1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 117 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 118 unsigned long nr_segs, loff_t pos); 119 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 120 unsigned long nr_segs, loff_t pos); 121 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 122 123 static int sock_close(struct inode *inode, struct file *file); 124 static unsigned int sock_poll(struct file *file, 125 struct poll_table_struct *wait); 126 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 127 #ifdef CONFIG_COMPAT 128 static long compat_sock_ioctl(struct file *file, 129 unsigned int cmd, unsigned long arg); 130 #endif 131 static int sock_fasync(int fd, struct file *filp, int on); 132 static ssize_t sock_sendpage(struct file *file, struct page *page, 133 int offset, size_t size, loff_t *ppos, int more); 134 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 135 struct pipe_inode_info *pipe, size_t len, 136 unsigned int flags); 137 138 /* 139 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 140 * in the operation structures but are done directly via the socketcall() multiplexor. 141 */ 142 143 static const struct file_operations socket_file_ops = { 144 .owner = THIS_MODULE, 145 .llseek = no_llseek, 146 .aio_read = sock_aio_read, 147 .aio_write = sock_aio_write, 148 .poll = sock_poll, 149 .unlocked_ioctl = sock_ioctl, 150 #ifdef CONFIG_COMPAT 151 .compat_ioctl = compat_sock_ioctl, 152 #endif 153 .mmap = sock_mmap, 154 .open = sock_no_open, /* special open code to disallow open via /proc */ 155 .release = sock_close, 156 .fasync = sock_fasync, 157 .sendpage = sock_sendpage, 158 .splice_write = generic_splice_sendpage, 159 .splice_read = sock_splice_read, 160 }; 161 162 /* 163 * The protocol list. Each protocol is registered in here. 164 */ 165 166 static DEFINE_SPINLOCK(net_family_lock); 167 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 168 169 /* 170 * Statistics counters of the socket lists 171 */ 172 173 static DEFINE_PER_CPU(int, sockets_in_use); 174 175 /* 176 * Support routines. 177 * Move socket addresses back and forth across the kernel/user 178 * divide and look after the messy bits. 179 */ 180 181 /** 182 * move_addr_to_kernel - copy a socket address into kernel space 183 * @uaddr: Address in user space 184 * @kaddr: Address in kernel space 185 * @ulen: Length in user space 186 * 187 * The address is copied into kernel space. If the provided address is 188 * too long an error code of -EINVAL is returned. If the copy gives 189 * invalid addresses -EFAULT is returned. On a success 0 is returned. 190 */ 191 192 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 193 { 194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 195 return -EINVAL; 196 if (ulen == 0) 197 return 0; 198 if (copy_from_user(kaddr, uaddr, ulen)) 199 return -EFAULT; 200 return audit_sockaddr(ulen, kaddr); 201 } 202 203 /** 204 * move_addr_to_user - copy an address to user space 205 * @kaddr: kernel space address 206 * @klen: length of address in kernel 207 * @uaddr: user space address 208 * @ulen: pointer to user length field 209 * 210 * The value pointed to by ulen on entry is the buffer length available. 211 * This is overwritten with the buffer space used. -EINVAL is returned 212 * if an overlong buffer is specified or a negative buffer size. -EFAULT 213 * is returned if either the buffer or the length field are not 214 * accessible. 215 * After copying the data up to the limit the user specifies, the true 216 * length of the data is written over the length limit the user 217 * specified. Zero is returned for a success. 218 */ 219 220 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 221 void __user *uaddr, int __user *ulen) 222 { 223 int err; 224 int len; 225 226 BUG_ON(klen > sizeof(struct sockaddr_storage)); 227 err = get_user(len, ulen); 228 if (err) 229 return err; 230 if (len > klen) 231 len = klen; 232 if (len < 0) 233 return -EINVAL; 234 if (len) { 235 if (audit_sockaddr(klen, kaddr)) 236 return -ENOMEM; 237 if (copy_to_user(uaddr, kaddr, len)) 238 return -EFAULT; 239 } 240 /* 241 * "fromlen shall refer to the value before truncation.." 242 * 1003.1g 243 */ 244 return __put_user(klen, ulen); 245 } 246 247 static struct kmem_cache *sock_inode_cachep __read_mostly; 248 249 static struct inode *sock_alloc_inode(struct super_block *sb) 250 { 251 struct socket_alloc *ei; 252 struct socket_wq *wq; 253 254 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 255 if (!ei) 256 return NULL; 257 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 258 if (!wq) { 259 kmem_cache_free(sock_inode_cachep, ei); 260 return NULL; 261 } 262 init_waitqueue_head(&wq->wait); 263 wq->fasync_list = NULL; 264 RCU_INIT_POINTER(ei->socket.wq, wq); 265 266 ei->socket.state = SS_UNCONNECTED; 267 ei->socket.flags = 0; 268 ei->socket.ops = NULL; 269 ei->socket.sk = NULL; 270 ei->socket.file = NULL; 271 272 return &ei->vfs_inode; 273 } 274 275 static void sock_destroy_inode(struct inode *inode) 276 { 277 struct socket_alloc *ei; 278 struct socket_wq *wq; 279 280 ei = container_of(inode, struct socket_alloc, vfs_inode); 281 wq = rcu_dereference_protected(ei->socket.wq, 1); 282 kfree_rcu(wq, rcu); 283 kmem_cache_free(sock_inode_cachep, ei); 284 } 285 286 static void init_once(void *foo) 287 { 288 struct socket_alloc *ei = (struct socket_alloc *)foo; 289 290 inode_init_once(&ei->vfs_inode); 291 } 292 293 static int init_inodecache(void) 294 { 295 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 296 sizeof(struct socket_alloc), 297 0, 298 (SLAB_HWCACHE_ALIGN | 299 SLAB_RECLAIM_ACCOUNT | 300 SLAB_MEM_SPREAD), 301 init_once); 302 if (sock_inode_cachep == NULL) 303 return -ENOMEM; 304 return 0; 305 } 306 307 static const struct super_operations sockfs_ops = { 308 .alloc_inode = sock_alloc_inode, 309 .destroy_inode = sock_destroy_inode, 310 .statfs = simple_statfs, 311 }; 312 313 /* 314 * sockfs_dname() is called from d_path(). 315 */ 316 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 317 { 318 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 319 dentry->d_inode->i_ino); 320 } 321 322 static const struct dentry_operations sockfs_dentry_operations = { 323 .d_dname = sockfs_dname, 324 }; 325 326 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 327 int flags, const char *dev_name, void *data) 328 { 329 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 330 &sockfs_dentry_operations, SOCKFS_MAGIC); 331 } 332 333 static struct vfsmount *sock_mnt __read_mostly; 334 335 static struct file_system_type sock_fs_type = { 336 .name = "sockfs", 337 .mount = sockfs_mount, 338 .kill_sb = kill_anon_super, 339 }; 340 341 /* 342 * Obtains the first available file descriptor and sets it up for use. 343 * 344 * These functions create file structures and maps them to fd space 345 * of the current process. On success it returns file descriptor 346 * and file struct implicitly stored in sock->file. 347 * Note that another thread may close file descriptor before we return 348 * from this function. We use the fact that now we do not refer 349 * to socket after mapping. If one day we will need it, this 350 * function will increment ref. count on file by 1. 351 * 352 * In any case returned fd MAY BE not valid! 353 * This race condition is unavoidable 354 * with shared fd spaces, we cannot solve it inside kernel, 355 * but we take care of internal coherence yet. 356 */ 357 358 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 359 { 360 struct qstr name = { .name = "" }; 361 struct path path; 362 struct file *file; 363 364 if (dname) { 365 name.name = dname; 366 name.len = strlen(name.name); 367 } else if (sock->sk) { 368 name.name = sock->sk->sk_prot_creator->name; 369 name.len = strlen(name.name); 370 } 371 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 372 if (unlikely(!path.dentry)) 373 return ERR_PTR(-ENOMEM); 374 path.mnt = mntget(sock_mnt); 375 376 d_instantiate(path.dentry, SOCK_INODE(sock)); 377 SOCK_INODE(sock)->i_fop = &socket_file_ops; 378 379 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 380 &socket_file_ops); 381 if (unlikely(IS_ERR(file))) { 382 /* drop dentry, keep inode */ 383 ihold(path.dentry->d_inode); 384 path_put(&path); 385 return file; 386 } 387 388 sock->file = file; 389 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 390 file->private_data = sock; 391 return file; 392 } 393 EXPORT_SYMBOL(sock_alloc_file); 394 395 static int sock_map_fd(struct socket *sock, int flags) 396 { 397 struct file *newfile; 398 int fd = get_unused_fd_flags(flags); 399 if (unlikely(fd < 0)) 400 return fd; 401 402 newfile = sock_alloc_file(sock, flags, NULL); 403 if (likely(!IS_ERR(newfile))) { 404 fd_install(fd, newfile); 405 return fd; 406 } 407 408 put_unused_fd(fd); 409 return PTR_ERR(newfile); 410 } 411 412 struct socket *sock_from_file(struct file *file, int *err) 413 { 414 if (file->f_op == &socket_file_ops) 415 return file->private_data; /* set in sock_map_fd */ 416 417 *err = -ENOTSOCK; 418 return NULL; 419 } 420 EXPORT_SYMBOL(sock_from_file); 421 422 /** 423 * sockfd_lookup - Go from a file number to its socket slot 424 * @fd: file handle 425 * @err: pointer to an error code return 426 * 427 * The file handle passed in is locked and the socket it is bound 428 * too is returned. If an error occurs the err pointer is overwritten 429 * with a negative errno code and NULL is returned. The function checks 430 * for both invalid handles and passing a handle which is not a socket. 431 * 432 * On a success the socket object pointer is returned. 433 */ 434 435 struct socket *sockfd_lookup(int fd, int *err) 436 { 437 struct file *file; 438 struct socket *sock; 439 440 file = fget(fd); 441 if (!file) { 442 *err = -EBADF; 443 return NULL; 444 } 445 446 sock = sock_from_file(file, err); 447 if (!sock) 448 fput(file); 449 return sock; 450 } 451 EXPORT_SYMBOL(sockfd_lookup); 452 453 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 454 { 455 struct fd f = fdget(fd); 456 struct socket *sock; 457 458 *err = -EBADF; 459 if (f.file) { 460 sock = sock_from_file(f.file, err); 461 if (likely(sock)) { 462 *fput_needed = f.flags; 463 return sock; 464 } 465 fdput(f); 466 } 467 return NULL; 468 } 469 470 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 471 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 472 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 473 static ssize_t sockfs_getxattr(struct dentry *dentry, 474 const char *name, void *value, size_t size) 475 { 476 const char *proto_name; 477 size_t proto_size; 478 int error; 479 480 error = -ENODATA; 481 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 482 proto_name = dentry->d_name.name; 483 proto_size = strlen(proto_name); 484 485 if (value) { 486 error = -ERANGE; 487 if (proto_size + 1 > size) 488 goto out; 489 490 strncpy(value, proto_name, proto_size + 1); 491 } 492 error = proto_size + 1; 493 } 494 495 out: 496 return error; 497 } 498 499 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 500 size_t size) 501 { 502 ssize_t len; 503 ssize_t used = 0; 504 505 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 506 if (len < 0) 507 return len; 508 used += len; 509 if (buffer) { 510 if (size < used) 511 return -ERANGE; 512 buffer += len; 513 } 514 515 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 516 used += len; 517 if (buffer) { 518 if (size < used) 519 return -ERANGE; 520 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 521 buffer += len; 522 } 523 524 return used; 525 } 526 527 static const struct inode_operations sockfs_inode_ops = { 528 .getxattr = sockfs_getxattr, 529 .listxattr = sockfs_listxattr, 530 }; 531 532 /** 533 * sock_alloc - allocate a socket 534 * 535 * Allocate a new inode and socket object. The two are bound together 536 * and initialised. The socket is then returned. If we are out of inodes 537 * NULL is returned. 538 */ 539 540 static struct socket *sock_alloc(void) 541 { 542 struct inode *inode; 543 struct socket *sock; 544 545 inode = new_inode_pseudo(sock_mnt->mnt_sb); 546 if (!inode) 547 return NULL; 548 549 sock = SOCKET_I(inode); 550 551 kmemcheck_annotate_bitfield(sock, type); 552 inode->i_ino = get_next_ino(); 553 inode->i_mode = S_IFSOCK | S_IRWXUGO; 554 inode->i_uid = current_fsuid(); 555 inode->i_gid = current_fsgid(); 556 inode->i_op = &sockfs_inode_ops; 557 558 this_cpu_add(sockets_in_use, 1); 559 return sock; 560 } 561 562 /* 563 * In theory you can't get an open on this inode, but /proc provides 564 * a back door. Remember to keep it shut otherwise you'll let the 565 * creepy crawlies in. 566 */ 567 568 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 569 { 570 return -ENXIO; 571 } 572 573 const struct file_operations bad_sock_fops = { 574 .owner = THIS_MODULE, 575 .open = sock_no_open, 576 .llseek = noop_llseek, 577 }; 578 579 /** 580 * sock_release - close a socket 581 * @sock: socket to close 582 * 583 * The socket is released from the protocol stack if it has a release 584 * callback, and the inode is then released if the socket is bound to 585 * an inode not a file. 586 */ 587 588 void sock_release(struct socket *sock) 589 { 590 if (sock->ops) { 591 struct module *owner = sock->ops->owner; 592 593 sock->ops->release(sock); 594 sock->ops = NULL; 595 module_put(owner); 596 } 597 598 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 599 pr_err("%s: fasync list not empty!\n", __func__); 600 601 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 602 return; 603 604 this_cpu_sub(sockets_in_use, 1); 605 if (!sock->file) { 606 iput(SOCK_INODE(sock)); 607 return; 608 } 609 sock->file = NULL; 610 } 611 EXPORT_SYMBOL(sock_release); 612 613 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 614 { 615 u8 flags = *tx_flags; 616 617 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 618 flags |= SKBTX_HW_TSTAMP; 619 620 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 621 flags |= SKBTX_SW_TSTAMP; 622 623 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED) 624 flags |= SKBTX_SCHED_TSTAMP; 625 626 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK) 627 flags |= SKBTX_ACK_TSTAMP; 628 629 *tx_flags = flags; 630 } 631 EXPORT_SYMBOL(__sock_tx_timestamp); 632 633 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock, 634 struct msghdr *msg, size_t size) 635 { 636 struct sock_iocb *si = kiocb_to_siocb(iocb); 637 638 si->sock = sock; 639 si->scm = NULL; 640 si->msg = msg; 641 si->size = size; 642 643 return sock->ops->sendmsg(iocb, sock, msg, size); 644 } 645 646 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 647 struct msghdr *msg, size_t size) 648 { 649 int err = security_socket_sendmsg(sock, msg, size); 650 651 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size); 652 } 653 654 static int do_sock_sendmsg(struct socket *sock, struct msghdr *msg, 655 size_t size, bool nosec) 656 { 657 struct kiocb iocb; 658 struct sock_iocb siocb; 659 int ret; 660 661 init_sync_kiocb(&iocb, NULL); 662 iocb.private = &siocb; 663 ret = nosec ? __sock_sendmsg_nosec(&iocb, sock, msg, size) : 664 __sock_sendmsg(&iocb, sock, msg, size); 665 if (-EIOCBQUEUED == ret) 666 ret = wait_on_sync_kiocb(&iocb); 667 return ret; 668 } 669 670 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 671 { 672 return do_sock_sendmsg(sock, msg, size, false); 673 } 674 EXPORT_SYMBOL(sock_sendmsg); 675 676 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size) 677 { 678 return do_sock_sendmsg(sock, msg, size, true); 679 } 680 681 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 682 struct kvec *vec, size_t num, size_t size) 683 { 684 mm_segment_t oldfs = get_fs(); 685 int result; 686 687 set_fs(KERNEL_DS); 688 /* 689 * the following is safe, since for compiler definitions of kvec and 690 * iovec are identical, yielding the same in-core layout and alignment 691 */ 692 iov_iter_init(&msg->msg_iter, WRITE, (struct iovec *)vec, num, size); 693 result = sock_sendmsg(sock, msg, size); 694 set_fs(oldfs); 695 return result; 696 } 697 EXPORT_SYMBOL(kernel_sendmsg); 698 699 /* 700 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 701 */ 702 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 703 struct sk_buff *skb) 704 { 705 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 706 struct scm_timestamping tss; 707 int empty = 1; 708 struct skb_shared_hwtstamps *shhwtstamps = 709 skb_hwtstamps(skb); 710 711 /* Race occurred between timestamp enabling and packet 712 receiving. Fill in the current time for now. */ 713 if (need_software_tstamp && skb->tstamp.tv64 == 0) 714 __net_timestamp(skb); 715 716 if (need_software_tstamp) { 717 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 718 struct timeval tv; 719 skb_get_timestamp(skb, &tv); 720 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 721 sizeof(tv), &tv); 722 } else { 723 struct timespec ts; 724 skb_get_timestampns(skb, &ts); 725 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 726 sizeof(ts), &ts); 727 } 728 } 729 730 memset(&tss, 0, sizeof(tss)); 731 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 732 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 733 empty = 0; 734 if (shhwtstamps && 735 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 736 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 737 empty = 0; 738 if (!empty) 739 put_cmsg(msg, SOL_SOCKET, 740 SCM_TIMESTAMPING, sizeof(tss), &tss); 741 } 742 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 743 744 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 745 struct sk_buff *skb) 746 { 747 int ack; 748 749 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 750 return; 751 if (!skb->wifi_acked_valid) 752 return; 753 754 ack = skb->wifi_acked; 755 756 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 757 } 758 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 759 760 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 761 struct sk_buff *skb) 762 { 763 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 764 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 765 sizeof(__u32), &skb->dropcount); 766 } 767 768 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 769 struct sk_buff *skb) 770 { 771 sock_recv_timestamp(msg, sk, skb); 772 sock_recv_drops(msg, sk, skb); 773 } 774 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 775 776 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 777 struct msghdr *msg, size_t size, int flags) 778 { 779 struct sock_iocb *si = kiocb_to_siocb(iocb); 780 781 si->sock = sock; 782 si->scm = NULL; 783 si->msg = msg; 784 si->size = size; 785 si->flags = flags; 786 787 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 788 } 789 790 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 791 struct msghdr *msg, size_t size, int flags) 792 { 793 int err = security_socket_recvmsg(sock, msg, size, flags); 794 795 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 796 } 797 798 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 799 size_t size, int flags) 800 { 801 struct kiocb iocb; 802 struct sock_iocb siocb; 803 int ret; 804 805 init_sync_kiocb(&iocb, NULL); 806 iocb.private = &siocb; 807 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 808 if (-EIOCBQUEUED == ret) 809 ret = wait_on_sync_kiocb(&iocb); 810 return ret; 811 } 812 EXPORT_SYMBOL(sock_recvmsg); 813 814 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 815 size_t size, int flags) 816 { 817 struct kiocb iocb; 818 struct sock_iocb siocb; 819 int ret; 820 821 init_sync_kiocb(&iocb, NULL); 822 iocb.private = &siocb; 823 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 824 if (-EIOCBQUEUED == ret) 825 ret = wait_on_sync_kiocb(&iocb); 826 return ret; 827 } 828 829 /** 830 * kernel_recvmsg - Receive a message from a socket (kernel space) 831 * @sock: The socket to receive the message from 832 * @msg: Received message 833 * @vec: Input s/g array for message data 834 * @num: Size of input s/g array 835 * @size: Number of bytes to read 836 * @flags: Message flags (MSG_DONTWAIT, etc...) 837 * 838 * On return the msg structure contains the scatter/gather array passed in the 839 * vec argument. The array is modified so that it consists of the unfilled 840 * portion of the original array. 841 * 842 * The returned value is the total number of bytes received, or an error. 843 */ 844 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 845 struct kvec *vec, size_t num, size_t size, int flags) 846 { 847 mm_segment_t oldfs = get_fs(); 848 int result; 849 850 set_fs(KERNEL_DS); 851 /* 852 * the following is safe, since for compiler definitions of kvec and 853 * iovec are identical, yielding the same in-core layout and alignment 854 */ 855 iov_iter_init(&msg->msg_iter, READ, (struct iovec *)vec, num, size); 856 result = sock_recvmsg(sock, msg, size, flags); 857 set_fs(oldfs); 858 return result; 859 } 860 EXPORT_SYMBOL(kernel_recvmsg); 861 862 static ssize_t sock_sendpage(struct file *file, struct page *page, 863 int offset, size_t size, loff_t *ppos, int more) 864 { 865 struct socket *sock; 866 int flags; 867 868 sock = file->private_data; 869 870 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 871 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 872 flags |= more; 873 874 return kernel_sendpage(sock, page, offset, size, flags); 875 } 876 877 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 878 struct pipe_inode_info *pipe, size_t len, 879 unsigned int flags) 880 { 881 struct socket *sock = file->private_data; 882 883 if (unlikely(!sock->ops->splice_read)) 884 return -EINVAL; 885 886 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 887 } 888 889 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 890 struct sock_iocb *siocb) 891 { 892 if (!is_sync_kiocb(iocb)) 893 BUG(); 894 895 siocb->kiocb = iocb; 896 iocb->private = siocb; 897 return siocb; 898 } 899 900 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 901 struct file *file, const struct iovec *iov, 902 unsigned long nr_segs) 903 { 904 struct socket *sock = file->private_data; 905 size_t size = 0; 906 int i; 907 908 for (i = 0; i < nr_segs; i++) 909 size += iov[i].iov_len; 910 911 msg->msg_name = NULL; 912 msg->msg_namelen = 0; 913 msg->msg_control = NULL; 914 msg->msg_controllen = 0; 915 iov_iter_init(&msg->msg_iter, READ, iov, nr_segs, size); 916 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 917 918 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 919 } 920 921 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 922 unsigned long nr_segs, loff_t pos) 923 { 924 struct sock_iocb siocb, *x; 925 926 if (pos != 0) 927 return -ESPIPE; 928 929 if (iocb->ki_nbytes == 0) /* Match SYS5 behaviour */ 930 return 0; 931 932 933 x = alloc_sock_iocb(iocb, &siocb); 934 if (!x) 935 return -ENOMEM; 936 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 937 } 938 939 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 940 struct file *file, const struct iovec *iov, 941 unsigned long nr_segs) 942 { 943 struct socket *sock = file->private_data; 944 size_t size = 0; 945 int i; 946 947 for (i = 0; i < nr_segs; i++) 948 size += iov[i].iov_len; 949 950 msg->msg_name = NULL; 951 msg->msg_namelen = 0; 952 msg->msg_control = NULL; 953 msg->msg_controllen = 0; 954 iov_iter_init(&msg->msg_iter, WRITE, iov, nr_segs, size); 955 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 956 if (sock->type == SOCK_SEQPACKET) 957 msg->msg_flags |= MSG_EOR; 958 959 return __sock_sendmsg(iocb, sock, msg, size); 960 } 961 962 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 963 unsigned long nr_segs, loff_t pos) 964 { 965 struct sock_iocb siocb, *x; 966 967 if (pos != 0) 968 return -ESPIPE; 969 970 x = alloc_sock_iocb(iocb, &siocb); 971 if (!x) 972 return -ENOMEM; 973 974 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 975 } 976 977 /* 978 * Atomic setting of ioctl hooks to avoid race 979 * with module unload. 980 */ 981 982 static DEFINE_MUTEX(br_ioctl_mutex); 983 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 984 985 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 986 { 987 mutex_lock(&br_ioctl_mutex); 988 br_ioctl_hook = hook; 989 mutex_unlock(&br_ioctl_mutex); 990 } 991 EXPORT_SYMBOL(brioctl_set); 992 993 static DEFINE_MUTEX(vlan_ioctl_mutex); 994 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 995 996 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 997 { 998 mutex_lock(&vlan_ioctl_mutex); 999 vlan_ioctl_hook = hook; 1000 mutex_unlock(&vlan_ioctl_mutex); 1001 } 1002 EXPORT_SYMBOL(vlan_ioctl_set); 1003 1004 static DEFINE_MUTEX(dlci_ioctl_mutex); 1005 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1006 1007 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1008 { 1009 mutex_lock(&dlci_ioctl_mutex); 1010 dlci_ioctl_hook = hook; 1011 mutex_unlock(&dlci_ioctl_mutex); 1012 } 1013 EXPORT_SYMBOL(dlci_ioctl_set); 1014 1015 static long sock_do_ioctl(struct net *net, struct socket *sock, 1016 unsigned int cmd, unsigned long arg) 1017 { 1018 int err; 1019 void __user *argp = (void __user *)arg; 1020 1021 err = sock->ops->ioctl(sock, cmd, arg); 1022 1023 /* 1024 * If this ioctl is unknown try to hand it down 1025 * to the NIC driver. 1026 */ 1027 if (err == -ENOIOCTLCMD) 1028 err = dev_ioctl(net, cmd, argp); 1029 1030 return err; 1031 } 1032 1033 /* 1034 * With an ioctl, arg may well be a user mode pointer, but we don't know 1035 * what to do with it - that's up to the protocol still. 1036 */ 1037 1038 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1039 { 1040 struct socket *sock; 1041 struct sock *sk; 1042 void __user *argp = (void __user *)arg; 1043 int pid, err; 1044 struct net *net; 1045 1046 sock = file->private_data; 1047 sk = sock->sk; 1048 net = sock_net(sk); 1049 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 1050 err = dev_ioctl(net, cmd, argp); 1051 } else 1052 #ifdef CONFIG_WEXT_CORE 1053 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1054 err = dev_ioctl(net, cmd, argp); 1055 } else 1056 #endif 1057 switch (cmd) { 1058 case FIOSETOWN: 1059 case SIOCSPGRP: 1060 err = -EFAULT; 1061 if (get_user(pid, (int __user *)argp)) 1062 break; 1063 f_setown(sock->file, pid, 1); 1064 err = 0; 1065 break; 1066 case FIOGETOWN: 1067 case SIOCGPGRP: 1068 err = put_user(f_getown(sock->file), 1069 (int __user *)argp); 1070 break; 1071 case SIOCGIFBR: 1072 case SIOCSIFBR: 1073 case SIOCBRADDBR: 1074 case SIOCBRDELBR: 1075 err = -ENOPKG; 1076 if (!br_ioctl_hook) 1077 request_module("bridge"); 1078 1079 mutex_lock(&br_ioctl_mutex); 1080 if (br_ioctl_hook) 1081 err = br_ioctl_hook(net, cmd, argp); 1082 mutex_unlock(&br_ioctl_mutex); 1083 break; 1084 case SIOCGIFVLAN: 1085 case SIOCSIFVLAN: 1086 err = -ENOPKG; 1087 if (!vlan_ioctl_hook) 1088 request_module("8021q"); 1089 1090 mutex_lock(&vlan_ioctl_mutex); 1091 if (vlan_ioctl_hook) 1092 err = vlan_ioctl_hook(net, argp); 1093 mutex_unlock(&vlan_ioctl_mutex); 1094 break; 1095 case SIOCADDDLCI: 1096 case SIOCDELDLCI: 1097 err = -ENOPKG; 1098 if (!dlci_ioctl_hook) 1099 request_module("dlci"); 1100 1101 mutex_lock(&dlci_ioctl_mutex); 1102 if (dlci_ioctl_hook) 1103 err = dlci_ioctl_hook(cmd, argp); 1104 mutex_unlock(&dlci_ioctl_mutex); 1105 break; 1106 default: 1107 err = sock_do_ioctl(net, sock, cmd, arg); 1108 break; 1109 } 1110 return err; 1111 } 1112 1113 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1114 { 1115 int err; 1116 struct socket *sock = NULL; 1117 1118 err = security_socket_create(family, type, protocol, 1); 1119 if (err) 1120 goto out; 1121 1122 sock = sock_alloc(); 1123 if (!sock) { 1124 err = -ENOMEM; 1125 goto out; 1126 } 1127 1128 sock->type = type; 1129 err = security_socket_post_create(sock, family, type, protocol, 1); 1130 if (err) 1131 goto out_release; 1132 1133 out: 1134 *res = sock; 1135 return err; 1136 out_release: 1137 sock_release(sock); 1138 sock = NULL; 1139 goto out; 1140 } 1141 EXPORT_SYMBOL(sock_create_lite); 1142 1143 /* No kernel lock held - perfect */ 1144 static unsigned int sock_poll(struct file *file, poll_table *wait) 1145 { 1146 unsigned int busy_flag = 0; 1147 struct socket *sock; 1148 1149 /* 1150 * We can't return errors to poll, so it's either yes or no. 1151 */ 1152 sock = file->private_data; 1153 1154 if (sk_can_busy_loop(sock->sk)) { 1155 /* this socket can poll_ll so tell the system call */ 1156 busy_flag = POLL_BUSY_LOOP; 1157 1158 /* once, only if requested by syscall */ 1159 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1160 sk_busy_loop(sock->sk, 1); 1161 } 1162 1163 return busy_flag | sock->ops->poll(file, sock, wait); 1164 } 1165 1166 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1167 { 1168 struct socket *sock = file->private_data; 1169 1170 return sock->ops->mmap(file, sock, vma); 1171 } 1172 1173 static int sock_close(struct inode *inode, struct file *filp) 1174 { 1175 sock_release(SOCKET_I(inode)); 1176 return 0; 1177 } 1178 1179 /* 1180 * Update the socket async list 1181 * 1182 * Fasync_list locking strategy. 1183 * 1184 * 1. fasync_list is modified only under process context socket lock 1185 * i.e. under semaphore. 1186 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1187 * or under socket lock 1188 */ 1189 1190 static int sock_fasync(int fd, struct file *filp, int on) 1191 { 1192 struct socket *sock = filp->private_data; 1193 struct sock *sk = sock->sk; 1194 struct socket_wq *wq; 1195 1196 if (sk == NULL) 1197 return -EINVAL; 1198 1199 lock_sock(sk); 1200 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1201 fasync_helper(fd, filp, on, &wq->fasync_list); 1202 1203 if (!wq->fasync_list) 1204 sock_reset_flag(sk, SOCK_FASYNC); 1205 else 1206 sock_set_flag(sk, SOCK_FASYNC); 1207 1208 release_sock(sk); 1209 return 0; 1210 } 1211 1212 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1213 1214 int sock_wake_async(struct socket *sock, int how, int band) 1215 { 1216 struct socket_wq *wq; 1217 1218 if (!sock) 1219 return -1; 1220 rcu_read_lock(); 1221 wq = rcu_dereference(sock->wq); 1222 if (!wq || !wq->fasync_list) { 1223 rcu_read_unlock(); 1224 return -1; 1225 } 1226 switch (how) { 1227 case SOCK_WAKE_WAITD: 1228 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1229 break; 1230 goto call_kill; 1231 case SOCK_WAKE_SPACE: 1232 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1233 break; 1234 /* fall through */ 1235 case SOCK_WAKE_IO: 1236 call_kill: 1237 kill_fasync(&wq->fasync_list, SIGIO, band); 1238 break; 1239 case SOCK_WAKE_URG: 1240 kill_fasync(&wq->fasync_list, SIGURG, band); 1241 } 1242 rcu_read_unlock(); 1243 return 0; 1244 } 1245 EXPORT_SYMBOL(sock_wake_async); 1246 1247 int __sock_create(struct net *net, int family, int type, int protocol, 1248 struct socket **res, int kern) 1249 { 1250 int err; 1251 struct socket *sock; 1252 const struct net_proto_family *pf; 1253 1254 /* 1255 * Check protocol is in range 1256 */ 1257 if (family < 0 || family >= NPROTO) 1258 return -EAFNOSUPPORT; 1259 if (type < 0 || type >= SOCK_MAX) 1260 return -EINVAL; 1261 1262 /* Compatibility. 1263 1264 This uglymoron is moved from INET layer to here to avoid 1265 deadlock in module load. 1266 */ 1267 if (family == PF_INET && type == SOCK_PACKET) { 1268 static int warned; 1269 if (!warned) { 1270 warned = 1; 1271 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1272 current->comm); 1273 } 1274 family = PF_PACKET; 1275 } 1276 1277 err = security_socket_create(family, type, protocol, kern); 1278 if (err) 1279 return err; 1280 1281 /* 1282 * Allocate the socket and allow the family to set things up. if 1283 * the protocol is 0, the family is instructed to select an appropriate 1284 * default. 1285 */ 1286 sock = sock_alloc(); 1287 if (!sock) { 1288 net_warn_ratelimited("socket: no more sockets\n"); 1289 return -ENFILE; /* Not exactly a match, but its the 1290 closest posix thing */ 1291 } 1292 1293 sock->type = type; 1294 1295 #ifdef CONFIG_MODULES 1296 /* Attempt to load a protocol module if the find failed. 1297 * 1298 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1299 * requested real, full-featured networking support upon configuration. 1300 * Otherwise module support will break! 1301 */ 1302 if (rcu_access_pointer(net_families[family]) == NULL) 1303 request_module("net-pf-%d", family); 1304 #endif 1305 1306 rcu_read_lock(); 1307 pf = rcu_dereference(net_families[family]); 1308 err = -EAFNOSUPPORT; 1309 if (!pf) 1310 goto out_release; 1311 1312 /* 1313 * We will call the ->create function, that possibly is in a loadable 1314 * module, so we have to bump that loadable module refcnt first. 1315 */ 1316 if (!try_module_get(pf->owner)) 1317 goto out_release; 1318 1319 /* Now protected by module ref count */ 1320 rcu_read_unlock(); 1321 1322 err = pf->create(net, sock, protocol, kern); 1323 if (err < 0) 1324 goto out_module_put; 1325 1326 /* 1327 * Now to bump the refcnt of the [loadable] module that owns this 1328 * socket at sock_release time we decrement its refcnt. 1329 */ 1330 if (!try_module_get(sock->ops->owner)) 1331 goto out_module_busy; 1332 1333 /* 1334 * Now that we're done with the ->create function, the [loadable] 1335 * module can have its refcnt decremented 1336 */ 1337 module_put(pf->owner); 1338 err = security_socket_post_create(sock, family, type, protocol, kern); 1339 if (err) 1340 goto out_sock_release; 1341 *res = sock; 1342 1343 return 0; 1344 1345 out_module_busy: 1346 err = -EAFNOSUPPORT; 1347 out_module_put: 1348 sock->ops = NULL; 1349 module_put(pf->owner); 1350 out_sock_release: 1351 sock_release(sock); 1352 return err; 1353 1354 out_release: 1355 rcu_read_unlock(); 1356 goto out_sock_release; 1357 } 1358 EXPORT_SYMBOL(__sock_create); 1359 1360 int sock_create(int family, int type, int protocol, struct socket **res) 1361 { 1362 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1363 } 1364 EXPORT_SYMBOL(sock_create); 1365 1366 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1367 { 1368 return __sock_create(&init_net, family, type, protocol, res, 1); 1369 } 1370 EXPORT_SYMBOL(sock_create_kern); 1371 1372 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1373 { 1374 int retval; 1375 struct socket *sock; 1376 int flags; 1377 1378 /* Check the SOCK_* constants for consistency. */ 1379 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1380 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1381 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1382 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1383 1384 flags = type & ~SOCK_TYPE_MASK; 1385 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1386 return -EINVAL; 1387 type &= SOCK_TYPE_MASK; 1388 1389 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1390 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1391 1392 retval = sock_create(family, type, protocol, &sock); 1393 if (retval < 0) 1394 goto out; 1395 1396 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1397 if (retval < 0) 1398 goto out_release; 1399 1400 out: 1401 /* It may be already another descriptor 8) Not kernel problem. */ 1402 return retval; 1403 1404 out_release: 1405 sock_release(sock); 1406 return retval; 1407 } 1408 1409 /* 1410 * Create a pair of connected sockets. 1411 */ 1412 1413 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1414 int __user *, usockvec) 1415 { 1416 struct socket *sock1, *sock2; 1417 int fd1, fd2, err; 1418 struct file *newfile1, *newfile2; 1419 int flags; 1420 1421 flags = type & ~SOCK_TYPE_MASK; 1422 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1423 return -EINVAL; 1424 type &= SOCK_TYPE_MASK; 1425 1426 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1427 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1428 1429 /* 1430 * Obtain the first socket and check if the underlying protocol 1431 * supports the socketpair call. 1432 */ 1433 1434 err = sock_create(family, type, protocol, &sock1); 1435 if (err < 0) 1436 goto out; 1437 1438 err = sock_create(family, type, protocol, &sock2); 1439 if (err < 0) 1440 goto out_release_1; 1441 1442 err = sock1->ops->socketpair(sock1, sock2); 1443 if (err < 0) 1444 goto out_release_both; 1445 1446 fd1 = get_unused_fd_flags(flags); 1447 if (unlikely(fd1 < 0)) { 1448 err = fd1; 1449 goto out_release_both; 1450 } 1451 1452 fd2 = get_unused_fd_flags(flags); 1453 if (unlikely(fd2 < 0)) { 1454 err = fd2; 1455 goto out_put_unused_1; 1456 } 1457 1458 newfile1 = sock_alloc_file(sock1, flags, NULL); 1459 if (unlikely(IS_ERR(newfile1))) { 1460 err = PTR_ERR(newfile1); 1461 goto out_put_unused_both; 1462 } 1463 1464 newfile2 = sock_alloc_file(sock2, flags, NULL); 1465 if (IS_ERR(newfile2)) { 1466 err = PTR_ERR(newfile2); 1467 goto out_fput_1; 1468 } 1469 1470 err = put_user(fd1, &usockvec[0]); 1471 if (err) 1472 goto out_fput_both; 1473 1474 err = put_user(fd2, &usockvec[1]); 1475 if (err) 1476 goto out_fput_both; 1477 1478 audit_fd_pair(fd1, fd2); 1479 1480 fd_install(fd1, newfile1); 1481 fd_install(fd2, newfile2); 1482 /* fd1 and fd2 may be already another descriptors. 1483 * Not kernel problem. 1484 */ 1485 1486 return 0; 1487 1488 out_fput_both: 1489 fput(newfile2); 1490 fput(newfile1); 1491 put_unused_fd(fd2); 1492 put_unused_fd(fd1); 1493 goto out; 1494 1495 out_fput_1: 1496 fput(newfile1); 1497 put_unused_fd(fd2); 1498 put_unused_fd(fd1); 1499 sock_release(sock2); 1500 goto out; 1501 1502 out_put_unused_both: 1503 put_unused_fd(fd2); 1504 out_put_unused_1: 1505 put_unused_fd(fd1); 1506 out_release_both: 1507 sock_release(sock2); 1508 out_release_1: 1509 sock_release(sock1); 1510 out: 1511 return err; 1512 } 1513 1514 /* 1515 * Bind a name to a socket. Nothing much to do here since it's 1516 * the protocol's responsibility to handle the local address. 1517 * 1518 * We move the socket address to kernel space before we call 1519 * the protocol layer (having also checked the address is ok). 1520 */ 1521 1522 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1523 { 1524 struct socket *sock; 1525 struct sockaddr_storage address; 1526 int err, fput_needed; 1527 1528 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1529 if (sock) { 1530 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1531 if (err >= 0) { 1532 err = security_socket_bind(sock, 1533 (struct sockaddr *)&address, 1534 addrlen); 1535 if (!err) 1536 err = sock->ops->bind(sock, 1537 (struct sockaddr *) 1538 &address, addrlen); 1539 } 1540 fput_light(sock->file, fput_needed); 1541 } 1542 return err; 1543 } 1544 1545 /* 1546 * Perform a listen. Basically, we allow the protocol to do anything 1547 * necessary for a listen, and if that works, we mark the socket as 1548 * ready for listening. 1549 */ 1550 1551 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1552 { 1553 struct socket *sock; 1554 int err, fput_needed; 1555 int somaxconn; 1556 1557 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1558 if (sock) { 1559 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1560 if ((unsigned int)backlog > somaxconn) 1561 backlog = somaxconn; 1562 1563 err = security_socket_listen(sock, backlog); 1564 if (!err) 1565 err = sock->ops->listen(sock, backlog); 1566 1567 fput_light(sock->file, fput_needed); 1568 } 1569 return err; 1570 } 1571 1572 /* 1573 * For accept, we attempt to create a new socket, set up the link 1574 * with the client, wake up the client, then return the new 1575 * connected fd. We collect the address of the connector in kernel 1576 * space and move it to user at the very end. This is unclean because 1577 * we open the socket then return an error. 1578 * 1579 * 1003.1g adds the ability to recvmsg() to query connection pending 1580 * status to recvmsg. We need to add that support in a way thats 1581 * clean when we restucture accept also. 1582 */ 1583 1584 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1585 int __user *, upeer_addrlen, int, flags) 1586 { 1587 struct socket *sock, *newsock; 1588 struct file *newfile; 1589 int err, len, newfd, fput_needed; 1590 struct sockaddr_storage address; 1591 1592 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1593 return -EINVAL; 1594 1595 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1596 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1597 1598 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1599 if (!sock) 1600 goto out; 1601 1602 err = -ENFILE; 1603 newsock = sock_alloc(); 1604 if (!newsock) 1605 goto out_put; 1606 1607 newsock->type = sock->type; 1608 newsock->ops = sock->ops; 1609 1610 /* 1611 * We don't need try_module_get here, as the listening socket (sock) 1612 * has the protocol module (sock->ops->owner) held. 1613 */ 1614 __module_get(newsock->ops->owner); 1615 1616 newfd = get_unused_fd_flags(flags); 1617 if (unlikely(newfd < 0)) { 1618 err = newfd; 1619 sock_release(newsock); 1620 goto out_put; 1621 } 1622 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1623 if (unlikely(IS_ERR(newfile))) { 1624 err = PTR_ERR(newfile); 1625 put_unused_fd(newfd); 1626 sock_release(newsock); 1627 goto out_put; 1628 } 1629 1630 err = security_socket_accept(sock, newsock); 1631 if (err) 1632 goto out_fd; 1633 1634 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1635 if (err < 0) 1636 goto out_fd; 1637 1638 if (upeer_sockaddr) { 1639 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1640 &len, 2) < 0) { 1641 err = -ECONNABORTED; 1642 goto out_fd; 1643 } 1644 err = move_addr_to_user(&address, 1645 len, upeer_sockaddr, upeer_addrlen); 1646 if (err < 0) 1647 goto out_fd; 1648 } 1649 1650 /* File flags are not inherited via accept() unlike another OSes. */ 1651 1652 fd_install(newfd, newfile); 1653 err = newfd; 1654 1655 out_put: 1656 fput_light(sock->file, fput_needed); 1657 out: 1658 return err; 1659 out_fd: 1660 fput(newfile); 1661 put_unused_fd(newfd); 1662 goto out_put; 1663 } 1664 1665 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1666 int __user *, upeer_addrlen) 1667 { 1668 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1669 } 1670 1671 /* 1672 * Attempt to connect to a socket with the server address. The address 1673 * is in user space so we verify it is OK and move it to kernel space. 1674 * 1675 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1676 * break bindings 1677 * 1678 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1679 * other SEQPACKET protocols that take time to connect() as it doesn't 1680 * include the -EINPROGRESS status for such sockets. 1681 */ 1682 1683 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1684 int, addrlen) 1685 { 1686 struct socket *sock; 1687 struct sockaddr_storage address; 1688 int err, fput_needed; 1689 1690 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1691 if (!sock) 1692 goto out; 1693 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1694 if (err < 0) 1695 goto out_put; 1696 1697 err = 1698 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1699 if (err) 1700 goto out_put; 1701 1702 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1703 sock->file->f_flags); 1704 out_put: 1705 fput_light(sock->file, fput_needed); 1706 out: 1707 return err; 1708 } 1709 1710 /* 1711 * Get the local address ('name') of a socket object. Move the obtained 1712 * name to user space. 1713 */ 1714 1715 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1716 int __user *, usockaddr_len) 1717 { 1718 struct socket *sock; 1719 struct sockaddr_storage address; 1720 int len, err, fput_needed; 1721 1722 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1723 if (!sock) 1724 goto out; 1725 1726 err = security_socket_getsockname(sock); 1727 if (err) 1728 goto out_put; 1729 1730 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1731 if (err) 1732 goto out_put; 1733 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1734 1735 out_put: 1736 fput_light(sock->file, fput_needed); 1737 out: 1738 return err; 1739 } 1740 1741 /* 1742 * Get the remote address ('name') of a socket object. Move the obtained 1743 * name to user space. 1744 */ 1745 1746 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1747 int __user *, usockaddr_len) 1748 { 1749 struct socket *sock; 1750 struct sockaddr_storage address; 1751 int len, err, fput_needed; 1752 1753 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1754 if (sock != NULL) { 1755 err = security_socket_getpeername(sock); 1756 if (err) { 1757 fput_light(sock->file, fput_needed); 1758 return err; 1759 } 1760 1761 err = 1762 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1763 1); 1764 if (!err) 1765 err = move_addr_to_user(&address, len, usockaddr, 1766 usockaddr_len); 1767 fput_light(sock->file, fput_needed); 1768 } 1769 return err; 1770 } 1771 1772 /* 1773 * Send a datagram to a given address. We move the address into kernel 1774 * space and check the user space data area is readable before invoking 1775 * the protocol. 1776 */ 1777 1778 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1779 unsigned int, flags, struct sockaddr __user *, addr, 1780 int, addr_len) 1781 { 1782 struct socket *sock; 1783 struct sockaddr_storage address; 1784 int err; 1785 struct msghdr msg; 1786 struct iovec iov; 1787 int fput_needed; 1788 1789 if (len > INT_MAX) 1790 len = INT_MAX; 1791 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1792 if (!sock) 1793 goto out; 1794 1795 iov.iov_base = buff; 1796 iov.iov_len = len; 1797 msg.msg_name = NULL; 1798 iov_iter_init(&msg.msg_iter, WRITE, &iov, 1, len); 1799 msg.msg_control = NULL; 1800 msg.msg_controllen = 0; 1801 msg.msg_namelen = 0; 1802 if (addr) { 1803 err = move_addr_to_kernel(addr, addr_len, &address); 1804 if (err < 0) 1805 goto out_put; 1806 msg.msg_name = (struct sockaddr *)&address; 1807 msg.msg_namelen = addr_len; 1808 } 1809 if (sock->file->f_flags & O_NONBLOCK) 1810 flags |= MSG_DONTWAIT; 1811 msg.msg_flags = flags; 1812 err = sock_sendmsg(sock, &msg, len); 1813 1814 out_put: 1815 fput_light(sock->file, fput_needed); 1816 out: 1817 return err; 1818 } 1819 1820 /* 1821 * Send a datagram down a socket. 1822 */ 1823 1824 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1825 unsigned int, flags) 1826 { 1827 return sys_sendto(fd, buff, len, flags, NULL, 0); 1828 } 1829 1830 /* 1831 * Receive a frame from the socket and optionally record the address of the 1832 * sender. We verify the buffers are writable and if needed move the 1833 * sender address from kernel to user space. 1834 */ 1835 1836 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1837 unsigned int, flags, struct sockaddr __user *, addr, 1838 int __user *, addr_len) 1839 { 1840 struct socket *sock; 1841 struct iovec iov; 1842 struct msghdr msg; 1843 struct sockaddr_storage address; 1844 int err, err2; 1845 int fput_needed; 1846 1847 if (size > INT_MAX) 1848 size = INT_MAX; 1849 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1850 if (!sock) 1851 goto out; 1852 1853 msg.msg_control = NULL; 1854 msg.msg_controllen = 0; 1855 iov.iov_len = size; 1856 iov.iov_base = ubuf; 1857 iov_iter_init(&msg.msg_iter, READ, &iov, 1, size); 1858 /* Save some cycles and don't copy the address if not needed */ 1859 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1860 /* We assume all kernel code knows the size of sockaddr_storage */ 1861 msg.msg_namelen = 0; 1862 if (sock->file->f_flags & O_NONBLOCK) 1863 flags |= MSG_DONTWAIT; 1864 err = sock_recvmsg(sock, &msg, size, flags); 1865 1866 if (err >= 0 && addr != NULL) { 1867 err2 = move_addr_to_user(&address, 1868 msg.msg_namelen, addr, addr_len); 1869 if (err2 < 0) 1870 err = err2; 1871 } 1872 1873 fput_light(sock->file, fput_needed); 1874 out: 1875 return err; 1876 } 1877 1878 /* 1879 * Receive a datagram from a socket. 1880 */ 1881 1882 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1883 unsigned int, flags) 1884 { 1885 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1886 } 1887 1888 /* 1889 * Set a socket option. Because we don't know the option lengths we have 1890 * to pass the user mode parameter for the protocols to sort out. 1891 */ 1892 1893 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1894 char __user *, optval, int, optlen) 1895 { 1896 int err, fput_needed; 1897 struct socket *sock; 1898 1899 if (optlen < 0) 1900 return -EINVAL; 1901 1902 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1903 if (sock != NULL) { 1904 err = security_socket_setsockopt(sock, level, optname); 1905 if (err) 1906 goto out_put; 1907 1908 if (level == SOL_SOCKET) 1909 err = 1910 sock_setsockopt(sock, level, optname, optval, 1911 optlen); 1912 else 1913 err = 1914 sock->ops->setsockopt(sock, level, optname, optval, 1915 optlen); 1916 out_put: 1917 fput_light(sock->file, fput_needed); 1918 } 1919 return err; 1920 } 1921 1922 /* 1923 * Get a socket option. Because we don't know the option lengths we have 1924 * to pass a user mode parameter for the protocols to sort out. 1925 */ 1926 1927 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1928 char __user *, optval, int __user *, optlen) 1929 { 1930 int err, fput_needed; 1931 struct socket *sock; 1932 1933 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1934 if (sock != NULL) { 1935 err = security_socket_getsockopt(sock, level, optname); 1936 if (err) 1937 goto out_put; 1938 1939 if (level == SOL_SOCKET) 1940 err = 1941 sock_getsockopt(sock, level, optname, optval, 1942 optlen); 1943 else 1944 err = 1945 sock->ops->getsockopt(sock, level, optname, optval, 1946 optlen); 1947 out_put: 1948 fput_light(sock->file, fput_needed); 1949 } 1950 return err; 1951 } 1952 1953 /* 1954 * Shutdown a socket. 1955 */ 1956 1957 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1958 { 1959 int err, fput_needed; 1960 struct socket *sock; 1961 1962 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1963 if (sock != NULL) { 1964 err = security_socket_shutdown(sock, how); 1965 if (!err) 1966 err = sock->ops->shutdown(sock, how); 1967 fput_light(sock->file, fput_needed); 1968 } 1969 return err; 1970 } 1971 1972 /* A couple of helpful macros for getting the address of the 32/64 bit 1973 * fields which are the same type (int / unsigned) on our platforms. 1974 */ 1975 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1976 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1977 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1978 1979 struct used_address { 1980 struct sockaddr_storage name; 1981 unsigned int name_len; 1982 }; 1983 1984 static ssize_t copy_msghdr_from_user(struct msghdr *kmsg, 1985 struct user_msghdr __user *umsg, 1986 struct sockaddr __user **save_addr, 1987 struct iovec **iov) 1988 { 1989 struct sockaddr __user *uaddr; 1990 struct iovec __user *uiov; 1991 size_t nr_segs; 1992 ssize_t err; 1993 1994 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1995 __get_user(uaddr, &umsg->msg_name) || 1996 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1997 __get_user(uiov, &umsg->msg_iov) || 1998 __get_user(nr_segs, &umsg->msg_iovlen) || 1999 __get_user(kmsg->msg_control, &umsg->msg_control) || 2000 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 2001 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 2002 return -EFAULT; 2003 2004 if (!uaddr) 2005 kmsg->msg_namelen = 0; 2006 2007 if (kmsg->msg_namelen < 0) 2008 return -EINVAL; 2009 2010 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2011 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2012 2013 if (save_addr) 2014 *save_addr = uaddr; 2015 2016 if (uaddr && kmsg->msg_namelen) { 2017 if (!save_addr) { 2018 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 2019 kmsg->msg_name); 2020 if (err < 0) 2021 return err; 2022 } 2023 } else { 2024 kmsg->msg_name = NULL; 2025 kmsg->msg_namelen = 0; 2026 } 2027 2028 if (nr_segs > UIO_MAXIOV) 2029 return -EMSGSIZE; 2030 2031 err = rw_copy_check_uvector(save_addr ? READ : WRITE, 2032 uiov, nr_segs, 2033 UIO_FASTIOV, *iov, iov); 2034 if (err >= 0) 2035 iov_iter_init(&kmsg->msg_iter, save_addr ? READ : WRITE, 2036 *iov, nr_segs, err); 2037 return err; 2038 } 2039 2040 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2041 struct msghdr *msg_sys, unsigned int flags, 2042 struct used_address *used_address) 2043 { 2044 struct compat_msghdr __user *msg_compat = 2045 (struct compat_msghdr __user *)msg; 2046 struct sockaddr_storage address; 2047 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2048 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2049 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 2050 /* 20 is size of ipv6_pktinfo */ 2051 unsigned char *ctl_buf = ctl; 2052 int ctl_len, total_len; 2053 ssize_t err; 2054 2055 msg_sys->msg_name = &address; 2056 2057 if (MSG_CMSG_COMPAT & flags) 2058 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2059 else 2060 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2061 if (err < 0) 2062 goto out_freeiov; 2063 total_len = err; 2064 2065 err = -ENOBUFS; 2066 2067 if (msg_sys->msg_controllen > INT_MAX) 2068 goto out_freeiov; 2069 ctl_len = msg_sys->msg_controllen; 2070 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2071 err = 2072 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2073 sizeof(ctl)); 2074 if (err) 2075 goto out_freeiov; 2076 ctl_buf = msg_sys->msg_control; 2077 ctl_len = msg_sys->msg_controllen; 2078 } else if (ctl_len) { 2079 if (ctl_len > sizeof(ctl)) { 2080 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2081 if (ctl_buf == NULL) 2082 goto out_freeiov; 2083 } 2084 err = -EFAULT; 2085 /* 2086 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2087 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2088 * checking falls down on this. 2089 */ 2090 if (copy_from_user(ctl_buf, 2091 (void __user __force *)msg_sys->msg_control, 2092 ctl_len)) 2093 goto out_freectl; 2094 msg_sys->msg_control = ctl_buf; 2095 } 2096 msg_sys->msg_flags = flags; 2097 2098 if (sock->file->f_flags & O_NONBLOCK) 2099 msg_sys->msg_flags |= MSG_DONTWAIT; 2100 /* 2101 * If this is sendmmsg() and current destination address is same as 2102 * previously succeeded address, omit asking LSM's decision. 2103 * used_address->name_len is initialized to UINT_MAX so that the first 2104 * destination address never matches. 2105 */ 2106 if (used_address && msg_sys->msg_name && 2107 used_address->name_len == msg_sys->msg_namelen && 2108 !memcmp(&used_address->name, msg_sys->msg_name, 2109 used_address->name_len)) { 2110 err = sock_sendmsg_nosec(sock, msg_sys, total_len); 2111 goto out_freectl; 2112 } 2113 err = sock_sendmsg(sock, msg_sys, total_len); 2114 /* 2115 * If this is sendmmsg() and sending to current destination address was 2116 * successful, remember it. 2117 */ 2118 if (used_address && err >= 0) { 2119 used_address->name_len = msg_sys->msg_namelen; 2120 if (msg_sys->msg_name) 2121 memcpy(&used_address->name, msg_sys->msg_name, 2122 used_address->name_len); 2123 } 2124 2125 out_freectl: 2126 if (ctl_buf != ctl) 2127 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2128 out_freeiov: 2129 if (iov != iovstack) 2130 kfree(iov); 2131 return err; 2132 } 2133 2134 /* 2135 * BSD sendmsg interface 2136 */ 2137 2138 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2139 { 2140 int fput_needed, err; 2141 struct msghdr msg_sys; 2142 struct socket *sock; 2143 2144 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2145 if (!sock) 2146 goto out; 2147 2148 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 2149 2150 fput_light(sock->file, fput_needed); 2151 out: 2152 return err; 2153 } 2154 2155 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2156 { 2157 if (flags & MSG_CMSG_COMPAT) 2158 return -EINVAL; 2159 return __sys_sendmsg(fd, msg, flags); 2160 } 2161 2162 /* 2163 * Linux sendmmsg interface 2164 */ 2165 2166 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2167 unsigned int flags) 2168 { 2169 int fput_needed, err, datagrams; 2170 struct socket *sock; 2171 struct mmsghdr __user *entry; 2172 struct compat_mmsghdr __user *compat_entry; 2173 struct msghdr msg_sys; 2174 struct used_address used_address; 2175 2176 if (vlen > UIO_MAXIOV) 2177 vlen = UIO_MAXIOV; 2178 2179 datagrams = 0; 2180 2181 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2182 if (!sock) 2183 return err; 2184 2185 used_address.name_len = UINT_MAX; 2186 entry = mmsg; 2187 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2188 err = 0; 2189 2190 while (datagrams < vlen) { 2191 if (MSG_CMSG_COMPAT & flags) { 2192 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2193 &msg_sys, flags, &used_address); 2194 if (err < 0) 2195 break; 2196 err = __put_user(err, &compat_entry->msg_len); 2197 ++compat_entry; 2198 } else { 2199 err = ___sys_sendmsg(sock, 2200 (struct user_msghdr __user *)entry, 2201 &msg_sys, flags, &used_address); 2202 if (err < 0) 2203 break; 2204 err = put_user(err, &entry->msg_len); 2205 ++entry; 2206 } 2207 2208 if (err) 2209 break; 2210 ++datagrams; 2211 } 2212 2213 fput_light(sock->file, fput_needed); 2214 2215 /* We only return an error if no datagrams were able to be sent */ 2216 if (datagrams != 0) 2217 return datagrams; 2218 2219 return err; 2220 } 2221 2222 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2223 unsigned int, vlen, unsigned int, flags) 2224 { 2225 if (flags & MSG_CMSG_COMPAT) 2226 return -EINVAL; 2227 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2228 } 2229 2230 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2231 struct msghdr *msg_sys, unsigned int flags, int nosec) 2232 { 2233 struct compat_msghdr __user *msg_compat = 2234 (struct compat_msghdr __user *)msg; 2235 struct iovec iovstack[UIO_FASTIOV]; 2236 struct iovec *iov = iovstack; 2237 unsigned long cmsg_ptr; 2238 int total_len, len; 2239 ssize_t err; 2240 2241 /* kernel mode address */ 2242 struct sockaddr_storage addr; 2243 2244 /* user mode address pointers */ 2245 struct sockaddr __user *uaddr; 2246 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2247 2248 msg_sys->msg_name = &addr; 2249 2250 if (MSG_CMSG_COMPAT & flags) 2251 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2252 else 2253 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2254 if (err < 0) 2255 goto out_freeiov; 2256 total_len = err; 2257 2258 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2259 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2260 2261 /* We assume all kernel code knows the size of sockaddr_storage */ 2262 msg_sys->msg_namelen = 0; 2263 2264 if (sock->file->f_flags & O_NONBLOCK) 2265 flags |= MSG_DONTWAIT; 2266 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2267 total_len, flags); 2268 if (err < 0) 2269 goto out_freeiov; 2270 len = err; 2271 2272 if (uaddr != NULL) { 2273 err = move_addr_to_user(&addr, 2274 msg_sys->msg_namelen, uaddr, 2275 uaddr_len); 2276 if (err < 0) 2277 goto out_freeiov; 2278 } 2279 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2280 COMPAT_FLAGS(msg)); 2281 if (err) 2282 goto out_freeiov; 2283 if (MSG_CMSG_COMPAT & flags) 2284 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2285 &msg_compat->msg_controllen); 2286 else 2287 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2288 &msg->msg_controllen); 2289 if (err) 2290 goto out_freeiov; 2291 err = len; 2292 2293 out_freeiov: 2294 if (iov != iovstack) 2295 kfree(iov); 2296 return err; 2297 } 2298 2299 /* 2300 * BSD recvmsg interface 2301 */ 2302 2303 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2304 { 2305 int fput_needed, err; 2306 struct msghdr msg_sys; 2307 struct socket *sock; 2308 2309 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2310 if (!sock) 2311 goto out; 2312 2313 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2314 2315 fput_light(sock->file, fput_needed); 2316 out: 2317 return err; 2318 } 2319 2320 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2321 unsigned int, flags) 2322 { 2323 if (flags & MSG_CMSG_COMPAT) 2324 return -EINVAL; 2325 return __sys_recvmsg(fd, msg, flags); 2326 } 2327 2328 /* 2329 * Linux recvmmsg interface 2330 */ 2331 2332 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2333 unsigned int flags, struct timespec *timeout) 2334 { 2335 int fput_needed, err, datagrams; 2336 struct socket *sock; 2337 struct mmsghdr __user *entry; 2338 struct compat_mmsghdr __user *compat_entry; 2339 struct msghdr msg_sys; 2340 struct timespec end_time; 2341 2342 if (timeout && 2343 poll_select_set_timeout(&end_time, timeout->tv_sec, 2344 timeout->tv_nsec)) 2345 return -EINVAL; 2346 2347 datagrams = 0; 2348 2349 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2350 if (!sock) 2351 return err; 2352 2353 err = sock_error(sock->sk); 2354 if (err) 2355 goto out_put; 2356 2357 entry = mmsg; 2358 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2359 2360 while (datagrams < vlen) { 2361 /* 2362 * No need to ask LSM for more than the first datagram. 2363 */ 2364 if (MSG_CMSG_COMPAT & flags) { 2365 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2366 &msg_sys, flags & ~MSG_WAITFORONE, 2367 datagrams); 2368 if (err < 0) 2369 break; 2370 err = __put_user(err, &compat_entry->msg_len); 2371 ++compat_entry; 2372 } else { 2373 err = ___sys_recvmsg(sock, 2374 (struct user_msghdr __user *)entry, 2375 &msg_sys, flags & ~MSG_WAITFORONE, 2376 datagrams); 2377 if (err < 0) 2378 break; 2379 err = put_user(err, &entry->msg_len); 2380 ++entry; 2381 } 2382 2383 if (err) 2384 break; 2385 ++datagrams; 2386 2387 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2388 if (flags & MSG_WAITFORONE) 2389 flags |= MSG_DONTWAIT; 2390 2391 if (timeout) { 2392 ktime_get_ts(timeout); 2393 *timeout = timespec_sub(end_time, *timeout); 2394 if (timeout->tv_sec < 0) { 2395 timeout->tv_sec = timeout->tv_nsec = 0; 2396 break; 2397 } 2398 2399 /* Timeout, return less than vlen datagrams */ 2400 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2401 break; 2402 } 2403 2404 /* Out of band data, return right away */ 2405 if (msg_sys.msg_flags & MSG_OOB) 2406 break; 2407 } 2408 2409 out_put: 2410 fput_light(sock->file, fput_needed); 2411 2412 if (err == 0) 2413 return datagrams; 2414 2415 if (datagrams != 0) { 2416 /* 2417 * We may return less entries than requested (vlen) if the 2418 * sock is non block and there aren't enough datagrams... 2419 */ 2420 if (err != -EAGAIN) { 2421 /* 2422 * ... or if recvmsg returns an error after we 2423 * received some datagrams, where we record the 2424 * error to return on the next call or if the 2425 * app asks about it using getsockopt(SO_ERROR). 2426 */ 2427 sock->sk->sk_err = -err; 2428 } 2429 2430 return datagrams; 2431 } 2432 2433 return err; 2434 } 2435 2436 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2437 unsigned int, vlen, unsigned int, flags, 2438 struct timespec __user *, timeout) 2439 { 2440 int datagrams; 2441 struct timespec timeout_sys; 2442 2443 if (flags & MSG_CMSG_COMPAT) 2444 return -EINVAL; 2445 2446 if (!timeout) 2447 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2448 2449 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2450 return -EFAULT; 2451 2452 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2453 2454 if (datagrams > 0 && 2455 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2456 datagrams = -EFAULT; 2457 2458 return datagrams; 2459 } 2460 2461 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2462 /* Argument list sizes for sys_socketcall */ 2463 #define AL(x) ((x) * sizeof(unsigned long)) 2464 static const unsigned char nargs[21] = { 2465 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2466 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2467 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2468 AL(4), AL(5), AL(4) 2469 }; 2470 2471 #undef AL 2472 2473 /* 2474 * System call vectors. 2475 * 2476 * Argument checking cleaned up. Saved 20% in size. 2477 * This function doesn't need to set the kernel lock because 2478 * it is set by the callees. 2479 */ 2480 2481 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2482 { 2483 unsigned long a[AUDITSC_ARGS]; 2484 unsigned long a0, a1; 2485 int err; 2486 unsigned int len; 2487 2488 if (call < 1 || call > SYS_SENDMMSG) 2489 return -EINVAL; 2490 2491 len = nargs[call]; 2492 if (len > sizeof(a)) 2493 return -EINVAL; 2494 2495 /* copy_from_user should be SMP safe. */ 2496 if (copy_from_user(a, args, len)) 2497 return -EFAULT; 2498 2499 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2500 if (err) 2501 return err; 2502 2503 a0 = a[0]; 2504 a1 = a[1]; 2505 2506 switch (call) { 2507 case SYS_SOCKET: 2508 err = sys_socket(a0, a1, a[2]); 2509 break; 2510 case SYS_BIND: 2511 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2512 break; 2513 case SYS_CONNECT: 2514 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2515 break; 2516 case SYS_LISTEN: 2517 err = sys_listen(a0, a1); 2518 break; 2519 case SYS_ACCEPT: 2520 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2521 (int __user *)a[2], 0); 2522 break; 2523 case SYS_GETSOCKNAME: 2524 err = 2525 sys_getsockname(a0, (struct sockaddr __user *)a1, 2526 (int __user *)a[2]); 2527 break; 2528 case SYS_GETPEERNAME: 2529 err = 2530 sys_getpeername(a0, (struct sockaddr __user *)a1, 2531 (int __user *)a[2]); 2532 break; 2533 case SYS_SOCKETPAIR: 2534 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2535 break; 2536 case SYS_SEND: 2537 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2538 break; 2539 case SYS_SENDTO: 2540 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2541 (struct sockaddr __user *)a[4], a[5]); 2542 break; 2543 case SYS_RECV: 2544 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2545 break; 2546 case SYS_RECVFROM: 2547 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2548 (struct sockaddr __user *)a[4], 2549 (int __user *)a[5]); 2550 break; 2551 case SYS_SHUTDOWN: 2552 err = sys_shutdown(a0, a1); 2553 break; 2554 case SYS_SETSOCKOPT: 2555 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2556 break; 2557 case SYS_GETSOCKOPT: 2558 err = 2559 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2560 (int __user *)a[4]); 2561 break; 2562 case SYS_SENDMSG: 2563 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2564 break; 2565 case SYS_SENDMMSG: 2566 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2567 break; 2568 case SYS_RECVMSG: 2569 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2570 break; 2571 case SYS_RECVMMSG: 2572 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2573 (struct timespec __user *)a[4]); 2574 break; 2575 case SYS_ACCEPT4: 2576 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2577 (int __user *)a[2], a[3]); 2578 break; 2579 default: 2580 err = -EINVAL; 2581 break; 2582 } 2583 return err; 2584 } 2585 2586 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2587 2588 /** 2589 * sock_register - add a socket protocol handler 2590 * @ops: description of protocol 2591 * 2592 * This function is called by a protocol handler that wants to 2593 * advertise its address family, and have it linked into the 2594 * socket interface. The value ops->family corresponds to the 2595 * socket system call protocol family. 2596 */ 2597 int sock_register(const struct net_proto_family *ops) 2598 { 2599 int err; 2600 2601 if (ops->family >= NPROTO) { 2602 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2603 return -ENOBUFS; 2604 } 2605 2606 spin_lock(&net_family_lock); 2607 if (rcu_dereference_protected(net_families[ops->family], 2608 lockdep_is_held(&net_family_lock))) 2609 err = -EEXIST; 2610 else { 2611 rcu_assign_pointer(net_families[ops->family], ops); 2612 err = 0; 2613 } 2614 spin_unlock(&net_family_lock); 2615 2616 pr_info("NET: Registered protocol family %d\n", ops->family); 2617 return err; 2618 } 2619 EXPORT_SYMBOL(sock_register); 2620 2621 /** 2622 * sock_unregister - remove a protocol handler 2623 * @family: protocol family to remove 2624 * 2625 * This function is called by a protocol handler that wants to 2626 * remove its address family, and have it unlinked from the 2627 * new socket creation. 2628 * 2629 * If protocol handler is a module, then it can use module reference 2630 * counts to protect against new references. If protocol handler is not 2631 * a module then it needs to provide its own protection in 2632 * the ops->create routine. 2633 */ 2634 void sock_unregister(int family) 2635 { 2636 BUG_ON(family < 0 || family >= NPROTO); 2637 2638 spin_lock(&net_family_lock); 2639 RCU_INIT_POINTER(net_families[family], NULL); 2640 spin_unlock(&net_family_lock); 2641 2642 synchronize_rcu(); 2643 2644 pr_info("NET: Unregistered protocol family %d\n", family); 2645 } 2646 EXPORT_SYMBOL(sock_unregister); 2647 2648 static int __init sock_init(void) 2649 { 2650 int err; 2651 /* 2652 * Initialize the network sysctl infrastructure. 2653 */ 2654 err = net_sysctl_init(); 2655 if (err) 2656 goto out; 2657 2658 /* 2659 * Initialize skbuff SLAB cache 2660 */ 2661 skb_init(); 2662 2663 /* 2664 * Initialize the protocols module. 2665 */ 2666 2667 init_inodecache(); 2668 2669 err = register_filesystem(&sock_fs_type); 2670 if (err) 2671 goto out_fs; 2672 sock_mnt = kern_mount(&sock_fs_type); 2673 if (IS_ERR(sock_mnt)) { 2674 err = PTR_ERR(sock_mnt); 2675 goto out_mount; 2676 } 2677 2678 /* The real protocol initialization is performed in later initcalls. 2679 */ 2680 2681 #ifdef CONFIG_NETFILTER 2682 err = netfilter_init(); 2683 if (err) 2684 goto out; 2685 #endif 2686 2687 ptp_classifier_init(); 2688 2689 out: 2690 return err; 2691 2692 out_mount: 2693 unregister_filesystem(&sock_fs_type); 2694 out_fs: 2695 goto out; 2696 } 2697 2698 core_initcall(sock_init); /* early initcall */ 2699 2700 #ifdef CONFIG_PROC_FS 2701 void socket_seq_show(struct seq_file *seq) 2702 { 2703 int cpu; 2704 int counter = 0; 2705 2706 for_each_possible_cpu(cpu) 2707 counter += per_cpu(sockets_in_use, cpu); 2708 2709 /* It can be negative, by the way. 8) */ 2710 if (counter < 0) 2711 counter = 0; 2712 2713 seq_printf(seq, "sockets: used %d\n", counter); 2714 } 2715 #endif /* CONFIG_PROC_FS */ 2716 2717 #ifdef CONFIG_COMPAT 2718 static int do_siocgstamp(struct net *net, struct socket *sock, 2719 unsigned int cmd, void __user *up) 2720 { 2721 mm_segment_t old_fs = get_fs(); 2722 struct timeval ktv; 2723 int err; 2724 2725 set_fs(KERNEL_DS); 2726 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2727 set_fs(old_fs); 2728 if (!err) 2729 err = compat_put_timeval(&ktv, up); 2730 2731 return err; 2732 } 2733 2734 static int do_siocgstampns(struct net *net, struct socket *sock, 2735 unsigned int cmd, void __user *up) 2736 { 2737 mm_segment_t old_fs = get_fs(); 2738 struct timespec kts; 2739 int err; 2740 2741 set_fs(KERNEL_DS); 2742 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2743 set_fs(old_fs); 2744 if (!err) 2745 err = compat_put_timespec(&kts, up); 2746 2747 return err; 2748 } 2749 2750 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2751 { 2752 struct ifreq __user *uifr; 2753 int err; 2754 2755 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2756 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2757 return -EFAULT; 2758 2759 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2760 if (err) 2761 return err; 2762 2763 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2764 return -EFAULT; 2765 2766 return 0; 2767 } 2768 2769 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2770 { 2771 struct compat_ifconf ifc32; 2772 struct ifconf ifc; 2773 struct ifconf __user *uifc; 2774 struct compat_ifreq __user *ifr32; 2775 struct ifreq __user *ifr; 2776 unsigned int i, j; 2777 int err; 2778 2779 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2780 return -EFAULT; 2781 2782 memset(&ifc, 0, sizeof(ifc)); 2783 if (ifc32.ifcbuf == 0) { 2784 ifc32.ifc_len = 0; 2785 ifc.ifc_len = 0; 2786 ifc.ifc_req = NULL; 2787 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2788 } else { 2789 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2790 sizeof(struct ifreq); 2791 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2792 ifc.ifc_len = len; 2793 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2794 ifr32 = compat_ptr(ifc32.ifcbuf); 2795 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2796 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2797 return -EFAULT; 2798 ifr++; 2799 ifr32++; 2800 } 2801 } 2802 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2803 return -EFAULT; 2804 2805 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2806 if (err) 2807 return err; 2808 2809 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2810 return -EFAULT; 2811 2812 ifr = ifc.ifc_req; 2813 ifr32 = compat_ptr(ifc32.ifcbuf); 2814 for (i = 0, j = 0; 2815 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2816 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2817 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2818 return -EFAULT; 2819 ifr32++; 2820 ifr++; 2821 } 2822 2823 if (ifc32.ifcbuf == 0) { 2824 /* Translate from 64-bit structure multiple to 2825 * a 32-bit one. 2826 */ 2827 i = ifc.ifc_len; 2828 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2829 ifc32.ifc_len = i; 2830 } else { 2831 ifc32.ifc_len = i; 2832 } 2833 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2834 return -EFAULT; 2835 2836 return 0; 2837 } 2838 2839 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2840 { 2841 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2842 bool convert_in = false, convert_out = false; 2843 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2844 struct ethtool_rxnfc __user *rxnfc; 2845 struct ifreq __user *ifr; 2846 u32 rule_cnt = 0, actual_rule_cnt; 2847 u32 ethcmd; 2848 u32 data; 2849 int ret; 2850 2851 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2852 return -EFAULT; 2853 2854 compat_rxnfc = compat_ptr(data); 2855 2856 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2857 return -EFAULT; 2858 2859 /* Most ethtool structures are defined without padding. 2860 * Unfortunately struct ethtool_rxnfc is an exception. 2861 */ 2862 switch (ethcmd) { 2863 default: 2864 break; 2865 case ETHTOOL_GRXCLSRLALL: 2866 /* Buffer size is variable */ 2867 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2868 return -EFAULT; 2869 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2870 return -ENOMEM; 2871 buf_size += rule_cnt * sizeof(u32); 2872 /* fall through */ 2873 case ETHTOOL_GRXRINGS: 2874 case ETHTOOL_GRXCLSRLCNT: 2875 case ETHTOOL_GRXCLSRULE: 2876 case ETHTOOL_SRXCLSRLINS: 2877 convert_out = true; 2878 /* fall through */ 2879 case ETHTOOL_SRXCLSRLDEL: 2880 buf_size += sizeof(struct ethtool_rxnfc); 2881 convert_in = true; 2882 break; 2883 } 2884 2885 ifr = compat_alloc_user_space(buf_size); 2886 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2887 2888 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2889 return -EFAULT; 2890 2891 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2892 &ifr->ifr_ifru.ifru_data)) 2893 return -EFAULT; 2894 2895 if (convert_in) { 2896 /* We expect there to be holes between fs.m_ext and 2897 * fs.ring_cookie and at the end of fs, but nowhere else. 2898 */ 2899 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2900 sizeof(compat_rxnfc->fs.m_ext) != 2901 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2902 sizeof(rxnfc->fs.m_ext)); 2903 BUILD_BUG_ON( 2904 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2905 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2906 offsetof(struct ethtool_rxnfc, fs.location) - 2907 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2908 2909 if (copy_in_user(rxnfc, compat_rxnfc, 2910 (void __user *)(&rxnfc->fs.m_ext + 1) - 2911 (void __user *)rxnfc) || 2912 copy_in_user(&rxnfc->fs.ring_cookie, 2913 &compat_rxnfc->fs.ring_cookie, 2914 (void __user *)(&rxnfc->fs.location + 1) - 2915 (void __user *)&rxnfc->fs.ring_cookie) || 2916 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2917 sizeof(rxnfc->rule_cnt))) 2918 return -EFAULT; 2919 } 2920 2921 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2922 if (ret) 2923 return ret; 2924 2925 if (convert_out) { 2926 if (copy_in_user(compat_rxnfc, rxnfc, 2927 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2928 (const void __user *)rxnfc) || 2929 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2930 &rxnfc->fs.ring_cookie, 2931 (const void __user *)(&rxnfc->fs.location + 1) - 2932 (const void __user *)&rxnfc->fs.ring_cookie) || 2933 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2934 sizeof(rxnfc->rule_cnt))) 2935 return -EFAULT; 2936 2937 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2938 /* As an optimisation, we only copy the actual 2939 * number of rules that the underlying 2940 * function returned. Since Mallory might 2941 * change the rule count in user memory, we 2942 * check that it is less than the rule count 2943 * originally given (as the user buffer size), 2944 * which has been range-checked. 2945 */ 2946 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2947 return -EFAULT; 2948 if (actual_rule_cnt < rule_cnt) 2949 rule_cnt = actual_rule_cnt; 2950 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2951 &rxnfc->rule_locs[0], 2952 rule_cnt * sizeof(u32))) 2953 return -EFAULT; 2954 } 2955 } 2956 2957 return 0; 2958 } 2959 2960 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2961 { 2962 void __user *uptr; 2963 compat_uptr_t uptr32; 2964 struct ifreq __user *uifr; 2965 2966 uifr = compat_alloc_user_space(sizeof(*uifr)); 2967 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2968 return -EFAULT; 2969 2970 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2971 return -EFAULT; 2972 2973 uptr = compat_ptr(uptr32); 2974 2975 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2976 return -EFAULT; 2977 2978 return dev_ioctl(net, SIOCWANDEV, uifr); 2979 } 2980 2981 static int bond_ioctl(struct net *net, unsigned int cmd, 2982 struct compat_ifreq __user *ifr32) 2983 { 2984 struct ifreq kifr; 2985 mm_segment_t old_fs; 2986 int err; 2987 2988 switch (cmd) { 2989 case SIOCBONDENSLAVE: 2990 case SIOCBONDRELEASE: 2991 case SIOCBONDSETHWADDR: 2992 case SIOCBONDCHANGEACTIVE: 2993 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2994 return -EFAULT; 2995 2996 old_fs = get_fs(); 2997 set_fs(KERNEL_DS); 2998 err = dev_ioctl(net, cmd, 2999 (struct ifreq __user __force *) &kifr); 3000 set_fs(old_fs); 3001 3002 return err; 3003 default: 3004 return -ENOIOCTLCMD; 3005 } 3006 } 3007 3008 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3009 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3010 struct compat_ifreq __user *u_ifreq32) 3011 { 3012 struct ifreq __user *u_ifreq64; 3013 char tmp_buf[IFNAMSIZ]; 3014 void __user *data64; 3015 u32 data32; 3016 3017 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 3018 IFNAMSIZ)) 3019 return -EFAULT; 3020 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 3021 return -EFAULT; 3022 data64 = compat_ptr(data32); 3023 3024 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 3025 3026 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 3027 IFNAMSIZ)) 3028 return -EFAULT; 3029 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 3030 return -EFAULT; 3031 3032 return dev_ioctl(net, cmd, u_ifreq64); 3033 } 3034 3035 static int dev_ifsioc(struct net *net, struct socket *sock, 3036 unsigned int cmd, struct compat_ifreq __user *uifr32) 3037 { 3038 struct ifreq __user *uifr; 3039 int err; 3040 3041 uifr = compat_alloc_user_space(sizeof(*uifr)); 3042 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3043 return -EFAULT; 3044 3045 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3046 3047 if (!err) { 3048 switch (cmd) { 3049 case SIOCGIFFLAGS: 3050 case SIOCGIFMETRIC: 3051 case SIOCGIFMTU: 3052 case SIOCGIFMEM: 3053 case SIOCGIFHWADDR: 3054 case SIOCGIFINDEX: 3055 case SIOCGIFADDR: 3056 case SIOCGIFBRDADDR: 3057 case SIOCGIFDSTADDR: 3058 case SIOCGIFNETMASK: 3059 case SIOCGIFPFLAGS: 3060 case SIOCGIFTXQLEN: 3061 case SIOCGMIIPHY: 3062 case SIOCGMIIREG: 3063 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3064 err = -EFAULT; 3065 break; 3066 } 3067 } 3068 return err; 3069 } 3070 3071 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3072 struct compat_ifreq __user *uifr32) 3073 { 3074 struct ifreq ifr; 3075 struct compat_ifmap __user *uifmap32; 3076 mm_segment_t old_fs; 3077 int err; 3078 3079 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3080 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3081 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3082 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3083 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3084 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3085 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3086 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3087 if (err) 3088 return -EFAULT; 3089 3090 old_fs = get_fs(); 3091 set_fs(KERNEL_DS); 3092 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 3093 set_fs(old_fs); 3094 3095 if (cmd == SIOCGIFMAP && !err) { 3096 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3097 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3098 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3099 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3100 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3101 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3102 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3103 if (err) 3104 err = -EFAULT; 3105 } 3106 return err; 3107 } 3108 3109 struct rtentry32 { 3110 u32 rt_pad1; 3111 struct sockaddr rt_dst; /* target address */ 3112 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3113 struct sockaddr rt_genmask; /* target network mask (IP) */ 3114 unsigned short rt_flags; 3115 short rt_pad2; 3116 u32 rt_pad3; 3117 unsigned char rt_tos; 3118 unsigned char rt_class; 3119 short rt_pad4; 3120 short rt_metric; /* +1 for binary compatibility! */ 3121 /* char * */ u32 rt_dev; /* forcing the device at add */ 3122 u32 rt_mtu; /* per route MTU/Window */ 3123 u32 rt_window; /* Window clamping */ 3124 unsigned short rt_irtt; /* Initial RTT */ 3125 }; 3126 3127 struct in6_rtmsg32 { 3128 struct in6_addr rtmsg_dst; 3129 struct in6_addr rtmsg_src; 3130 struct in6_addr rtmsg_gateway; 3131 u32 rtmsg_type; 3132 u16 rtmsg_dst_len; 3133 u16 rtmsg_src_len; 3134 u32 rtmsg_metric; 3135 u32 rtmsg_info; 3136 u32 rtmsg_flags; 3137 s32 rtmsg_ifindex; 3138 }; 3139 3140 static int routing_ioctl(struct net *net, struct socket *sock, 3141 unsigned int cmd, void __user *argp) 3142 { 3143 int ret; 3144 void *r = NULL; 3145 struct in6_rtmsg r6; 3146 struct rtentry r4; 3147 char devname[16]; 3148 u32 rtdev; 3149 mm_segment_t old_fs = get_fs(); 3150 3151 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3152 struct in6_rtmsg32 __user *ur6 = argp; 3153 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3154 3 * sizeof(struct in6_addr)); 3155 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3156 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3157 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3158 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3159 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3160 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3161 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3162 3163 r = (void *) &r6; 3164 } else { /* ipv4 */ 3165 struct rtentry32 __user *ur4 = argp; 3166 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3167 3 * sizeof(struct sockaddr)); 3168 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3169 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3170 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3171 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3172 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3173 ret |= get_user(rtdev, &(ur4->rt_dev)); 3174 if (rtdev) { 3175 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3176 r4.rt_dev = (char __user __force *)devname; 3177 devname[15] = 0; 3178 } else 3179 r4.rt_dev = NULL; 3180 3181 r = (void *) &r4; 3182 } 3183 3184 if (ret) { 3185 ret = -EFAULT; 3186 goto out; 3187 } 3188 3189 set_fs(KERNEL_DS); 3190 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3191 set_fs(old_fs); 3192 3193 out: 3194 return ret; 3195 } 3196 3197 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3198 * for some operations; this forces use of the newer bridge-utils that 3199 * use compatible ioctls 3200 */ 3201 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3202 { 3203 compat_ulong_t tmp; 3204 3205 if (get_user(tmp, argp)) 3206 return -EFAULT; 3207 if (tmp == BRCTL_GET_VERSION) 3208 return BRCTL_VERSION + 1; 3209 return -EINVAL; 3210 } 3211 3212 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3213 unsigned int cmd, unsigned long arg) 3214 { 3215 void __user *argp = compat_ptr(arg); 3216 struct sock *sk = sock->sk; 3217 struct net *net = sock_net(sk); 3218 3219 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3220 return compat_ifr_data_ioctl(net, cmd, argp); 3221 3222 switch (cmd) { 3223 case SIOCSIFBR: 3224 case SIOCGIFBR: 3225 return old_bridge_ioctl(argp); 3226 case SIOCGIFNAME: 3227 return dev_ifname32(net, argp); 3228 case SIOCGIFCONF: 3229 return dev_ifconf(net, argp); 3230 case SIOCETHTOOL: 3231 return ethtool_ioctl(net, argp); 3232 case SIOCWANDEV: 3233 return compat_siocwandev(net, argp); 3234 case SIOCGIFMAP: 3235 case SIOCSIFMAP: 3236 return compat_sioc_ifmap(net, cmd, argp); 3237 case SIOCBONDENSLAVE: 3238 case SIOCBONDRELEASE: 3239 case SIOCBONDSETHWADDR: 3240 case SIOCBONDCHANGEACTIVE: 3241 return bond_ioctl(net, cmd, argp); 3242 case SIOCADDRT: 3243 case SIOCDELRT: 3244 return routing_ioctl(net, sock, cmd, argp); 3245 case SIOCGSTAMP: 3246 return do_siocgstamp(net, sock, cmd, argp); 3247 case SIOCGSTAMPNS: 3248 return do_siocgstampns(net, sock, cmd, argp); 3249 case SIOCBONDSLAVEINFOQUERY: 3250 case SIOCBONDINFOQUERY: 3251 case SIOCSHWTSTAMP: 3252 case SIOCGHWTSTAMP: 3253 return compat_ifr_data_ioctl(net, cmd, argp); 3254 3255 case FIOSETOWN: 3256 case SIOCSPGRP: 3257 case FIOGETOWN: 3258 case SIOCGPGRP: 3259 case SIOCBRADDBR: 3260 case SIOCBRDELBR: 3261 case SIOCGIFVLAN: 3262 case SIOCSIFVLAN: 3263 case SIOCADDDLCI: 3264 case SIOCDELDLCI: 3265 return sock_ioctl(file, cmd, arg); 3266 3267 case SIOCGIFFLAGS: 3268 case SIOCSIFFLAGS: 3269 case SIOCGIFMETRIC: 3270 case SIOCSIFMETRIC: 3271 case SIOCGIFMTU: 3272 case SIOCSIFMTU: 3273 case SIOCGIFMEM: 3274 case SIOCSIFMEM: 3275 case SIOCGIFHWADDR: 3276 case SIOCSIFHWADDR: 3277 case SIOCADDMULTI: 3278 case SIOCDELMULTI: 3279 case SIOCGIFINDEX: 3280 case SIOCGIFADDR: 3281 case SIOCSIFADDR: 3282 case SIOCSIFHWBROADCAST: 3283 case SIOCDIFADDR: 3284 case SIOCGIFBRDADDR: 3285 case SIOCSIFBRDADDR: 3286 case SIOCGIFDSTADDR: 3287 case SIOCSIFDSTADDR: 3288 case SIOCGIFNETMASK: 3289 case SIOCSIFNETMASK: 3290 case SIOCSIFPFLAGS: 3291 case SIOCGIFPFLAGS: 3292 case SIOCGIFTXQLEN: 3293 case SIOCSIFTXQLEN: 3294 case SIOCBRADDIF: 3295 case SIOCBRDELIF: 3296 case SIOCSIFNAME: 3297 case SIOCGMIIPHY: 3298 case SIOCGMIIREG: 3299 case SIOCSMIIREG: 3300 return dev_ifsioc(net, sock, cmd, argp); 3301 3302 case SIOCSARP: 3303 case SIOCGARP: 3304 case SIOCDARP: 3305 case SIOCATMARK: 3306 return sock_do_ioctl(net, sock, cmd, arg); 3307 } 3308 3309 return -ENOIOCTLCMD; 3310 } 3311 3312 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3313 unsigned long arg) 3314 { 3315 struct socket *sock = file->private_data; 3316 int ret = -ENOIOCTLCMD; 3317 struct sock *sk; 3318 struct net *net; 3319 3320 sk = sock->sk; 3321 net = sock_net(sk); 3322 3323 if (sock->ops->compat_ioctl) 3324 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3325 3326 if (ret == -ENOIOCTLCMD && 3327 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3328 ret = compat_wext_handle_ioctl(net, cmd, arg); 3329 3330 if (ret == -ENOIOCTLCMD) 3331 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3332 3333 return ret; 3334 } 3335 #endif 3336 3337 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3338 { 3339 return sock->ops->bind(sock, addr, addrlen); 3340 } 3341 EXPORT_SYMBOL(kernel_bind); 3342 3343 int kernel_listen(struct socket *sock, int backlog) 3344 { 3345 return sock->ops->listen(sock, backlog); 3346 } 3347 EXPORT_SYMBOL(kernel_listen); 3348 3349 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3350 { 3351 struct sock *sk = sock->sk; 3352 int err; 3353 3354 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3355 newsock); 3356 if (err < 0) 3357 goto done; 3358 3359 err = sock->ops->accept(sock, *newsock, flags); 3360 if (err < 0) { 3361 sock_release(*newsock); 3362 *newsock = NULL; 3363 goto done; 3364 } 3365 3366 (*newsock)->ops = sock->ops; 3367 __module_get((*newsock)->ops->owner); 3368 3369 done: 3370 return err; 3371 } 3372 EXPORT_SYMBOL(kernel_accept); 3373 3374 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3375 int flags) 3376 { 3377 return sock->ops->connect(sock, addr, addrlen, flags); 3378 } 3379 EXPORT_SYMBOL(kernel_connect); 3380 3381 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3382 int *addrlen) 3383 { 3384 return sock->ops->getname(sock, addr, addrlen, 0); 3385 } 3386 EXPORT_SYMBOL(kernel_getsockname); 3387 3388 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3389 int *addrlen) 3390 { 3391 return sock->ops->getname(sock, addr, addrlen, 1); 3392 } 3393 EXPORT_SYMBOL(kernel_getpeername); 3394 3395 int kernel_getsockopt(struct socket *sock, int level, int optname, 3396 char *optval, int *optlen) 3397 { 3398 mm_segment_t oldfs = get_fs(); 3399 char __user *uoptval; 3400 int __user *uoptlen; 3401 int err; 3402 3403 uoptval = (char __user __force *) optval; 3404 uoptlen = (int __user __force *) optlen; 3405 3406 set_fs(KERNEL_DS); 3407 if (level == SOL_SOCKET) 3408 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3409 else 3410 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3411 uoptlen); 3412 set_fs(oldfs); 3413 return err; 3414 } 3415 EXPORT_SYMBOL(kernel_getsockopt); 3416 3417 int kernel_setsockopt(struct socket *sock, int level, int optname, 3418 char *optval, unsigned int optlen) 3419 { 3420 mm_segment_t oldfs = get_fs(); 3421 char __user *uoptval; 3422 int err; 3423 3424 uoptval = (char __user __force *) optval; 3425 3426 set_fs(KERNEL_DS); 3427 if (level == SOL_SOCKET) 3428 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3429 else 3430 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3431 optlen); 3432 set_fs(oldfs); 3433 return err; 3434 } 3435 EXPORT_SYMBOL(kernel_setsockopt); 3436 3437 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3438 size_t size, int flags) 3439 { 3440 if (sock->ops->sendpage) 3441 return sock->ops->sendpage(sock, page, offset, size, flags); 3442 3443 return sock_no_sendpage(sock, page, offset, size, flags); 3444 } 3445 EXPORT_SYMBOL(kernel_sendpage); 3446 3447 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3448 { 3449 mm_segment_t oldfs = get_fs(); 3450 int err; 3451 3452 set_fs(KERNEL_DS); 3453 err = sock->ops->ioctl(sock, cmd, arg); 3454 set_fs(oldfs); 3455 3456 return err; 3457 } 3458 EXPORT_SYMBOL(kernel_sock_ioctl); 3459 3460 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3461 { 3462 return sock->ops->shutdown(sock, how); 3463 } 3464 EXPORT_SYMBOL(kernel_sock_shutdown); 3465