1 /* 2 * linux/net/sunrpc/svcsock.c 3 * 4 * These are the RPC server socket internals. 5 * 6 * The server scheduling algorithm does not always distribute the load 7 * evenly when servicing a single client. May need to modify the 8 * svc_sock_enqueue procedure... 9 * 10 * TCP support is largely untested and may be a little slow. The problem 11 * is that we currently do two separate recvfrom's, one for the 4-byte 12 * record length, and the second for the actual record. This could possibly 13 * be improved by always reading a minimum size of around 100 bytes and 14 * tucking any superfluous bytes away in a temporary store. Still, that 15 * leaves write requests out in the rain. An alternative may be to peek at 16 * the first skb in the queue, and if it matches the next TCP sequence 17 * number, to extract the record marker. Yuck. 18 * 19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 20 */ 21 22 #include <linux/sched.h> 23 #include <linux/errno.h> 24 #include <linux/fcntl.h> 25 #include <linux/net.h> 26 #include <linux/in.h> 27 #include <linux/inet.h> 28 #include <linux/udp.h> 29 #include <linux/tcp.h> 30 #include <linux/unistd.h> 31 #include <linux/slab.h> 32 #include <linux/netdevice.h> 33 #include <linux/skbuff.h> 34 #include <net/sock.h> 35 #include <net/checksum.h> 36 #include <net/ip.h> 37 #include <net/tcp_states.h> 38 #include <asm/uaccess.h> 39 #include <asm/ioctls.h> 40 41 #include <linux/sunrpc/types.h> 42 #include <linux/sunrpc/xdr.h> 43 #include <linux/sunrpc/svcsock.h> 44 #include <linux/sunrpc/stats.h> 45 46 /* SMP locking strategy: 47 * 48 * svc_serv->sv_lock protects most stuff for that service. 49 * 50 * Some flags can be set to certain values at any time 51 * providing that certain rules are followed: 52 * 53 * SK_BUSY can be set to 0 at any time. 54 * svc_sock_enqueue must be called afterwards 55 * SK_CONN, SK_DATA, can be set or cleared at any time. 56 * after a set, svc_sock_enqueue must be called. 57 * after a clear, the socket must be read/accepted 58 * if this succeeds, it must be set again. 59 * SK_CLOSE can set at any time. It is never cleared. 60 * 61 */ 62 63 #define RPCDBG_FACILITY RPCDBG_SVCSOCK 64 65 66 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *, 67 int *errp, int pmap_reg); 68 static void svc_udp_data_ready(struct sock *, int); 69 static int svc_udp_recvfrom(struct svc_rqst *); 70 static int svc_udp_sendto(struct svc_rqst *); 71 72 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk); 73 static int svc_deferred_recv(struct svc_rqst *rqstp); 74 static struct cache_deferred_req *svc_defer(struct cache_req *req); 75 76 /* 77 * Queue up an idle server thread. Must have serv->sv_lock held. 78 * Note: this is really a stack rather than a queue, so that we only 79 * use as many different threads as we need, and the rest don't polute 80 * the cache. 81 */ 82 static inline void 83 svc_serv_enqueue(struct svc_serv *serv, struct svc_rqst *rqstp) 84 { 85 list_add(&rqstp->rq_list, &serv->sv_threads); 86 } 87 88 /* 89 * Dequeue an nfsd thread. Must have serv->sv_lock held. 90 */ 91 static inline void 92 svc_serv_dequeue(struct svc_serv *serv, struct svc_rqst *rqstp) 93 { 94 list_del(&rqstp->rq_list); 95 } 96 97 /* 98 * Release an skbuff after use 99 */ 100 static inline void 101 svc_release_skb(struct svc_rqst *rqstp) 102 { 103 struct sk_buff *skb = rqstp->rq_skbuff; 104 struct svc_deferred_req *dr = rqstp->rq_deferred; 105 106 if (skb) { 107 rqstp->rq_skbuff = NULL; 108 109 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb); 110 skb_free_datagram(rqstp->rq_sock->sk_sk, skb); 111 } 112 if (dr) { 113 rqstp->rq_deferred = NULL; 114 kfree(dr); 115 } 116 } 117 118 /* 119 * Any space to write? 120 */ 121 static inline unsigned long 122 svc_sock_wspace(struct svc_sock *svsk) 123 { 124 int wspace; 125 126 if (svsk->sk_sock->type == SOCK_STREAM) 127 wspace = sk_stream_wspace(svsk->sk_sk); 128 else 129 wspace = sock_wspace(svsk->sk_sk); 130 131 return wspace; 132 } 133 134 /* 135 * Queue up a socket with data pending. If there are idle nfsd 136 * processes, wake 'em up. 137 * 138 */ 139 static void 140 svc_sock_enqueue(struct svc_sock *svsk) 141 { 142 struct svc_serv *serv = svsk->sk_server; 143 struct svc_rqst *rqstp; 144 145 if (!(svsk->sk_flags & 146 ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) )) 147 return; 148 if (test_bit(SK_DEAD, &svsk->sk_flags)) 149 return; 150 151 spin_lock_bh(&serv->sv_lock); 152 153 if (!list_empty(&serv->sv_threads) && 154 !list_empty(&serv->sv_sockets)) 155 printk(KERN_ERR 156 "svc_sock_enqueue: threads and sockets both waiting??\n"); 157 158 if (test_bit(SK_DEAD, &svsk->sk_flags)) { 159 /* Don't enqueue dead sockets */ 160 dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk); 161 goto out_unlock; 162 } 163 164 if (test_bit(SK_BUSY, &svsk->sk_flags)) { 165 /* Don't enqueue socket while daemon is receiving */ 166 dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk); 167 goto out_unlock; 168 } 169 170 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 171 if (((svsk->sk_reserved + serv->sv_bufsz)*2 172 > svc_sock_wspace(svsk)) 173 && !test_bit(SK_CLOSE, &svsk->sk_flags) 174 && !test_bit(SK_CONN, &svsk->sk_flags)) { 175 /* Don't enqueue while not enough space for reply */ 176 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n", 177 svsk->sk_sk, svsk->sk_reserved+serv->sv_bufsz, 178 svc_sock_wspace(svsk)); 179 goto out_unlock; 180 } 181 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags); 182 183 /* Mark socket as busy. It will remain in this state until the 184 * server has processed all pending data and put the socket back 185 * on the idle list. 186 */ 187 set_bit(SK_BUSY, &svsk->sk_flags); 188 189 if (!list_empty(&serv->sv_threads)) { 190 rqstp = list_entry(serv->sv_threads.next, 191 struct svc_rqst, 192 rq_list); 193 dprintk("svc: socket %p served by daemon %p\n", 194 svsk->sk_sk, rqstp); 195 svc_serv_dequeue(serv, rqstp); 196 if (rqstp->rq_sock) 197 printk(KERN_ERR 198 "svc_sock_enqueue: server %p, rq_sock=%p!\n", 199 rqstp, rqstp->rq_sock); 200 rqstp->rq_sock = svsk; 201 svsk->sk_inuse++; 202 rqstp->rq_reserved = serv->sv_bufsz; 203 svsk->sk_reserved += rqstp->rq_reserved; 204 wake_up(&rqstp->rq_wait); 205 } else { 206 dprintk("svc: socket %p put into queue\n", svsk->sk_sk); 207 list_add_tail(&svsk->sk_ready, &serv->sv_sockets); 208 } 209 210 out_unlock: 211 spin_unlock_bh(&serv->sv_lock); 212 } 213 214 /* 215 * Dequeue the first socket. Must be called with the serv->sv_lock held. 216 */ 217 static inline struct svc_sock * 218 svc_sock_dequeue(struct svc_serv *serv) 219 { 220 struct svc_sock *svsk; 221 222 if (list_empty(&serv->sv_sockets)) 223 return NULL; 224 225 svsk = list_entry(serv->sv_sockets.next, 226 struct svc_sock, sk_ready); 227 list_del_init(&svsk->sk_ready); 228 229 dprintk("svc: socket %p dequeued, inuse=%d\n", 230 svsk->sk_sk, svsk->sk_inuse); 231 232 return svsk; 233 } 234 235 /* 236 * Having read something from a socket, check whether it 237 * needs to be re-enqueued. 238 * Note: SK_DATA only gets cleared when a read-attempt finds 239 * no (or insufficient) data. 240 */ 241 static inline void 242 svc_sock_received(struct svc_sock *svsk) 243 { 244 clear_bit(SK_BUSY, &svsk->sk_flags); 245 svc_sock_enqueue(svsk); 246 } 247 248 249 /** 250 * svc_reserve - change the space reserved for the reply to a request. 251 * @rqstp: The request in question 252 * @space: new max space to reserve 253 * 254 * Each request reserves some space on the output queue of the socket 255 * to make sure the reply fits. This function reduces that reserved 256 * space to be the amount of space used already, plus @space. 257 * 258 */ 259 void svc_reserve(struct svc_rqst *rqstp, int space) 260 { 261 space += rqstp->rq_res.head[0].iov_len; 262 263 if (space < rqstp->rq_reserved) { 264 struct svc_sock *svsk = rqstp->rq_sock; 265 spin_lock_bh(&svsk->sk_server->sv_lock); 266 svsk->sk_reserved -= (rqstp->rq_reserved - space); 267 rqstp->rq_reserved = space; 268 spin_unlock_bh(&svsk->sk_server->sv_lock); 269 270 svc_sock_enqueue(svsk); 271 } 272 } 273 274 /* 275 * Release a socket after use. 276 */ 277 static inline void 278 svc_sock_put(struct svc_sock *svsk) 279 { 280 struct svc_serv *serv = svsk->sk_server; 281 282 spin_lock_bh(&serv->sv_lock); 283 if (!--(svsk->sk_inuse) && test_bit(SK_DEAD, &svsk->sk_flags)) { 284 spin_unlock_bh(&serv->sv_lock); 285 dprintk("svc: releasing dead socket\n"); 286 sock_release(svsk->sk_sock); 287 kfree(svsk); 288 } 289 else 290 spin_unlock_bh(&serv->sv_lock); 291 } 292 293 static void 294 svc_sock_release(struct svc_rqst *rqstp) 295 { 296 struct svc_sock *svsk = rqstp->rq_sock; 297 298 svc_release_skb(rqstp); 299 300 svc_free_allpages(rqstp); 301 rqstp->rq_res.page_len = 0; 302 rqstp->rq_res.page_base = 0; 303 304 305 /* Reset response buffer and release 306 * the reservation. 307 * But first, check that enough space was reserved 308 * for the reply, otherwise we have a bug! 309 */ 310 if ((rqstp->rq_res.len) > rqstp->rq_reserved) 311 printk(KERN_ERR "RPC request reserved %d but used %d\n", 312 rqstp->rq_reserved, 313 rqstp->rq_res.len); 314 315 rqstp->rq_res.head[0].iov_len = 0; 316 svc_reserve(rqstp, 0); 317 rqstp->rq_sock = NULL; 318 319 svc_sock_put(svsk); 320 } 321 322 /* 323 * External function to wake up a server waiting for data 324 */ 325 void 326 svc_wake_up(struct svc_serv *serv) 327 { 328 struct svc_rqst *rqstp; 329 330 spin_lock_bh(&serv->sv_lock); 331 if (!list_empty(&serv->sv_threads)) { 332 rqstp = list_entry(serv->sv_threads.next, 333 struct svc_rqst, 334 rq_list); 335 dprintk("svc: daemon %p woken up.\n", rqstp); 336 /* 337 svc_serv_dequeue(serv, rqstp); 338 rqstp->rq_sock = NULL; 339 */ 340 wake_up(&rqstp->rq_wait); 341 } 342 spin_unlock_bh(&serv->sv_lock); 343 } 344 345 /* 346 * Generic sendto routine 347 */ 348 static int 349 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr) 350 { 351 struct svc_sock *svsk = rqstp->rq_sock; 352 struct socket *sock = svsk->sk_sock; 353 int slen; 354 char buffer[CMSG_SPACE(sizeof(struct in_pktinfo))]; 355 struct cmsghdr *cmh = (struct cmsghdr *)buffer; 356 struct in_pktinfo *pki = (struct in_pktinfo *)CMSG_DATA(cmh); 357 int len = 0; 358 int result; 359 int size; 360 struct page **ppage = xdr->pages; 361 size_t base = xdr->page_base; 362 unsigned int pglen = xdr->page_len; 363 unsigned int flags = MSG_MORE; 364 365 slen = xdr->len; 366 367 if (rqstp->rq_prot == IPPROTO_UDP) { 368 /* set the source and destination */ 369 struct msghdr msg; 370 msg.msg_name = &rqstp->rq_addr; 371 msg.msg_namelen = sizeof(rqstp->rq_addr); 372 msg.msg_iov = NULL; 373 msg.msg_iovlen = 0; 374 msg.msg_flags = MSG_MORE; 375 376 msg.msg_control = cmh; 377 msg.msg_controllen = sizeof(buffer); 378 cmh->cmsg_len = CMSG_LEN(sizeof(*pki)); 379 cmh->cmsg_level = SOL_IP; 380 cmh->cmsg_type = IP_PKTINFO; 381 pki->ipi_ifindex = 0; 382 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr; 383 384 if (sock_sendmsg(sock, &msg, 0) < 0) 385 goto out; 386 } 387 388 /* send head */ 389 if (slen == xdr->head[0].iov_len) 390 flags = 0; 391 len = sock->ops->sendpage(sock, rqstp->rq_respages[0], 0, xdr->head[0].iov_len, flags); 392 if (len != xdr->head[0].iov_len) 393 goto out; 394 slen -= xdr->head[0].iov_len; 395 if (slen == 0) 396 goto out; 397 398 /* send page data */ 399 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen; 400 while (pglen > 0) { 401 if (slen == size) 402 flags = 0; 403 result = sock->ops->sendpage(sock, *ppage, base, size, flags); 404 if (result > 0) 405 len += result; 406 if (result != size) 407 goto out; 408 slen -= size; 409 pglen -= size; 410 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen; 411 base = 0; 412 ppage++; 413 } 414 /* send tail */ 415 if (xdr->tail[0].iov_len) { 416 result = sock->ops->sendpage(sock, rqstp->rq_respages[rqstp->rq_restailpage], 417 ((unsigned long)xdr->tail[0].iov_base)& (PAGE_SIZE-1), 418 xdr->tail[0].iov_len, 0); 419 420 if (result > 0) 421 len += result; 422 } 423 out: 424 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %x)\n", 425 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len, xdr->len, len, 426 rqstp->rq_addr.sin_addr.s_addr); 427 428 return len; 429 } 430 431 /* 432 * Check input queue length 433 */ 434 static int 435 svc_recv_available(struct svc_sock *svsk) 436 { 437 mm_segment_t oldfs; 438 struct socket *sock = svsk->sk_sock; 439 int avail, err; 440 441 oldfs = get_fs(); set_fs(KERNEL_DS); 442 err = sock->ops->ioctl(sock, TIOCINQ, (unsigned long) &avail); 443 set_fs(oldfs); 444 445 return (err >= 0)? avail : err; 446 } 447 448 /* 449 * Generic recvfrom routine. 450 */ 451 static int 452 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen) 453 { 454 struct msghdr msg; 455 struct socket *sock; 456 int len, alen; 457 458 rqstp->rq_addrlen = sizeof(rqstp->rq_addr); 459 sock = rqstp->rq_sock->sk_sock; 460 461 msg.msg_name = &rqstp->rq_addr; 462 msg.msg_namelen = sizeof(rqstp->rq_addr); 463 msg.msg_control = NULL; 464 msg.msg_controllen = 0; 465 466 msg.msg_flags = MSG_DONTWAIT; 467 468 len = kernel_recvmsg(sock, &msg, iov, nr, buflen, MSG_DONTWAIT); 469 470 /* sock_recvmsg doesn't fill in the name/namelen, so we must.. 471 * possibly we should cache this in the svc_sock structure 472 * at accept time. FIXME 473 */ 474 alen = sizeof(rqstp->rq_addr); 475 sock->ops->getname(sock, (struct sockaddr *)&rqstp->rq_addr, &alen, 1); 476 477 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n", 478 rqstp->rq_sock, iov[0].iov_base, iov[0].iov_len, len); 479 480 return len; 481 } 482 483 /* 484 * Set socket snd and rcv buffer lengths 485 */ 486 static inline void 487 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv) 488 { 489 #if 0 490 mm_segment_t oldfs; 491 oldfs = get_fs(); set_fs(KERNEL_DS); 492 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF, 493 (char*)&snd, sizeof(snd)); 494 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF, 495 (char*)&rcv, sizeof(rcv)); 496 #else 497 /* sock_setsockopt limits use to sysctl_?mem_max, 498 * which isn't acceptable. Until that is made conditional 499 * on not having CAP_SYS_RESOURCE or similar, we go direct... 500 * DaveM said I could! 501 */ 502 lock_sock(sock->sk); 503 sock->sk->sk_sndbuf = snd * 2; 504 sock->sk->sk_rcvbuf = rcv * 2; 505 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK; 506 release_sock(sock->sk); 507 #endif 508 } 509 /* 510 * INET callback when data has been received on the socket. 511 */ 512 static void 513 svc_udp_data_ready(struct sock *sk, int count) 514 { 515 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 516 517 if (svsk) { 518 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n", 519 svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags)); 520 set_bit(SK_DATA, &svsk->sk_flags); 521 svc_sock_enqueue(svsk); 522 } 523 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 524 wake_up_interruptible(sk->sk_sleep); 525 } 526 527 /* 528 * INET callback when space is newly available on the socket. 529 */ 530 static void 531 svc_write_space(struct sock *sk) 532 { 533 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data); 534 535 if (svsk) { 536 dprintk("svc: socket %p(inet %p), write_space busy=%d\n", 537 svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags)); 538 svc_sock_enqueue(svsk); 539 } 540 541 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) { 542 dprintk("RPC svc_write_space: someone sleeping on %p\n", 543 svsk); 544 wake_up_interruptible(sk->sk_sleep); 545 } 546 } 547 548 /* 549 * Receive a datagram from a UDP socket. 550 */ 551 extern int 552 csum_partial_copy_to_xdr(struct xdr_buf *xdr, struct sk_buff *skb); 553 554 static int 555 svc_udp_recvfrom(struct svc_rqst *rqstp) 556 { 557 struct svc_sock *svsk = rqstp->rq_sock; 558 struct svc_serv *serv = svsk->sk_server; 559 struct sk_buff *skb; 560 int err, len; 561 562 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags)) 563 /* udp sockets need large rcvbuf as all pending 564 * requests are still in that buffer. sndbuf must 565 * also be large enough that there is enough space 566 * for one reply per thread. 567 */ 568 svc_sock_setbufsize(svsk->sk_sock, 569 (serv->sv_nrthreads+3) * serv->sv_bufsz, 570 (serv->sv_nrthreads+3) * serv->sv_bufsz); 571 572 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) { 573 svc_sock_received(svsk); 574 return svc_deferred_recv(rqstp); 575 } 576 577 clear_bit(SK_DATA, &svsk->sk_flags); 578 while ((skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) { 579 if (err == -EAGAIN) { 580 svc_sock_received(svsk); 581 return err; 582 } 583 /* possibly an icmp error */ 584 dprintk("svc: recvfrom returned error %d\n", -err); 585 } 586 if (skb->tstamp.off_sec == 0) { 587 struct timeval tv; 588 589 tv.tv_sec = xtime.tv_sec; 590 tv.tv_usec = xtime.tv_nsec * 1000; 591 skb_set_timestamp(skb, &tv); 592 /* Don't enable netstamp, sunrpc doesn't 593 need that much accuracy */ 594 } 595 skb_get_timestamp(skb, &svsk->sk_sk->sk_stamp); 596 set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */ 597 598 /* 599 * Maybe more packets - kick another thread ASAP. 600 */ 601 svc_sock_received(svsk); 602 603 len = skb->len - sizeof(struct udphdr); 604 rqstp->rq_arg.len = len; 605 606 rqstp->rq_prot = IPPROTO_UDP; 607 608 /* Get sender address */ 609 rqstp->rq_addr.sin_family = AF_INET; 610 rqstp->rq_addr.sin_port = skb->h.uh->source; 611 rqstp->rq_addr.sin_addr.s_addr = skb->nh.iph->saddr; 612 rqstp->rq_daddr = skb->nh.iph->daddr; 613 614 if (skb_is_nonlinear(skb)) { 615 /* we have to copy */ 616 local_bh_disable(); 617 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) { 618 local_bh_enable(); 619 /* checksum error */ 620 skb_free_datagram(svsk->sk_sk, skb); 621 return 0; 622 } 623 local_bh_enable(); 624 skb_free_datagram(svsk->sk_sk, skb); 625 } else { 626 /* we can use it in-place */ 627 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr); 628 rqstp->rq_arg.head[0].iov_len = len; 629 if (skb->ip_summed != CHECKSUM_UNNECESSARY) { 630 if ((unsigned short)csum_fold(skb_checksum(skb, 0, skb->len, skb->csum))) { 631 skb_free_datagram(svsk->sk_sk, skb); 632 return 0; 633 } 634 skb->ip_summed = CHECKSUM_UNNECESSARY; 635 } 636 rqstp->rq_skbuff = skb; 637 } 638 639 rqstp->rq_arg.page_base = 0; 640 if (len <= rqstp->rq_arg.head[0].iov_len) { 641 rqstp->rq_arg.head[0].iov_len = len; 642 rqstp->rq_arg.page_len = 0; 643 } else { 644 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 645 rqstp->rq_argused += (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE; 646 } 647 648 if (serv->sv_stats) 649 serv->sv_stats->netudpcnt++; 650 651 return len; 652 } 653 654 static int 655 svc_udp_sendto(struct svc_rqst *rqstp) 656 { 657 int error; 658 659 error = svc_sendto(rqstp, &rqstp->rq_res); 660 if (error == -ECONNREFUSED) 661 /* ICMP error on earlier request. */ 662 error = svc_sendto(rqstp, &rqstp->rq_res); 663 664 return error; 665 } 666 667 static void 668 svc_udp_init(struct svc_sock *svsk) 669 { 670 svsk->sk_sk->sk_data_ready = svc_udp_data_ready; 671 svsk->sk_sk->sk_write_space = svc_write_space; 672 svsk->sk_recvfrom = svc_udp_recvfrom; 673 svsk->sk_sendto = svc_udp_sendto; 674 675 /* initialise setting must have enough space to 676 * receive and respond to one request. 677 * svc_udp_recvfrom will re-adjust if necessary 678 */ 679 svc_sock_setbufsize(svsk->sk_sock, 680 3 * svsk->sk_server->sv_bufsz, 681 3 * svsk->sk_server->sv_bufsz); 682 683 set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */ 684 set_bit(SK_CHNGBUF, &svsk->sk_flags); 685 } 686 687 /* 688 * A data_ready event on a listening socket means there's a connection 689 * pending. Do not use state_change as a substitute for it. 690 */ 691 static void 692 svc_tcp_listen_data_ready(struct sock *sk, int count_unused) 693 { 694 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 695 696 dprintk("svc: socket %p TCP (listen) state change %d\n", 697 sk, sk->sk_state); 698 699 /* 700 * This callback may called twice when a new connection 701 * is established as a child socket inherits everything 702 * from a parent LISTEN socket. 703 * 1) data_ready method of the parent socket will be called 704 * when one of child sockets become ESTABLISHED. 705 * 2) data_ready method of the child socket may be called 706 * when it receives data before the socket is accepted. 707 * In case of 2, we should ignore it silently. 708 */ 709 if (sk->sk_state == TCP_LISTEN) { 710 if (svsk) { 711 set_bit(SK_CONN, &svsk->sk_flags); 712 svc_sock_enqueue(svsk); 713 } else 714 printk("svc: socket %p: no user data\n", sk); 715 } 716 717 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 718 wake_up_interruptible_all(sk->sk_sleep); 719 } 720 721 /* 722 * A state change on a connected socket means it's dying or dead. 723 */ 724 static void 725 svc_tcp_state_change(struct sock *sk) 726 { 727 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 728 729 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n", 730 sk, sk->sk_state, sk->sk_user_data); 731 732 if (!svsk) 733 printk("svc: socket %p: no user data\n", sk); 734 else { 735 set_bit(SK_CLOSE, &svsk->sk_flags); 736 svc_sock_enqueue(svsk); 737 } 738 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 739 wake_up_interruptible_all(sk->sk_sleep); 740 } 741 742 static void 743 svc_tcp_data_ready(struct sock *sk, int count) 744 { 745 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data; 746 747 dprintk("svc: socket %p TCP data ready (svsk %p)\n", 748 sk, sk->sk_user_data); 749 if (svsk) { 750 set_bit(SK_DATA, &svsk->sk_flags); 751 svc_sock_enqueue(svsk); 752 } 753 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 754 wake_up_interruptible(sk->sk_sleep); 755 } 756 757 /* 758 * Accept a TCP connection 759 */ 760 static void 761 svc_tcp_accept(struct svc_sock *svsk) 762 { 763 struct sockaddr_in sin; 764 struct svc_serv *serv = svsk->sk_server; 765 struct socket *sock = svsk->sk_sock; 766 struct socket *newsock; 767 struct proto_ops *ops; 768 struct svc_sock *newsvsk; 769 int err, slen; 770 771 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock); 772 if (!sock) 773 return; 774 775 err = sock_create_lite(PF_INET, SOCK_STREAM, IPPROTO_TCP, &newsock); 776 if (err) { 777 if (err == -ENOMEM) 778 printk(KERN_WARNING "%s: no more sockets!\n", 779 serv->sv_name); 780 return; 781 } 782 783 dprintk("svc: tcp_accept %p allocated\n", newsock); 784 newsock->ops = ops = sock->ops; 785 786 clear_bit(SK_CONN, &svsk->sk_flags); 787 if ((err = ops->accept(sock, newsock, O_NONBLOCK)) < 0) { 788 if (err != -EAGAIN && net_ratelimit()) 789 printk(KERN_WARNING "%s: accept failed (err %d)!\n", 790 serv->sv_name, -err); 791 goto failed; /* aborted connection or whatever */ 792 } 793 set_bit(SK_CONN, &svsk->sk_flags); 794 svc_sock_enqueue(svsk); 795 796 slen = sizeof(sin); 797 err = ops->getname(newsock, (struct sockaddr *) &sin, &slen, 1); 798 if (err < 0) { 799 if (net_ratelimit()) 800 printk(KERN_WARNING "%s: peername failed (err %d)!\n", 801 serv->sv_name, -err); 802 goto failed; /* aborted connection or whatever */ 803 } 804 805 /* Ideally, we would want to reject connections from unauthorized 806 * hosts here, but when we get encription, the IP of the host won't 807 * tell us anything. For now just warn about unpriv connections. 808 */ 809 if (ntohs(sin.sin_port) >= 1024) { 810 dprintk(KERN_WARNING 811 "%s: connect from unprivileged port: %u.%u.%u.%u:%d\n", 812 serv->sv_name, 813 NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port)); 814 } 815 816 dprintk("%s: connect from %u.%u.%u.%u:%04x\n", serv->sv_name, 817 NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port)); 818 819 /* make sure that a write doesn't block forever when 820 * low on memory 821 */ 822 newsock->sk->sk_sndtimeo = HZ*30; 823 824 if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 0))) 825 goto failed; 826 827 828 /* make sure that we don't have too many active connections. 829 * If we have, something must be dropped. 830 * 831 * There's no point in trying to do random drop here for 832 * DoS prevention. The NFS clients does 1 reconnect in 15 833 * seconds. An attacker can easily beat that. 834 * 835 * The only somewhat efficient mechanism would be if drop 836 * old connections from the same IP first. But right now 837 * we don't even record the client IP in svc_sock. 838 */ 839 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) { 840 struct svc_sock *svsk = NULL; 841 spin_lock_bh(&serv->sv_lock); 842 if (!list_empty(&serv->sv_tempsocks)) { 843 if (net_ratelimit()) { 844 /* Try to help the admin */ 845 printk(KERN_NOTICE "%s: too many open TCP " 846 "sockets, consider increasing the " 847 "number of nfsd threads\n", 848 serv->sv_name); 849 printk(KERN_NOTICE "%s: last TCP connect from " 850 "%u.%u.%u.%u:%d\n", 851 serv->sv_name, 852 NIPQUAD(sin.sin_addr.s_addr), 853 ntohs(sin.sin_port)); 854 } 855 /* 856 * Always select the oldest socket. It's not fair, 857 * but so is life 858 */ 859 svsk = list_entry(serv->sv_tempsocks.prev, 860 struct svc_sock, 861 sk_list); 862 set_bit(SK_CLOSE, &svsk->sk_flags); 863 svsk->sk_inuse ++; 864 } 865 spin_unlock_bh(&serv->sv_lock); 866 867 if (svsk) { 868 svc_sock_enqueue(svsk); 869 svc_sock_put(svsk); 870 } 871 872 } 873 874 if (serv->sv_stats) 875 serv->sv_stats->nettcpconn++; 876 877 return; 878 879 failed: 880 sock_release(newsock); 881 return; 882 } 883 884 /* 885 * Receive data from a TCP socket. 886 */ 887 static int 888 svc_tcp_recvfrom(struct svc_rqst *rqstp) 889 { 890 struct svc_sock *svsk = rqstp->rq_sock; 891 struct svc_serv *serv = svsk->sk_server; 892 int len; 893 struct kvec vec[RPCSVC_MAXPAGES]; 894 int pnum, vlen; 895 896 dprintk("svc: tcp_recv %p data %d conn %d close %d\n", 897 svsk, test_bit(SK_DATA, &svsk->sk_flags), 898 test_bit(SK_CONN, &svsk->sk_flags), 899 test_bit(SK_CLOSE, &svsk->sk_flags)); 900 901 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) { 902 svc_sock_received(svsk); 903 return svc_deferred_recv(rqstp); 904 } 905 906 if (test_bit(SK_CLOSE, &svsk->sk_flags)) { 907 svc_delete_socket(svsk); 908 return 0; 909 } 910 911 if (test_bit(SK_CONN, &svsk->sk_flags)) { 912 svc_tcp_accept(svsk); 913 svc_sock_received(svsk); 914 return 0; 915 } 916 917 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags)) 918 /* sndbuf needs to have room for one request 919 * per thread, otherwise we can stall even when the 920 * network isn't a bottleneck. 921 * rcvbuf just needs to be able to hold a few requests. 922 * Normally they will be removed from the queue 923 * as soon a a complete request arrives. 924 */ 925 svc_sock_setbufsize(svsk->sk_sock, 926 (serv->sv_nrthreads+3) * serv->sv_bufsz, 927 3 * serv->sv_bufsz); 928 929 clear_bit(SK_DATA, &svsk->sk_flags); 930 931 /* Receive data. If we haven't got the record length yet, get 932 * the next four bytes. Otherwise try to gobble up as much as 933 * possible up to the complete record length. 934 */ 935 if (svsk->sk_tcplen < 4) { 936 unsigned long want = 4 - svsk->sk_tcplen; 937 struct kvec iov; 938 939 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen; 940 iov.iov_len = want; 941 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0) 942 goto error; 943 svsk->sk_tcplen += len; 944 945 if (len < want) { 946 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n", 947 len, want); 948 svc_sock_received(svsk); 949 return -EAGAIN; /* record header not complete */ 950 } 951 952 svsk->sk_reclen = ntohl(svsk->sk_reclen); 953 if (!(svsk->sk_reclen & 0x80000000)) { 954 /* FIXME: technically, a record can be fragmented, 955 * and non-terminal fragments will not have the top 956 * bit set in the fragment length header. 957 * But apparently no known nfs clients send fragmented 958 * records. */ 959 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (non-terminal)\n", 960 (unsigned long) svsk->sk_reclen); 961 goto err_delete; 962 } 963 svsk->sk_reclen &= 0x7fffffff; 964 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen); 965 if (svsk->sk_reclen > serv->sv_bufsz) { 966 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (large)\n", 967 (unsigned long) svsk->sk_reclen); 968 goto err_delete; 969 } 970 } 971 972 /* Check whether enough data is available */ 973 len = svc_recv_available(svsk); 974 if (len < 0) 975 goto error; 976 977 if (len < svsk->sk_reclen) { 978 dprintk("svc: incomplete TCP record (%d of %d)\n", 979 len, svsk->sk_reclen); 980 svc_sock_received(svsk); 981 return -EAGAIN; /* record not complete */ 982 } 983 len = svsk->sk_reclen; 984 set_bit(SK_DATA, &svsk->sk_flags); 985 986 vec[0] = rqstp->rq_arg.head[0]; 987 vlen = PAGE_SIZE; 988 pnum = 1; 989 while (vlen < len) { 990 vec[pnum].iov_base = page_address(rqstp->rq_argpages[rqstp->rq_argused++]); 991 vec[pnum].iov_len = PAGE_SIZE; 992 pnum++; 993 vlen += PAGE_SIZE; 994 } 995 996 /* Now receive data */ 997 len = svc_recvfrom(rqstp, vec, pnum, len); 998 if (len < 0) 999 goto error; 1000 1001 dprintk("svc: TCP complete record (%d bytes)\n", len); 1002 rqstp->rq_arg.len = len; 1003 rqstp->rq_arg.page_base = 0; 1004 if (len <= rqstp->rq_arg.head[0].iov_len) { 1005 rqstp->rq_arg.head[0].iov_len = len; 1006 rqstp->rq_arg.page_len = 0; 1007 } else { 1008 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len; 1009 } 1010 1011 rqstp->rq_skbuff = NULL; 1012 rqstp->rq_prot = IPPROTO_TCP; 1013 1014 /* Reset TCP read info */ 1015 svsk->sk_reclen = 0; 1016 svsk->sk_tcplen = 0; 1017 1018 svc_sock_received(svsk); 1019 if (serv->sv_stats) 1020 serv->sv_stats->nettcpcnt++; 1021 1022 return len; 1023 1024 err_delete: 1025 svc_delete_socket(svsk); 1026 return -EAGAIN; 1027 1028 error: 1029 if (len == -EAGAIN) { 1030 dprintk("RPC: TCP recvfrom got EAGAIN\n"); 1031 svc_sock_received(svsk); 1032 } else { 1033 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n", 1034 svsk->sk_server->sv_name, -len); 1035 svc_sock_received(svsk); 1036 } 1037 1038 return len; 1039 } 1040 1041 /* 1042 * Send out data on TCP socket. 1043 */ 1044 static int 1045 svc_tcp_sendto(struct svc_rqst *rqstp) 1046 { 1047 struct xdr_buf *xbufp = &rqstp->rq_res; 1048 int sent; 1049 u32 reclen; 1050 1051 /* Set up the first element of the reply kvec. 1052 * Any other kvecs that may be in use have been taken 1053 * care of by the server implementation itself. 1054 */ 1055 reclen = htonl(0x80000000|((xbufp->len ) - 4)); 1056 memcpy(xbufp->head[0].iov_base, &reclen, 4); 1057 1058 if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags)) 1059 return -ENOTCONN; 1060 1061 sent = svc_sendto(rqstp, &rqstp->rq_res); 1062 if (sent != xbufp->len) { 1063 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n", 1064 rqstp->rq_sock->sk_server->sv_name, 1065 (sent<0)?"got error":"sent only", 1066 sent, xbufp->len); 1067 svc_delete_socket(rqstp->rq_sock); 1068 sent = -EAGAIN; 1069 } 1070 return sent; 1071 } 1072 1073 static void 1074 svc_tcp_init(struct svc_sock *svsk) 1075 { 1076 struct sock *sk = svsk->sk_sk; 1077 struct tcp_sock *tp = tcp_sk(sk); 1078 1079 svsk->sk_recvfrom = svc_tcp_recvfrom; 1080 svsk->sk_sendto = svc_tcp_sendto; 1081 1082 if (sk->sk_state == TCP_LISTEN) { 1083 dprintk("setting up TCP socket for listening\n"); 1084 sk->sk_data_ready = svc_tcp_listen_data_ready; 1085 set_bit(SK_CONN, &svsk->sk_flags); 1086 } else { 1087 dprintk("setting up TCP socket for reading\n"); 1088 sk->sk_state_change = svc_tcp_state_change; 1089 sk->sk_data_ready = svc_tcp_data_ready; 1090 sk->sk_write_space = svc_write_space; 1091 1092 svsk->sk_reclen = 0; 1093 svsk->sk_tcplen = 0; 1094 1095 tp->nonagle = 1; /* disable Nagle's algorithm */ 1096 1097 /* initialise setting must have enough space to 1098 * receive and respond to one request. 1099 * svc_tcp_recvfrom will re-adjust if necessary 1100 */ 1101 svc_sock_setbufsize(svsk->sk_sock, 1102 3 * svsk->sk_server->sv_bufsz, 1103 3 * svsk->sk_server->sv_bufsz); 1104 1105 set_bit(SK_CHNGBUF, &svsk->sk_flags); 1106 set_bit(SK_DATA, &svsk->sk_flags); 1107 if (sk->sk_state != TCP_ESTABLISHED) 1108 set_bit(SK_CLOSE, &svsk->sk_flags); 1109 } 1110 } 1111 1112 void 1113 svc_sock_update_bufs(struct svc_serv *serv) 1114 { 1115 /* 1116 * The number of server threads has changed. Update 1117 * rcvbuf and sndbuf accordingly on all sockets 1118 */ 1119 struct list_head *le; 1120 1121 spin_lock_bh(&serv->sv_lock); 1122 list_for_each(le, &serv->sv_permsocks) { 1123 struct svc_sock *svsk = 1124 list_entry(le, struct svc_sock, sk_list); 1125 set_bit(SK_CHNGBUF, &svsk->sk_flags); 1126 } 1127 list_for_each(le, &serv->sv_tempsocks) { 1128 struct svc_sock *svsk = 1129 list_entry(le, struct svc_sock, sk_list); 1130 set_bit(SK_CHNGBUF, &svsk->sk_flags); 1131 } 1132 spin_unlock_bh(&serv->sv_lock); 1133 } 1134 1135 /* 1136 * Receive the next request on any socket. 1137 */ 1138 int 1139 svc_recv(struct svc_serv *serv, struct svc_rqst *rqstp, long timeout) 1140 { 1141 struct svc_sock *svsk =NULL; 1142 int len; 1143 int pages; 1144 struct xdr_buf *arg; 1145 DECLARE_WAITQUEUE(wait, current); 1146 1147 dprintk("svc: server %p waiting for data (to = %ld)\n", 1148 rqstp, timeout); 1149 1150 if (rqstp->rq_sock) 1151 printk(KERN_ERR 1152 "svc_recv: service %p, socket not NULL!\n", 1153 rqstp); 1154 if (waitqueue_active(&rqstp->rq_wait)) 1155 printk(KERN_ERR 1156 "svc_recv: service %p, wait queue active!\n", 1157 rqstp); 1158 1159 /* Initialize the buffers */ 1160 /* first reclaim pages that were moved to response list */ 1161 svc_pushback_allpages(rqstp); 1162 1163 /* now allocate needed pages. If we get a failure, sleep briefly */ 1164 pages = 2 + (serv->sv_bufsz + PAGE_SIZE -1) / PAGE_SIZE; 1165 while (rqstp->rq_arghi < pages) { 1166 struct page *p = alloc_page(GFP_KERNEL); 1167 if (!p) { 1168 schedule_timeout_uninterruptible(msecs_to_jiffies(500)); 1169 continue; 1170 } 1171 rqstp->rq_argpages[rqstp->rq_arghi++] = p; 1172 } 1173 1174 /* Make arg->head point to first page and arg->pages point to rest */ 1175 arg = &rqstp->rq_arg; 1176 arg->head[0].iov_base = page_address(rqstp->rq_argpages[0]); 1177 arg->head[0].iov_len = PAGE_SIZE; 1178 rqstp->rq_argused = 1; 1179 arg->pages = rqstp->rq_argpages + 1; 1180 arg->page_base = 0; 1181 /* save at least one page for response */ 1182 arg->page_len = (pages-2)*PAGE_SIZE; 1183 arg->len = (pages-1)*PAGE_SIZE; 1184 arg->tail[0].iov_len = 0; 1185 1186 try_to_freeze(); 1187 if (signalled()) 1188 return -EINTR; 1189 1190 spin_lock_bh(&serv->sv_lock); 1191 if (!list_empty(&serv->sv_tempsocks)) { 1192 svsk = list_entry(serv->sv_tempsocks.next, 1193 struct svc_sock, sk_list); 1194 /* apparently the "standard" is that clients close 1195 * idle connections after 5 minutes, servers after 1196 * 6 minutes 1197 * http://www.connectathon.org/talks96/nfstcp.pdf 1198 */ 1199 if (get_seconds() - svsk->sk_lastrecv < 6*60 1200 || test_bit(SK_BUSY, &svsk->sk_flags)) 1201 svsk = NULL; 1202 } 1203 if (svsk) { 1204 set_bit(SK_BUSY, &svsk->sk_flags); 1205 set_bit(SK_CLOSE, &svsk->sk_flags); 1206 rqstp->rq_sock = svsk; 1207 svsk->sk_inuse++; 1208 } else if ((svsk = svc_sock_dequeue(serv)) != NULL) { 1209 rqstp->rq_sock = svsk; 1210 svsk->sk_inuse++; 1211 rqstp->rq_reserved = serv->sv_bufsz; 1212 svsk->sk_reserved += rqstp->rq_reserved; 1213 } else { 1214 /* No data pending. Go to sleep */ 1215 svc_serv_enqueue(serv, rqstp); 1216 1217 /* 1218 * We have to be able to interrupt this wait 1219 * to bring down the daemons ... 1220 */ 1221 set_current_state(TASK_INTERRUPTIBLE); 1222 add_wait_queue(&rqstp->rq_wait, &wait); 1223 spin_unlock_bh(&serv->sv_lock); 1224 1225 schedule_timeout(timeout); 1226 1227 try_to_freeze(); 1228 1229 spin_lock_bh(&serv->sv_lock); 1230 remove_wait_queue(&rqstp->rq_wait, &wait); 1231 1232 if (!(svsk = rqstp->rq_sock)) { 1233 svc_serv_dequeue(serv, rqstp); 1234 spin_unlock_bh(&serv->sv_lock); 1235 dprintk("svc: server %p, no data yet\n", rqstp); 1236 return signalled()? -EINTR : -EAGAIN; 1237 } 1238 } 1239 spin_unlock_bh(&serv->sv_lock); 1240 1241 dprintk("svc: server %p, socket %p, inuse=%d\n", 1242 rqstp, svsk, svsk->sk_inuse); 1243 len = svsk->sk_recvfrom(rqstp); 1244 dprintk("svc: got len=%d\n", len); 1245 1246 /* No data, incomplete (TCP) read, or accept() */ 1247 if (len == 0 || len == -EAGAIN) { 1248 rqstp->rq_res.len = 0; 1249 svc_sock_release(rqstp); 1250 return -EAGAIN; 1251 } 1252 svsk->sk_lastrecv = get_seconds(); 1253 if (test_bit(SK_TEMP, &svsk->sk_flags)) { 1254 /* push active sockets to end of list */ 1255 spin_lock_bh(&serv->sv_lock); 1256 if (!list_empty(&svsk->sk_list)) 1257 list_move_tail(&svsk->sk_list, &serv->sv_tempsocks); 1258 spin_unlock_bh(&serv->sv_lock); 1259 } 1260 1261 rqstp->rq_secure = ntohs(rqstp->rq_addr.sin_port) < 1024; 1262 rqstp->rq_chandle.defer = svc_defer; 1263 1264 if (serv->sv_stats) 1265 serv->sv_stats->netcnt++; 1266 return len; 1267 } 1268 1269 /* 1270 * Drop request 1271 */ 1272 void 1273 svc_drop(struct svc_rqst *rqstp) 1274 { 1275 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock); 1276 svc_sock_release(rqstp); 1277 } 1278 1279 /* 1280 * Return reply to client. 1281 */ 1282 int 1283 svc_send(struct svc_rqst *rqstp) 1284 { 1285 struct svc_sock *svsk; 1286 int len; 1287 struct xdr_buf *xb; 1288 1289 if ((svsk = rqstp->rq_sock) == NULL) { 1290 printk(KERN_WARNING "NULL socket pointer in %s:%d\n", 1291 __FILE__, __LINE__); 1292 return -EFAULT; 1293 } 1294 1295 /* release the receive skb before sending the reply */ 1296 svc_release_skb(rqstp); 1297 1298 /* calculate over-all length */ 1299 xb = & rqstp->rq_res; 1300 xb->len = xb->head[0].iov_len + 1301 xb->page_len + 1302 xb->tail[0].iov_len; 1303 1304 /* Grab svsk->sk_sem to serialize outgoing data. */ 1305 down(&svsk->sk_sem); 1306 if (test_bit(SK_DEAD, &svsk->sk_flags)) 1307 len = -ENOTCONN; 1308 else 1309 len = svsk->sk_sendto(rqstp); 1310 up(&svsk->sk_sem); 1311 svc_sock_release(rqstp); 1312 1313 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) 1314 return 0; 1315 return len; 1316 } 1317 1318 /* 1319 * Initialize socket for RPC use and create svc_sock struct 1320 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF. 1321 */ 1322 static struct svc_sock * 1323 svc_setup_socket(struct svc_serv *serv, struct socket *sock, 1324 int *errp, int pmap_register) 1325 { 1326 struct svc_sock *svsk; 1327 struct sock *inet; 1328 1329 dprintk("svc: svc_setup_socket %p\n", sock); 1330 if (!(svsk = kmalloc(sizeof(*svsk), GFP_KERNEL))) { 1331 *errp = -ENOMEM; 1332 return NULL; 1333 } 1334 memset(svsk, 0, sizeof(*svsk)); 1335 1336 inet = sock->sk; 1337 1338 /* Register socket with portmapper */ 1339 if (*errp >= 0 && pmap_register) 1340 *errp = svc_register(serv, inet->sk_protocol, 1341 ntohs(inet_sk(inet)->sport)); 1342 1343 if (*errp < 0) { 1344 kfree(svsk); 1345 return NULL; 1346 } 1347 1348 set_bit(SK_BUSY, &svsk->sk_flags); 1349 inet->sk_user_data = svsk; 1350 svsk->sk_sock = sock; 1351 svsk->sk_sk = inet; 1352 svsk->sk_ostate = inet->sk_state_change; 1353 svsk->sk_odata = inet->sk_data_ready; 1354 svsk->sk_owspace = inet->sk_write_space; 1355 svsk->sk_server = serv; 1356 svsk->sk_lastrecv = get_seconds(); 1357 INIT_LIST_HEAD(&svsk->sk_deferred); 1358 INIT_LIST_HEAD(&svsk->sk_ready); 1359 sema_init(&svsk->sk_sem, 1); 1360 1361 /* Initialize the socket */ 1362 if (sock->type == SOCK_DGRAM) 1363 svc_udp_init(svsk); 1364 else 1365 svc_tcp_init(svsk); 1366 1367 spin_lock_bh(&serv->sv_lock); 1368 if (!pmap_register) { 1369 set_bit(SK_TEMP, &svsk->sk_flags); 1370 list_add(&svsk->sk_list, &serv->sv_tempsocks); 1371 serv->sv_tmpcnt++; 1372 } else { 1373 clear_bit(SK_TEMP, &svsk->sk_flags); 1374 list_add(&svsk->sk_list, &serv->sv_permsocks); 1375 } 1376 spin_unlock_bh(&serv->sv_lock); 1377 1378 dprintk("svc: svc_setup_socket created %p (inet %p)\n", 1379 svsk, svsk->sk_sk); 1380 1381 clear_bit(SK_BUSY, &svsk->sk_flags); 1382 svc_sock_enqueue(svsk); 1383 return svsk; 1384 } 1385 1386 /* 1387 * Create socket for RPC service. 1388 */ 1389 static int 1390 svc_create_socket(struct svc_serv *serv, int protocol, struct sockaddr_in *sin) 1391 { 1392 struct svc_sock *svsk; 1393 struct socket *sock; 1394 int error; 1395 int type; 1396 1397 dprintk("svc: svc_create_socket(%s, %d, %u.%u.%u.%u:%d)\n", 1398 serv->sv_program->pg_name, protocol, 1399 NIPQUAD(sin->sin_addr.s_addr), 1400 ntohs(sin->sin_port)); 1401 1402 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) { 1403 printk(KERN_WARNING "svc: only UDP and TCP " 1404 "sockets supported\n"); 1405 return -EINVAL; 1406 } 1407 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM; 1408 1409 if ((error = sock_create_kern(PF_INET, type, protocol, &sock)) < 0) 1410 return error; 1411 1412 if (sin != NULL) { 1413 if (type == SOCK_STREAM) 1414 sock->sk->sk_reuse = 1; /* allow address reuse */ 1415 error = sock->ops->bind(sock, (struct sockaddr *) sin, 1416 sizeof(*sin)); 1417 if (error < 0) 1418 goto bummer; 1419 } 1420 1421 if (protocol == IPPROTO_TCP) { 1422 if ((error = sock->ops->listen(sock, 64)) < 0) 1423 goto bummer; 1424 } 1425 1426 if ((svsk = svc_setup_socket(serv, sock, &error, 1)) != NULL) 1427 return 0; 1428 1429 bummer: 1430 dprintk("svc: svc_create_socket error = %d\n", -error); 1431 sock_release(sock); 1432 return error; 1433 } 1434 1435 /* 1436 * Remove a dead socket 1437 */ 1438 void 1439 svc_delete_socket(struct svc_sock *svsk) 1440 { 1441 struct svc_serv *serv; 1442 struct sock *sk; 1443 1444 dprintk("svc: svc_delete_socket(%p)\n", svsk); 1445 1446 serv = svsk->sk_server; 1447 sk = svsk->sk_sk; 1448 1449 sk->sk_state_change = svsk->sk_ostate; 1450 sk->sk_data_ready = svsk->sk_odata; 1451 sk->sk_write_space = svsk->sk_owspace; 1452 1453 spin_lock_bh(&serv->sv_lock); 1454 1455 list_del_init(&svsk->sk_list); 1456 list_del_init(&svsk->sk_ready); 1457 if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) 1458 if (test_bit(SK_TEMP, &svsk->sk_flags)) 1459 serv->sv_tmpcnt--; 1460 1461 if (!svsk->sk_inuse) { 1462 spin_unlock_bh(&serv->sv_lock); 1463 sock_release(svsk->sk_sock); 1464 kfree(svsk); 1465 } else { 1466 spin_unlock_bh(&serv->sv_lock); 1467 dprintk(KERN_NOTICE "svc: server socket destroy delayed\n"); 1468 /* svsk->sk_server = NULL; */ 1469 } 1470 } 1471 1472 /* 1473 * Make a socket for nfsd and lockd 1474 */ 1475 int 1476 svc_makesock(struct svc_serv *serv, int protocol, unsigned short port) 1477 { 1478 struct sockaddr_in sin; 1479 1480 dprintk("svc: creating socket proto = %d\n", protocol); 1481 sin.sin_family = AF_INET; 1482 sin.sin_addr.s_addr = INADDR_ANY; 1483 sin.sin_port = htons(port); 1484 return svc_create_socket(serv, protocol, &sin); 1485 } 1486 1487 /* 1488 * Handle defer and revisit of requests 1489 */ 1490 1491 static void svc_revisit(struct cache_deferred_req *dreq, int too_many) 1492 { 1493 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle); 1494 struct svc_serv *serv = dreq->owner; 1495 struct svc_sock *svsk; 1496 1497 if (too_many) { 1498 svc_sock_put(dr->svsk); 1499 kfree(dr); 1500 return; 1501 } 1502 dprintk("revisit queued\n"); 1503 svsk = dr->svsk; 1504 dr->svsk = NULL; 1505 spin_lock_bh(&serv->sv_lock); 1506 list_add(&dr->handle.recent, &svsk->sk_deferred); 1507 spin_unlock_bh(&serv->sv_lock); 1508 set_bit(SK_DEFERRED, &svsk->sk_flags); 1509 svc_sock_enqueue(svsk); 1510 svc_sock_put(svsk); 1511 } 1512 1513 static struct cache_deferred_req * 1514 svc_defer(struct cache_req *req) 1515 { 1516 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); 1517 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len); 1518 struct svc_deferred_req *dr; 1519 1520 if (rqstp->rq_arg.page_len) 1521 return NULL; /* if more than a page, give up FIXME */ 1522 if (rqstp->rq_deferred) { 1523 dr = rqstp->rq_deferred; 1524 rqstp->rq_deferred = NULL; 1525 } else { 1526 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; 1527 /* FIXME maybe discard if size too large */ 1528 dr = kmalloc(size, GFP_KERNEL); 1529 if (dr == NULL) 1530 return NULL; 1531 1532 dr->handle.owner = rqstp->rq_server; 1533 dr->prot = rqstp->rq_prot; 1534 dr->addr = rqstp->rq_addr; 1535 dr->argslen = rqstp->rq_arg.len >> 2; 1536 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2); 1537 } 1538 spin_lock_bh(&rqstp->rq_server->sv_lock); 1539 rqstp->rq_sock->sk_inuse++; 1540 dr->svsk = rqstp->rq_sock; 1541 spin_unlock_bh(&rqstp->rq_server->sv_lock); 1542 1543 dr->handle.revisit = svc_revisit; 1544 return &dr->handle; 1545 } 1546 1547 /* 1548 * recv data from a deferred request into an active one 1549 */ 1550 static int svc_deferred_recv(struct svc_rqst *rqstp) 1551 { 1552 struct svc_deferred_req *dr = rqstp->rq_deferred; 1553 1554 rqstp->rq_arg.head[0].iov_base = dr->args; 1555 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2; 1556 rqstp->rq_arg.page_len = 0; 1557 rqstp->rq_arg.len = dr->argslen<<2; 1558 rqstp->rq_prot = dr->prot; 1559 rqstp->rq_addr = dr->addr; 1560 return dr->argslen<<2; 1561 } 1562 1563 1564 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk) 1565 { 1566 struct svc_deferred_req *dr = NULL; 1567 struct svc_serv *serv = svsk->sk_server; 1568 1569 if (!test_bit(SK_DEFERRED, &svsk->sk_flags)) 1570 return NULL; 1571 spin_lock_bh(&serv->sv_lock); 1572 clear_bit(SK_DEFERRED, &svsk->sk_flags); 1573 if (!list_empty(&svsk->sk_deferred)) { 1574 dr = list_entry(svsk->sk_deferred.next, 1575 struct svc_deferred_req, 1576 handle.recent); 1577 list_del_init(&dr->handle.recent); 1578 set_bit(SK_DEFERRED, &svsk->sk_flags); 1579 } 1580 spin_unlock_bh(&serv->sv_lock); 1581 return dr; 1582 } 1583