request);
2054 		return;
2055 	case NL80211_REGDOM_SET_BY_USER:
2056 		treatment = reg_process_hint_user(reg_request);
2057 		if (treatment == REG_REQ_IGNORE ||
2058 		    treatment == REG_REQ_ALREADY_SET ||
2059 		    treatment == REG_REQ_USER_HINT_HANDLED)
2060 			return;
2061 		queue_delayed_work(system_power_efficient_wq,
2062 				   &reg_timeout, msecs_to_jiffies(3142));
2063 		return;
2064 	case NL80211_REGDOM_SET_BY_DRIVER:
2065 		if (!wiphy)
2066 			goto out_free;
2067 		treatment = reg_process_hint_driver(wiphy, reg_request);
2068 		break;
2069 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2070 		if (!wiphy)
2071 			goto out_free;
2072 		treatment = reg_process_hint_country_ie(wiphy, reg_request);
2073 		break;
2074 	default:
2075 		WARN(1, "invalid initiator %d\n", reg_request->initiator);
2076 		goto out_free;
2077 	}
2078 
2079 	/* This is required so that the orig_* parameters are saved */
2080 	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2081 	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2082 		wiphy_update_regulatory(wiphy, reg_request->initiator);
2083 		reg_check_channels();
2084 	}
2085 
2086 	return;
2087 
2088 out_free:
2089 	reg_free_request(reg_request);
2090 }
2091 
2092 /*
2093  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2094  * Regulatory hints come on a first come first serve basis and we
2095  * must process each one atomically.
2096  */
2097 static void reg_process_pending_hints(void)
2098 {
2099 	struct regulatory_request *reg_request, *lr;
2100 
2101 	lr = get_last_request();
2102 
2103 	/* When last_request->processed becomes true this will be rescheduled */
2104 	if (lr && !lr->processed) {
2105 		reg_process_hint(lr);
2106 		return;
2107 	}
2108 
2109 	spin_lock(&reg_requests_lock);
2110 
2111 	if (list_empty(&reg_requests_list)) {
2112 		spin_unlock(&reg_requests_lock);
2113 		return;
2114 	}
2115 
2116 	reg_request = list_first_entry(&reg_requests_list,
2117 				       struct regulatory_request,
2118 				       list);
2119 	list_del_init(&reg_request->list);
2120 
2121 	spin_unlock(&reg_requests_lock);
2122 
2123 	reg_process_hint(reg_request);
2124 }
2125 
2126 /* Processes beacon hints -- this has nothing to do with country IEs */
2127 static void reg_process_pending_beacon_hints(void)
2128 {
2129 	struct cfg80211_registered_device *rdev;
2130 	struct reg_beacon *pending_beacon, *tmp;
2131 
2132 	/* This goes through the _pending_ beacon list */
2133 	spin_lock_bh(&reg_pending_beacons_lock);
2134 
2135 	list_for_each_entry_safe(pending_beacon, tmp,
2136 				 &reg_pending_beacons, list) {
2137 		list_del_init(&pending_beacon->list);
2138 
2139 		/* Applies the beacon hint to current wiphys */
2140 		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2141 			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2142 
2143 		/* Remembers the beacon hint for new wiphys or reg changes */
2144 		list_add_tail(&pending_beacon->list, &reg_beacon_list);
2145 	}
2146 
2147 	spin_unlock_bh(&reg_pending_beacons_lock);
2148 }
2149 
2150 static void reg_todo(struct work_struct *work)
2151 {
2152 	rtnl_lock();
2153 	reg_process_pending_hints();
2154 	reg_process_pending_beacon_hints();
2155 	rtnl_unlock();
2156 }
2157 
2158 static void queue_regulatory_request(struct regulatory_request *request)
2159 {
2160 	request->alpha2[0] = toupper(request->alpha2[0]);
2161 	request->alpha2[1] = toupper(request->alpha2[1]);
2162 
2163 	spin_lock(&reg_requests_lock);
2164 	list_add_tail(&request->list, &reg_requests_list);
2165 	spin_unlock(&reg_requests_lock);
2166 
2167 	schedule_work(&reg_work);
2168 }
2169 
2170 /*
2171  * Core regulatory hint -- happens during cfg80211_init()
2172  * and when we restore regulatory settings.
2173  */
2174 static int regulatory_hint_core(const char *alpha2)
2175 {
2176 	struct regulatory_request *request;
2177 
2178 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2179 	if (!request)
2180 		return -ENOMEM;
2181 
2182 	request->alpha2[0] = alpha2[0];
2183 	request->alpha2[1] = alpha2[1];
2184 	request->initiator = NL80211_REGDOM_SET_BY_CORE;
2185 
2186 	queue_regulatory_request(request);
2187 
2188 	return 0;
2189 }
2190 
2191 /* User hints */
2192 int regulatory_hint_user(const char *alpha2,
2193 			 enum nl80211_user_reg_hint_type user_reg_hint_type)
2194 {
2195 	struct regulatory_request *request;
2196 
2197 	if (WARN_ON(!alpha2))
2198 		return -EINVAL;
2199 
2200 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2201 	if (!request)
2202 		return -ENOMEM;
2203 
2204 	request->wiphy_idx = WIPHY_IDX_INVALID;
2205 	request->alpha2[0] = alpha2[0];
2206 	request->alpha2[1] = alpha2[1];
2207 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2208 	request->user_reg_hint_type = user_reg_hint_type;
2209 
2210 	queue_regulatory_request(request);
2211 
2212 	return 0;
2213 }
2214 
2215 int regulatory_hint_indoor_user(void)
2216 {
2217 	struct regulatory_request *request;
2218 
2219 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2220 	if (!request)
2221 		return -ENOMEM;
2222 
2223 	request->wiphy_idx = WIPHY_IDX_INVALID;
2224 	request->initiator = NL80211_REGDOM_SET_BY_USER;
2225 	request->user_reg_hint_type = NL80211_USER_REG_HINT_INDOOR;
2226 	queue_regulatory_request(request);
2227 
2228 	return 0;
2229 }
2230 
2231 /* Driver hints */
2232 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2233 {
2234 	struct regulatory_request *request;
2235 
2236 	if (WARN_ON(!alpha2 || !wiphy))
2237 		return -EINVAL;
2238 
2239 	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2240 
2241 	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2242 	if (!request)
2243 		return -ENOMEM;
2244 
2245 	request->wiphy_idx = get_wiphy_idx(wiphy);
2246 
2247 	request->alpha2[0] = alpha2[0];
2248 	request->alpha2[1] = alpha2[1];
2249 	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2250 
2251 	queue_regulatory_request(request);
2252 
2253 	return 0;
2254 }
2255 EXPORT_SYMBOL(regulatory_hint);
2256 
2257 void regulatory_hint_country_ie(struct wiphy *wiphy, enum ieee80211_band band,
2258 				const u8 *country_ie, u8 country_ie_len)
2259 {
2260 	char alpha2[2];
2261 	enum environment_cap env = ENVIRON_ANY;
2262 	struct regulatory_request *request = NULL, *lr;
2263 
2264 	/* IE len must be evenly divisible by 2 */
2265 	if (country_ie_len & 0x01)
2266 		return;
2267 
2268 	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2269 		return;
2270 
2271 	request = kzalloc(sizeof(*request), GFP_KERNEL);
2272 	if (!request)
2273 		return;
2274 
2275 	alpha2[0] = country_ie[0];
2276 	alpha2[1] = country_ie[1];
2277 
2278 	if (country_ie[2] == 'I')
2279 		env = ENVIRON_INDOOR;
2280 	else if (country_ie[2] == 'O')
2281 		env = ENVIRON_OUTDOOR;
2282 
2283 	rcu_read_lock();
2284 	lr = get_last_request();
2285 
2286 	if (unlikely(!lr))
2287 		goto out;
2288 
2289 	/*
2290 	 * We will run this only upon a successful connection on cfg80211.
2291 	 * We leave conflict resolution to the workqueue, where can hold
2292 	 * the RTNL.
2293 	 */
2294 	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2295 	    lr->wiphy_idx != WIPHY_IDX_INVALID)
2296 		goto out;
2297 
2298 	request->wiphy_idx = get_wiphy_idx(wiphy);
2299 	request->alpha2[0] = alpha2[0];
2300 	request->alpha2[1] = alpha2[1];
2301 	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
2302 	request->country_ie_env = env;
2303 
2304 	queue_regulatory_request(request);
2305 	request = NULL;
2306 out:
2307 	kfree(request);
2308 	rcu_read_unlock();
2309 }
2310 
2311 static void restore_alpha2(char *alpha2, bool reset_user)
2312 {
2313 	/* indicates there is no alpha2 to consider for restoration */
2314 	alpha2[0] = '9';
2315 	alpha2[1] = '7';
2316 
2317 	/* The user setting has precedence over the module parameter */
2318 	if (is_user_regdom_saved()) {
2319 		/* Unless we're asked to ignore it and reset it */
2320 		if (reset_user) {
2321 			REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2322 			user_alpha2[0] = '9';
2323 			user_alpha2[1] = '7';
2324 
2325 			/*
2326 			 * If we're ignoring user settings, we still need to
2327 			 * check the module parameter to ensure we put things
2328 			 * back as they were for a full restore.
2329 			 */
2330 			if (!is_world_regdom(ieee80211_regdom)) {
2331 				REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2332 					      ieee80211_regdom[0], ieee80211_regdom[1]);
2333 				alpha2[0] = ieee80211_regdom[0];
2334 				alpha2[1] = ieee80211_regdom[1];
2335 			}
2336 		} else {
2337 			REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2338 				      user_alpha2[0], user_alpha2[1]);
2339 			alpha2[0] = user_alpha2[0];
2340 			alpha2[1] = user_alpha2[1];
2341 		}
2342 	} else if (!is_world_regdom(ieee80211_regdom)) {
2343 		REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2344 			      ieee80211_regdom[0], ieee80211_regdom[1]);
2345 		alpha2[0] = ieee80211_regdom[0];
2346 		alpha2[1] = ieee80211_regdom[1];
2347 	} else
2348 		REG_DBG_PRINT("Restoring regulatory settings\n");
2349 }
2350 
2351 static void restore_custom_reg_settings(struct wiphy *wiphy)
2352 {
2353 	struct ieee80211_supported_band *sband;
2354 	enum ieee80211_band band;
2355 	struct ieee80211_channel *chan;
2356 	int i;
2357 
2358 	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
2359 		sband = wiphy->bands[band];
2360 		if (!sband)
2361 			continue;
2362 		for (i = 0; i < sband->n_channels; i++) {
2363 			chan = &sband->channels[i];
2364 			chan->flags = chan->orig_flags;
2365 			chan->max_antenna_gain = chan->orig_mag;
2366 			chan->max_power = chan->orig_mpwr;
2367 			chan->beacon_found = false;
2368 		}
2369 	}
2370 }
2371 
2372 /*
2373  * Restoring regulatory settings involves ingoring any
2374  * possibly stale country IE information and user regulatory
2375  * settings if so desired, this includes any beacon hints
2376  * learned as we could have traveled outside to another country
2377  * after disconnection. To restore regulatory settings we do
2378  * exactly what we did at bootup:
2379  *
2380  *   - send a core regulatory hint
2381  *   - send a user regulatory hint if applicable
2382  *
2383  * Device drivers that send a regulatory hint for a specific country
2384  * keep their own regulatory domain on wiphy->regd so that does does
2385  * not need to be remembered.
2386  */
2387 static void restore_regulatory_settings(bool reset_user)
2388 {
2389 	char alpha2[2];
2390 	char world_alpha2[2];
2391 	struct reg_beacon *reg_beacon, *btmp;
2392 	struct regulatory_request *reg_request, *tmp;
2393 	LIST_HEAD(tmp_reg_req_list);
2394 	struct cfg80211_registered_device *rdev;
2395 
2396 	ASSERT_RTNL();
2397 
2398 	reg_is_indoor = false;
2399 
2400 	reset_regdomains(true, &world_regdom);
2401 	restore_alpha2(alpha2, reset_user);
2402 
2403 	/*
2404 	 * If there's any pending requests we simply
2405 	 * stash them to a temporary pending queue and
2406 	 * add then after we've restored regulatory
2407 	 * settings.
2408 	 */
2409 	spin_lock(&reg_requests_lock);
2410 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2411 		if (reg_request->initiator != NL80211_REGDOM_SET_BY_USER)
2412 			continue;
2413 		list_move_tail(&reg_request->list, &tmp_reg_req_list);
2414 	}
2415 	spin_unlock(&reg_requests_lock);
2416 
2417 	/* Clear beacon hints */
2418 	spin_lock_bh(&reg_pending_beacons_lock);
2419 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2420 		list_del(&reg_beacon->list);
2421 		kfree(reg_beacon);
2422 	}
2423 	spin_unlock_bh(&reg_pending_beacons_lock);
2424 
2425 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2426 		list_del(&reg_beacon->list);
2427 		kfree(reg_beacon);
2428 	}
2429 
2430 	/* First restore to the basic regulatory settings */
2431 	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
2432 	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
2433 
2434 	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2435 		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
2436 			restore_custom_reg_settings(&rdev->wiphy);
2437 	}
2438 
2439 	regulatory_hint_core(world_alpha2);
2440 
2441 	/*
2442 	 * This restores the ieee80211_regdom module parameter
2443 	 * preference or the last user requested regulatory
2444 	 * settings, user regulatory settings takes precedence.
2445 	 */
2446 	if (is_an_alpha2(alpha2))
2447 		regulatory_hint_user(user_alpha2, NL80211_USER_REG_HINT_USER);
2448 
2449 	spin_lock(&reg_requests_lock);
2450 	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
2451 	spin_unlock(&reg_requests_lock);
2452 
2453 	REG_DBG_PRINT("Kicking the queue\n");
2454 
2455 	schedule_work(&reg_work);
2456 }
2457 
2458 void regulatory_hint_disconnect(void)
2459 {
2460 	REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2461 	restore_regulatory_settings(false);
2462 }
2463 
2464 static bool freq_is_chan_12_13_14(u16 freq)
2465 {
2466 	if (freq == ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ) ||
2467 	    freq == ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ) ||
2468 	    freq == ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ))
2469 		return true;
2470 	return false;
2471 }
2472 
2473 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
2474 {
2475 	struct reg_beacon *pending_beacon;
2476 
2477 	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
2478 		if (beacon_chan->center_freq ==
2479 		    pending_beacon->chan.center_freq)
2480 			return true;
2481 	return false;
2482 }
2483 
2484 int regulatory_hint_found_beacon(struct wiphy *wiphy,
2485 				 struct ieee80211_channel *beacon_chan,
2486 				 gfp_t gfp)
2487 {
2488 	struct reg_beacon *reg_beacon;
2489 	bool processing;
2490 
2491 	if (beacon_chan->beacon_found ||
2492 	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
2493 	    (beacon_chan->band == IEEE80211_BAND_2GHZ &&
2494 	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
2495 		return 0;
2496 
2497 	spin_lock_bh(&reg_pending_beacons_lock);
2498 	processing = pending_reg_beacon(beacon_chan);
2499 	spin_unlock_bh(&reg_pending_beacons_lock);
2500 
2501 	if (processing)
2502 		return 0;
2503 
2504 	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
2505 	if (!reg_beacon)
2506 		return -ENOMEM;
2507 
2508 	REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2509 		      beacon_chan->center_freq,
2510 		      ieee80211_frequency_to_channel(beacon_chan->center_freq),
2511 		      wiphy_name(wiphy));
2512 
2513 	memcpy(&reg_beacon->chan, beacon_chan,
2514 	       sizeof(struct ieee80211_channel));
2515 
2516 	/*
2517 	 * Since we can be called from BH or and non-BH context
2518 	 * we must use spin_lock_bh()
2519 	 */
2520 	spin_lock_bh(&reg_pending_beacons_lock);
2521 	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
2522 	spin_unlock_bh(&reg_pending_beacons_lock);
2523 
2524 	schedule_work(&reg_work);
2525 
2526 	return 0;
2527 }
2528 
2529 static void print_rd_rules(const struct ieee80211_regdomain *rd)
2530 {
2531 	unsigned int i;
2532 	const struct ieee80211_reg_rule *reg_rule = NULL;
2533 	const struct ieee80211_freq_range *freq_range = NULL;
2534 	const struct ieee80211_power_rule *power_rule = NULL;
2535 	char bw[32], cac_time[32];
2536 
2537 	pr_info("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2538 
2539 	for (i = 0; i < rd->n_reg_rules; i++) {
2540 		reg_rule = &rd->reg_rules[i];
2541 		freq_range = &reg_rule->freq_range;
2542 		power_rule = &reg_rule->power_rule;
2543 
2544 		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
2545 			snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
2546 				 freq_range->max_bandwidth_khz,
2547 				 reg_get_max_bandwidth(rd, reg_rule));
2548 		else
2549 			snprintf(bw, sizeof(bw), "%d KHz",
2550 				 freq_range->max_bandwidth_khz);
2551 
2552 		if (reg_rule->flags & NL80211_RRF_DFS)
2553 			scnprintf(cac_time, sizeof(cac_time), "%u s",
2554 				  reg_rule->dfs_cac_ms/1000);
2555 		else
2556 			scnprintf(cac_time, sizeof(cac_time), "N/A");
2557 
2558 
2559 		/*
2560 		 * There may not be documentation for max antenna gain
2561 		 * in certain regions
2562 		 */
2563 		if (power_rule->max_antenna_gain)
2564 			pr_info("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2565 				freq_range->start_freq_khz,
2566 				freq_range->end_freq_khz,
2567 				bw,
2568 				power_rule->max_antenna_gain,
2569 				power_rule->max_eirp,
2570 				cac_time);
2571 		else
2572 			pr_info("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2573 				freq_range->start_freq_khz,
2574 				freq_range->end_freq_khz,
2575 				bw,
2576 				power_rule->max_eirp,
2577 				cac_time);
2578 	}
2579 }
2580 
2581 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
2582 {
2583 	switch (dfs_region) {
2584 	case NL80211_DFS_UNSET:
2585 	case NL80211_DFS_FCC:
2586 	case NL80211_DFS_ETSI:
2587 	case NL80211_DFS_JP:
2588 		return true;
2589 	default:
2590 		REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2591 			      dfs_region);
2592 		return false;
2593 	}
2594 }
2595 
2596 static void print_regdomain(const struct ieee80211_regdomain *rd)
2597 {
2598 	struct regulatory_request *lr = get_last_request();
2599 
2600 	if (is_intersected_alpha2(rd->alpha2)) {
2601 		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
2602 			struct cfg80211_registered_device *rdev;
2603 			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
2604 			if (rdev) {
2605 				pr_info("Current regulatory domain updated by AP to: %c%c\n",
2606 					rdev->country_ie_alpha2[0],
2607 					rdev->country_ie_alpha2[1]);
2608 			} else
2609 				pr_info("Current regulatory domain intersected:\n");
2610 		} else
2611 			pr_info("Current regulatory domain intersected:\n");
2612 	} else if (is_world_regdom(rd->alpha2)) {
2613 		pr_info("World regulatory domain updated:\n");
2614 	} else {
2615 		if (is_unknown_alpha2(rd->alpha2))
2616 			pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2617 		else {
2618 			if (reg_request_cell_base(lr))
2619 				pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2620 					rd->alpha2[0], rd->alpha2[1]);
2621 			else
2622 				pr_info("Regulatory domain changed to country: %c%c\n",
2623 					rd->alpha2[0], rd->alpha2[1]);
2624 		}
2625 	}
2626 
2627 	pr_info(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
2628 	print_rd_rules(rd);
2629 }
2630 
2631 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
2632 {
2633 	pr_info("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
2634 	print_rd_rules(rd);
2635 }
2636 
2637 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
2638 {
2639 	if (!is_world_regdom(rd->alpha2))
2640 		return -EINVAL;
2641 	update_world_regdomain(rd);
2642 	return 0;
2643 }
2644 
2645 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
2646 			   struct regulatory_request *user_request)
2647 {
2648 	const struct ieee80211_regdomain *intersected_rd = NULL;
2649 
2650 	if (!regdom_changes(rd->alpha2))
2651 		return -EALREADY;
2652 
2653 	if (!is_valid_rd(rd)) {
2654 		pr_err("Invalid regulatory domain detected:\n");
2655 		print_regdomain_info(rd);
2656 		return -EINVAL;
2657 	}
2658 
2659 	if (!user_request->intersect) {
2660 		reset_regdomains(false, rd);
2661 		return 0;
2662 	}
2663 
2664 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2665 	if (!intersected_rd)
2666 		return -EINVAL;
2667 
2668 	kfree(rd);
2669 	rd = NULL;
2670 	reset_regdomains(false, intersected_rd);
2671 
2672 	return 0;
2673 }
2674 
2675 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
2676 			     struct regulatory_request *driver_request)
2677 {
2678 	const struct ieee80211_regdomain *regd;
2679 	const struct ieee80211_regdomain *intersected_rd = NULL;
2680 	const struct ieee80211_regdomain *tmp;
2681 	struct wiphy *request_wiphy;
2682 
2683 	if (is_world_regdom(rd->alpha2))
2684 		return -EINVAL;
2685 
2686 	if (!regdom_changes(rd->alpha2))
2687 		return -EALREADY;
2688 
2689 	if (!is_valid_rd(rd)) {
2690 		pr_err("Invalid regulatory domain detected:\n");
2691 		print_regdomain_info(rd);
2692 		return -EINVAL;
2693 	}
2694 
2695 	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
2696 	if (!request_wiphy) {
2697 		queue_delayed_work(system_power_efficient_wq,
2698 				   &reg_timeout, 0);
2699 		return -ENODEV;
2700 	}
2701 
2702 	if (!driver_request->intersect) {
2703 		if (request_wiphy->regd)
2704 			return -EALREADY;
2705 
2706 		regd = reg_copy_regd(rd);
2707 		if (IS_ERR(regd))
2708 			return PTR_ERR(regd);
2709 
2710 		rcu_assign_pointer(request_wiphy->regd, regd);
2711 		reset_regdomains(false, rd);
2712 		return 0;
2713 	}
2714 
2715 	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
2716 	if (!intersected_rd)
2717 		return -EINVAL;
2718 
2719 	/*
2720 	 * We can trash what CRDA provided now.
2721 	 * However if a driver requested this specific regulatory
2722 	 * domain we keep it for its private use
2723 	 */
2724 	tmp = get_wiphy_regdom(request_wiphy);
2725 	rcu_assign_pointer(request_wiphy->regd, rd);
2726 	rcu_free_regdom(tmp);
2727 
2728 	rd = NULL;
2729 
2730 	reset_regdomains(false, intersected_rd);
2731 
2732 	return 0;
2733 }
2734 
2735 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
2736 				 struct regulatory_request *country_ie_request)
2737 {
2738 	struct wiphy *request_wiphy;
2739 
2740 	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2741 	    !is_unknown_alpha2(rd->alpha2))
2742 		return -EINVAL;
2743 
2744 	/*
2745 	 * Lets only bother proceeding on the same alpha2 if the current
2746 	 * rd is non static (it means CRDA was present and was used last)
2747 	 * and the pending request came in from a country IE
2748 	 */
2749 
2750 	if (!is_valid_rd(rd)) {
2751 		pr_err("Invalid regulatory domain detected:\n");
2752 		print_regdomain_info(rd);
2753 		return -EINVAL;
2754 	}
2755 
2756 	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
2757 	if (!request_wiphy) {
2758 		queue_delayed_work(system_power_efficient_wq,
2759 				   &reg_timeout, 0);
2760 		return -ENODEV;
2761 	}
2762 
2763 	if (country_ie_request->intersect)
2764 		return -EINVAL;
2765 
2766 	reset_regdomains(false, rd);
2767 	return 0;
2768 }
2769 
2770 /*
2771  * Use this call to set the current regulatory domain. Conflicts with
2772  * multiple drivers can be ironed out later. Caller must've already
2773  * kmalloc'd the rd structure.
2774  */
2775 int set_regdom(const struct ieee80211_regdomain *rd)
2776 {
2777 	struct regulatory_request *lr;
2778 	bool user_reset = false;
2779 	int r;
2780 
2781 	if (!reg_is_valid_request(rd->alpha2)) {
2782 		kfree(rd);
2783 		return -EINVAL;
2784 	}
2785 
2786 	lr = get_last_request();
2787 
2788 	/* Note that this doesn't update the wiphys, this is done below */
2789 	switch (lr->initiator) {
2790 	case NL80211_REGDOM_SET_BY_CORE:
2791 		r = reg_set_rd_core(rd);
2792 		break;
2793 	case NL80211_REGDOM_SET_BY_USER:
2794 		r = reg_set_rd_user(rd, lr);
2795 		user_reset = true;
2796 		break;
2797 	case NL80211_REGDOM_SET_BY_DRIVER:
2798 		r = reg_set_rd_driver(rd, lr);
2799 		break;
2800 	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2801 		r = reg_set_rd_country_ie(rd, lr);
2802 		break;
2803 	default:
2804 		WARN(1, "invalid initiator %d\n", lr->initiator);
2805 		return -EINVAL;
2806 	}
2807 
2808 	if (r) {
2809 		switch (r) {
2810 		case -EALREADY:
2811 			reg_set_request_processed();
2812 			break;
2813 		default:
2814 			/* Back to world regulatory in case of errors */
2815 			restore_regulatory_settings(user_reset);
2816 		}
2817 
2818 		kfree(rd);
2819 		return r;
2820 	}
2821 
2822 	/* This would make this whole thing pointless */
2823 	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
2824 		return -EINVAL;
2825 
2826 	/* update all wiphys now with the new established regulatory domain */
2827 	update_all_wiphy_regulatory(lr->initiator);
2828 
2829 	print_regdomain(get_cfg80211_regdom());
2830 
2831 	nl80211_send_reg_change_event(lr);
2832 
2833 	reg_set_request_processed();
2834 
2835 	return 0;
2836 }
2837 
2838 void wiphy_regulatory_register(struct wiphy *wiphy)
2839 {
2840 	struct regulatory_request *lr;
2841 
2842 	if (!reg_dev_ignore_cell_hint(wiphy))
2843 		reg_num_devs_support_basehint++;
2844 
2845 	lr = get_last_request();
2846 	wiphy_update_regulatory(wiphy, lr->initiator);
2847 }
2848 
2849 void wiphy_regulatory_deregister(struct wiphy *wiphy)
2850 {
2851 	struct wiphy *request_wiphy = NULL;
2852 	struct regulatory_request *lr;
2853 
2854 	lr = get_last_request();
2855 
2856 	if (!reg_dev_ignore_cell_hint(wiphy))
2857 		reg_num_devs_support_basehint--;
2858 
2859 	rcu_free_regdom(get_wiphy_regdom(wiphy));
2860 	RCU_INIT_POINTER(wiphy->regd, NULL);
2861 
2862 	if (lr)
2863 		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2864 
2865 	if (!request_wiphy || request_wiphy != wiphy)
2866 		return;
2867 
2868 	lr->wiphy_idx = WIPHY_IDX_INVALID;
2869 	lr->country_ie_env = ENVIRON_ANY;
2870 }
2871 
2872 static void reg_timeout_work(struct work_struct *work)
2873 {
2874 	REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
2875 	rtnl_lock();
2876 	restore_regulatory_settings(true);
2877 	rtnl_unlock();
2878 }
2879 
2880 /*
2881  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
2882  * UNII band definitions
2883  */
2884 int cfg80211_get_unii(int freq)
2885 {
2886 	/* UNII-1 */
2887 	if (freq >= 5150 && freq <= 5250)
2888 		return 0;
2889 
2890 	/* UNII-2A */
2891 	if (freq > 5250 && freq <= 5350)
2892 		return 1;
2893 
2894 	/* UNII-2B */
2895 	if (freq > 5350 && freq <= 5470)
2896 		return 2;
2897 
2898 	/* UNII-2C */
2899 	if (freq > 5470 && freq <= 5725)
2900 		return 3;
2901 
2902 	/* UNII-3 */
2903 	if (freq > 5725 && freq <= 5825)
2904 		return 4;
2905 
2906 	return -EINVAL;
2907 }
2908 
2909 bool regulatory_indoor_allowed(void)
2910 {
2911 	return reg_is_indoor;
2912 }
2913 
2914 int __init regulatory_init(void)
2915 {
2916 	int err = 0;
2917 
2918 	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2919 	if (IS_ERR(reg_pdev))
2920 		return PTR_ERR(reg_pdev);
2921 
2922 	spin_lock_init(&reg_requests_lock);
2923 	spin_lock_init(&reg_pending_beacons_lock);
2924 
2925 	reg_regdb_size_check();
2926 
2927 	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
2928 
2929 	user_alpha2[0] = '9';
2930 	user_alpha2[1] = '7';
2931 
2932 	/* We always try to get an update for the static regdomain */
2933 	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
2934 	if (err) {
2935 		if (err == -ENOMEM)
2936 			return err;
2937 		/*
2938 		 * N.B. kobject_uevent_env() can fail mainly for when we're out
2939 		 * memory which is handled and propagated appropriately above
2940 		 * but it can also fail during a netlink_broadcast() or during
2941 		 * early boot for call_usermodehelper(). For now treat these
2942 		 * errors as non-fatal.
2943 		 */
2944 		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2945 	}
2946 
2947 	/*
2948 	 * Finally, if the user set the module parameter treat it
2949 	 * as a user hint.
2950 	 */
2951 	if (!is_world_regdom(ieee80211_regdom))
2952 		regulatory_hint_user(ieee80211_regdom,
2953 				     NL80211_USER_REG_HINT_USER);
2954 
2955 	return 0;
2956 }
2957 
2958 void regulatory_exit(void)
2959 {
2960 	struct regulatory_request *reg_request, *tmp;
2961 	struct reg_beacon *reg_beacon, *btmp;
2962 
2963 	cancel_work_sync(&reg_work);
2964 	cancel_delayed_work_sync(&reg_timeout);
2965 	cancel_delayed_work_sync(&reg_check_chans);
2966 
2967 	/* Lock to suppress warnings */
2968 	rtnl_lock();
2969 	reset_regdomains(true, NULL);
2970 	rtnl_unlock();
2971 
2972 	dev_set_uevent_suppress(&reg_pdev->dev, true);
2973 
2974 	platform_device_unregister(reg_pdev);
2975 
2976 	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
2977 		list_del(&reg_beacon->list);
2978 		kfree(reg_beacon);
2979 	}
2980 
2981 	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
2982 		list_del(&reg_beacon->list);
2983 		kfree(reg_beacon);
2984 	}
2985 
2986 	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
2987 		list_del(&reg_request->list);
2988 		kfree(reg_request);
2989 	}
2990 }
2991