xref: /linux/net/sunrpc/svc_xprt.c (revision 957e3facd147510f2cf8780e38606f1d707f0e33)
1 /*
2  * linux/net/sunrpc/svc_xprt.c
3  *
4  * Author: Tom Tucker <tom@opengridcomputing.com>
5  */
6 
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/stats.h>
14 #include <linux/sunrpc/svc_xprt.h>
15 #include <linux/sunrpc/svcsock.h>
16 #include <linux/sunrpc/xprt.h>
17 #include <linux/module.h>
18 #include <trace/events/sunrpc.h>
19 
20 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
21 
22 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
23 static int svc_deferred_recv(struct svc_rqst *rqstp);
24 static struct cache_deferred_req *svc_defer(struct cache_req *req);
25 static void svc_age_temp_xprts(unsigned long closure);
26 static void svc_delete_xprt(struct svc_xprt *xprt);
27 static void svc_xprt_do_enqueue(struct svc_xprt *xprt);
28 
29 /* apparently the "standard" is that clients close
30  * idle connections after 5 minutes, servers after
31  * 6 minutes
32  *   http://www.connectathon.org/talks96/nfstcp.pdf
33  */
34 static int svc_conn_age_period = 6*60;
35 
36 /* List of registered transport classes */
37 static DEFINE_SPINLOCK(svc_xprt_class_lock);
38 static LIST_HEAD(svc_xprt_class_list);
39 
40 /* SMP locking strategy:
41  *
42  *	svc_pool->sp_lock protects most of the fields of that pool.
43  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
44  *	when both need to be taken (rare), svc_serv->sv_lock is first.
45  *	BKL protects svc_serv->sv_nrthread.
46  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
47  *             and the ->sk_info_authunix cache.
48  *
49  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
50  *	enqueued multiply. During normal transport processing this bit
51  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
52  *	Providers should not manipulate this bit directly.
53  *
54  *	Some flags can be set to certain values at any time
55  *	providing that certain rules are followed:
56  *
57  *	XPT_CONN, XPT_DATA:
58  *		- Can be set or cleared at any time.
59  *		- After a set, svc_xprt_enqueue must be called to enqueue
60  *		  the transport for processing.
61  *		- After a clear, the transport must be read/accepted.
62  *		  If this succeeds, it must be set again.
63  *	XPT_CLOSE:
64  *		- Can set at any time. It is never cleared.
65  *      XPT_DEAD:
66  *		- Can only be set while XPT_BUSY is held which ensures
67  *		  that no other thread will be using the transport or will
68  *		  try to set XPT_DEAD.
69  */
70 
71 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
72 {
73 	struct svc_xprt_class *cl;
74 	int res = -EEXIST;
75 
76 	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
77 
78 	INIT_LIST_HEAD(&xcl->xcl_list);
79 	spin_lock(&svc_xprt_class_lock);
80 	/* Make sure there isn't already a class with the same name */
81 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
82 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
83 			goto out;
84 	}
85 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
86 	res = 0;
87 out:
88 	spin_unlock(&svc_xprt_class_lock);
89 	return res;
90 }
91 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
92 
93 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
94 {
95 	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
96 	spin_lock(&svc_xprt_class_lock);
97 	list_del_init(&xcl->xcl_list);
98 	spin_unlock(&svc_xprt_class_lock);
99 }
100 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
101 
102 /*
103  * Format the transport list for printing
104  */
105 int svc_print_xprts(char *buf, int maxlen)
106 {
107 	struct svc_xprt_class *xcl;
108 	char tmpstr[80];
109 	int len = 0;
110 	buf[0] = '\0';
111 
112 	spin_lock(&svc_xprt_class_lock);
113 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
114 		int slen;
115 
116 		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
117 		slen = strlen(tmpstr);
118 		if (len + slen > maxlen)
119 			break;
120 		len += slen;
121 		strcat(buf, tmpstr);
122 	}
123 	spin_unlock(&svc_xprt_class_lock);
124 
125 	return len;
126 }
127 
128 static void svc_xprt_free(struct kref *kref)
129 {
130 	struct svc_xprt *xprt =
131 		container_of(kref, struct svc_xprt, xpt_ref);
132 	struct module *owner = xprt->xpt_class->xcl_owner;
133 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
134 		svcauth_unix_info_release(xprt);
135 	put_net(xprt->xpt_net);
136 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
137 	if (xprt->xpt_bc_xprt)
138 		xprt_put(xprt->xpt_bc_xprt);
139 	xprt->xpt_ops->xpo_free(xprt);
140 	module_put(owner);
141 }
142 
143 void svc_xprt_put(struct svc_xprt *xprt)
144 {
145 	kref_put(&xprt->xpt_ref, svc_xprt_free);
146 }
147 EXPORT_SYMBOL_GPL(svc_xprt_put);
148 
149 /*
150  * Called by transport drivers to initialize the transport independent
151  * portion of the transport instance.
152  */
153 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
154 		   struct svc_xprt *xprt, struct svc_serv *serv)
155 {
156 	memset(xprt, 0, sizeof(*xprt));
157 	xprt->xpt_class = xcl;
158 	xprt->xpt_ops = xcl->xcl_ops;
159 	kref_init(&xprt->xpt_ref);
160 	xprt->xpt_server = serv;
161 	INIT_LIST_HEAD(&xprt->xpt_list);
162 	INIT_LIST_HEAD(&xprt->xpt_ready);
163 	INIT_LIST_HEAD(&xprt->xpt_deferred);
164 	INIT_LIST_HEAD(&xprt->xpt_users);
165 	mutex_init(&xprt->xpt_mutex);
166 	spin_lock_init(&xprt->xpt_lock);
167 	set_bit(XPT_BUSY, &xprt->xpt_flags);
168 	rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
169 	xprt->xpt_net = get_net(net);
170 }
171 EXPORT_SYMBOL_GPL(svc_xprt_init);
172 
173 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
174 					 struct svc_serv *serv,
175 					 struct net *net,
176 					 const int family,
177 					 const unsigned short port,
178 					 int flags)
179 {
180 	struct sockaddr_in sin = {
181 		.sin_family		= AF_INET,
182 		.sin_addr.s_addr	= htonl(INADDR_ANY),
183 		.sin_port		= htons(port),
184 	};
185 #if IS_ENABLED(CONFIG_IPV6)
186 	struct sockaddr_in6 sin6 = {
187 		.sin6_family		= AF_INET6,
188 		.sin6_addr		= IN6ADDR_ANY_INIT,
189 		.sin6_port		= htons(port),
190 	};
191 #endif
192 	struct sockaddr *sap;
193 	size_t len;
194 
195 	switch (family) {
196 	case PF_INET:
197 		sap = (struct sockaddr *)&sin;
198 		len = sizeof(sin);
199 		break;
200 #if IS_ENABLED(CONFIG_IPV6)
201 	case PF_INET6:
202 		sap = (struct sockaddr *)&sin6;
203 		len = sizeof(sin6);
204 		break;
205 #endif
206 	default:
207 		return ERR_PTR(-EAFNOSUPPORT);
208 	}
209 
210 	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
211 }
212 
213 /*
214  * svc_xprt_received conditionally queues the transport for processing
215  * by another thread. The caller must hold the XPT_BUSY bit and must
216  * not thereafter touch transport data.
217  *
218  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
219  * insufficient) data.
220  */
221 static void svc_xprt_received(struct svc_xprt *xprt)
222 {
223 	WARN_ON_ONCE(!test_bit(XPT_BUSY, &xprt->xpt_flags));
224 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags))
225 		return;
226 	/* As soon as we clear busy, the xprt could be closed and
227 	 * 'put', so we need a reference to call svc_xprt_do_enqueue with:
228 	 */
229 	svc_xprt_get(xprt);
230 	smp_mb__before_atomic();
231 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
232 	svc_xprt_do_enqueue(xprt);
233 	svc_xprt_put(xprt);
234 }
235 
236 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
237 {
238 	clear_bit(XPT_TEMP, &new->xpt_flags);
239 	spin_lock_bh(&serv->sv_lock);
240 	list_add(&new->xpt_list, &serv->sv_permsocks);
241 	spin_unlock_bh(&serv->sv_lock);
242 	svc_xprt_received(new);
243 }
244 
245 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
246 		    struct net *net, const int family,
247 		    const unsigned short port, int flags)
248 {
249 	struct svc_xprt_class *xcl;
250 
251 	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
252 	spin_lock(&svc_xprt_class_lock);
253 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
254 		struct svc_xprt *newxprt;
255 		unsigned short newport;
256 
257 		if (strcmp(xprt_name, xcl->xcl_name))
258 			continue;
259 
260 		if (!try_module_get(xcl->xcl_owner))
261 			goto err;
262 
263 		spin_unlock(&svc_xprt_class_lock);
264 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
265 		if (IS_ERR(newxprt)) {
266 			module_put(xcl->xcl_owner);
267 			return PTR_ERR(newxprt);
268 		}
269 		svc_add_new_perm_xprt(serv, newxprt);
270 		newport = svc_xprt_local_port(newxprt);
271 		return newport;
272 	}
273  err:
274 	spin_unlock(&svc_xprt_class_lock);
275 	dprintk("svc: transport %s not found\n", xprt_name);
276 
277 	/* This errno is exposed to user space.  Provide a reasonable
278 	 * perror msg for a bad transport. */
279 	return -EPROTONOSUPPORT;
280 }
281 EXPORT_SYMBOL_GPL(svc_create_xprt);
282 
283 /*
284  * Copy the local and remote xprt addresses to the rqstp structure
285  */
286 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
287 {
288 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
289 	rqstp->rq_addrlen = xprt->xpt_remotelen;
290 
291 	/*
292 	 * Destination address in request is needed for binding the
293 	 * source address in RPC replies/callbacks later.
294 	 */
295 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
296 	rqstp->rq_daddrlen = xprt->xpt_locallen;
297 }
298 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
299 
300 /**
301  * svc_print_addr - Format rq_addr field for printing
302  * @rqstp: svc_rqst struct containing address to print
303  * @buf: target buffer for formatted address
304  * @len: length of target buffer
305  *
306  */
307 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
308 {
309 	return __svc_print_addr(svc_addr(rqstp), buf, len);
310 }
311 EXPORT_SYMBOL_GPL(svc_print_addr);
312 
313 /*
314  * Queue up an idle server thread.  Must have pool->sp_lock held.
315  * Note: this is really a stack rather than a queue, so that we only
316  * use as many different threads as we need, and the rest don't pollute
317  * the cache.
318  */
319 static void svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
320 {
321 	list_add(&rqstp->rq_list, &pool->sp_threads);
322 }
323 
324 /*
325  * Dequeue an nfsd thread.  Must have pool->sp_lock held.
326  */
327 static void svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
328 {
329 	list_del(&rqstp->rq_list);
330 }
331 
332 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
333 {
334 	if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
335 		return true;
336 	if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED)))
337 		return xprt->xpt_ops->xpo_has_wspace(xprt);
338 	return false;
339 }
340 
341 static void svc_xprt_do_enqueue(struct svc_xprt *xprt)
342 {
343 	struct svc_pool *pool;
344 	struct svc_rqst	*rqstp;
345 	int cpu;
346 
347 	if (!svc_xprt_has_something_to_do(xprt))
348 		return;
349 
350 	/* Mark transport as busy. It will remain in this state until
351 	 * the provider calls svc_xprt_received. We update XPT_BUSY
352 	 * atomically because it also guards against trying to enqueue
353 	 * the transport twice.
354 	 */
355 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) {
356 		/* Don't enqueue transport while already enqueued */
357 		dprintk("svc: transport %p busy, not enqueued\n", xprt);
358 		return;
359 	}
360 
361 	cpu = get_cpu();
362 	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
363 	spin_lock_bh(&pool->sp_lock);
364 
365 	pool->sp_stats.packets++;
366 
367 	if (!list_empty(&pool->sp_threads)) {
368 		rqstp = list_entry(pool->sp_threads.next,
369 				   struct svc_rqst,
370 				   rq_list);
371 		dprintk("svc: transport %p served by daemon %p\n",
372 			xprt, rqstp);
373 		svc_thread_dequeue(pool, rqstp);
374 		if (rqstp->rq_xprt)
375 			printk(KERN_ERR
376 				"svc_xprt_enqueue: server %p, rq_xprt=%p!\n",
377 				rqstp, rqstp->rq_xprt);
378 		/* Note the order of the following 3 lines:
379 		 * We want to assign xprt to rqstp->rq_xprt only _after_
380 		 * we've woken up the process, so that we don't race with
381 		 * the lockless check in svc_get_next_xprt().
382 		 */
383 		svc_xprt_get(xprt);
384 		wake_up_process(rqstp->rq_task);
385 		rqstp->rq_xprt = xprt;
386 		pool->sp_stats.threads_woken++;
387 	} else {
388 		dprintk("svc: transport %p put into queue\n", xprt);
389 		list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
390 		pool->sp_stats.sockets_queued++;
391 	}
392 
393 	spin_unlock_bh(&pool->sp_lock);
394 	put_cpu();
395 }
396 
397 /*
398  * Queue up a transport with data pending. If there are idle nfsd
399  * processes, wake 'em up.
400  *
401  */
402 void svc_xprt_enqueue(struct svc_xprt *xprt)
403 {
404 	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
405 		return;
406 	svc_xprt_do_enqueue(xprt);
407 }
408 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
409 
410 /*
411  * Dequeue the first transport.  Must be called with the pool->sp_lock held.
412  */
413 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
414 {
415 	struct svc_xprt	*xprt;
416 
417 	if (list_empty(&pool->sp_sockets))
418 		return NULL;
419 
420 	xprt = list_entry(pool->sp_sockets.next,
421 			  struct svc_xprt, xpt_ready);
422 	list_del_init(&xprt->xpt_ready);
423 
424 	dprintk("svc: transport %p dequeued, inuse=%d\n",
425 		xprt, atomic_read(&xprt->xpt_ref.refcount));
426 
427 	return xprt;
428 }
429 
430 /**
431  * svc_reserve - change the space reserved for the reply to a request.
432  * @rqstp:  The request in question
433  * @space: new max space to reserve
434  *
435  * Each request reserves some space on the output queue of the transport
436  * to make sure the reply fits.  This function reduces that reserved
437  * space to be the amount of space used already, plus @space.
438  *
439  */
440 void svc_reserve(struct svc_rqst *rqstp, int space)
441 {
442 	space += rqstp->rq_res.head[0].iov_len;
443 
444 	if (space < rqstp->rq_reserved) {
445 		struct svc_xprt *xprt = rqstp->rq_xprt;
446 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
447 		rqstp->rq_reserved = space;
448 
449 		if (xprt->xpt_ops->xpo_adjust_wspace)
450 			xprt->xpt_ops->xpo_adjust_wspace(xprt);
451 		svc_xprt_enqueue(xprt);
452 	}
453 }
454 EXPORT_SYMBOL_GPL(svc_reserve);
455 
456 static void svc_xprt_release(struct svc_rqst *rqstp)
457 {
458 	struct svc_xprt	*xprt = rqstp->rq_xprt;
459 
460 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
461 
462 	kfree(rqstp->rq_deferred);
463 	rqstp->rq_deferred = NULL;
464 
465 	svc_free_res_pages(rqstp);
466 	rqstp->rq_res.page_len = 0;
467 	rqstp->rq_res.page_base = 0;
468 
469 	/* Reset response buffer and release
470 	 * the reservation.
471 	 * But first, check that enough space was reserved
472 	 * for the reply, otherwise we have a bug!
473 	 */
474 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
475 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
476 		       rqstp->rq_reserved,
477 		       rqstp->rq_res.len);
478 
479 	rqstp->rq_res.head[0].iov_len = 0;
480 	svc_reserve(rqstp, 0);
481 	rqstp->rq_xprt = NULL;
482 
483 	svc_xprt_put(xprt);
484 }
485 
486 /*
487  * External function to wake up a server waiting for data
488  * This really only makes sense for services like lockd
489  * which have exactly one thread anyway.
490  */
491 void svc_wake_up(struct svc_serv *serv)
492 {
493 	struct svc_rqst	*rqstp;
494 	unsigned int i;
495 	struct svc_pool *pool;
496 
497 	for (i = 0; i < serv->sv_nrpools; i++) {
498 		pool = &serv->sv_pools[i];
499 
500 		spin_lock_bh(&pool->sp_lock);
501 		if (!list_empty(&pool->sp_threads)) {
502 			rqstp = list_entry(pool->sp_threads.next,
503 					   struct svc_rqst,
504 					   rq_list);
505 			dprintk("svc: daemon %p woken up.\n", rqstp);
506 			/*
507 			svc_thread_dequeue(pool, rqstp);
508 			rqstp->rq_xprt = NULL;
509 			 */
510 			wake_up_process(rqstp->rq_task);
511 		} else
512 			pool->sp_task_pending = 1;
513 		spin_unlock_bh(&pool->sp_lock);
514 	}
515 }
516 EXPORT_SYMBOL_GPL(svc_wake_up);
517 
518 int svc_port_is_privileged(struct sockaddr *sin)
519 {
520 	switch (sin->sa_family) {
521 	case AF_INET:
522 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
523 			< PROT_SOCK;
524 	case AF_INET6:
525 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
526 			< PROT_SOCK;
527 	default:
528 		return 0;
529 	}
530 }
531 
532 /*
533  * Make sure that we don't have too many active connections. If we have,
534  * something must be dropped. It's not clear what will happen if we allow
535  * "too many" connections, but when dealing with network-facing software,
536  * we have to code defensively. Here we do that by imposing hard limits.
537  *
538  * There's no point in trying to do random drop here for DoS
539  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
540  * attacker can easily beat that.
541  *
542  * The only somewhat efficient mechanism would be if drop old
543  * connections from the same IP first. But right now we don't even
544  * record the client IP in svc_sock.
545  *
546  * single-threaded services that expect a lot of clients will probably
547  * need to set sv_maxconn to override the default value which is based
548  * on the number of threads
549  */
550 static void svc_check_conn_limits(struct svc_serv *serv)
551 {
552 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
553 				(serv->sv_nrthreads+3) * 20;
554 
555 	if (serv->sv_tmpcnt > limit) {
556 		struct svc_xprt *xprt = NULL;
557 		spin_lock_bh(&serv->sv_lock);
558 		if (!list_empty(&serv->sv_tempsocks)) {
559 			/* Try to help the admin */
560 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
561 					       serv->sv_name, serv->sv_maxconn ?
562 					       "max number of connections" :
563 					       "number of threads");
564 			/*
565 			 * Always select the oldest connection. It's not fair,
566 			 * but so is life
567 			 */
568 			xprt = list_entry(serv->sv_tempsocks.prev,
569 					  struct svc_xprt,
570 					  xpt_list);
571 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
572 			svc_xprt_get(xprt);
573 		}
574 		spin_unlock_bh(&serv->sv_lock);
575 
576 		if (xprt) {
577 			svc_xprt_enqueue(xprt);
578 			svc_xprt_put(xprt);
579 		}
580 	}
581 }
582 
583 static int svc_alloc_arg(struct svc_rqst *rqstp)
584 {
585 	struct svc_serv *serv = rqstp->rq_server;
586 	struct xdr_buf *arg;
587 	int pages;
588 	int i;
589 
590 	/* now allocate needed pages.  If we get a failure, sleep briefly */
591 	pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
592 	WARN_ON_ONCE(pages >= RPCSVC_MAXPAGES);
593 	if (pages >= RPCSVC_MAXPAGES)
594 		/* use as many pages as possible */
595 		pages = RPCSVC_MAXPAGES - 1;
596 	for (i = 0; i < pages ; i++)
597 		while (rqstp->rq_pages[i] == NULL) {
598 			struct page *p = alloc_page(GFP_KERNEL);
599 			if (!p) {
600 				set_current_state(TASK_INTERRUPTIBLE);
601 				if (signalled() || kthread_should_stop()) {
602 					set_current_state(TASK_RUNNING);
603 					return -EINTR;
604 				}
605 				schedule_timeout(msecs_to_jiffies(500));
606 			}
607 			rqstp->rq_pages[i] = p;
608 		}
609 	rqstp->rq_page_end = &rqstp->rq_pages[i];
610 	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
611 
612 	/* Make arg->head point to first page and arg->pages point to rest */
613 	arg = &rqstp->rq_arg;
614 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
615 	arg->head[0].iov_len = PAGE_SIZE;
616 	arg->pages = rqstp->rq_pages + 1;
617 	arg->page_base = 0;
618 	/* save at least one page for response */
619 	arg->page_len = (pages-2)*PAGE_SIZE;
620 	arg->len = (pages-1)*PAGE_SIZE;
621 	arg->tail[0].iov_len = 0;
622 	return 0;
623 }
624 
625 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
626 {
627 	struct svc_xprt *xprt;
628 	struct svc_pool		*pool = rqstp->rq_pool;
629 	long			time_left = 0;
630 
631 	/* Normally we will wait up to 5 seconds for any required
632 	 * cache information to be provided.
633 	 */
634 	rqstp->rq_chandle.thread_wait = 5*HZ;
635 
636 	spin_lock_bh(&pool->sp_lock);
637 	xprt = svc_xprt_dequeue(pool);
638 	if (xprt) {
639 		rqstp->rq_xprt = xprt;
640 		svc_xprt_get(xprt);
641 
642 		/* As there is a shortage of threads and this request
643 		 * had to be queued, don't allow the thread to wait so
644 		 * long for cache updates.
645 		 */
646 		rqstp->rq_chandle.thread_wait = 1*HZ;
647 		pool->sp_task_pending = 0;
648 	} else {
649 		if (pool->sp_task_pending) {
650 			pool->sp_task_pending = 0;
651 			xprt = ERR_PTR(-EAGAIN);
652 			goto out;
653 		}
654 		/*
655 		 * We have to be able to interrupt this wait
656 		 * to bring down the daemons ...
657 		 */
658 		set_current_state(TASK_INTERRUPTIBLE);
659 
660 		/* No data pending. Go to sleep */
661 		svc_thread_enqueue(pool, rqstp);
662 		spin_unlock_bh(&pool->sp_lock);
663 
664 		if (!(signalled() || kthread_should_stop())) {
665 			time_left = schedule_timeout(timeout);
666 			__set_current_state(TASK_RUNNING);
667 
668 			try_to_freeze();
669 
670 			xprt = rqstp->rq_xprt;
671 			if (xprt != NULL)
672 				return xprt;
673 		} else
674 			__set_current_state(TASK_RUNNING);
675 
676 		spin_lock_bh(&pool->sp_lock);
677 		if (!time_left)
678 			pool->sp_stats.threads_timedout++;
679 
680 		xprt = rqstp->rq_xprt;
681 		if (!xprt) {
682 			svc_thread_dequeue(pool, rqstp);
683 			spin_unlock_bh(&pool->sp_lock);
684 			dprintk("svc: server %p, no data yet\n", rqstp);
685 			if (signalled() || kthread_should_stop())
686 				return ERR_PTR(-EINTR);
687 			else
688 				return ERR_PTR(-EAGAIN);
689 		}
690 	}
691 out:
692 	spin_unlock_bh(&pool->sp_lock);
693 	return xprt;
694 }
695 
696 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
697 {
698 	spin_lock_bh(&serv->sv_lock);
699 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
700 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
701 	serv->sv_tmpcnt++;
702 	if (serv->sv_temptimer.function == NULL) {
703 		/* setup timer to age temp transports */
704 		setup_timer(&serv->sv_temptimer, svc_age_temp_xprts,
705 			    (unsigned long)serv);
706 		mod_timer(&serv->sv_temptimer,
707 			  jiffies + svc_conn_age_period * HZ);
708 	}
709 	spin_unlock_bh(&serv->sv_lock);
710 	svc_xprt_received(newxpt);
711 }
712 
713 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
714 {
715 	struct svc_serv *serv = rqstp->rq_server;
716 	int len = 0;
717 
718 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
719 		dprintk("svc_recv: found XPT_CLOSE\n");
720 		svc_delete_xprt(xprt);
721 		/* Leave XPT_BUSY set on the dead xprt: */
722 		return 0;
723 	}
724 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
725 		struct svc_xprt *newxpt;
726 		/*
727 		 * We know this module_get will succeed because the
728 		 * listener holds a reference too
729 		 */
730 		__module_get(xprt->xpt_class->xcl_owner);
731 		svc_check_conn_limits(xprt->xpt_server);
732 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
733 		if (newxpt)
734 			svc_add_new_temp_xprt(serv, newxpt);
735 		else
736 			module_put(xprt->xpt_class->xcl_owner);
737 	} else {
738 		/* XPT_DATA|XPT_DEFERRED case: */
739 		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
740 			rqstp, rqstp->rq_pool->sp_id, xprt,
741 			atomic_read(&xprt->xpt_ref.refcount));
742 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
743 		if (rqstp->rq_deferred)
744 			len = svc_deferred_recv(rqstp);
745 		else
746 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
747 		dprintk("svc: got len=%d\n", len);
748 		rqstp->rq_reserved = serv->sv_max_mesg;
749 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
750 	}
751 	/* clear XPT_BUSY: */
752 	svc_xprt_received(xprt);
753 	return len;
754 }
755 
756 /*
757  * Receive the next request on any transport.  This code is carefully
758  * organised not to touch any cachelines in the shared svc_serv
759  * structure, only cachelines in the local svc_pool.
760  */
761 int svc_recv(struct svc_rqst *rqstp, long timeout)
762 {
763 	struct svc_xprt		*xprt = NULL;
764 	struct svc_serv		*serv = rqstp->rq_server;
765 	int			len, err;
766 
767 	dprintk("svc: server %p waiting for data (to = %ld)\n",
768 		rqstp, timeout);
769 
770 	if (rqstp->rq_xprt)
771 		printk(KERN_ERR
772 			"svc_recv: service %p, transport not NULL!\n",
773 			 rqstp);
774 
775 	err = svc_alloc_arg(rqstp);
776 	if (err)
777 		goto out;
778 
779 	try_to_freeze();
780 	cond_resched();
781 	err = -EINTR;
782 	if (signalled() || kthread_should_stop())
783 		goto out;
784 
785 	xprt = svc_get_next_xprt(rqstp, timeout);
786 	if (IS_ERR(xprt)) {
787 		err = PTR_ERR(xprt);
788 		goto out;
789 	}
790 
791 	len = svc_handle_xprt(rqstp, xprt);
792 
793 	/* No data, incomplete (TCP) read, or accept() */
794 	err = -EAGAIN;
795 	if (len <= 0)
796 		goto out_release;
797 
798 	clear_bit(XPT_OLD, &xprt->xpt_flags);
799 
800 	rqstp->rq_secure = xprt->xpt_ops->xpo_secure_port(rqstp);
801 	rqstp->rq_chandle.defer = svc_defer;
802 	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
803 
804 	if (serv->sv_stats)
805 		serv->sv_stats->netcnt++;
806 	trace_svc_recv(rqstp, len);
807 	return len;
808 out_release:
809 	rqstp->rq_res.len = 0;
810 	svc_xprt_release(rqstp);
811 out:
812 	trace_svc_recv(rqstp, err);
813 	return err;
814 }
815 EXPORT_SYMBOL_GPL(svc_recv);
816 
817 /*
818  * Drop request
819  */
820 void svc_drop(struct svc_rqst *rqstp)
821 {
822 	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
823 	svc_xprt_release(rqstp);
824 }
825 EXPORT_SYMBOL_GPL(svc_drop);
826 
827 /*
828  * Return reply to client.
829  */
830 int svc_send(struct svc_rqst *rqstp)
831 {
832 	struct svc_xprt	*xprt;
833 	int		len = -EFAULT;
834 	struct xdr_buf	*xb;
835 
836 	xprt = rqstp->rq_xprt;
837 	if (!xprt)
838 		goto out;
839 
840 	/* release the receive skb before sending the reply */
841 	rqstp->rq_xprt->xpt_ops->xpo_release_rqst(rqstp);
842 
843 	/* calculate over-all length */
844 	xb = &rqstp->rq_res;
845 	xb->len = xb->head[0].iov_len +
846 		xb->page_len +
847 		xb->tail[0].iov_len;
848 
849 	/* Grab mutex to serialize outgoing data. */
850 	mutex_lock(&xprt->xpt_mutex);
851 	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
852 			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
853 		len = -ENOTCONN;
854 	else
855 		len = xprt->xpt_ops->xpo_sendto(rqstp);
856 	mutex_unlock(&xprt->xpt_mutex);
857 	rpc_wake_up(&xprt->xpt_bc_pending);
858 	svc_xprt_release(rqstp);
859 
860 	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
861 		len = 0;
862 out:
863 	trace_svc_send(rqstp, len);
864 	return len;
865 }
866 
867 /*
868  * Timer function to close old temporary transports, using
869  * a mark-and-sweep algorithm.
870  */
871 static void svc_age_temp_xprts(unsigned long closure)
872 {
873 	struct svc_serv *serv = (struct svc_serv *)closure;
874 	struct svc_xprt *xprt;
875 	struct list_head *le, *next;
876 
877 	dprintk("svc_age_temp_xprts\n");
878 
879 	if (!spin_trylock_bh(&serv->sv_lock)) {
880 		/* busy, try again 1 sec later */
881 		dprintk("svc_age_temp_xprts: busy\n");
882 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
883 		return;
884 	}
885 
886 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
887 		xprt = list_entry(le, struct svc_xprt, xpt_list);
888 
889 		/* First time through, just mark it OLD. Second time
890 		 * through, close it. */
891 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
892 			continue;
893 		if (atomic_read(&xprt->xpt_ref.refcount) > 1 ||
894 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
895 			continue;
896 		list_del_init(le);
897 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
898 		set_bit(XPT_DETACHED, &xprt->xpt_flags);
899 		dprintk("queuing xprt %p for closing\n", xprt);
900 
901 		/* a thread will dequeue and close it soon */
902 		svc_xprt_enqueue(xprt);
903 	}
904 	spin_unlock_bh(&serv->sv_lock);
905 
906 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
907 }
908 
909 static void call_xpt_users(struct svc_xprt *xprt)
910 {
911 	struct svc_xpt_user *u;
912 
913 	spin_lock(&xprt->xpt_lock);
914 	while (!list_empty(&xprt->xpt_users)) {
915 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
916 		list_del(&u->list);
917 		u->callback(u);
918 	}
919 	spin_unlock(&xprt->xpt_lock);
920 }
921 
922 /*
923  * Remove a dead transport
924  */
925 static void svc_delete_xprt(struct svc_xprt *xprt)
926 {
927 	struct svc_serv	*serv = xprt->xpt_server;
928 	struct svc_deferred_req *dr;
929 
930 	/* Only do this once */
931 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
932 		BUG();
933 
934 	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
935 	xprt->xpt_ops->xpo_detach(xprt);
936 
937 	spin_lock_bh(&serv->sv_lock);
938 	if (!test_and_set_bit(XPT_DETACHED, &xprt->xpt_flags))
939 		list_del_init(&xprt->xpt_list);
940 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
941 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
942 		serv->sv_tmpcnt--;
943 	spin_unlock_bh(&serv->sv_lock);
944 
945 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
946 		kfree(dr);
947 
948 	call_xpt_users(xprt);
949 	svc_xprt_put(xprt);
950 }
951 
952 void svc_close_xprt(struct svc_xprt *xprt)
953 {
954 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
955 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
956 		/* someone else will have to effect the close */
957 		return;
958 	/*
959 	 * We expect svc_close_xprt() to work even when no threads are
960 	 * running (e.g., while configuring the server before starting
961 	 * any threads), so if the transport isn't busy, we delete
962 	 * it ourself:
963 	 */
964 	svc_delete_xprt(xprt);
965 }
966 EXPORT_SYMBOL_GPL(svc_close_xprt);
967 
968 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
969 {
970 	struct svc_xprt *xprt;
971 	int ret = 0;
972 
973 	spin_lock(&serv->sv_lock);
974 	list_for_each_entry(xprt, xprt_list, xpt_list) {
975 		if (xprt->xpt_net != net)
976 			continue;
977 		ret++;
978 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
979 		svc_xprt_enqueue(xprt);
980 	}
981 	spin_unlock(&serv->sv_lock);
982 	return ret;
983 }
984 
985 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
986 {
987 	struct svc_pool *pool;
988 	struct svc_xprt *xprt;
989 	struct svc_xprt *tmp;
990 	int i;
991 
992 	for (i = 0; i < serv->sv_nrpools; i++) {
993 		pool = &serv->sv_pools[i];
994 
995 		spin_lock_bh(&pool->sp_lock);
996 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
997 			if (xprt->xpt_net != net)
998 				continue;
999 			list_del_init(&xprt->xpt_ready);
1000 			spin_unlock_bh(&pool->sp_lock);
1001 			return xprt;
1002 		}
1003 		spin_unlock_bh(&pool->sp_lock);
1004 	}
1005 	return NULL;
1006 }
1007 
1008 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1009 {
1010 	struct svc_xprt *xprt;
1011 
1012 	while ((xprt = svc_dequeue_net(serv, net))) {
1013 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1014 		svc_delete_xprt(xprt);
1015 	}
1016 }
1017 
1018 /*
1019  * Server threads may still be running (especially in the case where the
1020  * service is still running in other network namespaces).
1021  *
1022  * So we shut down sockets the same way we would on a running server, by
1023  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1024  * the close.  In the case there are no such other threads,
1025  * threads running, svc_clean_up_xprts() does a simple version of a
1026  * server's main event loop, and in the case where there are other
1027  * threads, we may need to wait a little while and then check again to
1028  * see if they're done.
1029  */
1030 void svc_close_net(struct svc_serv *serv, struct net *net)
1031 {
1032 	int delay = 0;
1033 
1034 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1035 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1036 
1037 		svc_clean_up_xprts(serv, net);
1038 		msleep(delay++);
1039 	}
1040 }
1041 
1042 /*
1043  * Handle defer and revisit of requests
1044  */
1045 
1046 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1047 {
1048 	struct svc_deferred_req *dr =
1049 		container_of(dreq, struct svc_deferred_req, handle);
1050 	struct svc_xprt *xprt = dr->xprt;
1051 
1052 	spin_lock(&xprt->xpt_lock);
1053 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1054 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1055 		spin_unlock(&xprt->xpt_lock);
1056 		dprintk("revisit canceled\n");
1057 		svc_xprt_put(xprt);
1058 		kfree(dr);
1059 		return;
1060 	}
1061 	dprintk("revisit queued\n");
1062 	dr->xprt = NULL;
1063 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1064 	spin_unlock(&xprt->xpt_lock);
1065 	svc_xprt_enqueue(xprt);
1066 	svc_xprt_put(xprt);
1067 }
1068 
1069 /*
1070  * Save the request off for later processing. The request buffer looks
1071  * like this:
1072  *
1073  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1074  *
1075  * This code can only handle requests that consist of an xprt-header
1076  * and rpc-header.
1077  */
1078 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1079 {
1080 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1081 	struct svc_deferred_req *dr;
1082 
1083 	if (rqstp->rq_arg.page_len || !rqstp->rq_usedeferral)
1084 		return NULL; /* if more than a page, give up FIXME */
1085 	if (rqstp->rq_deferred) {
1086 		dr = rqstp->rq_deferred;
1087 		rqstp->rq_deferred = NULL;
1088 	} else {
1089 		size_t skip;
1090 		size_t size;
1091 		/* FIXME maybe discard if size too large */
1092 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1093 		dr = kmalloc(size, GFP_KERNEL);
1094 		if (dr == NULL)
1095 			return NULL;
1096 
1097 		dr->handle.owner = rqstp->rq_server;
1098 		dr->prot = rqstp->rq_prot;
1099 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1100 		dr->addrlen = rqstp->rq_addrlen;
1101 		dr->daddr = rqstp->rq_daddr;
1102 		dr->argslen = rqstp->rq_arg.len >> 2;
1103 		dr->xprt_hlen = rqstp->rq_xprt_hlen;
1104 
1105 		/* back up head to the start of the buffer and copy */
1106 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1107 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1108 		       dr->argslen << 2);
1109 	}
1110 	svc_xprt_get(rqstp->rq_xprt);
1111 	dr->xprt = rqstp->rq_xprt;
1112 	rqstp->rq_dropme = true;
1113 
1114 	dr->handle.revisit = svc_revisit;
1115 	return &dr->handle;
1116 }
1117 
1118 /*
1119  * recv data from a deferred request into an active one
1120  */
1121 static int svc_deferred_recv(struct svc_rqst *rqstp)
1122 {
1123 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1124 
1125 	/* setup iov_base past transport header */
1126 	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1127 	/* The iov_len does not include the transport header bytes */
1128 	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1129 	rqstp->rq_arg.page_len = 0;
1130 	/* The rq_arg.len includes the transport header bytes */
1131 	rqstp->rq_arg.len     = dr->argslen<<2;
1132 	rqstp->rq_prot        = dr->prot;
1133 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1134 	rqstp->rq_addrlen     = dr->addrlen;
1135 	/* Save off transport header len in case we get deferred again */
1136 	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1137 	rqstp->rq_daddr       = dr->daddr;
1138 	rqstp->rq_respages    = rqstp->rq_pages;
1139 	return (dr->argslen<<2) - dr->xprt_hlen;
1140 }
1141 
1142 
1143 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1144 {
1145 	struct svc_deferred_req *dr = NULL;
1146 
1147 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1148 		return NULL;
1149 	spin_lock(&xprt->xpt_lock);
1150 	if (!list_empty(&xprt->xpt_deferred)) {
1151 		dr = list_entry(xprt->xpt_deferred.next,
1152 				struct svc_deferred_req,
1153 				handle.recent);
1154 		list_del_init(&dr->handle.recent);
1155 	} else
1156 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1157 	spin_unlock(&xprt->xpt_lock);
1158 	return dr;
1159 }
1160 
1161 /**
1162  * svc_find_xprt - find an RPC transport instance
1163  * @serv: pointer to svc_serv to search
1164  * @xcl_name: C string containing transport's class name
1165  * @net: owner net pointer
1166  * @af: Address family of transport's local address
1167  * @port: transport's IP port number
1168  *
1169  * Return the transport instance pointer for the endpoint accepting
1170  * connections/peer traffic from the specified transport class,
1171  * address family and port.
1172  *
1173  * Specifying 0 for the address family or port is effectively a
1174  * wild-card, and will result in matching the first transport in the
1175  * service's list that has a matching class name.
1176  */
1177 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1178 			       struct net *net, const sa_family_t af,
1179 			       const unsigned short port)
1180 {
1181 	struct svc_xprt *xprt;
1182 	struct svc_xprt *found = NULL;
1183 
1184 	/* Sanity check the args */
1185 	if (serv == NULL || xcl_name == NULL)
1186 		return found;
1187 
1188 	spin_lock_bh(&serv->sv_lock);
1189 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1190 		if (xprt->xpt_net != net)
1191 			continue;
1192 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1193 			continue;
1194 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1195 			continue;
1196 		if (port != 0 && port != svc_xprt_local_port(xprt))
1197 			continue;
1198 		found = xprt;
1199 		svc_xprt_get(xprt);
1200 		break;
1201 	}
1202 	spin_unlock_bh(&serv->sv_lock);
1203 	return found;
1204 }
1205 EXPORT_SYMBOL_GPL(svc_find_xprt);
1206 
1207 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1208 			     char *pos, int remaining)
1209 {
1210 	int len;
1211 
1212 	len = snprintf(pos, remaining, "%s %u\n",
1213 			xprt->xpt_class->xcl_name,
1214 			svc_xprt_local_port(xprt));
1215 	if (len >= remaining)
1216 		return -ENAMETOOLONG;
1217 	return len;
1218 }
1219 
1220 /**
1221  * svc_xprt_names - format a buffer with a list of transport names
1222  * @serv: pointer to an RPC service
1223  * @buf: pointer to a buffer to be filled in
1224  * @buflen: length of buffer to be filled in
1225  *
1226  * Fills in @buf with a string containing a list of transport names,
1227  * each name terminated with '\n'.
1228  *
1229  * Returns positive length of the filled-in string on success; otherwise
1230  * a negative errno value is returned if an error occurs.
1231  */
1232 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1233 {
1234 	struct svc_xprt *xprt;
1235 	int len, totlen;
1236 	char *pos;
1237 
1238 	/* Sanity check args */
1239 	if (!serv)
1240 		return 0;
1241 
1242 	spin_lock_bh(&serv->sv_lock);
1243 
1244 	pos = buf;
1245 	totlen = 0;
1246 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1247 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1248 		if (len < 0) {
1249 			*buf = '\0';
1250 			totlen = len;
1251 		}
1252 		if (len <= 0)
1253 			break;
1254 
1255 		pos += len;
1256 		totlen += len;
1257 	}
1258 
1259 	spin_unlock_bh(&serv->sv_lock);
1260 	return totlen;
1261 }
1262 EXPORT_SYMBOL_GPL(svc_xprt_names);
1263 
1264 
1265 /*----------------------------------------------------------------------------*/
1266 
1267 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1268 {
1269 	unsigned int pidx = (unsigned int)*pos;
1270 	struct svc_serv *serv = m->private;
1271 
1272 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1273 
1274 	if (!pidx)
1275 		return SEQ_START_TOKEN;
1276 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1277 }
1278 
1279 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1280 {
1281 	struct svc_pool *pool = p;
1282 	struct svc_serv *serv = m->private;
1283 
1284 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1285 
1286 	if (p == SEQ_START_TOKEN) {
1287 		pool = &serv->sv_pools[0];
1288 	} else {
1289 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1290 		if (pidx < serv->sv_nrpools-1)
1291 			pool = &serv->sv_pools[pidx+1];
1292 		else
1293 			pool = NULL;
1294 	}
1295 	++*pos;
1296 	return pool;
1297 }
1298 
1299 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1300 {
1301 }
1302 
1303 static int svc_pool_stats_show(struct seq_file *m, void *p)
1304 {
1305 	struct svc_pool *pool = p;
1306 
1307 	if (p == SEQ_START_TOKEN) {
1308 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1309 		return 0;
1310 	}
1311 
1312 	seq_printf(m, "%u %lu %lu %lu %lu\n",
1313 		pool->sp_id,
1314 		pool->sp_stats.packets,
1315 		pool->sp_stats.sockets_queued,
1316 		pool->sp_stats.threads_woken,
1317 		pool->sp_stats.threads_timedout);
1318 
1319 	return 0;
1320 }
1321 
1322 static const struct seq_operations svc_pool_stats_seq_ops = {
1323 	.start	= svc_pool_stats_start,
1324 	.next	= svc_pool_stats_next,
1325 	.stop	= svc_pool_stats_stop,
1326 	.show	= svc_pool_stats_show,
1327 };
1328 
1329 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1330 {
1331 	int err;
1332 
1333 	err = seq_open(file, &svc_pool_stats_seq_ops);
1334 	if (!err)
1335 		((struct seq_file *) file->private_data)->private = serv;
1336 	return err;
1337 }
1338 EXPORT_SYMBOL(svc_pool_stats_open);
1339 
1340 /*----------------------------------------------------------------------------*/
1341