xref: /linux/net/socket.c (revision 6a61b70b43c9c4cbc7314bf6c8b5ba8b0d6e1e7b)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <obz@Kodak.COM>
7  *		Ross Biro
8  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <net/busy_poll.h>
108 #include <linux/errqueue.h>
109 
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114 
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
118 
119 static int sock_close(struct inode *inode, struct file *file);
120 static struct wait_queue_head *sock_get_poll_head(struct file *file,
121 		__poll_t events);
122 static __poll_t sock_poll_mask(struct file *file, __poll_t);
123 static __poll_t sock_poll(struct file *file, struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 #ifdef CONFIG_COMPAT
126 static long compat_sock_ioctl(struct file *file,
127 			      unsigned int cmd, unsigned long arg);
128 #endif
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 			     int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 				struct pipe_inode_info *pipe, size_t len,
134 				unsigned int flags);
135 
136 /*
137  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138  *	in the operation structures but are done directly via the socketcall() multiplexor.
139  */
140 
141 static const struct file_operations socket_file_ops = {
142 	.owner =	THIS_MODULE,
143 	.llseek =	no_llseek,
144 	.read_iter =	sock_read_iter,
145 	.write_iter =	sock_write_iter,
146 	.get_poll_head = sock_get_poll_head,
147 	.poll_mask =	sock_poll_mask,
148 	.poll =		sock_poll,
149 	.unlocked_ioctl = sock_ioctl,
150 #ifdef CONFIG_COMPAT
151 	.compat_ioctl = compat_sock_ioctl,
152 #endif
153 	.mmap =		sock_mmap,
154 	.release =	sock_close,
155 	.fasync =	sock_fasync,
156 	.sendpage =	sock_sendpage,
157 	.splice_write = generic_splice_sendpage,
158 	.splice_read =	sock_splice_read,
159 };
160 
161 /*
162  *	The protocol list. Each protocol is registered in here.
163  */
164 
165 static DEFINE_SPINLOCK(net_family_lock);
166 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
167 
168 /*
169  * Support routines.
170  * Move socket addresses back and forth across the kernel/user
171  * divide and look after the messy bits.
172  */
173 
174 /**
175  *	move_addr_to_kernel	-	copy a socket address into kernel space
176  *	@uaddr: Address in user space
177  *	@kaddr: Address in kernel space
178  *	@ulen: Length in user space
179  *
180  *	The address is copied into kernel space. If the provided address is
181  *	too long an error code of -EINVAL is returned. If the copy gives
182  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
183  */
184 
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
186 {
187 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
188 		return -EINVAL;
189 	if (ulen == 0)
190 		return 0;
191 	if (copy_from_user(kaddr, uaddr, ulen))
192 		return -EFAULT;
193 	return audit_sockaddr(ulen, kaddr);
194 }
195 
196 /**
197  *	move_addr_to_user	-	copy an address to user space
198  *	@kaddr: kernel space address
199  *	@klen: length of address in kernel
200  *	@uaddr: user space address
201  *	@ulen: pointer to user length field
202  *
203  *	The value pointed to by ulen on entry is the buffer length available.
204  *	This is overwritten with the buffer space used. -EINVAL is returned
205  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
206  *	is returned if either the buffer or the length field are not
207  *	accessible.
208  *	After copying the data up to the limit the user specifies, the true
209  *	length of the data is written over the length limit the user
210  *	specified. Zero is returned for a success.
211  */
212 
213 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
214 			     void __user *uaddr, int __user *ulen)
215 {
216 	int err;
217 	int len;
218 
219 	BUG_ON(klen > sizeof(struct sockaddr_storage));
220 	err = get_user(len, ulen);
221 	if (err)
222 		return err;
223 	if (len > klen)
224 		len = klen;
225 	if (len < 0)
226 		return -EINVAL;
227 	if (len) {
228 		if (audit_sockaddr(klen, kaddr))
229 			return -ENOMEM;
230 		if (copy_to_user(uaddr, kaddr, len))
231 			return -EFAULT;
232 	}
233 	/*
234 	 *      "fromlen shall refer to the value before truncation.."
235 	 *                      1003.1g
236 	 */
237 	return __put_user(klen, ulen);
238 }
239 
240 static struct kmem_cache *sock_inode_cachep __ro_after_init;
241 
242 static struct inode *sock_alloc_inode(struct super_block *sb)
243 {
244 	struct socket_alloc *ei;
245 	struct socket_wq *wq;
246 
247 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
248 	if (!ei)
249 		return NULL;
250 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
251 	if (!wq) {
252 		kmem_cache_free(sock_inode_cachep, ei);
253 		return NULL;
254 	}
255 	init_waitqueue_head(&wq->wait);
256 	wq->fasync_list = NULL;
257 	wq->flags = 0;
258 	RCU_INIT_POINTER(ei->socket.wq, wq);
259 
260 	ei->socket.state = SS_UNCONNECTED;
261 	ei->socket.flags = 0;
262 	ei->socket.ops = NULL;
263 	ei->socket.sk = NULL;
264 	ei->socket.file = NULL;
265 
266 	return &ei->vfs_inode;
267 }
268 
269 static void sock_destroy_inode(struct inode *inode)
270 {
271 	struct socket_alloc *ei;
272 	struct socket_wq *wq;
273 
274 	ei = container_of(inode, struct socket_alloc, vfs_inode);
275 	wq = rcu_dereference_protected(ei->socket.wq, 1);
276 	kfree_rcu(wq, rcu);
277 	kmem_cache_free(sock_inode_cachep, ei);
278 }
279 
280 static void init_once(void *foo)
281 {
282 	struct socket_alloc *ei = (struct socket_alloc *)foo;
283 
284 	inode_init_once(&ei->vfs_inode);
285 }
286 
287 static void init_inodecache(void)
288 {
289 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
290 					      sizeof(struct socket_alloc),
291 					      0,
292 					      (SLAB_HWCACHE_ALIGN |
293 					       SLAB_RECLAIM_ACCOUNT |
294 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
295 					      init_once);
296 	BUG_ON(sock_inode_cachep == NULL);
297 }
298 
299 static const struct super_operations sockfs_ops = {
300 	.alloc_inode	= sock_alloc_inode,
301 	.destroy_inode	= sock_destroy_inode,
302 	.statfs		= simple_statfs,
303 };
304 
305 /*
306  * sockfs_dname() is called from d_path().
307  */
308 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
309 {
310 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
311 				d_inode(dentry)->i_ino);
312 }
313 
314 static const struct dentry_operations sockfs_dentry_operations = {
315 	.d_dname  = sockfs_dname,
316 };
317 
318 static int sockfs_xattr_get(const struct xattr_handler *handler,
319 			    struct dentry *dentry, struct inode *inode,
320 			    const char *suffix, void *value, size_t size)
321 {
322 	if (value) {
323 		if (dentry->d_name.len + 1 > size)
324 			return -ERANGE;
325 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
326 	}
327 	return dentry->d_name.len + 1;
328 }
329 
330 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
331 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
332 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
333 
334 static const struct xattr_handler sockfs_xattr_handler = {
335 	.name = XATTR_NAME_SOCKPROTONAME,
336 	.get = sockfs_xattr_get,
337 };
338 
339 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
340 				     struct dentry *dentry, struct inode *inode,
341 				     const char *suffix, const void *value,
342 				     size_t size, int flags)
343 {
344 	/* Handled by LSM. */
345 	return -EAGAIN;
346 }
347 
348 static const struct xattr_handler sockfs_security_xattr_handler = {
349 	.prefix = XATTR_SECURITY_PREFIX,
350 	.set = sockfs_security_xattr_set,
351 };
352 
353 static const struct xattr_handler *sockfs_xattr_handlers[] = {
354 	&sockfs_xattr_handler,
355 	&sockfs_security_xattr_handler,
356 	NULL
357 };
358 
359 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
360 			 int flags, const char *dev_name, void *data)
361 {
362 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
363 				  sockfs_xattr_handlers,
364 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
365 }
366 
367 static struct vfsmount *sock_mnt __read_mostly;
368 
369 static struct file_system_type sock_fs_type = {
370 	.name =		"sockfs",
371 	.mount =	sockfs_mount,
372 	.kill_sb =	kill_anon_super,
373 };
374 
375 /*
376  *	Obtains the first available file descriptor and sets it up for use.
377  *
378  *	These functions create file structures and maps them to fd space
379  *	of the current process. On success it returns file descriptor
380  *	and file struct implicitly stored in sock->file.
381  *	Note that another thread may close file descriptor before we return
382  *	from this function. We use the fact that now we do not refer
383  *	to socket after mapping. If one day we will need it, this
384  *	function will increment ref. count on file by 1.
385  *
386  *	In any case returned fd MAY BE not valid!
387  *	This race condition is unavoidable
388  *	with shared fd spaces, we cannot solve it inside kernel,
389  *	but we take care of internal coherence yet.
390  */
391 
392 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
393 {
394 	struct qstr name = { .name = "" };
395 	struct path path;
396 	struct file *file;
397 
398 	if (dname) {
399 		name.name = dname;
400 		name.len = strlen(name.name);
401 	} else if (sock->sk) {
402 		name.name = sock->sk->sk_prot_creator->name;
403 		name.len = strlen(name.name);
404 	}
405 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
406 	if (unlikely(!path.dentry)) {
407 		sock_release(sock);
408 		return ERR_PTR(-ENOMEM);
409 	}
410 	path.mnt = mntget(sock_mnt);
411 
412 	d_instantiate(path.dentry, SOCK_INODE(sock));
413 
414 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
415 		  &socket_file_ops);
416 	if (IS_ERR(file)) {
417 		/* drop dentry, keep inode for a bit */
418 		ihold(d_inode(path.dentry));
419 		path_put(&path);
420 		/* ... and now kill it properly */
421 		sock_release(sock);
422 		return file;
423 	}
424 
425 	sock->file = file;
426 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
427 	file->private_data = sock;
428 	return file;
429 }
430 EXPORT_SYMBOL(sock_alloc_file);
431 
432 static int sock_map_fd(struct socket *sock, int flags)
433 {
434 	struct file *newfile;
435 	int fd = get_unused_fd_flags(flags);
436 	if (unlikely(fd < 0)) {
437 		sock_release(sock);
438 		return fd;
439 	}
440 
441 	newfile = sock_alloc_file(sock, flags, NULL);
442 	if (likely(!IS_ERR(newfile))) {
443 		fd_install(fd, newfile);
444 		return fd;
445 	}
446 
447 	put_unused_fd(fd);
448 	return PTR_ERR(newfile);
449 }
450 
451 struct socket *sock_from_file(struct file *file, int *err)
452 {
453 	if (file->f_op == &socket_file_ops)
454 		return file->private_data;	/* set in sock_map_fd */
455 
456 	*err = -ENOTSOCK;
457 	return NULL;
458 }
459 EXPORT_SYMBOL(sock_from_file);
460 
461 /**
462  *	sockfd_lookup - Go from a file number to its socket slot
463  *	@fd: file handle
464  *	@err: pointer to an error code return
465  *
466  *	The file handle passed in is locked and the socket it is bound
467  *	to is returned. If an error occurs the err pointer is overwritten
468  *	with a negative errno code and NULL is returned. The function checks
469  *	for both invalid handles and passing a handle which is not a socket.
470  *
471  *	On a success the socket object pointer is returned.
472  */
473 
474 struct socket *sockfd_lookup(int fd, int *err)
475 {
476 	struct file *file;
477 	struct socket *sock;
478 
479 	file = fget(fd);
480 	if (!file) {
481 		*err = -EBADF;
482 		return NULL;
483 	}
484 
485 	sock = sock_from_file(file, err);
486 	if (!sock)
487 		fput(file);
488 	return sock;
489 }
490 EXPORT_SYMBOL(sockfd_lookup);
491 
492 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
493 {
494 	struct fd f = fdget(fd);
495 	struct socket *sock;
496 
497 	*err = -EBADF;
498 	if (f.file) {
499 		sock = sock_from_file(f.file, err);
500 		if (likely(sock)) {
501 			*fput_needed = f.flags;
502 			return sock;
503 		}
504 		fdput(f);
505 	}
506 	return NULL;
507 }
508 
509 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
510 				size_t size)
511 {
512 	ssize_t len;
513 	ssize_t used = 0;
514 
515 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
516 	if (len < 0)
517 		return len;
518 	used += len;
519 	if (buffer) {
520 		if (size < used)
521 			return -ERANGE;
522 		buffer += len;
523 	}
524 
525 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
526 	used += len;
527 	if (buffer) {
528 		if (size < used)
529 			return -ERANGE;
530 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
531 		buffer += len;
532 	}
533 
534 	return used;
535 }
536 
537 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
538 {
539 	int err = simple_setattr(dentry, iattr);
540 
541 	if (!err && (iattr->ia_valid & ATTR_UID)) {
542 		struct socket *sock = SOCKET_I(d_inode(dentry));
543 
544 		sock->sk->sk_uid = iattr->ia_uid;
545 	}
546 
547 	return err;
548 }
549 
550 static const struct inode_operations sockfs_inode_ops = {
551 	.listxattr = sockfs_listxattr,
552 	.setattr = sockfs_setattr,
553 };
554 
555 /**
556  *	sock_alloc	-	allocate a socket
557  *
558  *	Allocate a new inode and socket object. The two are bound together
559  *	and initialised. The socket is then returned. If we are out of inodes
560  *	NULL is returned.
561  */
562 
563 struct socket *sock_alloc(void)
564 {
565 	struct inode *inode;
566 	struct socket *sock;
567 
568 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
569 	if (!inode)
570 		return NULL;
571 
572 	sock = SOCKET_I(inode);
573 
574 	inode->i_ino = get_next_ino();
575 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
576 	inode->i_uid = current_fsuid();
577 	inode->i_gid = current_fsgid();
578 	inode->i_op = &sockfs_inode_ops;
579 
580 	return sock;
581 }
582 EXPORT_SYMBOL(sock_alloc);
583 
584 /**
585  *	sock_release	-	close a socket
586  *	@sock: socket to close
587  *
588  *	The socket is released from the protocol stack if it has a release
589  *	callback, and the inode is then released if the socket is bound to
590  *	an inode not a file.
591  */
592 
593 void sock_release(struct socket *sock)
594 {
595 	if (sock->ops) {
596 		struct module *owner = sock->ops->owner;
597 
598 		sock->ops->release(sock);
599 		sock->ops = NULL;
600 		module_put(owner);
601 	}
602 
603 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
604 		pr_err("%s: fasync list not empty!\n", __func__);
605 
606 	if (!sock->file) {
607 		iput(SOCK_INODE(sock));
608 		return;
609 	}
610 	sock->file = NULL;
611 }
612 EXPORT_SYMBOL(sock_release);
613 
614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
615 {
616 	u8 flags = *tx_flags;
617 
618 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
619 		flags |= SKBTX_HW_TSTAMP;
620 
621 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
622 		flags |= SKBTX_SW_TSTAMP;
623 
624 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
625 		flags |= SKBTX_SCHED_TSTAMP;
626 
627 	*tx_flags = flags;
628 }
629 EXPORT_SYMBOL(__sock_tx_timestamp);
630 
631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
632 {
633 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
634 	BUG_ON(ret == -EIOCBQUEUED);
635 	return ret;
636 }
637 
638 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
639 {
640 	int err = security_socket_sendmsg(sock, msg,
641 					  msg_data_left(msg));
642 
643 	return err ?: sock_sendmsg_nosec(sock, msg);
644 }
645 EXPORT_SYMBOL(sock_sendmsg);
646 
647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
648 		   struct kvec *vec, size_t num, size_t size)
649 {
650 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
651 	return sock_sendmsg(sock, msg);
652 }
653 EXPORT_SYMBOL(kernel_sendmsg);
654 
655 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
656 			  struct kvec *vec, size_t num, size_t size)
657 {
658 	struct socket *sock = sk->sk_socket;
659 
660 	if (!sock->ops->sendmsg_locked)
661 		return sock_no_sendmsg_locked(sk, msg, size);
662 
663 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
664 
665 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
666 }
667 EXPORT_SYMBOL(kernel_sendmsg_locked);
668 
669 static bool skb_is_err_queue(const struct sk_buff *skb)
670 {
671 	/* pkt_type of skbs enqueued on the error queue are set to
672 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
673 	 * in recvmsg, since skbs received on a local socket will never
674 	 * have a pkt_type of PACKET_OUTGOING.
675 	 */
676 	return skb->pkt_type == PACKET_OUTGOING;
677 }
678 
679 /* On transmit, software and hardware timestamps are returned independently.
680  * As the two skb clones share the hardware timestamp, which may be updated
681  * before the software timestamp is received, a hardware TX timestamp may be
682  * returned only if there is no software TX timestamp. Ignore false software
683  * timestamps, which may be made in the __sock_recv_timestamp() call when the
684  * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
685  * hardware timestamp.
686  */
687 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
688 {
689 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
690 }
691 
692 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
693 {
694 	struct scm_ts_pktinfo ts_pktinfo;
695 	struct net_device *orig_dev;
696 
697 	if (!skb_mac_header_was_set(skb))
698 		return;
699 
700 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
701 
702 	rcu_read_lock();
703 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
704 	if (orig_dev)
705 		ts_pktinfo.if_index = orig_dev->ifindex;
706 	rcu_read_unlock();
707 
708 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
709 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
710 		 sizeof(ts_pktinfo), &ts_pktinfo);
711 }
712 
713 /*
714  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
715  */
716 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
717 	struct sk_buff *skb)
718 {
719 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
720 	struct scm_timestamping tss;
721 	int empty = 1, false_tstamp = 0;
722 	struct skb_shared_hwtstamps *shhwtstamps =
723 		skb_hwtstamps(skb);
724 
725 	/* Race occurred between timestamp enabling and packet
726 	   receiving.  Fill in the current time for now. */
727 	if (need_software_tstamp && skb->tstamp == 0) {
728 		__net_timestamp(skb);
729 		false_tstamp = 1;
730 	}
731 
732 	if (need_software_tstamp) {
733 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
734 			struct timeval tv;
735 			skb_get_timestamp(skb, &tv);
736 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
737 				 sizeof(tv), &tv);
738 		} else {
739 			struct timespec ts;
740 			skb_get_timestampns(skb, &ts);
741 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
742 				 sizeof(ts), &ts);
743 		}
744 	}
745 
746 	memset(&tss, 0, sizeof(tss));
747 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
748 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
749 		empty = 0;
750 	if (shhwtstamps &&
751 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
752 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
753 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
754 		empty = 0;
755 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
756 		    !skb_is_err_queue(skb))
757 			put_ts_pktinfo(msg, skb);
758 	}
759 	if (!empty) {
760 		put_cmsg(msg, SOL_SOCKET,
761 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
762 
763 		if (skb_is_err_queue(skb) && skb->len &&
764 		    SKB_EXT_ERR(skb)->opt_stats)
765 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
766 				 skb->len, skb->data);
767 	}
768 }
769 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
770 
771 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
772 	struct sk_buff *skb)
773 {
774 	int ack;
775 
776 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
777 		return;
778 	if (!skb->wifi_acked_valid)
779 		return;
780 
781 	ack = skb->wifi_acked;
782 
783 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
784 }
785 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
786 
787 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
788 				   struct sk_buff *skb)
789 {
790 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
791 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
792 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
793 }
794 
795 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
796 	struct sk_buff *skb)
797 {
798 	sock_recv_timestamp(msg, sk, skb);
799 	sock_recv_drops(msg, sk, skb);
800 }
801 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
802 
803 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
804 				     int flags)
805 {
806 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
807 }
808 
809 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
810 {
811 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
812 
813 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
814 }
815 EXPORT_SYMBOL(sock_recvmsg);
816 
817 /**
818  * kernel_recvmsg - Receive a message from a socket (kernel space)
819  * @sock:       The socket to receive the message from
820  * @msg:        Received message
821  * @vec:        Input s/g array for message data
822  * @num:        Size of input s/g array
823  * @size:       Number of bytes to read
824  * @flags:      Message flags (MSG_DONTWAIT, etc...)
825  *
826  * On return the msg structure contains the scatter/gather array passed in the
827  * vec argument. The array is modified so that it consists of the unfilled
828  * portion of the original array.
829  *
830  * The returned value is the total number of bytes received, or an error.
831  */
832 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
833 		   struct kvec *vec, size_t num, size_t size, int flags)
834 {
835 	mm_segment_t oldfs = get_fs();
836 	int result;
837 
838 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
839 	set_fs(KERNEL_DS);
840 	result = sock_recvmsg(sock, msg, flags);
841 	set_fs(oldfs);
842 	return result;
843 }
844 EXPORT_SYMBOL(kernel_recvmsg);
845 
846 static ssize_t sock_sendpage(struct file *file, struct page *page,
847 			     int offset, size_t size, loff_t *ppos, int more)
848 {
849 	struct socket *sock;
850 	int flags;
851 
852 	sock = file->private_data;
853 
854 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
855 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
856 	flags |= more;
857 
858 	return kernel_sendpage(sock, page, offset, size, flags);
859 }
860 
861 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
862 				struct pipe_inode_info *pipe, size_t len,
863 				unsigned int flags)
864 {
865 	struct socket *sock = file->private_data;
866 
867 	if (unlikely(!sock->ops->splice_read))
868 		return -EINVAL;
869 
870 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
871 }
872 
873 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
874 {
875 	struct file *file = iocb->ki_filp;
876 	struct socket *sock = file->private_data;
877 	struct msghdr msg = {.msg_iter = *to,
878 			     .msg_iocb = iocb};
879 	ssize_t res;
880 
881 	if (file->f_flags & O_NONBLOCK)
882 		msg.msg_flags = MSG_DONTWAIT;
883 
884 	if (iocb->ki_pos != 0)
885 		return -ESPIPE;
886 
887 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
888 		return 0;
889 
890 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
891 	*to = msg.msg_iter;
892 	return res;
893 }
894 
895 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
896 {
897 	struct file *file = iocb->ki_filp;
898 	struct socket *sock = file->private_data;
899 	struct msghdr msg = {.msg_iter = *from,
900 			     .msg_iocb = iocb};
901 	ssize_t res;
902 
903 	if (iocb->ki_pos != 0)
904 		return -ESPIPE;
905 
906 	if (file->f_flags & O_NONBLOCK)
907 		msg.msg_flags = MSG_DONTWAIT;
908 
909 	if (sock->type == SOCK_SEQPACKET)
910 		msg.msg_flags |= MSG_EOR;
911 
912 	res = sock_sendmsg(sock, &msg);
913 	*from = msg.msg_iter;
914 	return res;
915 }
916 
917 /*
918  * Atomic setting of ioctl hooks to avoid race
919  * with module unload.
920  */
921 
922 static DEFINE_MUTEX(br_ioctl_mutex);
923 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
924 
925 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
926 {
927 	mutex_lock(&br_ioctl_mutex);
928 	br_ioctl_hook = hook;
929 	mutex_unlock(&br_ioctl_mutex);
930 }
931 EXPORT_SYMBOL(brioctl_set);
932 
933 static DEFINE_MUTEX(vlan_ioctl_mutex);
934 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
935 
936 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
937 {
938 	mutex_lock(&vlan_ioctl_mutex);
939 	vlan_ioctl_hook = hook;
940 	mutex_unlock(&vlan_ioctl_mutex);
941 }
942 EXPORT_SYMBOL(vlan_ioctl_set);
943 
944 static DEFINE_MUTEX(dlci_ioctl_mutex);
945 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
946 
947 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
948 {
949 	mutex_lock(&dlci_ioctl_mutex);
950 	dlci_ioctl_hook = hook;
951 	mutex_unlock(&dlci_ioctl_mutex);
952 }
953 EXPORT_SYMBOL(dlci_ioctl_set);
954 
955 static long sock_do_ioctl(struct net *net, struct socket *sock,
956 				 unsigned int cmd, unsigned long arg)
957 {
958 	int err;
959 	void __user *argp = (void __user *)arg;
960 
961 	err = sock->ops->ioctl(sock, cmd, arg);
962 
963 	/*
964 	 * If this ioctl is unknown try to hand it down
965 	 * to the NIC driver.
966 	 */
967 	if (err != -ENOIOCTLCMD)
968 		return err;
969 
970 	if (cmd == SIOCGIFCONF) {
971 		struct ifconf ifc;
972 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
973 			return -EFAULT;
974 		rtnl_lock();
975 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
976 		rtnl_unlock();
977 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
978 			err = -EFAULT;
979 	} else {
980 		struct ifreq ifr;
981 		bool need_copyout;
982 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
983 			return -EFAULT;
984 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
985 		if (!err && need_copyout)
986 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
987 				return -EFAULT;
988 	}
989 	return err;
990 }
991 
992 /*
993  *	With an ioctl, arg may well be a user mode pointer, but we don't know
994  *	what to do with it - that's up to the protocol still.
995  */
996 
997 struct ns_common *get_net_ns(struct ns_common *ns)
998 {
999 	return &get_net(container_of(ns, struct net, ns))->ns;
1000 }
1001 EXPORT_SYMBOL_GPL(get_net_ns);
1002 
1003 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1004 {
1005 	struct socket *sock;
1006 	struct sock *sk;
1007 	void __user *argp = (void __user *)arg;
1008 	int pid, err;
1009 	struct net *net;
1010 
1011 	sock = file->private_data;
1012 	sk = sock->sk;
1013 	net = sock_net(sk);
1014 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1015 		struct ifreq ifr;
1016 		bool need_copyout;
1017 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1018 			return -EFAULT;
1019 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1020 		if (!err && need_copyout)
1021 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1022 				return -EFAULT;
1023 	} else
1024 #ifdef CONFIG_WEXT_CORE
1025 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1026 		err = wext_handle_ioctl(net, cmd, argp);
1027 	} else
1028 #endif
1029 		switch (cmd) {
1030 		case FIOSETOWN:
1031 		case SIOCSPGRP:
1032 			err = -EFAULT;
1033 			if (get_user(pid, (int __user *)argp))
1034 				break;
1035 			err = f_setown(sock->file, pid, 1);
1036 			break;
1037 		case FIOGETOWN:
1038 		case SIOCGPGRP:
1039 			err = put_user(f_getown(sock->file),
1040 				       (int __user *)argp);
1041 			break;
1042 		case SIOCGIFBR:
1043 		case SIOCSIFBR:
1044 		case SIOCBRADDBR:
1045 		case SIOCBRDELBR:
1046 			err = -ENOPKG;
1047 			if (!br_ioctl_hook)
1048 				request_module("bridge");
1049 
1050 			mutex_lock(&br_ioctl_mutex);
1051 			if (br_ioctl_hook)
1052 				err = br_ioctl_hook(net, cmd, argp);
1053 			mutex_unlock(&br_ioctl_mutex);
1054 			break;
1055 		case SIOCGIFVLAN:
1056 		case SIOCSIFVLAN:
1057 			err = -ENOPKG;
1058 			if (!vlan_ioctl_hook)
1059 				request_module("8021q");
1060 
1061 			mutex_lock(&vlan_ioctl_mutex);
1062 			if (vlan_ioctl_hook)
1063 				err = vlan_ioctl_hook(net, argp);
1064 			mutex_unlock(&vlan_ioctl_mutex);
1065 			break;
1066 		case SIOCADDDLCI:
1067 		case SIOCDELDLCI:
1068 			err = -ENOPKG;
1069 			if (!dlci_ioctl_hook)
1070 				request_module("dlci");
1071 
1072 			mutex_lock(&dlci_ioctl_mutex);
1073 			if (dlci_ioctl_hook)
1074 				err = dlci_ioctl_hook(cmd, argp);
1075 			mutex_unlock(&dlci_ioctl_mutex);
1076 			break;
1077 		case SIOCGSKNS:
1078 			err = -EPERM;
1079 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1080 				break;
1081 
1082 			err = open_related_ns(&net->ns, get_net_ns);
1083 			break;
1084 		default:
1085 			err = sock_do_ioctl(net, sock, cmd, arg);
1086 			break;
1087 		}
1088 	return err;
1089 }
1090 
1091 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1092 {
1093 	int err;
1094 	struct socket *sock = NULL;
1095 
1096 	err = security_socket_create(family, type, protocol, 1);
1097 	if (err)
1098 		goto out;
1099 
1100 	sock = sock_alloc();
1101 	if (!sock) {
1102 		err = -ENOMEM;
1103 		goto out;
1104 	}
1105 
1106 	sock->type = type;
1107 	err = security_socket_post_create(sock, family, type, protocol, 1);
1108 	if (err)
1109 		goto out_release;
1110 
1111 out:
1112 	*res = sock;
1113 	return err;
1114 out_release:
1115 	sock_release(sock);
1116 	sock = NULL;
1117 	goto out;
1118 }
1119 EXPORT_SYMBOL(sock_create_lite);
1120 
1121 static struct wait_queue_head *sock_get_poll_head(struct file *file,
1122 		__poll_t events)
1123 {
1124 	struct socket *sock = file->private_data;
1125 
1126 	if (!sock->ops->poll_mask)
1127 		return NULL;
1128 	sock_poll_busy_loop(sock, events);
1129 	return sk_sleep(sock->sk);
1130 }
1131 
1132 static __poll_t sock_poll_mask(struct file *file, __poll_t events)
1133 {
1134 	struct socket *sock = file->private_data;
1135 
1136 	/*
1137 	 * We need to be sure we are in sync with the socket flags modification.
1138 	 *
1139 	 * This memory barrier is paired in the wq_has_sleeper.
1140 	 */
1141 	smp_mb();
1142 
1143 	/* this socket can poll_ll so tell the system call */
1144 	return sock->ops->poll_mask(sock, events) |
1145 		(sk_can_busy_loop(sock->sk) ? POLL_BUSY_LOOP : 0);
1146 }
1147 
1148 /* No kernel lock held - perfect */
1149 static __poll_t sock_poll(struct file *file, poll_table *wait)
1150 {
1151 	struct socket *sock = file->private_data;
1152 	__poll_t events = poll_requested_events(wait), mask = 0;
1153 
1154 	if (sock->ops->poll) {
1155 		sock_poll_busy_loop(sock, events);
1156 		mask = sock->ops->poll(file, sock, wait);
1157 	} else if (sock->ops->poll_mask) {
1158 		sock_poll_wait(file, sock_get_poll_head(file, events), wait);
1159 		mask = sock->ops->poll_mask(sock, events);
1160 	}
1161 
1162 	return mask | sock_poll_busy_flag(sock);
1163 }
1164 
1165 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1166 {
1167 	struct socket *sock = file->private_data;
1168 
1169 	return sock->ops->mmap(file, sock, vma);
1170 }
1171 
1172 static int sock_close(struct inode *inode, struct file *filp)
1173 {
1174 	sock_release(SOCKET_I(inode));
1175 	return 0;
1176 }
1177 
1178 /*
1179  *	Update the socket async list
1180  *
1181  *	Fasync_list locking strategy.
1182  *
1183  *	1. fasync_list is modified only under process context socket lock
1184  *	   i.e. under semaphore.
1185  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1186  *	   or under socket lock
1187  */
1188 
1189 static int sock_fasync(int fd, struct file *filp, int on)
1190 {
1191 	struct socket *sock = filp->private_data;
1192 	struct sock *sk = sock->sk;
1193 	struct socket_wq *wq;
1194 
1195 	if (sk == NULL)
1196 		return -EINVAL;
1197 
1198 	lock_sock(sk);
1199 	wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1200 	fasync_helper(fd, filp, on, &wq->fasync_list);
1201 
1202 	if (!wq->fasync_list)
1203 		sock_reset_flag(sk, SOCK_FASYNC);
1204 	else
1205 		sock_set_flag(sk, SOCK_FASYNC);
1206 
1207 	release_sock(sk);
1208 	return 0;
1209 }
1210 
1211 /* This function may be called only under rcu_lock */
1212 
1213 int sock_wake_async(struct socket_wq *wq, int how, int band)
1214 {
1215 	if (!wq || !wq->fasync_list)
1216 		return -1;
1217 
1218 	switch (how) {
1219 	case SOCK_WAKE_WAITD:
1220 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1221 			break;
1222 		goto call_kill;
1223 	case SOCK_WAKE_SPACE:
1224 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1225 			break;
1226 		/* fall through */
1227 	case SOCK_WAKE_IO:
1228 call_kill:
1229 		kill_fasync(&wq->fasync_list, SIGIO, band);
1230 		break;
1231 	case SOCK_WAKE_URG:
1232 		kill_fasync(&wq->fasync_list, SIGURG, band);
1233 	}
1234 
1235 	return 0;
1236 }
1237 EXPORT_SYMBOL(sock_wake_async);
1238 
1239 int __sock_create(struct net *net, int family, int type, int protocol,
1240 			 struct socket **res, int kern)
1241 {
1242 	int err;
1243 	struct socket *sock;
1244 	const struct net_proto_family *pf;
1245 
1246 	/*
1247 	 *      Check protocol is in range
1248 	 */
1249 	if (family < 0 || family >= NPROTO)
1250 		return -EAFNOSUPPORT;
1251 	if (type < 0 || type >= SOCK_MAX)
1252 		return -EINVAL;
1253 
1254 	/* Compatibility.
1255 
1256 	   This uglymoron is moved from INET layer to here to avoid
1257 	   deadlock in module load.
1258 	 */
1259 	if (family == PF_INET && type == SOCK_PACKET) {
1260 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1261 			     current->comm);
1262 		family = PF_PACKET;
1263 	}
1264 
1265 	err = security_socket_create(family, type, protocol, kern);
1266 	if (err)
1267 		return err;
1268 
1269 	/*
1270 	 *	Allocate the socket and allow the family to set things up. if
1271 	 *	the protocol is 0, the family is instructed to select an appropriate
1272 	 *	default.
1273 	 */
1274 	sock = sock_alloc();
1275 	if (!sock) {
1276 		net_warn_ratelimited("socket: no more sockets\n");
1277 		return -ENFILE;	/* Not exactly a match, but its the
1278 				   closest posix thing */
1279 	}
1280 
1281 	sock->type = type;
1282 
1283 #ifdef CONFIG_MODULES
1284 	/* Attempt to load a protocol module if the find failed.
1285 	 *
1286 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1287 	 * requested real, full-featured networking support upon configuration.
1288 	 * Otherwise module support will break!
1289 	 */
1290 	if (rcu_access_pointer(net_families[family]) == NULL)
1291 		request_module("net-pf-%d", family);
1292 #endif
1293 
1294 	rcu_read_lock();
1295 	pf = rcu_dereference(net_families[family]);
1296 	err = -EAFNOSUPPORT;
1297 	if (!pf)
1298 		goto out_release;
1299 
1300 	/*
1301 	 * We will call the ->create function, that possibly is in a loadable
1302 	 * module, so we have to bump that loadable module refcnt first.
1303 	 */
1304 	if (!try_module_get(pf->owner))
1305 		goto out_release;
1306 
1307 	/* Now protected by module ref count */
1308 	rcu_read_unlock();
1309 
1310 	err = pf->create(net, sock, protocol, kern);
1311 	if (err < 0)
1312 		goto out_module_put;
1313 
1314 	/*
1315 	 * Now to bump the refcnt of the [loadable] module that owns this
1316 	 * socket at sock_release time we decrement its refcnt.
1317 	 */
1318 	if (!try_module_get(sock->ops->owner))
1319 		goto out_module_busy;
1320 
1321 	/*
1322 	 * Now that we're done with the ->create function, the [loadable]
1323 	 * module can have its refcnt decremented
1324 	 */
1325 	module_put(pf->owner);
1326 	err = security_socket_post_create(sock, family, type, protocol, kern);
1327 	if (err)
1328 		goto out_sock_release;
1329 	*res = sock;
1330 
1331 	return 0;
1332 
1333 out_module_busy:
1334 	err = -EAFNOSUPPORT;
1335 out_module_put:
1336 	sock->ops = NULL;
1337 	module_put(pf->owner);
1338 out_sock_release:
1339 	sock_release(sock);
1340 	return err;
1341 
1342 out_release:
1343 	rcu_read_unlock();
1344 	goto out_sock_release;
1345 }
1346 EXPORT_SYMBOL(__sock_create);
1347 
1348 int sock_create(int family, int type, int protocol, struct socket **res)
1349 {
1350 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1351 }
1352 EXPORT_SYMBOL(sock_create);
1353 
1354 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1355 {
1356 	return __sock_create(net, family, type, protocol, res, 1);
1357 }
1358 EXPORT_SYMBOL(sock_create_kern);
1359 
1360 int __sys_socket(int family, int type, int protocol)
1361 {
1362 	int retval;
1363 	struct socket *sock;
1364 	int flags;
1365 
1366 	/* Check the SOCK_* constants for consistency.  */
1367 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1368 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1369 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1370 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1371 
1372 	flags = type & ~SOCK_TYPE_MASK;
1373 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1374 		return -EINVAL;
1375 	type &= SOCK_TYPE_MASK;
1376 
1377 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1378 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1379 
1380 	retval = sock_create(family, type, protocol, &sock);
1381 	if (retval < 0)
1382 		return retval;
1383 
1384 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1385 }
1386 
1387 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1388 {
1389 	return __sys_socket(family, type, protocol);
1390 }
1391 
1392 /*
1393  *	Create a pair of connected sockets.
1394  */
1395 
1396 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1397 {
1398 	struct socket *sock1, *sock2;
1399 	int fd1, fd2, err;
1400 	struct file *newfile1, *newfile2;
1401 	int flags;
1402 
1403 	flags = type & ~SOCK_TYPE_MASK;
1404 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1405 		return -EINVAL;
1406 	type &= SOCK_TYPE_MASK;
1407 
1408 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1409 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1410 
1411 	/*
1412 	 * reserve descriptors and make sure we won't fail
1413 	 * to return them to userland.
1414 	 */
1415 	fd1 = get_unused_fd_flags(flags);
1416 	if (unlikely(fd1 < 0))
1417 		return fd1;
1418 
1419 	fd2 = get_unused_fd_flags(flags);
1420 	if (unlikely(fd2 < 0)) {
1421 		put_unused_fd(fd1);
1422 		return fd2;
1423 	}
1424 
1425 	err = put_user(fd1, &usockvec[0]);
1426 	if (err)
1427 		goto out;
1428 
1429 	err = put_user(fd2, &usockvec[1]);
1430 	if (err)
1431 		goto out;
1432 
1433 	/*
1434 	 * Obtain the first socket and check if the underlying protocol
1435 	 * supports the socketpair call.
1436 	 */
1437 
1438 	err = sock_create(family, type, protocol, &sock1);
1439 	if (unlikely(err < 0))
1440 		goto out;
1441 
1442 	err = sock_create(family, type, protocol, &sock2);
1443 	if (unlikely(err < 0)) {
1444 		sock_release(sock1);
1445 		goto out;
1446 	}
1447 
1448 	err = security_socket_socketpair(sock1, sock2);
1449 	if (unlikely(err)) {
1450 		sock_release(sock2);
1451 		sock_release(sock1);
1452 		goto out;
1453 	}
1454 
1455 	err = sock1->ops->socketpair(sock1, sock2);
1456 	if (unlikely(err < 0)) {
1457 		sock_release(sock2);
1458 		sock_release(sock1);
1459 		goto out;
1460 	}
1461 
1462 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1463 	if (IS_ERR(newfile1)) {
1464 		err = PTR_ERR(newfile1);
1465 		sock_release(sock2);
1466 		goto out;
1467 	}
1468 
1469 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1470 	if (IS_ERR(newfile2)) {
1471 		err = PTR_ERR(newfile2);
1472 		fput(newfile1);
1473 		goto out;
1474 	}
1475 
1476 	audit_fd_pair(fd1, fd2);
1477 
1478 	fd_install(fd1, newfile1);
1479 	fd_install(fd2, newfile2);
1480 	return 0;
1481 
1482 out:
1483 	put_unused_fd(fd2);
1484 	put_unused_fd(fd1);
1485 	return err;
1486 }
1487 
1488 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1489 		int __user *, usockvec)
1490 {
1491 	return __sys_socketpair(family, type, protocol, usockvec);
1492 }
1493 
1494 /*
1495  *	Bind a name to a socket. Nothing much to do here since it's
1496  *	the protocol's responsibility to handle the local address.
1497  *
1498  *	We move the socket address to kernel space before we call
1499  *	the protocol layer (having also checked the address is ok).
1500  */
1501 
1502 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1503 {
1504 	struct socket *sock;
1505 	struct sockaddr_storage address;
1506 	int err, fput_needed;
1507 
1508 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1509 	if (sock) {
1510 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1511 		if (err >= 0) {
1512 			err = security_socket_bind(sock,
1513 						   (struct sockaddr *)&address,
1514 						   addrlen);
1515 			if (!err)
1516 				err = sock->ops->bind(sock,
1517 						      (struct sockaddr *)
1518 						      &address, addrlen);
1519 		}
1520 		fput_light(sock->file, fput_needed);
1521 	}
1522 	return err;
1523 }
1524 
1525 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1526 {
1527 	return __sys_bind(fd, umyaddr, addrlen);
1528 }
1529 
1530 /*
1531  *	Perform a listen. Basically, we allow the protocol to do anything
1532  *	necessary for a listen, and if that works, we mark the socket as
1533  *	ready for listening.
1534  */
1535 
1536 int __sys_listen(int fd, int backlog)
1537 {
1538 	struct socket *sock;
1539 	int err, fput_needed;
1540 	int somaxconn;
1541 
1542 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1543 	if (sock) {
1544 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1545 		if ((unsigned int)backlog > somaxconn)
1546 			backlog = somaxconn;
1547 
1548 		err = security_socket_listen(sock, backlog);
1549 		if (!err)
1550 			err = sock->ops->listen(sock, backlog);
1551 
1552 		fput_light(sock->file, fput_needed);
1553 	}
1554 	return err;
1555 }
1556 
1557 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1558 {
1559 	return __sys_listen(fd, backlog);
1560 }
1561 
1562 /*
1563  *	For accept, we attempt to create a new socket, set up the link
1564  *	with the client, wake up the client, then return the new
1565  *	connected fd. We collect the address of the connector in kernel
1566  *	space and move it to user at the very end. This is unclean because
1567  *	we open the socket then return an error.
1568  *
1569  *	1003.1g adds the ability to recvmsg() to query connection pending
1570  *	status to recvmsg. We need to add that support in a way thats
1571  *	clean when we restructure accept also.
1572  */
1573 
1574 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1575 		  int __user *upeer_addrlen, int flags)
1576 {
1577 	struct socket *sock, *newsock;
1578 	struct file *newfile;
1579 	int err, len, newfd, fput_needed;
1580 	struct sockaddr_storage address;
1581 
1582 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1583 		return -EINVAL;
1584 
1585 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1586 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1587 
1588 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1589 	if (!sock)
1590 		goto out;
1591 
1592 	err = -ENFILE;
1593 	newsock = sock_alloc();
1594 	if (!newsock)
1595 		goto out_put;
1596 
1597 	newsock->type = sock->type;
1598 	newsock->ops = sock->ops;
1599 
1600 	/*
1601 	 * We don't need try_module_get here, as the listening socket (sock)
1602 	 * has the protocol module (sock->ops->owner) held.
1603 	 */
1604 	__module_get(newsock->ops->owner);
1605 
1606 	newfd = get_unused_fd_flags(flags);
1607 	if (unlikely(newfd < 0)) {
1608 		err = newfd;
1609 		sock_release(newsock);
1610 		goto out_put;
1611 	}
1612 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1613 	if (IS_ERR(newfile)) {
1614 		err = PTR_ERR(newfile);
1615 		put_unused_fd(newfd);
1616 		goto out_put;
1617 	}
1618 
1619 	err = security_socket_accept(sock, newsock);
1620 	if (err)
1621 		goto out_fd;
1622 
1623 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1624 	if (err < 0)
1625 		goto out_fd;
1626 
1627 	if (upeer_sockaddr) {
1628 		len = newsock->ops->getname(newsock,
1629 					(struct sockaddr *)&address, 2);
1630 		if (len < 0) {
1631 			err = -ECONNABORTED;
1632 			goto out_fd;
1633 		}
1634 		err = move_addr_to_user(&address,
1635 					len, upeer_sockaddr, upeer_addrlen);
1636 		if (err < 0)
1637 			goto out_fd;
1638 	}
1639 
1640 	/* File flags are not inherited via accept() unlike another OSes. */
1641 
1642 	fd_install(newfd, newfile);
1643 	err = newfd;
1644 
1645 out_put:
1646 	fput_light(sock->file, fput_needed);
1647 out:
1648 	return err;
1649 out_fd:
1650 	fput(newfile);
1651 	put_unused_fd(newfd);
1652 	goto out_put;
1653 }
1654 
1655 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1656 		int __user *, upeer_addrlen, int, flags)
1657 {
1658 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1659 }
1660 
1661 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1662 		int __user *, upeer_addrlen)
1663 {
1664 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1665 }
1666 
1667 /*
1668  *	Attempt to connect to a socket with the server address.  The address
1669  *	is in user space so we verify it is OK and move it to kernel space.
1670  *
1671  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1672  *	break bindings
1673  *
1674  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1675  *	other SEQPACKET protocols that take time to connect() as it doesn't
1676  *	include the -EINPROGRESS status for such sockets.
1677  */
1678 
1679 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1680 {
1681 	struct socket *sock;
1682 	struct sockaddr_storage address;
1683 	int err, fput_needed;
1684 
1685 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1686 	if (!sock)
1687 		goto out;
1688 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1689 	if (err < 0)
1690 		goto out_put;
1691 
1692 	err =
1693 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1694 	if (err)
1695 		goto out_put;
1696 
1697 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1698 				 sock->file->f_flags);
1699 out_put:
1700 	fput_light(sock->file, fput_needed);
1701 out:
1702 	return err;
1703 }
1704 
1705 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1706 		int, addrlen)
1707 {
1708 	return __sys_connect(fd, uservaddr, addrlen);
1709 }
1710 
1711 /*
1712  *	Get the local address ('name') of a socket object. Move the obtained
1713  *	name to user space.
1714  */
1715 
1716 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1717 		      int __user *usockaddr_len)
1718 {
1719 	struct socket *sock;
1720 	struct sockaddr_storage address;
1721 	int err, fput_needed;
1722 
1723 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1724 	if (!sock)
1725 		goto out;
1726 
1727 	err = security_socket_getsockname(sock);
1728 	if (err)
1729 		goto out_put;
1730 
1731 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1732 	if (err < 0)
1733 		goto out_put;
1734         /* "err" is actually length in this case */
1735 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1736 
1737 out_put:
1738 	fput_light(sock->file, fput_needed);
1739 out:
1740 	return err;
1741 }
1742 
1743 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1744 		int __user *, usockaddr_len)
1745 {
1746 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1747 }
1748 
1749 /*
1750  *	Get the remote address ('name') of a socket object. Move the obtained
1751  *	name to user space.
1752  */
1753 
1754 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1755 		      int __user *usockaddr_len)
1756 {
1757 	struct socket *sock;
1758 	struct sockaddr_storage address;
1759 	int err, fput_needed;
1760 
1761 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1762 	if (sock != NULL) {
1763 		err = security_socket_getpeername(sock);
1764 		if (err) {
1765 			fput_light(sock->file, fput_needed);
1766 			return err;
1767 		}
1768 
1769 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1770 		if (err >= 0)
1771 			/* "err" is actually length in this case */
1772 			err = move_addr_to_user(&address, err, usockaddr,
1773 						usockaddr_len);
1774 		fput_light(sock->file, fput_needed);
1775 	}
1776 	return err;
1777 }
1778 
1779 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1780 		int __user *, usockaddr_len)
1781 {
1782 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1783 }
1784 
1785 /*
1786  *	Send a datagram to a given address. We move the address into kernel
1787  *	space and check the user space data area is readable before invoking
1788  *	the protocol.
1789  */
1790 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1791 		 struct sockaddr __user *addr,  int addr_len)
1792 {
1793 	struct socket *sock;
1794 	struct sockaddr_storage address;
1795 	int err;
1796 	struct msghdr msg;
1797 	struct iovec iov;
1798 	int fput_needed;
1799 
1800 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1801 	if (unlikely(err))
1802 		return err;
1803 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1804 	if (!sock)
1805 		goto out;
1806 
1807 	msg.msg_name = NULL;
1808 	msg.msg_control = NULL;
1809 	msg.msg_controllen = 0;
1810 	msg.msg_namelen = 0;
1811 	if (addr) {
1812 		err = move_addr_to_kernel(addr, addr_len, &address);
1813 		if (err < 0)
1814 			goto out_put;
1815 		msg.msg_name = (struct sockaddr *)&address;
1816 		msg.msg_namelen = addr_len;
1817 	}
1818 	if (sock->file->f_flags & O_NONBLOCK)
1819 		flags |= MSG_DONTWAIT;
1820 	msg.msg_flags = flags;
1821 	err = sock_sendmsg(sock, &msg);
1822 
1823 out_put:
1824 	fput_light(sock->file, fput_needed);
1825 out:
1826 	return err;
1827 }
1828 
1829 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1830 		unsigned int, flags, struct sockaddr __user *, addr,
1831 		int, addr_len)
1832 {
1833 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1834 }
1835 
1836 /*
1837  *	Send a datagram down a socket.
1838  */
1839 
1840 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1841 		unsigned int, flags)
1842 {
1843 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1844 }
1845 
1846 /*
1847  *	Receive a frame from the socket and optionally record the address of the
1848  *	sender. We verify the buffers are writable and if needed move the
1849  *	sender address from kernel to user space.
1850  */
1851 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1852 		   struct sockaddr __user *addr, int __user *addr_len)
1853 {
1854 	struct socket *sock;
1855 	struct iovec iov;
1856 	struct msghdr msg;
1857 	struct sockaddr_storage address;
1858 	int err, err2;
1859 	int fput_needed;
1860 
1861 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1862 	if (unlikely(err))
1863 		return err;
1864 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1865 	if (!sock)
1866 		goto out;
1867 
1868 	msg.msg_control = NULL;
1869 	msg.msg_controllen = 0;
1870 	/* Save some cycles and don't copy the address if not needed */
1871 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1872 	/* We assume all kernel code knows the size of sockaddr_storage */
1873 	msg.msg_namelen = 0;
1874 	msg.msg_iocb = NULL;
1875 	msg.msg_flags = 0;
1876 	if (sock->file->f_flags & O_NONBLOCK)
1877 		flags |= MSG_DONTWAIT;
1878 	err = sock_recvmsg(sock, &msg, flags);
1879 
1880 	if (err >= 0 && addr != NULL) {
1881 		err2 = move_addr_to_user(&address,
1882 					 msg.msg_namelen, addr, addr_len);
1883 		if (err2 < 0)
1884 			err = err2;
1885 	}
1886 
1887 	fput_light(sock->file, fput_needed);
1888 out:
1889 	return err;
1890 }
1891 
1892 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1893 		unsigned int, flags, struct sockaddr __user *, addr,
1894 		int __user *, addr_len)
1895 {
1896 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1897 }
1898 
1899 /*
1900  *	Receive a datagram from a socket.
1901  */
1902 
1903 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1904 		unsigned int, flags)
1905 {
1906 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1907 }
1908 
1909 /*
1910  *	Set a socket option. Because we don't know the option lengths we have
1911  *	to pass the user mode parameter for the protocols to sort out.
1912  */
1913 
1914 static int __sys_setsockopt(int fd, int level, int optname,
1915 			    char __user *optval, int optlen)
1916 {
1917 	int err, fput_needed;
1918 	struct socket *sock;
1919 
1920 	if (optlen < 0)
1921 		return -EINVAL;
1922 
1923 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1924 	if (sock != NULL) {
1925 		err = security_socket_setsockopt(sock, level, optname);
1926 		if (err)
1927 			goto out_put;
1928 
1929 		if (level == SOL_SOCKET)
1930 			err =
1931 			    sock_setsockopt(sock, level, optname, optval,
1932 					    optlen);
1933 		else
1934 			err =
1935 			    sock->ops->setsockopt(sock, level, optname, optval,
1936 						  optlen);
1937 out_put:
1938 		fput_light(sock->file, fput_needed);
1939 	}
1940 	return err;
1941 }
1942 
1943 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1944 		char __user *, optval, int, optlen)
1945 {
1946 	return __sys_setsockopt(fd, level, optname, optval, optlen);
1947 }
1948 
1949 /*
1950  *	Get a socket option. Because we don't know the option lengths we have
1951  *	to pass a user mode parameter for the protocols to sort out.
1952  */
1953 
1954 static int __sys_getsockopt(int fd, int level, int optname,
1955 			    char __user *optval, int __user *optlen)
1956 {
1957 	int err, fput_needed;
1958 	struct socket *sock;
1959 
1960 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1961 	if (sock != NULL) {
1962 		err = security_socket_getsockopt(sock, level, optname);
1963 		if (err)
1964 			goto out_put;
1965 
1966 		if (level == SOL_SOCKET)
1967 			err =
1968 			    sock_getsockopt(sock, level, optname, optval,
1969 					    optlen);
1970 		else
1971 			err =
1972 			    sock->ops->getsockopt(sock, level, optname, optval,
1973 						  optlen);
1974 out_put:
1975 		fput_light(sock->file, fput_needed);
1976 	}
1977 	return err;
1978 }
1979 
1980 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1981 		char __user *, optval, int __user *, optlen)
1982 {
1983 	return __sys_getsockopt(fd, level, optname, optval, optlen);
1984 }
1985 
1986 /*
1987  *	Shutdown a socket.
1988  */
1989 
1990 int __sys_shutdown(int fd, int how)
1991 {
1992 	int err, fput_needed;
1993 	struct socket *sock;
1994 
1995 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1996 	if (sock != NULL) {
1997 		err = security_socket_shutdown(sock, how);
1998 		if (!err)
1999 			err = sock->ops->shutdown(sock, how);
2000 		fput_light(sock->file, fput_needed);
2001 	}
2002 	return err;
2003 }
2004 
2005 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2006 {
2007 	return __sys_shutdown(fd, how);
2008 }
2009 
2010 /* A couple of helpful macros for getting the address of the 32/64 bit
2011  * fields which are the same type (int / unsigned) on our platforms.
2012  */
2013 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2014 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2015 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2016 
2017 struct used_address {
2018 	struct sockaddr_storage name;
2019 	unsigned int name_len;
2020 };
2021 
2022 static int copy_msghdr_from_user(struct msghdr *kmsg,
2023 				 struct user_msghdr __user *umsg,
2024 				 struct sockaddr __user **save_addr,
2025 				 struct iovec **iov)
2026 {
2027 	struct user_msghdr msg;
2028 	ssize_t err;
2029 
2030 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2031 		return -EFAULT;
2032 
2033 	kmsg->msg_control = (void __force *)msg.msg_control;
2034 	kmsg->msg_controllen = msg.msg_controllen;
2035 	kmsg->msg_flags = msg.msg_flags;
2036 
2037 	kmsg->msg_namelen = msg.msg_namelen;
2038 	if (!msg.msg_name)
2039 		kmsg->msg_namelen = 0;
2040 
2041 	if (kmsg->msg_namelen < 0)
2042 		return -EINVAL;
2043 
2044 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2045 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2046 
2047 	if (save_addr)
2048 		*save_addr = msg.msg_name;
2049 
2050 	if (msg.msg_name && kmsg->msg_namelen) {
2051 		if (!save_addr) {
2052 			err = move_addr_to_kernel(msg.msg_name,
2053 						  kmsg->msg_namelen,
2054 						  kmsg->msg_name);
2055 			if (err < 0)
2056 				return err;
2057 		}
2058 	} else {
2059 		kmsg->msg_name = NULL;
2060 		kmsg->msg_namelen = 0;
2061 	}
2062 
2063 	if (msg.msg_iovlen > UIO_MAXIOV)
2064 		return -EMSGSIZE;
2065 
2066 	kmsg->msg_iocb = NULL;
2067 
2068 	return import_iovec(save_addr ? READ : WRITE,
2069 			    msg.msg_iov, msg.msg_iovlen,
2070 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2071 }
2072 
2073 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2074 			 struct msghdr *msg_sys, unsigned int flags,
2075 			 struct used_address *used_address,
2076 			 unsigned int allowed_msghdr_flags)
2077 {
2078 	struct compat_msghdr __user *msg_compat =
2079 	    (struct compat_msghdr __user *)msg;
2080 	struct sockaddr_storage address;
2081 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2082 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2083 				__aligned(sizeof(__kernel_size_t));
2084 	/* 20 is size of ipv6_pktinfo */
2085 	unsigned char *ctl_buf = ctl;
2086 	int ctl_len;
2087 	ssize_t err;
2088 
2089 	msg_sys->msg_name = &address;
2090 
2091 	if (MSG_CMSG_COMPAT & flags)
2092 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2093 	else
2094 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2095 	if (err < 0)
2096 		return err;
2097 
2098 	err = -ENOBUFS;
2099 
2100 	if (msg_sys->msg_controllen > INT_MAX)
2101 		goto out_freeiov;
2102 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2103 	ctl_len = msg_sys->msg_controllen;
2104 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2105 		err =
2106 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2107 						     sizeof(ctl));
2108 		if (err)
2109 			goto out_freeiov;
2110 		ctl_buf = msg_sys->msg_control;
2111 		ctl_len = msg_sys->msg_controllen;
2112 	} else if (ctl_len) {
2113 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2114 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2115 		if (ctl_len > sizeof(ctl)) {
2116 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2117 			if (ctl_buf == NULL)
2118 				goto out_freeiov;
2119 		}
2120 		err = -EFAULT;
2121 		/*
2122 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2123 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2124 		 * checking falls down on this.
2125 		 */
2126 		if (copy_from_user(ctl_buf,
2127 				   (void __user __force *)msg_sys->msg_control,
2128 				   ctl_len))
2129 			goto out_freectl;
2130 		msg_sys->msg_control = ctl_buf;
2131 	}
2132 	msg_sys->msg_flags = flags;
2133 
2134 	if (sock->file->f_flags & O_NONBLOCK)
2135 		msg_sys->msg_flags |= MSG_DONTWAIT;
2136 	/*
2137 	 * If this is sendmmsg() and current destination address is same as
2138 	 * previously succeeded address, omit asking LSM's decision.
2139 	 * used_address->name_len is initialized to UINT_MAX so that the first
2140 	 * destination address never matches.
2141 	 */
2142 	if (used_address && msg_sys->msg_name &&
2143 	    used_address->name_len == msg_sys->msg_namelen &&
2144 	    !memcmp(&used_address->name, msg_sys->msg_name,
2145 		    used_address->name_len)) {
2146 		err = sock_sendmsg_nosec(sock, msg_sys);
2147 		goto out_freectl;
2148 	}
2149 	err = sock_sendmsg(sock, msg_sys);
2150 	/*
2151 	 * If this is sendmmsg() and sending to current destination address was
2152 	 * successful, remember it.
2153 	 */
2154 	if (used_address && err >= 0) {
2155 		used_address->name_len = msg_sys->msg_namelen;
2156 		if (msg_sys->msg_name)
2157 			memcpy(&used_address->name, msg_sys->msg_name,
2158 			       used_address->name_len);
2159 	}
2160 
2161 out_freectl:
2162 	if (ctl_buf != ctl)
2163 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2164 out_freeiov:
2165 	kfree(iov);
2166 	return err;
2167 }
2168 
2169 /*
2170  *	BSD sendmsg interface
2171  */
2172 
2173 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2174 		   bool forbid_cmsg_compat)
2175 {
2176 	int fput_needed, err;
2177 	struct msghdr msg_sys;
2178 	struct socket *sock;
2179 
2180 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2181 		return -EINVAL;
2182 
2183 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2184 	if (!sock)
2185 		goto out;
2186 
2187 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2188 
2189 	fput_light(sock->file, fput_needed);
2190 out:
2191 	return err;
2192 }
2193 
2194 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2195 {
2196 	return __sys_sendmsg(fd, msg, flags, true);
2197 }
2198 
2199 /*
2200  *	Linux sendmmsg interface
2201  */
2202 
2203 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2204 		   unsigned int flags, bool forbid_cmsg_compat)
2205 {
2206 	int fput_needed, err, datagrams;
2207 	struct socket *sock;
2208 	struct mmsghdr __user *entry;
2209 	struct compat_mmsghdr __user *compat_entry;
2210 	struct msghdr msg_sys;
2211 	struct used_address used_address;
2212 	unsigned int oflags = flags;
2213 
2214 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2215 		return -EINVAL;
2216 
2217 	if (vlen > UIO_MAXIOV)
2218 		vlen = UIO_MAXIOV;
2219 
2220 	datagrams = 0;
2221 
2222 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2223 	if (!sock)
2224 		return err;
2225 
2226 	used_address.name_len = UINT_MAX;
2227 	entry = mmsg;
2228 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2229 	err = 0;
2230 	flags |= MSG_BATCH;
2231 
2232 	while (datagrams < vlen) {
2233 		if (datagrams == vlen - 1)
2234 			flags = oflags;
2235 
2236 		if (MSG_CMSG_COMPAT & flags) {
2237 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2238 					     &msg_sys, flags, &used_address, MSG_EOR);
2239 			if (err < 0)
2240 				break;
2241 			err = __put_user(err, &compat_entry->msg_len);
2242 			++compat_entry;
2243 		} else {
2244 			err = ___sys_sendmsg(sock,
2245 					     (struct user_msghdr __user *)entry,
2246 					     &msg_sys, flags, &used_address, MSG_EOR);
2247 			if (err < 0)
2248 				break;
2249 			err = put_user(err, &entry->msg_len);
2250 			++entry;
2251 		}
2252 
2253 		if (err)
2254 			break;
2255 		++datagrams;
2256 		if (msg_data_left(&msg_sys))
2257 			break;
2258 		cond_resched();
2259 	}
2260 
2261 	fput_light(sock->file, fput_needed);
2262 
2263 	/* We only return an error if no datagrams were able to be sent */
2264 	if (datagrams != 0)
2265 		return datagrams;
2266 
2267 	return err;
2268 }
2269 
2270 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2271 		unsigned int, vlen, unsigned int, flags)
2272 {
2273 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2274 }
2275 
2276 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2277 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2278 {
2279 	struct compat_msghdr __user *msg_compat =
2280 	    (struct compat_msghdr __user *)msg;
2281 	struct iovec iovstack[UIO_FASTIOV];
2282 	struct iovec *iov = iovstack;
2283 	unsigned long cmsg_ptr;
2284 	int len;
2285 	ssize_t err;
2286 
2287 	/* kernel mode address */
2288 	struct sockaddr_storage addr;
2289 
2290 	/* user mode address pointers */
2291 	struct sockaddr __user *uaddr;
2292 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2293 
2294 	msg_sys->msg_name = &addr;
2295 
2296 	if (MSG_CMSG_COMPAT & flags)
2297 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2298 	else
2299 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2300 	if (err < 0)
2301 		return err;
2302 
2303 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2304 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2305 
2306 	/* We assume all kernel code knows the size of sockaddr_storage */
2307 	msg_sys->msg_namelen = 0;
2308 
2309 	if (sock->file->f_flags & O_NONBLOCK)
2310 		flags |= MSG_DONTWAIT;
2311 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2312 	if (err < 0)
2313 		goto out_freeiov;
2314 	len = err;
2315 
2316 	if (uaddr != NULL) {
2317 		err = move_addr_to_user(&addr,
2318 					msg_sys->msg_namelen, uaddr,
2319 					uaddr_len);
2320 		if (err < 0)
2321 			goto out_freeiov;
2322 	}
2323 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2324 			 COMPAT_FLAGS(msg));
2325 	if (err)
2326 		goto out_freeiov;
2327 	if (MSG_CMSG_COMPAT & flags)
2328 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2329 				 &msg_compat->msg_controllen);
2330 	else
2331 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2332 				 &msg->msg_controllen);
2333 	if (err)
2334 		goto out_freeiov;
2335 	err = len;
2336 
2337 out_freeiov:
2338 	kfree(iov);
2339 	return err;
2340 }
2341 
2342 /*
2343  *	BSD recvmsg interface
2344  */
2345 
2346 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2347 		   bool forbid_cmsg_compat)
2348 {
2349 	int fput_needed, err;
2350 	struct msghdr msg_sys;
2351 	struct socket *sock;
2352 
2353 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2354 		return -EINVAL;
2355 
2356 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2357 	if (!sock)
2358 		goto out;
2359 
2360 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2361 
2362 	fput_light(sock->file, fput_needed);
2363 out:
2364 	return err;
2365 }
2366 
2367 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2368 		unsigned int, flags)
2369 {
2370 	return __sys_recvmsg(fd, msg, flags, true);
2371 }
2372 
2373 /*
2374  *     Linux recvmmsg interface
2375  */
2376 
2377 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2378 		   unsigned int flags, struct timespec *timeout)
2379 {
2380 	int fput_needed, err, datagrams;
2381 	struct socket *sock;
2382 	struct mmsghdr __user *entry;
2383 	struct compat_mmsghdr __user *compat_entry;
2384 	struct msghdr msg_sys;
2385 	struct timespec64 end_time;
2386 	struct timespec64 timeout64;
2387 
2388 	if (timeout &&
2389 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2390 				    timeout->tv_nsec))
2391 		return -EINVAL;
2392 
2393 	datagrams = 0;
2394 
2395 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2396 	if (!sock)
2397 		return err;
2398 
2399 	if (likely(!(flags & MSG_ERRQUEUE))) {
2400 		err = sock_error(sock->sk);
2401 		if (err) {
2402 			datagrams = err;
2403 			goto out_put;
2404 		}
2405 	}
2406 
2407 	entry = mmsg;
2408 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2409 
2410 	while (datagrams < vlen) {
2411 		/*
2412 		 * No need to ask LSM for more than the first datagram.
2413 		 */
2414 		if (MSG_CMSG_COMPAT & flags) {
2415 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2416 					     &msg_sys, flags & ~MSG_WAITFORONE,
2417 					     datagrams);
2418 			if (err < 0)
2419 				break;
2420 			err = __put_user(err, &compat_entry->msg_len);
2421 			++compat_entry;
2422 		} else {
2423 			err = ___sys_recvmsg(sock,
2424 					     (struct user_msghdr __user *)entry,
2425 					     &msg_sys, flags & ~MSG_WAITFORONE,
2426 					     datagrams);
2427 			if (err < 0)
2428 				break;
2429 			err = put_user(err, &entry->msg_len);
2430 			++entry;
2431 		}
2432 
2433 		if (err)
2434 			break;
2435 		++datagrams;
2436 
2437 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2438 		if (flags & MSG_WAITFORONE)
2439 			flags |= MSG_DONTWAIT;
2440 
2441 		if (timeout) {
2442 			ktime_get_ts64(&timeout64);
2443 			*timeout = timespec64_to_timespec(
2444 					timespec64_sub(end_time, timeout64));
2445 			if (timeout->tv_sec < 0) {
2446 				timeout->tv_sec = timeout->tv_nsec = 0;
2447 				break;
2448 			}
2449 
2450 			/* Timeout, return less than vlen datagrams */
2451 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2452 				break;
2453 		}
2454 
2455 		/* Out of band data, return right away */
2456 		if (msg_sys.msg_flags & MSG_OOB)
2457 			break;
2458 		cond_resched();
2459 	}
2460 
2461 	if (err == 0)
2462 		goto out_put;
2463 
2464 	if (datagrams == 0) {
2465 		datagrams = err;
2466 		goto out_put;
2467 	}
2468 
2469 	/*
2470 	 * We may return less entries than requested (vlen) if the
2471 	 * sock is non block and there aren't enough datagrams...
2472 	 */
2473 	if (err != -EAGAIN) {
2474 		/*
2475 		 * ... or  if recvmsg returns an error after we
2476 		 * received some datagrams, where we record the
2477 		 * error to return on the next call or if the
2478 		 * app asks about it using getsockopt(SO_ERROR).
2479 		 */
2480 		sock->sk->sk_err = -err;
2481 	}
2482 out_put:
2483 	fput_light(sock->file, fput_needed);
2484 
2485 	return datagrams;
2486 }
2487 
2488 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2489 			   unsigned int vlen, unsigned int flags,
2490 			   struct timespec __user *timeout)
2491 {
2492 	int datagrams;
2493 	struct timespec timeout_sys;
2494 
2495 	if (flags & MSG_CMSG_COMPAT)
2496 		return -EINVAL;
2497 
2498 	if (!timeout)
2499 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2500 
2501 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2502 		return -EFAULT;
2503 
2504 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2505 
2506 	if (datagrams > 0 &&
2507 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2508 		datagrams = -EFAULT;
2509 
2510 	return datagrams;
2511 }
2512 
2513 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2514 		unsigned int, vlen, unsigned int, flags,
2515 		struct timespec __user *, timeout)
2516 {
2517 	return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2518 }
2519 
2520 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2521 /* Argument list sizes for sys_socketcall */
2522 #define AL(x) ((x) * sizeof(unsigned long))
2523 static const unsigned char nargs[21] = {
2524 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2525 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2526 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2527 	AL(4), AL(5), AL(4)
2528 };
2529 
2530 #undef AL
2531 
2532 /*
2533  *	System call vectors.
2534  *
2535  *	Argument checking cleaned up. Saved 20% in size.
2536  *  This function doesn't need to set the kernel lock because
2537  *  it is set by the callees.
2538  */
2539 
2540 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2541 {
2542 	unsigned long a[AUDITSC_ARGS];
2543 	unsigned long a0, a1;
2544 	int err;
2545 	unsigned int len;
2546 
2547 	if (call < 1 || call > SYS_SENDMMSG)
2548 		return -EINVAL;
2549 
2550 	len = nargs[call];
2551 	if (len > sizeof(a))
2552 		return -EINVAL;
2553 
2554 	/* copy_from_user should be SMP safe. */
2555 	if (copy_from_user(a, args, len))
2556 		return -EFAULT;
2557 
2558 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2559 	if (err)
2560 		return err;
2561 
2562 	a0 = a[0];
2563 	a1 = a[1];
2564 
2565 	switch (call) {
2566 	case SYS_SOCKET:
2567 		err = __sys_socket(a0, a1, a[2]);
2568 		break;
2569 	case SYS_BIND:
2570 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2571 		break;
2572 	case SYS_CONNECT:
2573 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2574 		break;
2575 	case SYS_LISTEN:
2576 		err = __sys_listen(a0, a1);
2577 		break;
2578 	case SYS_ACCEPT:
2579 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2580 				    (int __user *)a[2], 0);
2581 		break;
2582 	case SYS_GETSOCKNAME:
2583 		err =
2584 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2585 				      (int __user *)a[2]);
2586 		break;
2587 	case SYS_GETPEERNAME:
2588 		err =
2589 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2590 				      (int __user *)a[2]);
2591 		break;
2592 	case SYS_SOCKETPAIR:
2593 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2594 		break;
2595 	case SYS_SEND:
2596 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2597 				   NULL, 0);
2598 		break;
2599 	case SYS_SENDTO:
2600 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2601 				   (struct sockaddr __user *)a[4], a[5]);
2602 		break;
2603 	case SYS_RECV:
2604 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2605 				     NULL, NULL);
2606 		break;
2607 	case SYS_RECVFROM:
2608 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2609 				     (struct sockaddr __user *)a[4],
2610 				     (int __user *)a[5]);
2611 		break;
2612 	case SYS_SHUTDOWN:
2613 		err = __sys_shutdown(a0, a1);
2614 		break;
2615 	case SYS_SETSOCKOPT:
2616 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2617 				       a[4]);
2618 		break;
2619 	case SYS_GETSOCKOPT:
2620 		err =
2621 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2622 				     (int __user *)a[4]);
2623 		break;
2624 	case SYS_SENDMSG:
2625 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2626 				    a[2], true);
2627 		break;
2628 	case SYS_SENDMMSG:
2629 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2630 				     a[3], true);
2631 		break;
2632 	case SYS_RECVMSG:
2633 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2634 				    a[2], true);
2635 		break;
2636 	case SYS_RECVMMSG:
2637 		err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2638 				      a[3], (struct timespec __user *)a[4]);
2639 		break;
2640 	case SYS_ACCEPT4:
2641 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2642 				    (int __user *)a[2], a[3]);
2643 		break;
2644 	default:
2645 		err = -EINVAL;
2646 		break;
2647 	}
2648 	return err;
2649 }
2650 
2651 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2652 
2653 /**
2654  *	sock_register - add a socket protocol handler
2655  *	@ops: description of protocol
2656  *
2657  *	This function is called by a protocol handler that wants to
2658  *	advertise its address family, and have it linked into the
2659  *	socket interface. The value ops->family corresponds to the
2660  *	socket system call protocol family.
2661  */
2662 int sock_register(const struct net_proto_family *ops)
2663 {
2664 	int err;
2665 
2666 	if (ops->family >= NPROTO) {
2667 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2668 		return -ENOBUFS;
2669 	}
2670 
2671 	spin_lock(&net_family_lock);
2672 	if (rcu_dereference_protected(net_families[ops->family],
2673 				      lockdep_is_held(&net_family_lock)))
2674 		err = -EEXIST;
2675 	else {
2676 		rcu_assign_pointer(net_families[ops->family], ops);
2677 		err = 0;
2678 	}
2679 	spin_unlock(&net_family_lock);
2680 
2681 	pr_info("NET: Registered protocol family %d\n", ops->family);
2682 	return err;
2683 }
2684 EXPORT_SYMBOL(sock_register);
2685 
2686 /**
2687  *	sock_unregister - remove a protocol handler
2688  *	@family: protocol family to remove
2689  *
2690  *	This function is called by a protocol handler that wants to
2691  *	remove its address family, and have it unlinked from the
2692  *	new socket creation.
2693  *
2694  *	If protocol handler is a module, then it can use module reference
2695  *	counts to protect against new references. If protocol handler is not
2696  *	a module then it needs to provide its own protection in
2697  *	the ops->create routine.
2698  */
2699 void sock_unregister(int family)
2700 {
2701 	BUG_ON(family < 0 || family >= NPROTO);
2702 
2703 	spin_lock(&net_family_lock);
2704 	RCU_INIT_POINTER(net_families[family], NULL);
2705 	spin_unlock(&net_family_lock);
2706 
2707 	synchronize_rcu();
2708 
2709 	pr_info("NET: Unregistered protocol family %d\n", family);
2710 }
2711 EXPORT_SYMBOL(sock_unregister);
2712 
2713 bool sock_is_registered(int family)
2714 {
2715 	return family < NPROTO && rcu_access_pointer(net_families[family]);
2716 }
2717 
2718 static int __init sock_init(void)
2719 {
2720 	int err;
2721 	/*
2722 	 *      Initialize the network sysctl infrastructure.
2723 	 */
2724 	err = net_sysctl_init();
2725 	if (err)
2726 		goto out;
2727 
2728 	/*
2729 	 *      Initialize skbuff SLAB cache
2730 	 */
2731 	skb_init();
2732 
2733 	/*
2734 	 *      Initialize the protocols module.
2735 	 */
2736 
2737 	init_inodecache();
2738 
2739 	err = register_filesystem(&sock_fs_type);
2740 	if (err)
2741 		goto out_fs;
2742 	sock_mnt = kern_mount(&sock_fs_type);
2743 	if (IS_ERR(sock_mnt)) {
2744 		err = PTR_ERR(sock_mnt);
2745 		goto out_mount;
2746 	}
2747 
2748 	/* The real protocol initialization is performed in later initcalls.
2749 	 */
2750 
2751 #ifdef CONFIG_NETFILTER
2752 	err = netfilter_init();
2753 	if (err)
2754 		goto out;
2755 #endif
2756 
2757 	ptp_classifier_init();
2758 
2759 out:
2760 	return err;
2761 
2762 out_mount:
2763 	unregister_filesystem(&sock_fs_type);
2764 out_fs:
2765 	goto out;
2766 }
2767 
2768 core_initcall(sock_init);	/* early initcall */
2769 
2770 #ifdef CONFIG_PROC_FS
2771 void socket_seq_show(struct seq_file *seq)
2772 {
2773 	seq_printf(seq, "sockets: used %d\n",
2774 		   sock_inuse_get(seq->private));
2775 }
2776 #endif				/* CONFIG_PROC_FS */
2777 
2778 #ifdef CONFIG_COMPAT
2779 static int do_siocgstamp(struct net *net, struct socket *sock,
2780 			 unsigned int cmd, void __user *up)
2781 {
2782 	mm_segment_t old_fs = get_fs();
2783 	struct timeval ktv;
2784 	int err;
2785 
2786 	set_fs(KERNEL_DS);
2787 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2788 	set_fs(old_fs);
2789 	if (!err)
2790 		err = compat_put_timeval(&ktv, up);
2791 
2792 	return err;
2793 }
2794 
2795 static int do_siocgstampns(struct net *net, struct socket *sock,
2796 			   unsigned int cmd, void __user *up)
2797 {
2798 	mm_segment_t old_fs = get_fs();
2799 	struct timespec kts;
2800 	int err;
2801 
2802 	set_fs(KERNEL_DS);
2803 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2804 	set_fs(old_fs);
2805 	if (!err)
2806 		err = compat_put_timespec(&kts, up);
2807 
2808 	return err;
2809 }
2810 
2811 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2812 {
2813 	struct compat_ifconf ifc32;
2814 	struct ifconf ifc;
2815 	int err;
2816 
2817 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2818 		return -EFAULT;
2819 
2820 	ifc.ifc_len = ifc32.ifc_len;
2821 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2822 
2823 	rtnl_lock();
2824 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2825 	rtnl_unlock();
2826 	if (err)
2827 		return err;
2828 
2829 	ifc32.ifc_len = ifc.ifc_len;
2830 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2831 		return -EFAULT;
2832 
2833 	return 0;
2834 }
2835 
2836 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2837 {
2838 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2839 	bool convert_in = false, convert_out = false;
2840 	size_t buf_size = 0;
2841 	struct ethtool_rxnfc __user *rxnfc = NULL;
2842 	struct ifreq ifr;
2843 	u32 rule_cnt = 0, actual_rule_cnt;
2844 	u32 ethcmd;
2845 	u32 data;
2846 	int ret;
2847 
2848 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2849 		return -EFAULT;
2850 
2851 	compat_rxnfc = compat_ptr(data);
2852 
2853 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2854 		return -EFAULT;
2855 
2856 	/* Most ethtool structures are defined without padding.
2857 	 * Unfortunately struct ethtool_rxnfc is an exception.
2858 	 */
2859 	switch (ethcmd) {
2860 	default:
2861 		break;
2862 	case ETHTOOL_GRXCLSRLALL:
2863 		/* Buffer size is variable */
2864 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2865 			return -EFAULT;
2866 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2867 			return -ENOMEM;
2868 		buf_size += rule_cnt * sizeof(u32);
2869 		/* fall through */
2870 	case ETHTOOL_GRXRINGS:
2871 	case ETHTOOL_GRXCLSRLCNT:
2872 	case ETHTOOL_GRXCLSRULE:
2873 	case ETHTOOL_SRXCLSRLINS:
2874 		convert_out = true;
2875 		/* fall through */
2876 	case ETHTOOL_SRXCLSRLDEL:
2877 		buf_size += sizeof(struct ethtool_rxnfc);
2878 		convert_in = true;
2879 		rxnfc = compat_alloc_user_space(buf_size);
2880 		break;
2881 	}
2882 
2883 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2884 		return -EFAULT;
2885 
2886 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2887 
2888 	if (convert_in) {
2889 		/* We expect there to be holes between fs.m_ext and
2890 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2891 		 */
2892 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2893 			     sizeof(compat_rxnfc->fs.m_ext) !=
2894 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2895 			     sizeof(rxnfc->fs.m_ext));
2896 		BUILD_BUG_ON(
2897 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2898 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2899 			offsetof(struct ethtool_rxnfc, fs.location) -
2900 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2901 
2902 		if (copy_in_user(rxnfc, compat_rxnfc,
2903 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2904 				 (void __user *)rxnfc) ||
2905 		    copy_in_user(&rxnfc->fs.ring_cookie,
2906 				 &compat_rxnfc->fs.ring_cookie,
2907 				 (void __user *)(&rxnfc->fs.location + 1) -
2908 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2909 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2910 				 sizeof(rxnfc->rule_cnt)))
2911 			return -EFAULT;
2912 	}
2913 
2914 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2915 	if (ret)
2916 		return ret;
2917 
2918 	if (convert_out) {
2919 		if (copy_in_user(compat_rxnfc, rxnfc,
2920 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2921 				 (const void __user *)rxnfc) ||
2922 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2923 				 &rxnfc->fs.ring_cookie,
2924 				 (const void __user *)(&rxnfc->fs.location + 1) -
2925 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2926 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2927 				 sizeof(rxnfc->rule_cnt)))
2928 			return -EFAULT;
2929 
2930 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2931 			/* As an optimisation, we only copy the actual
2932 			 * number of rules that the underlying
2933 			 * function returned.  Since Mallory might
2934 			 * change the rule count in user memory, we
2935 			 * check that it is less than the rule count
2936 			 * originally given (as the user buffer size),
2937 			 * which has been range-checked.
2938 			 */
2939 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2940 				return -EFAULT;
2941 			if (actual_rule_cnt < rule_cnt)
2942 				rule_cnt = actual_rule_cnt;
2943 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2944 					 &rxnfc->rule_locs[0],
2945 					 rule_cnt * sizeof(u32)))
2946 				return -EFAULT;
2947 		}
2948 	}
2949 
2950 	return 0;
2951 }
2952 
2953 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2954 {
2955 	compat_uptr_t uptr32;
2956 	struct ifreq ifr;
2957 	void __user *saved;
2958 	int err;
2959 
2960 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2961 		return -EFAULT;
2962 
2963 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2964 		return -EFAULT;
2965 
2966 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2967 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2968 
2969 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2970 	if (!err) {
2971 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2972 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2973 			err = -EFAULT;
2974 	}
2975 	return err;
2976 }
2977 
2978 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2979 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2980 				 struct compat_ifreq __user *u_ifreq32)
2981 {
2982 	struct ifreq ifreq;
2983 	u32 data32;
2984 
2985 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2986 		return -EFAULT;
2987 	if (get_user(data32, &u_ifreq32->ifr_data))
2988 		return -EFAULT;
2989 	ifreq.ifr_data = compat_ptr(data32);
2990 
2991 	return dev_ioctl(net, cmd, &ifreq, NULL);
2992 }
2993 
2994 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2995 			struct compat_ifreq __user *uifr32)
2996 {
2997 	struct ifreq ifr;
2998 	struct compat_ifmap __user *uifmap32;
2999 	int err;
3000 
3001 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3002 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3003 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3004 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3005 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3006 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3007 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3008 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3009 	if (err)
3010 		return -EFAULT;
3011 
3012 	err = dev_ioctl(net, cmd, &ifr, NULL);
3013 
3014 	if (cmd == SIOCGIFMAP && !err) {
3015 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3016 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3017 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3018 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3019 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3020 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3021 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3022 		if (err)
3023 			err = -EFAULT;
3024 	}
3025 	return err;
3026 }
3027 
3028 struct rtentry32 {
3029 	u32		rt_pad1;
3030 	struct sockaddr rt_dst;         /* target address               */
3031 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3032 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3033 	unsigned short	rt_flags;
3034 	short		rt_pad2;
3035 	u32		rt_pad3;
3036 	unsigned char	rt_tos;
3037 	unsigned char	rt_class;
3038 	short		rt_pad4;
3039 	short		rt_metric;      /* +1 for binary compatibility! */
3040 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3041 	u32		rt_mtu;         /* per route MTU/Window         */
3042 	u32		rt_window;      /* Window clamping              */
3043 	unsigned short  rt_irtt;        /* Initial RTT                  */
3044 };
3045 
3046 struct in6_rtmsg32 {
3047 	struct in6_addr		rtmsg_dst;
3048 	struct in6_addr		rtmsg_src;
3049 	struct in6_addr		rtmsg_gateway;
3050 	u32			rtmsg_type;
3051 	u16			rtmsg_dst_len;
3052 	u16			rtmsg_src_len;
3053 	u32			rtmsg_metric;
3054 	u32			rtmsg_info;
3055 	u32			rtmsg_flags;
3056 	s32			rtmsg_ifindex;
3057 };
3058 
3059 static int routing_ioctl(struct net *net, struct socket *sock,
3060 			 unsigned int cmd, void __user *argp)
3061 {
3062 	int ret;
3063 	void *r = NULL;
3064 	struct in6_rtmsg r6;
3065 	struct rtentry r4;
3066 	char devname[16];
3067 	u32 rtdev;
3068 	mm_segment_t old_fs = get_fs();
3069 
3070 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3071 		struct in6_rtmsg32 __user *ur6 = argp;
3072 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3073 			3 * sizeof(struct in6_addr));
3074 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3075 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3076 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3077 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3078 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3079 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3080 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3081 
3082 		r = (void *) &r6;
3083 	} else { /* ipv4 */
3084 		struct rtentry32 __user *ur4 = argp;
3085 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3086 					3 * sizeof(struct sockaddr));
3087 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3088 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3089 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3090 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3091 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3092 		ret |= get_user(rtdev, &(ur4->rt_dev));
3093 		if (rtdev) {
3094 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3095 			r4.rt_dev = (char __user __force *)devname;
3096 			devname[15] = 0;
3097 		} else
3098 			r4.rt_dev = NULL;
3099 
3100 		r = (void *) &r4;
3101 	}
3102 
3103 	if (ret) {
3104 		ret = -EFAULT;
3105 		goto out;
3106 	}
3107 
3108 	set_fs(KERNEL_DS);
3109 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3110 	set_fs(old_fs);
3111 
3112 out:
3113 	return ret;
3114 }
3115 
3116 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3117  * for some operations; this forces use of the newer bridge-utils that
3118  * use compatible ioctls
3119  */
3120 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3121 {
3122 	compat_ulong_t tmp;
3123 
3124 	if (get_user(tmp, argp))
3125 		return -EFAULT;
3126 	if (tmp == BRCTL_GET_VERSION)
3127 		return BRCTL_VERSION + 1;
3128 	return -EINVAL;
3129 }
3130 
3131 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3132 			 unsigned int cmd, unsigned long arg)
3133 {
3134 	void __user *argp = compat_ptr(arg);
3135 	struct sock *sk = sock->sk;
3136 	struct net *net = sock_net(sk);
3137 
3138 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3139 		return compat_ifr_data_ioctl(net, cmd, argp);
3140 
3141 	switch (cmd) {
3142 	case SIOCSIFBR:
3143 	case SIOCGIFBR:
3144 		return old_bridge_ioctl(argp);
3145 	case SIOCGIFCONF:
3146 		return compat_dev_ifconf(net, argp);
3147 	case SIOCETHTOOL:
3148 		return ethtool_ioctl(net, argp);
3149 	case SIOCWANDEV:
3150 		return compat_siocwandev(net, argp);
3151 	case SIOCGIFMAP:
3152 	case SIOCSIFMAP:
3153 		return compat_sioc_ifmap(net, cmd, argp);
3154 	case SIOCADDRT:
3155 	case SIOCDELRT:
3156 		return routing_ioctl(net, sock, cmd, argp);
3157 	case SIOCGSTAMP:
3158 		return do_siocgstamp(net, sock, cmd, argp);
3159 	case SIOCGSTAMPNS:
3160 		return do_siocgstampns(net, sock, cmd, argp);
3161 	case SIOCBONDSLAVEINFOQUERY:
3162 	case SIOCBONDINFOQUERY:
3163 	case SIOCSHWTSTAMP:
3164 	case SIOCGHWTSTAMP:
3165 		return compat_ifr_data_ioctl(net, cmd, argp);
3166 
3167 	case FIOSETOWN:
3168 	case SIOCSPGRP:
3169 	case FIOGETOWN:
3170 	case SIOCGPGRP:
3171 	case SIOCBRADDBR:
3172 	case SIOCBRDELBR:
3173 	case SIOCGIFVLAN:
3174 	case SIOCSIFVLAN:
3175 	case SIOCADDDLCI:
3176 	case SIOCDELDLCI:
3177 	case SIOCGSKNS:
3178 		return sock_ioctl(file, cmd, arg);
3179 
3180 	case SIOCGIFFLAGS:
3181 	case SIOCSIFFLAGS:
3182 	case SIOCGIFMETRIC:
3183 	case SIOCSIFMETRIC:
3184 	case SIOCGIFMTU:
3185 	case SIOCSIFMTU:
3186 	case SIOCGIFMEM:
3187 	case SIOCSIFMEM:
3188 	case SIOCGIFHWADDR:
3189 	case SIOCSIFHWADDR:
3190 	case SIOCADDMULTI:
3191 	case SIOCDELMULTI:
3192 	case SIOCGIFINDEX:
3193 	case SIOCGIFADDR:
3194 	case SIOCSIFADDR:
3195 	case SIOCSIFHWBROADCAST:
3196 	case SIOCDIFADDR:
3197 	case SIOCGIFBRDADDR:
3198 	case SIOCSIFBRDADDR:
3199 	case SIOCGIFDSTADDR:
3200 	case SIOCSIFDSTADDR:
3201 	case SIOCGIFNETMASK:
3202 	case SIOCSIFNETMASK:
3203 	case SIOCSIFPFLAGS:
3204 	case SIOCGIFPFLAGS:
3205 	case SIOCGIFTXQLEN:
3206 	case SIOCSIFTXQLEN:
3207 	case SIOCBRADDIF:
3208 	case SIOCBRDELIF:
3209 	case SIOCSIFNAME:
3210 	case SIOCGMIIPHY:
3211 	case SIOCGMIIREG:
3212 	case SIOCSMIIREG:
3213 	case SIOCSARP:
3214 	case SIOCGARP:
3215 	case SIOCDARP:
3216 	case SIOCATMARK:
3217 	case SIOCBONDENSLAVE:
3218 	case SIOCBONDRELEASE:
3219 	case SIOCBONDSETHWADDR:
3220 	case SIOCBONDCHANGEACTIVE:
3221 	case SIOCGIFNAME:
3222 		return sock_do_ioctl(net, sock, cmd, arg);
3223 	}
3224 
3225 	return -ENOIOCTLCMD;
3226 }
3227 
3228 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3229 			      unsigned long arg)
3230 {
3231 	struct socket *sock = file->private_data;
3232 	int ret = -ENOIOCTLCMD;
3233 	struct sock *sk;
3234 	struct net *net;
3235 
3236 	sk = sock->sk;
3237 	net = sock_net(sk);
3238 
3239 	if (sock->ops->compat_ioctl)
3240 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3241 
3242 	if (ret == -ENOIOCTLCMD &&
3243 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3244 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3245 
3246 	if (ret == -ENOIOCTLCMD)
3247 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3248 
3249 	return ret;
3250 }
3251 #endif
3252 
3253 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3254 {
3255 	return sock->ops->bind(sock, addr, addrlen);
3256 }
3257 EXPORT_SYMBOL(kernel_bind);
3258 
3259 int kernel_listen(struct socket *sock, int backlog)
3260 {
3261 	return sock->ops->listen(sock, backlog);
3262 }
3263 EXPORT_SYMBOL(kernel_listen);
3264 
3265 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3266 {
3267 	struct sock *sk = sock->sk;
3268 	int err;
3269 
3270 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3271 			       newsock);
3272 	if (err < 0)
3273 		goto done;
3274 
3275 	err = sock->ops->accept(sock, *newsock, flags, true);
3276 	if (err < 0) {
3277 		sock_release(*newsock);
3278 		*newsock = NULL;
3279 		goto done;
3280 	}
3281 
3282 	(*newsock)->ops = sock->ops;
3283 	__module_get((*newsock)->ops->owner);
3284 
3285 done:
3286 	return err;
3287 }
3288 EXPORT_SYMBOL(kernel_accept);
3289 
3290 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3291 		   int flags)
3292 {
3293 	return sock->ops->connect(sock, addr, addrlen, flags);
3294 }
3295 EXPORT_SYMBOL(kernel_connect);
3296 
3297 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3298 {
3299 	return sock->ops->getname(sock, addr, 0);
3300 }
3301 EXPORT_SYMBOL(kernel_getsockname);
3302 
3303 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3304 {
3305 	return sock->ops->getname(sock, addr, 1);
3306 }
3307 EXPORT_SYMBOL(kernel_getpeername);
3308 
3309 int kernel_getsockopt(struct socket *sock, int level, int optname,
3310 			char *optval, int *optlen)
3311 {
3312 	mm_segment_t oldfs = get_fs();
3313 	char __user *uoptval;
3314 	int __user *uoptlen;
3315 	int err;
3316 
3317 	uoptval = (char __user __force *) optval;
3318 	uoptlen = (int __user __force *) optlen;
3319 
3320 	set_fs(KERNEL_DS);
3321 	if (level == SOL_SOCKET)
3322 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3323 	else
3324 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3325 					    uoptlen);
3326 	set_fs(oldfs);
3327 	return err;
3328 }
3329 EXPORT_SYMBOL(kernel_getsockopt);
3330 
3331 int kernel_setsockopt(struct socket *sock, int level, int optname,
3332 			char *optval, unsigned int optlen)
3333 {
3334 	mm_segment_t oldfs = get_fs();
3335 	char __user *uoptval;
3336 	int err;
3337 
3338 	uoptval = (char __user __force *) optval;
3339 
3340 	set_fs(KERNEL_DS);
3341 	if (level == SOL_SOCKET)
3342 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3343 	else
3344 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3345 					    optlen);
3346 	set_fs(oldfs);
3347 	return err;
3348 }
3349 EXPORT_SYMBOL(kernel_setsockopt);
3350 
3351 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3352 		    size_t size, int flags)
3353 {
3354 	if (sock->ops->sendpage)
3355 		return sock->ops->sendpage(sock, page, offset, size, flags);
3356 
3357 	return sock_no_sendpage(sock, page, offset, size, flags);
3358 }
3359 EXPORT_SYMBOL(kernel_sendpage);
3360 
3361 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3362 			   size_t size, int flags)
3363 {
3364 	struct socket *sock = sk->sk_socket;
3365 
3366 	if (sock->ops->sendpage_locked)
3367 		return sock->ops->sendpage_locked(sk, page, offset, size,
3368 						  flags);
3369 
3370 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3371 }
3372 EXPORT_SYMBOL(kernel_sendpage_locked);
3373 
3374 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3375 {
3376 	return sock->ops->shutdown(sock, how);
3377 }
3378 EXPORT_SYMBOL(kernel_sock_shutdown);
3379 
3380 /* This routine returns the IP overhead imposed by a socket i.e.
3381  * the length of the underlying IP header, depending on whether
3382  * this is an IPv4 or IPv6 socket and the length from IP options turned
3383  * on at the socket. Assumes that the caller has a lock on the socket.
3384  */
3385 u32 kernel_sock_ip_overhead(struct sock *sk)
3386 {
3387 	struct inet_sock *inet;
3388 	struct ip_options_rcu *opt;
3389 	u32 overhead = 0;
3390 #if IS_ENABLED(CONFIG_IPV6)
3391 	struct ipv6_pinfo *np;
3392 	struct ipv6_txoptions *optv6 = NULL;
3393 #endif /* IS_ENABLED(CONFIG_IPV6) */
3394 
3395 	if (!sk)
3396 		return overhead;
3397 
3398 	switch (sk->sk_family) {
3399 	case AF_INET:
3400 		inet = inet_sk(sk);
3401 		overhead += sizeof(struct iphdr);
3402 		opt = rcu_dereference_protected(inet->inet_opt,
3403 						sock_owned_by_user(sk));
3404 		if (opt)
3405 			overhead += opt->opt.optlen;
3406 		return overhead;
3407 #if IS_ENABLED(CONFIG_IPV6)
3408 	case AF_INET6:
3409 		np = inet6_sk(sk);
3410 		overhead += sizeof(struct ipv6hdr);
3411 		if (np)
3412 			optv6 = rcu_dereference_protected(np->opt,
3413 							  sock_owned_by_user(sk));
3414 		if (optv6)
3415 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3416 		return overhead;
3417 #endif /* IS_ENABLED(CONFIG_IPV6) */
3418 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3419 		return overhead;
3420 	}
3421 }
3422 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3423