xref: /linux/net/socket.c (revision 957e3facd147510f2cf8780e38606f1d707f0e33)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
117 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
118 			 unsigned long nr_segs, loff_t pos);
119 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
120 			  unsigned long nr_segs, loff_t pos);
121 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
122 
123 static int sock_close(struct inode *inode, struct file *file);
124 static unsigned int sock_poll(struct file *file,
125 			      struct poll_table_struct *wait);
126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
127 #ifdef CONFIG_COMPAT
128 static long compat_sock_ioctl(struct file *file,
129 			      unsigned int cmd, unsigned long arg);
130 #endif
131 static int sock_fasync(int fd, struct file *filp, int on);
132 static ssize_t sock_sendpage(struct file *file, struct page *page,
133 			     int offset, size_t size, loff_t *ppos, int more);
134 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
135 				struct pipe_inode_info *pipe, size_t len,
136 				unsigned int flags);
137 
138 /*
139  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
140  *	in the operation structures but are done directly via the socketcall() multiplexor.
141  */
142 
143 static const struct file_operations socket_file_ops = {
144 	.owner =	THIS_MODULE,
145 	.llseek =	no_llseek,
146 	.aio_read =	sock_aio_read,
147 	.aio_write =	sock_aio_write,
148 	.poll =		sock_poll,
149 	.unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151 	.compat_ioctl = compat_sock_ioctl,
152 #endif
153 	.mmap =		sock_mmap,
154 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
155 	.release =	sock_close,
156 	.fasync =	sock_fasync,
157 	.sendpage =	sock_sendpage,
158 	.splice_write = generic_splice_sendpage,
159 	.splice_read =	sock_splice_read,
160 };
161 
162 /*
163  *	The protocol list. Each protocol is registered in here.
164  */
165 
166 static DEFINE_SPINLOCK(net_family_lock);
167 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
168 
169 /*
170  *	Statistics counters of the socket lists
171  */
172 
173 static DEFINE_PER_CPU(int, sockets_in_use);
174 
175 /*
176  * Support routines.
177  * Move socket addresses back and forth across the kernel/user
178  * divide and look after the messy bits.
179  */
180 
181 /**
182  *	move_addr_to_kernel	-	copy a socket address into kernel space
183  *	@uaddr: Address in user space
184  *	@kaddr: Address in kernel space
185  *	@ulen: Length in user space
186  *
187  *	The address is copied into kernel space. If the provided address is
188  *	too long an error code of -EINVAL is returned. If the copy gives
189  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
190  */
191 
192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193 {
194 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 		return -EINVAL;
196 	if (ulen == 0)
197 		return 0;
198 	if (copy_from_user(kaddr, uaddr, ulen))
199 		return -EFAULT;
200 	return audit_sockaddr(ulen, kaddr);
201 }
202 
203 /**
204  *	move_addr_to_user	-	copy an address to user space
205  *	@kaddr: kernel space address
206  *	@klen: length of address in kernel
207  *	@uaddr: user space address
208  *	@ulen: pointer to user length field
209  *
210  *	The value pointed to by ulen on entry is the buffer length available.
211  *	This is overwritten with the buffer space used. -EINVAL is returned
212  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
213  *	is returned if either the buffer or the length field are not
214  *	accessible.
215  *	After copying the data up to the limit the user specifies, the true
216  *	length of the data is written over the length limit the user
217  *	specified. Zero is returned for a success.
218  */
219 
220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 			     void __user *uaddr, int __user *ulen)
222 {
223 	int err;
224 	int len;
225 
226 	BUG_ON(klen > sizeof(struct sockaddr_storage));
227 	err = get_user(len, ulen);
228 	if (err)
229 		return err;
230 	if (len > klen)
231 		len = klen;
232 	if (len < 0)
233 		return -EINVAL;
234 	if (len) {
235 		if (audit_sockaddr(klen, kaddr))
236 			return -ENOMEM;
237 		if (copy_to_user(uaddr, kaddr, len))
238 			return -EFAULT;
239 	}
240 	/*
241 	 *      "fromlen shall refer to the value before truncation.."
242 	 *                      1003.1g
243 	 */
244 	return __put_user(klen, ulen);
245 }
246 
247 static struct kmem_cache *sock_inode_cachep __read_mostly;
248 
249 static struct inode *sock_alloc_inode(struct super_block *sb)
250 {
251 	struct socket_alloc *ei;
252 	struct socket_wq *wq;
253 
254 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
255 	if (!ei)
256 		return NULL;
257 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
258 	if (!wq) {
259 		kmem_cache_free(sock_inode_cachep, ei);
260 		return NULL;
261 	}
262 	init_waitqueue_head(&wq->wait);
263 	wq->fasync_list = NULL;
264 	RCU_INIT_POINTER(ei->socket.wq, wq);
265 
266 	ei->socket.state = SS_UNCONNECTED;
267 	ei->socket.flags = 0;
268 	ei->socket.ops = NULL;
269 	ei->socket.sk = NULL;
270 	ei->socket.file = NULL;
271 
272 	return &ei->vfs_inode;
273 }
274 
275 static void sock_destroy_inode(struct inode *inode)
276 {
277 	struct socket_alloc *ei;
278 	struct socket_wq *wq;
279 
280 	ei = container_of(inode, struct socket_alloc, vfs_inode);
281 	wq = rcu_dereference_protected(ei->socket.wq, 1);
282 	kfree_rcu(wq, rcu);
283 	kmem_cache_free(sock_inode_cachep, ei);
284 }
285 
286 static void init_once(void *foo)
287 {
288 	struct socket_alloc *ei = (struct socket_alloc *)foo;
289 
290 	inode_init_once(&ei->vfs_inode);
291 }
292 
293 static int init_inodecache(void)
294 {
295 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
296 					      sizeof(struct socket_alloc),
297 					      0,
298 					      (SLAB_HWCACHE_ALIGN |
299 					       SLAB_RECLAIM_ACCOUNT |
300 					       SLAB_MEM_SPREAD),
301 					      init_once);
302 	if (sock_inode_cachep == NULL)
303 		return -ENOMEM;
304 	return 0;
305 }
306 
307 static const struct super_operations sockfs_ops = {
308 	.alloc_inode	= sock_alloc_inode,
309 	.destroy_inode	= sock_destroy_inode,
310 	.statfs		= simple_statfs,
311 };
312 
313 /*
314  * sockfs_dname() is called from d_path().
315  */
316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
317 {
318 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
319 				dentry->d_inode->i_ino);
320 }
321 
322 static const struct dentry_operations sockfs_dentry_operations = {
323 	.d_dname  = sockfs_dname,
324 };
325 
326 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
327 			 int flags, const char *dev_name, void *data)
328 {
329 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
330 		&sockfs_dentry_operations, SOCKFS_MAGIC);
331 }
332 
333 static struct vfsmount *sock_mnt __read_mostly;
334 
335 static struct file_system_type sock_fs_type = {
336 	.name =		"sockfs",
337 	.mount =	sockfs_mount,
338 	.kill_sb =	kill_anon_super,
339 };
340 
341 /*
342  *	Obtains the first available file descriptor and sets it up for use.
343  *
344  *	These functions create file structures and maps them to fd space
345  *	of the current process. On success it returns file descriptor
346  *	and file struct implicitly stored in sock->file.
347  *	Note that another thread may close file descriptor before we return
348  *	from this function. We use the fact that now we do not refer
349  *	to socket after mapping. If one day we will need it, this
350  *	function will increment ref. count on file by 1.
351  *
352  *	In any case returned fd MAY BE not valid!
353  *	This race condition is unavoidable
354  *	with shared fd spaces, we cannot solve it inside kernel,
355  *	but we take care of internal coherence yet.
356  */
357 
358 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
359 {
360 	struct qstr name = { .name = "" };
361 	struct path path;
362 	struct file *file;
363 
364 	if (dname) {
365 		name.name = dname;
366 		name.len = strlen(name.name);
367 	} else if (sock->sk) {
368 		name.name = sock->sk->sk_prot_creator->name;
369 		name.len = strlen(name.name);
370 	}
371 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
372 	if (unlikely(!path.dentry))
373 		return ERR_PTR(-ENOMEM);
374 	path.mnt = mntget(sock_mnt);
375 
376 	d_instantiate(path.dentry, SOCK_INODE(sock));
377 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
378 
379 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
380 		  &socket_file_ops);
381 	if (unlikely(IS_ERR(file))) {
382 		/* drop dentry, keep inode */
383 		ihold(path.dentry->d_inode);
384 		path_put(&path);
385 		return file;
386 	}
387 
388 	sock->file = file;
389 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
390 	file->private_data = sock;
391 	return file;
392 }
393 EXPORT_SYMBOL(sock_alloc_file);
394 
395 static int sock_map_fd(struct socket *sock, int flags)
396 {
397 	struct file *newfile;
398 	int fd = get_unused_fd_flags(flags);
399 	if (unlikely(fd < 0))
400 		return fd;
401 
402 	newfile = sock_alloc_file(sock, flags, NULL);
403 	if (likely(!IS_ERR(newfile))) {
404 		fd_install(fd, newfile);
405 		return fd;
406 	}
407 
408 	put_unused_fd(fd);
409 	return PTR_ERR(newfile);
410 }
411 
412 struct socket *sock_from_file(struct file *file, int *err)
413 {
414 	if (file->f_op == &socket_file_ops)
415 		return file->private_data;	/* set in sock_map_fd */
416 
417 	*err = -ENOTSOCK;
418 	return NULL;
419 }
420 EXPORT_SYMBOL(sock_from_file);
421 
422 /**
423  *	sockfd_lookup - Go from a file number to its socket slot
424  *	@fd: file handle
425  *	@err: pointer to an error code return
426  *
427  *	The file handle passed in is locked and the socket it is bound
428  *	too is returned. If an error occurs the err pointer is overwritten
429  *	with a negative errno code and NULL is returned. The function checks
430  *	for both invalid handles and passing a handle which is not a socket.
431  *
432  *	On a success the socket object pointer is returned.
433  */
434 
435 struct socket *sockfd_lookup(int fd, int *err)
436 {
437 	struct file *file;
438 	struct socket *sock;
439 
440 	file = fget(fd);
441 	if (!file) {
442 		*err = -EBADF;
443 		return NULL;
444 	}
445 
446 	sock = sock_from_file(file, err);
447 	if (!sock)
448 		fput(file);
449 	return sock;
450 }
451 EXPORT_SYMBOL(sockfd_lookup);
452 
453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
454 {
455 	struct fd f = fdget(fd);
456 	struct socket *sock;
457 
458 	*err = -EBADF;
459 	if (f.file) {
460 		sock = sock_from_file(f.file, err);
461 		if (likely(sock)) {
462 			*fput_needed = f.flags;
463 			return sock;
464 		}
465 		fdput(f);
466 	}
467 	return NULL;
468 }
469 
470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
473 static ssize_t sockfs_getxattr(struct dentry *dentry,
474 			       const char *name, void *value, size_t size)
475 {
476 	const char *proto_name;
477 	size_t proto_size;
478 	int error;
479 
480 	error = -ENODATA;
481 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
482 		proto_name = dentry->d_name.name;
483 		proto_size = strlen(proto_name);
484 
485 		if (value) {
486 			error = -ERANGE;
487 			if (proto_size + 1 > size)
488 				goto out;
489 
490 			strncpy(value, proto_name, proto_size + 1);
491 		}
492 		error = proto_size + 1;
493 	}
494 
495 out:
496 	return error;
497 }
498 
499 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
500 				size_t size)
501 {
502 	ssize_t len;
503 	ssize_t used = 0;
504 
505 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
506 	if (len < 0)
507 		return len;
508 	used += len;
509 	if (buffer) {
510 		if (size < used)
511 			return -ERANGE;
512 		buffer += len;
513 	}
514 
515 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
516 	used += len;
517 	if (buffer) {
518 		if (size < used)
519 			return -ERANGE;
520 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
521 		buffer += len;
522 	}
523 
524 	return used;
525 }
526 
527 static const struct inode_operations sockfs_inode_ops = {
528 	.getxattr = sockfs_getxattr,
529 	.listxattr = sockfs_listxattr,
530 };
531 
532 /**
533  *	sock_alloc	-	allocate a socket
534  *
535  *	Allocate a new inode and socket object. The two are bound together
536  *	and initialised. The socket is then returned. If we are out of inodes
537  *	NULL is returned.
538  */
539 
540 static struct socket *sock_alloc(void)
541 {
542 	struct inode *inode;
543 	struct socket *sock;
544 
545 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
546 	if (!inode)
547 		return NULL;
548 
549 	sock = SOCKET_I(inode);
550 
551 	kmemcheck_annotate_bitfield(sock, type);
552 	inode->i_ino = get_next_ino();
553 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
554 	inode->i_uid = current_fsuid();
555 	inode->i_gid = current_fsgid();
556 	inode->i_op = &sockfs_inode_ops;
557 
558 	this_cpu_add(sockets_in_use, 1);
559 	return sock;
560 }
561 
562 /*
563  *	In theory you can't get an open on this inode, but /proc provides
564  *	a back door. Remember to keep it shut otherwise you'll let the
565  *	creepy crawlies in.
566  */
567 
568 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
569 {
570 	return -ENXIO;
571 }
572 
573 const struct file_operations bad_sock_fops = {
574 	.owner = THIS_MODULE,
575 	.open = sock_no_open,
576 	.llseek = noop_llseek,
577 };
578 
579 /**
580  *	sock_release	-	close a socket
581  *	@sock: socket to close
582  *
583  *	The socket is released from the protocol stack if it has a release
584  *	callback, and the inode is then released if the socket is bound to
585  *	an inode not a file.
586  */
587 
588 void sock_release(struct socket *sock)
589 {
590 	if (sock->ops) {
591 		struct module *owner = sock->ops->owner;
592 
593 		sock->ops->release(sock);
594 		sock->ops = NULL;
595 		module_put(owner);
596 	}
597 
598 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
599 		pr_err("%s: fasync list not empty!\n", __func__);
600 
601 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
602 		return;
603 
604 	this_cpu_sub(sockets_in_use, 1);
605 	if (!sock->file) {
606 		iput(SOCK_INODE(sock));
607 		return;
608 	}
609 	sock->file = NULL;
610 }
611 EXPORT_SYMBOL(sock_release);
612 
613 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
614 {
615 	u8 flags = *tx_flags;
616 
617 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
618 		flags |= SKBTX_HW_TSTAMP;
619 
620 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
621 		flags |= SKBTX_SW_TSTAMP;
622 
623 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
624 		flags |= SKBTX_SCHED_TSTAMP;
625 
626 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
627 		flags |= SKBTX_ACK_TSTAMP;
628 
629 	*tx_flags = flags;
630 }
631 EXPORT_SYMBOL(__sock_tx_timestamp);
632 
633 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
634 				       struct msghdr *msg, size_t size)
635 {
636 	struct sock_iocb *si = kiocb_to_siocb(iocb);
637 
638 	si->sock = sock;
639 	si->scm = NULL;
640 	si->msg = msg;
641 	si->size = size;
642 
643 	return sock->ops->sendmsg(iocb, sock, msg, size);
644 }
645 
646 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
647 				 struct msghdr *msg, size_t size)
648 {
649 	int err = security_socket_sendmsg(sock, msg, size);
650 
651 	return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
652 }
653 
654 static int do_sock_sendmsg(struct socket *sock, struct msghdr *msg,
655 			   size_t size, bool nosec)
656 {
657 	struct kiocb iocb;
658 	struct sock_iocb siocb;
659 	int ret;
660 
661 	init_sync_kiocb(&iocb, NULL);
662 	iocb.private = &siocb;
663 	ret = nosec ? __sock_sendmsg_nosec(&iocb, sock, msg, size) :
664 		      __sock_sendmsg(&iocb, sock, msg, size);
665 	if (-EIOCBQUEUED == ret)
666 		ret = wait_on_sync_kiocb(&iocb);
667 	return ret;
668 }
669 
670 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
671 {
672 	return do_sock_sendmsg(sock, msg, size, false);
673 }
674 EXPORT_SYMBOL(sock_sendmsg);
675 
676 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
677 {
678 	return do_sock_sendmsg(sock, msg, size, true);
679 }
680 
681 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
682 		   struct kvec *vec, size_t num, size_t size)
683 {
684 	mm_segment_t oldfs = get_fs();
685 	int result;
686 
687 	set_fs(KERNEL_DS);
688 	/*
689 	 * the following is safe, since for compiler definitions of kvec and
690 	 * iovec are identical, yielding the same in-core layout and alignment
691 	 */
692 	iov_iter_init(&msg->msg_iter, WRITE, (struct iovec *)vec, num, size);
693 	result = sock_sendmsg(sock, msg, size);
694 	set_fs(oldfs);
695 	return result;
696 }
697 EXPORT_SYMBOL(kernel_sendmsg);
698 
699 /*
700  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
701  */
702 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
703 	struct sk_buff *skb)
704 {
705 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
706 	struct scm_timestamping tss;
707 	int empty = 1;
708 	struct skb_shared_hwtstamps *shhwtstamps =
709 		skb_hwtstamps(skb);
710 
711 	/* Race occurred between timestamp enabling and packet
712 	   receiving.  Fill in the current time for now. */
713 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
714 		__net_timestamp(skb);
715 
716 	if (need_software_tstamp) {
717 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
718 			struct timeval tv;
719 			skb_get_timestamp(skb, &tv);
720 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
721 				 sizeof(tv), &tv);
722 		} else {
723 			struct timespec ts;
724 			skb_get_timestampns(skb, &ts);
725 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
726 				 sizeof(ts), &ts);
727 		}
728 	}
729 
730 	memset(&tss, 0, sizeof(tss));
731 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
732 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
733 		empty = 0;
734 	if (shhwtstamps &&
735 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
736 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
737 		empty = 0;
738 	if (!empty)
739 		put_cmsg(msg, SOL_SOCKET,
740 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
741 }
742 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
743 
744 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
745 	struct sk_buff *skb)
746 {
747 	int ack;
748 
749 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
750 		return;
751 	if (!skb->wifi_acked_valid)
752 		return;
753 
754 	ack = skb->wifi_acked;
755 
756 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
757 }
758 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
759 
760 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
761 				   struct sk_buff *skb)
762 {
763 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
764 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
765 			sizeof(__u32), &skb->dropcount);
766 }
767 
768 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
769 	struct sk_buff *skb)
770 {
771 	sock_recv_timestamp(msg, sk, skb);
772 	sock_recv_drops(msg, sk, skb);
773 }
774 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
775 
776 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
777 				       struct msghdr *msg, size_t size, int flags)
778 {
779 	struct sock_iocb *si = kiocb_to_siocb(iocb);
780 
781 	si->sock = sock;
782 	si->scm = NULL;
783 	si->msg = msg;
784 	si->size = size;
785 	si->flags = flags;
786 
787 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
788 }
789 
790 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
791 				 struct msghdr *msg, size_t size, int flags)
792 {
793 	int err = security_socket_recvmsg(sock, msg, size, flags);
794 
795 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
796 }
797 
798 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
799 		 size_t size, int flags)
800 {
801 	struct kiocb iocb;
802 	struct sock_iocb siocb;
803 	int ret;
804 
805 	init_sync_kiocb(&iocb, NULL);
806 	iocb.private = &siocb;
807 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
808 	if (-EIOCBQUEUED == ret)
809 		ret = wait_on_sync_kiocb(&iocb);
810 	return ret;
811 }
812 EXPORT_SYMBOL(sock_recvmsg);
813 
814 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
815 			      size_t size, int flags)
816 {
817 	struct kiocb iocb;
818 	struct sock_iocb siocb;
819 	int ret;
820 
821 	init_sync_kiocb(&iocb, NULL);
822 	iocb.private = &siocb;
823 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
824 	if (-EIOCBQUEUED == ret)
825 		ret = wait_on_sync_kiocb(&iocb);
826 	return ret;
827 }
828 
829 /**
830  * kernel_recvmsg - Receive a message from a socket (kernel space)
831  * @sock:       The socket to receive the message from
832  * @msg:        Received message
833  * @vec:        Input s/g array for message data
834  * @num:        Size of input s/g array
835  * @size:       Number of bytes to read
836  * @flags:      Message flags (MSG_DONTWAIT, etc...)
837  *
838  * On return the msg structure contains the scatter/gather array passed in the
839  * vec argument. The array is modified so that it consists of the unfilled
840  * portion of the original array.
841  *
842  * The returned value is the total number of bytes received, or an error.
843  */
844 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
845 		   struct kvec *vec, size_t num, size_t size, int flags)
846 {
847 	mm_segment_t oldfs = get_fs();
848 	int result;
849 
850 	set_fs(KERNEL_DS);
851 	/*
852 	 * the following is safe, since for compiler definitions of kvec and
853 	 * iovec are identical, yielding the same in-core layout and alignment
854 	 */
855 	iov_iter_init(&msg->msg_iter, READ, (struct iovec *)vec, num, size);
856 	result = sock_recvmsg(sock, msg, size, flags);
857 	set_fs(oldfs);
858 	return result;
859 }
860 EXPORT_SYMBOL(kernel_recvmsg);
861 
862 static ssize_t sock_sendpage(struct file *file, struct page *page,
863 			     int offset, size_t size, loff_t *ppos, int more)
864 {
865 	struct socket *sock;
866 	int flags;
867 
868 	sock = file->private_data;
869 
870 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
871 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
872 	flags |= more;
873 
874 	return kernel_sendpage(sock, page, offset, size, flags);
875 }
876 
877 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
878 				struct pipe_inode_info *pipe, size_t len,
879 				unsigned int flags)
880 {
881 	struct socket *sock = file->private_data;
882 
883 	if (unlikely(!sock->ops->splice_read))
884 		return -EINVAL;
885 
886 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
887 }
888 
889 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
890 					 struct sock_iocb *siocb)
891 {
892 	if (!is_sync_kiocb(iocb))
893 		BUG();
894 
895 	siocb->kiocb = iocb;
896 	iocb->private = siocb;
897 	return siocb;
898 }
899 
900 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
901 		struct file *file, const struct iovec *iov,
902 		unsigned long nr_segs)
903 {
904 	struct socket *sock = file->private_data;
905 	size_t size = 0;
906 	int i;
907 
908 	for (i = 0; i < nr_segs; i++)
909 		size += iov[i].iov_len;
910 
911 	msg->msg_name = NULL;
912 	msg->msg_namelen = 0;
913 	msg->msg_control = NULL;
914 	msg->msg_controllen = 0;
915 	iov_iter_init(&msg->msg_iter, READ, iov, nr_segs, size);
916 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
917 
918 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
919 }
920 
921 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
922 				unsigned long nr_segs, loff_t pos)
923 {
924 	struct sock_iocb siocb, *x;
925 
926 	if (pos != 0)
927 		return -ESPIPE;
928 
929 	if (iocb->ki_nbytes == 0)	/* Match SYS5 behaviour */
930 		return 0;
931 
932 
933 	x = alloc_sock_iocb(iocb, &siocb);
934 	if (!x)
935 		return -ENOMEM;
936 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
937 }
938 
939 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
940 			struct file *file, const struct iovec *iov,
941 			unsigned long nr_segs)
942 {
943 	struct socket *sock = file->private_data;
944 	size_t size = 0;
945 	int i;
946 
947 	for (i = 0; i < nr_segs; i++)
948 		size += iov[i].iov_len;
949 
950 	msg->msg_name = NULL;
951 	msg->msg_namelen = 0;
952 	msg->msg_control = NULL;
953 	msg->msg_controllen = 0;
954 	iov_iter_init(&msg->msg_iter, WRITE, iov, nr_segs, size);
955 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
956 	if (sock->type == SOCK_SEQPACKET)
957 		msg->msg_flags |= MSG_EOR;
958 
959 	return __sock_sendmsg(iocb, sock, msg, size);
960 }
961 
962 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
963 			  unsigned long nr_segs, loff_t pos)
964 {
965 	struct sock_iocb siocb, *x;
966 
967 	if (pos != 0)
968 		return -ESPIPE;
969 
970 	x = alloc_sock_iocb(iocb, &siocb);
971 	if (!x)
972 		return -ENOMEM;
973 
974 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
975 }
976 
977 /*
978  * Atomic setting of ioctl hooks to avoid race
979  * with module unload.
980  */
981 
982 static DEFINE_MUTEX(br_ioctl_mutex);
983 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
984 
985 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
986 {
987 	mutex_lock(&br_ioctl_mutex);
988 	br_ioctl_hook = hook;
989 	mutex_unlock(&br_ioctl_mutex);
990 }
991 EXPORT_SYMBOL(brioctl_set);
992 
993 static DEFINE_MUTEX(vlan_ioctl_mutex);
994 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
995 
996 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
997 {
998 	mutex_lock(&vlan_ioctl_mutex);
999 	vlan_ioctl_hook = hook;
1000 	mutex_unlock(&vlan_ioctl_mutex);
1001 }
1002 EXPORT_SYMBOL(vlan_ioctl_set);
1003 
1004 static DEFINE_MUTEX(dlci_ioctl_mutex);
1005 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1006 
1007 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1008 {
1009 	mutex_lock(&dlci_ioctl_mutex);
1010 	dlci_ioctl_hook = hook;
1011 	mutex_unlock(&dlci_ioctl_mutex);
1012 }
1013 EXPORT_SYMBOL(dlci_ioctl_set);
1014 
1015 static long sock_do_ioctl(struct net *net, struct socket *sock,
1016 				 unsigned int cmd, unsigned long arg)
1017 {
1018 	int err;
1019 	void __user *argp = (void __user *)arg;
1020 
1021 	err = sock->ops->ioctl(sock, cmd, arg);
1022 
1023 	/*
1024 	 * If this ioctl is unknown try to hand it down
1025 	 * to the NIC driver.
1026 	 */
1027 	if (err == -ENOIOCTLCMD)
1028 		err = dev_ioctl(net, cmd, argp);
1029 
1030 	return err;
1031 }
1032 
1033 /*
1034  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1035  *	what to do with it - that's up to the protocol still.
1036  */
1037 
1038 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1039 {
1040 	struct socket *sock;
1041 	struct sock *sk;
1042 	void __user *argp = (void __user *)arg;
1043 	int pid, err;
1044 	struct net *net;
1045 
1046 	sock = file->private_data;
1047 	sk = sock->sk;
1048 	net = sock_net(sk);
1049 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1050 		err = dev_ioctl(net, cmd, argp);
1051 	} else
1052 #ifdef CONFIG_WEXT_CORE
1053 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1054 		err = dev_ioctl(net, cmd, argp);
1055 	} else
1056 #endif
1057 		switch (cmd) {
1058 		case FIOSETOWN:
1059 		case SIOCSPGRP:
1060 			err = -EFAULT;
1061 			if (get_user(pid, (int __user *)argp))
1062 				break;
1063 			f_setown(sock->file, pid, 1);
1064 			err = 0;
1065 			break;
1066 		case FIOGETOWN:
1067 		case SIOCGPGRP:
1068 			err = put_user(f_getown(sock->file),
1069 				       (int __user *)argp);
1070 			break;
1071 		case SIOCGIFBR:
1072 		case SIOCSIFBR:
1073 		case SIOCBRADDBR:
1074 		case SIOCBRDELBR:
1075 			err = -ENOPKG;
1076 			if (!br_ioctl_hook)
1077 				request_module("bridge");
1078 
1079 			mutex_lock(&br_ioctl_mutex);
1080 			if (br_ioctl_hook)
1081 				err = br_ioctl_hook(net, cmd, argp);
1082 			mutex_unlock(&br_ioctl_mutex);
1083 			break;
1084 		case SIOCGIFVLAN:
1085 		case SIOCSIFVLAN:
1086 			err = -ENOPKG;
1087 			if (!vlan_ioctl_hook)
1088 				request_module("8021q");
1089 
1090 			mutex_lock(&vlan_ioctl_mutex);
1091 			if (vlan_ioctl_hook)
1092 				err = vlan_ioctl_hook(net, argp);
1093 			mutex_unlock(&vlan_ioctl_mutex);
1094 			break;
1095 		case SIOCADDDLCI:
1096 		case SIOCDELDLCI:
1097 			err = -ENOPKG;
1098 			if (!dlci_ioctl_hook)
1099 				request_module("dlci");
1100 
1101 			mutex_lock(&dlci_ioctl_mutex);
1102 			if (dlci_ioctl_hook)
1103 				err = dlci_ioctl_hook(cmd, argp);
1104 			mutex_unlock(&dlci_ioctl_mutex);
1105 			break;
1106 		default:
1107 			err = sock_do_ioctl(net, sock, cmd, arg);
1108 			break;
1109 		}
1110 	return err;
1111 }
1112 
1113 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1114 {
1115 	int err;
1116 	struct socket *sock = NULL;
1117 
1118 	err = security_socket_create(family, type, protocol, 1);
1119 	if (err)
1120 		goto out;
1121 
1122 	sock = sock_alloc();
1123 	if (!sock) {
1124 		err = -ENOMEM;
1125 		goto out;
1126 	}
1127 
1128 	sock->type = type;
1129 	err = security_socket_post_create(sock, family, type, protocol, 1);
1130 	if (err)
1131 		goto out_release;
1132 
1133 out:
1134 	*res = sock;
1135 	return err;
1136 out_release:
1137 	sock_release(sock);
1138 	sock = NULL;
1139 	goto out;
1140 }
1141 EXPORT_SYMBOL(sock_create_lite);
1142 
1143 /* No kernel lock held - perfect */
1144 static unsigned int sock_poll(struct file *file, poll_table *wait)
1145 {
1146 	unsigned int busy_flag = 0;
1147 	struct socket *sock;
1148 
1149 	/*
1150 	 *      We can't return errors to poll, so it's either yes or no.
1151 	 */
1152 	sock = file->private_data;
1153 
1154 	if (sk_can_busy_loop(sock->sk)) {
1155 		/* this socket can poll_ll so tell the system call */
1156 		busy_flag = POLL_BUSY_LOOP;
1157 
1158 		/* once, only if requested by syscall */
1159 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1160 			sk_busy_loop(sock->sk, 1);
1161 	}
1162 
1163 	return busy_flag | sock->ops->poll(file, sock, wait);
1164 }
1165 
1166 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1167 {
1168 	struct socket *sock = file->private_data;
1169 
1170 	return sock->ops->mmap(file, sock, vma);
1171 }
1172 
1173 static int sock_close(struct inode *inode, struct file *filp)
1174 {
1175 	sock_release(SOCKET_I(inode));
1176 	return 0;
1177 }
1178 
1179 /*
1180  *	Update the socket async list
1181  *
1182  *	Fasync_list locking strategy.
1183  *
1184  *	1. fasync_list is modified only under process context socket lock
1185  *	   i.e. under semaphore.
1186  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1187  *	   or under socket lock
1188  */
1189 
1190 static int sock_fasync(int fd, struct file *filp, int on)
1191 {
1192 	struct socket *sock = filp->private_data;
1193 	struct sock *sk = sock->sk;
1194 	struct socket_wq *wq;
1195 
1196 	if (sk == NULL)
1197 		return -EINVAL;
1198 
1199 	lock_sock(sk);
1200 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1201 	fasync_helper(fd, filp, on, &wq->fasync_list);
1202 
1203 	if (!wq->fasync_list)
1204 		sock_reset_flag(sk, SOCK_FASYNC);
1205 	else
1206 		sock_set_flag(sk, SOCK_FASYNC);
1207 
1208 	release_sock(sk);
1209 	return 0;
1210 }
1211 
1212 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1213 
1214 int sock_wake_async(struct socket *sock, int how, int band)
1215 {
1216 	struct socket_wq *wq;
1217 
1218 	if (!sock)
1219 		return -1;
1220 	rcu_read_lock();
1221 	wq = rcu_dereference(sock->wq);
1222 	if (!wq || !wq->fasync_list) {
1223 		rcu_read_unlock();
1224 		return -1;
1225 	}
1226 	switch (how) {
1227 	case SOCK_WAKE_WAITD:
1228 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1229 			break;
1230 		goto call_kill;
1231 	case SOCK_WAKE_SPACE:
1232 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1233 			break;
1234 		/* fall through */
1235 	case SOCK_WAKE_IO:
1236 call_kill:
1237 		kill_fasync(&wq->fasync_list, SIGIO, band);
1238 		break;
1239 	case SOCK_WAKE_URG:
1240 		kill_fasync(&wq->fasync_list, SIGURG, band);
1241 	}
1242 	rcu_read_unlock();
1243 	return 0;
1244 }
1245 EXPORT_SYMBOL(sock_wake_async);
1246 
1247 int __sock_create(struct net *net, int family, int type, int protocol,
1248 			 struct socket **res, int kern)
1249 {
1250 	int err;
1251 	struct socket *sock;
1252 	const struct net_proto_family *pf;
1253 
1254 	/*
1255 	 *      Check protocol is in range
1256 	 */
1257 	if (family < 0 || family >= NPROTO)
1258 		return -EAFNOSUPPORT;
1259 	if (type < 0 || type >= SOCK_MAX)
1260 		return -EINVAL;
1261 
1262 	/* Compatibility.
1263 
1264 	   This uglymoron is moved from INET layer to here to avoid
1265 	   deadlock in module load.
1266 	 */
1267 	if (family == PF_INET && type == SOCK_PACKET) {
1268 		static int warned;
1269 		if (!warned) {
1270 			warned = 1;
1271 			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1272 				current->comm);
1273 		}
1274 		family = PF_PACKET;
1275 	}
1276 
1277 	err = security_socket_create(family, type, protocol, kern);
1278 	if (err)
1279 		return err;
1280 
1281 	/*
1282 	 *	Allocate the socket and allow the family to set things up. if
1283 	 *	the protocol is 0, the family is instructed to select an appropriate
1284 	 *	default.
1285 	 */
1286 	sock = sock_alloc();
1287 	if (!sock) {
1288 		net_warn_ratelimited("socket: no more sockets\n");
1289 		return -ENFILE;	/* Not exactly a match, but its the
1290 				   closest posix thing */
1291 	}
1292 
1293 	sock->type = type;
1294 
1295 #ifdef CONFIG_MODULES
1296 	/* Attempt to load a protocol module if the find failed.
1297 	 *
1298 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1299 	 * requested real, full-featured networking support upon configuration.
1300 	 * Otherwise module support will break!
1301 	 */
1302 	if (rcu_access_pointer(net_families[family]) == NULL)
1303 		request_module("net-pf-%d", family);
1304 #endif
1305 
1306 	rcu_read_lock();
1307 	pf = rcu_dereference(net_families[family]);
1308 	err = -EAFNOSUPPORT;
1309 	if (!pf)
1310 		goto out_release;
1311 
1312 	/*
1313 	 * We will call the ->create function, that possibly is in a loadable
1314 	 * module, so we have to bump that loadable module refcnt first.
1315 	 */
1316 	if (!try_module_get(pf->owner))
1317 		goto out_release;
1318 
1319 	/* Now protected by module ref count */
1320 	rcu_read_unlock();
1321 
1322 	err = pf->create(net, sock, protocol, kern);
1323 	if (err < 0)
1324 		goto out_module_put;
1325 
1326 	/*
1327 	 * Now to bump the refcnt of the [loadable] module that owns this
1328 	 * socket at sock_release time we decrement its refcnt.
1329 	 */
1330 	if (!try_module_get(sock->ops->owner))
1331 		goto out_module_busy;
1332 
1333 	/*
1334 	 * Now that we're done with the ->create function, the [loadable]
1335 	 * module can have its refcnt decremented
1336 	 */
1337 	module_put(pf->owner);
1338 	err = security_socket_post_create(sock, family, type, protocol, kern);
1339 	if (err)
1340 		goto out_sock_release;
1341 	*res = sock;
1342 
1343 	return 0;
1344 
1345 out_module_busy:
1346 	err = -EAFNOSUPPORT;
1347 out_module_put:
1348 	sock->ops = NULL;
1349 	module_put(pf->owner);
1350 out_sock_release:
1351 	sock_release(sock);
1352 	return err;
1353 
1354 out_release:
1355 	rcu_read_unlock();
1356 	goto out_sock_release;
1357 }
1358 EXPORT_SYMBOL(__sock_create);
1359 
1360 int sock_create(int family, int type, int protocol, struct socket **res)
1361 {
1362 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1363 }
1364 EXPORT_SYMBOL(sock_create);
1365 
1366 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1367 {
1368 	return __sock_create(&init_net, family, type, protocol, res, 1);
1369 }
1370 EXPORT_SYMBOL(sock_create_kern);
1371 
1372 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1373 {
1374 	int retval;
1375 	struct socket *sock;
1376 	int flags;
1377 
1378 	/* Check the SOCK_* constants for consistency.  */
1379 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1380 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1381 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1382 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1383 
1384 	flags = type & ~SOCK_TYPE_MASK;
1385 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1386 		return -EINVAL;
1387 	type &= SOCK_TYPE_MASK;
1388 
1389 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1390 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1391 
1392 	retval = sock_create(family, type, protocol, &sock);
1393 	if (retval < 0)
1394 		goto out;
1395 
1396 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1397 	if (retval < 0)
1398 		goto out_release;
1399 
1400 out:
1401 	/* It may be already another descriptor 8) Not kernel problem. */
1402 	return retval;
1403 
1404 out_release:
1405 	sock_release(sock);
1406 	return retval;
1407 }
1408 
1409 /*
1410  *	Create a pair of connected sockets.
1411  */
1412 
1413 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1414 		int __user *, usockvec)
1415 {
1416 	struct socket *sock1, *sock2;
1417 	int fd1, fd2, err;
1418 	struct file *newfile1, *newfile2;
1419 	int flags;
1420 
1421 	flags = type & ~SOCK_TYPE_MASK;
1422 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1423 		return -EINVAL;
1424 	type &= SOCK_TYPE_MASK;
1425 
1426 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1427 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1428 
1429 	/*
1430 	 * Obtain the first socket and check if the underlying protocol
1431 	 * supports the socketpair call.
1432 	 */
1433 
1434 	err = sock_create(family, type, protocol, &sock1);
1435 	if (err < 0)
1436 		goto out;
1437 
1438 	err = sock_create(family, type, protocol, &sock2);
1439 	if (err < 0)
1440 		goto out_release_1;
1441 
1442 	err = sock1->ops->socketpair(sock1, sock2);
1443 	if (err < 0)
1444 		goto out_release_both;
1445 
1446 	fd1 = get_unused_fd_flags(flags);
1447 	if (unlikely(fd1 < 0)) {
1448 		err = fd1;
1449 		goto out_release_both;
1450 	}
1451 
1452 	fd2 = get_unused_fd_flags(flags);
1453 	if (unlikely(fd2 < 0)) {
1454 		err = fd2;
1455 		goto out_put_unused_1;
1456 	}
1457 
1458 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1459 	if (unlikely(IS_ERR(newfile1))) {
1460 		err = PTR_ERR(newfile1);
1461 		goto out_put_unused_both;
1462 	}
1463 
1464 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1465 	if (IS_ERR(newfile2)) {
1466 		err = PTR_ERR(newfile2);
1467 		goto out_fput_1;
1468 	}
1469 
1470 	err = put_user(fd1, &usockvec[0]);
1471 	if (err)
1472 		goto out_fput_both;
1473 
1474 	err = put_user(fd2, &usockvec[1]);
1475 	if (err)
1476 		goto out_fput_both;
1477 
1478 	audit_fd_pair(fd1, fd2);
1479 
1480 	fd_install(fd1, newfile1);
1481 	fd_install(fd2, newfile2);
1482 	/* fd1 and fd2 may be already another descriptors.
1483 	 * Not kernel problem.
1484 	 */
1485 
1486 	return 0;
1487 
1488 out_fput_both:
1489 	fput(newfile2);
1490 	fput(newfile1);
1491 	put_unused_fd(fd2);
1492 	put_unused_fd(fd1);
1493 	goto out;
1494 
1495 out_fput_1:
1496 	fput(newfile1);
1497 	put_unused_fd(fd2);
1498 	put_unused_fd(fd1);
1499 	sock_release(sock2);
1500 	goto out;
1501 
1502 out_put_unused_both:
1503 	put_unused_fd(fd2);
1504 out_put_unused_1:
1505 	put_unused_fd(fd1);
1506 out_release_both:
1507 	sock_release(sock2);
1508 out_release_1:
1509 	sock_release(sock1);
1510 out:
1511 	return err;
1512 }
1513 
1514 /*
1515  *	Bind a name to a socket. Nothing much to do here since it's
1516  *	the protocol's responsibility to handle the local address.
1517  *
1518  *	We move the socket address to kernel space before we call
1519  *	the protocol layer (having also checked the address is ok).
1520  */
1521 
1522 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1523 {
1524 	struct socket *sock;
1525 	struct sockaddr_storage address;
1526 	int err, fput_needed;
1527 
1528 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1529 	if (sock) {
1530 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1531 		if (err >= 0) {
1532 			err = security_socket_bind(sock,
1533 						   (struct sockaddr *)&address,
1534 						   addrlen);
1535 			if (!err)
1536 				err = sock->ops->bind(sock,
1537 						      (struct sockaddr *)
1538 						      &address, addrlen);
1539 		}
1540 		fput_light(sock->file, fput_needed);
1541 	}
1542 	return err;
1543 }
1544 
1545 /*
1546  *	Perform a listen. Basically, we allow the protocol to do anything
1547  *	necessary for a listen, and if that works, we mark the socket as
1548  *	ready for listening.
1549  */
1550 
1551 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1552 {
1553 	struct socket *sock;
1554 	int err, fput_needed;
1555 	int somaxconn;
1556 
1557 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1558 	if (sock) {
1559 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1560 		if ((unsigned int)backlog > somaxconn)
1561 			backlog = somaxconn;
1562 
1563 		err = security_socket_listen(sock, backlog);
1564 		if (!err)
1565 			err = sock->ops->listen(sock, backlog);
1566 
1567 		fput_light(sock->file, fput_needed);
1568 	}
1569 	return err;
1570 }
1571 
1572 /*
1573  *	For accept, we attempt to create a new socket, set up the link
1574  *	with the client, wake up the client, then return the new
1575  *	connected fd. We collect the address of the connector in kernel
1576  *	space and move it to user at the very end. This is unclean because
1577  *	we open the socket then return an error.
1578  *
1579  *	1003.1g adds the ability to recvmsg() to query connection pending
1580  *	status to recvmsg. We need to add that support in a way thats
1581  *	clean when we restucture accept also.
1582  */
1583 
1584 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1585 		int __user *, upeer_addrlen, int, flags)
1586 {
1587 	struct socket *sock, *newsock;
1588 	struct file *newfile;
1589 	int err, len, newfd, fput_needed;
1590 	struct sockaddr_storage address;
1591 
1592 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1593 		return -EINVAL;
1594 
1595 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1596 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1597 
1598 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1599 	if (!sock)
1600 		goto out;
1601 
1602 	err = -ENFILE;
1603 	newsock = sock_alloc();
1604 	if (!newsock)
1605 		goto out_put;
1606 
1607 	newsock->type = sock->type;
1608 	newsock->ops = sock->ops;
1609 
1610 	/*
1611 	 * We don't need try_module_get here, as the listening socket (sock)
1612 	 * has the protocol module (sock->ops->owner) held.
1613 	 */
1614 	__module_get(newsock->ops->owner);
1615 
1616 	newfd = get_unused_fd_flags(flags);
1617 	if (unlikely(newfd < 0)) {
1618 		err = newfd;
1619 		sock_release(newsock);
1620 		goto out_put;
1621 	}
1622 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1623 	if (unlikely(IS_ERR(newfile))) {
1624 		err = PTR_ERR(newfile);
1625 		put_unused_fd(newfd);
1626 		sock_release(newsock);
1627 		goto out_put;
1628 	}
1629 
1630 	err = security_socket_accept(sock, newsock);
1631 	if (err)
1632 		goto out_fd;
1633 
1634 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1635 	if (err < 0)
1636 		goto out_fd;
1637 
1638 	if (upeer_sockaddr) {
1639 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1640 					  &len, 2) < 0) {
1641 			err = -ECONNABORTED;
1642 			goto out_fd;
1643 		}
1644 		err = move_addr_to_user(&address,
1645 					len, upeer_sockaddr, upeer_addrlen);
1646 		if (err < 0)
1647 			goto out_fd;
1648 	}
1649 
1650 	/* File flags are not inherited via accept() unlike another OSes. */
1651 
1652 	fd_install(newfd, newfile);
1653 	err = newfd;
1654 
1655 out_put:
1656 	fput_light(sock->file, fput_needed);
1657 out:
1658 	return err;
1659 out_fd:
1660 	fput(newfile);
1661 	put_unused_fd(newfd);
1662 	goto out_put;
1663 }
1664 
1665 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1666 		int __user *, upeer_addrlen)
1667 {
1668 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1669 }
1670 
1671 /*
1672  *	Attempt to connect to a socket with the server address.  The address
1673  *	is in user space so we verify it is OK and move it to kernel space.
1674  *
1675  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1676  *	break bindings
1677  *
1678  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1679  *	other SEQPACKET protocols that take time to connect() as it doesn't
1680  *	include the -EINPROGRESS status for such sockets.
1681  */
1682 
1683 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1684 		int, addrlen)
1685 {
1686 	struct socket *sock;
1687 	struct sockaddr_storage address;
1688 	int err, fput_needed;
1689 
1690 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1691 	if (!sock)
1692 		goto out;
1693 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1694 	if (err < 0)
1695 		goto out_put;
1696 
1697 	err =
1698 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1699 	if (err)
1700 		goto out_put;
1701 
1702 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1703 				 sock->file->f_flags);
1704 out_put:
1705 	fput_light(sock->file, fput_needed);
1706 out:
1707 	return err;
1708 }
1709 
1710 /*
1711  *	Get the local address ('name') of a socket object. Move the obtained
1712  *	name to user space.
1713  */
1714 
1715 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1716 		int __user *, usockaddr_len)
1717 {
1718 	struct socket *sock;
1719 	struct sockaddr_storage address;
1720 	int len, err, fput_needed;
1721 
1722 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1723 	if (!sock)
1724 		goto out;
1725 
1726 	err = security_socket_getsockname(sock);
1727 	if (err)
1728 		goto out_put;
1729 
1730 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1731 	if (err)
1732 		goto out_put;
1733 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1734 
1735 out_put:
1736 	fput_light(sock->file, fput_needed);
1737 out:
1738 	return err;
1739 }
1740 
1741 /*
1742  *	Get the remote address ('name') of a socket object. Move the obtained
1743  *	name to user space.
1744  */
1745 
1746 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1747 		int __user *, usockaddr_len)
1748 {
1749 	struct socket *sock;
1750 	struct sockaddr_storage address;
1751 	int len, err, fput_needed;
1752 
1753 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1754 	if (sock != NULL) {
1755 		err = security_socket_getpeername(sock);
1756 		if (err) {
1757 			fput_light(sock->file, fput_needed);
1758 			return err;
1759 		}
1760 
1761 		err =
1762 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1763 				       1);
1764 		if (!err)
1765 			err = move_addr_to_user(&address, len, usockaddr,
1766 						usockaddr_len);
1767 		fput_light(sock->file, fput_needed);
1768 	}
1769 	return err;
1770 }
1771 
1772 /*
1773  *	Send a datagram to a given address. We move the address into kernel
1774  *	space and check the user space data area is readable before invoking
1775  *	the protocol.
1776  */
1777 
1778 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1779 		unsigned int, flags, struct sockaddr __user *, addr,
1780 		int, addr_len)
1781 {
1782 	struct socket *sock;
1783 	struct sockaddr_storage address;
1784 	int err;
1785 	struct msghdr msg;
1786 	struct iovec iov;
1787 	int fput_needed;
1788 
1789 	if (len > INT_MAX)
1790 		len = INT_MAX;
1791 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1792 	if (!sock)
1793 		goto out;
1794 
1795 	iov.iov_base = buff;
1796 	iov.iov_len = len;
1797 	msg.msg_name = NULL;
1798 	iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, len);
1799 	msg.msg_control = NULL;
1800 	msg.msg_controllen = 0;
1801 	msg.msg_namelen = 0;
1802 	if (addr) {
1803 		err = move_addr_to_kernel(addr, addr_len, &address);
1804 		if (err < 0)
1805 			goto out_put;
1806 		msg.msg_name = (struct sockaddr *)&address;
1807 		msg.msg_namelen = addr_len;
1808 	}
1809 	if (sock->file->f_flags & O_NONBLOCK)
1810 		flags |= MSG_DONTWAIT;
1811 	msg.msg_flags = flags;
1812 	err = sock_sendmsg(sock, &msg, len);
1813 
1814 out_put:
1815 	fput_light(sock->file, fput_needed);
1816 out:
1817 	return err;
1818 }
1819 
1820 /*
1821  *	Send a datagram down a socket.
1822  */
1823 
1824 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1825 		unsigned int, flags)
1826 {
1827 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1828 }
1829 
1830 /*
1831  *	Receive a frame from the socket and optionally record the address of the
1832  *	sender. We verify the buffers are writable and if needed move the
1833  *	sender address from kernel to user space.
1834  */
1835 
1836 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1837 		unsigned int, flags, struct sockaddr __user *, addr,
1838 		int __user *, addr_len)
1839 {
1840 	struct socket *sock;
1841 	struct iovec iov;
1842 	struct msghdr msg;
1843 	struct sockaddr_storage address;
1844 	int err, err2;
1845 	int fput_needed;
1846 
1847 	if (size > INT_MAX)
1848 		size = INT_MAX;
1849 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850 	if (!sock)
1851 		goto out;
1852 
1853 	msg.msg_control = NULL;
1854 	msg.msg_controllen = 0;
1855 	iov.iov_len = size;
1856 	iov.iov_base = ubuf;
1857 	iov_iter_init(&msg.msg_iter, READ, &iov, 1, size);
1858 	/* Save some cycles and don't copy the address if not needed */
1859 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1860 	/* We assume all kernel code knows the size of sockaddr_storage */
1861 	msg.msg_namelen = 0;
1862 	if (sock->file->f_flags & O_NONBLOCK)
1863 		flags |= MSG_DONTWAIT;
1864 	err = sock_recvmsg(sock, &msg, size, flags);
1865 
1866 	if (err >= 0 && addr != NULL) {
1867 		err2 = move_addr_to_user(&address,
1868 					 msg.msg_namelen, addr, addr_len);
1869 		if (err2 < 0)
1870 			err = err2;
1871 	}
1872 
1873 	fput_light(sock->file, fput_needed);
1874 out:
1875 	return err;
1876 }
1877 
1878 /*
1879  *	Receive a datagram from a socket.
1880  */
1881 
1882 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1883 		unsigned int, flags)
1884 {
1885 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1886 }
1887 
1888 /*
1889  *	Set a socket option. Because we don't know the option lengths we have
1890  *	to pass the user mode parameter for the protocols to sort out.
1891  */
1892 
1893 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1894 		char __user *, optval, int, optlen)
1895 {
1896 	int err, fput_needed;
1897 	struct socket *sock;
1898 
1899 	if (optlen < 0)
1900 		return -EINVAL;
1901 
1902 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1903 	if (sock != NULL) {
1904 		err = security_socket_setsockopt(sock, level, optname);
1905 		if (err)
1906 			goto out_put;
1907 
1908 		if (level == SOL_SOCKET)
1909 			err =
1910 			    sock_setsockopt(sock, level, optname, optval,
1911 					    optlen);
1912 		else
1913 			err =
1914 			    sock->ops->setsockopt(sock, level, optname, optval,
1915 						  optlen);
1916 out_put:
1917 		fput_light(sock->file, fput_needed);
1918 	}
1919 	return err;
1920 }
1921 
1922 /*
1923  *	Get a socket option. Because we don't know the option lengths we have
1924  *	to pass a user mode parameter for the protocols to sort out.
1925  */
1926 
1927 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1928 		char __user *, optval, int __user *, optlen)
1929 {
1930 	int err, fput_needed;
1931 	struct socket *sock;
1932 
1933 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1934 	if (sock != NULL) {
1935 		err = security_socket_getsockopt(sock, level, optname);
1936 		if (err)
1937 			goto out_put;
1938 
1939 		if (level == SOL_SOCKET)
1940 			err =
1941 			    sock_getsockopt(sock, level, optname, optval,
1942 					    optlen);
1943 		else
1944 			err =
1945 			    sock->ops->getsockopt(sock, level, optname, optval,
1946 						  optlen);
1947 out_put:
1948 		fput_light(sock->file, fput_needed);
1949 	}
1950 	return err;
1951 }
1952 
1953 /*
1954  *	Shutdown a socket.
1955  */
1956 
1957 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1958 {
1959 	int err, fput_needed;
1960 	struct socket *sock;
1961 
1962 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1963 	if (sock != NULL) {
1964 		err = security_socket_shutdown(sock, how);
1965 		if (!err)
1966 			err = sock->ops->shutdown(sock, how);
1967 		fput_light(sock->file, fput_needed);
1968 	}
1969 	return err;
1970 }
1971 
1972 /* A couple of helpful macros for getting the address of the 32/64 bit
1973  * fields which are the same type (int / unsigned) on our platforms.
1974  */
1975 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1976 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1977 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1978 
1979 struct used_address {
1980 	struct sockaddr_storage name;
1981 	unsigned int name_len;
1982 };
1983 
1984 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg,
1985 				     struct user_msghdr __user *umsg,
1986 				     struct sockaddr __user **save_addr,
1987 				     struct iovec **iov)
1988 {
1989 	struct sockaddr __user *uaddr;
1990 	struct iovec __user *uiov;
1991 	size_t nr_segs;
1992 	ssize_t err;
1993 
1994 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1995 	    __get_user(uaddr, &umsg->msg_name) ||
1996 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1997 	    __get_user(uiov, &umsg->msg_iov) ||
1998 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1999 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
2000 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
2001 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
2002 		return -EFAULT;
2003 
2004 	if (!uaddr)
2005 		kmsg->msg_namelen = 0;
2006 
2007 	if (kmsg->msg_namelen < 0)
2008 		return -EINVAL;
2009 
2010 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2011 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2012 
2013 	if (save_addr)
2014 		*save_addr = uaddr;
2015 
2016 	if (uaddr && kmsg->msg_namelen) {
2017 		if (!save_addr) {
2018 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
2019 						  kmsg->msg_name);
2020 			if (err < 0)
2021 				return err;
2022 		}
2023 	} else {
2024 		kmsg->msg_name = NULL;
2025 		kmsg->msg_namelen = 0;
2026 	}
2027 
2028 	if (nr_segs > UIO_MAXIOV)
2029 		return -EMSGSIZE;
2030 
2031 	err = rw_copy_check_uvector(save_addr ? READ : WRITE,
2032 				    uiov, nr_segs,
2033 				    UIO_FASTIOV, *iov, iov);
2034 	if (err >= 0)
2035 		iov_iter_init(&kmsg->msg_iter, save_addr ? READ : WRITE,
2036 			      *iov, nr_segs, err);
2037 	return err;
2038 }
2039 
2040 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2041 			 struct msghdr *msg_sys, unsigned int flags,
2042 			 struct used_address *used_address)
2043 {
2044 	struct compat_msghdr __user *msg_compat =
2045 	    (struct compat_msghdr __user *)msg;
2046 	struct sockaddr_storage address;
2047 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2048 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2049 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
2050 	/* 20 is size of ipv6_pktinfo */
2051 	unsigned char *ctl_buf = ctl;
2052 	int ctl_len, total_len;
2053 	ssize_t err;
2054 
2055 	msg_sys->msg_name = &address;
2056 
2057 	if (MSG_CMSG_COMPAT & flags)
2058 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2059 	else
2060 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2061 	if (err < 0)
2062 		goto out_freeiov;
2063 	total_len = err;
2064 
2065 	err = -ENOBUFS;
2066 
2067 	if (msg_sys->msg_controllen > INT_MAX)
2068 		goto out_freeiov;
2069 	ctl_len = msg_sys->msg_controllen;
2070 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2071 		err =
2072 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2073 						     sizeof(ctl));
2074 		if (err)
2075 			goto out_freeiov;
2076 		ctl_buf = msg_sys->msg_control;
2077 		ctl_len = msg_sys->msg_controllen;
2078 	} else if (ctl_len) {
2079 		if (ctl_len > sizeof(ctl)) {
2080 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2081 			if (ctl_buf == NULL)
2082 				goto out_freeiov;
2083 		}
2084 		err = -EFAULT;
2085 		/*
2086 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2087 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2088 		 * checking falls down on this.
2089 		 */
2090 		if (copy_from_user(ctl_buf,
2091 				   (void __user __force *)msg_sys->msg_control,
2092 				   ctl_len))
2093 			goto out_freectl;
2094 		msg_sys->msg_control = ctl_buf;
2095 	}
2096 	msg_sys->msg_flags = flags;
2097 
2098 	if (sock->file->f_flags & O_NONBLOCK)
2099 		msg_sys->msg_flags |= MSG_DONTWAIT;
2100 	/*
2101 	 * If this is sendmmsg() and current destination address is same as
2102 	 * previously succeeded address, omit asking LSM's decision.
2103 	 * used_address->name_len is initialized to UINT_MAX so that the first
2104 	 * destination address never matches.
2105 	 */
2106 	if (used_address && msg_sys->msg_name &&
2107 	    used_address->name_len == msg_sys->msg_namelen &&
2108 	    !memcmp(&used_address->name, msg_sys->msg_name,
2109 		    used_address->name_len)) {
2110 		err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2111 		goto out_freectl;
2112 	}
2113 	err = sock_sendmsg(sock, msg_sys, total_len);
2114 	/*
2115 	 * If this is sendmmsg() and sending to current destination address was
2116 	 * successful, remember it.
2117 	 */
2118 	if (used_address && err >= 0) {
2119 		used_address->name_len = msg_sys->msg_namelen;
2120 		if (msg_sys->msg_name)
2121 			memcpy(&used_address->name, msg_sys->msg_name,
2122 			       used_address->name_len);
2123 	}
2124 
2125 out_freectl:
2126 	if (ctl_buf != ctl)
2127 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2128 out_freeiov:
2129 	if (iov != iovstack)
2130 		kfree(iov);
2131 	return err;
2132 }
2133 
2134 /*
2135  *	BSD sendmsg interface
2136  */
2137 
2138 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2139 {
2140 	int fput_needed, err;
2141 	struct msghdr msg_sys;
2142 	struct socket *sock;
2143 
2144 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2145 	if (!sock)
2146 		goto out;
2147 
2148 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2149 
2150 	fput_light(sock->file, fput_needed);
2151 out:
2152 	return err;
2153 }
2154 
2155 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2156 {
2157 	if (flags & MSG_CMSG_COMPAT)
2158 		return -EINVAL;
2159 	return __sys_sendmsg(fd, msg, flags);
2160 }
2161 
2162 /*
2163  *	Linux sendmmsg interface
2164  */
2165 
2166 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2167 		   unsigned int flags)
2168 {
2169 	int fput_needed, err, datagrams;
2170 	struct socket *sock;
2171 	struct mmsghdr __user *entry;
2172 	struct compat_mmsghdr __user *compat_entry;
2173 	struct msghdr msg_sys;
2174 	struct used_address used_address;
2175 
2176 	if (vlen > UIO_MAXIOV)
2177 		vlen = UIO_MAXIOV;
2178 
2179 	datagrams = 0;
2180 
2181 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2182 	if (!sock)
2183 		return err;
2184 
2185 	used_address.name_len = UINT_MAX;
2186 	entry = mmsg;
2187 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2188 	err = 0;
2189 
2190 	while (datagrams < vlen) {
2191 		if (MSG_CMSG_COMPAT & flags) {
2192 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2193 					     &msg_sys, flags, &used_address);
2194 			if (err < 0)
2195 				break;
2196 			err = __put_user(err, &compat_entry->msg_len);
2197 			++compat_entry;
2198 		} else {
2199 			err = ___sys_sendmsg(sock,
2200 					     (struct user_msghdr __user *)entry,
2201 					     &msg_sys, flags, &used_address);
2202 			if (err < 0)
2203 				break;
2204 			err = put_user(err, &entry->msg_len);
2205 			++entry;
2206 		}
2207 
2208 		if (err)
2209 			break;
2210 		++datagrams;
2211 	}
2212 
2213 	fput_light(sock->file, fput_needed);
2214 
2215 	/* We only return an error if no datagrams were able to be sent */
2216 	if (datagrams != 0)
2217 		return datagrams;
2218 
2219 	return err;
2220 }
2221 
2222 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2223 		unsigned int, vlen, unsigned int, flags)
2224 {
2225 	if (flags & MSG_CMSG_COMPAT)
2226 		return -EINVAL;
2227 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2228 }
2229 
2230 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2231 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2232 {
2233 	struct compat_msghdr __user *msg_compat =
2234 	    (struct compat_msghdr __user *)msg;
2235 	struct iovec iovstack[UIO_FASTIOV];
2236 	struct iovec *iov = iovstack;
2237 	unsigned long cmsg_ptr;
2238 	int total_len, len;
2239 	ssize_t err;
2240 
2241 	/* kernel mode address */
2242 	struct sockaddr_storage addr;
2243 
2244 	/* user mode address pointers */
2245 	struct sockaddr __user *uaddr;
2246 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2247 
2248 	msg_sys->msg_name = &addr;
2249 
2250 	if (MSG_CMSG_COMPAT & flags)
2251 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2252 	else
2253 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2254 	if (err < 0)
2255 		goto out_freeiov;
2256 	total_len = err;
2257 
2258 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2259 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2260 
2261 	/* We assume all kernel code knows the size of sockaddr_storage */
2262 	msg_sys->msg_namelen = 0;
2263 
2264 	if (sock->file->f_flags & O_NONBLOCK)
2265 		flags |= MSG_DONTWAIT;
2266 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2267 							  total_len, flags);
2268 	if (err < 0)
2269 		goto out_freeiov;
2270 	len = err;
2271 
2272 	if (uaddr != NULL) {
2273 		err = move_addr_to_user(&addr,
2274 					msg_sys->msg_namelen, uaddr,
2275 					uaddr_len);
2276 		if (err < 0)
2277 			goto out_freeiov;
2278 	}
2279 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2280 			 COMPAT_FLAGS(msg));
2281 	if (err)
2282 		goto out_freeiov;
2283 	if (MSG_CMSG_COMPAT & flags)
2284 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2285 				 &msg_compat->msg_controllen);
2286 	else
2287 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2288 				 &msg->msg_controllen);
2289 	if (err)
2290 		goto out_freeiov;
2291 	err = len;
2292 
2293 out_freeiov:
2294 	if (iov != iovstack)
2295 		kfree(iov);
2296 	return err;
2297 }
2298 
2299 /*
2300  *	BSD recvmsg interface
2301  */
2302 
2303 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2304 {
2305 	int fput_needed, err;
2306 	struct msghdr msg_sys;
2307 	struct socket *sock;
2308 
2309 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2310 	if (!sock)
2311 		goto out;
2312 
2313 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2314 
2315 	fput_light(sock->file, fput_needed);
2316 out:
2317 	return err;
2318 }
2319 
2320 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2321 		unsigned int, flags)
2322 {
2323 	if (flags & MSG_CMSG_COMPAT)
2324 		return -EINVAL;
2325 	return __sys_recvmsg(fd, msg, flags);
2326 }
2327 
2328 /*
2329  *     Linux recvmmsg interface
2330  */
2331 
2332 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2333 		   unsigned int flags, struct timespec *timeout)
2334 {
2335 	int fput_needed, err, datagrams;
2336 	struct socket *sock;
2337 	struct mmsghdr __user *entry;
2338 	struct compat_mmsghdr __user *compat_entry;
2339 	struct msghdr msg_sys;
2340 	struct timespec end_time;
2341 
2342 	if (timeout &&
2343 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2344 				    timeout->tv_nsec))
2345 		return -EINVAL;
2346 
2347 	datagrams = 0;
2348 
2349 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2350 	if (!sock)
2351 		return err;
2352 
2353 	err = sock_error(sock->sk);
2354 	if (err)
2355 		goto out_put;
2356 
2357 	entry = mmsg;
2358 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2359 
2360 	while (datagrams < vlen) {
2361 		/*
2362 		 * No need to ask LSM for more than the first datagram.
2363 		 */
2364 		if (MSG_CMSG_COMPAT & flags) {
2365 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2366 					     &msg_sys, flags & ~MSG_WAITFORONE,
2367 					     datagrams);
2368 			if (err < 0)
2369 				break;
2370 			err = __put_user(err, &compat_entry->msg_len);
2371 			++compat_entry;
2372 		} else {
2373 			err = ___sys_recvmsg(sock,
2374 					     (struct user_msghdr __user *)entry,
2375 					     &msg_sys, flags & ~MSG_WAITFORONE,
2376 					     datagrams);
2377 			if (err < 0)
2378 				break;
2379 			err = put_user(err, &entry->msg_len);
2380 			++entry;
2381 		}
2382 
2383 		if (err)
2384 			break;
2385 		++datagrams;
2386 
2387 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2388 		if (flags & MSG_WAITFORONE)
2389 			flags |= MSG_DONTWAIT;
2390 
2391 		if (timeout) {
2392 			ktime_get_ts(timeout);
2393 			*timeout = timespec_sub(end_time, *timeout);
2394 			if (timeout->tv_sec < 0) {
2395 				timeout->tv_sec = timeout->tv_nsec = 0;
2396 				break;
2397 			}
2398 
2399 			/* Timeout, return less than vlen datagrams */
2400 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2401 				break;
2402 		}
2403 
2404 		/* Out of band data, return right away */
2405 		if (msg_sys.msg_flags & MSG_OOB)
2406 			break;
2407 	}
2408 
2409 out_put:
2410 	fput_light(sock->file, fput_needed);
2411 
2412 	if (err == 0)
2413 		return datagrams;
2414 
2415 	if (datagrams != 0) {
2416 		/*
2417 		 * We may return less entries than requested (vlen) if the
2418 		 * sock is non block and there aren't enough datagrams...
2419 		 */
2420 		if (err != -EAGAIN) {
2421 			/*
2422 			 * ... or  if recvmsg returns an error after we
2423 			 * received some datagrams, where we record the
2424 			 * error to return on the next call or if the
2425 			 * app asks about it using getsockopt(SO_ERROR).
2426 			 */
2427 			sock->sk->sk_err = -err;
2428 		}
2429 
2430 		return datagrams;
2431 	}
2432 
2433 	return err;
2434 }
2435 
2436 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2437 		unsigned int, vlen, unsigned int, flags,
2438 		struct timespec __user *, timeout)
2439 {
2440 	int datagrams;
2441 	struct timespec timeout_sys;
2442 
2443 	if (flags & MSG_CMSG_COMPAT)
2444 		return -EINVAL;
2445 
2446 	if (!timeout)
2447 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2448 
2449 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2450 		return -EFAULT;
2451 
2452 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2453 
2454 	if (datagrams > 0 &&
2455 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2456 		datagrams = -EFAULT;
2457 
2458 	return datagrams;
2459 }
2460 
2461 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2462 /* Argument list sizes for sys_socketcall */
2463 #define AL(x) ((x) * sizeof(unsigned long))
2464 static const unsigned char nargs[21] = {
2465 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2466 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2467 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2468 	AL(4), AL(5), AL(4)
2469 };
2470 
2471 #undef AL
2472 
2473 /*
2474  *	System call vectors.
2475  *
2476  *	Argument checking cleaned up. Saved 20% in size.
2477  *  This function doesn't need to set the kernel lock because
2478  *  it is set by the callees.
2479  */
2480 
2481 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2482 {
2483 	unsigned long a[AUDITSC_ARGS];
2484 	unsigned long a0, a1;
2485 	int err;
2486 	unsigned int len;
2487 
2488 	if (call < 1 || call > SYS_SENDMMSG)
2489 		return -EINVAL;
2490 
2491 	len = nargs[call];
2492 	if (len > sizeof(a))
2493 		return -EINVAL;
2494 
2495 	/* copy_from_user should be SMP safe. */
2496 	if (copy_from_user(a, args, len))
2497 		return -EFAULT;
2498 
2499 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2500 	if (err)
2501 		return err;
2502 
2503 	a0 = a[0];
2504 	a1 = a[1];
2505 
2506 	switch (call) {
2507 	case SYS_SOCKET:
2508 		err = sys_socket(a0, a1, a[2]);
2509 		break;
2510 	case SYS_BIND:
2511 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2512 		break;
2513 	case SYS_CONNECT:
2514 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2515 		break;
2516 	case SYS_LISTEN:
2517 		err = sys_listen(a0, a1);
2518 		break;
2519 	case SYS_ACCEPT:
2520 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2521 				  (int __user *)a[2], 0);
2522 		break;
2523 	case SYS_GETSOCKNAME:
2524 		err =
2525 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2526 				    (int __user *)a[2]);
2527 		break;
2528 	case SYS_GETPEERNAME:
2529 		err =
2530 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2531 				    (int __user *)a[2]);
2532 		break;
2533 	case SYS_SOCKETPAIR:
2534 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2535 		break;
2536 	case SYS_SEND:
2537 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2538 		break;
2539 	case SYS_SENDTO:
2540 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2541 				 (struct sockaddr __user *)a[4], a[5]);
2542 		break;
2543 	case SYS_RECV:
2544 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2545 		break;
2546 	case SYS_RECVFROM:
2547 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2548 				   (struct sockaddr __user *)a[4],
2549 				   (int __user *)a[5]);
2550 		break;
2551 	case SYS_SHUTDOWN:
2552 		err = sys_shutdown(a0, a1);
2553 		break;
2554 	case SYS_SETSOCKOPT:
2555 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2556 		break;
2557 	case SYS_GETSOCKOPT:
2558 		err =
2559 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2560 				   (int __user *)a[4]);
2561 		break;
2562 	case SYS_SENDMSG:
2563 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2564 		break;
2565 	case SYS_SENDMMSG:
2566 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2567 		break;
2568 	case SYS_RECVMSG:
2569 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2570 		break;
2571 	case SYS_RECVMMSG:
2572 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2573 				   (struct timespec __user *)a[4]);
2574 		break;
2575 	case SYS_ACCEPT4:
2576 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2577 				  (int __user *)a[2], a[3]);
2578 		break;
2579 	default:
2580 		err = -EINVAL;
2581 		break;
2582 	}
2583 	return err;
2584 }
2585 
2586 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2587 
2588 /**
2589  *	sock_register - add a socket protocol handler
2590  *	@ops: description of protocol
2591  *
2592  *	This function is called by a protocol handler that wants to
2593  *	advertise its address family, and have it linked into the
2594  *	socket interface. The value ops->family corresponds to the
2595  *	socket system call protocol family.
2596  */
2597 int sock_register(const struct net_proto_family *ops)
2598 {
2599 	int err;
2600 
2601 	if (ops->family >= NPROTO) {
2602 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2603 		return -ENOBUFS;
2604 	}
2605 
2606 	spin_lock(&net_family_lock);
2607 	if (rcu_dereference_protected(net_families[ops->family],
2608 				      lockdep_is_held(&net_family_lock)))
2609 		err = -EEXIST;
2610 	else {
2611 		rcu_assign_pointer(net_families[ops->family], ops);
2612 		err = 0;
2613 	}
2614 	spin_unlock(&net_family_lock);
2615 
2616 	pr_info("NET: Registered protocol family %d\n", ops->family);
2617 	return err;
2618 }
2619 EXPORT_SYMBOL(sock_register);
2620 
2621 /**
2622  *	sock_unregister - remove a protocol handler
2623  *	@family: protocol family to remove
2624  *
2625  *	This function is called by a protocol handler that wants to
2626  *	remove its address family, and have it unlinked from the
2627  *	new socket creation.
2628  *
2629  *	If protocol handler is a module, then it can use module reference
2630  *	counts to protect against new references. If protocol handler is not
2631  *	a module then it needs to provide its own protection in
2632  *	the ops->create routine.
2633  */
2634 void sock_unregister(int family)
2635 {
2636 	BUG_ON(family < 0 || family >= NPROTO);
2637 
2638 	spin_lock(&net_family_lock);
2639 	RCU_INIT_POINTER(net_families[family], NULL);
2640 	spin_unlock(&net_family_lock);
2641 
2642 	synchronize_rcu();
2643 
2644 	pr_info("NET: Unregistered protocol family %d\n", family);
2645 }
2646 EXPORT_SYMBOL(sock_unregister);
2647 
2648 static int __init sock_init(void)
2649 {
2650 	int err;
2651 	/*
2652 	 *      Initialize the network sysctl infrastructure.
2653 	 */
2654 	err = net_sysctl_init();
2655 	if (err)
2656 		goto out;
2657 
2658 	/*
2659 	 *      Initialize skbuff SLAB cache
2660 	 */
2661 	skb_init();
2662 
2663 	/*
2664 	 *      Initialize the protocols module.
2665 	 */
2666 
2667 	init_inodecache();
2668 
2669 	err = register_filesystem(&sock_fs_type);
2670 	if (err)
2671 		goto out_fs;
2672 	sock_mnt = kern_mount(&sock_fs_type);
2673 	if (IS_ERR(sock_mnt)) {
2674 		err = PTR_ERR(sock_mnt);
2675 		goto out_mount;
2676 	}
2677 
2678 	/* The real protocol initialization is performed in later initcalls.
2679 	 */
2680 
2681 #ifdef CONFIG_NETFILTER
2682 	err = netfilter_init();
2683 	if (err)
2684 		goto out;
2685 #endif
2686 
2687 	ptp_classifier_init();
2688 
2689 out:
2690 	return err;
2691 
2692 out_mount:
2693 	unregister_filesystem(&sock_fs_type);
2694 out_fs:
2695 	goto out;
2696 }
2697 
2698 core_initcall(sock_init);	/* early initcall */
2699 
2700 #ifdef CONFIG_PROC_FS
2701 void socket_seq_show(struct seq_file *seq)
2702 {
2703 	int cpu;
2704 	int counter = 0;
2705 
2706 	for_each_possible_cpu(cpu)
2707 	    counter += per_cpu(sockets_in_use, cpu);
2708 
2709 	/* It can be negative, by the way. 8) */
2710 	if (counter < 0)
2711 		counter = 0;
2712 
2713 	seq_printf(seq, "sockets: used %d\n", counter);
2714 }
2715 #endif				/* CONFIG_PROC_FS */
2716 
2717 #ifdef CONFIG_COMPAT
2718 static int do_siocgstamp(struct net *net, struct socket *sock,
2719 			 unsigned int cmd, void __user *up)
2720 {
2721 	mm_segment_t old_fs = get_fs();
2722 	struct timeval ktv;
2723 	int err;
2724 
2725 	set_fs(KERNEL_DS);
2726 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2727 	set_fs(old_fs);
2728 	if (!err)
2729 		err = compat_put_timeval(&ktv, up);
2730 
2731 	return err;
2732 }
2733 
2734 static int do_siocgstampns(struct net *net, struct socket *sock,
2735 			   unsigned int cmd, void __user *up)
2736 {
2737 	mm_segment_t old_fs = get_fs();
2738 	struct timespec kts;
2739 	int err;
2740 
2741 	set_fs(KERNEL_DS);
2742 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2743 	set_fs(old_fs);
2744 	if (!err)
2745 		err = compat_put_timespec(&kts, up);
2746 
2747 	return err;
2748 }
2749 
2750 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2751 {
2752 	struct ifreq __user *uifr;
2753 	int err;
2754 
2755 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2756 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2757 		return -EFAULT;
2758 
2759 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2760 	if (err)
2761 		return err;
2762 
2763 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2764 		return -EFAULT;
2765 
2766 	return 0;
2767 }
2768 
2769 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2770 {
2771 	struct compat_ifconf ifc32;
2772 	struct ifconf ifc;
2773 	struct ifconf __user *uifc;
2774 	struct compat_ifreq __user *ifr32;
2775 	struct ifreq __user *ifr;
2776 	unsigned int i, j;
2777 	int err;
2778 
2779 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2780 		return -EFAULT;
2781 
2782 	memset(&ifc, 0, sizeof(ifc));
2783 	if (ifc32.ifcbuf == 0) {
2784 		ifc32.ifc_len = 0;
2785 		ifc.ifc_len = 0;
2786 		ifc.ifc_req = NULL;
2787 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2788 	} else {
2789 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2790 			sizeof(struct ifreq);
2791 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2792 		ifc.ifc_len = len;
2793 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2794 		ifr32 = compat_ptr(ifc32.ifcbuf);
2795 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2796 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2797 				return -EFAULT;
2798 			ifr++;
2799 			ifr32++;
2800 		}
2801 	}
2802 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2803 		return -EFAULT;
2804 
2805 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2806 	if (err)
2807 		return err;
2808 
2809 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2810 		return -EFAULT;
2811 
2812 	ifr = ifc.ifc_req;
2813 	ifr32 = compat_ptr(ifc32.ifcbuf);
2814 	for (i = 0, j = 0;
2815 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2816 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2817 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2818 			return -EFAULT;
2819 		ifr32++;
2820 		ifr++;
2821 	}
2822 
2823 	if (ifc32.ifcbuf == 0) {
2824 		/* Translate from 64-bit structure multiple to
2825 		 * a 32-bit one.
2826 		 */
2827 		i = ifc.ifc_len;
2828 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2829 		ifc32.ifc_len = i;
2830 	} else {
2831 		ifc32.ifc_len = i;
2832 	}
2833 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2834 		return -EFAULT;
2835 
2836 	return 0;
2837 }
2838 
2839 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2840 {
2841 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2842 	bool convert_in = false, convert_out = false;
2843 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2844 	struct ethtool_rxnfc __user *rxnfc;
2845 	struct ifreq __user *ifr;
2846 	u32 rule_cnt = 0, actual_rule_cnt;
2847 	u32 ethcmd;
2848 	u32 data;
2849 	int ret;
2850 
2851 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2852 		return -EFAULT;
2853 
2854 	compat_rxnfc = compat_ptr(data);
2855 
2856 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2857 		return -EFAULT;
2858 
2859 	/* Most ethtool structures are defined without padding.
2860 	 * Unfortunately struct ethtool_rxnfc is an exception.
2861 	 */
2862 	switch (ethcmd) {
2863 	default:
2864 		break;
2865 	case ETHTOOL_GRXCLSRLALL:
2866 		/* Buffer size is variable */
2867 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2868 			return -EFAULT;
2869 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2870 			return -ENOMEM;
2871 		buf_size += rule_cnt * sizeof(u32);
2872 		/* fall through */
2873 	case ETHTOOL_GRXRINGS:
2874 	case ETHTOOL_GRXCLSRLCNT:
2875 	case ETHTOOL_GRXCLSRULE:
2876 	case ETHTOOL_SRXCLSRLINS:
2877 		convert_out = true;
2878 		/* fall through */
2879 	case ETHTOOL_SRXCLSRLDEL:
2880 		buf_size += sizeof(struct ethtool_rxnfc);
2881 		convert_in = true;
2882 		break;
2883 	}
2884 
2885 	ifr = compat_alloc_user_space(buf_size);
2886 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2887 
2888 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2889 		return -EFAULT;
2890 
2891 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2892 		     &ifr->ifr_ifru.ifru_data))
2893 		return -EFAULT;
2894 
2895 	if (convert_in) {
2896 		/* We expect there to be holes between fs.m_ext and
2897 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2898 		 */
2899 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2900 			     sizeof(compat_rxnfc->fs.m_ext) !=
2901 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2902 			     sizeof(rxnfc->fs.m_ext));
2903 		BUILD_BUG_ON(
2904 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2905 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2906 			offsetof(struct ethtool_rxnfc, fs.location) -
2907 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2908 
2909 		if (copy_in_user(rxnfc, compat_rxnfc,
2910 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2911 				 (void __user *)rxnfc) ||
2912 		    copy_in_user(&rxnfc->fs.ring_cookie,
2913 				 &compat_rxnfc->fs.ring_cookie,
2914 				 (void __user *)(&rxnfc->fs.location + 1) -
2915 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2916 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2917 				 sizeof(rxnfc->rule_cnt)))
2918 			return -EFAULT;
2919 	}
2920 
2921 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2922 	if (ret)
2923 		return ret;
2924 
2925 	if (convert_out) {
2926 		if (copy_in_user(compat_rxnfc, rxnfc,
2927 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2928 				 (const void __user *)rxnfc) ||
2929 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2930 				 &rxnfc->fs.ring_cookie,
2931 				 (const void __user *)(&rxnfc->fs.location + 1) -
2932 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2933 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2934 				 sizeof(rxnfc->rule_cnt)))
2935 			return -EFAULT;
2936 
2937 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2938 			/* As an optimisation, we only copy the actual
2939 			 * number of rules that the underlying
2940 			 * function returned.  Since Mallory might
2941 			 * change the rule count in user memory, we
2942 			 * check that it is less than the rule count
2943 			 * originally given (as the user buffer size),
2944 			 * which has been range-checked.
2945 			 */
2946 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2947 				return -EFAULT;
2948 			if (actual_rule_cnt < rule_cnt)
2949 				rule_cnt = actual_rule_cnt;
2950 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2951 					 &rxnfc->rule_locs[0],
2952 					 rule_cnt * sizeof(u32)))
2953 				return -EFAULT;
2954 		}
2955 	}
2956 
2957 	return 0;
2958 }
2959 
2960 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2961 {
2962 	void __user *uptr;
2963 	compat_uptr_t uptr32;
2964 	struct ifreq __user *uifr;
2965 
2966 	uifr = compat_alloc_user_space(sizeof(*uifr));
2967 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2968 		return -EFAULT;
2969 
2970 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2971 		return -EFAULT;
2972 
2973 	uptr = compat_ptr(uptr32);
2974 
2975 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2976 		return -EFAULT;
2977 
2978 	return dev_ioctl(net, SIOCWANDEV, uifr);
2979 }
2980 
2981 static int bond_ioctl(struct net *net, unsigned int cmd,
2982 			 struct compat_ifreq __user *ifr32)
2983 {
2984 	struct ifreq kifr;
2985 	mm_segment_t old_fs;
2986 	int err;
2987 
2988 	switch (cmd) {
2989 	case SIOCBONDENSLAVE:
2990 	case SIOCBONDRELEASE:
2991 	case SIOCBONDSETHWADDR:
2992 	case SIOCBONDCHANGEACTIVE:
2993 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2994 			return -EFAULT;
2995 
2996 		old_fs = get_fs();
2997 		set_fs(KERNEL_DS);
2998 		err = dev_ioctl(net, cmd,
2999 				(struct ifreq __user __force *) &kifr);
3000 		set_fs(old_fs);
3001 
3002 		return err;
3003 	default:
3004 		return -ENOIOCTLCMD;
3005 	}
3006 }
3007 
3008 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3009 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3010 				 struct compat_ifreq __user *u_ifreq32)
3011 {
3012 	struct ifreq __user *u_ifreq64;
3013 	char tmp_buf[IFNAMSIZ];
3014 	void __user *data64;
3015 	u32 data32;
3016 
3017 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3018 			   IFNAMSIZ))
3019 		return -EFAULT;
3020 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3021 		return -EFAULT;
3022 	data64 = compat_ptr(data32);
3023 
3024 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3025 
3026 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3027 			 IFNAMSIZ))
3028 		return -EFAULT;
3029 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3030 		return -EFAULT;
3031 
3032 	return dev_ioctl(net, cmd, u_ifreq64);
3033 }
3034 
3035 static int dev_ifsioc(struct net *net, struct socket *sock,
3036 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
3037 {
3038 	struct ifreq __user *uifr;
3039 	int err;
3040 
3041 	uifr = compat_alloc_user_space(sizeof(*uifr));
3042 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3043 		return -EFAULT;
3044 
3045 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3046 
3047 	if (!err) {
3048 		switch (cmd) {
3049 		case SIOCGIFFLAGS:
3050 		case SIOCGIFMETRIC:
3051 		case SIOCGIFMTU:
3052 		case SIOCGIFMEM:
3053 		case SIOCGIFHWADDR:
3054 		case SIOCGIFINDEX:
3055 		case SIOCGIFADDR:
3056 		case SIOCGIFBRDADDR:
3057 		case SIOCGIFDSTADDR:
3058 		case SIOCGIFNETMASK:
3059 		case SIOCGIFPFLAGS:
3060 		case SIOCGIFTXQLEN:
3061 		case SIOCGMIIPHY:
3062 		case SIOCGMIIREG:
3063 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3064 				err = -EFAULT;
3065 			break;
3066 		}
3067 	}
3068 	return err;
3069 }
3070 
3071 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3072 			struct compat_ifreq __user *uifr32)
3073 {
3074 	struct ifreq ifr;
3075 	struct compat_ifmap __user *uifmap32;
3076 	mm_segment_t old_fs;
3077 	int err;
3078 
3079 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3080 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3081 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3082 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3083 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3084 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3085 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3086 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3087 	if (err)
3088 		return -EFAULT;
3089 
3090 	old_fs = get_fs();
3091 	set_fs(KERNEL_DS);
3092 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3093 	set_fs(old_fs);
3094 
3095 	if (cmd == SIOCGIFMAP && !err) {
3096 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3097 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3098 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3099 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3100 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3101 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3102 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3103 		if (err)
3104 			err = -EFAULT;
3105 	}
3106 	return err;
3107 }
3108 
3109 struct rtentry32 {
3110 	u32		rt_pad1;
3111 	struct sockaddr rt_dst;         /* target address               */
3112 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3113 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3114 	unsigned short	rt_flags;
3115 	short		rt_pad2;
3116 	u32		rt_pad3;
3117 	unsigned char	rt_tos;
3118 	unsigned char	rt_class;
3119 	short		rt_pad4;
3120 	short		rt_metric;      /* +1 for binary compatibility! */
3121 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3122 	u32		rt_mtu;         /* per route MTU/Window         */
3123 	u32		rt_window;      /* Window clamping              */
3124 	unsigned short  rt_irtt;        /* Initial RTT                  */
3125 };
3126 
3127 struct in6_rtmsg32 {
3128 	struct in6_addr		rtmsg_dst;
3129 	struct in6_addr		rtmsg_src;
3130 	struct in6_addr		rtmsg_gateway;
3131 	u32			rtmsg_type;
3132 	u16			rtmsg_dst_len;
3133 	u16			rtmsg_src_len;
3134 	u32			rtmsg_metric;
3135 	u32			rtmsg_info;
3136 	u32			rtmsg_flags;
3137 	s32			rtmsg_ifindex;
3138 };
3139 
3140 static int routing_ioctl(struct net *net, struct socket *sock,
3141 			 unsigned int cmd, void __user *argp)
3142 {
3143 	int ret;
3144 	void *r = NULL;
3145 	struct in6_rtmsg r6;
3146 	struct rtentry r4;
3147 	char devname[16];
3148 	u32 rtdev;
3149 	mm_segment_t old_fs = get_fs();
3150 
3151 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3152 		struct in6_rtmsg32 __user *ur6 = argp;
3153 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3154 			3 * sizeof(struct in6_addr));
3155 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3156 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3157 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3158 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3159 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3160 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3161 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3162 
3163 		r = (void *) &r6;
3164 	} else { /* ipv4 */
3165 		struct rtentry32 __user *ur4 = argp;
3166 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3167 					3 * sizeof(struct sockaddr));
3168 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3169 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3170 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3171 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3172 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3173 		ret |= get_user(rtdev, &(ur4->rt_dev));
3174 		if (rtdev) {
3175 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3176 			r4.rt_dev = (char __user __force *)devname;
3177 			devname[15] = 0;
3178 		} else
3179 			r4.rt_dev = NULL;
3180 
3181 		r = (void *) &r4;
3182 	}
3183 
3184 	if (ret) {
3185 		ret = -EFAULT;
3186 		goto out;
3187 	}
3188 
3189 	set_fs(KERNEL_DS);
3190 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3191 	set_fs(old_fs);
3192 
3193 out:
3194 	return ret;
3195 }
3196 
3197 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3198  * for some operations; this forces use of the newer bridge-utils that
3199  * use compatible ioctls
3200  */
3201 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3202 {
3203 	compat_ulong_t tmp;
3204 
3205 	if (get_user(tmp, argp))
3206 		return -EFAULT;
3207 	if (tmp == BRCTL_GET_VERSION)
3208 		return BRCTL_VERSION + 1;
3209 	return -EINVAL;
3210 }
3211 
3212 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3213 			 unsigned int cmd, unsigned long arg)
3214 {
3215 	void __user *argp = compat_ptr(arg);
3216 	struct sock *sk = sock->sk;
3217 	struct net *net = sock_net(sk);
3218 
3219 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3220 		return compat_ifr_data_ioctl(net, cmd, argp);
3221 
3222 	switch (cmd) {
3223 	case SIOCSIFBR:
3224 	case SIOCGIFBR:
3225 		return old_bridge_ioctl(argp);
3226 	case SIOCGIFNAME:
3227 		return dev_ifname32(net, argp);
3228 	case SIOCGIFCONF:
3229 		return dev_ifconf(net, argp);
3230 	case SIOCETHTOOL:
3231 		return ethtool_ioctl(net, argp);
3232 	case SIOCWANDEV:
3233 		return compat_siocwandev(net, argp);
3234 	case SIOCGIFMAP:
3235 	case SIOCSIFMAP:
3236 		return compat_sioc_ifmap(net, cmd, argp);
3237 	case SIOCBONDENSLAVE:
3238 	case SIOCBONDRELEASE:
3239 	case SIOCBONDSETHWADDR:
3240 	case SIOCBONDCHANGEACTIVE:
3241 		return bond_ioctl(net, cmd, argp);
3242 	case SIOCADDRT:
3243 	case SIOCDELRT:
3244 		return routing_ioctl(net, sock, cmd, argp);
3245 	case SIOCGSTAMP:
3246 		return do_siocgstamp(net, sock, cmd, argp);
3247 	case SIOCGSTAMPNS:
3248 		return do_siocgstampns(net, sock, cmd, argp);
3249 	case SIOCBONDSLAVEINFOQUERY:
3250 	case SIOCBONDINFOQUERY:
3251 	case SIOCSHWTSTAMP:
3252 	case SIOCGHWTSTAMP:
3253 		return compat_ifr_data_ioctl(net, cmd, argp);
3254 
3255 	case FIOSETOWN:
3256 	case SIOCSPGRP:
3257 	case FIOGETOWN:
3258 	case SIOCGPGRP:
3259 	case SIOCBRADDBR:
3260 	case SIOCBRDELBR:
3261 	case SIOCGIFVLAN:
3262 	case SIOCSIFVLAN:
3263 	case SIOCADDDLCI:
3264 	case SIOCDELDLCI:
3265 		return sock_ioctl(file, cmd, arg);
3266 
3267 	case SIOCGIFFLAGS:
3268 	case SIOCSIFFLAGS:
3269 	case SIOCGIFMETRIC:
3270 	case SIOCSIFMETRIC:
3271 	case SIOCGIFMTU:
3272 	case SIOCSIFMTU:
3273 	case SIOCGIFMEM:
3274 	case SIOCSIFMEM:
3275 	case SIOCGIFHWADDR:
3276 	case SIOCSIFHWADDR:
3277 	case SIOCADDMULTI:
3278 	case SIOCDELMULTI:
3279 	case SIOCGIFINDEX:
3280 	case SIOCGIFADDR:
3281 	case SIOCSIFADDR:
3282 	case SIOCSIFHWBROADCAST:
3283 	case SIOCDIFADDR:
3284 	case SIOCGIFBRDADDR:
3285 	case SIOCSIFBRDADDR:
3286 	case SIOCGIFDSTADDR:
3287 	case SIOCSIFDSTADDR:
3288 	case SIOCGIFNETMASK:
3289 	case SIOCSIFNETMASK:
3290 	case SIOCSIFPFLAGS:
3291 	case SIOCGIFPFLAGS:
3292 	case SIOCGIFTXQLEN:
3293 	case SIOCSIFTXQLEN:
3294 	case SIOCBRADDIF:
3295 	case SIOCBRDELIF:
3296 	case SIOCSIFNAME:
3297 	case SIOCGMIIPHY:
3298 	case SIOCGMIIREG:
3299 	case SIOCSMIIREG:
3300 		return dev_ifsioc(net, sock, cmd, argp);
3301 
3302 	case SIOCSARP:
3303 	case SIOCGARP:
3304 	case SIOCDARP:
3305 	case SIOCATMARK:
3306 		return sock_do_ioctl(net, sock, cmd, arg);
3307 	}
3308 
3309 	return -ENOIOCTLCMD;
3310 }
3311 
3312 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3313 			      unsigned long arg)
3314 {
3315 	struct socket *sock = file->private_data;
3316 	int ret = -ENOIOCTLCMD;
3317 	struct sock *sk;
3318 	struct net *net;
3319 
3320 	sk = sock->sk;
3321 	net = sock_net(sk);
3322 
3323 	if (sock->ops->compat_ioctl)
3324 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3325 
3326 	if (ret == -ENOIOCTLCMD &&
3327 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3328 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3329 
3330 	if (ret == -ENOIOCTLCMD)
3331 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3332 
3333 	return ret;
3334 }
3335 #endif
3336 
3337 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3338 {
3339 	return sock->ops->bind(sock, addr, addrlen);
3340 }
3341 EXPORT_SYMBOL(kernel_bind);
3342 
3343 int kernel_listen(struct socket *sock, int backlog)
3344 {
3345 	return sock->ops->listen(sock, backlog);
3346 }
3347 EXPORT_SYMBOL(kernel_listen);
3348 
3349 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3350 {
3351 	struct sock *sk = sock->sk;
3352 	int err;
3353 
3354 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3355 			       newsock);
3356 	if (err < 0)
3357 		goto done;
3358 
3359 	err = sock->ops->accept(sock, *newsock, flags);
3360 	if (err < 0) {
3361 		sock_release(*newsock);
3362 		*newsock = NULL;
3363 		goto done;
3364 	}
3365 
3366 	(*newsock)->ops = sock->ops;
3367 	__module_get((*newsock)->ops->owner);
3368 
3369 done:
3370 	return err;
3371 }
3372 EXPORT_SYMBOL(kernel_accept);
3373 
3374 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3375 		   int flags)
3376 {
3377 	return sock->ops->connect(sock, addr, addrlen, flags);
3378 }
3379 EXPORT_SYMBOL(kernel_connect);
3380 
3381 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3382 			 int *addrlen)
3383 {
3384 	return sock->ops->getname(sock, addr, addrlen, 0);
3385 }
3386 EXPORT_SYMBOL(kernel_getsockname);
3387 
3388 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3389 			 int *addrlen)
3390 {
3391 	return sock->ops->getname(sock, addr, addrlen, 1);
3392 }
3393 EXPORT_SYMBOL(kernel_getpeername);
3394 
3395 int kernel_getsockopt(struct socket *sock, int level, int optname,
3396 			char *optval, int *optlen)
3397 {
3398 	mm_segment_t oldfs = get_fs();
3399 	char __user *uoptval;
3400 	int __user *uoptlen;
3401 	int err;
3402 
3403 	uoptval = (char __user __force *) optval;
3404 	uoptlen = (int __user __force *) optlen;
3405 
3406 	set_fs(KERNEL_DS);
3407 	if (level == SOL_SOCKET)
3408 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3409 	else
3410 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3411 					    uoptlen);
3412 	set_fs(oldfs);
3413 	return err;
3414 }
3415 EXPORT_SYMBOL(kernel_getsockopt);
3416 
3417 int kernel_setsockopt(struct socket *sock, int level, int optname,
3418 			char *optval, unsigned int optlen)
3419 {
3420 	mm_segment_t oldfs = get_fs();
3421 	char __user *uoptval;
3422 	int err;
3423 
3424 	uoptval = (char __user __force *) optval;
3425 
3426 	set_fs(KERNEL_DS);
3427 	if (level == SOL_SOCKET)
3428 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3429 	else
3430 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3431 					    optlen);
3432 	set_fs(oldfs);
3433 	return err;
3434 }
3435 EXPORT_SYMBOL(kernel_setsockopt);
3436 
3437 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3438 		    size_t size, int flags)
3439 {
3440 	if (sock->ops->sendpage)
3441 		return sock->ops->sendpage(sock, page, offset, size, flags);
3442 
3443 	return sock_no_sendpage(sock, page, offset, size, flags);
3444 }
3445 EXPORT_SYMBOL(kernel_sendpage);
3446 
3447 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3448 {
3449 	mm_segment_t oldfs = get_fs();
3450 	int err;
3451 
3452 	set_fs(KERNEL_DS);
3453 	err = sock->ops->ioctl(sock, cmd, arg);
3454 	set_fs(oldfs);
3455 
3456 	return err;
3457 }
3458 EXPORT_SYMBOL(kernel_sock_ioctl);
3459 
3460 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3461 {
3462 	return sock->ops->shutdown(sock, how);
3463 }
3464 EXPORT_SYMBOL(kernel_sock_shutdown);
3465