1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <linux/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <net/busy_poll.h> 108 #include <linux/errqueue.h> 109 110 #ifdef CONFIG_NET_RX_BUSY_POLL 111 unsigned int sysctl_net_busy_read __read_mostly; 112 unsigned int sysctl_net_busy_poll __read_mostly; 113 #endif 114 115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 117 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 118 119 static int sock_close(struct inode *inode, struct file *file); 120 static struct wait_queue_head *sock_get_poll_head(struct file *file, 121 __poll_t events); 122 static __poll_t sock_poll_mask(struct file *file, __poll_t); 123 static __poll_t sock_poll(struct file *file, struct poll_table_struct *wait); 124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 125 #ifdef CONFIG_COMPAT 126 static long compat_sock_ioctl(struct file *file, 127 unsigned int cmd, unsigned long arg); 128 #endif 129 static int sock_fasync(int fd, struct file *filp, int on); 130 static ssize_t sock_sendpage(struct file *file, struct page *page, 131 int offset, size_t size, loff_t *ppos, int more); 132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 133 struct pipe_inode_info *pipe, size_t len, 134 unsigned int flags); 135 136 /* 137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 138 * in the operation structures but are done directly via the socketcall() multiplexor. 139 */ 140 141 static const struct file_operations socket_file_ops = { 142 .owner = THIS_MODULE, 143 .llseek = no_llseek, 144 .read_iter = sock_read_iter, 145 .write_iter = sock_write_iter, 146 .get_poll_head = sock_get_poll_head, 147 .poll_mask = sock_poll_mask, 148 .poll = sock_poll, 149 .unlocked_ioctl = sock_ioctl, 150 #ifdef CONFIG_COMPAT 151 .compat_ioctl = compat_sock_ioctl, 152 #endif 153 .mmap = sock_mmap, 154 .release = sock_close, 155 .fasync = sock_fasync, 156 .sendpage = sock_sendpage, 157 .splice_write = generic_splice_sendpage, 158 .splice_read = sock_splice_read, 159 }; 160 161 /* 162 * The protocol list. Each protocol is registered in here. 163 */ 164 165 static DEFINE_SPINLOCK(net_family_lock); 166 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 167 168 /* 169 * Support routines. 170 * Move socket addresses back and forth across the kernel/user 171 * divide and look after the messy bits. 172 */ 173 174 /** 175 * move_addr_to_kernel - copy a socket address into kernel space 176 * @uaddr: Address in user space 177 * @kaddr: Address in kernel space 178 * @ulen: Length in user space 179 * 180 * The address is copied into kernel space. If the provided address is 181 * too long an error code of -EINVAL is returned. If the copy gives 182 * invalid addresses -EFAULT is returned. On a success 0 is returned. 183 */ 184 185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 186 { 187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 188 return -EINVAL; 189 if (ulen == 0) 190 return 0; 191 if (copy_from_user(kaddr, uaddr, ulen)) 192 return -EFAULT; 193 return audit_sockaddr(ulen, kaddr); 194 } 195 196 /** 197 * move_addr_to_user - copy an address to user space 198 * @kaddr: kernel space address 199 * @klen: length of address in kernel 200 * @uaddr: user space address 201 * @ulen: pointer to user length field 202 * 203 * The value pointed to by ulen on entry is the buffer length available. 204 * This is overwritten with the buffer space used. -EINVAL is returned 205 * if an overlong buffer is specified or a negative buffer size. -EFAULT 206 * is returned if either the buffer or the length field are not 207 * accessible. 208 * After copying the data up to the limit the user specifies, the true 209 * length of the data is written over the length limit the user 210 * specified. Zero is returned for a success. 211 */ 212 213 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 214 void __user *uaddr, int __user *ulen) 215 { 216 int err; 217 int len; 218 219 BUG_ON(klen > sizeof(struct sockaddr_storage)); 220 err = get_user(len, ulen); 221 if (err) 222 return err; 223 if (len > klen) 224 len = klen; 225 if (len < 0) 226 return -EINVAL; 227 if (len) { 228 if (audit_sockaddr(klen, kaddr)) 229 return -ENOMEM; 230 if (copy_to_user(uaddr, kaddr, len)) 231 return -EFAULT; 232 } 233 /* 234 * "fromlen shall refer to the value before truncation.." 235 * 1003.1g 236 */ 237 return __put_user(klen, ulen); 238 } 239 240 static struct kmem_cache *sock_inode_cachep __ro_after_init; 241 242 static struct inode *sock_alloc_inode(struct super_block *sb) 243 { 244 struct socket_alloc *ei; 245 struct socket_wq *wq; 246 247 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 248 if (!ei) 249 return NULL; 250 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 251 if (!wq) { 252 kmem_cache_free(sock_inode_cachep, ei); 253 return NULL; 254 } 255 init_waitqueue_head(&wq->wait); 256 wq->fasync_list = NULL; 257 wq->flags = 0; 258 RCU_INIT_POINTER(ei->socket.wq, wq); 259 260 ei->socket.state = SS_UNCONNECTED; 261 ei->socket.flags = 0; 262 ei->socket.ops = NULL; 263 ei->socket.sk = NULL; 264 ei->socket.file = NULL; 265 266 return &ei->vfs_inode; 267 } 268 269 static void sock_destroy_inode(struct inode *inode) 270 { 271 struct socket_alloc *ei; 272 struct socket_wq *wq; 273 274 ei = container_of(inode, struct socket_alloc, vfs_inode); 275 wq = rcu_dereference_protected(ei->socket.wq, 1); 276 kfree_rcu(wq, rcu); 277 kmem_cache_free(sock_inode_cachep, ei); 278 } 279 280 static void init_once(void *foo) 281 { 282 struct socket_alloc *ei = (struct socket_alloc *)foo; 283 284 inode_init_once(&ei->vfs_inode); 285 } 286 287 static void init_inodecache(void) 288 { 289 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 290 sizeof(struct socket_alloc), 291 0, 292 (SLAB_HWCACHE_ALIGN | 293 SLAB_RECLAIM_ACCOUNT | 294 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 295 init_once); 296 BUG_ON(sock_inode_cachep == NULL); 297 } 298 299 static const struct super_operations sockfs_ops = { 300 .alloc_inode = sock_alloc_inode, 301 .destroy_inode = sock_destroy_inode, 302 .statfs = simple_statfs, 303 }; 304 305 /* 306 * sockfs_dname() is called from d_path(). 307 */ 308 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 309 { 310 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 311 d_inode(dentry)->i_ino); 312 } 313 314 static const struct dentry_operations sockfs_dentry_operations = { 315 .d_dname = sockfs_dname, 316 }; 317 318 static int sockfs_xattr_get(const struct xattr_handler *handler, 319 struct dentry *dentry, struct inode *inode, 320 const char *suffix, void *value, size_t size) 321 { 322 if (value) { 323 if (dentry->d_name.len + 1 > size) 324 return -ERANGE; 325 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 326 } 327 return dentry->d_name.len + 1; 328 } 329 330 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 331 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 332 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 333 334 static const struct xattr_handler sockfs_xattr_handler = { 335 .name = XATTR_NAME_SOCKPROTONAME, 336 .get = sockfs_xattr_get, 337 }; 338 339 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 340 struct dentry *dentry, struct inode *inode, 341 const char *suffix, const void *value, 342 size_t size, int flags) 343 { 344 /* Handled by LSM. */ 345 return -EAGAIN; 346 } 347 348 static const struct xattr_handler sockfs_security_xattr_handler = { 349 .prefix = XATTR_SECURITY_PREFIX, 350 .set = sockfs_security_xattr_set, 351 }; 352 353 static const struct xattr_handler *sockfs_xattr_handlers[] = { 354 &sockfs_xattr_handler, 355 &sockfs_security_xattr_handler, 356 NULL 357 }; 358 359 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 360 int flags, const char *dev_name, void *data) 361 { 362 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 363 sockfs_xattr_handlers, 364 &sockfs_dentry_operations, SOCKFS_MAGIC); 365 } 366 367 static struct vfsmount *sock_mnt __read_mostly; 368 369 static struct file_system_type sock_fs_type = { 370 .name = "sockfs", 371 .mount = sockfs_mount, 372 .kill_sb = kill_anon_super, 373 }; 374 375 /* 376 * Obtains the first available file descriptor and sets it up for use. 377 * 378 * These functions create file structures and maps them to fd space 379 * of the current process. On success it returns file descriptor 380 * and file struct implicitly stored in sock->file. 381 * Note that another thread may close file descriptor before we return 382 * from this function. We use the fact that now we do not refer 383 * to socket after mapping. If one day we will need it, this 384 * function will increment ref. count on file by 1. 385 * 386 * In any case returned fd MAY BE not valid! 387 * This race condition is unavoidable 388 * with shared fd spaces, we cannot solve it inside kernel, 389 * but we take care of internal coherence yet. 390 */ 391 392 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 393 { 394 struct qstr name = { .name = "" }; 395 struct path path; 396 struct file *file; 397 398 if (dname) { 399 name.name = dname; 400 name.len = strlen(name.name); 401 } else if (sock->sk) { 402 name.name = sock->sk->sk_prot_creator->name; 403 name.len = strlen(name.name); 404 } 405 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 406 if (unlikely(!path.dentry)) { 407 sock_release(sock); 408 return ERR_PTR(-ENOMEM); 409 } 410 path.mnt = mntget(sock_mnt); 411 412 d_instantiate(path.dentry, SOCK_INODE(sock)); 413 414 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 415 &socket_file_ops); 416 if (IS_ERR(file)) { 417 /* drop dentry, keep inode for a bit */ 418 ihold(d_inode(path.dentry)); 419 path_put(&path); 420 /* ... and now kill it properly */ 421 sock_release(sock); 422 return file; 423 } 424 425 sock->file = file; 426 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 427 file->private_data = sock; 428 return file; 429 } 430 EXPORT_SYMBOL(sock_alloc_file); 431 432 static int sock_map_fd(struct socket *sock, int flags) 433 { 434 struct file *newfile; 435 int fd = get_unused_fd_flags(flags); 436 if (unlikely(fd < 0)) { 437 sock_release(sock); 438 return fd; 439 } 440 441 newfile = sock_alloc_file(sock, flags, NULL); 442 if (likely(!IS_ERR(newfile))) { 443 fd_install(fd, newfile); 444 return fd; 445 } 446 447 put_unused_fd(fd); 448 return PTR_ERR(newfile); 449 } 450 451 struct socket *sock_from_file(struct file *file, int *err) 452 { 453 if (file->f_op == &socket_file_ops) 454 return file->private_data; /* set in sock_map_fd */ 455 456 *err = -ENOTSOCK; 457 return NULL; 458 } 459 EXPORT_SYMBOL(sock_from_file); 460 461 /** 462 * sockfd_lookup - Go from a file number to its socket slot 463 * @fd: file handle 464 * @err: pointer to an error code return 465 * 466 * The file handle passed in is locked and the socket it is bound 467 * to is returned. If an error occurs the err pointer is overwritten 468 * with a negative errno code and NULL is returned. The function checks 469 * for both invalid handles and passing a handle which is not a socket. 470 * 471 * On a success the socket object pointer is returned. 472 */ 473 474 struct socket *sockfd_lookup(int fd, int *err) 475 { 476 struct file *file; 477 struct socket *sock; 478 479 file = fget(fd); 480 if (!file) { 481 *err = -EBADF; 482 return NULL; 483 } 484 485 sock = sock_from_file(file, err); 486 if (!sock) 487 fput(file); 488 return sock; 489 } 490 EXPORT_SYMBOL(sockfd_lookup); 491 492 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 493 { 494 struct fd f = fdget(fd); 495 struct socket *sock; 496 497 *err = -EBADF; 498 if (f.file) { 499 sock = sock_from_file(f.file, err); 500 if (likely(sock)) { 501 *fput_needed = f.flags; 502 return sock; 503 } 504 fdput(f); 505 } 506 return NULL; 507 } 508 509 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 510 size_t size) 511 { 512 ssize_t len; 513 ssize_t used = 0; 514 515 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 516 if (len < 0) 517 return len; 518 used += len; 519 if (buffer) { 520 if (size < used) 521 return -ERANGE; 522 buffer += len; 523 } 524 525 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 526 used += len; 527 if (buffer) { 528 if (size < used) 529 return -ERANGE; 530 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 531 buffer += len; 532 } 533 534 return used; 535 } 536 537 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 538 { 539 int err = simple_setattr(dentry, iattr); 540 541 if (!err && (iattr->ia_valid & ATTR_UID)) { 542 struct socket *sock = SOCKET_I(d_inode(dentry)); 543 544 sock->sk->sk_uid = iattr->ia_uid; 545 } 546 547 return err; 548 } 549 550 static const struct inode_operations sockfs_inode_ops = { 551 .listxattr = sockfs_listxattr, 552 .setattr = sockfs_setattr, 553 }; 554 555 /** 556 * sock_alloc - allocate a socket 557 * 558 * Allocate a new inode and socket object. The two are bound together 559 * and initialised. The socket is then returned. If we are out of inodes 560 * NULL is returned. 561 */ 562 563 struct socket *sock_alloc(void) 564 { 565 struct inode *inode; 566 struct socket *sock; 567 568 inode = new_inode_pseudo(sock_mnt->mnt_sb); 569 if (!inode) 570 return NULL; 571 572 sock = SOCKET_I(inode); 573 574 inode->i_ino = get_next_ino(); 575 inode->i_mode = S_IFSOCK | S_IRWXUGO; 576 inode->i_uid = current_fsuid(); 577 inode->i_gid = current_fsgid(); 578 inode->i_op = &sockfs_inode_ops; 579 580 return sock; 581 } 582 EXPORT_SYMBOL(sock_alloc); 583 584 /** 585 * sock_release - close a socket 586 * @sock: socket to close 587 * 588 * The socket is released from the protocol stack if it has a release 589 * callback, and the inode is then released if the socket is bound to 590 * an inode not a file. 591 */ 592 593 void sock_release(struct socket *sock) 594 { 595 if (sock->ops) { 596 struct module *owner = sock->ops->owner; 597 598 sock->ops->release(sock); 599 sock->ops = NULL; 600 module_put(owner); 601 } 602 603 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 604 pr_err("%s: fasync list not empty!\n", __func__); 605 606 if (!sock->file) { 607 iput(SOCK_INODE(sock)); 608 return; 609 } 610 sock->file = NULL; 611 } 612 EXPORT_SYMBOL(sock_release); 613 614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 615 { 616 u8 flags = *tx_flags; 617 618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 619 flags |= SKBTX_HW_TSTAMP; 620 621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 622 flags |= SKBTX_SW_TSTAMP; 623 624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 625 flags |= SKBTX_SCHED_TSTAMP; 626 627 *tx_flags = flags; 628 } 629 EXPORT_SYMBOL(__sock_tx_timestamp); 630 631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 632 { 633 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 634 BUG_ON(ret == -EIOCBQUEUED); 635 return ret; 636 } 637 638 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 639 { 640 int err = security_socket_sendmsg(sock, msg, 641 msg_data_left(msg)); 642 643 return err ?: sock_sendmsg_nosec(sock, msg); 644 } 645 EXPORT_SYMBOL(sock_sendmsg); 646 647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 648 struct kvec *vec, size_t num, size_t size) 649 { 650 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 651 return sock_sendmsg(sock, msg); 652 } 653 EXPORT_SYMBOL(kernel_sendmsg); 654 655 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 656 struct kvec *vec, size_t num, size_t size) 657 { 658 struct socket *sock = sk->sk_socket; 659 660 if (!sock->ops->sendmsg_locked) 661 return sock_no_sendmsg_locked(sk, msg, size); 662 663 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 664 665 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 666 } 667 EXPORT_SYMBOL(kernel_sendmsg_locked); 668 669 static bool skb_is_err_queue(const struct sk_buff *skb) 670 { 671 /* pkt_type of skbs enqueued on the error queue are set to 672 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 673 * in recvmsg, since skbs received on a local socket will never 674 * have a pkt_type of PACKET_OUTGOING. 675 */ 676 return skb->pkt_type == PACKET_OUTGOING; 677 } 678 679 /* On transmit, software and hardware timestamps are returned independently. 680 * As the two skb clones share the hardware timestamp, which may be updated 681 * before the software timestamp is received, a hardware TX timestamp may be 682 * returned only if there is no software TX timestamp. Ignore false software 683 * timestamps, which may be made in the __sock_recv_timestamp() call when the 684 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a 685 * hardware timestamp. 686 */ 687 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 688 { 689 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 690 } 691 692 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 693 { 694 struct scm_ts_pktinfo ts_pktinfo; 695 struct net_device *orig_dev; 696 697 if (!skb_mac_header_was_set(skb)) 698 return; 699 700 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 701 702 rcu_read_lock(); 703 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 704 if (orig_dev) 705 ts_pktinfo.if_index = orig_dev->ifindex; 706 rcu_read_unlock(); 707 708 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 709 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 710 sizeof(ts_pktinfo), &ts_pktinfo); 711 } 712 713 /* 714 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 715 */ 716 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 717 struct sk_buff *skb) 718 { 719 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 720 struct scm_timestamping tss; 721 int empty = 1, false_tstamp = 0; 722 struct skb_shared_hwtstamps *shhwtstamps = 723 skb_hwtstamps(skb); 724 725 /* Race occurred between timestamp enabling and packet 726 receiving. Fill in the current time for now. */ 727 if (need_software_tstamp && skb->tstamp == 0) { 728 __net_timestamp(skb); 729 false_tstamp = 1; 730 } 731 732 if (need_software_tstamp) { 733 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 734 struct timeval tv; 735 skb_get_timestamp(skb, &tv); 736 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 737 sizeof(tv), &tv); 738 } else { 739 struct timespec ts; 740 skb_get_timestampns(skb, &ts); 741 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 742 sizeof(ts), &ts); 743 } 744 } 745 746 memset(&tss, 0, sizeof(tss)); 747 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 748 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 749 empty = 0; 750 if (shhwtstamps && 751 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 752 !skb_is_swtx_tstamp(skb, false_tstamp) && 753 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 754 empty = 0; 755 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 756 !skb_is_err_queue(skb)) 757 put_ts_pktinfo(msg, skb); 758 } 759 if (!empty) { 760 put_cmsg(msg, SOL_SOCKET, 761 SCM_TIMESTAMPING, sizeof(tss), &tss); 762 763 if (skb_is_err_queue(skb) && skb->len && 764 SKB_EXT_ERR(skb)->opt_stats) 765 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 766 skb->len, skb->data); 767 } 768 } 769 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 770 771 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 772 struct sk_buff *skb) 773 { 774 int ack; 775 776 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 777 return; 778 if (!skb->wifi_acked_valid) 779 return; 780 781 ack = skb->wifi_acked; 782 783 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 784 } 785 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 786 787 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 788 struct sk_buff *skb) 789 { 790 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 791 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 792 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 793 } 794 795 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 796 struct sk_buff *skb) 797 { 798 sock_recv_timestamp(msg, sk, skb); 799 sock_recv_drops(msg, sk, skb); 800 } 801 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 802 803 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 804 int flags) 805 { 806 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 807 } 808 809 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 810 { 811 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 812 813 return err ?: sock_recvmsg_nosec(sock, msg, flags); 814 } 815 EXPORT_SYMBOL(sock_recvmsg); 816 817 /** 818 * kernel_recvmsg - Receive a message from a socket (kernel space) 819 * @sock: The socket to receive the message from 820 * @msg: Received message 821 * @vec: Input s/g array for message data 822 * @num: Size of input s/g array 823 * @size: Number of bytes to read 824 * @flags: Message flags (MSG_DONTWAIT, etc...) 825 * 826 * On return the msg structure contains the scatter/gather array passed in the 827 * vec argument. The array is modified so that it consists of the unfilled 828 * portion of the original array. 829 * 830 * The returned value is the total number of bytes received, or an error. 831 */ 832 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 833 struct kvec *vec, size_t num, size_t size, int flags) 834 { 835 mm_segment_t oldfs = get_fs(); 836 int result; 837 838 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 839 set_fs(KERNEL_DS); 840 result = sock_recvmsg(sock, msg, flags); 841 set_fs(oldfs); 842 return result; 843 } 844 EXPORT_SYMBOL(kernel_recvmsg); 845 846 static ssize_t sock_sendpage(struct file *file, struct page *page, 847 int offset, size_t size, loff_t *ppos, int more) 848 { 849 struct socket *sock; 850 int flags; 851 852 sock = file->private_data; 853 854 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 855 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 856 flags |= more; 857 858 return kernel_sendpage(sock, page, offset, size, flags); 859 } 860 861 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 862 struct pipe_inode_info *pipe, size_t len, 863 unsigned int flags) 864 { 865 struct socket *sock = file->private_data; 866 867 if (unlikely(!sock->ops->splice_read)) 868 return -EINVAL; 869 870 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 871 } 872 873 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 874 { 875 struct file *file = iocb->ki_filp; 876 struct socket *sock = file->private_data; 877 struct msghdr msg = {.msg_iter = *to, 878 .msg_iocb = iocb}; 879 ssize_t res; 880 881 if (file->f_flags & O_NONBLOCK) 882 msg.msg_flags = MSG_DONTWAIT; 883 884 if (iocb->ki_pos != 0) 885 return -ESPIPE; 886 887 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 888 return 0; 889 890 res = sock_recvmsg(sock, &msg, msg.msg_flags); 891 *to = msg.msg_iter; 892 return res; 893 } 894 895 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 896 { 897 struct file *file = iocb->ki_filp; 898 struct socket *sock = file->private_data; 899 struct msghdr msg = {.msg_iter = *from, 900 .msg_iocb = iocb}; 901 ssize_t res; 902 903 if (iocb->ki_pos != 0) 904 return -ESPIPE; 905 906 if (file->f_flags & O_NONBLOCK) 907 msg.msg_flags = MSG_DONTWAIT; 908 909 if (sock->type == SOCK_SEQPACKET) 910 msg.msg_flags |= MSG_EOR; 911 912 res = sock_sendmsg(sock, &msg); 913 *from = msg.msg_iter; 914 return res; 915 } 916 917 /* 918 * Atomic setting of ioctl hooks to avoid race 919 * with module unload. 920 */ 921 922 static DEFINE_MUTEX(br_ioctl_mutex); 923 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 924 925 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 926 { 927 mutex_lock(&br_ioctl_mutex); 928 br_ioctl_hook = hook; 929 mutex_unlock(&br_ioctl_mutex); 930 } 931 EXPORT_SYMBOL(brioctl_set); 932 933 static DEFINE_MUTEX(vlan_ioctl_mutex); 934 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 935 936 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 937 { 938 mutex_lock(&vlan_ioctl_mutex); 939 vlan_ioctl_hook = hook; 940 mutex_unlock(&vlan_ioctl_mutex); 941 } 942 EXPORT_SYMBOL(vlan_ioctl_set); 943 944 static DEFINE_MUTEX(dlci_ioctl_mutex); 945 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 946 947 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 948 { 949 mutex_lock(&dlci_ioctl_mutex); 950 dlci_ioctl_hook = hook; 951 mutex_unlock(&dlci_ioctl_mutex); 952 } 953 EXPORT_SYMBOL(dlci_ioctl_set); 954 955 static long sock_do_ioctl(struct net *net, struct socket *sock, 956 unsigned int cmd, unsigned long arg) 957 { 958 int err; 959 void __user *argp = (void __user *)arg; 960 961 err = sock->ops->ioctl(sock, cmd, arg); 962 963 /* 964 * If this ioctl is unknown try to hand it down 965 * to the NIC driver. 966 */ 967 if (err != -ENOIOCTLCMD) 968 return err; 969 970 if (cmd == SIOCGIFCONF) { 971 struct ifconf ifc; 972 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 973 return -EFAULT; 974 rtnl_lock(); 975 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 976 rtnl_unlock(); 977 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 978 err = -EFAULT; 979 } else { 980 struct ifreq ifr; 981 bool need_copyout; 982 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 983 return -EFAULT; 984 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 985 if (!err && need_copyout) 986 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 987 return -EFAULT; 988 } 989 return err; 990 } 991 992 /* 993 * With an ioctl, arg may well be a user mode pointer, but we don't know 994 * what to do with it - that's up to the protocol still. 995 */ 996 997 struct ns_common *get_net_ns(struct ns_common *ns) 998 { 999 return &get_net(container_of(ns, struct net, ns))->ns; 1000 } 1001 EXPORT_SYMBOL_GPL(get_net_ns); 1002 1003 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1004 { 1005 struct socket *sock; 1006 struct sock *sk; 1007 void __user *argp = (void __user *)arg; 1008 int pid, err; 1009 struct net *net; 1010 1011 sock = file->private_data; 1012 sk = sock->sk; 1013 net = sock_net(sk); 1014 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1015 struct ifreq ifr; 1016 bool need_copyout; 1017 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1018 return -EFAULT; 1019 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1020 if (!err && need_copyout) 1021 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1022 return -EFAULT; 1023 } else 1024 #ifdef CONFIG_WEXT_CORE 1025 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1026 err = wext_handle_ioctl(net, cmd, argp); 1027 } else 1028 #endif 1029 switch (cmd) { 1030 case FIOSETOWN: 1031 case SIOCSPGRP: 1032 err = -EFAULT; 1033 if (get_user(pid, (int __user *)argp)) 1034 break; 1035 err = f_setown(sock->file, pid, 1); 1036 break; 1037 case FIOGETOWN: 1038 case SIOCGPGRP: 1039 err = put_user(f_getown(sock->file), 1040 (int __user *)argp); 1041 break; 1042 case SIOCGIFBR: 1043 case SIOCSIFBR: 1044 case SIOCBRADDBR: 1045 case SIOCBRDELBR: 1046 err = -ENOPKG; 1047 if (!br_ioctl_hook) 1048 request_module("bridge"); 1049 1050 mutex_lock(&br_ioctl_mutex); 1051 if (br_ioctl_hook) 1052 err = br_ioctl_hook(net, cmd, argp); 1053 mutex_unlock(&br_ioctl_mutex); 1054 break; 1055 case SIOCGIFVLAN: 1056 case SIOCSIFVLAN: 1057 err = -ENOPKG; 1058 if (!vlan_ioctl_hook) 1059 request_module("8021q"); 1060 1061 mutex_lock(&vlan_ioctl_mutex); 1062 if (vlan_ioctl_hook) 1063 err = vlan_ioctl_hook(net, argp); 1064 mutex_unlock(&vlan_ioctl_mutex); 1065 break; 1066 case SIOCADDDLCI: 1067 case SIOCDELDLCI: 1068 err = -ENOPKG; 1069 if (!dlci_ioctl_hook) 1070 request_module("dlci"); 1071 1072 mutex_lock(&dlci_ioctl_mutex); 1073 if (dlci_ioctl_hook) 1074 err = dlci_ioctl_hook(cmd, argp); 1075 mutex_unlock(&dlci_ioctl_mutex); 1076 break; 1077 case SIOCGSKNS: 1078 err = -EPERM; 1079 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1080 break; 1081 1082 err = open_related_ns(&net->ns, get_net_ns); 1083 break; 1084 default: 1085 err = sock_do_ioctl(net, sock, cmd, arg); 1086 break; 1087 } 1088 return err; 1089 } 1090 1091 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1092 { 1093 int err; 1094 struct socket *sock = NULL; 1095 1096 err = security_socket_create(family, type, protocol, 1); 1097 if (err) 1098 goto out; 1099 1100 sock = sock_alloc(); 1101 if (!sock) { 1102 err = -ENOMEM; 1103 goto out; 1104 } 1105 1106 sock->type = type; 1107 err = security_socket_post_create(sock, family, type, protocol, 1); 1108 if (err) 1109 goto out_release; 1110 1111 out: 1112 *res = sock; 1113 return err; 1114 out_release: 1115 sock_release(sock); 1116 sock = NULL; 1117 goto out; 1118 } 1119 EXPORT_SYMBOL(sock_create_lite); 1120 1121 static struct wait_queue_head *sock_get_poll_head(struct file *file, 1122 __poll_t events) 1123 { 1124 struct socket *sock = file->private_data; 1125 1126 if (!sock->ops->poll_mask) 1127 return NULL; 1128 sock_poll_busy_loop(sock, events); 1129 return sk_sleep(sock->sk); 1130 } 1131 1132 static __poll_t sock_poll_mask(struct file *file, __poll_t events) 1133 { 1134 struct socket *sock = file->private_data; 1135 1136 /* 1137 * We need to be sure we are in sync with the socket flags modification. 1138 * 1139 * This memory barrier is paired in the wq_has_sleeper. 1140 */ 1141 smp_mb(); 1142 1143 /* this socket can poll_ll so tell the system call */ 1144 return sock->ops->poll_mask(sock, events) | 1145 (sk_can_busy_loop(sock->sk) ? POLL_BUSY_LOOP : 0); 1146 } 1147 1148 /* No kernel lock held - perfect */ 1149 static __poll_t sock_poll(struct file *file, poll_table *wait) 1150 { 1151 struct socket *sock = file->private_data; 1152 __poll_t events = poll_requested_events(wait), mask = 0; 1153 1154 if (sock->ops->poll) { 1155 sock_poll_busy_loop(sock, events); 1156 mask = sock->ops->poll(file, sock, wait); 1157 } else if (sock->ops->poll_mask) { 1158 sock_poll_wait(file, sock_get_poll_head(file, events), wait); 1159 mask = sock->ops->poll_mask(sock, events); 1160 } 1161 1162 return mask | sock_poll_busy_flag(sock); 1163 } 1164 1165 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1166 { 1167 struct socket *sock = file->private_data; 1168 1169 return sock->ops->mmap(file, sock, vma); 1170 } 1171 1172 static int sock_close(struct inode *inode, struct file *filp) 1173 { 1174 sock_release(SOCKET_I(inode)); 1175 return 0; 1176 } 1177 1178 /* 1179 * Update the socket async list 1180 * 1181 * Fasync_list locking strategy. 1182 * 1183 * 1. fasync_list is modified only under process context socket lock 1184 * i.e. under semaphore. 1185 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1186 * or under socket lock 1187 */ 1188 1189 static int sock_fasync(int fd, struct file *filp, int on) 1190 { 1191 struct socket *sock = filp->private_data; 1192 struct sock *sk = sock->sk; 1193 struct socket_wq *wq; 1194 1195 if (sk == NULL) 1196 return -EINVAL; 1197 1198 lock_sock(sk); 1199 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk)); 1200 fasync_helper(fd, filp, on, &wq->fasync_list); 1201 1202 if (!wq->fasync_list) 1203 sock_reset_flag(sk, SOCK_FASYNC); 1204 else 1205 sock_set_flag(sk, SOCK_FASYNC); 1206 1207 release_sock(sk); 1208 return 0; 1209 } 1210 1211 /* This function may be called only under rcu_lock */ 1212 1213 int sock_wake_async(struct socket_wq *wq, int how, int band) 1214 { 1215 if (!wq || !wq->fasync_list) 1216 return -1; 1217 1218 switch (how) { 1219 case SOCK_WAKE_WAITD: 1220 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1221 break; 1222 goto call_kill; 1223 case SOCK_WAKE_SPACE: 1224 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1225 break; 1226 /* fall through */ 1227 case SOCK_WAKE_IO: 1228 call_kill: 1229 kill_fasync(&wq->fasync_list, SIGIO, band); 1230 break; 1231 case SOCK_WAKE_URG: 1232 kill_fasync(&wq->fasync_list, SIGURG, band); 1233 } 1234 1235 return 0; 1236 } 1237 EXPORT_SYMBOL(sock_wake_async); 1238 1239 int __sock_create(struct net *net, int family, int type, int protocol, 1240 struct socket **res, int kern) 1241 { 1242 int err; 1243 struct socket *sock; 1244 const struct net_proto_family *pf; 1245 1246 /* 1247 * Check protocol is in range 1248 */ 1249 if (family < 0 || family >= NPROTO) 1250 return -EAFNOSUPPORT; 1251 if (type < 0 || type >= SOCK_MAX) 1252 return -EINVAL; 1253 1254 /* Compatibility. 1255 1256 This uglymoron is moved from INET layer to here to avoid 1257 deadlock in module load. 1258 */ 1259 if (family == PF_INET && type == SOCK_PACKET) { 1260 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1261 current->comm); 1262 family = PF_PACKET; 1263 } 1264 1265 err = security_socket_create(family, type, protocol, kern); 1266 if (err) 1267 return err; 1268 1269 /* 1270 * Allocate the socket and allow the family to set things up. if 1271 * the protocol is 0, the family is instructed to select an appropriate 1272 * default. 1273 */ 1274 sock = sock_alloc(); 1275 if (!sock) { 1276 net_warn_ratelimited("socket: no more sockets\n"); 1277 return -ENFILE; /* Not exactly a match, but its the 1278 closest posix thing */ 1279 } 1280 1281 sock->type = type; 1282 1283 #ifdef CONFIG_MODULES 1284 /* Attempt to load a protocol module if the find failed. 1285 * 1286 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1287 * requested real, full-featured networking support upon configuration. 1288 * Otherwise module support will break! 1289 */ 1290 if (rcu_access_pointer(net_families[family]) == NULL) 1291 request_module("net-pf-%d", family); 1292 #endif 1293 1294 rcu_read_lock(); 1295 pf = rcu_dereference(net_families[family]); 1296 err = -EAFNOSUPPORT; 1297 if (!pf) 1298 goto out_release; 1299 1300 /* 1301 * We will call the ->create function, that possibly is in a loadable 1302 * module, so we have to bump that loadable module refcnt first. 1303 */ 1304 if (!try_module_get(pf->owner)) 1305 goto out_release; 1306 1307 /* Now protected by module ref count */ 1308 rcu_read_unlock(); 1309 1310 err = pf->create(net, sock, protocol, kern); 1311 if (err < 0) 1312 goto out_module_put; 1313 1314 /* 1315 * Now to bump the refcnt of the [loadable] module that owns this 1316 * socket at sock_release time we decrement its refcnt. 1317 */ 1318 if (!try_module_get(sock->ops->owner)) 1319 goto out_module_busy; 1320 1321 /* 1322 * Now that we're done with the ->create function, the [loadable] 1323 * module can have its refcnt decremented 1324 */ 1325 module_put(pf->owner); 1326 err = security_socket_post_create(sock, family, type, protocol, kern); 1327 if (err) 1328 goto out_sock_release; 1329 *res = sock; 1330 1331 return 0; 1332 1333 out_module_busy: 1334 err = -EAFNOSUPPORT; 1335 out_module_put: 1336 sock->ops = NULL; 1337 module_put(pf->owner); 1338 out_sock_release: 1339 sock_release(sock); 1340 return err; 1341 1342 out_release: 1343 rcu_read_unlock(); 1344 goto out_sock_release; 1345 } 1346 EXPORT_SYMBOL(__sock_create); 1347 1348 int sock_create(int family, int type, int protocol, struct socket **res) 1349 { 1350 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1351 } 1352 EXPORT_SYMBOL(sock_create); 1353 1354 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1355 { 1356 return __sock_create(net, family, type, protocol, res, 1); 1357 } 1358 EXPORT_SYMBOL(sock_create_kern); 1359 1360 int __sys_socket(int family, int type, int protocol) 1361 { 1362 int retval; 1363 struct socket *sock; 1364 int flags; 1365 1366 /* Check the SOCK_* constants for consistency. */ 1367 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1368 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1369 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1370 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1371 1372 flags = type & ~SOCK_TYPE_MASK; 1373 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1374 return -EINVAL; 1375 type &= SOCK_TYPE_MASK; 1376 1377 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1378 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1379 1380 retval = sock_create(family, type, protocol, &sock); 1381 if (retval < 0) 1382 return retval; 1383 1384 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1385 } 1386 1387 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1388 { 1389 return __sys_socket(family, type, protocol); 1390 } 1391 1392 /* 1393 * Create a pair of connected sockets. 1394 */ 1395 1396 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1397 { 1398 struct socket *sock1, *sock2; 1399 int fd1, fd2, err; 1400 struct file *newfile1, *newfile2; 1401 int flags; 1402 1403 flags = type & ~SOCK_TYPE_MASK; 1404 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1405 return -EINVAL; 1406 type &= SOCK_TYPE_MASK; 1407 1408 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1409 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1410 1411 /* 1412 * reserve descriptors and make sure we won't fail 1413 * to return them to userland. 1414 */ 1415 fd1 = get_unused_fd_flags(flags); 1416 if (unlikely(fd1 < 0)) 1417 return fd1; 1418 1419 fd2 = get_unused_fd_flags(flags); 1420 if (unlikely(fd2 < 0)) { 1421 put_unused_fd(fd1); 1422 return fd2; 1423 } 1424 1425 err = put_user(fd1, &usockvec[0]); 1426 if (err) 1427 goto out; 1428 1429 err = put_user(fd2, &usockvec[1]); 1430 if (err) 1431 goto out; 1432 1433 /* 1434 * Obtain the first socket and check if the underlying protocol 1435 * supports the socketpair call. 1436 */ 1437 1438 err = sock_create(family, type, protocol, &sock1); 1439 if (unlikely(err < 0)) 1440 goto out; 1441 1442 err = sock_create(family, type, protocol, &sock2); 1443 if (unlikely(err < 0)) { 1444 sock_release(sock1); 1445 goto out; 1446 } 1447 1448 err = security_socket_socketpair(sock1, sock2); 1449 if (unlikely(err)) { 1450 sock_release(sock2); 1451 sock_release(sock1); 1452 goto out; 1453 } 1454 1455 err = sock1->ops->socketpair(sock1, sock2); 1456 if (unlikely(err < 0)) { 1457 sock_release(sock2); 1458 sock_release(sock1); 1459 goto out; 1460 } 1461 1462 newfile1 = sock_alloc_file(sock1, flags, NULL); 1463 if (IS_ERR(newfile1)) { 1464 err = PTR_ERR(newfile1); 1465 sock_release(sock2); 1466 goto out; 1467 } 1468 1469 newfile2 = sock_alloc_file(sock2, flags, NULL); 1470 if (IS_ERR(newfile2)) { 1471 err = PTR_ERR(newfile2); 1472 fput(newfile1); 1473 goto out; 1474 } 1475 1476 audit_fd_pair(fd1, fd2); 1477 1478 fd_install(fd1, newfile1); 1479 fd_install(fd2, newfile2); 1480 return 0; 1481 1482 out: 1483 put_unused_fd(fd2); 1484 put_unused_fd(fd1); 1485 return err; 1486 } 1487 1488 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1489 int __user *, usockvec) 1490 { 1491 return __sys_socketpair(family, type, protocol, usockvec); 1492 } 1493 1494 /* 1495 * Bind a name to a socket. Nothing much to do here since it's 1496 * the protocol's responsibility to handle the local address. 1497 * 1498 * We move the socket address to kernel space before we call 1499 * the protocol layer (having also checked the address is ok). 1500 */ 1501 1502 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1503 { 1504 struct socket *sock; 1505 struct sockaddr_storage address; 1506 int err, fput_needed; 1507 1508 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1509 if (sock) { 1510 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1511 if (err >= 0) { 1512 err = security_socket_bind(sock, 1513 (struct sockaddr *)&address, 1514 addrlen); 1515 if (!err) 1516 err = sock->ops->bind(sock, 1517 (struct sockaddr *) 1518 &address, addrlen); 1519 } 1520 fput_light(sock->file, fput_needed); 1521 } 1522 return err; 1523 } 1524 1525 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1526 { 1527 return __sys_bind(fd, umyaddr, addrlen); 1528 } 1529 1530 /* 1531 * Perform a listen. Basically, we allow the protocol to do anything 1532 * necessary for a listen, and if that works, we mark the socket as 1533 * ready for listening. 1534 */ 1535 1536 int __sys_listen(int fd, int backlog) 1537 { 1538 struct socket *sock; 1539 int err, fput_needed; 1540 int somaxconn; 1541 1542 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1543 if (sock) { 1544 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1545 if ((unsigned int)backlog > somaxconn) 1546 backlog = somaxconn; 1547 1548 err = security_socket_listen(sock, backlog); 1549 if (!err) 1550 err = sock->ops->listen(sock, backlog); 1551 1552 fput_light(sock->file, fput_needed); 1553 } 1554 return err; 1555 } 1556 1557 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1558 { 1559 return __sys_listen(fd, backlog); 1560 } 1561 1562 /* 1563 * For accept, we attempt to create a new socket, set up the link 1564 * with the client, wake up the client, then return the new 1565 * connected fd. We collect the address of the connector in kernel 1566 * space and move it to user at the very end. This is unclean because 1567 * we open the socket then return an error. 1568 * 1569 * 1003.1g adds the ability to recvmsg() to query connection pending 1570 * status to recvmsg. We need to add that support in a way thats 1571 * clean when we restructure accept also. 1572 */ 1573 1574 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1575 int __user *upeer_addrlen, int flags) 1576 { 1577 struct socket *sock, *newsock; 1578 struct file *newfile; 1579 int err, len, newfd, fput_needed; 1580 struct sockaddr_storage address; 1581 1582 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1583 return -EINVAL; 1584 1585 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1586 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1587 1588 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1589 if (!sock) 1590 goto out; 1591 1592 err = -ENFILE; 1593 newsock = sock_alloc(); 1594 if (!newsock) 1595 goto out_put; 1596 1597 newsock->type = sock->type; 1598 newsock->ops = sock->ops; 1599 1600 /* 1601 * We don't need try_module_get here, as the listening socket (sock) 1602 * has the protocol module (sock->ops->owner) held. 1603 */ 1604 __module_get(newsock->ops->owner); 1605 1606 newfd = get_unused_fd_flags(flags); 1607 if (unlikely(newfd < 0)) { 1608 err = newfd; 1609 sock_release(newsock); 1610 goto out_put; 1611 } 1612 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1613 if (IS_ERR(newfile)) { 1614 err = PTR_ERR(newfile); 1615 put_unused_fd(newfd); 1616 goto out_put; 1617 } 1618 1619 err = security_socket_accept(sock, newsock); 1620 if (err) 1621 goto out_fd; 1622 1623 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1624 if (err < 0) 1625 goto out_fd; 1626 1627 if (upeer_sockaddr) { 1628 len = newsock->ops->getname(newsock, 1629 (struct sockaddr *)&address, 2); 1630 if (len < 0) { 1631 err = -ECONNABORTED; 1632 goto out_fd; 1633 } 1634 err = move_addr_to_user(&address, 1635 len, upeer_sockaddr, upeer_addrlen); 1636 if (err < 0) 1637 goto out_fd; 1638 } 1639 1640 /* File flags are not inherited via accept() unlike another OSes. */ 1641 1642 fd_install(newfd, newfile); 1643 err = newfd; 1644 1645 out_put: 1646 fput_light(sock->file, fput_needed); 1647 out: 1648 return err; 1649 out_fd: 1650 fput(newfile); 1651 put_unused_fd(newfd); 1652 goto out_put; 1653 } 1654 1655 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1656 int __user *, upeer_addrlen, int, flags) 1657 { 1658 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1659 } 1660 1661 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1662 int __user *, upeer_addrlen) 1663 { 1664 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1665 } 1666 1667 /* 1668 * Attempt to connect to a socket with the server address. The address 1669 * is in user space so we verify it is OK and move it to kernel space. 1670 * 1671 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1672 * break bindings 1673 * 1674 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1675 * other SEQPACKET protocols that take time to connect() as it doesn't 1676 * include the -EINPROGRESS status for such sockets. 1677 */ 1678 1679 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1680 { 1681 struct socket *sock; 1682 struct sockaddr_storage address; 1683 int err, fput_needed; 1684 1685 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1686 if (!sock) 1687 goto out; 1688 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1689 if (err < 0) 1690 goto out_put; 1691 1692 err = 1693 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1694 if (err) 1695 goto out_put; 1696 1697 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1698 sock->file->f_flags); 1699 out_put: 1700 fput_light(sock->file, fput_needed); 1701 out: 1702 return err; 1703 } 1704 1705 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1706 int, addrlen) 1707 { 1708 return __sys_connect(fd, uservaddr, addrlen); 1709 } 1710 1711 /* 1712 * Get the local address ('name') of a socket object. Move the obtained 1713 * name to user space. 1714 */ 1715 1716 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1717 int __user *usockaddr_len) 1718 { 1719 struct socket *sock; 1720 struct sockaddr_storage address; 1721 int err, fput_needed; 1722 1723 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1724 if (!sock) 1725 goto out; 1726 1727 err = security_socket_getsockname(sock); 1728 if (err) 1729 goto out_put; 1730 1731 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1732 if (err < 0) 1733 goto out_put; 1734 /* "err" is actually length in this case */ 1735 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1736 1737 out_put: 1738 fput_light(sock->file, fput_needed); 1739 out: 1740 return err; 1741 } 1742 1743 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1744 int __user *, usockaddr_len) 1745 { 1746 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1747 } 1748 1749 /* 1750 * Get the remote address ('name') of a socket object. Move the obtained 1751 * name to user space. 1752 */ 1753 1754 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1755 int __user *usockaddr_len) 1756 { 1757 struct socket *sock; 1758 struct sockaddr_storage address; 1759 int err, fput_needed; 1760 1761 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1762 if (sock != NULL) { 1763 err = security_socket_getpeername(sock); 1764 if (err) { 1765 fput_light(sock->file, fput_needed); 1766 return err; 1767 } 1768 1769 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1770 if (err >= 0) 1771 /* "err" is actually length in this case */ 1772 err = move_addr_to_user(&address, err, usockaddr, 1773 usockaddr_len); 1774 fput_light(sock->file, fput_needed); 1775 } 1776 return err; 1777 } 1778 1779 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1780 int __user *, usockaddr_len) 1781 { 1782 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1783 } 1784 1785 /* 1786 * Send a datagram to a given address. We move the address into kernel 1787 * space and check the user space data area is readable before invoking 1788 * the protocol. 1789 */ 1790 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1791 struct sockaddr __user *addr, int addr_len) 1792 { 1793 struct socket *sock; 1794 struct sockaddr_storage address; 1795 int err; 1796 struct msghdr msg; 1797 struct iovec iov; 1798 int fput_needed; 1799 1800 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1801 if (unlikely(err)) 1802 return err; 1803 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1804 if (!sock) 1805 goto out; 1806 1807 msg.msg_name = NULL; 1808 msg.msg_control = NULL; 1809 msg.msg_controllen = 0; 1810 msg.msg_namelen = 0; 1811 if (addr) { 1812 err = move_addr_to_kernel(addr, addr_len, &address); 1813 if (err < 0) 1814 goto out_put; 1815 msg.msg_name = (struct sockaddr *)&address; 1816 msg.msg_namelen = addr_len; 1817 } 1818 if (sock->file->f_flags & O_NONBLOCK) 1819 flags |= MSG_DONTWAIT; 1820 msg.msg_flags = flags; 1821 err = sock_sendmsg(sock, &msg); 1822 1823 out_put: 1824 fput_light(sock->file, fput_needed); 1825 out: 1826 return err; 1827 } 1828 1829 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1830 unsigned int, flags, struct sockaddr __user *, addr, 1831 int, addr_len) 1832 { 1833 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1834 } 1835 1836 /* 1837 * Send a datagram down a socket. 1838 */ 1839 1840 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1841 unsigned int, flags) 1842 { 1843 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1844 } 1845 1846 /* 1847 * Receive a frame from the socket and optionally record the address of the 1848 * sender. We verify the buffers are writable and if needed move the 1849 * sender address from kernel to user space. 1850 */ 1851 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1852 struct sockaddr __user *addr, int __user *addr_len) 1853 { 1854 struct socket *sock; 1855 struct iovec iov; 1856 struct msghdr msg; 1857 struct sockaddr_storage address; 1858 int err, err2; 1859 int fput_needed; 1860 1861 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1862 if (unlikely(err)) 1863 return err; 1864 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1865 if (!sock) 1866 goto out; 1867 1868 msg.msg_control = NULL; 1869 msg.msg_controllen = 0; 1870 /* Save some cycles and don't copy the address if not needed */ 1871 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1872 /* We assume all kernel code knows the size of sockaddr_storage */ 1873 msg.msg_namelen = 0; 1874 msg.msg_iocb = NULL; 1875 msg.msg_flags = 0; 1876 if (sock->file->f_flags & O_NONBLOCK) 1877 flags |= MSG_DONTWAIT; 1878 err = sock_recvmsg(sock, &msg, flags); 1879 1880 if (err >= 0 && addr != NULL) { 1881 err2 = move_addr_to_user(&address, 1882 msg.msg_namelen, addr, addr_len); 1883 if (err2 < 0) 1884 err = err2; 1885 } 1886 1887 fput_light(sock->file, fput_needed); 1888 out: 1889 return err; 1890 } 1891 1892 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1893 unsigned int, flags, struct sockaddr __user *, addr, 1894 int __user *, addr_len) 1895 { 1896 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 1897 } 1898 1899 /* 1900 * Receive a datagram from a socket. 1901 */ 1902 1903 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1904 unsigned int, flags) 1905 { 1906 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1907 } 1908 1909 /* 1910 * Set a socket option. Because we don't know the option lengths we have 1911 * to pass the user mode parameter for the protocols to sort out. 1912 */ 1913 1914 static int __sys_setsockopt(int fd, int level, int optname, 1915 char __user *optval, int optlen) 1916 { 1917 int err, fput_needed; 1918 struct socket *sock; 1919 1920 if (optlen < 0) 1921 return -EINVAL; 1922 1923 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1924 if (sock != NULL) { 1925 err = security_socket_setsockopt(sock, level, optname); 1926 if (err) 1927 goto out_put; 1928 1929 if (level == SOL_SOCKET) 1930 err = 1931 sock_setsockopt(sock, level, optname, optval, 1932 optlen); 1933 else 1934 err = 1935 sock->ops->setsockopt(sock, level, optname, optval, 1936 optlen); 1937 out_put: 1938 fput_light(sock->file, fput_needed); 1939 } 1940 return err; 1941 } 1942 1943 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1944 char __user *, optval, int, optlen) 1945 { 1946 return __sys_setsockopt(fd, level, optname, optval, optlen); 1947 } 1948 1949 /* 1950 * Get a socket option. Because we don't know the option lengths we have 1951 * to pass a user mode parameter for the protocols to sort out. 1952 */ 1953 1954 static int __sys_getsockopt(int fd, int level, int optname, 1955 char __user *optval, int __user *optlen) 1956 { 1957 int err, fput_needed; 1958 struct socket *sock; 1959 1960 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1961 if (sock != NULL) { 1962 err = security_socket_getsockopt(sock, level, optname); 1963 if (err) 1964 goto out_put; 1965 1966 if (level == SOL_SOCKET) 1967 err = 1968 sock_getsockopt(sock, level, optname, optval, 1969 optlen); 1970 else 1971 err = 1972 sock->ops->getsockopt(sock, level, optname, optval, 1973 optlen); 1974 out_put: 1975 fput_light(sock->file, fput_needed); 1976 } 1977 return err; 1978 } 1979 1980 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1981 char __user *, optval, int __user *, optlen) 1982 { 1983 return __sys_getsockopt(fd, level, optname, optval, optlen); 1984 } 1985 1986 /* 1987 * Shutdown a socket. 1988 */ 1989 1990 int __sys_shutdown(int fd, int how) 1991 { 1992 int err, fput_needed; 1993 struct socket *sock; 1994 1995 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1996 if (sock != NULL) { 1997 err = security_socket_shutdown(sock, how); 1998 if (!err) 1999 err = sock->ops->shutdown(sock, how); 2000 fput_light(sock->file, fput_needed); 2001 } 2002 return err; 2003 } 2004 2005 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2006 { 2007 return __sys_shutdown(fd, how); 2008 } 2009 2010 /* A couple of helpful macros for getting the address of the 32/64 bit 2011 * fields which are the same type (int / unsigned) on our platforms. 2012 */ 2013 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2014 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2015 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2016 2017 struct used_address { 2018 struct sockaddr_storage name; 2019 unsigned int name_len; 2020 }; 2021 2022 static int copy_msghdr_from_user(struct msghdr *kmsg, 2023 struct user_msghdr __user *umsg, 2024 struct sockaddr __user **save_addr, 2025 struct iovec **iov) 2026 { 2027 struct user_msghdr msg; 2028 ssize_t err; 2029 2030 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2031 return -EFAULT; 2032 2033 kmsg->msg_control = (void __force *)msg.msg_control; 2034 kmsg->msg_controllen = msg.msg_controllen; 2035 kmsg->msg_flags = msg.msg_flags; 2036 2037 kmsg->msg_namelen = msg.msg_namelen; 2038 if (!msg.msg_name) 2039 kmsg->msg_namelen = 0; 2040 2041 if (kmsg->msg_namelen < 0) 2042 return -EINVAL; 2043 2044 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2045 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2046 2047 if (save_addr) 2048 *save_addr = msg.msg_name; 2049 2050 if (msg.msg_name && kmsg->msg_namelen) { 2051 if (!save_addr) { 2052 err = move_addr_to_kernel(msg.msg_name, 2053 kmsg->msg_namelen, 2054 kmsg->msg_name); 2055 if (err < 0) 2056 return err; 2057 } 2058 } else { 2059 kmsg->msg_name = NULL; 2060 kmsg->msg_namelen = 0; 2061 } 2062 2063 if (msg.msg_iovlen > UIO_MAXIOV) 2064 return -EMSGSIZE; 2065 2066 kmsg->msg_iocb = NULL; 2067 2068 return import_iovec(save_addr ? READ : WRITE, 2069 msg.msg_iov, msg.msg_iovlen, 2070 UIO_FASTIOV, iov, &kmsg->msg_iter); 2071 } 2072 2073 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2074 struct msghdr *msg_sys, unsigned int flags, 2075 struct used_address *used_address, 2076 unsigned int allowed_msghdr_flags) 2077 { 2078 struct compat_msghdr __user *msg_compat = 2079 (struct compat_msghdr __user *)msg; 2080 struct sockaddr_storage address; 2081 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2082 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2083 __aligned(sizeof(__kernel_size_t)); 2084 /* 20 is size of ipv6_pktinfo */ 2085 unsigned char *ctl_buf = ctl; 2086 int ctl_len; 2087 ssize_t err; 2088 2089 msg_sys->msg_name = &address; 2090 2091 if (MSG_CMSG_COMPAT & flags) 2092 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2093 else 2094 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2095 if (err < 0) 2096 return err; 2097 2098 err = -ENOBUFS; 2099 2100 if (msg_sys->msg_controllen > INT_MAX) 2101 goto out_freeiov; 2102 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2103 ctl_len = msg_sys->msg_controllen; 2104 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2105 err = 2106 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2107 sizeof(ctl)); 2108 if (err) 2109 goto out_freeiov; 2110 ctl_buf = msg_sys->msg_control; 2111 ctl_len = msg_sys->msg_controllen; 2112 } else if (ctl_len) { 2113 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2114 CMSG_ALIGN(sizeof(struct cmsghdr))); 2115 if (ctl_len > sizeof(ctl)) { 2116 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2117 if (ctl_buf == NULL) 2118 goto out_freeiov; 2119 } 2120 err = -EFAULT; 2121 /* 2122 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2123 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2124 * checking falls down on this. 2125 */ 2126 if (copy_from_user(ctl_buf, 2127 (void __user __force *)msg_sys->msg_control, 2128 ctl_len)) 2129 goto out_freectl; 2130 msg_sys->msg_control = ctl_buf; 2131 } 2132 msg_sys->msg_flags = flags; 2133 2134 if (sock->file->f_flags & O_NONBLOCK) 2135 msg_sys->msg_flags |= MSG_DONTWAIT; 2136 /* 2137 * If this is sendmmsg() and current destination address is same as 2138 * previously succeeded address, omit asking LSM's decision. 2139 * used_address->name_len is initialized to UINT_MAX so that the first 2140 * destination address never matches. 2141 */ 2142 if (used_address && msg_sys->msg_name && 2143 used_address->name_len == msg_sys->msg_namelen && 2144 !memcmp(&used_address->name, msg_sys->msg_name, 2145 used_address->name_len)) { 2146 err = sock_sendmsg_nosec(sock, msg_sys); 2147 goto out_freectl; 2148 } 2149 err = sock_sendmsg(sock, msg_sys); 2150 /* 2151 * If this is sendmmsg() and sending to current destination address was 2152 * successful, remember it. 2153 */ 2154 if (used_address && err >= 0) { 2155 used_address->name_len = msg_sys->msg_namelen; 2156 if (msg_sys->msg_name) 2157 memcpy(&used_address->name, msg_sys->msg_name, 2158 used_address->name_len); 2159 } 2160 2161 out_freectl: 2162 if (ctl_buf != ctl) 2163 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2164 out_freeiov: 2165 kfree(iov); 2166 return err; 2167 } 2168 2169 /* 2170 * BSD sendmsg interface 2171 */ 2172 2173 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2174 bool forbid_cmsg_compat) 2175 { 2176 int fput_needed, err; 2177 struct msghdr msg_sys; 2178 struct socket *sock; 2179 2180 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2181 return -EINVAL; 2182 2183 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2184 if (!sock) 2185 goto out; 2186 2187 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2188 2189 fput_light(sock->file, fput_needed); 2190 out: 2191 return err; 2192 } 2193 2194 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2195 { 2196 return __sys_sendmsg(fd, msg, flags, true); 2197 } 2198 2199 /* 2200 * Linux sendmmsg interface 2201 */ 2202 2203 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2204 unsigned int flags, bool forbid_cmsg_compat) 2205 { 2206 int fput_needed, err, datagrams; 2207 struct socket *sock; 2208 struct mmsghdr __user *entry; 2209 struct compat_mmsghdr __user *compat_entry; 2210 struct msghdr msg_sys; 2211 struct used_address used_address; 2212 unsigned int oflags = flags; 2213 2214 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2215 return -EINVAL; 2216 2217 if (vlen > UIO_MAXIOV) 2218 vlen = UIO_MAXIOV; 2219 2220 datagrams = 0; 2221 2222 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2223 if (!sock) 2224 return err; 2225 2226 used_address.name_len = UINT_MAX; 2227 entry = mmsg; 2228 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2229 err = 0; 2230 flags |= MSG_BATCH; 2231 2232 while (datagrams < vlen) { 2233 if (datagrams == vlen - 1) 2234 flags = oflags; 2235 2236 if (MSG_CMSG_COMPAT & flags) { 2237 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2238 &msg_sys, flags, &used_address, MSG_EOR); 2239 if (err < 0) 2240 break; 2241 err = __put_user(err, &compat_entry->msg_len); 2242 ++compat_entry; 2243 } else { 2244 err = ___sys_sendmsg(sock, 2245 (struct user_msghdr __user *)entry, 2246 &msg_sys, flags, &used_address, MSG_EOR); 2247 if (err < 0) 2248 break; 2249 err = put_user(err, &entry->msg_len); 2250 ++entry; 2251 } 2252 2253 if (err) 2254 break; 2255 ++datagrams; 2256 if (msg_data_left(&msg_sys)) 2257 break; 2258 cond_resched(); 2259 } 2260 2261 fput_light(sock->file, fput_needed); 2262 2263 /* We only return an error if no datagrams were able to be sent */ 2264 if (datagrams != 0) 2265 return datagrams; 2266 2267 return err; 2268 } 2269 2270 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2271 unsigned int, vlen, unsigned int, flags) 2272 { 2273 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2274 } 2275 2276 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2277 struct msghdr *msg_sys, unsigned int flags, int nosec) 2278 { 2279 struct compat_msghdr __user *msg_compat = 2280 (struct compat_msghdr __user *)msg; 2281 struct iovec iovstack[UIO_FASTIOV]; 2282 struct iovec *iov = iovstack; 2283 unsigned long cmsg_ptr; 2284 int len; 2285 ssize_t err; 2286 2287 /* kernel mode address */ 2288 struct sockaddr_storage addr; 2289 2290 /* user mode address pointers */ 2291 struct sockaddr __user *uaddr; 2292 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2293 2294 msg_sys->msg_name = &addr; 2295 2296 if (MSG_CMSG_COMPAT & flags) 2297 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2298 else 2299 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2300 if (err < 0) 2301 return err; 2302 2303 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2304 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2305 2306 /* We assume all kernel code knows the size of sockaddr_storage */ 2307 msg_sys->msg_namelen = 0; 2308 2309 if (sock->file->f_flags & O_NONBLOCK) 2310 flags |= MSG_DONTWAIT; 2311 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2312 if (err < 0) 2313 goto out_freeiov; 2314 len = err; 2315 2316 if (uaddr != NULL) { 2317 err = move_addr_to_user(&addr, 2318 msg_sys->msg_namelen, uaddr, 2319 uaddr_len); 2320 if (err < 0) 2321 goto out_freeiov; 2322 } 2323 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2324 COMPAT_FLAGS(msg)); 2325 if (err) 2326 goto out_freeiov; 2327 if (MSG_CMSG_COMPAT & flags) 2328 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2329 &msg_compat->msg_controllen); 2330 else 2331 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2332 &msg->msg_controllen); 2333 if (err) 2334 goto out_freeiov; 2335 err = len; 2336 2337 out_freeiov: 2338 kfree(iov); 2339 return err; 2340 } 2341 2342 /* 2343 * BSD recvmsg interface 2344 */ 2345 2346 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2347 bool forbid_cmsg_compat) 2348 { 2349 int fput_needed, err; 2350 struct msghdr msg_sys; 2351 struct socket *sock; 2352 2353 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2354 return -EINVAL; 2355 2356 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2357 if (!sock) 2358 goto out; 2359 2360 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2361 2362 fput_light(sock->file, fput_needed); 2363 out: 2364 return err; 2365 } 2366 2367 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2368 unsigned int, flags) 2369 { 2370 return __sys_recvmsg(fd, msg, flags, true); 2371 } 2372 2373 /* 2374 * Linux recvmmsg interface 2375 */ 2376 2377 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2378 unsigned int flags, struct timespec *timeout) 2379 { 2380 int fput_needed, err, datagrams; 2381 struct socket *sock; 2382 struct mmsghdr __user *entry; 2383 struct compat_mmsghdr __user *compat_entry; 2384 struct msghdr msg_sys; 2385 struct timespec64 end_time; 2386 struct timespec64 timeout64; 2387 2388 if (timeout && 2389 poll_select_set_timeout(&end_time, timeout->tv_sec, 2390 timeout->tv_nsec)) 2391 return -EINVAL; 2392 2393 datagrams = 0; 2394 2395 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2396 if (!sock) 2397 return err; 2398 2399 if (likely(!(flags & MSG_ERRQUEUE))) { 2400 err = sock_error(sock->sk); 2401 if (err) { 2402 datagrams = err; 2403 goto out_put; 2404 } 2405 } 2406 2407 entry = mmsg; 2408 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2409 2410 while (datagrams < vlen) { 2411 /* 2412 * No need to ask LSM for more than the first datagram. 2413 */ 2414 if (MSG_CMSG_COMPAT & flags) { 2415 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2416 &msg_sys, flags & ~MSG_WAITFORONE, 2417 datagrams); 2418 if (err < 0) 2419 break; 2420 err = __put_user(err, &compat_entry->msg_len); 2421 ++compat_entry; 2422 } else { 2423 err = ___sys_recvmsg(sock, 2424 (struct user_msghdr __user *)entry, 2425 &msg_sys, flags & ~MSG_WAITFORONE, 2426 datagrams); 2427 if (err < 0) 2428 break; 2429 err = put_user(err, &entry->msg_len); 2430 ++entry; 2431 } 2432 2433 if (err) 2434 break; 2435 ++datagrams; 2436 2437 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2438 if (flags & MSG_WAITFORONE) 2439 flags |= MSG_DONTWAIT; 2440 2441 if (timeout) { 2442 ktime_get_ts64(&timeout64); 2443 *timeout = timespec64_to_timespec( 2444 timespec64_sub(end_time, timeout64)); 2445 if (timeout->tv_sec < 0) { 2446 timeout->tv_sec = timeout->tv_nsec = 0; 2447 break; 2448 } 2449 2450 /* Timeout, return less than vlen datagrams */ 2451 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2452 break; 2453 } 2454 2455 /* Out of band data, return right away */ 2456 if (msg_sys.msg_flags & MSG_OOB) 2457 break; 2458 cond_resched(); 2459 } 2460 2461 if (err == 0) 2462 goto out_put; 2463 2464 if (datagrams == 0) { 2465 datagrams = err; 2466 goto out_put; 2467 } 2468 2469 /* 2470 * We may return less entries than requested (vlen) if the 2471 * sock is non block and there aren't enough datagrams... 2472 */ 2473 if (err != -EAGAIN) { 2474 /* 2475 * ... or if recvmsg returns an error after we 2476 * received some datagrams, where we record the 2477 * error to return on the next call or if the 2478 * app asks about it using getsockopt(SO_ERROR). 2479 */ 2480 sock->sk->sk_err = -err; 2481 } 2482 out_put: 2483 fput_light(sock->file, fput_needed); 2484 2485 return datagrams; 2486 } 2487 2488 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2489 unsigned int vlen, unsigned int flags, 2490 struct timespec __user *timeout) 2491 { 2492 int datagrams; 2493 struct timespec timeout_sys; 2494 2495 if (flags & MSG_CMSG_COMPAT) 2496 return -EINVAL; 2497 2498 if (!timeout) 2499 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2500 2501 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2502 return -EFAULT; 2503 2504 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2505 2506 if (datagrams > 0 && 2507 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2508 datagrams = -EFAULT; 2509 2510 return datagrams; 2511 } 2512 2513 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2514 unsigned int, vlen, unsigned int, flags, 2515 struct timespec __user *, timeout) 2516 { 2517 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout); 2518 } 2519 2520 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2521 /* Argument list sizes for sys_socketcall */ 2522 #define AL(x) ((x) * sizeof(unsigned long)) 2523 static const unsigned char nargs[21] = { 2524 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2525 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2526 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2527 AL(4), AL(5), AL(4) 2528 }; 2529 2530 #undef AL 2531 2532 /* 2533 * System call vectors. 2534 * 2535 * Argument checking cleaned up. Saved 20% in size. 2536 * This function doesn't need to set the kernel lock because 2537 * it is set by the callees. 2538 */ 2539 2540 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2541 { 2542 unsigned long a[AUDITSC_ARGS]; 2543 unsigned long a0, a1; 2544 int err; 2545 unsigned int len; 2546 2547 if (call < 1 || call > SYS_SENDMMSG) 2548 return -EINVAL; 2549 2550 len = nargs[call]; 2551 if (len > sizeof(a)) 2552 return -EINVAL; 2553 2554 /* copy_from_user should be SMP safe. */ 2555 if (copy_from_user(a, args, len)) 2556 return -EFAULT; 2557 2558 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2559 if (err) 2560 return err; 2561 2562 a0 = a[0]; 2563 a1 = a[1]; 2564 2565 switch (call) { 2566 case SYS_SOCKET: 2567 err = __sys_socket(a0, a1, a[2]); 2568 break; 2569 case SYS_BIND: 2570 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2571 break; 2572 case SYS_CONNECT: 2573 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2574 break; 2575 case SYS_LISTEN: 2576 err = __sys_listen(a0, a1); 2577 break; 2578 case SYS_ACCEPT: 2579 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2580 (int __user *)a[2], 0); 2581 break; 2582 case SYS_GETSOCKNAME: 2583 err = 2584 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2585 (int __user *)a[2]); 2586 break; 2587 case SYS_GETPEERNAME: 2588 err = 2589 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2590 (int __user *)a[2]); 2591 break; 2592 case SYS_SOCKETPAIR: 2593 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2594 break; 2595 case SYS_SEND: 2596 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2597 NULL, 0); 2598 break; 2599 case SYS_SENDTO: 2600 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2601 (struct sockaddr __user *)a[4], a[5]); 2602 break; 2603 case SYS_RECV: 2604 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2605 NULL, NULL); 2606 break; 2607 case SYS_RECVFROM: 2608 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2609 (struct sockaddr __user *)a[4], 2610 (int __user *)a[5]); 2611 break; 2612 case SYS_SHUTDOWN: 2613 err = __sys_shutdown(a0, a1); 2614 break; 2615 case SYS_SETSOCKOPT: 2616 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2617 a[4]); 2618 break; 2619 case SYS_GETSOCKOPT: 2620 err = 2621 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2622 (int __user *)a[4]); 2623 break; 2624 case SYS_SENDMSG: 2625 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2626 a[2], true); 2627 break; 2628 case SYS_SENDMMSG: 2629 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2630 a[3], true); 2631 break; 2632 case SYS_RECVMSG: 2633 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2634 a[2], true); 2635 break; 2636 case SYS_RECVMMSG: 2637 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2638 a[3], (struct timespec __user *)a[4]); 2639 break; 2640 case SYS_ACCEPT4: 2641 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2642 (int __user *)a[2], a[3]); 2643 break; 2644 default: 2645 err = -EINVAL; 2646 break; 2647 } 2648 return err; 2649 } 2650 2651 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2652 2653 /** 2654 * sock_register - add a socket protocol handler 2655 * @ops: description of protocol 2656 * 2657 * This function is called by a protocol handler that wants to 2658 * advertise its address family, and have it linked into the 2659 * socket interface. The value ops->family corresponds to the 2660 * socket system call protocol family. 2661 */ 2662 int sock_register(const struct net_proto_family *ops) 2663 { 2664 int err; 2665 2666 if (ops->family >= NPROTO) { 2667 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2668 return -ENOBUFS; 2669 } 2670 2671 spin_lock(&net_family_lock); 2672 if (rcu_dereference_protected(net_families[ops->family], 2673 lockdep_is_held(&net_family_lock))) 2674 err = -EEXIST; 2675 else { 2676 rcu_assign_pointer(net_families[ops->family], ops); 2677 err = 0; 2678 } 2679 spin_unlock(&net_family_lock); 2680 2681 pr_info("NET: Registered protocol family %d\n", ops->family); 2682 return err; 2683 } 2684 EXPORT_SYMBOL(sock_register); 2685 2686 /** 2687 * sock_unregister - remove a protocol handler 2688 * @family: protocol family to remove 2689 * 2690 * This function is called by a protocol handler that wants to 2691 * remove its address family, and have it unlinked from the 2692 * new socket creation. 2693 * 2694 * If protocol handler is a module, then it can use module reference 2695 * counts to protect against new references. If protocol handler is not 2696 * a module then it needs to provide its own protection in 2697 * the ops->create routine. 2698 */ 2699 void sock_unregister(int family) 2700 { 2701 BUG_ON(family < 0 || family >= NPROTO); 2702 2703 spin_lock(&net_family_lock); 2704 RCU_INIT_POINTER(net_families[family], NULL); 2705 spin_unlock(&net_family_lock); 2706 2707 synchronize_rcu(); 2708 2709 pr_info("NET: Unregistered protocol family %d\n", family); 2710 } 2711 EXPORT_SYMBOL(sock_unregister); 2712 2713 bool sock_is_registered(int family) 2714 { 2715 return family < NPROTO && rcu_access_pointer(net_families[family]); 2716 } 2717 2718 static int __init sock_init(void) 2719 { 2720 int err; 2721 /* 2722 * Initialize the network sysctl infrastructure. 2723 */ 2724 err = net_sysctl_init(); 2725 if (err) 2726 goto out; 2727 2728 /* 2729 * Initialize skbuff SLAB cache 2730 */ 2731 skb_init(); 2732 2733 /* 2734 * Initialize the protocols module. 2735 */ 2736 2737 init_inodecache(); 2738 2739 err = register_filesystem(&sock_fs_type); 2740 if (err) 2741 goto out_fs; 2742 sock_mnt = kern_mount(&sock_fs_type); 2743 if (IS_ERR(sock_mnt)) { 2744 err = PTR_ERR(sock_mnt); 2745 goto out_mount; 2746 } 2747 2748 /* The real protocol initialization is performed in later initcalls. 2749 */ 2750 2751 #ifdef CONFIG_NETFILTER 2752 err = netfilter_init(); 2753 if (err) 2754 goto out; 2755 #endif 2756 2757 ptp_classifier_init(); 2758 2759 out: 2760 return err; 2761 2762 out_mount: 2763 unregister_filesystem(&sock_fs_type); 2764 out_fs: 2765 goto out; 2766 } 2767 2768 core_initcall(sock_init); /* early initcall */ 2769 2770 #ifdef CONFIG_PROC_FS 2771 void socket_seq_show(struct seq_file *seq) 2772 { 2773 seq_printf(seq, "sockets: used %d\n", 2774 sock_inuse_get(seq->private)); 2775 } 2776 #endif /* CONFIG_PROC_FS */ 2777 2778 #ifdef CONFIG_COMPAT 2779 static int do_siocgstamp(struct net *net, struct socket *sock, 2780 unsigned int cmd, void __user *up) 2781 { 2782 mm_segment_t old_fs = get_fs(); 2783 struct timeval ktv; 2784 int err; 2785 2786 set_fs(KERNEL_DS); 2787 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2788 set_fs(old_fs); 2789 if (!err) 2790 err = compat_put_timeval(&ktv, up); 2791 2792 return err; 2793 } 2794 2795 static int do_siocgstampns(struct net *net, struct socket *sock, 2796 unsigned int cmd, void __user *up) 2797 { 2798 mm_segment_t old_fs = get_fs(); 2799 struct timespec kts; 2800 int err; 2801 2802 set_fs(KERNEL_DS); 2803 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2804 set_fs(old_fs); 2805 if (!err) 2806 err = compat_put_timespec(&kts, up); 2807 2808 return err; 2809 } 2810 2811 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2812 { 2813 struct compat_ifconf ifc32; 2814 struct ifconf ifc; 2815 int err; 2816 2817 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2818 return -EFAULT; 2819 2820 ifc.ifc_len = ifc32.ifc_len; 2821 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2822 2823 rtnl_lock(); 2824 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2825 rtnl_unlock(); 2826 if (err) 2827 return err; 2828 2829 ifc32.ifc_len = ifc.ifc_len; 2830 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2831 return -EFAULT; 2832 2833 return 0; 2834 } 2835 2836 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2837 { 2838 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2839 bool convert_in = false, convert_out = false; 2840 size_t buf_size = 0; 2841 struct ethtool_rxnfc __user *rxnfc = NULL; 2842 struct ifreq ifr; 2843 u32 rule_cnt = 0, actual_rule_cnt; 2844 u32 ethcmd; 2845 u32 data; 2846 int ret; 2847 2848 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2849 return -EFAULT; 2850 2851 compat_rxnfc = compat_ptr(data); 2852 2853 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2854 return -EFAULT; 2855 2856 /* Most ethtool structures are defined without padding. 2857 * Unfortunately struct ethtool_rxnfc is an exception. 2858 */ 2859 switch (ethcmd) { 2860 default: 2861 break; 2862 case ETHTOOL_GRXCLSRLALL: 2863 /* Buffer size is variable */ 2864 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2865 return -EFAULT; 2866 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2867 return -ENOMEM; 2868 buf_size += rule_cnt * sizeof(u32); 2869 /* fall through */ 2870 case ETHTOOL_GRXRINGS: 2871 case ETHTOOL_GRXCLSRLCNT: 2872 case ETHTOOL_GRXCLSRULE: 2873 case ETHTOOL_SRXCLSRLINS: 2874 convert_out = true; 2875 /* fall through */ 2876 case ETHTOOL_SRXCLSRLDEL: 2877 buf_size += sizeof(struct ethtool_rxnfc); 2878 convert_in = true; 2879 rxnfc = compat_alloc_user_space(buf_size); 2880 break; 2881 } 2882 2883 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2884 return -EFAULT; 2885 2886 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 2887 2888 if (convert_in) { 2889 /* We expect there to be holes between fs.m_ext and 2890 * fs.ring_cookie and at the end of fs, but nowhere else. 2891 */ 2892 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2893 sizeof(compat_rxnfc->fs.m_ext) != 2894 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2895 sizeof(rxnfc->fs.m_ext)); 2896 BUILD_BUG_ON( 2897 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2898 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2899 offsetof(struct ethtool_rxnfc, fs.location) - 2900 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2901 2902 if (copy_in_user(rxnfc, compat_rxnfc, 2903 (void __user *)(&rxnfc->fs.m_ext + 1) - 2904 (void __user *)rxnfc) || 2905 copy_in_user(&rxnfc->fs.ring_cookie, 2906 &compat_rxnfc->fs.ring_cookie, 2907 (void __user *)(&rxnfc->fs.location + 1) - 2908 (void __user *)&rxnfc->fs.ring_cookie) || 2909 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2910 sizeof(rxnfc->rule_cnt))) 2911 return -EFAULT; 2912 } 2913 2914 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 2915 if (ret) 2916 return ret; 2917 2918 if (convert_out) { 2919 if (copy_in_user(compat_rxnfc, rxnfc, 2920 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2921 (const void __user *)rxnfc) || 2922 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2923 &rxnfc->fs.ring_cookie, 2924 (const void __user *)(&rxnfc->fs.location + 1) - 2925 (const void __user *)&rxnfc->fs.ring_cookie) || 2926 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2927 sizeof(rxnfc->rule_cnt))) 2928 return -EFAULT; 2929 2930 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2931 /* As an optimisation, we only copy the actual 2932 * number of rules that the underlying 2933 * function returned. Since Mallory might 2934 * change the rule count in user memory, we 2935 * check that it is less than the rule count 2936 * originally given (as the user buffer size), 2937 * which has been range-checked. 2938 */ 2939 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2940 return -EFAULT; 2941 if (actual_rule_cnt < rule_cnt) 2942 rule_cnt = actual_rule_cnt; 2943 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2944 &rxnfc->rule_locs[0], 2945 rule_cnt * sizeof(u32))) 2946 return -EFAULT; 2947 } 2948 } 2949 2950 return 0; 2951 } 2952 2953 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2954 { 2955 compat_uptr_t uptr32; 2956 struct ifreq ifr; 2957 void __user *saved; 2958 int err; 2959 2960 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 2961 return -EFAULT; 2962 2963 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2964 return -EFAULT; 2965 2966 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 2967 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 2968 2969 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 2970 if (!err) { 2971 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 2972 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 2973 err = -EFAULT; 2974 } 2975 return err; 2976 } 2977 2978 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2979 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2980 struct compat_ifreq __user *u_ifreq32) 2981 { 2982 struct ifreq ifreq; 2983 u32 data32; 2984 2985 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 2986 return -EFAULT; 2987 if (get_user(data32, &u_ifreq32->ifr_data)) 2988 return -EFAULT; 2989 ifreq.ifr_data = compat_ptr(data32); 2990 2991 return dev_ioctl(net, cmd, &ifreq, NULL); 2992 } 2993 2994 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2995 struct compat_ifreq __user *uifr32) 2996 { 2997 struct ifreq ifr; 2998 struct compat_ifmap __user *uifmap32; 2999 int err; 3000 3001 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3002 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3003 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3004 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3005 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3006 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3007 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3008 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3009 if (err) 3010 return -EFAULT; 3011 3012 err = dev_ioctl(net, cmd, &ifr, NULL); 3013 3014 if (cmd == SIOCGIFMAP && !err) { 3015 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3016 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3017 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3018 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3019 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3020 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3021 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3022 if (err) 3023 err = -EFAULT; 3024 } 3025 return err; 3026 } 3027 3028 struct rtentry32 { 3029 u32 rt_pad1; 3030 struct sockaddr rt_dst; /* target address */ 3031 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3032 struct sockaddr rt_genmask; /* target network mask (IP) */ 3033 unsigned short rt_flags; 3034 short rt_pad2; 3035 u32 rt_pad3; 3036 unsigned char rt_tos; 3037 unsigned char rt_class; 3038 short rt_pad4; 3039 short rt_metric; /* +1 for binary compatibility! */ 3040 /* char * */ u32 rt_dev; /* forcing the device at add */ 3041 u32 rt_mtu; /* per route MTU/Window */ 3042 u32 rt_window; /* Window clamping */ 3043 unsigned short rt_irtt; /* Initial RTT */ 3044 }; 3045 3046 struct in6_rtmsg32 { 3047 struct in6_addr rtmsg_dst; 3048 struct in6_addr rtmsg_src; 3049 struct in6_addr rtmsg_gateway; 3050 u32 rtmsg_type; 3051 u16 rtmsg_dst_len; 3052 u16 rtmsg_src_len; 3053 u32 rtmsg_metric; 3054 u32 rtmsg_info; 3055 u32 rtmsg_flags; 3056 s32 rtmsg_ifindex; 3057 }; 3058 3059 static int routing_ioctl(struct net *net, struct socket *sock, 3060 unsigned int cmd, void __user *argp) 3061 { 3062 int ret; 3063 void *r = NULL; 3064 struct in6_rtmsg r6; 3065 struct rtentry r4; 3066 char devname[16]; 3067 u32 rtdev; 3068 mm_segment_t old_fs = get_fs(); 3069 3070 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3071 struct in6_rtmsg32 __user *ur6 = argp; 3072 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3073 3 * sizeof(struct in6_addr)); 3074 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3075 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3076 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3077 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3078 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3079 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3080 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3081 3082 r = (void *) &r6; 3083 } else { /* ipv4 */ 3084 struct rtentry32 __user *ur4 = argp; 3085 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3086 3 * sizeof(struct sockaddr)); 3087 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3088 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3089 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3090 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3091 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3092 ret |= get_user(rtdev, &(ur4->rt_dev)); 3093 if (rtdev) { 3094 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3095 r4.rt_dev = (char __user __force *)devname; 3096 devname[15] = 0; 3097 } else 3098 r4.rt_dev = NULL; 3099 3100 r = (void *) &r4; 3101 } 3102 3103 if (ret) { 3104 ret = -EFAULT; 3105 goto out; 3106 } 3107 3108 set_fs(KERNEL_DS); 3109 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3110 set_fs(old_fs); 3111 3112 out: 3113 return ret; 3114 } 3115 3116 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3117 * for some operations; this forces use of the newer bridge-utils that 3118 * use compatible ioctls 3119 */ 3120 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3121 { 3122 compat_ulong_t tmp; 3123 3124 if (get_user(tmp, argp)) 3125 return -EFAULT; 3126 if (tmp == BRCTL_GET_VERSION) 3127 return BRCTL_VERSION + 1; 3128 return -EINVAL; 3129 } 3130 3131 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3132 unsigned int cmd, unsigned long arg) 3133 { 3134 void __user *argp = compat_ptr(arg); 3135 struct sock *sk = sock->sk; 3136 struct net *net = sock_net(sk); 3137 3138 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3139 return compat_ifr_data_ioctl(net, cmd, argp); 3140 3141 switch (cmd) { 3142 case SIOCSIFBR: 3143 case SIOCGIFBR: 3144 return old_bridge_ioctl(argp); 3145 case SIOCGIFCONF: 3146 return compat_dev_ifconf(net, argp); 3147 case SIOCETHTOOL: 3148 return ethtool_ioctl(net, argp); 3149 case SIOCWANDEV: 3150 return compat_siocwandev(net, argp); 3151 case SIOCGIFMAP: 3152 case SIOCSIFMAP: 3153 return compat_sioc_ifmap(net, cmd, argp); 3154 case SIOCADDRT: 3155 case SIOCDELRT: 3156 return routing_ioctl(net, sock, cmd, argp); 3157 case SIOCGSTAMP: 3158 return do_siocgstamp(net, sock, cmd, argp); 3159 case SIOCGSTAMPNS: 3160 return do_siocgstampns(net, sock, cmd, argp); 3161 case SIOCBONDSLAVEINFOQUERY: 3162 case SIOCBONDINFOQUERY: 3163 case SIOCSHWTSTAMP: 3164 case SIOCGHWTSTAMP: 3165 return compat_ifr_data_ioctl(net, cmd, argp); 3166 3167 case FIOSETOWN: 3168 case SIOCSPGRP: 3169 case FIOGETOWN: 3170 case SIOCGPGRP: 3171 case SIOCBRADDBR: 3172 case SIOCBRDELBR: 3173 case SIOCGIFVLAN: 3174 case SIOCSIFVLAN: 3175 case SIOCADDDLCI: 3176 case SIOCDELDLCI: 3177 case SIOCGSKNS: 3178 return sock_ioctl(file, cmd, arg); 3179 3180 case SIOCGIFFLAGS: 3181 case SIOCSIFFLAGS: 3182 case SIOCGIFMETRIC: 3183 case SIOCSIFMETRIC: 3184 case SIOCGIFMTU: 3185 case SIOCSIFMTU: 3186 case SIOCGIFMEM: 3187 case SIOCSIFMEM: 3188 case SIOCGIFHWADDR: 3189 case SIOCSIFHWADDR: 3190 case SIOCADDMULTI: 3191 case SIOCDELMULTI: 3192 case SIOCGIFINDEX: 3193 case SIOCGIFADDR: 3194 case SIOCSIFADDR: 3195 case SIOCSIFHWBROADCAST: 3196 case SIOCDIFADDR: 3197 case SIOCGIFBRDADDR: 3198 case SIOCSIFBRDADDR: 3199 case SIOCGIFDSTADDR: 3200 case SIOCSIFDSTADDR: 3201 case SIOCGIFNETMASK: 3202 case SIOCSIFNETMASK: 3203 case SIOCSIFPFLAGS: 3204 case SIOCGIFPFLAGS: 3205 case SIOCGIFTXQLEN: 3206 case SIOCSIFTXQLEN: 3207 case SIOCBRADDIF: 3208 case SIOCBRDELIF: 3209 case SIOCSIFNAME: 3210 case SIOCGMIIPHY: 3211 case SIOCGMIIREG: 3212 case SIOCSMIIREG: 3213 case SIOCSARP: 3214 case SIOCGARP: 3215 case SIOCDARP: 3216 case SIOCATMARK: 3217 case SIOCBONDENSLAVE: 3218 case SIOCBONDRELEASE: 3219 case SIOCBONDSETHWADDR: 3220 case SIOCBONDCHANGEACTIVE: 3221 case SIOCGIFNAME: 3222 return sock_do_ioctl(net, sock, cmd, arg); 3223 } 3224 3225 return -ENOIOCTLCMD; 3226 } 3227 3228 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3229 unsigned long arg) 3230 { 3231 struct socket *sock = file->private_data; 3232 int ret = -ENOIOCTLCMD; 3233 struct sock *sk; 3234 struct net *net; 3235 3236 sk = sock->sk; 3237 net = sock_net(sk); 3238 3239 if (sock->ops->compat_ioctl) 3240 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3241 3242 if (ret == -ENOIOCTLCMD && 3243 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3244 ret = compat_wext_handle_ioctl(net, cmd, arg); 3245 3246 if (ret == -ENOIOCTLCMD) 3247 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3248 3249 return ret; 3250 } 3251 #endif 3252 3253 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3254 { 3255 return sock->ops->bind(sock, addr, addrlen); 3256 } 3257 EXPORT_SYMBOL(kernel_bind); 3258 3259 int kernel_listen(struct socket *sock, int backlog) 3260 { 3261 return sock->ops->listen(sock, backlog); 3262 } 3263 EXPORT_SYMBOL(kernel_listen); 3264 3265 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3266 { 3267 struct sock *sk = sock->sk; 3268 int err; 3269 3270 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3271 newsock); 3272 if (err < 0) 3273 goto done; 3274 3275 err = sock->ops->accept(sock, *newsock, flags, true); 3276 if (err < 0) { 3277 sock_release(*newsock); 3278 *newsock = NULL; 3279 goto done; 3280 } 3281 3282 (*newsock)->ops = sock->ops; 3283 __module_get((*newsock)->ops->owner); 3284 3285 done: 3286 return err; 3287 } 3288 EXPORT_SYMBOL(kernel_accept); 3289 3290 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3291 int flags) 3292 { 3293 return sock->ops->connect(sock, addr, addrlen, flags); 3294 } 3295 EXPORT_SYMBOL(kernel_connect); 3296 3297 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3298 { 3299 return sock->ops->getname(sock, addr, 0); 3300 } 3301 EXPORT_SYMBOL(kernel_getsockname); 3302 3303 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3304 { 3305 return sock->ops->getname(sock, addr, 1); 3306 } 3307 EXPORT_SYMBOL(kernel_getpeername); 3308 3309 int kernel_getsockopt(struct socket *sock, int level, int optname, 3310 char *optval, int *optlen) 3311 { 3312 mm_segment_t oldfs = get_fs(); 3313 char __user *uoptval; 3314 int __user *uoptlen; 3315 int err; 3316 3317 uoptval = (char __user __force *) optval; 3318 uoptlen = (int __user __force *) optlen; 3319 3320 set_fs(KERNEL_DS); 3321 if (level == SOL_SOCKET) 3322 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3323 else 3324 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3325 uoptlen); 3326 set_fs(oldfs); 3327 return err; 3328 } 3329 EXPORT_SYMBOL(kernel_getsockopt); 3330 3331 int kernel_setsockopt(struct socket *sock, int level, int optname, 3332 char *optval, unsigned int optlen) 3333 { 3334 mm_segment_t oldfs = get_fs(); 3335 char __user *uoptval; 3336 int err; 3337 3338 uoptval = (char __user __force *) optval; 3339 3340 set_fs(KERNEL_DS); 3341 if (level == SOL_SOCKET) 3342 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3343 else 3344 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3345 optlen); 3346 set_fs(oldfs); 3347 return err; 3348 } 3349 EXPORT_SYMBOL(kernel_setsockopt); 3350 3351 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3352 size_t size, int flags) 3353 { 3354 if (sock->ops->sendpage) 3355 return sock->ops->sendpage(sock, page, offset, size, flags); 3356 3357 return sock_no_sendpage(sock, page, offset, size, flags); 3358 } 3359 EXPORT_SYMBOL(kernel_sendpage); 3360 3361 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3362 size_t size, int flags) 3363 { 3364 struct socket *sock = sk->sk_socket; 3365 3366 if (sock->ops->sendpage_locked) 3367 return sock->ops->sendpage_locked(sk, page, offset, size, 3368 flags); 3369 3370 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3371 } 3372 EXPORT_SYMBOL(kernel_sendpage_locked); 3373 3374 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3375 { 3376 return sock->ops->shutdown(sock, how); 3377 } 3378 EXPORT_SYMBOL(kernel_sock_shutdown); 3379 3380 /* This routine returns the IP overhead imposed by a socket i.e. 3381 * the length of the underlying IP header, depending on whether 3382 * this is an IPv4 or IPv6 socket and the length from IP options turned 3383 * on at the socket. Assumes that the caller has a lock on the socket. 3384 */ 3385 u32 kernel_sock_ip_overhead(struct sock *sk) 3386 { 3387 struct inet_sock *inet; 3388 struct ip_options_rcu *opt; 3389 u32 overhead = 0; 3390 #if IS_ENABLED(CONFIG_IPV6) 3391 struct ipv6_pinfo *np; 3392 struct ipv6_txoptions *optv6 = NULL; 3393 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3394 3395 if (!sk) 3396 return overhead; 3397 3398 switch (sk->sk_family) { 3399 case AF_INET: 3400 inet = inet_sk(sk); 3401 overhead += sizeof(struct iphdr); 3402 opt = rcu_dereference_protected(inet->inet_opt, 3403 sock_owned_by_user(sk)); 3404 if (opt) 3405 overhead += opt->opt.optlen; 3406 return overhead; 3407 #if IS_ENABLED(CONFIG_IPV6) 3408 case AF_INET6: 3409 np = inet6_sk(sk); 3410 overhead += sizeof(struct ipv6hdr); 3411 if (np) 3412 optv6 = rcu_dereference_protected(np->opt, 3413 sock_owned_by_user(sk)); 3414 if (optv6) 3415 overhead += (optv6->opt_flen + optv6->opt_nflen); 3416 return overhead; 3417 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3418 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3419 return overhead; 3420 } 3421 } 3422 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3423