xref: /linux/net/tls/tls_main.c (revision 9abdb50cda0ffe33bbb2e40cbad97b32fb7ff892)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 
43 #include <net/tls.h>
44 
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49 
50 enum {
51 	TLSV4,
52 	TLSV6,
53 	TLS_NUM_PROTS,
54 };
55 
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static struct proto *saved_tcpv4_prot;
59 static DEFINE_MUTEX(tcpv4_prot_mutex);
60 static LIST_HEAD(device_list);
61 static DEFINE_SPINLOCK(device_spinlock);
62 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
63 static struct proto_ops tls_sw_proto_ops;
64 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
65 			 struct proto *base);
66 
67 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
68 {
69 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
70 
71 	sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
72 }
73 
74 int wait_on_pending_writer(struct sock *sk, long *timeo)
75 {
76 	int rc = 0;
77 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
78 
79 	add_wait_queue(sk_sleep(sk), &wait);
80 	while (1) {
81 		if (!*timeo) {
82 			rc = -EAGAIN;
83 			break;
84 		}
85 
86 		if (signal_pending(current)) {
87 			rc = sock_intr_errno(*timeo);
88 			break;
89 		}
90 
91 		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
92 			break;
93 	}
94 	remove_wait_queue(sk_sleep(sk), &wait);
95 	return rc;
96 }
97 
98 int tls_push_sg(struct sock *sk,
99 		struct tls_context *ctx,
100 		struct scatterlist *sg,
101 		u16 first_offset,
102 		int flags)
103 {
104 	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
105 	int ret = 0;
106 	struct page *p;
107 	size_t size;
108 	int offset = first_offset;
109 
110 	size = sg->length - offset;
111 	offset += sg->offset;
112 
113 	ctx->in_tcp_sendpages = true;
114 	while (1) {
115 		if (sg_is_last(sg))
116 			sendpage_flags = flags;
117 
118 		/* is sending application-limited? */
119 		tcp_rate_check_app_limited(sk);
120 		p = sg_page(sg);
121 retry:
122 		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
123 
124 		if (ret != size) {
125 			if (ret > 0) {
126 				offset += ret;
127 				size -= ret;
128 				goto retry;
129 			}
130 
131 			offset -= sg->offset;
132 			ctx->partially_sent_offset = offset;
133 			ctx->partially_sent_record = (void *)sg;
134 			ctx->in_tcp_sendpages = false;
135 			return ret;
136 		}
137 
138 		put_page(p);
139 		sk_mem_uncharge(sk, sg->length);
140 		sg = sg_next(sg);
141 		if (!sg)
142 			break;
143 
144 		offset = sg->offset;
145 		size = sg->length;
146 	}
147 
148 	ctx->in_tcp_sendpages = false;
149 	ctx->sk_write_space(sk);
150 
151 	return 0;
152 }
153 
154 static int tls_handle_open_record(struct sock *sk, int flags)
155 {
156 	struct tls_context *ctx = tls_get_ctx(sk);
157 
158 	if (tls_is_pending_open_record(ctx))
159 		return ctx->push_pending_record(sk, flags);
160 
161 	return 0;
162 }
163 
164 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165 		      unsigned char *record_type)
166 {
167 	struct cmsghdr *cmsg;
168 	int rc = -EINVAL;
169 
170 	for_each_cmsghdr(cmsg, msg) {
171 		if (!CMSG_OK(msg, cmsg))
172 			return -EINVAL;
173 		if (cmsg->cmsg_level != SOL_TLS)
174 			continue;
175 
176 		switch (cmsg->cmsg_type) {
177 		case TLS_SET_RECORD_TYPE:
178 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
179 				return -EINVAL;
180 
181 			if (msg->msg_flags & MSG_MORE)
182 				return -EINVAL;
183 
184 			rc = tls_handle_open_record(sk, msg->msg_flags);
185 			if (rc)
186 				return rc;
187 
188 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
189 			rc = 0;
190 			break;
191 		default:
192 			return -EINVAL;
193 		}
194 	}
195 
196 	return rc;
197 }
198 
199 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
200 			    int flags)
201 {
202 	struct scatterlist *sg;
203 	u16 offset;
204 
205 	sg = ctx->partially_sent_record;
206 	offset = ctx->partially_sent_offset;
207 
208 	ctx->partially_sent_record = NULL;
209 	return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211 
212 static void tls_write_space(struct sock *sk)
213 {
214 	struct tls_context *ctx = tls_get_ctx(sk);
215 
216 	/* If in_tcp_sendpages call lower protocol write space handler
217 	 * to ensure we wake up any waiting operations there. For example
218 	 * if do_tcp_sendpages where to call sk_wait_event.
219 	 */
220 	if (ctx->in_tcp_sendpages) {
221 		ctx->sk_write_space(sk);
222 		return;
223 	}
224 
225 #ifdef CONFIG_TLS_DEVICE
226 	if (ctx->tx_conf == TLS_HW)
227 		tls_device_write_space(sk, ctx);
228 	else
229 #endif
230 		tls_sw_write_space(sk, ctx);
231 }
232 
233 static void tls_ctx_free(struct tls_context *ctx)
234 {
235 	if (!ctx)
236 		return;
237 
238 	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
239 	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
240 	kfree(ctx);
241 }
242 
243 static void tls_sk_proto_close(struct sock *sk, long timeout)
244 {
245 	struct tls_context *ctx = tls_get_ctx(sk);
246 	long timeo = sock_sndtimeo(sk, 0);
247 	void (*sk_proto_close)(struct sock *sk, long timeout);
248 	bool free_ctx = false;
249 
250 	lock_sock(sk);
251 	sk_proto_close = ctx->sk_proto_close;
252 
253 	if (ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD)
254 		goto skip_tx_cleanup;
255 
256 	if (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE) {
257 		free_ctx = true;
258 		goto skip_tx_cleanup;
259 	}
260 
261 	if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
262 		tls_handle_open_record(sk, 0);
263 
264 	/* We need these for tls_sw_fallback handling of other packets */
265 	if (ctx->tx_conf == TLS_SW) {
266 		kfree(ctx->tx.rec_seq);
267 		kfree(ctx->tx.iv);
268 		tls_sw_free_resources_tx(sk);
269 	}
270 
271 	if (ctx->rx_conf == TLS_SW) {
272 		kfree(ctx->rx.rec_seq);
273 		kfree(ctx->rx.iv);
274 		tls_sw_free_resources_rx(sk);
275 	}
276 
277 #ifdef CONFIG_TLS_DEVICE
278 	if (ctx->rx_conf == TLS_HW)
279 		tls_device_offload_cleanup_rx(sk);
280 
281 	if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
282 #else
283 	{
284 #endif
285 		tls_ctx_free(ctx);
286 		ctx = NULL;
287 	}
288 
289 skip_tx_cleanup:
290 	release_sock(sk);
291 	sk_proto_close(sk, timeout);
292 	/* free ctx for TLS_HW_RECORD, used by tcp_set_state
293 	 * for sk->sk_prot->unhash [tls_hw_unhash]
294 	 */
295 	if (free_ctx)
296 		tls_ctx_free(ctx);
297 }
298 
299 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
300 				int __user *optlen)
301 {
302 	int rc = 0;
303 	struct tls_context *ctx = tls_get_ctx(sk);
304 	struct tls_crypto_info *crypto_info;
305 	int len;
306 
307 	if (get_user(len, optlen))
308 		return -EFAULT;
309 
310 	if (!optval || (len < sizeof(*crypto_info))) {
311 		rc = -EINVAL;
312 		goto out;
313 	}
314 
315 	if (!ctx) {
316 		rc = -EBUSY;
317 		goto out;
318 	}
319 
320 	/* get user crypto info */
321 	crypto_info = &ctx->crypto_send.info;
322 
323 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
324 		rc = -EBUSY;
325 		goto out;
326 	}
327 
328 	if (len == sizeof(*crypto_info)) {
329 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
330 			rc = -EFAULT;
331 		goto out;
332 	}
333 
334 	switch (crypto_info->cipher_type) {
335 	case TLS_CIPHER_AES_GCM_128: {
336 		struct tls12_crypto_info_aes_gcm_128 *
337 		  crypto_info_aes_gcm_128 =
338 		  container_of(crypto_info,
339 			       struct tls12_crypto_info_aes_gcm_128,
340 			       info);
341 
342 		if (len != sizeof(*crypto_info_aes_gcm_128)) {
343 			rc = -EINVAL;
344 			goto out;
345 		}
346 		lock_sock(sk);
347 		memcpy(crypto_info_aes_gcm_128->iv,
348 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
349 		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
350 		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
351 		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
352 		release_sock(sk);
353 		if (copy_to_user(optval,
354 				 crypto_info_aes_gcm_128,
355 				 sizeof(*crypto_info_aes_gcm_128)))
356 			rc = -EFAULT;
357 		break;
358 	}
359 	case TLS_CIPHER_AES_GCM_256: {
360 		struct tls12_crypto_info_aes_gcm_256 *
361 		  crypto_info_aes_gcm_256 =
362 		  container_of(crypto_info,
363 			       struct tls12_crypto_info_aes_gcm_256,
364 			       info);
365 
366 		if (len != sizeof(*crypto_info_aes_gcm_256)) {
367 			rc = -EINVAL;
368 			goto out;
369 		}
370 		lock_sock(sk);
371 		memcpy(crypto_info_aes_gcm_256->iv,
372 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
373 		       TLS_CIPHER_AES_GCM_256_IV_SIZE);
374 		memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
375 		       TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
376 		release_sock(sk);
377 		if (copy_to_user(optval,
378 				 crypto_info_aes_gcm_256,
379 				 sizeof(*crypto_info_aes_gcm_256)))
380 			rc = -EFAULT;
381 		break;
382 	}
383 	default:
384 		rc = -EINVAL;
385 	}
386 
387 out:
388 	return rc;
389 }
390 
391 static int do_tls_getsockopt(struct sock *sk, int optname,
392 			     char __user *optval, int __user *optlen)
393 {
394 	int rc = 0;
395 
396 	switch (optname) {
397 	case TLS_TX:
398 		rc = do_tls_getsockopt_tx(sk, optval, optlen);
399 		break;
400 	default:
401 		rc = -ENOPROTOOPT;
402 		break;
403 	}
404 	return rc;
405 }
406 
407 static int tls_getsockopt(struct sock *sk, int level, int optname,
408 			  char __user *optval, int __user *optlen)
409 {
410 	struct tls_context *ctx = tls_get_ctx(sk);
411 
412 	if (level != SOL_TLS)
413 		return ctx->getsockopt(sk, level, optname, optval, optlen);
414 
415 	return do_tls_getsockopt(sk, optname, optval, optlen);
416 }
417 
418 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
419 				  unsigned int optlen, int tx)
420 {
421 	struct tls_crypto_info *crypto_info;
422 	struct tls_crypto_info *alt_crypto_info;
423 	struct tls_context *ctx = tls_get_ctx(sk);
424 	size_t optsize;
425 	int rc = 0;
426 	int conf;
427 
428 	if (!optval || (optlen < sizeof(*crypto_info))) {
429 		rc = -EINVAL;
430 		goto out;
431 	}
432 
433 	if (tx) {
434 		crypto_info = &ctx->crypto_send.info;
435 		alt_crypto_info = &ctx->crypto_recv.info;
436 	} else {
437 		crypto_info = &ctx->crypto_recv.info;
438 		alt_crypto_info = &ctx->crypto_send.info;
439 	}
440 
441 	/* Currently we don't support set crypto info more than one time */
442 	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
443 		rc = -EBUSY;
444 		goto out;
445 	}
446 
447 	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
448 	if (rc) {
449 		rc = -EFAULT;
450 		goto err_crypto_info;
451 	}
452 
453 	/* check version */
454 	if (crypto_info->version != TLS_1_2_VERSION &&
455 	    crypto_info->version != TLS_1_3_VERSION) {
456 		rc = -ENOTSUPP;
457 		goto err_crypto_info;
458 	}
459 
460 	/* Ensure that TLS version and ciphers are same in both directions */
461 	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
462 		if (alt_crypto_info->version != crypto_info->version ||
463 		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
464 			rc = -EINVAL;
465 			goto err_crypto_info;
466 		}
467 	}
468 
469 	switch (crypto_info->cipher_type) {
470 	case TLS_CIPHER_AES_GCM_128:
471 	case TLS_CIPHER_AES_GCM_256: {
472 		optsize = crypto_info->cipher_type == TLS_CIPHER_AES_GCM_128 ?
473 			sizeof(struct tls12_crypto_info_aes_gcm_128) :
474 			sizeof(struct tls12_crypto_info_aes_gcm_256);
475 		if (optlen != optsize) {
476 			rc = -EINVAL;
477 			goto err_crypto_info;
478 		}
479 		rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
480 				    optlen - sizeof(*crypto_info));
481 		if (rc) {
482 			rc = -EFAULT;
483 			goto err_crypto_info;
484 		}
485 		break;
486 	}
487 	default:
488 		rc = -EINVAL;
489 		goto err_crypto_info;
490 	}
491 
492 	if (tx) {
493 #ifdef CONFIG_TLS_DEVICE
494 		rc = tls_set_device_offload(sk, ctx);
495 		conf = TLS_HW;
496 		if (rc) {
497 #else
498 		{
499 #endif
500 			rc = tls_set_sw_offload(sk, ctx, 1);
501 			conf = TLS_SW;
502 		}
503 	} else {
504 #ifdef CONFIG_TLS_DEVICE
505 		rc = tls_set_device_offload_rx(sk, ctx);
506 		conf = TLS_HW;
507 		if (rc) {
508 #else
509 		{
510 #endif
511 			rc = tls_set_sw_offload(sk, ctx, 0);
512 			conf = TLS_SW;
513 		}
514 	}
515 
516 	if (rc)
517 		goto err_crypto_info;
518 
519 	if (tx)
520 		ctx->tx_conf = conf;
521 	else
522 		ctx->rx_conf = conf;
523 	update_sk_prot(sk, ctx);
524 	if (tx) {
525 		ctx->sk_write_space = sk->sk_write_space;
526 		sk->sk_write_space = tls_write_space;
527 	} else {
528 		sk->sk_socket->ops = &tls_sw_proto_ops;
529 	}
530 	goto out;
531 
532 err_crypto_info:
533 	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
534 out:
535 	return rc;
536 }
537 
538 static int do_tls_setsockopt(struct sock *sk, int optname,
539 			     char __user *optval, unsigned int optlen)
540 {
541 	int rc = 0;
542 
543 	switch (optname) {
544 	case TLS_TX:
545 	case TLS_RX:
546 		lock_sock(sk);
547 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
548 					    optname == TLS_TX);
549 		release_sock(sk);
550 		break;
551 	default:
552 		rc = -ENOPROTOOPT;
553 		break;
554 	}
555 	return rc;
556 }
557 
558 static int tls_setsockopt(struct sock *sk, int level, int optname,
559 			  char __user *optval, unsigned int optlen)
560 {
561 	struct tls_context *ctx = tls_get_ctx(sk);
562 
563 	if (level != SOL_TLS)
564 		return ctx->setsockopt(sk, level, optname, optval, optlen);
565 
566 	return do_tls_setsockopt(sk, optname, optval, optlen);
567 }
568 
569 static struct tls_context *create_ctx(struct sock *sk)
570 {
571 	struct inet_connection_sock *icsk = inet_csk(sk);
572 	struct tls_context *ctx;
573 
574 	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
575 	if (!ctx)
576 		return NULL;
577 
578 	icsk->icsk_ulp_data = ctx;
579 	ctx->setsockopt = sk->sk_prot->setsockopt;
580 	ctx->getsockopt = sk->sk_prot->getsockopt;
581 	ctx->sk_proto_close = sk->sk_prot->close;
582 	return ctx;
583 }
584 
585 static void tls_build_proto(struct sock *sk)
586 {
587 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
588 
589 	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
590 	if (ip_ver == TLSV6 &&
591 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
592 		mutex_lock(&tcpv6_prot_mutex);
593 		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
594 			build_protos(tls_prots[TLSV6], sk->sk_prot);
595 			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
596 		}
597 		mutex_unlock(&tcpv6_prot_mutex);
598 	}
599 
600 	if (ip_ver == TLSV4 &&
601 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
602 		mutex_lock(&tcpv4_prot_mutex);
603 		if (likely(sk->sk_prot != saved_tcpv4_prot)) {
604 			build_protos(tls_prots[TLSV4], sk->sk_prot);
605 			smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
606 		}
607 		mutex_unlock(&tcpv4_prot_mutex);
608 	}
609 }
610 
611 static void tls_hw_sk_destruct(struct sock *sk)
612 {
613 	struct tls_context *ctx = tls_get_ctx(sk);
614 	struct inet_connection_sock *icsk = inet_csk(sk);
615 
616 	ctx->sk_destruct(sk);
617 	/* Free ctx */
618 	kfree(ctx);
619 	icsk->icsk_ulp_data = NULL;
620 }
621 
622 static int tls_hw_prot(struct sock *sk)
623 {
624 	struct tls_context *ctx;
625 	struct tls_device *dev;
626 	int rc = 0;
627 
628 	spin_lock_bh(&device_spinlock);
629 	list_for_each_entry(dev, &device_list, dev_list) {
630 		if (dev->feature && dev->feature(dev)) {
631 			ctx = create_ctx(sk);
632 			if (!ctx)
633 				goto out;
634 
635 			spin_unlock_bh(&device_spinlock);
636 			tls_build_proto(sk);
637 			ctx->hash = sk->sk_prot->hash;
638 			ctx->unhash = sk->sk_prot->unhash;
639 			ctx->sk_proto_close = sk->sk_prot->close;
640 			ctx->sk_destruct = sk->sk_destruct;
641 			sk->sk_destruct = tls_hw_sk_destruct;
642 			ctx->rx_conf = TLS_HW_RECORD;
643 			ctx->tx_conf = TLS_HW_RECORD;
644 			update_sk_prot(sk, ctx);
645 			spin_lock_bh(&device_spinlock);
646 			rc = 1;
647 			break;
648 		}
649 	}
650 out:
651 	spin_unlock_bh(&device_spinlock);
652 	return rc;
653 }
654 
655 static void tls_hw_unhash(struct sock *sk)
656 {
657 	struct tls_context *ctx = tls_get_ctx(sk);
658 	struct tls_device *dev;
659 
660 	spin_lock_bh(&device_spinlock);
661 	list_for_each_entry(dev, &device_list, dev_list) {
662 		if (dev->unhash) {
663 			kref_get(&dev->kref);
664 			spin_unlock_bh(&device_spinlock);
665 			dev->unhash(dev, sk);
666 			kref_put(&dev->kref, dev->release);
667 			spin_lock_bh(&device_spinlock);
668 		}
669 	}
670 	spin_unlock_bh(&device_spinlock);
671 	ctx->unhash(sk);
672 }
673 
674 static int tls_hw_hash(struct sock *sk)
675 {
676 	struct tls_context *ctx = tls_get_ctx(sk);
677 	struct tls_device *dev;
678 	int err;
679 
680 	err = ctx->hash(sk);
681 	spin_lock_bh(&device_spinlock);
682 	list_for_each_entry(dev, &device_list, dev_list) {
683 		if (dev->hash) {
684 			kref_get(&dev->kref);
685 			spin_unlock_bh(&device_spinlock);
686 			err |= dev->hash(dev, sk);
687 			kref_put(&dev->kref, dev->release);
688 			spin_lock_bh(&device_spinlock);
689 		}
690 	}
691 	spin_unlock_bh(&device_spinlock);
692 
693 	if (err)
694 		tls_hw_unhash(sk);
695 	return err;
696 }
697 
698 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
699 			 struct proto *base)
700 {
701 	prot[TLS_BASE][TLS_BASE] = *base;
702 	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
703 	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
704 	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
705 
706 	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
707 	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
708 	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
709 
710 	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
711 	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
712 	prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
713 	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
714 
715 	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
716 	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
717 	prot[TLS_SW][TLS_SW].stream_memory_read	= tls_sw_stream_read;
718 	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
719 
720 #ifdef CONFIG_TLS_DEVICE
721 	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
722 	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
723 	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
724 
725 	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
726 	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
727 	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
728 
729 	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
730 
731 	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
732 
733 	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
734 #endif
735 
736 	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
737 	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_hw_hash;
738 	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_hw_unhash;
739 	prot[TLS_HW_RECORD][TLS_HW_RECORD].close	= tls_sk_proto_close;
740 }
741 
742 static int tls_init(struct sock *sk)
743 {
744 	struct tls_context *ctx;
745 	int rc = 0;
746 
747 	if (tls_hw_prot(sk))
748 		goto out;
749 
750 	/* The TLS ulp is currently supported only for TCP sockets
751 	 * in ESTABLISHED state.
752 	 * Supporting sockets in LISTEN state will require us
753 	 * to modify the accept implementation to clone rather then
754 	 * share the ulp context.
755 	 */
756 	if (sk->sk_state != TCP_ESTABLISHED)
757 		return -ENOTSUPP;
758 
759 	/* allocate tls context */
760 	ctx = create_ctx(sk);
761 	if (!ctx) {
762 		rc = -ENOMEM;
763 		goto out;
764 	}
765 
766 	tls_build_proto(sk);
767 	ctx->tx_conf = TLS_BASE;
768 	ctx->rx_conf = TLS_BASE;
769 	update_sk_prot(sk, ctx);
770 out:
771 	return rc;
772 }
773 
774 void tls_register_device(struct tls_device *device)
775 {
776 	spin_lock_bh(&device_spinlock);
777 	list_add_tail(&device->dev_list, &device_list);
778 	spin_unlock_bh(&device_spinlock);
779 }
780 EXPORT_SYMBOL(tls_register_device);
781 
782 void tls_unregister_device(struct tls_device *device)
783 {
784 	spin_lock_bh(&device_spinlock);
785 	list_del(&device->dev_list);
786 	spin_unlock_bh(&device_spinlock);
787 }
788 EXPORT_SYMBOL(tls_unregister_device);
789 
790 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
791 	.name			= "tls",
792 	.owner			= THIS_MODULE,
793 	.init			= tls_init,
794 };
795 
796 static int __init tls_register(void)
797 {
798 	tls_sw_proto_ops = inet_stream_ops;
799 	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
800 
801 #ifdef CONFIG_TLS_DEVICE
802 	tls_device_init();
803 #endif
804 	tcp_register_ulp(&tcp_tls_ulp_ops);
805 
806 	return 0;
807 }
808 
809 static void __exit tls_unregister(void)
810 {
811 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
812 #ifdef CONFIG_TLS_DEVICE
813 	tls_device_cleanup();
814 #endif
815 }
816 
817 module_init(tls_register);
818 module_exit(tls_unregister);
819