xref: /linux/net/sunrpc/cache.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 
35 #define	 RPCDBG_FACILITY RPCDBG_CACHE
36 
37 static void cache_defer_req(struct cache_req *req, struct cache_head *item);
38 static void cache_revisit_request(struct cache_head *item);
39 
40 static void cache_init(struct cache_head *h)
41 {
42 	time_t now = get_seconds();
43 	h->next = NULL;
44 	h->flags = 0;
45 	kref_init(&h->ref);
46 	h->expiry_time = now + CACHE_NEW_EXPIRY;
47 	h->last_refresh = now;
48 }
49 
50 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
51 				       struct cache_head *key, int hash)
52 {
53 	struct cache_head **head,  **hp;
54 	struct cache_head *new = NULL;
55 
56 	head = &detail->hash_table[hash];
57 
58 	read_lock(&detail->hash_lock);
59 
60 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
61 		struct cache_head *tmp = *hp;
62 		if (detail->match(tmp, key)) {
63 			cache_get(tmp);
64 			read_unlock(&detail->hash_lock);
65 			return tmp;
66 		}
67 	}
68 	read_unlock(&detail->hash_lock);
69 	/* Didn't find anything, insert an empty entry */
70 
71 	new = detail->alloc();
72 	if (!new)
73 		return NULL;
74 	cache_init(new);
75 
76 	write_lock(&detail->hash_lock);
77 
78 	/* check if entry appeared while we slept */
79 	for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
80 		struct cache_head *tmp = *hp;
81 		if (detail->match(tmp, key)) {
82 			cache_get(tmp);
83 			write_unlock(&detail->hash_lock);
84 			cache_put(new, detail);
85 			return tmp;
86 		}
87 	}
88 	detail->init(new, key);
89 	new->next = *head;
90 	*head = new;
91 	detail->entries++;
92 	cache_get(new);
93 	write_unlock(&detail->hash_lock);
94 
95 	return new;
96 }
97 EXPORT_SYMBOL(sunrpc_cache_lookup);
98 
99 
100 static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
101 
102 static int cache_fresh_locked(struct cache_head *head, time_t expiry)
103 {
104 	head->expiry_time = expiry;
105 	head->last_refresh = get_seconds();
106 	return !test_and_set_bit(CACHE_VALID, &head->flags);
107 }
108 
109 static void cache_fresh_unlocked(struct cache_head *head,
110 			struct cache_detail *detail, int new)
111 {
112 	if (new)
113 		cache_revisit_request(head);
114 	if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
115 		cache_revisit_request(head);
116 		queue_loose(detail, head);
117 	}
118 }
119 
120 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
121 				       struct cache_head *new, struct cache_head *old, int hash)
122 {
123 	/* The 'old' entry is to be replaced by 'new'.
124 	 * If 'old' is not VALID, we update it directly,
125 	 * otherwise we need to replace it
126 	 */
127 	struct cache_head **head;
128 	struct cache_head *tmp;
129 	int is_new;
130 
131 	if (!test_bit(CACHE_VALID, &old->flags)) {
132 		write_lock(&detail->hash_lock);
133 		if (!test_bit(CACHE_VALID, &old->flags)) {
134 			if (test_bit(CACHE_NEGATIVE, &new->flags))
135 				set_bit(CACHE_NEGATIVE, &old->flags);
136 			else
137 				detail->update(old, new);
138 			is_new = cache_fresh_locked(old, new->expiry_time);
139 			write_unlock(&detail->hash_lock);
140 			cache_fresh_unlocked(old, detail, is_new);
141 			return old;
142 		}
143 		write_unlock(&detail->hash_lock);
144 	}
145 	/* We need to insert a new entry */
146 	tmp = detail->alloc();
147 	if (!tmp) {
148 		cache_put(old, detail);
149 		return NULL;
150 	}
151 	cache_init(tmp);
152 	detail->init(tmp, old);
153 	head = &detail->hash_table[hash];
154 
155 	write_lock(&detail->hash_lock);
156 	if (test_bit(CACHE_NEGATIVE, &new->flags))
157 		set_bit(CACHE_NEGATIVE, &tmp->flags);
158 	else
159 		detail->update(tmp, new);
160 	tmp->next = *head;
161 	*head = tmp;
162 	detail->entries++;
163 	cache_get(tmp);
164 	is_new = cache_fresh_locked(tmp, new->expiry_time);
165 	cache_fresh_locked(old, 0);
166 	write_unlock(&detail->hash_lock);
167 	cache_fresh_unlocked(tmp, detail, is_new);
168 	cache_fresh_unlocked(old, detail, 0);
169 	cache_put(old, detail);
170 	return tmp;
171 }
172 EXPORT_SYMBOL(sunrpc_cache_update);
173 
174 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
175 /*
176  * This is the generic cache management routine for all
177  * the authentication caches.
178  * It checks the currency of a cache item and will (later)
179  * initiate an upcall to fill it if needed.
180  *
181  *
182  * Returns 0 if the cache_head can be used, or cache_puts it and returns
183  * -EAGAIN if upcall is pending,
184  * -ENOENT if cache entry was negative
185  */
186 int cache_check(struct cache_detail *detail,
187 		    struct cache_head *h, struct cache_req *rqstp)
188 {
189 	int rv;
190 	long refresh_age, age;
191 
192 	/* First decide return status as best we can */
193 	if (!test_bit(CACHE_VALID, &h->flags) ||
194 	    h->expiry_time < get_seconds())
195 		rv = -EAGAIN;
196 	else if (detail->flush_time > h->last_refresh)
197 		rv = -EAGAIN;
198 	else {
199 		/* entry is valid */
200 		if (test_bit(CACHE_NEGATIVE, &h->flags))
201 			rv = -ENOENT;
202 		else rv = 0;
203 	}
204 
205 	/* now see if we want to start an upcall */
206 	refresh_age = (h->expiry_time - h->last_refresh);
207 	age = get_seconds() - h->last_refresh;
208 
209 	if (rqstp == NULL) {
210 		if (rv == -EAGAIN)
211 			rv = -ENOENT;
212 	} else if (rv == -EAGAIN || age > refresh_age/2) {
213 		dprintk("Want update, refage=%ld, age=%ld\n", refresh_age, age);
214 		if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
215 			switch (cache_make_upcall(detail, h)) {
216 			case -EINVAL:
217 				clear_bit(CACHE_PENDING, &h->flags);
218 				if (rv == -EAGAIN) {
219 					set_bit(CACHE_NEGATIVE, &h->flags);
220 					cache_fresh_unlocked(h, detail,
221 					     cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
222 					rv = -ENOENT;
223 				}
224 				break;
225 
226 			case -EAGAIN:
227 				clear_bit(CACHE_PENDING, &h->flags);
228 				cache_revisit_request(h);
229 				break;
230 			}
231 		}
232 	}
233 
234 	if (rv == -EAGAIN)
235 		cache_defer_req(rqstp, h);
236 
237 	if (rv)
238 		cache_put(h, detail);
239 	return rv;
240 }
241 
242 /*
243  * caches need to be periodically cleaned.
244  * For this we maintain a list of cache_detail and
245  * a current pointer into that list and into the table
246  * for that entry.
247  *
248  * Each time clean_cache is called it finds the next non-empty entry
249  * in the current table and walks the list in that entry
250  * looking for entries that can be removed.
251  *
252  * An entry gets removed if:
253  * - The expiry is before current time
254  * - The last_refresh time is before the flush_time for that cache
255  *
256  * later we might drop old entries with non-NEVER expiry if that table
257  * is getting 'full' for some definition of 'full'
258  *
259  * The question of "how often to scan a table" is an interesting one
260  * and is answered in part by the use of the "nextcheck" field in the
261  * cache_detail.
262  * When a scan of a table begins, the nextcheck field is set to a time
263  * that is well into the future.
264  * While scanning, if an expiry time is found that is earlier than the
265  * current nextcheck time, nextcheck is set to that expiry time.
266  * If the flush_time is ever set to a time earlier than the nextcheck
267  * time, the nextcheck time is then set to that flush_time.
268  *
269  * A table is then only scanned if the current time is at least
270  * the nextcheck time.
271  *
272  */
273 
274 static LIST_HEAD(cache_list);
275 static DEFINE_SPINLOCK(cache_list_lock);
276 static struct cache_detail *current_detail;
277 static int current_index;
278 
279 static struct file_operations cache_file_operations;
280 static struct file_operations content_file_operations;
281 static struct file_operations cache_flush_operations;
282 
283 static void do_cache_clean(void *data);
284 static DECLARE_WORK(cache_cleaner, do_cache_clean, NULL);
285 
286 void cache_register(struct cache_detail *cd)
287 {
288 	cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
289 	if (cd->proc_ent) {
290 		struct proc_dir_entry *p;
291 		cd->proc_ent->owner = cd->owner;
292 		cd->channel_ent = cd->content_ent = NULL;
293 
294  		p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR,
295  				      cd->proc_ent);
296 		cd->flush_ent =  p;
297  		if (p) {
298  			p->proc_fops = &cache_flush_operations;
299  			p->owner = cd->owner;
300  			p->data = cd;
301  		}
302 
303 		if (cd->cache_request || cd->cache_parse) {
304 			p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR,
305 					      cd->proc_ent);
306 			cd->channel_ent = p;
307 			if (p) {
308 				p->proc_fops = &cache_file_operations;
309 				p->owner = cd->owner;
310 				p->data = cd;
311 			}
312 		}
313  		if (cd->cache_show) {
314  			p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR,
315  					      cd->proc_ent);
316 			cd->content_ent = p;
317  			if (p) {
318  				p->proc_fops = &content_file_operations;
319  				p->owner = cd->owner;
320  				p->data = cd;
321  			}
322  		}
323 	}
324 	rwlock_init(&cd->hash_lock);
325 	INIT_LIST_HEAD(&cd->queue);
326 	spin_lock(&cache_list_lock);
327 	cd->nextcheck = 0;
328 	cd->entries = 0;
329 	atomic_set(&cd->readers, 0);
330 	cd->last_close = 0;
331 	cd->last_warn = -1;
332 	list_add(&cd->others, &cache_list);
333 	spin_unlock(&cache_list_lock);
334 
335 	/* start the cleaning process */
336 	schedule_work(&cache_cleaner);
337 }
338 
339 int cache_unregister(struct cache_detail *cd)
340 {
341 	cache_purge(cd);
342 	spin_lock(&cache_list_lock);
343 	write_lock(&cd->hash_lock);
344 	if (cd->entries || atomic_read(&cd->inuse)) {
345 		write_unlock(&cd->hash_lock);
346 		spin_unlock(&cache_list_lock);
347 		return -EBUSY;
348 	}
349 	if (current_detail == cd)
350 		current_detail = NULL;
351 	list_del_init(&cd->others);
352 	write_unlock(&cd->hash_lock);
353 	spin_unlock(&cache_list_lock);
354 	if (cd->proc_ent) {
355 		if (cd->flush_ent)
356 			remove_proc_entry("flush", cd->proc_ent);
357 		if (cd->channel_ent)
358 			remove_proc_entry("channel", cd->proc_ent);
359 		if (cd->content_ent)
360 			remove_proc_entry("content", cd->proc_ent);
361 
362 		cd->proc_ent = NULL;
363 		remove_proc_entry(cd->name, proc_net_rpc);
364 	}
365 	if (list_empty(&cache_list)) {
366 		/* module must be being unloaded so its safe to kill the worker */
367 		cancel_delayed_work(&cache_cleaner);
368 		flush_scheduled_work();
369 	}
370 	return 0;
371 }
372 
373 /* clean cache tries to find something to clean
374  * and cleans it.
375  * It returns 1 if it cleaned something,
376  *            0 if it didn't find anything this time
377  *           -1 if it fell off the end of the list.
378  */
379 static int cache_clean(void)
380 {
381 	int rv = 0;
382 	struct list_head *next;
383 
384 	spin_lock(&cache_list_lock);
385 
386 	/* find a suitable table if we don't already have one */
387 	while (current_detail == NULL ||
388 	    current_index >= current_detail->hash_size) {
389 		if (current_detail)
390 			next = current_detail->others.next;
391 		else
392 			next = cache_list.next;
393 		if (next == &cache_list) {
394 			current_detail = NULL;
395 			spin_unlock(&cache_list_lock);
396 			return -1;
397 		}
398 		current_detail = list_entry(next, struct cache_detail, others);
399 		if (current_detail->nextcheck > get_seconds())
400 			current_index = current_detail->hash_size;
401 		else {
402 			current_index = 0;
403 			current_detail->nextcheck = get_seconds()+30*60;
404 		}
405 	}
406 
407 	/* find a non-empty bucket in the table */
408 	while (current_detail &&
409 	       current_index < current_detail->hash_size &&
410 	       current_detail->hash_table[current_index] == NULL)
411 		current_index++;
412 
413 	/* find a cleanable entry in the bucket and clean it, or set to next bucket */
414 
415 	if (current_detail && current_index < current_detail->hash_size) {
416 		struct cache_head *ch, **cp;
417 		struct cache_detail *d;
418 
419 		write_lock(&current_detail->hash_lock);
420 
421 		/* Ok, now to clean this strand */
422 
423 		cp = & current_detail->hash_table[current_index];
424 		ch = *cp;
425 		for (; ch; cp= & ch->next, ch= *cp) {
426 			if (current_detail->nextcheck > ch->expiry_time)
427 				current_detail->nextcheck = ch->expiry_time+1;
428 			if (ch->expiry_time >= get_seconds()
429 			    && ch->last_refresh >= current_detail->flush_time
430 				)
431 				continue;
432 			if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
433 				queue_loose(current_detail, ch);
434 
435 			if (atomic_read(&ch->ref.refcount) == 1)
436 				break;
437 		}
438 		if (ch) {
439 			*cp = ch->next;
440 			ch->next = NULL;
441 			current_detail->entries--;
442 			rv = 1;
443 		}
444 		write_unlock(&current_detail->hash_lock);
445 		d = current_detail;
446 		if (!ch)
447 			current_index ++;
448 		spin_unlock(&cache_list_lock);
449 		if (ch)
450 			cache_put(ch, d);
451 	} else
452 		spin_unlock(&cache_list_lock);
453 
454 	return rv;
455 }
456 
457 /*
458  * We want to regularly clean the cache, so we need to schedule some work ...
459  */
460 static void do_cache_clean(void *data)
461 {
462 	int delay = 5;
463 	if (cache_clean() == -1)
464 		delay = 30*HZ;
465 
466 	if (list_empty(&cache_list))
467 		delay = 0;
468 
469 	if (delay)
470 		schedule_delayed_work(&cache_cleaner, delay);
471 }
472 
473 
474 /*
475  * Clean all caches promptly.  This just calls cache_clean
476  * repeatedly until we are sure that every cache has had a chance to
477  * be fully cleaned
478  */
479 void cache_flush(void)
480 {
481 	while (cache_clean() != -1)
482 		cond_resched();
483 	while (cache_clean() != -1)
484 		cond_resched();
485 }
486 
487 void cache_purge(struct cache_detail *detail)
488 {
489 	detail->flush_time = LONG_MAX;
490 	detail->nextcheck = get_seconds();
491 	cache_flush();
492 	detail->flush_time = 1;
493 }
494 
495 
496 
497 /*
498  * Deferral and Revisiting of Requests.
499  *
500  * If a cache lookup finds a pending entry, we
501  * need to defer the request and revisit it later.
502  * All deferred requests are stored in a hash table,
503  * indexed by "struct cache_head *".
504  * As it may be wasteful to store a whole request
505  * structure, we allow the request to provide a
506  * deferred form, which must contain a
507  * 'struct cache_deferred_req'
508  * This cache_deferred_req contains a method to allow
509  * it to be revisited when cache info is available
510  */
511 
512 #define	DFR_HASHSIZE	(PAGE_SIZE/sizeof(struct list_head))
513 #define	DFR_HASH(item)	((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
514 
515 #define	DFR_MAX	300	/* ??? */
516 
517 static DEFINE_SPINLOCK(cache_defer_lock);
518 static LIST_HEAD(cache_defer_list);
519 static struct list_head cache_defer_hash[DFR_HASHSIZE];
520 static int cache_defer_cnt;
521 
522 static void cache_defer_req(struct cache_req *req, struct cache_head *item)
523 {
524 	struct cache_deferred_req *dreq;
525 	int hash = DFR_HASH(item);
526 
527 	dreq = req->defer(req);
528 	if (dreq == NULL)
529 		return;
530 
531 	dreq->item = item;
532 	dreq->recv_time = get_seconds();
533 
534 	spin_lock(&cache_defer_lock);
535 
536 	list_add(&dreq->recent, &cache_defer_list);
537 
538 	if (cache_defer_hash[hash].next == NULL)
539 		INIT_LIST_HEAD(&cache_defer_hash[hash]);
540 	list_add(&dreq->hash, &cache_defer_hash[hash]);
541 
542 	/* it is in, now maybe clean up */
543 	dreq = NULL;
544 	if (++cache_defer_cnt > DFR_MAX) {
545 		/* too much in the cache, randomly drop
546 		 * first or last
547 		 */
548 		if (net_random()&1)
549 			dreq = list_entry(cache_defer_list.next,
550 					  struct cache_deferred_req,
551 					  recent);
552 		else
553 			dreq = list_entry(cache_defer_list.prev,
554 					  struct cache_deferred_req,
555 					  recent);
556 		list_del(&dreq->recent);
557 		list_del(&dreq->hash);
558 		cache_defer_cnt--;
559 	}
560 	spin_unlock(&cache_defer_lock);
561 
562 	if (dreq) {
563 		/* there was one too many */
564 		dreq->revisit(dreq, 1);
565 	}
566 	if (!test_bit(CACHE_PENDING, &item->flags)) {
567 		/* must have just been validated... */
568 		cache_revisit_request(item);
569 	}
570 }
571 
572 static void cache_revisit_request(struct cache_head *item)
573 {
574 	struct cache_deferred_req *dreq;
575 	struct list_head pending;
576 
577 	struct list_head *lp;
578 	int hash = DFR_HASH(item);
579 
580 	INIT_LIST_HEAD(&pending);
581 	spin_lock(&cache_defer_lock);
582 
583 	lp = cache_defer_hash[hash].next;
584 	if (lp) {
585 		while (lp != &cache_defer_hash[hash]) {
586 			dreq = list_entry(lp, struct cache_deferred_req, hash);
587 			lp = lp->next;
588 			if (dreq->item == item) {
589 				list_del(&dreq->hash);
590 				list_move(&dreq->recent, &pending);
591 				cache_defer_cnt--;
592 			}
593 		}
594 	}
595 	spin_unlock(&cache_defer_lock);
596 
597 	while (!list_empty(&pending)) {
598 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
599 		list_del_init(&dreq->recent);
600 		dreq->revisit(dreq, 0);
601 	}
602 }
603 
604 void cache_clean_deferred(void *owner)
605 {
606 	struct cache_deferred_req *dreq, *tmp;
607 	struct list_head pending;
608 
609 
610 	INIT_LIST_HEAD(&pending);
611 	spin_lock(&cache_defer_lock);
612 
613 	list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
614 		if (dreq->owner == owner) {
615 			list_del(&dreq->hash);
616 			list_move(&dreq->recent, &pending);
617 			cache_defer_cnt--;
618 		}
619 	}
620 	spin_unlock(&cache_defer_lock);
621 
622 	while (!list_empty(&pending)) {
623 		dreq = list_entry(pending.next, struct cache_deferred_req, recent);
624 		list_del_init(&dreq->recent);
625 		dreq->revisit(dreq, 1);
626 	}
627 }
628 
629 /*
630  * communicate with user-space
631  *
632  * We have a magic /proc file - /proc/sunrpc/cache
633  * On read, you get a full request, or block
634  * On write, an update request is processed
635  * Poll works if anything to read, and always allows write
636  *
637  * Implemented by linked list of requests.  Each open file has
638  * a ->private that also exists in this list.  New request are added
639  * to the end and may wakeup and preceding readers.
640  * New readers are added to the head.  If, on read, an item is found with
641  * CACHE_UPCALLING clear, we free it from the list.
642  *
643  */
644 
645 static DEFINE_SPINLOCK(queue_lock);
646 static DEFINE_MUTEX(queue_io_mutex);
647 
648 struct cache_queue {
649 	struct list_head	list;
650 	int			reader;	/* if 0, then request */
651 };
652 struct cache_request {
653 	struct cache_queue	q;
654 	struct cache_head	*item;
655 	char			* buf;
656 	int			len;
657 	int			readers;
658 };
659 struct cache_reader {
660 	struct cache_queue	q;
661 	int			offset;	/* if non-0, we have a refcnt on next request */
662 };
663 
664 static ssize_t
665 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
666 {
667 	struct cache_reader *rp = filp->private_data;
668 	struct cache_request *rq;
669 	struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
670 	int err;
671 
672 	if (count == 0)
673 		return 0;
674 
675 	mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
676 			      * readers on this file */
677  again:
678 	spin_lock(&queue_lock);
679 	/* need to find next request */
680 	while (rp->q.list.next != &cd->queue &&
681 	       list_entry(rp->q.list.next, struct cache_queue, list)
682 	       ->reader) {
683 		struct list_head *next = rp->q.list.next;
684 		list_move(&rp->q.list, next);
685 	}
686 	if (rp->q.list.next == &cd->queue) {
687 		spin_unlock(&queue_lock);
688 		mutex_unlock(&queue_io_mutex);
689 		BUG_ON(rp->offset);
690 		return 0;
691 	}
692 	rq = container_of(rp->q.list.next, struct cache_request, q.list);
693 	BUG_ON(rq->q.reader);
694 	if (rp->offset == 0)
695 		rq->readers++;
696 	spin_unlock(&queue_lock);
697 
698 	if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
699 		err = -EAGAIN;
700 		spin_lock(&queue_lock);
701 		list_move(&rp->q.list, &rq->q.list);
702 		spin_unlock(&queue_lock);
703 	} else {
704 		if (rp->offset + count > rq->len)
705 			count = rq->len - rp->offset;
706 		err = -EFAULT;
707 		if (copy_to_user(buf, rq->buf + rp->offset, count))
708 			goto out;
709 		rp->offset += count;
710 		if (rp->offset >= rq->len) {
711 			rp->offset = 0;
712 			spin_lock(&queue_lock);
713 			list_move(&rp->q.list, &rq->q.list);
714 			spin_unlock(&queue_lock);
715 		}
716 		err = 0;
717 	}
718  out:
719 	if (rp->offset == 0) {
720 		/* need to release rq */
721 		spin_lock(&queue_lock);
722 		rq->readers--;
723 		if (rq->readers == 0 &&
724 		    !test_bit(CACHE_PENDING, &rq->item->flags)) {
725 			list_del(&rq->q.list);
726 			spin_unlock(&queue_lock);
727 			cache_put(rq->item, cd);
728 			kfree(rq->buf);
729 			kfree(rq);
730 		} else
731 			spin_unlock(&queue_lock);
732 	}
733 	if (err == -EAGAIN)
734 		goto again;
735 	mutex_unlock(&queue_io_mutex);
736 	return err ? err :  count;
737 }
738 
739 static char write_buf[8192]; /* protected by queue_io_mutex */
740 
741 static ssize_t
742 cache_write(struct file *filp, const char __user *buf, size_t count,
743 	    loff_t *ppos)
744 {
745 	int err;
746 	struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
747 
748 	if (count == 0)
749 		return 0;
750 	if (count >= sizeof(write_buf))
751 		return -EINVAL;
752 
753 	mutex_lock(&queue_io_mutex);
754 
755 	if (copy_from_user(write_buf, buf, count)) {
756 		mutex_unlock(&queue_io_mutex);
757 		return -EFAULT;
758 	}
759 	write_buf[count] = '\0';
760 	if (cd->cache_parse)
761 		err = cd->cache_parse(cd, write_buf, count);
762 	else
763 		err = -EINVAL;
764 
765 	mutex_unlock(&queue_io_mutex);
766 	return err ? err : count;
767 }
768 
769 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
770 
771 static unsigned int
772 cache_poll(struct file *filp, poll_table *wait)
773 {
774 	unsigned int mask;
775 	struct cache_reader *rp = filp->private_data;
776 	struct cache_queue *cq;
777 	struct cache_detail *cd = PDE(filp->f_dentry->d_inode)->data;
778 
779 	poll_wait(filp, &queue_wait, wait);
780 
781 	/* alway allow write */
782 	mask = POLL_OUT | POLLWRNORM;
783 
784 	if (!rp)
785 		return mask;
786 
787 	spin_lock(&queue_lock);
788 
789 	for (cq= &rp->q; &cq->list != &cd->queue;
790 	     cq = list_entry(cq->list.next, struct cache_queue, list))
791 		if (!cq->reader) {
792 			mask |= POLLIN | POLLRDNORM;
793 			break;
794 		}
795 	spin_unlock(&queue_lock);
796 	return mask;
797 }
798 
799 static int
800 cache_ioctl(struct inode *ino, struct file *filp,
801 	    unsigned int cmd, unsigned long arg)
802 {
803 	int len = 0;
804 	struct cache_reader *rp = filp->private_data;
805 	struct cache_queue *cq;
806 	struct cache_detail *cd = PDE(ino)->data;
807 
808 	if (cmd != FIONREAD || !rp)
809 		return -EINVAL;
810 
811 	spin_lock(&queue_lock);
812 
813 	/* only find the length remaining in current request,
814 	 * or the length of the next request
815 	 */
816 	for (cq= &rp->q; &cq->list != &cd->queue;
817 	     cq = list_entry(cq->list.next, struct cache_queue, list))
818 		if (!cq->reader) {
819 			struct cache_request *cr =
820 				container_of(cq, struct cache_request, q);
821 			len = cr->len - rp->offset;
822 			break;
823 		}
824 	spin_unlock(&queue_lock);
825 
826 	return put_user(len, (int __user *)arg);
827 }
828 
829 static int
830 cache_open(struct inode *inode, struct file *filp)
831 {
832 	struct cache_reader *rp = NULL;
833 
834 	nonseekable_open(inode, filp);
835 	if (filp->f_mode & FMODE_READ) {
836 		struct cache_detail *cd = PDE(inode)->data;
837 
838 		rp = kmalloc(sizeof(*rp), GFP_KERNEL);
839 		if (!rp)
840 			return -ENOMEM;
841 		rp->offset = 0;
842 		rp->q.reader = 1;
843 		atomic_inc(&cd->readers);
844 		spin_lock(&queue_lock);
845 		list_add(&rp->q.list, &cd->queue);
846 		spin_unlock(&queue_lock);
847 	}
848 	filp->private_data = rp;
849 	return 0;
850 }
851 
852 static int
853 cache_release(struct inode *inode, struct file *filp)
854 {
855 	struct cache_reader *rp = filp->private_data;
856 	struct cache_detail *cd = PDE(inode)->data;
857 
858 	if (rp) {
859 		spin_lock(&queue_lock);
860 		if (rp->offset) {
861 			struct cache_queue *cq;
862 			for (cq= &rp->q; &cq->list != &cd->queue;
863 			     cq = list_entry(cq->list.next, struct cache_queue, list))
864 				if (!cq->reader) {
865 					container_of(cq, struct cache_request, q)
866 						->readers--;
867 					break;
868 				}
869 			rp->offset = 0;
870 		}
871 		list_del(&rp->q.list);
872 		spin_unlock(&queue_lock);
873 
874 		filp->private_data = NULL;
875 		kfree(rp);
876 
877 		cd->last_close = get_seconds();
878 		atomic_dec(&cd->readers);
879 	}
880 	return 0;
881 }
882 
883 
884 
885 static struct file_operations cache_file_operations = {
886 	.owner		= THIS_MODULE,
887 	.llseek		= no_llseek,
888 	.read		= cache_read,
889 	.write		= cache_write,
890 	.poll		= cache_poll,
891 	.ioctl		= cache_ioctl, /* for FIONREAD */
892 	.open		= cache_open,
893 	.release	= cache_release,
894 };
895 
896 
897 static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
898 {
899 	struct cache_queue *cq;
900 	spin_lock(&queue_lock);
901 	list_for_each_entry(cq, &detail->queue, list)
902 		if (!cq->reader) {
903 			struct cache_request *cr = container_of(cq, struct cache_request, q);
904 			if (cr->item != ch)
905 				continue;
906 			if (cr->readers != 0)
907 				continue;
908 			list_del(&cr->q.list);
909 			spin_unlock(&queue_lock);
910 			cache_put(cr->item, detail);
911 			kfree(cr->buf);
912 			kfree(cr);
913 			return;
914 		}
915 	spin_unlock(&queue_lock);
916 }
917 
918 /*
919  * Support routines for text-based upcalls.
920  * Fields are separated by spaces.
921  * Fields are either mangled to quote space tab newline slosh with slosh
922  * or a hexified with a leading \x
923  * Record is terminated with newline.
924  *
925  */
926 
927 void qword_add(char **bpp, int *lp, char *str)
928 {
929 	char *bp = *bpp;
930 	int len = *lp;
931 	char c;
932 
933 	if (len < 0) return;
934 
935 	while ((c=*str++) && len)
936 		switch(c) {
937 		case ' ':
938 		case '\t':
939 		case '\n':
940 		case '\\':
941 			if (len >= 4) {
942 				*bp++ = '\\';
943 				*bp++ = '0' + ((c & 0300)>>6);
944 				*bp++ = '0' + ((c & 0070)>>3);
945 				*bp++ = '0' + ((c & 0007)>>0);
946 			}
947 			len -= 4;
948 			break;
949 		default:
950 			*bp++ = c;
951 			len--;
952 		}
953 	if (c || len <1) len = -1;
954 	else {
955 		*bp++ = ' ';
956 		len--;
957 	}
958 	*bpp = bp;
959 	*lp = len;
960 }
961 
962 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
963 {
964 	char *bp = *bpp;
965 	int len = *lp;
966 
967 	if (len < 0) return;
968 
969 	if (len > 2) {
970 		*bp++ = '\\';
971 		*bp++ = 'x';
972 		len -= 2;
973 		while (blen && len >= 2) {
974 			unsigned char c = *buf++;
975 			*bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
976 			*bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
977 			len -= 2;
978 			blen--;
979 		}
980 	}
981 	if (blen || len<1) len = -1;
982 	else {
983 		*bp++ = ' ';
984 		len--;
985 	}
986 	*bpp = bp;
987 	*lp = len;
988 }
989 
990 static void warn_no_listener(struct cache_detail *detail)
991 {
992 	if (detail->last_warn != detail->last_close) {
993 		detail->last_warn = detail->last_close;
994 		if (detail->warn_no_listener)
995 			detail->warn_no_listener(detail);
996 	}
997 }
998 
999 /*
1000  * register an upcall request to user-space.
1001  * Each request is at most one page long.
1002  */
1003 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
1004 {
1005 
1006 	char *buf;
1007 	struct cache_request *crq;
1008 	char *bp;
1009 	int len;
1010 
1011 	if (detail->cache_request == NULL)
1012 		return -EINVAL;
1013 
1014 	if (atomic_read(&detail->readers) == 0 &&
1015 	    detail->last_close < get_seconds() - 30) {
1016 			warn_no_listener(detail);
1017 			return -EINVAL;
1018 	}
1019 
1020 	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1021 	if (!buf)
1022 		return -EAGAIN;
1023 
1024 	crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1025 	if (!crq) {
1026 		kfree(buf);
1027 		return -EAGAIN;
1028 	}
1029 
1030 	bp = buf; len = PAGE_SIZE;
1031 
1032 	detail->cache_request(detail, h, &bp, &len);
1033 
1034 	if (len < 0) {
1035 		kfree(buf);
1036 		kfree(crq);
1037 		return -EAGAIN;
1038 	}
1039 	crq->q.reader = 0;
1040 	crq->item = cache_get(h);
1041 	crq->buf = buf;
1042 	crq->len = PAGE_SIZE - len;
1043 	crq->readers = 0;
1044 	spin_lock(&queue_lock);
1045 	list_add_tail(&crq->q.list, &detail->queue);
1046 	spin_unlock(&queue_lock);
1047 	wake_up(&queue_wait);
1048 	return 0;
1049 }
1050 
1051 /*
1052  * parse a message from user-space and pass it
1053  * to an appropriate cache
1054  * Messages are, like requests, separated into fields by
1055  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1056  *
1057  * Message is
1058  *   reply cachename expiry key ... content....
1059  *
1060  * key and content are both parsed by cache
1061  */
1062 
1063 #define isodigit(c) (isdigit(c) && c <= '7')
1064 int qword_get(char **bpp, char *dest, int bufsize)
1065 {
1066 	/* return bytes copied, or -1 on error */
1067 	char *bp = *bpp;
1068 	int len = 0;
1069 
1070 	while (*bp == ' ') bp++;
1071 
1072 	if (bp[0] == '\\' && bp[1] == 'x') {
1073 		/* HEX STRING */
1074 		bp += 2;
1075 		while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1076 			int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1077 			bp++;
1078 			byte <<= 4;
1079 			byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1080 			*dest++ = byte;
1081 			bp++;
1082 			len++;
1083 		}
1084 	} else {
1085 		/* text with \nnn octal quoting */
1086 		while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1087 			if (*bp == '\\' &&
1088 			    isodigit(bp[1]) && (bp[1] <= '3') &&
1089 			    isodigit(bp[2]) &&
1090 			    isodigit(bp[3])) {
1091 				int byte = (*++bp -'0');
1092 				bp++;
1093 				byte = (byte << 3) | (*bp++ - '0');
1094 				byte = (byte << 3) | (*bp++ - '0');
1095 				*dest++ = byte;
1096 				len++;
1097 			} else {
1098 				*dest++ = *bp++;
1099 				len++;
1100 			}
1101 		}
1102 	}
1103 
1104 	if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1105 		return -1;
1106 	while (*bp == ' ') bp++;
1107 	*bpp = bp;
1108 	*dest = '\0';
1109 	return len;
1110 }
1111 
1112 
1113 /*
1114  * support /proc/sunrpc/cache/$CACHENAME/content
1115  * as a seqfile.
1116  * We call ->cache_show passing NULL for the item to
1117  * get a header, then pass each real item in the cache
1118  */
1119 
1120 struct handle {
1121 	struct cache_detail *cd;
1122 };
1123 
1124 static void *c_start(struct seq_file *m, loff_t *pos)
1125 {
1126 	loff_t n = *pos;
1127 	unsigned hash, entry;
1128 	struct cache_head *ch;
1129 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1130 
1131 
1132 	read_lock(&cd->hash_lock);
1133 	if (!n--)
1134 		return SEQ_START_TOKEN;
1135 	hash = n >> 32;
1136 	entry = n & ((1LL<<32) - 1);
1137 
1138 	for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1139 		if (!entry--)
1140 			return ch;
1141 	n &= ~((1LL<<32) - 1);
1142 	do {
1143 		hash++;
1144 		n += 1LL<<32;
1145 	} while(hash < cd->hash_size &&
1146 		cd->hash_table[hash]==NULL);
1147 	if (hash >= cd->hash_size)
1148 		return NULL;
1149 	*pos = n+1;
1150 	return cd->hash_table[hash];
1151 }
1152 
1153 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1154 {
1155 	struct cache_head *ch = p;
1156 	int hash = (*pos >> 32);
1157 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1158 
1159 	if (p == SEQ_START_TOKEN)
1160 		hash = 0;
1161 	else if (ch->next == NULL) {
1162 		hash++;
1163 		*pos += 1LL<<32;
1164 	} else {
1165 		++*pos;
1166 		return ch->next;
1167 	}
1168 	*pos &= ~((1LL<<32) - 1);
1169 	while (hash < cd->hash_size &&
1170 	       cd->hash_table[hash] == NULL) {
1171 		hash++;
1172 		*pos += 1LL<<32;
1173 	}
1174 	if (hash >= cd->hash_size)
1175 		return NULL;
1176 	++*pos;
1177 	return cd->hash_table[hash];
1178 }
1179 
1180 static void c_stop(struct seq_file *m, void *p)
1181 {
1182 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1183 	read_unlock(&cd->hash_lock);
1184 }
1185 
1186 static int c_show(struct seq_file *m, void *p)
1187 {
1188 	struct cache_head *cp = p;
1189 	struct cache_detail *cd = ((struct handle*)m->private)->cd;
1190 
1191 	if (p == SEQ_START_TOKEN)
1192 		return cd->cache_show(m, cd, NULL);
1193 
1194 	ifdebug(CACHE)
1195 		seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1196 			   cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1197 	cache_get(cp);
1198 	if (cache_check(cd, cp, NULL))
1199 		/* cache_check does a cache_put on failure */
1200 		seq_printf(m, "# ");
1201 	else
1202 		cache_put(cp, cd);
1203 
1204 	return cd->cache_show(m, cd, cp);
1205 }
1206 
1207 static struct seq_operations cache_content_op = {
1208 	.start	= c_start,
1209 	.next	= c_next,
1210 	.stop	= c_stop,
1211 	.show	= c_show,
1212 };
1213 
1214 static int content_open(struct inode *inode, struct file *file)
1215 {
1216 	int res;
1217 	struct handle *han;
1218 	struct cache_detail *cd = PDE(inode)->data;
1219 
1220 	han = kmalloc(sizeof(*han), GFP_KERNEL);
1221 	if (han == NULL)
1222 		return -ENOMEM;
1223 
1224 	han->cd = cd;
1225 
1226 	res = seq_open(file, &cache_content_op);
1227 	if (res)
1228 		kfree(han);
1229 	else
1230 		((struct seq_file *)file->private_data)->private = han;
1231 
1232 	return res;
1233 }
1234 static int content_release(struct inode *inode, struct file *file)
1235 {
1236 	struct seq_file *m = (struct seq_file *)file->private_data;
1237 	struct handle *han = m->private;
1238 	kfree(han);
1239 	m->private = NULL;
1240 	return seq_release(inode, file);
1241 }
1242 
1243 static struct file_operations content_file_operations = {
1244 	.open		= content_open,
1245 	.read		= seq_read,
1246 	.llseek		= seq_lseek,
1247 	.release	= content_release,
1248 };
1249 
1250 static ssize_t read_flush(struct file *file, char __user *buf,
1251 			    size_t count, loff_t *ppos)
1252 {
1253 	struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1254 	char tbuf[20];
1255 	unsigned long p = *ppos;
1256 	int len;
1257 
1258 	sprintf(tbuf, "%lu\n", cd->flush_time);
1259 	len = strlen(tbuf);
1260 	if (p >= len)
1261 		return 0;
1262 	len -= p;
1263 	if (len > count) len = count;
1264 	if (copy_to_user(buf, (void*)(tbuf+p), len))
1265 		len = -EFAULT;
1266 	else
1267 		*ppos += len;
1268 	return len;
1269 }
1270 
1271 static ssize_t write_flush(struct file * file, const char __user * buf,
1272 			     size_t count, loff_t *ppos)
1273 {
1274 	struct cache_detail *cd = PDE(file->f_dentry->d_inode)->data;
1275 	char tbuf[20];
1276 	char *ep;
1277 	long flushtime;
1278 	if (*ppos || count > sizeof(tbuf)-1)
1279 		return -EINVAL;
1280 	if (copy_from_user(tbuf, buf, count))
1281 		return -EFAULT;
1282 	tbuf[count] = 0;
1283 	flushtime = simple_strtoul(tbuf, &ep, 0);
1284 	if (*ep && *ep != '\n')
1285 		return -EINVAL;
1286 
1287 	cd->flush_time = flushtime;
1288 	cd->nextcheck = get_seconds();
1289 	cache_flush();
1290 
1291 	*ppos += count;
1292 	return count;
1293 }
1294 
1295 static struct file_operations cache_flush_operations = {
1296 	.open		= nonseekable_open,
1297 	.read		= read_flush,
1298 	.write		= write_flush,
1299 };
1300