xref: /linux/net/sctp/socket.c (revision 81fa7a69c2174ed8de314b9c231ef30a8718e5e1)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <crypto/hash.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
58 #include <linux/wait.h>
59 #include <linux/time.h>
60 #include <linux/sched/signal.h>
61 #include <linux/ip.h>
62 #include <linux/capability.h>
63 #include <linux/fcntl.h>
64 #include <linux/poll.h>
65 #include <linux/init.h>
66 #include <linux/slab.h>
67 #include <linux/file.h>
68 #include <linux/compat.h>
69 #include <linux/rhashtable.h>
70 
71 #include <net/ip.h>
72 #include <net/icmp.h>
73 #include <net/route.h>
74 #include <net/ipv6.h>
75 #include <net/inet_common.h>
76 #include <net/busy_poll.h>
77 
78 #include <linux/socket.h> /* for sa_family_t */
79 #include <linux/export.h>
80 #include <net/sock.h>
81 #include <net/sctp/sctp.h>
82 #include <net/sctp/sm.h>
83 #include <net/sctp/stream_sched.h>
84 
85 /* Forward declarations for internal helper functions. */
86 static bool sctp_writeable(struct sock *sk);
87 static void sctp_wfree(struct sk_buff *skb);
88 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
89 				size_t msg_len);
90 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
91 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
92 static int sctp_wait_for_accept(struct sock *sk, long timeo);
93 static void sctp_wait_for_close(struct sock *sk, long timeo);
94 static void sctp_destruct_sock(struct sock *sk);
95 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
96 					union sctp_addr *addr, int len);
97 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
98 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
99 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
100 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
101 static int sctp_send_asconf(struct sctp_association *asoc,
102 			    struct sctp_chunk *chunk);
103 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
104 static int sctp_autobind(struct sock *sk);
105 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
106 			      struct sctp_association *assoc,
107 			      enum sctp_socket_type type);
108 
109 static unsigned long sctp_memory_pressure;
110 static atomic_long_t sctp_memory_allocated;
111 struct percpu_counter sctp_sockets_allocated;
112 
113 static void sctp_enter_memory_pressure(struct sock *sk)
114 {
115 	sctp_memory_pressure = 1;
116 }
117 
118 
119 /* Get the sndbuf space available at the time on the association.  */
120 static inline int sctp_wspace(struct sctp_association *asoc)
121 {
122 	struct sock *sk = asoc->base.sk;
123 
124 	return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
125 				       : sk_stream_wspace(sk);
126 }
127 
128 /* Increment the used sndbuf space count of the corresponding association by
129  * the size of the outgoing data chunk.
130  * Also, set the skb destructor for sndbuf accounting later.
131  *
132  * Since it is always 1-1 between chunk and skb, and also a new skb is always
133  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
134  * destructor in the data chunk skb for the purpose of the sndbuf space
135  * tracking.
136  */
137 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
138 {
139 	struct sctp_association *asoc = chunk->asoc;
140 	struct sock *sk = asoc->base.sk;
141 
142 	/* The sndbuf space is tracked per association.  */
143 	sctp_association_hold(asoc);
144 
145 	if (chunk->shkey)
146 		sctp_auth_shkey_hold(chunk->shkey);
147 
148 	skb_set_owner_w(chunk->skb, sk);
149 
150 	chunk->skb->destructor = sctp_wfree;
151 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
152 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
153 
154 	refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
155 	asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
156 	sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
157 	sk_mem_charge(sk, chunk->skb->truesize);
158 }
159 
160 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
161 {
162 	skb_orphan(chunk->skb);
163 }
164 
165 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
166 				       void (*cb)(struct sctp_chunk *))
167 
168 {
169 	struct sctp_outq *q = &asoc->outqueue;
170 	struct sctp_transport *t;
171 	struct sctp_chunk *chunk;
172 
173 	list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 		list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 			cb(chunk);
176 
177 	list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 		cb(chunk);
179 
180 	list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 		cb(chunk);
182 
183 	list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 		cb(chunk);
185 
186 	list_for_each_entry(chunk, &q->out_chunk_list, list)
187 		cb(chunk);
188 }
189 
190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 				 void (*cb)(struct sk_buff *, struct sock *))
192 
193 {
194 	struct sk_buff *skb, *tmp;
195 
196 	sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 		cb(skb, sk);
198 
199 	sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 		cb(skb, sk);
201 
202 	sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 		cb(skb, sk);
204 }
205 
206 /* Verify that this is a valid address. */
207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 				   int len)
209 {
210 	struct sctp_af *af;
211 
212 	/* Verify basic sockaddr. */
213 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 	if (!af)
215 		return -EINVAL;
216 
217 	/* Is this a valid SCTP address?  */
218 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 		return -EINVAL;
220 
221 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 		return -EINVAL;
223 
224 	return 0;
225 }
226 
227 /* Look up the association by its id.  If this is not a UDP-style
228  * socket, the ID field is always ignored.
229  */
230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 	struct sctp_association *asoc = NULL;
233 
234 	/* If this is not a UDP-style socket, assoc id should be ignored. */
235 	if (!sctp_style(sk, UDP)) {
236 		/* Return NULL if the socket state is not ESTABLISHED. It
237 		 * could be a TCP-style listening socket or a socket which
238 		 * hasn't yet called connect() to establish an association.
239 		 */
240 		if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 			return NULL;
242 
243 		/* Get the first and the only association from the list. */
244 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 					  struct sctp_association, asocs);
247 		return asoc;
248 	}
249 
250 	/* Otherwise this is a UDP-style socket. */
251 	if (!id || (id == (sctp_assoc_t)-1))
252 		return NULL;
253 
254 	spin_lock_bh(&sctp_assocs_id_lock);
255 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 	if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 		asoc = NULL;
258 	spin_unlock_bh(&sctp_assocs_id_lock);
259 
260 	return asoc;
261 }
262 
263 /* Look up the transport from an address and an assoc id. If both address and
264  * id are specified, the associations matching the address and the id should be
265  * the same.
266  */
267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 					      struct sockaddr_storage *addr,
269 					      sctp_assoc_t id)
270 {
271 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 	struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 	union sctp_addr *laddr = (union sctp_addr *)addr;
274 	struct sctp_transport *transport;
275 
276 	if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 		return NULL;
278 
279 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 					       laddr,
281 					       &transport);
282 
283 	if (!addr_asoc)
284 		return NULL;
285 
286 	id_asoc = sctp_id2assoc(sk, id);
287 	if (id_asoc && (id_asoc != addr_asoc))
288 		return NULL;
289 
290 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 						(union sctp_addr *)addr);
292 
293 	return transport;
294 }
295 
296 /* API 3.1.2 bind() - UDP Style Syntax
297  * The syntax of bind() is,
298  *
299  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
300  *
301  *   sd      - the socket descriptor returned by socket().
302  *   addr    - the address structure (struct sockaddr_in or struct
303  *             sockaddr_in6 [RFC 2553]),
304  *   addr_len - the size of the address structure.
305  */
306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 	int retval = 0;
309 
310 	lock_sock(sk);
311 
312 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 		 addr, addr_len);
314 
315 	/* Disallow binding twice. */
316 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 				      addr_len);
319 	else
320 		retval = -EINVAL;
321 
322 	release_sock(sk);
323 
324 	return retval;
325 }
326 
327 static long sctp_get_port_local(struct sock *, union sctp_addr *);
328 
329 /* Verify this is a valid sockaddr. */
330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 					union sctp_addr *addr, int len)
332 {
333 	struct sctp_af *af;
334 
335 	/* Check minimum size.  */
336 	if (len < sizeof (struct sockaddr))
337 		return NULL;
338 
339 	if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 		return NULL;
341 
342 	if (addr->sa.sa_family == AF_INET6) {
343 		if (len < SIN6_LEN_RFC2133)
344 			return NULL;
345 		/* V4 mapped address are really of AF_INET family */
346 		if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 		    !opt->pf->af_supported(AF_INET, opt))
348 			return NULL;
349 	}
350 
351 	/* If we get this far, af is valid. */
352 	af = sctp_get_af_specific(addr->sa.sa_family);
353 
354 	if (len < af->sockaddr_len)
355 		return NULL;
356 
357 	return af;
358 }
359 
360 /* Bind a local address either to an endpoint or to an association.  */
361 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
362 {
363 	struct net *net = sock_net(sk);
364 	struct sctp_sock *sp = sctp_sk(sk);
365 	struct sctp_endpoint *ep = sp->ep;
366 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
367 	struct sctp_af *af;
368 	unsigned short snum;
369 	int ret = 0;
370 
371 	/* Common sockaddr verification. */
372 	af = sctp_sockaddr_af(sp, addr, len);
373 	if (!af) {
374 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
375 			 __func__, sk, addr, len);
376 		return -EINVAL;
377 	}
378 
379 	snum = ntohs(addr->v4.sin_port);
380 
381 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
382 		 __func__, sk, &addr->sa, bp->port, snum, len);
383 
384 	/* PF specific bind() address verification. */
385 	if (!sp->pf->bind_verify(sp, addr))
386 		return -EADDRNOTAVAIL;
387 
388 	/* We must either be unbound, or bind to the same port.
389 	 * It's OK to allow 0 ports if we are already bound.
390 	 * We'll just inhert an already bound port in this case
391 	 */
392 	if (bp->port) {
393 		if (!snum)
394 			snum = bp->port;
395 		else if (snum != bp->port) {
396 			pr_debug("%s: new port %d doesn't match existing port "
397 				 "%d\n", __func__, snum, bp->port);
398 			return -EINVAL;
399 		}
400 	}
401 
402 	if (snum && snum < inet_prot_sock(net) &&
403 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
404 		return -EACCES;
405 
406 	/* See if the address matches any of the addresses we may have
407 	 * already bound before checking against other endpoints.
408 	 */
409 	if (sctp_bind_addr_match(bp, addr, sp))
410 		return -EINVAL;
411 
412 	/* Make sure we are allowed to bind here.
413 	 * The function sctp_get_port_local() does duplicate address
414 	 * detection.
415 	 */
416 	addr->v4.sin_port = htons(snum);
417 	if ((ret = sctp_get_port_local(sk, addr))) {
418 		return -EADDRINUSE;
419 	}
420 
421 	/* Refresh ephemeral port.  */
422 	if (!bp->port)
423 		bp->port = inet_sk(sk)->inet_num;
424 
425 	/* Add the address to the bind address list.
426 	 * Use GFP_ATOMIC since BHs will be disabled.
427 	 */
428 	ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
429 				 SCTP_ADDR_SRC, GFP_ATOMIC);
430 
431 	/* Copy back into socket for getsockname() use. */
432 	if (!ret) {
433 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
434 		sp->pf->to_sk_saddr(addr, sk);
435 	}
436 
437 	return ret;
438 }
439 
440  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
441  *
442  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
443  * at any one time.  If a sender, after sending an ASCONF chunk, decides
444  * it needs to transfer another ASCONF Chunk, it MUST wait until the
445  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
446  * subsequent ASCONF. Note this restriction binds each side, so at any
447  * time two ASCONF may be in-transit on any given association (one sent
448  * from each endpoint).
449  */
450 static int sctp_send_asconf(struct sctp_association *asoc,
451 			    struct sctp_chunk *chunk)
452 {
453 	struct net 	*net = sock_net(asoc->base.sk);
454 	int		retval = 0;
455 
456 	/* If there is an outstanding ASCONF chunk, queue it for later
457 	 * transmission.
458 	 */
459 	if (asoc->addip_last_asconf) {
460 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
461 		goto out;
462 	}
463 
464 	/* Hold the chunk until an ASCONF_ACK is received. */
465 	sctp_chunk_hold(chunk);
466 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
467 	if (retval)
468 		sctp_chunk_free(chunk);
469 	else
470 		asoc->addip_last_asconf = chunk;
471 
472 out:
473 	return retval;
474 }
475 
476 /* Add a list of addresses as bind addresses to local endpoint or
477  * association.
478  *
479  * Basically run through each address specified in the addrs/addrcnt
480  * array/length pair, determine if it is IPv6 or IPv4 and call
481  * sctp_do_bind() on it.
482  *
483  * If any of them fails, then the operation will be reversed and the
484  * ones that were added will be removed.
485  *
486  * Only sctp_setsockopt_bindx() is supposed to call this function.
487  */
488 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
489 {
490 	int cnt;
491 	int retval = 0;
492 	void *addr_buf;
493 	struct sockaddr *sa_addr;
494 	struct sctp_af *af;
495 
496 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
497 		 addrs, addrcnt);
498 
499 	addr_buf = addrs;
500 	for (cnt = 0; cnt < addrcnt; cnt++) {
501 		/* The list may contain either IPv4 or IPv6 address;
502 		 * determine the address length for walking thru the list.
503 		 */
504 		sa_addr = addr_buf;
505 		af = sctp_get_af_specific(sa_addr->sa_family);
506 		if (!af) {
507 			retval = -EINVAL;
508 			goto err_bindx_add;
509 		}
510 
511 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
512 				      af->sockaddr_len);
513 
514 		addr_buf += af->sockaddr_len;
515 
516 err_bindx_add:
517 		if (retval < 0) {
518 			/* Failed. Cleanup the ones that have been added */
519 			if (cnt > 0)
520 				sctp_bindx_rem(sk, addrs, cnt);
521 			return retval;
522 		}
523 	}
524 
525 	return retval;
526 }
527 
528 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
529  * associations that are part of the endpoint indicating that a list of local
530  * addresses are added to the endpoint.
531  *
532  * If any of the addresses is already in the bind address list of the
533  * association, we do not send the chunk for that association.  But it will not
534  * affect other associations.
535  *
536  * Only sctp_setsockopt_bindx() is supposed to call this function.
537  */
538 static int sctp_send_asconf_add_ip(struct sock		*sk,
539 				   struct sockaddr	*addrs,
540 				   int 			addrcnt)
541 {
542 	struct net *net = sock_net(sk);
543 	struct sctp_sock		*sp;
544 	struct sctp_endpoint		*ep;
545 	struct sctp_association		*asoc;
546 	struct sctp_bind_addr		*bp;
547 	struct sctp_chunk		*chunk;
548 	struct sctp_sockaddr_entry	*laddr;
549 	union sctp_addr			*addr;
550 	union sctp_addr			saveaddr;
551 	void				*addr_buf;
552 	struct sctp_af			*af;
553 	struct list_head		*p;
554 	int 				i;
555 	int 				retval = 0;
556 
557 	if (!net->sctp.addip_enable)
558 		return retval;
559 
560 	sp = sctp_sk(sk);
561 	ep = sp->ep;
562 
563 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
564 		 __func__, sk, addrs, addrcnt);
565 
566 	list_for_each_entry(asoc, &ep->asocs, asocs) {
567 		if (!asoc->peer.asconf_capable)
568 			continue;
569 
570 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
571 			continue;
572 
573 		if (!sctp_state(asoc, ESTABLISHED))
574 			continue;
575 
576 		/* Check if any address in the packed array of addresses is
577 		 * in the bind address list of the association. If so,
578 		 * do not send the asconf chunk to its peer, but continue with
579 		 * other associations.
580 		 */
581 		addr_buf = addrs;
582 		for (i = 0; i < addrcnt; i++) {
583 			addr = addr_buf;
584 			af = sctp_get_af_specific(addr->v4.sin_family);
585 			if (!af) {
586 				retval = -EINVAL;
587 				goto out;
588 			}
589 
590 			if (sctp_assoc_lookup_laddr(asoc, addr))
591 				break;
592 
593 			addr_buf += af->sockaddr_len;
594 		}
595 		if (i < addrcnt)
596 			continue;
597 
598 		/* Use the first valid address in bind addr list of
599 		 * association as Address Parameter of ASCONF CHUNK.
600 		 */
601 		bp = &asoc->base.bind_addr;
602 		p = bp->address_list.next;
603 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
604 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
605 						   addrcnt, SCTP_PARAM_ADD_IP);
606 		if (!chunk) {
607 			retval = -ENOMEM;
608 			goto out;
609 		}
610 
611 		/* Add the new addresses to the bind address list with
612 		 * use_as_src set to 0.
613 		 */
614 		addr_buf = addrs;
615 		for (i = 0; i < addrcnt; i++) {
616 			addr = addr_buf;
617 			af = sctp_get_af_specific(addr->v4.sin_family);
618 			memcpy(&saveaddr, addr, af->sockaddr_len);
619 			retval = sctp_add_bind_addr(bp, &saveaddr,
620 						    sizeof(saveaddr),
621 						    SCTP_ADDR_NEW, GFP_ATOMIC);
622 			addr_buf += af->sockaddr_len;
623 		}
624 		if (asoc->src_out_of_asoc_ok) {
625 			struct sctp_transport *trans;
626 
627 			list_for_each_entry(trans,
628 			    &asoc->peer.transport_addr_list, transports) {
629 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
630 				    2*asoc->pathmtu, 4380));
631 				trans->ssthresh = asoc->peer.i.a_rwnd;
632 				trans->rto = asoc->rto_initial;
633 				sctp_max_rto(asoc, trans);
634 				trans->rtt = trans->srtt = trans->rttvar = 0;
635 				/* Clear the source and route cache */
636 				sctp_transport_route(trans, NULL,
637 						     sctp_sk(asoc->base.sk));
638 			}
639 		}
640 		retval = sctp_send_asconf(asoc, chunk);
641 	}
642 
643 out:
644 	return retval;
645 }
646 
647 /* Remove a list of addresses from bind addresses list.  Do not remove the
648  * last address.
649  *
650  * Basically run through each address specified in the addrs/addrcnt
651  * array/length pair, determine if it is IPv6 or IPv4 and call
652  * sctp_del_bind() on it.
653  *
654  * If any of them fails, then the operation will be reversed and the
655  * ones that were removed will be added back.
656  *
657  * At least one address has to be left; if only one address is
658  * available, the operation will return -EBUSY.
659  *
660  * Only sctp_setsockopt_bindx() is supposed to call this function.
661  */
662 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
663 {
664 	struct sctp_sock *sp = sctp_sk(sk);
665 	struct sctp_endpoint *ep = sp->ep;
666 	int cnt;
667 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
668 	int retval = 0;
669 	void *addr_buf;
670 	union sctp_addr *sa_addr;
671 	struct sctp_af *af;
672 
673 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
674 		 __func__, sk, addrs, addrcnt);
675 
676 	addr_buf = addrs;
677 	for (cnt = 0; cnt < addrcnt; cnt++) {
678 		/* If the bind address list is empty or if there is only one
679 		 * bind address, there is nothing more to be removed (we need
680 		 * at least one address here).
681 		 */
682 		if (list_empty(&bp->address_list) ||
683 		    (sctp_list_single_entry(&bp->address_list))) {
684 			retval = -EBUSY;
685 			goto err_bindx_rem;
686 		}
687 
688 		sa_addr = addr_buf;
689 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
690 		if (!af) {
691 			retval = -EINVAL;
692 			goto err_bindx_rem;
693 		}
694 
695 		if (!af->addr_valid(sa_addr, sp, NULL)) {
696 			retval = -EADDRNOTAVAIL;
697 			goto err_bindx_rem;
698 		}
699 
700 		if (sa_addr->v4.sin_port &&
701 		    sa_addr->v4.sin_port != htons(bp->port)) {
702 			retval = -EINVAL;
703 			goto err_bindx_rem;
704 		}
705 
706 		if (!sa_addr->v4.sin_port)
707 			sa_addr->v4.sin_port = htons(bp->port);
708 
709 		/* FIXME - There is probably a need to check if sk->sk_saddr and
710 		 * sk->sk_rcv_addr are currently set to one of the addresses to
711 		 * be removed. This is something which needs to be looked into
712 		 * when we are fixing the outstanding issues with multi-homing
713 		 * socket routing and failover schemes. Refer to comments in
714 		 * sctp_do_bind(). -daisy
715 		 */
716 		retval = sctp_del_bind_addr(bp, sa_addr);
717 
718 		addr_buf += af->sockaddr_len;
719 err_bindx_rem:
720 		if (retval < 0) {
721 			/* Failed. Add the ones that has been removed back */
722 			if (cnt > 0)
723 				sctp_bindx_add(sk, addrs, cnt);
724 			return retval;
725 		}
726 	}
727 
728 	return retval;
729 }
730 
731 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
732  * the associations that are part of the endpoint indicating that a list of
733  * local addresses are removed from the endpoint.
734  *
735  * If any of the addresses is already in the bind address list of the
736  * association, we do not send the chunk for that association.  But it will not
737  * affect other associations.
738  *
739  * Only sctp_setsockopt_bindx() is supposed to call this function.
740  */
741 static int sctp_send_asconf_del_ip(struct sock		*sk,
742 				   struct sockaddr	*addrs,
743 				   int			addrcnt)
744 {
745 	struct net *net = sock_net(sk);
746 	struct sctp_sock	*sp;
747 	struct sctp_endpoint	*ep;
748 	struct sctp_association	*asoc;
749 	struct sctp_transport	*transport;
750 	struct sctp_bind_addr	*bp;
751 	struct sctp_chunk	*chunk;
752 	union sctp_addr		*laddr;
753 	void			*addr_buf;
754 	struct sctp_af		*af;
755 	struct sctp_sockaddr_entry *saddr;
756 	int 			i;
757 	int 			retval = 0;
758 	int			stored = 0;
759 
760 	chunk = NULL;
761 	if (!net->sctp.addip_enable)
762 		return retval;
763 
764 	sp = sctp_sk(sk);
765 	ep = sp->ep;
766 
767 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
768 		 __func__, sk, addrs, addrcnt);
769 
770 	list_for_each_entry(asoc, &ep->asocs, asocs) {
771 
772 		if (!asoc->peer.asconf_capable)
773 			continue;
774 
775 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
776 			continue;
777 
778 		if (!sctp_state(asoc, ESTABLISHED))
779 			continue;
780 
781 		/* Check if any address in the packed array of addresses is
782 		 * not present in the bind address list of the association.
783 		 * If so, do not send the asconf chunk to its peer, but
784 		 * continue with other associations.
785 		 */
786 		addr_buf = addrs;
787 		for (i = 0; i < addrcnt; i++) {
788 			laddr = addr_buf;
789 			af = sctp_get_af_specific(laddr->v4.sin_family);
790 			if (!af) {
791 				retval = -EINVAL;
792 				goto out;
793 			}
794 
795 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
796 				break;
797 
798 			addr_buf += af->sockaddr_len;
799 		}
800 		if (i < addrcnt)
801 			continue;
802 
803 		/* Find one address in the association's bind address list
804 		 * that is not in the packed array of addresses. This is to
805 		 * make sure that we do not delete all the addresses in the
806 		 * association.
807 		 */
808 		bp = &asoc->base.bind_addr;
809 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
810 					       addrcnt, sp);
811 		if ((laddr == NULL) && (addrcnt == 1)) {
812 			if (asoc->asconf_addr_del_pending)
813 				continue;
814 			asoc->asconf_addr_del_pending =
815 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
816 			if (asoc->asconf_addr_del_pending == NULL) {
817 				retval = -ENOMEM;
818 				goto out;
819 			}
820 			asoc->asconf_addr_del_pending->sa.sa_family =
821 				    addrs->sa_family;
822 			asoc->asconf_addr_del_pending->v4.sin_port =
823 				    htons(bp->port);
824 			if (addrs->sa_family == AF_INET) {
825 				struct sockaddr_in *sin;
826 
827 				sin = (struct sockaddr_in *)addrs;
828 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
829 			} else if (addrs->sa_family == AF_INET6) {
830 				struct sockaddr_in6 *sin6;
831 
832 				sin6 = (struct sockaddr_in6 *)addrs;
833 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
834 			}
835 
836 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
837 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
838 				 asoc->asconf_addr_del_pending);
839 
840 			asoc->src_out_of_asoc_ok = 1;
841 			stored = 1;
842 			goto skip_mkasconf;
843 		}
844 
845 		if (laddr == NULL)
846 			return -EINVAL;
847 
848 		/* We do not need RCU protection throughout this loop
849 		 * because this is done under a socket lock from the
850 		 * setsockopt call.
851 		 */
852 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
853 						   SCTP_PARAM_DEL_IP);
854 		if (!chunk) {
855 			retval = -ENOMEM;
856 			goto out;
857 		}
858 
859 skip_mkasconf:
860 		/* Reset use_as_src flag for the addresses in the bind address
861 		 * list that are to be deleted.
862 		 */
863 		addr_buf = addrs;
864 		for (i = 0; i < addrcnt; i++) {
865 			laddr = addr_buf;
866 			af = sctp_get_af_specific(laddr->v4.sin_family);
867 			list_for_each_entry(saddr, &bp->address_list, list) {
868 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
869 					saddr->state = SCTP_ADDR_DEL;
870 			}
871 			addr_buf += af->sockaddr_len;
872 		}
873 
874 		/* Update the route and saddr entries for all the transports
875 		 * as some of the addresses in the bind address list are
876 		 * about to be deleted and cannot be used as source addresses.
877 		 */
878 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
879 					transports) {
880 			sctp_transport_route(transport, NULL,
881 					     sctp_sk(asoc->base.sk));
882 		}
883 
884 		if (stored)
885 			/* We don't need to transmit ASCONF */
886 			continue;
887 		retval = sctp_send_asconf(asoc, chunk);
888 	}
889 out:
890 	return retval;
891 }
892 
893 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
894 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
895 {
896 	struct sock *sk = sctp_opt2sk(sp);
897 	union sctp_addr *addr;
898 	struct sctp_af *af;
899 
900 	/* It is safe to write port space in caller. */
901 	addr = &addrw->a;
902 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
903 	af = sctp_get_af_specific(addr->sa.sa_family);
904 	if (!af)
905 		return -EINVAL;
906 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
907 		return -EINVAL;
908 
909 	if (addrw->state == SCTP_ADDR_NEW)
910 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
911 	else
912 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
913 }
914 
915 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
916  *
917  * API 8.1
918  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
919  *                int flags);
920  *
921  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
922  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
923  * or IPv6 addresses.
924  *
925  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
926  * Section 3.1.2 for this usage.
927  *
928  * addrs is a pointer to an array of one or more socket addresses. Each
929  * address is contained in its appropriate structure (i.e. struct
930  * sockaddr_in or struct sockaddr_in6) the family of the address type
931  * must be used to distinguish the address length (note that this
932  * representation is termed a "packed array" of addresses). The caller
933  * specifies the number of addresses in the array with addrcnt.
934  *
935  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
936  * -1, and sets errno to the appropriate error code.
937  *
938  * For SCTP, the port given in each socket address must be the same, or
939  * sctp_bindx() will fail, setting errno to EINVAL.
940  *
941  * The flags parameter is formed from the bitwise OR of zero or more of
942  * the following currently defined flags:
943  *
944  * SCTP_BINDX_ADD_ADDR
945  *
946  * SCTP_BINDX_REM_ADDR
947  *
948  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
949  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
950  * addresses from the association. The two flags are mutually exclusive;
951  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
952  * not remove all addresses from an association; sctp_bindx() will
953  * reject such an attempt with EINVAL.
954  *
955  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
956  * additional addresses with an endpoint after calling bind().  Or use
957  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
958  * socket is associated with so that no new association accepted will be
959  * associated with those addresses. If the endpoint supports dynamic
960  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
961  * endpoint to send the appropriate message to the peer to change the
962  * peers address lists.
963  *
964  * Adding and removing addresses from a connected association is
965  * optional functionality. Implementations that do not support this
966  * functionality should return EOPNOTSUPP.
967  *
968  * Basically do nothing but copying the addresses from user to kernel
969  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
970  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
971  * from userspace.
972  *
973  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
974  * it.
975  *
976  * sk        The sk of the socket
977  * addrs     The pointer to the addresses in user land
978  * addrssize Size of the addrs buffer
979  * op        Operation to perform (add or remove, see the flags of
980  *           sctp_bindx)
981  *
982  * Returns 0 if ok, <0 errno code on error.
983  */
984 static int sctp_setsockopt_bindx(struct sock *sk,
985 				 struct sockaddr __user *addrs,
986 				 int addrs_size, int op)
987 {
988 	struct sockaddr *kaddrs;
989 	int err;
990 	int addrcnt = 0;
991 	int walk_size = 0;
992 	struct sockaddr *sa_addr;
993 	void *addr_buf;
994 	struct sctp_af *af;
995 
996 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
997 		 __func__, sk, addrs, addrs_size, op);
998 
999 	if (unlikely(addrs_size <= 0))
1000 		return -EINVAL;
1001 
1002 	kaddrs = vmemdup_user(addrs, addrs_size);
1003 	if (unlikely(IS_ERR(kaddrs)))
1004 		return PTR_ERR(kaddrs);
1005 
1006 	/* Walk through the addrs buffer and count the number of addresses. */
1007 	addr_buf = kaddrs;
1008 	while (walk_size < addrs_size) {
1009 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1010 			kvfree(kaddrs);
1011 			return -EINVAL;
1012 		}
1013 
1014 		sa_addr = addr_buf;
1015 		af = sctp_get_af_specific(sa_addr->sa_family);
1016 
1017 		/* If the address family is not supported or if this address
1018 		 * causes the address buffer to overflow return EINVAL.
1019 		 */
1020 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1021 			kvfree(kaddrs);
1022 			return -EINVAL;
1023 		}
1024 		addrcnt++;
1025 		addr_buf += af->sockaddr_len;
1026 		walk_size += af->sockaddr_len;
1027 	}
1028 
1029 	/* Do the work. */
1030 	switch (op) {
1031 	case SCTP_BINDX_ADD_ADDR:
1032 		/* Allow security module to validate bindx addresses. */
1033 		err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1034 						 (struct sockaddr *)kaddrs,
1035 						 addrs_size);
1036 		if (err)
1037 			goto out;
1038 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1039 		if (err)
1040 			goto out;
1041 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1042 		break;
1043 
1044 	case SCTP_BINDX_REM_ADDR:
1045 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1046 		if (err)
1047 			goto out;
1048 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1049 		break;
1050 
1051 	default:
1052 		err = -EINVAL;
1053 		break;
1054 	}
1055 
1056 out:
1057 	kvfree(kaddrs);
1058 
1059 	return err;
1060 }
1061 
1062 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1063  *
1064  * Common routine for handling connect() and sctp_connectx().
1065  * Connect will come in with just a single address.
1066  */
1067 static int __sctp_connect(struct sock *sk,
1068 			  struct sockaddr *kaddrs,
1069 			  int addrs_size, int flags,
1070 			  sctp_assoc_t *assoc_id)
1071 {
1072 	struct net *net = sock_net(sk);
1073 	struct sctp_sock *sp;
1074 	struct sctp_endpoint *ep;
1075 	struct sctp_association *asoc = NULL;
1076 	struct sctp_association *asoc2;
1077 	struct sctp_transport *transport;
1078 	union sctp_addr to;
1079 	enum sctp_scope scope;
1080 	long timeo;
1081 	int err = 0;
1082 	int addrcnt = 0;
1083 	int walk_size = 0;
1084 	union sctp_addr *sa_addr = NULL;
1085 	void *addr_buf;
1086 	unsigned short port;
1087 
1088 	sp = sctp_sk(sk);
1089 	ep = sp->ep;
1090 
1091 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1092 	 * state - UDP-style peeled off socket or a TCP-style socket that
1093 	 * is already connected.
1094 	 * It cannot be done even on a TCP-style listening socket.
1095 	 */
1096 	if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1097 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1098 		err = -EISCONN;
1099 		goto out_free;
1100 	}
1101 
1102 	/* Walk through the addrs buffer and count the number of addresses. */
1103 	addr_buf = kaddrs;
1104 	while (walk_size < addrs_size) {
1105 		struct sctp_af *af;
1106 
1107 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1108 			err = -EINVAL;
1109 			goto out_free;
1110 		}
1111 
1112 		sa_addr = addr_buf;
1113 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1114 
1115 		/* If the address family is not supported or if this address
1116 		 * causes the address buffer to overflow return EINVAL.
1117 		 */
1118 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1119 			err = -EINVAL;
1120 			goto out_free;
1121 		}
1122 
1123 		port = ntohs(sa_addr->v4.sin_port);
1124 
1125 		/* Save current address so we can work with it */
1126 		memcpy(&to, sa_addr, af->sockaddr_len);
1127 
1128 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1129 		if (err)
1130 			goto out_free;
1131 
1132 		/* Make sure the destination port is correctly set
1133 		 * in all addresses.
1134 		 */
1135 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1136 			err = -EINVAL;
1137 			goto out_free;
1138 		}
1139 
1140 		/* Check if there already is a matching association on the
1141 		 * endpoint (other than the one created here).
1142 		 */
1143 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1144 		if (asoc2 && asoc2 != asoc) {
1145 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1146 				err = -EISCONN;
1147 			else
1148 				err = -EALREADY;
1149 			goto out_free;
1150 		}
1151 
1152 		/* If we could not find a matching association on the endpoint,
1153 		 * make sure that there is no peeled-off association matching
1154 		 * the peer address even on another socket.
1155 		 */
1156 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1157 			err = -EADDRNOTAVAIL;
1158 			goto out_free;
1159 		}
1160 
1161 		if (!asoc) {
1162 			/* If a bind() or sctp_bindx() is not called prior to
1163 			 * an sctp_connectx() call, the system picks an
1164 			 * ephemeral port and will choose an address set
1165 			 * equivalent to binding with a wildcard address.
1166 			 */
1167 			if (!ep->base.bind_addr.port) {
1168 				if (sctp_autobind(sk)) {
1169 					err = -EAGAIN;
1170 					goto out_free;
1171 				}
1172 			} else {
1173 				/*
1174 				 * If an unprivileged user inherits a 1-many
1175 				 * style socket with open associations on a
1176 				 * privileged port, it MAY be permitted to
1177 				 * accept new associations, but it SHOULD NOT
1178 				 * be permitted to open new associations.
1179 				 */
1180 				if (ep->base.bind_addr.port <
1181 				    inet_prot_sock(net) &&
1182 				    !ns_capable(net->user_ns,
1183 				    CAP_NET_BIND_SERVICE)) {
1184 					err = -EACCES;
1185 					goto out_free;
1186 				}
1187 			}
1188 
1189 			scope = sctp_scope(&to);
1190 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1191 			if (!asoc) {
1192 				err = -ENOMEM;
1193 				goto out_free;
1194 			}
1195 
1196 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1197 							      GFP_KERNEL);
1198 			if (err < 0) {
1199 				goto out_free;
1200 			}
1201 
1202 		}
1203 
1204 		/* Prime the peer's transport structures.  */
1205 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1206 						SCTP_UNKNOWN);
1207 		if (!transport) {
1208 			err = -ENOMEM;
1209 			goto out_free;
1210 		}
1211 
1212 		addrcnt++;
1213 		addr_buf += af->sockaddr_len;
1214 		walk_size += af->sockaddr_len;
1215 	}
1216 
1217 	/* In case the user of sctp_connectx() wants an association
1218 	 * id back, assign one now.
1219 	 */
1220 	if (assoc_id) {
1221 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1222 		if (err < 0)
1223 			goto out_free;
1224 	}
1225 
1226 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1227 	if (err < 0) {
1228 		goto out_free;
1229 	}
1230 
1231 	/* Initialize sk's dport and daddr for getpeername() */
1232 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1233 	sp->pf->to_sk_daddr(sa_addr, sk);
1234 	sk->sk_err = 0;
1235 
1236 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1237 
1238 	if (assoc_id)
1239 		*assoc_id = asoc->assoc_id;
1240 
1241 	err = sctp_wait_for_connect(asoc, &timeo);
1242 	/* Note: the asoc may be freed after the return of
1243 	 * sctp_wait_for_connect.
1244 	 */
1245 
1246 	/* Don't free association on exit. */
1247 	asoc = NULL;
1248 
1249 out_free:
1250 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1251 		 __func__, asoc, kaddrs, err);
1252 
1253 	if (asoc) {
1254 		/* sctp_primitive_ASSOCIATE may have added this association
1255 		 * To the hash table, try to unhash it, just in case, its a noop
1256 		 * if it wasn't hashed so we're safe
1257 		 */
1258 		sctp_association_free(asoc);
1259 	}
1260 	return err;
1261 }
1262 
1263 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1264  *
1265  * API 8.9
1266  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1267  * 			sctp_assoc_t *asoc);
1268  *
1269  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1270  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1271  * or IPv6 addresses.
1272  *
1273  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1274  * Section 3.1.2 for this usage.
1275  *
1276  * addrs is a pointer to an array of one or more socket addresses. Each
1277  * address is contained in its appropriate structure (i.e. struct
1278  * sockaddr_in or struct sockaddr_in6) the family of the address type
1279  * must be used to distengish the address length (note that this
1280  * representation is termed a "packed array" of addresses). The caller
1281  * specifies the number of addresses in the array with addrcnt.
1282  *
1283  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1284  * the association id of the new association.  On failure, sctp_connectx()
1285  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1286  * is not touched by the kernel.
1287  *
1288  * For SCTP, the port given in each socket address must be the same, or
1289  * sctp_connectx() will fail, setting errno to EINVAL.
1290  *
1291  * An application can use sctp_connectx to initiate an association with
1292  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1293  * allows a caller to specify multiple addresses at which a peer can be
1294  * reached.  The way the SCTP stack uses the list of addresses to set up
1295  * the association is implementation dependent.  This function only
1296  * specifies that the stack will try to make use of all the addresses in
1297  * the list when needed.
1298  *
1299  * Note that the list of addresses passed in is only used for setting up
1300  * the association.  It does not necessarily equal the set of addresses
1301  * the peer uses for the resulting association.  If the caller wants to
1302  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1303  * retrieve them after the association has been set up.
1304  *
1305  * Basically do nothing but copying the addresses from user to kernel
1306  * land and invoking either sctp_connectx(). This is used for tunneling
1307  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1308  *
1309  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1310  * it.
1311  *
1312  * sk        The sk of the socket
1313  * addrs     The pointer to the addresses in user land
1314  * addrssize Size of the addrs buffer
1315  *
1316  * Returns >=0 if ok, <0 errno code on error.
1317  */
1318 static int __sctp_setsockopt_connectx(struct sock *sk,
1319 				      struct sockaddr __user *addrs,
1320 				      int addrs_size,
1321 				      sctp_assoc_t *assoc_id)
1322 {
1323 	struct sockaddr *kaddrs;
1324 	int err = 0, flags = 0;
1325 
1326 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1327 		 __func__, sk, addrs, addrs_size);
1328 
1329 	if (unlikely(addrs_size <= 0))
1330 		return -EINVAL;
1331 
1332 	kaddrs = vmemdup_user(addrs, addrs_size);
1333 	if (unlikely(IS_ERR(kaddrs)))
1334 		return PTR_ERR(kaddrs);
1335 
1336 	/* Allow security module to validate connectx addresses. */
1337 	err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1338 					 (struct sockaddr *)kaddrs,
1339 					  addrs_size);
1340 	if (err)
1341 		goto out_free;
1342 
1343 	/* in-kernel sockets don't generally have a file allocated to them
1344 	 * if all they do is call sock_create_kern().
1345 	 */
1346 	if (sk->sk_socket->file)
1347 		flags = sk->sk_socket->file->f_flags;
1348 
1349 	err = __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1350 
1351 out_free:
1352 	kvfree(kaddrs);
1353 
1354 	return err;
1355 }
1356 
1357 /*
1358  * This is an older interface.  It's kept for backward compatibility
1359  * to the option that doesn't provide association id.
1360  */
1361 static int sctp_setsockopt_connectx_old(struct sock *sk,
1362 					struct sockaddr __user *addrs,
1363 					int addrs_size)
1364 {
1365 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1366 }
1367 
1368 /*
1369  * New interface for the API.  The since the API is done with a socket
1370  * option, to make it simple we feed back the association id is as a return
1371  * indication to the call.  Error is always negative and association id is
1372  * always positive.
1373  */
1374 static int sctp_setsockopt_connectx(struct sock *sk,
1375 				    struct sockaddr __user *addrs,
1376 				    int addrs_size)
1377 {
1378 	sctp_assoc_t assoc_id = 0;
1379 	int err = 0;
1380 
1381 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1382 
1383 	if (err)
1384 		return err;
1385 	else
1386 		return assoc_id;
1387 }
1388 
1389 /*
1390  * New (hopefully final) interface for the API.
1391  * We use the sctp_getaddrs_old structure so that use-space library
1392  * can avoid any unnecessary allocations. The only different part
1393  * is that we store the actual length of the address buffer into the
1394  * addrs_num structure member. That way we can re-use the existing
1395  * code.
1396  */
1397 #ifdef CONFIG_COMPAT
1398 struct compat_sctp_getaddrs_old {
1399 	sctp_assoc_t	assoc_id;
1400 	s32		addr_num;
1401 	compat_uptr_t	addrs;		/* struct sockaddr * */
1402 };
1403 #endif
1404 
1405 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1406 				     char __user *optval,
1407 				     int __user *optlen)
1408 {
1409 	struct sctp_getaddrs_old param;
1410 	sctp_assoc_t assoc_id = 0;
1411 	int err = 0;
1412 
1413 #ifdef CONFIG_COMPAT
1414 	if (in_compat_syscall()) {
1415 		struct compat_sctp_getaddrs_old param32;
1416 
1417 		if (len < sizeof(param32))
1418 			return -EINVAL;
1419 		if (copy_from_user(&param32, optval, sizeof(param32)))
1420 			return -EFAULT;
1421 
1422 		param.assoc_id = param32.assoc_id;
1423 		param.addr_num = param32.addr_num;
1424 		param.addrs = compat_ptr(param32.addrs);
1425 	} else
1426 #endif
1427 	{
1428 		if (len < sizeof(param))
1429 			return -EINVAL;
1430 		if (copy_from_user(&param, optval, sizeof(param)))
1431 			return -EFAULT;
1432 	}
1433 
1434 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1435 					 param.addrs, param.addr_num,
1436 					 &assoc_id);
1437 	if (err == 0 || err == -EINPROGRESS) {
1438 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1439 			return -EFAULT;
1440 		if (put_user(sizeof(assoc_id), optlen))
1441 			return -EFAULT;
1442 	}
1443 
1444 	return err;
1445 }
1446 
1447 /* API 3.1.4 close() - UDP Style Syntax
1448  * Applications use close() to perform graceful shutdown (as described in
1449  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1450  * by a UDP-style socket.
1451  *
1452  * The syntax is
1453  *
1454  *   ret = close(int sd);
1455  *
1456  *   sd      - the socket descriptor of the associations to be closed.
1457  *
1458  * To gracefully shutdown a specific association represented by the
1459  * UDP-style socket, an application should use the sendmsg() call,
1460  * passing no user data, but including the appropriate flag in the
1461  * ancillary data (see Section xxxx).
1462  *
1463  * If sd in the close() call is a branched-off socket representing only
1464  * one association, the shutdown is performed on that association only.
1465  *
1466  * 4.1.6 close() - TCP Style Syntax
1467  *
1468  * Applications use close() to gracefully close down an association.
1469  *
1470  * The syntax is:
1471  *
1472  *    int close(int sd);
1473  *
1474  *      sd      - the socket descriptor of the association to be closed.
1475  *
1476  * After an application calls close() on a socket descriptor, no further
1477  * socket operations will succeed on that descriptor.
1478  *
1479  * API 7.1.4 SO_LINGER
1480  *
1481  * An application using the TCP-style socket can use this option to
1482  * perform the SCTP ABORT primitive.  The linger option structure is:
1483  *
1484  *  struct  linger {
1485  *     int     l_onoff;                // option on/off
1486  *     int     l_linger;               // linger time
1487  * };
1488  *
1489  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1490  * to 0, calling close() is the same as the ABORT primitive.  If the
1491  * value is set to a negative value, the setsockopt() call will return
1492  * an error.  If the value is set to a positive value linger_time, the
1493  * close() can be blocked for at most linger_time ms.  If the graceful
1494  * shutdown phase does not finish during this period, close() will
1495  * return but the graceful shutdown phase continues in the system.
1496  */
1497 static void sctp_close(struct sock *sk, long timeout)
1498 {
1499 	struct net *net = sock_net(sk);
1500 	struct sctp_endpoint *ep;
1501 	struct sctp_association *asoc;
1502 	struct list_head *pos, *temp;
1503 	unsigned int data_was_unread;
1504 
1505 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1506 
1507 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1508 	sk->sk_shutdown = SHUTDOWN_MASK;
1509 	inet_sk_set_state(sk, SCTP_SS_CLOSING);
1510 
1511 	ep = sctp_sk(sk)->ep;
1512 
1513 	/* Clean up any skbs sitting on the receive queue.  */
1514 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1515 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1516 
1517 	/* Walk all associations on an endpoint.  */
1518 	list_for_each_safe(pos, temp, &ep->asocs) {
1519 		asoc = list_entry(pos, struct sctp_association, asocs);
1520 
1521 		if (sctp_style(sk, TCP)) {
1522 			/* A closed association can still be in the list if
1523 			 * it belongs to a TCP-style listening socket that is
1524 			 * not yet accepted. If so, free it. If not, send an
1525 			 * ABORT or SHUTDOWN based on the linger options.
1526 			 */
1527 			if (sctp_state(asoc, CLOSED)) {
1528 				sctp_association_free(asoc);
1529 				continue;
1530 			}
1531 		}
1532 
1533 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1534 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1535 		    !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1536 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1537 			struct sctp_chunk *chunk;
1538 
1539 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1540 			sctp_primitive_ABORT(net, asoc, chunk);
1541 		} else
1542 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1543 	}
1544 
1545 	/* On a TCP-style socket, block for at most linger_time if set. */
1546 	if (sctp_style(sk, TCP) && timeout)
1547 		sctp_wait_for_close(sk, timeout);
1548 
1549 	/* This will run the backlog queue.  */
1550 	release_sock(sk);
1551 
1552 	/* Supposedly, no process has access to the socket, but
1553 	 * the net layers still may.
1554 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1555 	 * held and that should be grabbed before socket lock.
1556 	 */
1557 	spin_lock_bh(&net->sctp.addr_wq_lock);
1558 	bh_lock_sock_nested(sk);
1559 
1560 	/* Hold the sock, since sk_common_release() will put sock_put()
1561 	 * and we have just a little more cleanup.
1562 	 */
1563 	sock_hold(sk);
1564 	sk_common_release(sk);
1565 
1566 	bh_unlock_sock(sk);
1567 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1568 
1569 	sock_put(sk);
1570 
1571 	SCTP_DBG_OBJCNT_DEC(sock);
1572 }
1573 
1574 /* Handle EPIPE error. */
1575 static int sctp_error(struct sock *sk, int flags, int err)
1576 {
1577 	if (err == -EPIPE)
1578 		err = sock_error(sk) ? : -EPIPE;
1579 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1580 		send_sig(SIGPIPE, current, 0);
1581 	return err;
1582 }
1583 
1584 /* API 3.1.3 sendmsg() - UDP Style Syntax
1585  *
1586  * An application uses sendmsg() and recvmsg() calls to transmit data to
1587  * and receive data from its peer.
1588  *
1589  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1590  *                  int flags);
1591  *
1592  *  socket  - the socket descriptor of the endpoint.
1593  *  message - pointer to the msghdr structure which contains a single
1594  *            user message and possibly some ancillary data.
1595  *
1596  *            See Section 5 for complete description of the data
1597  *            structures.
1598  *
1599  *  flags   - flags sent or received with the user message, see Section
1600  *            5 for complete description of the flags.
1601  *
1602  * Note:  This function could use a rewrite especially when explicit
1603  * connect support comes in.
1604  */
1605 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1606 
1607 static int sctp_msghdr_parse(const struct msghdr *msg,
1608 			     struct sctp_cmsgs *cmsgs);
1609 
1610 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1611 			      struct sctp_sndrcvinfo *srinfo,
1612 			      const struct msghdr *msg, size_t msg_len)
1613 {
1614 	__u16 sflags;
1615 	int err;
1616 
1617 	if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1618 		return -EPIPE;
1619 
1620 	if (msg_len > sk->sk_sndbuf)
1621 		return -EMSGSIZE;
1622 
1623 	memset(cmsgs, 0, sizeof(*cmsgs));
1624 	err = sctp_msghdr_parse(msg, cmsgs);
1625 	if (err) {
1626 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1627 		return err;
1628 	}
1629 
1630 	memset(srinfo, 0, sizeof(*srinfo));
1631 	if (cmsgs->srinfo) {
1632 		srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1633 		srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1634 		srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1635 		srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1636 		srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1637 		srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1638 	}
1639 
1640 	if (cmsgs->sinfo) {
1641 		srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1642 		srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1643 		srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1644 		srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1645 		srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1646 	}
1647 
1648 	if (cmsgs->prinfo) {
1649 		srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1650 		SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1651 				   cmsgs->prinfo->pr_policy);
1652 	}
1653 
1654 	sflags = srinfo->sinfo_flags;
1655 	if (!sflags && msg_len)
1656 		return 0;
1657 
1658 	if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1659 		return -EINVAL;
1660 
1661 	if (((sflags & SCTP_EOF) && msg_len > 0) ||
1662 	    (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1663 		return -EINVAL;
1664 
1665 	if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1666 		return -EINVAL;
1667 
1668 	return 0;
1669 }
1670 
1671 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1672 				 struct sctp_cmsgs *cmsgs,
1673 				 union sctp_addr *daddr,
1674 				 struct sctp_transport **tp)
1675 {
1676 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1677 	struct net *net = sock_net(sk);
1678 	struct sctp_association *asoc;
1679 	enum sctp_scope scope;
1680 	struct cmsghdr *cmsg;
1681 	__be32 flowinfo = 0;
1682 	struct sctp_af *af;
1683 	int err;
1684 
1685 	*tp = NULL;
1686 
1687 	if (sflags & (SCTP_EOF | SCTP_ABORT))
1688 		return -EINVAL;
1689 
1690 	if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1691 				    sctp_sstate(sk, CLOSING)))
1692 		return -EADDRNOTAVAIL;
1693 
1694 	if (sctp_endpoint_is_peeled_off(ep, daddr))
1695 		return -EADDRNOTAVAIL;
1696 
1697 	if (!ep->base.bind_addr.port) {
1698 		if (sctp_autobind(sk))
1699 			return -EAGAIN;
1700 	} else {
1701 		if (ep->base.bind_addr.port < inet_prot_sock(net) &&
1702 		    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1703 			return -EACCES;
1704 	}
1705 
1706 	scope = sctp_scope(daddr);
1707 
1708 	/* Label connection socket for first association 1-to-many
1709 	 * style for client sequence socket()->sendmsg(). This
1710 	 * needs to be done before sctp_assoc_add_peer() as that will
1711 	 * set up the initial packet that needs to account for any
1712 	 * security ip options (CIPSO/CALIPSO) added to the packet.
1713 	 */
1714 	af = sctp_get_af_specific(daddr->sa.sa_family);
1715 	if (!af)
1716 		return -EINVAL;
1717 	err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1718 					 (struct sockaddr *)daddr,
1719 					 af->sockaddr_len);
1720 	if (err < 0)
1721 		return err;
1722 
1723 	asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1724 	if (!asoc)
1725 		return -ENOMEM;
1726 
1727 	if (sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL) < 0) {
1728 		err = -ENOMEM;
1729 		goto free;
1730 	}
1731 
1732 	if (cmsgs->init) {
1733 		struct sctp_initmsg *init = cmsgs->init;
1734 
1735 		if (init->sinit_num_ostreams) {
1736 			__u16 outcnt = init->sinit_num_ostreams;
1737 
1738 			asoc->c.sinit_num_ostreams = outcnt;
1739 			/* outcnt has been changed, need to re-init stream */
1740 			err = sctp_stream_init(&asoc->stream, outcnt, 0,
1741 					       GFP_KERNEL);
1742 			if (err)
1743 				goto free;
1744 		}
1745 
1746 		if (init->sinit_max_instreams)
1747 			asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1748 
1749 		if (init->sinit_max_attempts)
1750 			asoc->max_init_attempts = init->sinit_max_attempts;
1751 
1752 		if (init->sinit_max_init_timeo)
1753 			asoc->max_init_timeo =
1754 				msecs_to_jiffies(init->sinit_max_init_timeo);
1755 	}
1756 
1757 	*tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1758 	if (!*tp) {
1759 		err = -ENOMEM;
1760 		goto free;
1761 	}
1762 
1763 	if (!cmsgs->addrs_msg)
1764 		return 0;
1765 
1766 	if (daddr->sa.sa_family == AF_INET6)
1767 		flowinfo = daddr->v6.sin6_flowinfo;
1768 
1769 	/* sendv addr list parse */
1770 	for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1771 		struct sctp_transport *transport;
1772 		struct sctp_association *old;
1773 		union sctp_addr _daddr;
1774 		int dlen;
1775 
1776 		if (cmsg->cmsg_level != IPPROTO_SCTP ||
1777 		    (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1778 		     cmsg->cmsg_type != SCTP_DSTADDRV6))
1779 			continue;
1780 
1781 		daddr = &_daddr;
1782 		memset(daddr, 0, sizeof(*daddr));
1783 		dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1784 		if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1785 			if (dlen < sizeof(struct in_addr)) {
1786 				err = -EINVAL;
1787 				goto free;
1788 			}
1789 
1790 			dlen = sizeof(struct in_addr);
1791 			daddr->v4.sin_family = AF_INET;
1792 			daddr->v4.sin_port = htons(asoc->peer.port);
1793 			memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1794 		} else {
1795 			if (dlen < sizeof(struct in6_addr)) {
1796 				err = -EINVAL;
1797 				goto free;
1798 			}
1799 
1800 			dlen = sizeof(struct in6_addr);
1801 			daddr->v6.sin6_flowinfo = flowinfo;
1802 			daddr->v6.sin6_family = AF_INET6;
1803 			daddr->v6.sin6_port = htons(asoc->peer.port);
1804 			memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1805 		}
1806 		err = sctp_verify_addr(sk, daddr, sizeof(*daddr));
1807 		if (err)
1808 			goto free;
1809 
1810 		old = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1811 		if (old && old != asoc) {
1812 			if (old->state >= SCTP_STATE_ESTABLISHED)
1813 				err = -EISCONN;
1814 			else
1815 				err = -EALREADY;
1816 			goto free;
1817 		}
1818 
1819 		if (sctp_endpoint_is_peeled_off(ep, daddr)) {
1820 			err = -EADDRNOTAVAIL;
1821 			goto free;
1822 		}
1823 
1824 		transport = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL,
1825 						SCTP_UNKNOWN);
1826 		if (!transport) {
1827 			err = -ENOMEM;
1828 			goto free;
1829 		}
1830 	}
1831 
1832 	return 0;
1833 
1834 free:
1835 	sctp_association_free(asoc);
1836 	return err;
1837 }
1838 
1839 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1840 				     __u16 sflags, struct msghdr *msg,
1841 				     size_t msg_len)
1842 {
1843 	struct sock *sk = asoc->base.sk;
1844 	struct net *net = sock_net(sk);
1845 
1846 	if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1847 		return -EPIPE;
1848 
1849 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1850 	    !sctp_state(asoc, ESTABLISHED))
1851 		return 0;
1852 
1853 	if (sflags & SCTP_EOF) {
1854 		pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1855 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
1856 
1857 		return 0;
1858 	}
1859 
1860 	if (sflags & SCTP_ABORT) {
1861 		struct sctp_chunk *chunk;
1862 
1863 		chunk = sctp_make_abort_user(asoc, msg, msg_len);
1864 		if (!chunk)
1865 			return -ENOMEM;
1866 
1867 		pr_debug("%s: aborting association:%p\n", __func__, asoc);
1868 		sctp_primitive_ABORT(net, asoc, chunk);
1869 
1870 		return 0;
1871 	}
1872 
1873 	return 1;
1874 }
1875 
1876 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1877 				struct msghdr *msg, size_t msg_len,
1878 				struct sctp_transport *transport,
1879 				struct sctp_sndrcvinfo *sinfo)
1880 {
1881 	struct sock *sk = asoc->base.sk;
1882 	struct sctp_sock *sp = sctp_sk(sk);
1883 	struct net *net = sock_net(sk);
1884 	struct sctp_datamsg *datamsg;
1885 	bool wait_connect = false;
1886 	struct sctp_chunk *chunk;
1887 	long timeo;
1888 	int err;
1889 
1890 	if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1891 		err = -EINVAL;
1892 		goto err;
1893 	}
1894 
1895 	if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1896 		err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1897 		if (err)
1898 			goto err;
1899 	}
1900 
1901 	if (sp->disable_fragments && msg_len > asoc->frag_point) {
1902 		err = -EMSGSIZE;
1903 		goto err;
1904 	}
1905 
1906 	if (asoc->pmtu_pending) {
1907 		if (sp->param_flags & SPP_PMTUD_ENABLE)
1908 			sctp_assoc_sync_pmtu(asoc);
1909 		asoc->pmtu_pending = 0;
1910 	}
1911 
1912 	if (sctp_wspace(asoc) < (int)msg_len)
1913 		sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1914 
1915 	if (sctp_wspace(asoc) <= 0) {
1916 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1917 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1918 		if (err)
1919 			goto err;
1920 	}
1921 
1922 	if (sctp_state(asoc, CLOSED)) {
1923 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1924 		if (err)
1925 			goto err;
1926 
1927 		if (sp->strm_interleave) {
1928 			timeo = sock_sndtimeo(sk, 0);
1929 			err = sctp_wait_for_connect(asoc, &timeo);
1930 			if (err) {
1931 				err = -ESRCH;
1932 				goto err;
1933 			}
1934 		} else {
1935 			wait_connect = true;
1936 		}
1937 
1938 		pr_debug("%s: we associated primitively\n", __func__);
1939 	}
1940 
1941 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1942 	if (IS_ERR(datamsg)) {
1943 		err = PTR_ERR(datamsg);
1944 		goto err;
1945 	}
1946 
1947 	asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1948 
1949 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1950 		sctp_chunk_hold(chunk);
1951 		sctp_set_owner_w(chunk);
1952 		chunk->transport = transport;
1953 	}
1954 
1955 	err = sctp_primitive_SEND(net, asoc, datamsg);
1956 	if (err) {
1957 		sctp_datamsg_free(datamsg);
1958 		goto err;
1959 	}
1960 
1961 	pr_debug("%s: we sent primitively\n", __func__);
1962 
1963 	sctp_datamsg_put(datamsg);
1964 
1965 	if (unlikely(wait_connect)) {
1966 		timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1967 		sctp_wait_for_connect(asoc, &timeo);
1968 	}
1969 
1970 	err = msg_len;
1971 
1972 err:
1973 	return err;
1974 }
1975 
1976 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1977 					       const struct msghdr *msg,
1978 					       struct sctp_cmsgs *cmsgs)
1979 {
1980 	union sctp_addr *daddr = NULL;
1981 	int err;
1982 
1983 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1984 		int len = msg->msg_namelen;
1985 
1986 		if (len > sizeof(*daddr))
1987 			len = sizeof(*daddr);
1988 
1989 		daddr = (union sctp_addr *)msg->msg_name;
1990 
1991 		err = sctp_verify_addr(sk, daddr, len);
1992 		if (err)
1993 			return ERR_PTR(err);
1994 	}
1995 
1996 	return daddr;
1997 }
1998 
1999 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
2000 				      struct sctp_sndrcvinfo *sinfo,
2001 				      struct sctp_cmsgs *cmsgs)
2002 {
2003 	if (!cmsgs->srinfo && !cmsgs->sinfo) {
2004 		sinfo->sinfo_stream = asoc->default_stream;
2005 		sinfo->sinfo_ppid = asoc->default_ppid;
2006 		sinfo->sinfo_context = asoc->default_context;
2007 		sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
2008 
2009 		if (!cmsgs->prinfo)
2010 			sinfo->sinfo_flags = asoc->default_flags;
2011 	}
2012 
2013 	if (!cmsgs->srinfo && !cmsgs->prinfo)
2014 		sinfo->sinfo_timetolive = asoc->default_timetolive;
2015 
2016 	if (cmsgs->authinfo) {
2017 		/* Reuse sinfo_tsn to indicate that authinfo was set and
2018 		 * sinfo_ssn to save the keyid on tx path.
2019 		 */
2020 		sinfo->sinfo_tsn = 1;
2021 		sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
2022 	}
2023 }
2024 
2025 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
2026 {
2027 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
2028 	struct sctp_transport *transport = NULL;
2029 	struct sctp_sndrcvinfo _sinfo, *sinfo;
2030 	struct sctp_association *asoc;
2031 	struct sctp_cmsgs cmsgs;
2032 	union sctp_addr *daddr;
2033 	bool new = false;
2034 	__u16 sflags;
2035 	int err;
2036 
2037 	/* Parse and get snd_info */
2038 	err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
2039 	if (err)
2040 		goto out;
2041 
2042 	sinfo  = &_sinfo;
2043 	sflags = sinfo->sinfo_flags;
2044 
2045 	/* Get daddr from msg */
2046 	daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
2047 	if (IS_ERR(daddr)) {
2048 		err = PTR_ERR(daddr);
2049 		goto out;
2050 	}
2051 
2052 	lock_sock(sk);
2053 
2054 	/* SCTP_SENDALL process */
2055 	if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
2056 		list_for_each_entry(asoc, &ep->asocs, asocs) {
2057 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2058 							msg_len);
2059 			if (err == 0)
2060 				continue;
2061 			if (err < 0)
2062 				goto out_unlock;
2063 
2064 			sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2065 
2066 			err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
2067 						   NULL, sinfo);
2068 			if (err < 0)
2069 				goto out_unlock;
2070 
2071 			iov_iter_revert(&msg->msg_iter, err);
2072 		}
2073 
2074 		goto out_unlock;
2075 	}
2076 
2077 	/* Get and check or create asoc */
2078 	if (daddr) {
2079 		asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
2080 		if (asoc) {
2081 			err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
2082 							msg_len);
2083 			if (err <= 0)
2084 				goto out_unlock;
2085 		} else {
2086 			err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2087 						    &transport);
2088 			if (err)
2089 				goto out_unlock;
2090 
2091 			asoc = transport->asoc;
2092 			new = true;
2093 		}
2094 
2095 		if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2096 			transport = NULL;
2097 	} else {
2098 		asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2099 		if (!asoc) {
2100 			err = -EPIPE;
2101 			goto out_unlock;
2102 		}
2103 
2104 		err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2105 		if (err <= 0)
2106 			goto out_unlock;
2107 	}
2108 
2109 	/* Update snd_info with the asoc */
2110 	sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2111 
2112 	/* Send msg to the asoc */
2113 	err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2114 	if (err < 0 && err != -ESRCH && new)
2115 		sctp_association_free(asoc);
2116 
2117 out_unlock:
2118 	release_sock(sk);
2119 out:
2120 	return sctp_error(sk, msg->msg_flags, err);
2121 }
2122 
2123 /* This is an extended version of skb_pull() that removes the data from the
2124  * start of a skb even when data is spread across the list of skb's in the
2125  * frag_list. len specifies the total amount of data that needs to be removed.
2126  * when 'len' bytes could be removed from the skb, it returns 0.
2127  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2128  * could not be removed.
2129  */
2130 static int sctp_skb_pull(struct sk_buff *skb, int len)
2131 {
2132 	struct sk_buff *list;
2133 	int skb_len = skb_headlen(skb);
2134 	int rlen;
2135 
2136 	if (len <= skb_len) {
2137 		__skb_pull(skb, len);
2138 		return 0;
2139 	}
2140 	len -= skb_len;
2141 	__skb_pull(skb, skb_len);
2142 
2143 	skb_walk_frags(skb, list) {
2144 		rlen = sctp_skb_pull(list, len);
2145 		skb->len -= (len-rlen);
2146 		skb->data_len -= (len-rlen);
2147 
2148 		if (!rlen)
2149 			return 0;
2150 
2151 		len = rlen;
2152 	}
2153 
2154 	return len;
2155 }
2156 
2157 /* API 3.1.3  recvmsg() - UDP Style Syntax
2158  *
2159  *  ssize_t recvmsg(int socket, struct msghdr *message,
2160  *                    int flags);
2161  *
2162  *  socket  - the socket descriptor of the endpoint.
2163  *  message - pointer to the msghdr structure which contains a single
2164  *            user message and possibly some ancillary data.
2165  *
2166  *            See Section 5 for complete description of the data
2167  *            structures.
2168  *
2169  *  flags   - flags sent or received with the user message, see Section
2170  *            5 for complete description of the flags.
2171  */
2172 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2173 			int noblock, int flags, int *addr_len)
2174 {
2175 	struct sctp_ulpevent *event = NULL;
2176 	struct sctp_sock *sp = sctp_sk(sk);
2177 	struct sk_buff *skb, *head_skb;
2178 	int copied;
2179 	int err = 0;
2180 	int skb_len;
2181 
2182 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2183 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2184 		 addr_len);
2185 
2186 	lock_sock(sk);
2187 
2188 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2189 	    !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2190 		err = -ENOTCONN;
2191 		goto out;
2192 	}
2193 
2194 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2195 	if (!skb)
2196 		goto out;
2197 
2198 	/* Get the total length of the skb including any skb's in the
2199 	 * frag_list.
2200 	 */
2201 	skb_len = skb->len;
2202 
2203 	copied = skb_len;
2204 	if (copied > len)
2205 		copied = len;
2206 
2207 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2208 
2209 	event = sctp_skb2event(skb);
2210 
2211 	if (err)
2212 		goto out_free;
2213 
2214 	if (event->chunk && event->chunk->head_skb)
2215 		head_skb = event->chunk->head_skb;
2216 	else
2217 		head_skb = skb;
2218 	sock_recv_ts_and_drops(msg, sk, head_skb);
2219 	if (sctp_ulpevent_is_notification(event)) {
2220 		msg->msg_flags |= MSG_NOTIFICATION;
2221 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2222 	} else {
2223 		sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2224 	}
2225 
2226 	/* Check if we allow SCTP_NXTINFO. */
2227 	if (sp->recvnxtinfo)
2228 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2229 	/* Check if we allow SCTP_RCVINFO. */
2230 	if (sp->recvrcvinfo)
2231 		sctp_ulpevent_read_rcvinfo(event, msg);
2232 	/* Check if we allow SCTP_SNDRCVINFO. */
2233 	if (sp->subscribe.sctp_data_io_event)
2234 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2235 
2236 	err = copied;
2237 
2238 	/* If skb's length exceeds the user's buffer, update the skb and
2239 	 * push it back to the receive_queue so that the next call to
2240 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2241 	 */
2242 	if (skb_len > copied) {
2243 		msg->msg_flags &= ~MSG_EOR;
2244 		if (flags & MSG_PEEK)
2245 			goto out_free;
2246 		sctp_skb_pull(skb, copied);
2247 		skb_queue_head(&sk->sk_receive_queue, skb);
2248 
2249 		/* When only partial message is copied to the user, increase
2250 		 * rwnd by that amount. If all the data in the skb is read,
2251 		 * rwnd is updated when the event is freed.
2252 		 */
2253 		if (!sctp_ulpevent_is_notification(event))
2254 			sctp_assoc_rwnd_increase(event->asoc, copied);
2255 		goto out;
2256 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2257 		   (event->msg_flags & MSG_EOR))
2258 		msg->msg_flags |= MSG_EOR;
2259 	else
2260 		msg->msg_flags &= ~MSG_EOR;
2261 
2262 out_free:
2263 	if (flags & MSG_PEEK) {
2264 		/* Release the skb reference acquired after peeking the skb in
2265 		 * sctp_skb_recv_datagram().
2266 		 */
2267 		kfree_skb(skb);
2268 	} else {
2269 		/* Free the event which includes releasing the reference to
2270 		 * the owner of the skb, freeing the skb and updating the
2271 		 * rwnd.
2272 		 */
2273 		sctp_ulpevent_free(event);
2274 	}
2275 out:
2276 	release_sock(sk);
2277 	return err;
2278 }
2279 
2280 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2281  *
2282  * This option is a on/off flag.  If enabled no SCTP message
2283  * fragmentation will be performed.  Instead if a message being sent
2284  * exceeds the current PMTU size, the message will NOT be sent and
2285  * instead a error will be indicated to the user.
2286  */
2287 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2288 					     char __user *optval,
2289 					     unsigned int optlen)
2290 {
2291 	int val;
2292 
2293 	if (optlen < sizeof(int))
2294 		return -EINVAL;
2295 
2296 	if (get_user(val, (int __user *)optval))
2297 		return -EFAULT;
2298 
2299 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2300 
2301 	return 0;
2302 }
2303 
2304 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2305 				  unsigned int optlen)
2306 {
2307 	struct sctp_association *asoc;
2308 	struct sctp_ulpevent *event;
2309 
2310 	if (optlen > sizeof(struct sctp_event_subscribe))
2311 		return -EINVAL;
2312 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2313 		return -EFAULT;
2314 
2315 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2316 	 * if there is no data to be sent or retransmit, the stack will
2317 	 * immediately send up this notification.
2318 	 */
2319 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2320 				       &sctp_sk(sk)->subscribe)) {
2321 		asoc = sctp_id2assoc(sk, 0);
2322 
2323 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2324 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2325 					GFP_USER | __GFP_NOWARN);
2326 			if (!event)
2327 				return -ENOMEM;
2328 
2329 			asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2330 		}
2331 	}
2332 
2333 	return 0;
2334 }
2335 
2336 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2337  *
2338  * This socket option is applicable to the UDP-style socket only.  When
2339  * set it will cause associations that are idle for more than the
2340  * specified number of seconds to automatically close.  An association
2341  * being idle is defined an association that has NOT sent or received
2342  * user data.  The special value of '0' indicates that no automatic
2343  * close of any associations should be performed.  The option expects an
2344  * integer defining the number of seconds of idle time before an
2345  * association is closed.
2346  */
2347 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2348 				     unsigned int optlen)
2349 {
2350 	struct sctp_sock *sp = sctp_sk(sk);
2351 	struct net *net = sock_net(sk);
2352 
2353 	/* Applicable to UDP-style socket only */
2354 	if (sctp_style(sk, TCP))
2355 		return -EOPNOTSUPP;
2356 	if (optlen != sizeof(int))
2357 		return -EINVAL;
2358 	if (copy_from_user(&sp->autoclose, optval, optlen))
2359 		return -EFAULT;
2360 
2361 	if (sp->autoclose > net->sctp.max_autoclose)
2362 		sp->autoclose = net->sctp.max_autoclose;
2363 
2364 	return 0;
2365 }
2366 
2367 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2368  *
2369  * Applications can enable or disable heartbeats for any peer address of
2370  * an association, modify an address's heartbeat interval, force a
2371  * heartbeat to be sent immediately, and adjust the address's maximum
2372  * number of retransmissions sent before an address is considered
2373  * unreachable.  The following structure is used to access and modify an
2374  * address's parameters:
2375  *
2376  *  struct sctp_paddrparams {
2377  *     sctp_assoc_t            spp_assoc_id;
2378  *     struct sockaddr_storage spp_address;
2379  *     uint32_t                spp_hbinterval;
2380  *     uint16_t                spp_pathmaxrxt;
2381  *     uint32_t                spp_pathmtu;
2382  *     uint32_t                spp_sackdelay;
2383  *     uint32_t                spp_flags;
2384  *     uint32_t                spp_ipv6_flowlabel;
2385  *     uint8_t                 spp_dscp;
2386  * };
2387  *
2388  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2389  *                     application, and identifies the association for
2390  *                     this query.
2391  *   spp_address     - This specifies which address is of interest.
2392  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2393  *                     in milliseconds.  If a  value of zero
2394  *                     is present in this field then no changes are to
2395  *                     be made to this parameter.
2396  *   spp_pathmaxrxt  - This contains the maximum number of
2397  *                     retransmissions before this address shall be
2398  *                     considered unreachable. If a  value of zero
2399  *                     is present in this field then no changes are to
2400  *                     be made to this parameter.
2401  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2402  *                     specified here will be the "fixed" path mtu.
2403  *                     Note that if the spp_address field is empty
2404  *                     then all associations on this address will
2405  *                     have this fixed path mtu set upon them.
2406  *
2407  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2408  *                     the number of milliseconds that sacks will be delayed
2409  *                     for. This value will apply to all addresses of an
2410  *                     association if the spp_address field is empty. Note
2411  *                     also, that if delayed sack is enabled and this
2412  *                     value is set to 0, no change is made to the last
2413  *                     recorded delayed sack timer value.
2414  *
2415  *   spp_flags       - These flags are used to control various features
2416  *                     on an association. The flag field may contain
2417  *                     zero or more of the following options.
2418  *
2419  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2420  *                     specified address. Note that if the address
2421  *                     field is empty all addresses for the association
2422  *                     have heartbeats enabled upon them.
2423  *
2424  *                     SPP_HB_DISABLE - Disable heartbeats on the
2425  *                     speicifed address. Note that if the address
2426  *                     field is empty all addresses for the association
2427  *                     will have their heartbeats disabled. Note also
2428  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2429  *                     mutually exclusive, only one of these two should
2430  *                     be specified. Enabling both fields will have
2431  *                     undetermined results.
2432  *
2433  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2434  *                     to be made immediately.
2435  *
2436  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2437  *                     heartbeat delayis to be set to the value of 0
2438  *                     milliseconds.
2439  *
2440  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2441  *                     discovery upon the specified address. Note that
2442  *                     if the address feild is empty then all addresses
2443  *                     on the association are effected.
2444  *
2445  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2446  *                     discovery upon the specified address. Note that
2447  *                     if the address feild is empty then all addresses
2448  *                     on the association are effected. Not also that
2449  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2450  *                     exclusive. Enabling both will have undetermined
2451  *                     results.
2452  *
2453  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2454  *                     on delayed sack. The time specified in spp_sackdelay
2455  *                     is used to specify the sack delay for this address. Note
2456  *                     that if spp_address is empty then all addresses will
2457  *                     enable delayed sack and take on the sack delay
2458  *                     value specified in spp_sackdelay.
2459  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2460  *                     off delayed sack. If the spp_address field is blank then
2461  *                     delayed sack is disabled for the entire association. Note
2462  *                     also that this field is mutually exclusive to
2463  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2464  *                     results.
2465  *
2466  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
2467  *                     setting of the IPV6 flow label value.  The value is
2468  *                     contained in the spp_ipv6_flowlabel field.
2469  *                     Upon retrieval, this flag will be set to indicate that
2470  *                     the spp_ipv6_flowlabel field has a valid value returned.
2471  *                     If a specific destination address is set (in the
2472  *                     spp_address field), then the value returned is that of
2473  *                     the address.  If just an association is specified (and
2474  *                     no address), then the association's default flow label
2475  *                     is returned.  If neither an association nor a destination
2476  *                     is specified, then the socket's default flow label is
2477  *                     returned.  For non-IPv6 sockets, this flag will be left
2478  *                     cleared.
2479  *
2480  *                     SPP_DSCP:  Setting this flag enables the setting of the
2481  *                     Differentiated Services Code Point (DSCP) value
2482  *                     associated with either the association or a specific
2483  *                     address.  The value is obtained in the spp_dscp field.
2484  *                     Upon retrieval, this flag will be set to indicate that
2485  *                     the spp_dscp field has a valid value returned.  If a
2486  *                     specific destination address is set when called (in the
2487  *                     spp_address field), then that specific destination
2488  *                     address's DSCP value is returned.  If just an association
2489  *                     is specified, then the association's default DSCP is
2490  *                     returned.  If neither an association nor a destination is
2491  *                     specified, then the socket's default DSCP is returned.
2492  *
2493  *   spp_ipv6_flowlabel
2494  *                   - This field is used in conjunction with the
2495  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2496  *                     The 20 least significant bits are used for the flow
2497  *                     label.  This setting has precedence over any IPv6-layer
2498  *                     setting.
2499  *
2500  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
2501  *                     and contains the DSCP.  The 6 most significant bits are
2502  *                     used for the DSCP.  This setting has precedence over any
2503  *                     IPv4- or IPv6- layer setting.
2504  */
2505 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2506 				       struct sctp_transport   *trans,
2507 				       struct sctp_association *asoc,
2508 				       struct sctp_sock        *sp,
2509 				       int                      hb_change,
2510 				       int                      pmtud_change,
2511 				       int                      sackdelay_change)
2512 {
2513 	int error;
2514 
2515 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2516 		struct net *net = sock_net(trans->asoc->base.sk);
2517 
2518 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2519 		if (error)
2520 			return error;
2521 	}
2522 
2523 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2524 	 * this field is ignored.  Note also that a value of zero indicates
2525 	 * the current setting should be left unchanged.
2526 	 */
2527 	if (params->spp_flags & SPP_HB_ENABLE) {
2528 
2529 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2530 		 * set.  This lets us use 0 value when this flag
2531 		 * is set.
2532 		 */
2533 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2534 			params->spp_hbinterval = 0;
2535 
2536 		if (params->spp_hbinterval ||
2537 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2538 			if (trans) {
2539 				trans->hbinterval =
2540 				    msecs_to_jiffies(params->spp_hbinterval);
2541 			} else if (asoc) {
2542 				asoc->hbinterval =
2543 				    msecs_to_jiffies(params->spp_hbinterval);
2544 			} else {
2545 				sp->hbinterval = params->spp_hbinterval;
2546 			}
2547 		}
2548 	}
2549 
2550 	if (hb_change) {
2551 		if (trans) {
2552 			trans->param_flags =
2553 				(trans->param_flags & ~SPP_HB) | hb_change;
2554 		} else if (asoc) {
2555 			asoc->param_flags =
2556 				(asoc->param_flags & ~SPP_HB) | hb_change;
2557 		} else {
2558 			sp->param_flags =
2559 				(sp->param_flags & ~SPP_HB) | hb_change;
2560 		}
2561 	}
2562 
2563 	/* When Path MTU discovery is disabled the value specified here will
2564 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2565 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2566 	 * effect).
2567 	 */
2568 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2569 		if (trans) {
2570 			trans->pathmtu = params->spp_pathmtu;
2571 			sctp_assoc_sync_pmtu(asoc);
2572 		} else if (asoc) {
2573 			sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2574 		} else {
2575 			sp->pathmtu = params->spp_pathmtu;
2576 		}
2577 	}
2578 
2579 	if (pmtud_change) {
2580 		if (trans) {
2581 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2582 				(params->spp_flags & SPP_PMTUD_ENABLE);
2583 			trans->param_flags =
2584 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2585 			if (update) {
2586 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2587 				sctp_assoc_sync_pmtu(asoc);
2588 			}
2589 		} else if (asoc) {
2590 			asoc->param_flags =
2591 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2592 		} else {
2593 			sp->param_flags =
2594 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2595 		}
2596 	}
2597 
2598 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2599 	 * value of this field is ignored.  Note also that a value of zero
2600 	 * indicates the current setting should be left unchanged.
2601 	 */
2602 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2603 		if (trans) {
2604 			trans->sackdelay =
2605 				msecs_to_jiffies(params->spp_sackdelay);
2606 		} else if (asoc) {
2607 			asoc->sackdelay =
2608 				msecs_to_jiffies(params->spp_sackdelay);
2609 		} else {
2610 			sp->sackdelay = params->spp_sackdelay;
2611 		}
2612 	}
2613 
2614 	if (sackdelay_change) {
2615 		if (trans) {
2616 			trans->param_flags =
2617 				(trans->param_flags & ~SPP_SACKDELAY) |
2618 				sackdelay_change;
2619 		} else if (asoc) {
2620 			asoc->param_flags =
2621 				(asoc->param_flags & ~SPP_SACKDELAY) |
2622 				sackdelay_change;
2623 		} else {
2624 			sp->param_flags =
2625 				(sp->param_flags & ~SPP_SACKDELAY) |
2626 				sackdelay_change;
2627 		}
2628 	}
2629 
2630 	/* Note that a value of zero indicates the current setting should be
2631 	   left unchanged.
2632 	 */
2633 	if (params->spp_pathmaxrxt) {
2634 		if (trans) {
2635 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2636 		} else if (asoc) {
2637 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2638 		} else {
2639 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2640 		}
2641 	}
2642 
2643 	if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2644 		if (trans) {
2645 			if (trans->ipaddr.sa.sa_family == AF_INET6) {
2646 				trans->flowlabel = params->spp_ipv6_flowlabel &
2647 						   SCTP_FLOWLABEL_VAL_MASK;
2648 				trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2649 			}
2650 		} else if (asoc) {
2651 			struct sctp_transport *t;
2652 
2653 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2654 					    transports) {
2655 				if (t->ipaddr.sa.sa_family != AF_INET6)
2656 					continue;
2657 				t->flowlabel = params->spp_ipv6_flowlabel &
2658 					       SCTP_FLOWLABEL_VAL_MASK;
2659 				t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2660 			}
2661 			asoc->flowlabel = params->spp_ipv6_flowlabel &
2662 					  SCTP_FLOWLABEL_VAL_MASK;
2663 			asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2664 		} else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2665 			sp->flowlabel = params->spp_ipv6_flowlabel &
2666 					SCTP_FLOWLABEL_VAL_MASK;
2667 			sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2668 		}
2669 	}
2670 
2671 	if (params->spp_flags & SPP_DSCP) {
2672 		if (trans) {
2673 			trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2674 			trans->dscp |= SCTP_DSCP_SET_MASK;
2675 		} else if (asoc) {
2676 			struct sctp_transport *t;
2677 
2678 			list_for_each_entry(t, &asoc->peer.transport_addr_list,
2679 					    transports) {
2680 				t->dscp = params->spp_dscp &
2681 					  SCTP_DSCP_VAL_MASK;
2682 				t->dscp |= SCTP_DSCP_SET_MASK;
2683 			}
2684 			asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2685 			asoc->dscp |= SCTP_DSCP_SET_MASK;
2686 		} else {
2687 			sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2688 			sp->dscp |= SCTP_DSCP_SET_MASK;
2689 		}
2690 	}
2691 
2692 	return 0;
2693 }
2694 
2695 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2696 					    char __user *optval,
2697 					    unsigned int optlen)
2698 {
2699 	struct sctp_paddrparams  params;
2700 	struct sctp_transport   *trans = NULL;
2701 	struct sctp_association *asoc = NULL;
2702 	struct sctp_sock        *sp = sctp_sk(sk);
2703 	int error;
2704 	int hb_change, pmtud_change, sackdelay_change;
2705 
2706 	if (optlen == sizeof(params)) {
2707 		if (copy_from_user(&params, optval, optlen))
2708 			return -EFAULT;
2709 	} else if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2710 					    spp_ipv6_flowlabel), 4)) {
2711 		if (copy_from_user(&params, optval, optlen))
2712 			return -EFAULT;
2713 		if (params.spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2714 			return -EINVAL;
2715 	} else {
2716 		return -EINVAL;
2717 	}
2718 
2719 	/* Validate flags and value parameters. */
2720 	hb_change        = params.spp_flags & SPP_HB;
2721 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2722 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2723 
2724 	if (hb_change        == SPP_HB ||
2725 	    pmtud_change     == SPP_PMTUD ||
2726 	    sackdelay_change == SPP_SACKDELAY ||
2727 	    params.spp_sackdelay > 500 ||
2728 	    (params.spp_pathmtu &&
2729 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2730 		return -EINVAL;
2731 
2732 	/* If an address other than INADDR_ANY is specified, and
2733 	 * no transport is found, then the request is invalid.
2734 	 */
2735 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2736 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2737 					       params.spp_assoc_id);
2738 		if (!trans)
2739 			return -EINVAL;
2740 	}
2741 
2742 	/* Get association, if assoc_id != 0 and the socket is a one
2743 	 * to many style socket, and an association was not found, then
2744 	 * the id was invalid.
2745 	 */
2746 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2747 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2748 		return -EINVAL;
2749 
2750 	/* Heartbeat demand can only be sent on a transport or
2751 	 * association, but not a socket.
2752 	 */
2753 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2754 		return -EINVAL;
2755 
2756 	/* Process parameters. */
2757 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2758 					    hb_change, pmtud_change,
2759 					    sackdelay_change);
2760 
2761 	if (error)
2762 		return error;
2763 
2764 	/* If changes are for association, also apply parameters to each
2765 	 * transport.
2766 	 */
2767 	if (!trans && asoc) {
2768 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2769 				transports) {
2770 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2771 						    hb_change, pmtud_change,
2772 						    sackdelay_change);
2773 		}
2774 	}
2775 
2776 	return 0;
2777 }
2778 
2779 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2780 {
2781 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2782 }
2783 
2784 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2785 {
2786 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2787 }
2788 
2789 /*
2790  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2791  *
2792  * This option will effect the way delayed acks are performed.  This
2793  * option allows you to get or set the delayed ack time, in
2794  * milliseconds.  It also allows changing the delayed ack frequency.
2795  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2796  * the assoc_id is 0, then this sets or gets the endpoints default
2797  * values.  If the assoc_id field is non-zero, then the set or get
2798  * effects the specified association for the one to many model (the
2799  * assoc_id field is ignored by the one to one model).  Note that if
2800  * sack_delay or sack_freq are 0 when setting this option, then the
2801  * current values will remain unchanged.
2802  *
2803  * struct sctp_sack_info {
2804  *     sctp_assoc_t            sack_assoc_id;
2805  *     uint32_t                sack_delay;
2806  *     uint32_t                sack_freq;
2807  * };
2808  *
2809  * sack_assoc_id -  This parameter, indicates which association the user
2810  *    is performing an action upon.  Note that if this field's value is
2811  *    zero then the endpoints default value is changed (effecting future
2812  *    associations only).
2813  *
2814  * sack_delay -  This parameter contains the number of milliseconds that
2815  *    the user is requesting the delayed ACK timer be set to.  Note that
2816  *    this value is defined in the standard to be between 200 and 500
2817  *    milliseconds.
2818  *
2819  * sack_freq -  This parameter contains the number of packets that must
2820  *    be received before a sack is sent without waiting for the delay
2821  *    timer to expire.  The default value for this is 2, setting this
2822  *    value to 1 will disable the delayed sack algorithm.
2823  */
2824 
2825 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2826 				       char __user *optval, unsigned int optlen)
2827 {
2828 	struct sctp_sack_info    params;
2829 	struct sctp_transport   *trans = NULL;
2830 	struct sctp_association *asoc = NULL;
2831 	struct sctp_sock        *sp = sctp_sk(sk);
2832 
2833 	if (optlen == sizeof(struct sctp_sack_info)) {
2834 		if (copy_from_user(&params, optval, optlen))
2835 			return -EFAULT;
2836 
2837 		if (params.sack_delay == 0 && params.sack_freq == 0)
2838 			return 0;
2839 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2840 		pr_warn_ratelimited(DEPRECATED
2841 				    "%s (pid %d) "
2842 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2843 				    "Use struct sctp_sack_info instead\n",
2844 				    current->comm, task_pid_nr(current));
2845 		if (copy_from_user(&params, optval, optlen))
2846 			return -EFAULT;
2847 
2848 		if (params.sack_delay == 0)
2849 			params.sack_freq = 1;
2850 		else
2851 			params.sack_freq = 0;
2852 	} else
2853 		return -EINVAL;
2854 
2855 	/* Validate value parameter. */
2856 	if (params.sack_delay > 500)
2857 		return -EINVAL;
2858 
2859 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2860 	 * to many style socket, and an association was not found, then
2861 	 * the id was invalid.
2862 	 */
2863 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2864 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2865 		return -EINVAL;
2866 
2867 	if (params.sack_delay) {
2868 		if (asoc) {
2869 			asoc->sackdelay =
2870 				msecs_to_jiffies(params.sack_delay);
2871 			asoc->param_flags =
2872 				sctp_spp_sackdelay_enable(asoc->param_flags);
2873 		} else {
2874 			sp->sackdelay = params.sack_delay;
2875 			sp->param_flags =
2876 				sctp_spp_sackdelay_enable(sp->param_flags);
2877 		}
2878 	}
2879 
2880 	if (params.sack_freq == 1) {
2881 		if (asoc) {
2882 			asoc->param_flags =
2883 				sctp_spp_sackdelay_disable(asoc->param_flags);
2884 		} else {
2885 			sp->param_flags =
2886 				sctp_spp_sackdelay_disable(sp->param_flags);
2887 		}
2888 	} else if (params.sack_freq > 1) {
2889 		if (asoc) {
2890 			asoc->sackfreq = params.sack_freq;
2891 			asoc->param_flags =
2892 				sctp_spp_sackdelay_enable(asoc->param_flags);
2893 		} else {
2894 			sp->sackfreq = params.sack_freq;
2895 			sp->param_flags =
2896 				sctp_spp_sackdelay_enable(sp->param_flags);
2897 		}
2898 	}
2899 
2900 	/* If change is for association, also apply to each transport. */
2901 	if (asoc) {
2902 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2903 				transports) {
2904 			if (params.sack_delay) {
2905 				trans->sackdelay =
2906 					msecs_to_jiffies(params.sack_delay);
2907 				trans->param_flags =
2908 					sctp_spp_sackdelay_enable(trans->param_flags);
2909 			}
2910 			if (params.sack_freq == 1) {
2911 				trans->param_flags =
2912 					sctp_spp_sackdelay_disable(trans->param_flags);
2913 			} else if (params.sack_freq > 1) {
2914 				trans->sackfreq = params.sack_freq;
2915 				trans->param_flags =
2916 					sctp_spp_sackdelay_enable(trans->param_flags);
2917 			}
2918 		}
2919 	}
2920 
2921 	return 0;
2922 }
2923 
2924 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2925  *
2926  * Applications can specify protocol parameters for the default association
2927  * initialization.  The option name argument to setsockopt() and getsockopt()
2928  * is SCTP_INITMSG.
2929  *
2930  * Setting initialization parameters is effective only on an unconnected
2931  * socket (for UDP-style sockets only future associations are effected
2932  * by the change).  With TCP-style sockets, this option is inherited by
2933  * sockets derived from a listener socket.
2934  */
2935 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2936 {
2937 	struct sctp_initmsg sinit;
2938 	struct sctp_sock *sp = sctp_sk(sk);
2939 
2940 	if (optlen != sizeof(struct sctp_initmsg))
2941 		return -EINVAL;
2942 	if (copy_from_user(&sinit, optval, optlen))
2943 		return -EFAULT;
2944 
2945 	if (sinit.sinit_num_ostreams)
2946 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2947 	if (sinit.sinit_max_instreams)
2948 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2949 	if (sinit.sinit_max_attempts)
2950 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2951 	if (sinit.sinit_max_init_timeo)
2952 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2953 
2954 	return 0;
2955 }
2956 
2957 /*
2958  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2959  *
2960  *   Applications that wish to use the sendto() system call may wish to
2961  *   specify a default set of parameters that would normally be supplied
2962  *   through the inclusion of ancillary data.  This socket option allows
2963  *   such an application to set the default sctp_sndrcvinfo structure.
2964  *   The application that wishes to use this socket option simply passes
2965  *   in to this call the sctp_sndrcvinfo structure defined in Section
2966  *   5.2.2) The input parameters accepted by this call include
2967  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2968  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2969  *   to this call if the caller is using the UDP model.
2970  */
2971 static int sctp_setsockopt_default_send_param(struct sock *sk,
2972 					      char __user *optval,
2973 					      unsigned int optlen)
2974 {
2975 	struct sctp_sock *sp = sctp_sk(sk);
2976 	struct sctp_association *asoc;
2977 	struct sctp_sndrcvinfo info;
2978 
2979 	if (optlen != sizeof(info))
2980 		return -EINVAL;
2981 	if (copy_from_user(&info, optval, optlen))
2982 		return -EFAULT;
2983 	if (info.sinfo_flags &
2984 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2985 	      SCTP_ABORT | SCTP_EOF))
2986 		return -EINVAL;
2987 
2988 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2989 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2990 		return -EINVAL;
2991 	if (asoc) {
2992 		asoc->default_stream = info.sinfo_stream;
2993 		asoc->default_flags = info.sinfo_flags;
2994 		asoc->default_ppid = info.sinfo_ppid;
2995 		asoc->default_context = info.sinfo_context;
2996 		asoc->default_timetolive = info.sinfo_timetolive;
2997 	} else {
2998 		sp->default_stream = info.sinfo_stream;
2999 		sp->default_flags = info.sinfo_flags;
3000 		sp->default_ppid = info.sinfo_ppid;
3001 		sp->default_context = info.sinfo_context;
3002 		sp->default_timetolive = info.sinfo_timetolive;
3003 	}
3004 
3005 	return 0;
3006 }
3007 
3008 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
3009  * (SCTP_DEFAULT_SNDINFO)
3010  */
3011 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
3012 					   char __user *optval,
3013 					   unsigned int optlen)
3014 {
3015 	struct sctp_sock *sp = sctp_sk(sk);
3016 	struct sctp_association *asoc;
3017 	struct sctp_sndinfo info;
3018 
3019 	if (optlen != sizeof(info))
3020 		return -EINVAL;
3021 	if (copy_from_user(&info, optval, optlen))
3022 		return -EFAULT;
3023 	if (info.snd_flags &
3024 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
3025 	      SCTP_ABORT | SCTP_EOF))
3026 		return -EINVAL;
3027 
3028 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
3029 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
3030 		return -EINVAL;
3031 	if (asoc) {
3032 		asoc->default_stream = info.snd_sid;
3033 		asoc->default_flags = info.snd_flags;
3034 		asoc->default_ppid = info.snd_ppid;
3035 		asoc->default_context = info.snd_context;
3036 	} else {
3037 		sp->default_stream = info.snd_sid;
3038 		sp->default_flags = info.snd_flags;
3039 		sp->default_ppid = info.snd_ppid;
3040 		sp->default_context = info.snd_context;
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3047  *
3048  * Requests that the local SCTP stack use the enclosed peer address as
3049  * the association primary.  The enclosed address must be one of the
3050  * association peer's addresses.
3051  */
3052 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
3053 					unsigned int optlen)
3054 {
3055 	struct sctp_prim prim;
3056 	struct sctp_transport *trans;
3057 	struct sctp_af *af;
3058 	int err;
3059 
3060 	if (optlen != sizeof(struct sctp_prim))
3061 		return -EINVAL;
3062 
3063 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
3064 		return -EFAULT;
3065 
3066 	/* Allow security module to validate address but need address len. */
3067 	af = sctp_get_af_specific(prim.ssp_addr.ss_family);
3068 	if (!af)
3069 		return -EINVAL;
3070 
3071 	err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3072 					 (struct sockaddr *)&prim.ssp_addr,
3073 					 af->sockaddr_len);
3074 	if (err)
3075 		return err;
3076 
3077 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
3078 	if (!trans)
3079 		return -EINVAL;
3080 
3081 	sctp_assoc_set_primary(trans->asoc, trans);
3082 
3083 	return 0;
3084 }
3085 
3086 /*
3087  * 7.1.5 SCTP_NODELAY
3088  *
3089  * Turn on/off any Nagle-like algorithm.  This means that packets are
3090  * generally sent as soon as possible and no unnecessary delays are
3091  * introduced, at the cost of more packets in the network.  Expects an
3092  *  integer boolean flag.
3093  */
3094 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
3095 				   unsigned int optlen)
3096 {
3097 	int val;
3098 
3099 	if (optlen < sizeof(int))
3100 		return -EINVAL;
3101 	if (get_user(val, (int __user *)optval))
3102 		return -EFAULT;
3103 
3104 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
3105 	return 0;
3106 }
3107 
3108 /*
3109  *
3110  * 7.1.1 SCTP_RTOINFO
3111  *
3112  * The protocol parameters used to initialize and bound retransmission
3113  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3114  * and modify these parameters.
3115  * All parameters are time values, in milliseconds.  A value of 0, when
3116  * modifying the parameters, indicates that the current value should not
3117  * be changed.
3118  *
3119  */
3120 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
3121 {
3122 	struct sctp_rtoinfo rtoinfo;
3123 	struct sctp_association *asoc;
3124 	unsigned long rto_min, rto_max;
3125 	struct sctp_sock *sp = sctp_sk(sk);
3126 
3127 	if (optlen != sizeof (struct sctp_rtoinfo))
3128 		return -EINVAL;
3129 
3130 	if (copy_from_user(&rtoinfo, optval, optlen))
3131 		return -EFAULT;
3132 
3133 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
3134 
3135 	/* Set the values to the specific association */
3136 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
3137 		return -EINVAL;
3138 
3139 	rto_max = rtoinfo.srto_max;
3140 	rto_min = rtoinfo.srto_min;
3141 
3142 	if (rto_max)
3143 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3144 	else
3145 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3146 
3147 	if (rto_min)
3148 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3149 	else
3150 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3151 
3152 	if (rto_min > rto_max)
3153 		return -EINVAL;
3154 
3155 	if (asoc) {
3156 		if (rtoinfo.srto_initial != 0)
3157 			asoc->rto_initial =
3158 				msecs_to_jiffies(rtoinfo.srto_initial);
3159 		asoc->rto_max = rto_max;
3160 		asoc->rto_min = rto_min;
3161 	} else {
3162 		/* If there is no association or the association-id = 0
3163 		 * set the values to the endpoint.
3164 		 */
3165 		if (rtoinfo.srto_initial != 0)
3166 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
3167 		sp->rtoinfo.srto_max = rto_max;
3168 		sp->rtoinfo.srto_min = rto_min;
3169 	}
3170 
3171 	return 0;
3172 }
3173 
3174 /*
3175  *
3176  * 7.1.2 SCTP_ASSOCINFO
3177  *
3178  * This option is used to tune the maximum retransmission attempts
3179  * of the association.
3180  * Returns an error if the new association retransmission value is
3181  * greater than the sum of the retransmission value  of the peer.
3182  * See [SCTP] for more information.
3183  *
3184  */
3185 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
3186 {
3187 
3188 	struct sctp_assocparams assocparams;
3189 	struct sctp_association *asoc;
3190 
3191 	if (optlen != sizeof(struct sctp_assocparams))
3192 		return -EINVAL;
3193 	if (copy_from_user(&assocparams, optval, optlen))
3194 		return -EFAULT;
3195 
3196 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
3197 
3198 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
3199 		return -EINVAL;
3200 
3201 	/* Set the values to the specific association */
3202 	if (asoc) {
3203 		if (assocparams.sasoc_asocmaxrxt != 0) {
3204 			__u32 path_sum = 0;
3205 			int   paths = 0;
3206 			struct sctp_transport *peer_addr;
3207 
3208 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3209 					transports) {
3210 				path_sum += peer_addr->pathmaxrxt;
3211 				paths++;
3212 			}
3213 
3214 			/* Only validate asocmaxrxt if we have more than
3215 			 * one path/transport.  We do this because path
3216 			 * retransmissions are only counted when we have more
3217 			 * then one path.
3218 			 */
3219 			if (paths > 1 &&
3220 			    assocparams.sasoc_asocmaxrxt > path_sum)
3221 				return -EINVAL;
3222 
3223 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3224 		}
3225 
3226 		if (assocparams.sasoc_cookie_life != 0)
3227 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3228 	} else {
3229 		/* Set the values to the endpoint */
3230 		struct sctp_sock *sp = sctp_sk(sk);
3231 
3232 		if (assocparams.sasoc_asocmaxrxt != 0)
3233 			sp->assocparams.sasoc_asocmaxrxt =
3234 						assocparams.sasoc_asocmaxrxt;
3235 		if (assocparams.sasoc_cookie_life != 0)
3236 			sp->assocparams.sasoc_cookie_life =
3237 						assocparams.sasoc_cookie_life;
3238 	}
3239 	return 0;
3240 }
3241 
3242 /*
3243  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3244  *
3245  * This socket option is a boolean flag which turns on or off mapped V4
3246  * addresses.  If this option is turned on and the socket is type
3247  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3248  * If this option is turned off, then no mapping will be done of V4
3249  * addresses and a user will receive both PF_INET6 and PF_INET type
3250  * addresses on the socket.
3251  */
3252 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3253 {
3254 	int val;
3255 	struct sctp_sock *sp = sctp_sk(sk);
3256 
3257 	if (optlen < sizeof(int))
3258 		return -EINVAL;
3259 	if (get_user(val, (int __user *)optval))
3260 		return -EFAULT;
3261 	if (val)
3262 		sp->v4mapped = 1;
3263 	else
3264 		sp->v4mapped = 0;
3265 
3266 	return 0;
3267 }
3268 
3269 /*
3270  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3271  * This option will get or set the maximum size to put in any outgoing
3272  * SCTP DATA chunk.  If a message is larger than this size it will be
3273  * fragmented by SCTP into the specified size.  Note that the underlying
3274  * SCTP implementation may fragment into smaller sized chunks when the
3275  * PMTU of the underlying association is smaller than the value set by
3276  * the user.  The default value for this option is '0' which indicates
3277  * the user is NOT limiting fragmentation and only the PMTU will effect
3278  * SCTP's choice of DATA chunk size.  Note also that values set larger
3279  * than the maximum size of an IP datagram will effectively let SCTP
3280  * control fragmentation (i.e. the same as setting this option to 0).
3281  *
3282  * The following structure is used to access and modify this parameter:
3283  *
3284  * struct sctp_assoc_value {
3285  *   sctp_assoc_t assoc_id;
3286  *   uint32_t assoc_value;
3287  * };
3288  *
3289  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3290  *    For one-to-many style sockets this parameter indicates which
3291  *    association the user is performing an action upon.  Note that if
3292  *    this field's value is zero then the endpoints default value is
3293  *    changed (effecting future associations only).
3294  * assoc_value:  This parameter specifies the maximum size in bytes.
3295  */
3296 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3297 {
3298 	struct sctp_sock *sp = sctp_sk(sk);
3299 	struct sctp_assoc_value params;
3300 	struct sctp_association *asoc;
3301 	int val;
3302 
3303 	if (optlen == sizeof(int)) {
3304 		pr_warn_ratelimited(DEPRECATED
3305 				    "%s (pid %d) "
3306 				    "Use of int in maxseg socket option.\n"
3307 				    "Use struct sctp_assoc_value instead\n",
3308 				    current->comm, task_pid_nr(current));
3309 		if (copy_from_user(&val, optval, optlen))
3310 			return -EFAULT;
3311 		params.assoc_id = 0;
3312 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3313 		if (copy_from_user(&params, optval, optlen))
3314 			return -EFAULT;
3315 		val = params.assoc_value;
3316 	} else {
3317 		return -EINVAL;
3318 	}
3319 
3320 	asoc = sctp_id2assoc(sk, params.assoc_id);
3321 
3322 	if (val) {
3323 		int min_len, max_len;
3324 		__u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3325 				 sizeof(struct sctp_data_chunk);
3326 
3327 		min_len = sctp_mtu_payload(sp, SCTP_DEFAULT_MINSEGMENT,
3328 					   datasize);
3329 		max_len = SCTP_MAX_CHUNK_LEN - datasize;
3330 
3331 		if (val < min_len || val > max_len)
3332 			return -EINVAL;
3333 	}
3334 
3335 	if (asoc) {
3336 		asoc->user_frag = val;
3337 		sctp_assoc_update_frag_point(asoc);
3338 	} else {
3339 		if (params.assoc_id && sctp_style(sk, UDP))
3340 			return -EINVAL;
3341 		sp->user_frag = val;
3342 	}
3343 
3344 	return 0;
3345 }
3346 
3347 
3348 /*
3349  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3350  *
3351  *   Requests that the peer mark the enclosed address as the association
3352  *   primary. The enclosed address must be one of the association's
3353  *   locally bound addresses. The following structure is used to make a
3354  *   set primary request:
3355  */
3356 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3357 					     unsigned int optlen)
3358 {
3359 	struct net *net = sock_net(sk);
3360 	struct sctp_sock	*sp;
3361 	struct sctp_association	*asoc = NULL;
3362 	struct sctp_setpeerprim	prim;
3363 	struct sctp_chunk	*chunk;
3364 	struct sctp_af		*af;
3365 	int 			err;
3366 
3367 	sp = sctp_sk(sk);
3368 
3369 	if (!net->sctp.addip_enable)
3370 		return -EPERM;
3371 
3372 	if (optlen != sizeof(struct sctp_setpeerprim))
3373 		return -EINVAL;
3374 
3375 	if (copy_from_user(&prim, optval, optlen))
3376 		return -EFAULT;
3377 
3378 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3379 	if (!asoc)
3380 		return -EINVAL;
3381 
3382 	if (!asoc->peer.asconf_capable)
3383 		return -EPERM;
3384 
3385 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3386 		return -EPERM;
3387 
3388 	if (!sctp_state(asoc, ESTABLISHED))
3389 		return -ENOTCONN;
3390 
3391 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3392 	if (!af)
3393 		return -EINVAL;
3394 
3395 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3396 		return -EADDRNOTAVAIL;
3397 
3398 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3399 		return -EADDRNOTAVAIL;
3400 
3401 	/* Allow security module to validate address. */
3402 	err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3403 					 (struct sockaddr *)&prim.sspp_addr,
3404 					 af->sockaddr_len);
3405 	if (err)
3406 		return err;
3407 
3408 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3409 	chunk = sctp_make_asconf_set_prim(asoc,
3410 					  (union sctp_addr *)&prim.sspp_addr);
3411 	if (!chunk)
3412 		return -ENOMEM;
3413 
3414 	err = sctp_send_asconf(asoc, chunk);
3415 
3416 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3417 
3418 	return err;
3419 }
3420 
3421 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3422 					    unsigned int optlen)
3423 {
3424 	struct sctp_setadaptation adaptation;
3425 
3426 	if (optlen != sizeof(struct sctp_setadaptation))
3427 		return -EINVAL;
3428 	if (copy_from_user(&adaptation, optval, optlen))
3429 		return -EFAULT;
3430 
3431 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3432 
3433 	return 0;
3434 }
3435 
3436 /*
3437  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3438  *
3439  * The context field in the sctp_sndrcvinfo structure is normally only
3440  * used when a failed message is retrieved holding the value that was
3441  * sent down on the actual send call.  This option allows the setting of
3442  * a default context on an association basis that will be received on
3443  * reading messages from the peer.  This is especially helpful in the
3444  * one-2-many model for an application to keep some reference to an
3445  * internal state machine that is processing messages on the
3446  * association.  Note that the setting of this value only effects
3447  * received messages from the peer and does not effect the value that is
3448  * saved with outbound messages.
3449  */
3450 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3451 				   unsigned int optlen)
3452 {
3453 	struct sctp_assoc_value params;
3454 	struct sctp_sock *sp;
3455 	struct sctp_association *asoc;
3456 
3457 	if (optlen != sizeof(struct sctp_assoc_value))
3458 		return -EINVAL;
3459 	if (copy_from_user(&params, optval, optlen))
3460 		return -EFAULT;
3461 
3462 	sp = sctp_sk(sk);
3463 
3464 	if (params.assoc_id != 0) {
3465 		asoc = sctp_id2assoc(sk, params.assoc_id);
3466 		if (!asoc)
3467 			return -EINVAL;
3468 		asoc->default_rcv_context = params.assoc_value;
3469 	} else {
3470 		sp->default_rcv_context = params.assoc_value;
3471 	}
3472 
3473 	return 0;
3474 }
3475 
3476 /*
3477  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3478  *
3479  * This options will at a minimum specify if the implementation is doing
3480  * fragmented interleave.  Fragmented interleave, for a one to many
3481  * socket, is when subsequent calls to receive a message may return
3482  * parts of messages from different associations.  Some implementations
3483  * may allow you to turn this value on or off.  If so, when turned off,
3484  * no fragment interleave will occur (which will cause a head of line
3485  * blocking amongst multiple associations sharing the same one to many
3486  * socket).  When this option is turned on, then each receive call may
3487  * come from a different association (thus the user must receive data
3488  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3489  * association each receive belongs to.
3490  *
3491  * This option takes a boolean value.  A non-zero value indicates that
3492  * fragmented interleave is on.  A value of zero indicates that
3493  * fragmented interleave is off.
3494  *
3495  * Note that it is important that an implementation that allows this
3496  * option to be turned on, have it off by default.  Otherwise an unaware
3497  * application using the one to many model may become confused and act
3498  * incorrectly.
3499  */
3500 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3501 					       char __user *optval,
3502 					       unsigned int optlen)
3503 {
3504 	int val;
3505 
3506 	if (optlen != sizeof(int))
3507 		return -EINVAL;
3508 	if (get_user(val, (int __user *)optval))
3509 		return -EFAULT;
3510 
3511 	sctp_sk(sk)->frag_interleave = !!val;
3512 
3513 	if (!sctp_sk(sk)->frag_interleave)
3514 		sctp_sk(sk)->strm_interleave = 0;
3515 
3516 	return 0;
3517 }
3518 
3519 /*
3520  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3521  *       (SCTP_PARTIAL_DELIVERY_POINT)
3522  *
3523  * This option will set or get the SCTP partial delivery point.  This
3524  * point is the size of a message where the partial delivery API will be
3525  * invoked to help free up rwnd space for the peer.  Setting this to a
3526  * lower value will cause partial deliveries to happen more often.  The
3527  * calls argument is an integer that sets or gets the partial delivery
3528  * point.  Note also that the call will fail if the user attempts to set
3529  * this value larger than the socket receive buffer size.
3530  *
3531  * Note that any single message having a length smaller than or equal to
3532  * the SCTP partial delivery point will be delivered in one single read
3533  * call as long as the user provided buffer is large enough to hold the
3534  * message.
3535  */
3536 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3537 						  char __user *optval,
3538 						  unsigned int optlen)
3539 {
3540 	u32 val;
3541 
3542 	if (optlen != sizeof(u32))
3543 		return -EINVAL;
3544 	if (get_user(val, (int __user *)optval))
3545 		return -EFAULT;
3546 
3547 	/* Note: We double the receive buffer from what the user sets
3548 	 * it to be, also initial rwnd is based on rcvbuf/2.
3549 	 */
3550 	if (val > (sk->sk_rcvbuf >> 1))
3551 		return -EINVAL;
3552 
3553 	sctp_sk(sk)->pd_point = val;
3554 
3555 	return 0; /* is this the right error code? */
3556 }
3557 
3558 /*
3559  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3560  *
3561  * This option will allow a user to change the maximum burst of packets
3562  * that can be emitted by this association.  Note that the default value
3563  * is 4, and some implementations may restrict this setting so that it
3564  * can only be lowered.
3565  *
3566  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3567  * future associations inheriting the socket value.
3568  */
3569 static int sctp_setsockopt_maxburst(struct sock *sk,
3570 				    char __user *optval,
3571 				    unsigned int optlen)
3572 {
3573 	struct sctp_assoc_value params;
3574 	struct sctp_sock *sp;
3575 	struct sctp_association *asoc;
3576 	int val;
3577 	int assoc_id = 0;
3578 
3579 	if (optlen == sizeof(int)) {
3580 		pr_warn_ratelimited(DEPRECATED
3581 				    "%s (pid %d) "
3582 				    "Use of int in max_burst socket option deprecated.\n"
3583 				    "Use struct sctp_assoc_value instead\n",
3584 				    current->comm, task_pid_nr(current));
3585 		if (copy_from_user(&val, optval, optlen))
3586 			return -EFAULT;
3587 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3588 		if (copy_from_user(&params, optval, optlen))
3589 			return -EFAULT;
3590 		val = params.assoc_value;
3591 		assoc_id = params.assoc_id;
3592 	} else
3593 		return -EINVAL;
3594 
3595 	sp = sctp_sk(sk);
3596 
3597 	if (assoc_id != 0) {
3598 		asoc = sctp_id2assoc(sk, assoc_id);
3599 		if (!asoc)
3600 			return -EINVAL;
3601 		asoc->max_burst = val;
3602 	} else
3603 		sp->max_burst = val;
3604 
3605 	return 0;
3606 }
3607 
3608 /*
3609  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3610  *
3611  * This set option adds a chunk type that the user is requesting to be
3612  * received only in an authenticated way.  Changes to the list of chunks
3613  * will only effect future associations on the socket.
3614  */
3615 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3616 				      char __user *optval,
3617 				      unsigned int optlen)
3618 {
3619 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3620 	struct sctp_authchunk val;
3621 
3622 	if (!ep->auth_enable)
3623 		return -EACCES;
3624 
3625 	if (optlen != sizeof(struct sctp_authchunk))
3626 		return -EINVAL;
3627 	if (copy_from_user(&val, optval, optlen))
3628 		return -EFAULT;
3629 
3630 	switch (val.sauth_chunk) {
3631 	case SCTP_CID_INIT:
3632 	case SCTP_CID_INIT_ACK:
3633 	case SCTP_CID_SHUTDOWN_COMPLETE:
3634 	case SCTP_CID_AUTH:
3635 		return -EINVAL;
3636 	}
3637 
3638 	/* add this chunk id to the endpoint */
3639 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3640 }
3641 
3642 /*
3643  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3644  *
3645  * This option gets or sets the list of HMAC algorithms that the local
3646  * endpoint requires the peer to use.
3647  */
3648 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3649 				      char __user *optval,
3650 				      unsigned int optlen)
3651 {
3652 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3653 	struct sctp_hmacalgo *hmacs;
3654 	u32 idents;
3655 	int err;
3656 
3657 	if (!ep->auth_enable)
3658 		return -EACCES;
3659 
3660 	if (optlen < sizeof(struct sctp_hmacalgo))
3661 		return -EINVAL;
3662 	optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3663 					     SCTP_AUTH_NUM_HMACS * sizeof(u16));
3664 
3665 	hmacs = memdup_user(optval, optlen);
3666 	if (IS_ERR(hmacs))
3667 		return PTR_ERR(hmacs);
3668 
3669 	idents = hmacs->shmac_num_idents;
3670 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3671 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3672 		err = -EINVAL;
3673 		goto out;
3674 	}
3675 
3676 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3677 out:
3678 	kfree(hmacs);
3679 	return err;
3680 }
3681 
3682 /*
3683  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3684  *
3685  * This option will set a shared secret key which is used to build an
3686  * association shared key.
3687  */
3688 static int sctp_setsockopt_auth_key(struct sock *sk,
3689 				    char __user *optval,
3690 				    unsigned int optlen)
3691 {
3692 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3693 	struct sctp_authkey *authkey;
3694 	struct sctp_association *asoc;
3695 	int ret;
3696 
3697 	if (!ep->auth_enable)
3698 		return -EACCES;
3699 
3700 	if (optlen <= sizeof(struct sctp_authkey))
3701 		return -EINVAL;
3702 	/* authkey->sca_keylength is u16, so optlen can't be bigger than
3703 	 * this.
3704 	 */
3705 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
3706 					     sizeof(struct sctp_authkey));
3707 
3708 	authkey = memdup_user(optval, optlen);
3709 	if (IS_ERR(authkey))
3710 		return PTR_ERR(authkey);
3711 
3712 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3713 		ret = -EINVAL;
3714 		goto out;
3715 	}
3716 
3717 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3718 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3719 		ret = -EINVAL;
3720 		goto out;
3721 	}
3722 
3723 	ret = sctp_auth_set_key(ep, asoc, authkey);
3724 out:
3725 	kzfree(authkey);
3726 	return ret;
3727 }
3728 
3729 /*
3730  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3731  *
3732  * This option will get or set the active shared key to be used to build
3733  * the association shared key.
3734  */
3735 static int sctp_setsockopt_active_key(struct sock *sk,
3736 				      char __user *optval,
3737 				      unsigned int optlen)
3738 {
3739 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3740 	struct sctp_authkeyid val;
3741 	struct sctp_association *asoc;
3742 
3743 	if (!ep->auth_enable)
3744 		return -EACCES;
3745 
3746 	if (optlen != sizeof(struct sctp_authkeyid))
3747 		return -EINVAL;
3748 	if (copy_from_user(&val, optval, optlen))
3749 		return -EFAULT;
3750 
3751 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3752 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3753 		return -EINVAL;
3754 
3755 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3756 }
3757 
3758 /*
3759  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3760  *
3761  * This set option will delete a shared secret key from use.
3762  */
3763 static int sctp_setsockopt_del_key(struct sock *sk,
3764 				   char __user *optval,
3765 				   unsigned int optlen)
3766 {
3767 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3768 	struct sctp_authkeyid val;
3769 	struct sctp_association *asoc;
3770 
3771 	if (!ep->auth_enable)
3772 		return -EACCES;
3773 
3774 	if (optlen != sizeof(struct sctp_authkeyid))
3775 		return -EINVAL;
3776 	if (copy_from_user(&val, optval, optlen))
3777 		return -EFAULT;
3778 
3779 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3780 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3781 		return -EINVAL;
3782 
3783 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3784 
3785 }
3786 
3787 /*
3788  * 8.3.4  Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3789  *
3790  * This set option will deactivate a shared secret key.
3791  */
3792 static int sctp_setsockopt_deactivate_key(struct sock *sk, char __user *optval,
3793 					  unsigned int optlen)
3794 {
3795 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3796 	struct sctp_authkeyid val;
3797 	struct sctp_association *asoc;
3798 
3799 	if (!ep->auth_enable)
3800 		return -EACCES;
3801 
3802 	if (optlen != sizeof(struct sctp_authkeyid))
3803 		return -EINVAL;
3804 	if (copy_from_user(&val, optval, optlen))
3805 		return -EFAULT;
3806 
3807 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3808 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3809 		return -EINVAL;
3810 
3811 	return sctp_auth_deact_key_id(ep, asoc, val.scact_keynumber);
3812 }
3813 
3814 /*
3815  * 8.1.23 SCTP_AUTO_ASCONF
3816  *
3817  * This option will enable or disable the use of the automatic generation of
3818  * ASCONF chunks to add and delete addresses to an existing association.  Note
3819  * that this option has two caveats namely: a) it only affects sockets that
3820  * are bound to all addresses available to the SCTP stack, and b) the system
3821  * administrator may have an overriding control that turns the ASCONF feature
3822  * off no matter what setting the socket option may have.
3823  * This option expects an integer boolean flag, where a non-zero value turns on
3824  * the option, and a zero value turns off the option.
3825  * Note. In this implementation, socket operation overrides default parameter
3826  * being set by sysctl as well as FreeBSD implementation
3827  */
3828 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3829 					unsigned int optlen)
3830 {
3831 	int val;
3832 	struct sctp_sock *sp = sctp_sk(sk);
3833 
3834 	if (optlen < sizeof(int))
3835 		return -EINVAL;
3836 	if (get_user(val, (int __user *)optval))
3837 		return -EFAULT;
3838 	if (!sctp_is_ep_boundall(sk) && val)
3839 		return -EINVAL;
3840 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3841 		return 0;
3842 
3843 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3844 	if (val == 0 && sp->do_auto_asconf) {
3845 		list_del(&sp->auto_asconf_list);
3846 		sp->do_auto_asconf = 0;
3847 	} else if (val && !sp->do_auto_asconf) {
3848 		list_add_tail(&sp->auto_asconf_list,
3849 		    &sock_net(sk)->sctp.auto_asconf_splist);
3850 		sp->do_auto_asconf = 1;
3851 	}
3852 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3853 	return 0;
3854 }
3855 
3856 /*
3857  * SCTP_PEER_ADDR_THLDS
3858  *
3859  * This option allows us to alter the partially failed threshold for one or all
3860  * transports in an association.  See Section 6.1 of:
3861  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3862  */
3863 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3864 					    char __user *optval,
3865 					    unsigned int optlen)
3866 {
3867 	struct sctp_paddrthlds val;
3868 	struct sctp_transport *trans;
3869 	struct sctp_association *asoc;
3870 
3871 	if (optlen < sizeof(struct sctp_paddrthlds))
3872 		return -EINVAL;
3873 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3874 			   sizeof(struct sctp_paddrthlds)))
3875 		return -EFAULT;
3876 
3877 
3878 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3879 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3880 		if (!asoc)
3881 			return -ENOENT;
3882 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3883 				    transports) {
3884 			if (val.spt_pathmaxrxt)
3885 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3886 			trans->pf_retrans = val.spt_pathpfthld;
3887 		}
3888 
3889 		if (val.spt_pathmaxrxt)
3890 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3891 		asoc->pf_retrans = val.spt_pathpfthld;
3892 	} else {
3893 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3894 					       val.spt_assoc_id);
3895 		if (!trans)
3896 			return -ENOENT;
3897 
3898 		if (val.spt_pathmaxrxt)
3899 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3900 		trans->pf_retrans = val.spt_pathpfthld;
3901 	}
3902 
3903 	return 0;
3904 }
3905 
3906 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3907 				       char __user *optval,
3908 				       unsigned int optlen)
3909 {
3910 	int val;
3911 
3912 	if (optlen < sizeof(int))
3913 		return -EINVAL;
3914 	if (get_user(val, (int __user *) optval))
3915 		return -EFAULT;
3916 
3917 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3918 
3919 	return 0;
3920 }
3921 
3922 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3923 				       char __user *optval,
3924 				       unsigned int optlen)
3925 {
3926 	int val;
3927 
3928 	if (optlen < sizeof(int))
3929 		return -EINVAL;
3930 	if (get_user(val, (int __user *) optval))
3931 		return -EFAULT;
3932 
3933 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3934 
3935 	return 0;
3936 }
3937 
3938 static int sctp_setsockopt_pr_supported(struct sock *sk,
3939 					char __user *optval,
3940 					unsigned int optlen)
3941 {
3942 	struct sctp_assoc_value params;
3943 	struct sctp_association *asoc;
3944 	int retval = -EINVAL;
3945 
3946 	if (optlen != sizeof(params))
3947 		goto out;
3948 
3949 	if (copy_from_user(&params, optval, optlen)) {
3950 		retval = -EFAULT;
3951 		goto out;
3952 	}
3953 
3954 	asoc = sctp_id2assoc(sk, params.assoc_id);
3955 	if (asoc) {
3956 		asoc->prsctp_enable = !!params.assoc_value;
3957 	} else if (!params.assoc_id) {
3958 		struct sctp_sock *sp = sctp_sk(sk);
3959 
3960 		sp->ep->prsctp_enable = !!params.assoc_value;
3961 	} else {
3962 		goto out;
3963 	}
3964 
3965 	retval = 0;
3966 
3967 out:
3968 	return retval;
3969 }
3970 
3971 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3972 					  char __user *optval,
3973 					  unsigned int optlen)
3974 {
3975 	struct sctp_default_prinfo info;
3976 	struct sctp_association *asoc;
3977 	int retval = -EINVAL;
3978 
3979 	if (optlen != sizeof(info))
3980 		goto out;
3981 
3982 	if (copy_from_user(&info, optval, sizeof(info))) {
3983 		retval = -EFAULT;
3984 		goto out;
3985 	}
3986 
3987 	if (info.pr_policy & ~SCTP_PR_SCTP_MASK)
3988 		goto out;
3989 
3990 	if (info.pr_policy == SCTP_PR_SCTP_NONE)
3991 		info.pr_value = 0;
3992 
3993 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
3994 	if (asoc) {
3995 		SCTP_PR_SET_POLICY(asoc->default_flags, info.pr_policy);
3996 		asoc->default_timetolive = info.pr_value;
3997 	} else if (!info.pr_assoc_id) {
3998 		struct sctp_sock *sp = sctp_sk(sk);
3999 
4000 		SCTP_PR_SET_POLICY(sp->default_flags, info.pr_policy);
4001 		sp->default_timetolive = info.pr_value;
4002 	} else {
4003 		goto out;
4004 	}
4005 
4006 	retval = 0;
4007 
4008 out:
4009 	return retval;
4010 }
4011 
4012 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4013 					      char __user *optval,
4014 					      unsigned int optlen)
4015 {
4016 	struct sctp_assoc_value params;
4017 	struct sctp_association *asoc;
4018 	int retval = -EINVAL;
4019 
4020 	if (optlen != sizeof(params))
4021 		goto out;
4022 
4023 	if (copy_from_user(&params, optval, optlen)) {
4024 		retval = -EFAULT;
4025 		goto out;
4026 	}
4027 
4028 	asoc = sctp_id2assoc(sk, params.assoc_id);
4029 	if (asoc) {
4030 		asoc->reconf_enable = !!params.assoc_value;
4031 	} else if (!params.assoc_id) {
4032 		struct sctp_sock *sp = sctp_sk(sk);
4033 
4034 		sp->ep->reconf_enable = !!params.assoc_value;
4035 	} else {
4036 		goto out;
4037 	}
4038 
4039 	retval = 0;
4040 
4041 out:
4042 	return retval;
4043 }
4044 
4045 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4046 					   char __user *optval,
4047 					   unsigned int optlen)
4048 {
4049 	struct sctp_assoc_value params;
4050 	struct sctp_association *asoc;
4051 	int retval = -EINVAL;
4052 
4053 	if (optlen != sizeof(params))
4054 		goto out;
4055 
4056 	if (copy_from_user(&params, optval, optlen)) {
4057 		retval = -EFAULT;
4058 		goto out;
4059 	}
4060 
4061 	if (params.assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4062 		goto out;
4063 
4064 	asoc = sctp_id2assoc(sk, params.assoc_id);
4065 	if (asoc) {
4066 		asoc->strreset_enable = params.assoc_value;
4067 	} else if (!params.assoc_id) {
4068 		struct sctp_sock *sp = sctp_sk(sk);
4069 
4070 		sp->ep->strreset_enable = params.assoc_value;
4071 	} else {
4072 		goto out;
4073 	}
4074 
4075 	retval = 0;
4076 
4077 out:
4078 	return retval;
4079 }
4080 
4081 static int sctp_setsockopt_reset_streams(struct sock *sk,
4082 					 char __user *optval,
4083 					 unsigned int optlen)
4084 {
4085 	struct sctp_reset_streams *params;
4086 	struct sctp_association *asoc;
4087 	int retval = -EINVAL;
4088 
4089 	if (optlen < sizeof(*params))
4090 		return -EINVAL;
4091 	/* srs_number_streams is u16, so optlen can't be bigger than this. */
4092 	optlen = min_t(unsigned int, optlen, USHRT_MAX +
4093 					     sizeof(__u16) * sizeof(*params));
4094 
4095 	params = memdup_user(optval, optlen);
4096 	if (IS_ERR(params))
4097 		return PTR_ERR(params);
4098 
4099 	if (params->srs_number_streams * sizeof(__u16) >
4100 	    optlen - sizeof(*params))
4101 		goto out;
4102 
4103 	asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4104 	if (!asoc)
4105 		goto out;
4106 
4107 	retval = sctp_send_reset_streams(asoc, params);
4108 
4109 out:
4110 	kfree(params);
4111 	return retval;
4112 }
4113 
4114 static int sctp_setsockopt_reset_assoc(struct sock *sk,
4115 				       char __user *optval,
4116 				       unsigned int optlen)
4117 {
4118 	struct sctp_association *asoc;
4119 	sctp_assoc_t associd;
4120 	int retval = -EINVAL;
4121 
4122 	if (optlen != sizeof(associd))
4123 		goto out;
4124 
4125 	if (copy_from_user(&associd, optval, optlen)) {
4126 		retval = -EFAULT;
4127 		goto out;
4128 	}
4129 
4130 	asoc = sctp_id2assoc(sk, associd);
4131 	if (!asoc)
4132 		goto out;
4133 
4134 	retval = sctp_send_reset_assoc(asoc);
4135 
4136 out:
4137 	return retval;
4138 }
4139 
4140 static int sctp_setsockopt_add_streams(struct sock *sk,
4141 				       char __user *optval,
4142 				       unsigned int optlen)
4143 {
4144 	struct sctp_association *asoc;
4145 	struct sctp_add_streams params;
4146 	int retval = -EINVAL;
4147 
4148 	if (optlen != sizeof(params))
4149 		goto out;
4150 
4151 	if (copy_from_user(&params, optval, optlen)) {
4152 		retval = -EFAULT;
4153 		goto out;
4154 	}
4155 
4156 	asoc = sctp_id2assoc(sk, params.sas_assoc_id);
4157 	if (!asoc)
4158 		goto out;
4159 
4160 	retval = sctp_send_add_streams(asoc, &params);
4161 
4162 out:
4163 	return retval;
4164 }
4165 
4166 static int sctp_setsockopt_scheduler(struct sock *sk,
4167 				     char __user *optval,
4168 				     unsigned int optlen)
4169 {
4170 	struct sctp_association *asoc;
4171 	struct sctp_assoc_value params;
4172 	int retval = -EINVAL;
4173 
4174 	if (optlen < sizeof(params))
4175 		goto out;
4176 
4177 	optlen = sizeof(params);
4178 	if (copy_from_user(&params, optval, optlen)) {
4179 		retval = -EFAULT;
4180 		goto out;
4181 	}
4182 
4183 	if (params.assoc_value > SCTP_SS_MAX)
4184 		goto out;
4185 
4186 	asoc = sctp_id2assoc(sk, params.assoc_id);
4187 	if (!asoc)
4188 		goto out;
4189 
4190 	retval = sctp_sched_set_sched(asoc, params.assoc_value);
4191 
4192 out:
4193 	return retval;
4194 }
4195 
4196 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4197 					   char __user *optval,
4198 					   unsigned int optlen)
4199 {
4200 	struct sctp_association *asoc;
4201 	struct sctp_stream_value params;
4202 	int retval = -EINVAL;
4203 
4204 	if (optlen < sizeof(params))
4205 		goto out;
4206 
4207 	optlen = sizeof(params);
4208 	if (copy_from_user(&params, optval, optlen)) {
4209 		retval = -EFAULT;
4210 		goto out;
4211 	}
4212 
4213 	asoc = sctp_id2assoc(sk, params.assoc_id);
4214 	if (!asoc)
4215 		goto out;
4216 
4217 	retval = sctp_sched_set_value(asoc, params.stream_id,
4218 				      params.stream_value, GFP_KERNEL);
4219 
4220 out:
4221 	return retval;
4222 }
4223 
4224 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4225 						  char __user *optval,
4226 						  unsigned int optlen)
4227 {
4228 	struct sctp_sock *sp = sctp_sk(sk);
4229 	struct net *net = sock_net(sk);
4230 	struct sctp_assoc_value params;
4231 	int retval = -EINVAL;
4232 
4233 	if (optlen < sizeof(params))
4234 		goto out;
4235 
4236 	optlen = sizeof(params);
4237 	if (copy_from_user(&params, optval, optlen)) {
4238 		retval = -EFAULT;
4239 		goto out;
4240 	}
4241 
4242 	if (params.assoc_id)
4243 		goto out;
4244 
4245 	if (!net->sctp.intl_enable || !sp->frag_interleave) {
4246 		retval = -EPERM;
4247 		goto out;
4248 	}
4249 
4250 	sp->strm_interleave = !!params.assoc_value;
4251 
4252 	retval = 0;
4253 
4254 out:
4255 	return retval;
4256 }
4257 
4258 static int sctp_setsockopt_reuse_port(struct sock *sk, char __user *optval,
4259 				      unsigned int optlen)
4260 {
4261 	int val;
4262 
4263 	if (!sctp_style(sk, TCP))
4264 		return -EOPNOTSUPP;
4265 
4266 	if (sctp_sk(sk)->ep->base.bind_addr.port)
4267 		return -EFAULT;
4268 
4269 	if (optlen < sizeof(int))
4270 		return -EINVAL;
4271 
4272 	if (get_user(val, (int __user *)optval))
4273 		return -EFAULT;
4274 
4275 	sctp_sk(sk)->reuse = !!val;
4276 
4277 	return 0;
4278 }
4279 
4280 /* API 6.2 setsockopt(), getsockopt()
4281  *
4282  * Applications use setsockopt() and getsockopt() to set or retrieve
4283  * socket options.  Socket options are used to change the default
4284  * behavior of sockets calls.  They are described in Section 7.
4285  *
4286  * The syntax is:
4287  *
4288  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
4289  *                    int __user *optlen);
4290  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4291  *                    int optlen);
4292  *
4293  *   sd      - the socket descript.
4294  *   level   - set to IPPROTO_SCTP for all SCTP options.
4295  *   optname - the option name.
4296  *   optval  - the buffer to store the value of the option.
4297  *   optlen  - the size of the buffer.
4298  */
4299 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4300 			   char __user *optval, unsigned int optlen)
4301 {
4302 	int retval = 0;
4303 
4304 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4305 
4306 	/* I can hardly begin to describe how wrong this is.  This is
4307 	 * so broken as to be worse than useless.  The API draft
4308 	 * REALLY is NOT helpful here...  I am not convinced that the
4309 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4310 	 * are at all well-founded.
4311 	 */
4312 	if (level != SOL_SCTP) {
4313 		struct sctp_af *af = sctp_sk(sk)->pf->af;
4314 		retval = af->setsockopt(sk, level, optname, optval, optlen);
4315 		goto out_nounlock;
4316 	}
4317 
4318 	lock_sock(sk);
4319 
4320 	switch (optname) {
4321 	case SCTP_SOCKOPT_BINDX_ADD:
4322 		/* 'optlen' is the size of the addresses buffer. */
4323 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4324 					       optlen, SCTP_BINDX_ADD_ADDR);
4325 		break;
4326 
4327 	case SCTP_SOCKOPT_BINDX_REM:
4328 		/* 'optlen' is the size of the addresses buffer. */
4329 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
4330 					       optlen, SCTP_BINDX_REM_ADDR);
4331 		break;
4332 
4333 	case SCTP_SOCKOPT_CONNECTX_OLD:
4334 		/* 'optlen' is the size of the addresses buffer. */
4335 		retval = sctp_setsockopt_connectx_old(sk,
4336 					    (struct sockaddr __user *)optval,
4337 					    optlen);
4338 		break;
4339 
4340 	case SCTP_SOCKOPT_CONNECTX:
4341 		/* 'optlen' is the size of the addresses buffer. */
4342 		retval = sctp_setsockopt_connectx(sk,
4343 					    (struct sockaddr __user *)optval,
4344 					    optlen);
4345 		break;
4346 
4347 	case SCTP_DISABLE_FRAGMENTS:
4348 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
4349 		break;
4350 
4351 	case SCTP_EVENTS:
4352 		retval = sctp_setsockopt_events(sk, optval, optlen);
4353 		break;
4354 
4355 	case SCTP_AUTOCLOSE:
4356 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
4357 		break;
4358 
4359 	case SCTP_PEER_ADDR_PARAMS:
4360 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
4361 		break;
4362 
4363 	case SCTP_DELAYED_SACK:
4364 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
4365 		break;
4366 	case SCTP_PARTIAL_DELIVERY_POINT:
4367 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
4368 		break;
4369 
4370 	case SCTP_INITMSG:
4371 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
4372 		break;
4373 	case SCTP_DEFAULT_SEND_PARAM:
4374 		retval = sctp_setsockopt_default_send_param(sk, optval,
4375 							    optlen);
4376 		break;
4377 	case SCTP_DEFAULT_SNDINFO:
4378 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
4379 		break;
4380 	case SCTP_PRIMARY_ADDR:
4381 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
4382 		break;
4383 	case SCTP_SET_PEER_PRIMARY_ADDR:
4384 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
4385 		break;
4386 	case SCTP_NODELAY:
4387 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
4388 		break;
4389 	case SCTP_RTOINFO:
4390 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
4391 		break;
4392 	case SCTP_ASSOCINFO:
4393 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
4394 		break;
4395 	case SCTP_I_WANT_MAPPED_V4_ADDR:
4396 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
4397 		break;
4398 	case SCTP_MAXSEG:
4399 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
4400 		break;
4401 	case SCTP_ADAPTATION_LAYER:
4402 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
4403 		break;
4404 	case SCTP_CONTEXT:
4405 		retval = sctp_setsockopt_context(sk, optval, optlen);
4406 		break;
4407 	case SCTP_FRAGMENT_INTERLEAVE:
4408 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
4409 		break;
4410 	case SCTP_MAX_BURST:
4411 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
4412 		break;
4413 	case SCTP_AUTH_CHUNK:
4414 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
4415 		break;
4416 	case SCTP_HMAC_IDENT:
4417 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
4418 		break;
4419 	case SCTP_AUTH_KEY:
4420 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
4421 		break;
4422 	case SCTP_AUTH_ACTIVE_KEY:
4423 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
4424 		break;
4425 	case SCTP_AUTH_DELETE_KEY:
4426 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
4427 		break;
4428 	case SCTP_AUTH_DEACTIVATE_KEY:
4429 		retval = sctp_setsockopt_deactivate_key(sk, optval, optlen);
4430 		break;
4431 	case SCTP_AUTO_ASCONF:
4432 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
4433 		break;
4434 	case SCTP_PEER_ADDR_THLDS:
4435 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
4436 		break;
4437 	case SCTP_RECVRCVINFO:
4438 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
4439 		break;
4440 	case SCTP_RECVNXTINFO:
4441 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
4442 		break;
4443 	case SCTP_PR_SUPPORTED:
4444 		retval = sctp_setsockopt_pr_supported(sk, optval, optlen);
4445 		break;
4446 	case SCTP_DEFAULT_PRINFO:
4447 		retval = sctp_setsockopt_default_prinfo(sk, optval, optlen);
4448 		break;
4449 	case SCTP_RECONFIG_SUPPORTED:
4450 		retval = sctp_setsockopt_reconfig_supported(sk, optval, optlen);
4451 		break;
4452 	case SCTP_ENABLE_STREAM_RESET:
4453 		retval = sctp_setsockopt_enable_strreset(sk, optval, optlen);
4454 		break;
4455 	case SCTP_RESET_STREAMS:
4456 		retval = sctp_setsockopt_reset_streams(sk, optval, optlen);
4457 		break;
4458 	case SCTP_RESET_ASSOC:
4459 		retval = sctp_setsockopt_reset_assoc(sk, optval, optlen);
4460 		break;
4461 	case SCTP_ADD_STREAMS:
4462 		retval = sctp_setsockopt_add_streams(sk, optval, optlen);
4463 		break;
4464 	case SCTP_STREAM_SCHEDULER:
4465 		retval = sctp_setsockopt_scheduler(sk, optval, optlen);
4466 		break;
4467 	case SCTP_STREAM_SCHEDULER_VALUE:
4468 		retval = sctp_setsockopt_scheduler_value(sk, optval, optlen);
4469 		break;
4470 	case SCTP_INTERLEAVING_SUPPORTED:
4471 		retval = sctp_setsockopt_interleaving_supported(sk, optval,
4472 								optlen);
4473 		break;
4474 	case SCTP_REUSE_PORT:
4475 		retval = sctp_setsockopt_reuse_port(sk, optval, optlen);
4476 		break;
4477 	default:
4478 		retval = -ENOPROTOOPT;
4479 		break;
4480 	}
4481 
4482 	release_sock(sk);
4483 
4484 out_nounlock:
4485 	return retval;
4486 }
4487 
4488 /* API 3.1.6 connect() - UDP Style Syntax
4489  *
4490  * An application may use the connect() call in the UDP model to initiate an
4491  * association without sending data.
4492  *
4493  * The syntax is:
4494  *
4495  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4496  *
4497  * sd: the socket descriptor to have a new association added to.
4498  *
4499  * nam: the address structure (either struct sockaddr_in or struct
4500  *    sockaddr_in6 defined in RFC2553 [7]).
4501  *
4502  * len: the size of the address.
4503  */
4504 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4505 			int addr_len, int flags)
4506 {
4507 	struct inet_sock *inet = inet_sk(sk);
4508 	struct sctp_af *af;
4509 	int err = 0;
4510 
4511 	lock_sock(sk);
4512 
4513 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4514 		 addr, addr_len);
4515 
4516 	/* We may need to bind the socket. */
4517 	if (!inet->inet_num) {
4518 		if (sk->sk_prot->get_port(sk, 0)) {
4519 			release_sock(sk);
4520 			return -EAGAIN;
4521 		}
4522 		inet->inet_sport = htons(inet->inet_num);
4523 	}
4524 
4525 	/* Validate addr_len before calling common connect/connectx routine. */
4526 	af = sctp_get_af_specific(addr->sa_family);
4527 	if (!af || addr_len < af->sockaddr_len) {
4528 		err = -EINVAL;
4529 	} else {
4530 		/* Pass correct addr len to common routine (so it knows there
4531 		 * is only one address being passed.
4532 		 */
4533 		err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4534 	}
4535 
4536 	release_sock(sk);
4537 	return err;
4538 }
4539 
4540 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4541 		      int addr_len, int flags)
4542 {
4543 	if (addr_len < sizeof(uaddr->sa_family))
4544 		return -EINVAL;
4545 
4546 	if (uaddr->sa_family == AF_UNSPEC)
4547 		return -EOPNOTSUPP;
4548 
4549 	return sctp_connect(sock->sk, uaddr, addr_len, flags);
4550 }
4551 
4552 /* FIXME: Write comments. */
4553 static int sctp_disconnect(struct sock *sk, int flags)
4554 {
4555 	return -EOPNOTSUPP; /* STUB */
4556 }
4557 
4558 /* 4.1.4 accept() - TCP Style Syntax
4559  *
4560  * Applications use accept() call to remove an established SCTP
4561  * association from the accept queue of the endpoint.  A new socket
4562  * descriptor will be returned from accept() to represent the newly
4563  * formed association.
4564  */
4565 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4566 {
4567 	struct sctp_sock *sp;
4568 	struct sctp_endpoint *ep;
4569 	struct sock *newsk = NULL;
4570 	struct sctp_association *asoc;
4571 	long timeo;
4572 	int error = 0;
4573 
4574 	lock_sock(sk);
4575 
4576 	sp = sctp_sk(sk);
4577 	ep = sp->ep;
4578 
4579 	if (!sctp_style(sk, TCP)) {
4580 		error = -EOPNOTSUPP;
4581 		goto out;
4582 	}
4583 
4584 	if (!sctp_sstate(sk, LISTENING)) {
4585 		error = -EINVAL;
4586 		goto out;
4587 	}
4588 
4589 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4590 
4591 	error = sctp_wait_for_accept(sk, timeo);
4592 	if (error)
4593 		goto out;
4594 
4595 	/* We treat the list of associations on the endpoint as the accept
4596 	 * queue and pick the first association on the list.
4597 	 */
4598 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4599 
4600 	newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4601 	if (!newsk) {
4602 		error = -ENOMEM;
4603 		goto out;
4604 	}
4605 
4606 	/* Populate the fields of the newsk from the oldsk and migrate the
4607 	 * asoc to the newsk.
4608 	 */
4609 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4610 
4611 out:
4612 	release_sock(sk);
4613 	*err = error;
4614 	return newsk;
4615 }
4616 
4617 /* The SCTP ioctl handler. */
4618 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4619 {
4620 	int rc = -ENOTCONN;
4621 
4622 	lock_sock(sk);
4623 
4624 	/*
4625 	 * SEQPACKET-style sockets in LISTENING state are valid, for
4626 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
4627 	 */
4628 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4629 		goto out;
4630 
4631 	switch (cmd) {
4632 	case SIOCINQ: {
4633 		struct sk_buff *skb;
4634 		unsigned int amount = 0;
4635 
4636 		skb = skb_peek(&sk->sk_receive_queue);
4637 		if (skb != NULL) {
4638 			/*
4639 			 * We will only return the amount of this packet since
4640 			 * that is all that will be read.
4641 			 */
4642 			amount = skb->len;
4643 		}
4644 		rc = put_user(amount, (int __user *)arg);
4645 		break;
4646 	}
4647 	default:
4648 		rc = -ENOIOCTLCMD;
4649 		break;
4650 	}
4651 out:
4652 	release_sock(sk);
4653 	return rc;
4654 }
4655 
4656 /* This is the function which gets called during socket creation to
4657  * initialized the SCTP-specific portion of the sock.
4658  * The sock structure should already be zero-filled memory.
4659  */
4660 static int sctp_init_sock(struct sock *sk)
4661 {
4662 	struct net *net = sock_net(sk);
4663 	struct sctp_sock *sp;
4664 
4665 	pr_debug("%s: sk:%p\n", __func__, sk);
4666 
4667 	sp = sctp_sk(sk);
4668 
4669 	/* Initialize the SCTP per socket area.  */
4670 	switch (sk->sk_type) {
4671 	case SOCK_SEQPACKET:
4672 		sp->type = SCTP_SOCKET_UDP;
4673 		break;
4674 	case SOCK_STREAM:
4675 		sp->type = SCTP_SOCKET_TCP;
4676 		break;
4677 	default:
4678 		return -ESOCKTNOSUPPORT;
4679 	}
4680 
4681 	sk->sk_gso_type = SKB_GSO_SCTP;
4682 
4683 	/* Initialize default send parameters. These parameters can be
4684 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4685 	 */
4686 	sp->default_stream = 0;
4687 	sp->default_ppid = 0;
4688 	sp->default_flags = 0;
4689 	sp->default_context = 0;
4690 	sp->default_timetolive = 0;
4691 
4692 	sp->default_rcv_context = 0;
4693 	sp->max_burst = net->sctp.max_burst;
4694 
4695 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4696 
4697 	/* Initialize default setup parameters. These parameters
4698 	 * can be modified with the SCTP_INITMSG socket option or
4699 	 * overridden by the SCTP_INIT CMSG.
4700 	 */
4701 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4702 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4703 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4704 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4705 
4706 	/* Initialize default RTO related parameters.  These parameters can
4707 	 * be modified for with the SCTP_RTOINFO socket option.
4708 	 */
4709 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4710 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4711 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4712 
4713 	/* Initialize default association related parameters. These parameters
4714 	 * can be modified with the SCTP_ASSOCINFO socket option.
4715 	 */
4716 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4717 	sp->assocparams.sasoc_number_peer_destinations = 0;
4718 	sp->assocparams.sasoc_peer_rwnd = 0;
4719 	sp->assocparams.sasoc_local_rwnd = 0;
4720 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4721 
4722 	/* Initialize default event subscriptions. By default, all the
4723 	 * options are off.
4724 	 */
4725 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4726 
4727 	/* Default Peer Address Parameters.  These defaults can
4728 	 * be modified via SCTP_PEER_ADDR_PARAMS
4729 	 */
4730 	sp->hbinterval  = net->sctp.hb_interval;
4731 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4732 	sp->pathmtu     = 0; /* allow default discovery */
4733 	sp->sackdelay   = net->sctp.sack_timeout;
4734 	sp->sackfreq	= 2;
4735 	sp->param_flags = SPP_HB_ENABLE |
4736 			  SPP_PMTUD_ENABLE |
4737 			  SPP_SACKDELAY_ENABLE;
4738 
4739 	/* If enabled no SCTP message fragmentation will be performed.
4740 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4741 	 */
4742 	sp->disable_fragments = 0;
4743 
4744 	/* Enable Nagle algorithm by default.  */
4745 	sp->nodelay           = 0;
4746 
4747 	sp->recvrcvinfo = 0;
4748 	sp->recvnxtinfo = 0;
4749 
4750 	/* Enable by default. */
4751 	sp->v4mapped          = 1;
4752 
4753 	/* Auto-close idle associations after the configured
4754 	 * number of seconds.  A value of 0 disables this
4755 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4756 	 * for UDP-style sockets only.
4757 	 */
4758 	sp->autoclose         = 0;
4759 
4760 	/* User specified fragmentation limit. */
4761 	sp->user_frag         = 0;
4762 
4763 	sp->adaptation_ind = 0;
4764 
4765 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4766 
4767 	/* Control variables for partial data delivery. */
4768 	atomic_set(&sp->pd_mode, 0);
4769 	skb_queue_head_init(&sp->pd_lobby);
4770 	sp->frag_interleave = 0;
4771 
4772 	/* Create a per socket endpoint structure.  Even if we
4773 	 * change the data structure relationships, this may still
4774 	 * be useful for storing pre-connect address information.
4775 	 */
4776 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4777 	if (!sp->ep)
4778 		return -ENOMEM;
4779 
4780 	sp->hmac = NULL;
4781 
4782 	sk->sk_destruct = sctp_destruct_sock;
4783 
4784 	SCTP_DBG_OBJCNT_INC(sock);
4785 
4786 	local_bh_disable();
4787 	sk_sockets_allocated_inc(sk);
4788 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4789 
4790 	/* Nothing can fail after this block, otherwise
4791 	 * sctp_destroy_sock() will be called without addr_wq_lock held
4792 	 */
4793 	if (net->sctp.default_auto_asconf) {
4794 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4795 		list_add_tail(&sp->auto_asconf_list,
4796 		    &net->sctp.auto_asconf_splist);
4797 		sp->do_auto_asconf = 1;
4798 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4799 	} else {
4800 		sp->do_auto_asconf = 0;
4801 	}
4802 
4803 	local_bh_enable();
4804 
4805 	return 0;
4806 }
4807 
4808 /* Cleanup any SCTP per socket resources. Must be called with
4809  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4810  */
4811 static void sctp_destroy_sock(struct sock *sk)
4812 {
4813 	struct sctp_sock *sp;
4814 
4815 	pr_debug("%s: sk:%p\n", __func__, sk);
4816 
4817 	/* Release our hold on the endpoint. */
4818 	sp = sctp_sk(sk);
4819 	/* This could happen during socket init, thus we bail out
4820 	 * early, since the rest of the below is not setup either.
4821 	 */
4822 	if (sp->ep == NULL)
4823 		return;
4824 
4825 	if (sp->do_auto_asconf) {
4826 		sp->do_auto_asconf = 0;
4827 		list_del(&sp->auto_asconf_list);
4828 	}
4829 	sctp_endpoint_free(sp->ep);
4830 	local_bh_disable();
4831 	sk_sockets_allocated_dec(sk);
4832 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4833 	local_bh_enable();
4834 }
4835 
4836 /* Triggered when there are no references on the socket anymore */
4837 static void sctp_destruct_sock(struct sock *sk)
4838 {
4839 	struct sctp_sock *sp = sctp_sk(sk);
4840 
4841 	/* Free up the HMAC transform. */
4842 	crypto_free_shash(sp->hmac);
4843 
4844 	inet_sock_destruct(sk);
4845 }
4846 
4847 /* API 4.1.7 shutdown() - TCP Style Syntax
4848  *     int shutdown(int socket, int how);
4849  *
4850  *     sd      - the socket descriptor of the association to be closed.
4851  *     how     - Specifies the type of shutdown.  The  values  are
4852  *               as follows:
4853  *               SHUT_RD
4854  *                     Disables further receive operations. No SCTP
4855  *                     protocol action is taken.
4856  *               SHUT_WR
4857  *                     Disables further send operations, and initiates
4858  *                     the SCTP shutdown sequence.
4859  *               SHUT_RDWR
4860  *                     Disables further send  and  receive  operations
4861  *                     and initiates the SCTP shutdown sequence.
4862  */
4863 static void sctp_shutdown(struct sock *sk, int how)
4864 {
4865 	struct net *net = sock_net(sk);
4866 	struct sctp_endpoint *ep;
4867 
4868 	if (!sctp_style(sk, TCP))
4869 		return;
4870 
4871 	ep = sctp_sk(sk)->ep;
4872 	if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
4873 		struct sctp_association *asoc;
4874 
4875 		inet_sk_set_state(sk, SCTP_SS_CLOSING);
4876 		asoc = list_entry(ep->asocs.next,
4877 				  struct sctp_association, asocs);
4878 		sctp_primitive_SHUTDOWN(net, asoc, NULL);
4879 	}
4880 }
4881 
4882 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
4883 		       struct sctp_info *info)
4884 {
4885 	struct sctp_transport *prim;
4886 	struct list_head *pos;
4887 	int mask;
4888 
4889 	memset(info, 0, sizeof(*info));
4890 	if (!asoc) {
4891 		struct sctp_sock *sp = sctp_sk(sk);
4892 
4893 		info->sctpi_s_autoclose = sp->autoclose;
4894 		info->sctpi_s_adaptation_ind = sp->adaptation_ind;
4895 		info->sctpi_s_pd_point = sp->pd_point;
4896 		info->sctpi_s_nodelay = sp->nodelay;
4897 		info->sctpi_s_disable_fragments = sp->disable_fragments;
4898 		info->sctpi_s_v4mapped = sp->v4mapped;
4899 		info->sctpi_s_frag_interleave = sp->frag_interleave;
4900 		info->sctpi_s_type = sp->type;
4901 
4902 		return 0;
4903 	}
4904 
4905 	info->sctpi_tag = asoc->c.my_vtag;
4906 	info->sctpi_state = asoc->state;
4907 	info->sctpi_rwnd = asoc->a_rwnd;
4908 	info->sctpi_unackdata = asoc->unack_data;
4909 	info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4910 	info->sctpi_instrms = asoc->stream.incnt;
4911 	info->sctpi_outstrms = asoc->stream.outcnt;
4912 	list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
4913 		info->sctpi_inqueue++;
4914 	list_for_each(pos, &asoc->outqueue.out_chunk_list)
4915 		info->sctpi_outqueue++;
4916 	info->sctpi_overall_error = asoc->overall_error_count;
4917 	info->sctpi_max_burst = asoc->max_burst;
4918 	info->sctpi_maxseg = asoc->frag_point;
4919 	info->sctpi_peer_rwnd = asoc->peer.rwnd;
4920 	info->sctpi_peer_tag = asoc->c.peer_vtag;
4921 
4922 	mask = asoc->peer.ecn_capable << 1;
4923 	mask = (mask | asoc->peer.ipv4_address) << 1;
4924 	mask = (mask | asoc->peer.ipv6_address) << 1;
4925 	mask = (mask | asoc->peer.hostname_address) << 1;
4926 	mask = (mask | asoc->peer.asconf_capable) << 1;
4927 	mask = (mask | asoc->peer.prsctp_capable) << 1;
4928 	mask = (mask | asoc->peer.auth_capable);
4929 	info->sctpi_peer_capable = mask;
4930 	mask = asoc->peer.sack_needed << 1;
4931 	mask = (mask | asoc->peer.sack_generation) << 1;
4932 	mask = (mask | asoc->peer.zero_window_announced);
4933 	info->sctpi_peer_sack = mask;
4934 
4935 	info->sctpi_isacks = asoc->stats.isacks;
4936 	info->sctpi_osacks = asoc->stats.osacks;
4937 	info->sctpi_opackets = asoc->stats.opackets;
4938 	info->sctpi_ipackets = asoc->stats.ipackets;
4939 	info->sctpi_rtxchunks = asoc->stats.rtxchunks;
4940 	info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
4941 	info->sctpi_idupchunks = asoc->stats.idupchunks;
4942 	info->sctpi_gapcnt = asoc->stats.gapcnt;
4943 	info->sctpi_ouodchunks = asoc->stats.ouodchunks;
4944 	info->sctpi_iuodchunks = asoc->stats.iuodchunks;
4945 	info->sctpi_oodchunks = asoc->stats.oodchunks;
4946 	info->sctpi_iodchunks = asoc->stats.iodchunks;
4947 	info->sctpi_octrlchunks = asoc->stats.octrlchunks;
4948 	info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
4949 
4950 	prim = asoc->peer.primary_path;
4951 	memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
4952 	info->sctpi_p_state = prim->state;
4953 	info->sctpi_p_cwnd = prim->cwnd;
4954 	info->sctpi_p_srtt = prim->srtt;
4955 	info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
4956 	info->sctpi_p_hbinterval = prim->hbinterval;
4957 	info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
4958 	info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
4959 	info->sctpi_p_ssthresh = prim->ssthresh;
4960 	info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
4961 	info->sctpi_p_flight_size = prim->flight_size;
4962 	info->sctpi_p_error = prim->error_count;
4963 
4964 	return 0;
4965 }
4966 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
4967 
4968 /* use callback to avoid exporting the core structure */
4969 void sctp_transport_walk_start(struct rhashtable_iter *iter)
4970 {
4971 	rhltable_walk_enter(&sctp_transport_hashtable, iter);
4972 
4973 	rhashtable_walk_start(iter);
4974 }
4975 
4976 void sctp_transport_walk_stop(struct rhashtable_iter *iter)
4977 {
4978 	rhashtable_walk_stop(iter);
4979 	rhashtable_walk_exit(iter);
4980 }
4981 
4982 struct sctp_transport *sctp_transport_get_next(struct net *net,
4983 					       struct rhashtable_iter *iter)
4984 {
4985 	struct sctp_transport *t;
4986 
4987 	t = rhashtable_walk_next(iter);
4988 	for (; t; t = rhashtable_walk_next(iter)) {
4989 		if (IS_ERR(t)) {
4990 			if (PTR_ERR(t) == -EAGAIN)
4991 				continue;
4992 			break;
4993 		}
4994 
4995 		if (!sctp_transport_hold(t))
4996 			continue;
4997 
4998 		if (net_eq(sock_net(t->asoc->base.sk), net) &&
4999 		    t->asoc->peer.primary_path == t)
5000 			break;
5001 
5002 		sctp_transport_put(t);
5003 	}
5004 
5005 	return t;
5006 }
5007 
5008 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5009 					      struct rhashtable_iter *iter,
5010 					      int pos)
5011 {
5012 	struct sctp_transport *t;
5013 
5014 	if (!pos)
5015 		return SEQ_START_TOKEN;
5016 
5017 	while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5018 		if (!--pos)
5019 			break;
5020 		sctp_transport_put(t);
5021 	}
5022 
5023 	return t;
5024 }
5025 
5026 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5027 			   void *p) {
5028 	int err = 0;
5029 	int hash = 0;
5030 	struct sctp_ep_common *epb;
5031 	struct sctp_hashbucket *head;
5032 
5033 	for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5034 	     hash++, head++) {
5035 		read_lock_bh(&head->lock);
5036 		sctp_for_each_hentry(epb, &head->chain) {
5037 			err = cb(sctp_ep(epb), p);
5038 			if (err)
5039 				break;
5040 		}
5041 		read_unlock_bh(&head->lock);
5042 	}
5043 
5044 	return err;
5045 }
5046 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5047 
5048 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5049 				  struct net *net,
5050 				  const union sctp_addr *laddr,
5051 				  const union sctp_addr *paddr, void *p)
5052 {
5053 	struct sctp_transport *transport;
5054 	int err;
5055 
5056 	rcu_read_lock();
5057 	transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5058 	rcu_read_unlock();
5059 	if (!transport)
5060 		return -ENOENT;
5061 
5062 	err = cb(transport, p);
5063 	sctp_transport_put(transport);
5064 
5065 	return err;
5066 }
5067 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5068 
5069 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5070 			    int (*cb_done)(struct sctp_transport *, void *),
5071 			    struct net *net, int *pos, void *p) {
5072 	struct rhashtable_iter hti;
5073 	struct sctp_transport *tsp;
5074 	int ret;
5075 
5076 again:
5077 	ret = 0;
5078 	sctp_transport_walk_start(&hti);
5079 
5080 	tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5081 	for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5082 		ret = cb(tsp, p);
5083 		if (ret)
5084 			break;
5085 		(*pos)++;
5086 		sctp_transport_put(tsp);
5087 	}
5088 	sctp_transport_walk_stop(&hti);
5089 
5090 	if (ret) {
5091 		if (cb_done && !cb_done(tsp, p)) {
5092 			(*pos)++;
5093 			sctp_transport_put(tsp);
5094 			goto again;
5095 		}
5096 		sctp_transport_put(tsp);
5097 	}
5098 
5099 	return ret;
5100 }
5101 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5102 
5103 /* 7.2.1 Association Status (SCTP_STATUS)
5104 
5105  * Applications can retrieve current status information about an
5106  * association, including association state, peer receiver window size,
5107  * number of unacked data chunks, and number of data chunks pending
5108  * receipt.  This information is read-only.
5109  */
5110 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5111 				       char __user *optval,
5112 				       int __user *optlen)
5113 {
5114 	struct sctp_status status;
5115 	struct sctp_association *asoc = NULL;
5116 	struct sctp_transport *transport;
5117 	sctp_assoc_t associd;
5118 	int retval = 0;
5119 
5120 	if (len < sizeof(status)) {
5121 		retval = -EINVAL;
5122 		goto out;
5123 	}
5124 
5125 	len = sizeof(status);
5126 	if (copy_from_user(&status, optval, len)) {
5127 		retval = -EFAULT;
5128 		goto out;
5129 	}
5130 
5131 	associd = status.sstat_assoc_id;
5132 	asoc = sctp_id2assoc(sk, associd);
5133 	if (!asoc) {
5134 		retval = -EINVAL;
5135 		goto out;
5136 	}
5137 
5138 	transport = asoc->peer.primary_path;
5139 
5140 	status.sstat_assoc_id = sctp_assoc2id(asoc);
5141 	status.sstat_state = sctp_assoc_to_state(asoc);
5142 	status.sstat_rwnd =  asoc->peer.rwnd;
5143 	status.sstat_unackdata = asoc->unack_data;
5144 
5145 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5146 	status.sstat_instrms = asoc->stream.incnt;
5147 	status.sstat_outstrms = asoc->stream.outcnt;
5148 	status.sstat_fragmentation_point = asoc->frag_point;
5149 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5150 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5151 			transport->af_specific->sockaddr_len);
5152 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
5153 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5154 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
5155 	status.sstat_primary.spinfo_state = transport->state;
5156 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
5157 	status.sstat_primary.spinfo_srtt = transport->srtt;
5158 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5159 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
5160 
5161 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5162 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5163 
5164 	if (put_user(len, optlen)) {
5165 		retval = -EFAULT;
5166 		goto out;
5167 	}
5168 
5169 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5170 		 __func__, len, status.sstat_state, status.sstat_rwnd,
5171 		 status.sstat_assoc_id);
5172 
5173 	if (copy_to_user(optval, &status, len)) {
5174 		retval = -EFAULT;
5175 		goto out;
5176 	}
5177 
5178 out:
5179 	return retval;
5180 }
5181 
5182 
5183 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5184  *
5185  * Applications can retrieve information about a specific peer address
5186  * of an association, including its reachability state, congestion
5187  * window, and retransmission timer values.  This information is
5188  * read-only.
5189  */
5190 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5191 					  char __user *optval,
5192 					  int __user *optlen)
5193 {
5194 	struct sctp_paddrinfo pinfo;
5195 	struct sctp_transport *transport;
5196 	int retval = 0;
5197 
5198 	if (len < sizeof(pinfo)) {
5199 		retval = -EINVAL;
5200 		goto out;
5201 	}
5202 
5203 	len = sizeof(pinfo);
5204 	if (copy_from_user(&pinfo, optval, len)) {
5205 		retval = -EFAULT;
5206 		goto out;
5207 	}
5208 
5209 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5210 					   pinfo.spinfo_assoc_id);
5211 	if (!transport)
5212 		return -EINVAL;
5213 
5214 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5215 	pinfo.spinfo_state = transport->state;
5216 	pinfo.spinfo_cwnd = transport->cwnd;
5217 	pinfo.spinfo_srtt = transport->srtt;
5218 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5219 	pinfo.spinfo_mtu = transport->pathmtu;
5220 
5221 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
5222 		pinfo.spinfo_state = SCTP_ACTIVE;
5223 
5224 	if (put_user(len, optlen)) {
5225 		retval = -EFAULT;
5226 		goto out;
5227 	}
5228 
5229 	if (copy_to_user(optval, &pinfo, len)) {
5230 		retval = -EFAULT;
5231 		goto out;
5232 	}
5233 
5234 out:
5235 	return retval;
5236 }
5237 
5238 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5239  *
5240  * This option is a on/off flag.  If enabled no SCTP message
5241  * fragmentation will be performed.  Instead if a message being sent
5242  * exceeds the current PMTU size, the message will NOT be sent and
5243  * instead a error will be indicated to the user.
5244  */
5245 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5246 					char __user *optval, int __user *optlen)
5247 {
5248 	int val;
5249 
5250 	if (len < sizeof(int))
5251 		return -EINVAL;
5252 
5253 	len = sizeof(int);
5254 	val = (sctp_sk(sk)->disable_fragments == 1);
5255 	if (put_user(len, optlen))
5256 		return -EFAULT;
5257 	if (copy_to_user(optval, &val, len))
5258 		return -EFAULT;
5259 	return 0;
5260 }
5261 
5262 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5263  *
5264  * This socket option is used to specify various notifications and
5265  * ancillary data the user wishes to receive.
5266  */
5267 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5268 				  int __user *optlen)
5269 {
5270 	if (len == 0)
5271 		return -EINVAL;
5272 	if (len > sizeof(struct sctp_event_subscribe))
5273 		len = sizeof(struct sctp_event_subscribe);
5274 	if (put_user(len, optlen))
5275 		return -EFAULT;
5276 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
5277 		return -EFAULT;
5278 	return 0;
5279 }
5280 
5281 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5282  *
5283  * This socket option is applicable to the UDP-style socket only.  When
5284  * set it will cause associations that are idle for more than the
5285  * specified number of seconds to automatically close.  An association
5286  * being idle is defined an association that has NOT sent or received
5287  * user data.  The special value of '0' indicates that no automatic
5288  * close of any associations should be performed.  The option expects an
5289  * integer defining the number of seconds of idle time before an
5290  * association is closed.
5291  */
5292 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5293 {
5294 	/* Applicable to UDP-style socket only */
5295 	if (sctp_style(sk, TCP))
5296 		return -EOPNOTSUPP;
5297 	if (len < sizeof(int))
5298 		return -EINVAL;
5299 	len = sizeof(int);
5300 	if (put_user(len, optlen))
5301 		return -EFAULT;
5302 	if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5303 		return -EFAULT;
5304 	return 0;
5305 }
5306 
5307 /* Helper routine to branch off an association to a new socket.  */
5308 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5309 {
5310 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
5311 	struct sctp_sock *sp = sctp_sk(sk);
5312 	struct socket *sock;
5313 	int err = 0;
5314 
5315 	/* Do not peel off from one netns to another one. */
5316 	if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5317 		return -EINVAL;
5318 
5319 	if (!asoc)
5320 		return -EINVAL;
5321 
5322 	/* An association cannot be branched off from an already peeled-off
5323 	 * socket, nor is this supported for tcp style sockets.
5324 	 */
5325 	if (!sctp_style(sk, UDP))
5326 		return -EINVAL;
5327 
5328 	/* Create a new socket.  */
5329 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5330 	if (err < 0)
5331 		return err;
5332 
5333 	sctp_copy_sock(sock->sk, sk, asoc);
5334 
5335 	/* Make peeled-off sockets more like 1-1 accepted sockets.
5336 	 * Set the daddr and initialize id to something more random and also
5337 	 * copy over any ip options.
5338 	 */
5339 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5340 	sp->pf->copy_ip_options(sk, sock->sk);
5341 
5342 	/* Populate the fields of the newsk from the oldsk and migrate the
5343 	 * asoc to the newsk.
5344 	 */
5345 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5346 
5347 	*sockp = sock;
5348 
5349 	return err;
5350 }
5351 EXPORT_SYMBOL(sctp_do_peeloff);
5352 
5353 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5354 					  struct file **newfile, unsigned flags)
5355 {
5356 	struct socket *newsock;
5357 	int retval;
5358 
5359 	retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5360 	if (retval < 0)
5361 		goto out;
5362 
5363 	/* Map the socket to an unused fd that can be returned to the user.  */
5364 	retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5365 	if (retval < 0) {
5366 		sock_release(newsock);
5367 		goto out;
5368 	}
5369 
5370 	*newfile = sock_alloc_file(newsock, 0, NULL);
5371 	if (IS_ERR(*newfile)) {
5372 		put_unused_fd(retval);
5373 		retval = PTR_ERR(*newfile);
5374 		*newfile = NULL;
5375 		return retval;
5376 	}
5377 
5378 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5379 		 retval);
5380 
5381 	peeloff->sd = retval;
5382 
5383 	if (flags & SOCK_NONBLOCK)
5384 		(*newfile)->f_flags |= O_NONBLOCK;
5385 out:
5386 	return retval;
5387 }
5388 
5389 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5390 {
5391 	sctp_peeloff_arg_t peeloff;
5392 	struct file *newfile = NULL;
5393 	int retval = 0;
5394 
5395 	if (len < sizeof(sctp_peeloff_arg_t))
5396 		return -EINVAL;
5397 	len = sizeof(sctp_peeloff_arg_t);
5398 	if (copy_from_user(&peeloff, optval, len))
5399 		return -EFAULT;
5400 
5401 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5402 	if (retval < 0)
5403 		goto out;
5404 
5405 	/* Return the fd mapped to the new socket.  */
5406 	if (put_user(len, optlen)) {
5407 		fput(newfile);
5408 		put_unused_fd(retval);
5409 		return -EFAULT;
5410 	}
5411 
5412 	if (copy_to_user(optval, &peeloff, len)) {
5413 		fput(newfile);
5414 		put_unused_fd(retval);
5415 		return -EFAULT;
5416 	}
5417 	fd_install(retval, newfile);
5418 out:
5419 	return retval;
5420 }
5421 
5422 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5423 					 char __user *optval, int __user *optlen)
5424 {
5425 	sctp_peeloff_flags_arg_t peeloff;
5426 	struct file *newfile = NULL;
5427 	int retval = 0;
5428 
5429 	if (len < sizeof(sctp_peeloff_flags_arg_t))
5430 		return -EINVAL;
5431 	len = sizeof(sctp_peeloff_flags_arg_t);
5432 	if (copy_from_user(&peeloff, optval, len))
5433 		return -EFAULT;
5434 
5435 	retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5436 						&newfile, peeloff.flags);
5437 	if (retval < 0)
5438 		goto out;
5439 
5440 	/* Return the fd mapped to the new socket.  */
5441 	if (put_user(len, optlen)) {
5442 		fput(newfile);
5443 		put_unused_fd(retval);
5444 		return -EFAULT;
5445 	}
5446 
5447 	if (copy_to_user(optval, &peeloff, len)) {
5448 		fput(newfile);
5449 		put_unused_fd(retval);
5450 		return -EFAULT;
5451 	}
5452 	fd_install(retval, newfile);
5453 out:
5454 	return retval;
5455 }
5456 
5457 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5458  *
5459  * Applications can enable or disable heartbeats for any peer address of
5460  * an association, modify an address's heartbeat interval, force a
5461  * heartbeat to be sent immediately, and adjust the address's maximum
5462  * number of retransmissions sent before an address is considered
5463  * unreachable.  The following structure is used to access and modify an
5464  * address's parameters:
5465  *
5466  *  struct sctp_paddrparams {
5467  *     sctp_assoc_t            spp_assoc_id;
5468  *     struct sockaddr_storage spp_address;
5469  *     uint32_t                spp_hbinterval;
5470  *     uint16_t                spp_pathmaxrxt;
5471  *     uint32_t                spp_pathmtu;
5472  *     uint32_t                spp_sackdelay;
5473  *     uint32_t                spp_flags;
5474  * };
5475  *
5476  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
5477  *                     application, and identifies the association for
5478  *                     this query.
5479  *   spp_address     - This specifies which address is of interest.
5480  *   spp_hbinterval  - This contains the value of the heartbeat interval,
5481  *                     in milliseconds.  If a  value of zero
5482  *                     is present in this field then no changes are to
5483  *                     be made to this parameter.
5484  *   spp_pathmaxrxt  - This contains the maximum number of
5485  *                     retransmissions before this address shall be
5486  *                     considered unreachable. If a  value of zero
5487  *                     is present in this field then no changes are to
5488  *                     be made to this parameter.
5489  *   spp_pathmtu     - When Path MTU discovery is disabled the value
5490  *                     specified here will be the "fixed" path mtu.
5491  *                     Note that if the spp_address field is empty
5492  *                     then all associations on this address will
5493  *                     have this fixed path mtu set upon them.
5494  *
5495  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
5496  *                     the number of milliseconds that sacks will be delayed
5497  *                     for. This value will apply to all addresses of an
5498  *                     association if the spp_address field is empty. Note
5499  *                     also, that if delayed sack is enabled and this
5500  *                     value is set to 0, no change is made to the last
5501  *                     recorded delayed sack timer value.
5502  *
5503  *   spp_flags       - These flags are used to control various features
5504  *                     on an association. The flag field may contain
5505  *                     zero or more of the following options.
5506  *
5507  *                     SPP_HB_ENABLE  - Enable heartbeats on the
5508  *                     specified address. Note that if the address
5509  *                     field is empty all addresses for the association
5510  *                     have heartbeats enabled upon them.
5511  *
5512  *                     SPP_HB_DISABLE - Disable heartbeats on the
5513  *                     speicifed address. Note that if the address
5514  *                     field is empty all addresses for the association
5515  *                     will have their heartbeats disabled. Note also
5516  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
5517  *                     mutually exclusive, only one of these two should
5518  *                     be specified. Enabling both fields will have
5519  *                     undetermined results.
5520  *
5521  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
5522  *                     to be made immediately.
5523  *
5524  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
5525  *                     discovery upon the specified address. Note that
5526  *                     if the address feild is empty then all addresses
5527  *                     on the association are effected.
5528  *
5529  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
5530  *                     discovery upon the specified address. Note that
5531  *                     if the address feild is empty then all addresses
5532  *                     on the association are effected. Not also that
5533  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5534  *                     exclusive. Enabling both will have undetermined
5535  *                     results.
5536  *
5537  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
5538  *                     on delayed sack. The time specified in spp_sackdelay
5539  *                     is used to specify the sack delay for this address. Note
5540  *                     that if spp_address is empty then all addresses will
5541  *                     enable delayed sack and take on the sack delay
5542  *                     value specified in spp_sackdelay.
5543  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
5544  *                     off delayed sack. If the spp_address field is blank then
5545  *                     delayed sack is disabled for the entire association. Note
5546  *                     also that this field is mutually exclusive to
5547  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
5548  *                     results.
5549  *
5550  *                     SPP_IPV6_FLOWLABEL:  Setting this flag enables the
5551  *                     setting of the IPV6 flow label value.  The value is
5552  *                     contained in the spp_ipv6_flowlabel field.
5553  *                     Upon retrieval, this flag will be set to indicate that
5554  *                     the spp_ipv6_flowlabel field has a valid value returned.
5555  *                     If a specific destination address is set (in the
5556  *                     spp_address field), then the value returned is that of
5557  *                     the address.  If just an association is specified (and
5558  *                     no address), then the association's default flow label
5559  *                     is returned.  If neither an association nor a destination
5560  *                     is specified, then the socket's default flow label is
5561  *                     returned.  For non-IPv6 sockets, this flag will be left
5562  *                     cleared.
5563  *
5564  *                     SPP_DSCP:  Setting this flag enables the setting of the
5565  *                     Differentiated Services Code Point (DSCP) value
5566  *                     associated with either the association or a specific
5567  *                     address.  The value is obtained in the spp_dscp field.
5568  *                     Upon retrieval, this flag will be set to indicate that
5569  *                     the spp_dscp field has a valid value returned.  If a
5570  *                     specific destination address is set when called (in the
5571  *                     spp_address field), then that specific destination
5572  *                     address's DSCP value is returned.  If just an association
5573  *                     is specified, then the association's default DSCP is
5574  *                     returned.  If neither an association nor a destination is
5575  *                     specified, then the socket's default DSCP is returned.
5576  *
5577  *   spp_ipv6_flowlabel
5578  *                   - This field is used in conjunction with the
5579  *                     SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5580  *                     The 20 least significant bits are used for the flow
5581  *                     label.  This setting has precedence over any IPv6-layer
5582  *                     setting.
5583  *
5584  *   spp_dscp        - This field is used in conjunction with the SPP_DSCP flag
5585  *                     and contains the DSCP.  The 6 most significant bits are
5586  *                     used for the DSCP.  This setting has precedence over any
5587  *                     IPv4- or IPv6- layer setting.
5588  */
5589 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5590 					    char __user *optval, int __user *optlen)
5591 {
5592 	struct sctp_paddrparams  params;
5593 	struct sctp_transport   *trans = NULL;
5594 	struct sctp_association *asoc = NULL;
5595 	struct sctp_sock        *sp = sctp_sk(sk);
5596 
5597 	if (len >= sizeof(params))
5598 		len = sizeof(params);
5599 	else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5600 				       spp_ipv6_flowlabel), 4))
5601 		len = ALIGN(offsetof(struct sctp_paddrparams,
5602 				     spp_ipv6_flowlabel), 4);
5603 	else
5604 		return -EINVAL;
5605 
5606 	if (copy_from_user(&params, optval, len))
5607 		return -EFAULT;
5608 
5609 	/* If an address other than INADDR_ANY is specified, and
5610 	 * no transport is found, then the request is invalid.
5611 	 */
5612 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
5613 		trans = sctp_addr_id2transport(sk, &params.spp_address,
5614 					       params.spp_assoc_id);
5615 		if (!trans) {
5616 			pr_debug("%s: failed no transport\n", __func__);
5617 			return -EINVAL;
5618 		}
5619 	}
5620 
5621 	/* Get association, if assoc_id != 0 and the socket is a one
5622 	 * to many style socket, and an association was not found, then
5623 	 * the id was invalid.
5624 	 */
5625 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5626 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
5627 		pr_debug("%s: failed no association\n", __func__);
5628 		return -EINVAL;
5629 	}
5630 
5631 	if (trans) {
5632 		/* Fetch transport values. */
5633 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5634 		params.spp_pathmtu    = trans->pathmtu;
5635 		params.spp_pathmaxrxt = trans->pathmaxrxt;
5636 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
5637 
5638 		/*draft-11 doesn't say what to return in spp_flags*/
5639 		params.spp_flags      = trans->param_flags;
5640 		if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5641 			params.spp_ipv6_flowlabel = trans->flowlabel &
5642 						    SCTP_FLOWLABEL_VAL_MASK;
5643 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5644 		}
5645 		if (trans->dscp & SCTP_DSCP_SET_MASK) {
5646 			params.spp_dscp	= trans->dscp & SCTP_DSCP_VAL_MASK;
5647 			params.spp_flags |= SPP_DSCP;
5648 		}
5649 	} else if (asoc) {
5650 		/* Fetch association values. */
5651 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5652 		params.spp_pathmtu    = asoc->pathmtu;
5653 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
5654 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
5655 
5656 		/*draft-11 doesn't say what to return in spp_flags*/
5657 		params.spp_flags      = asoc->param_flags;
5658 		if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5659 			params.spp_ipv6_flowlabel = asoc->flowlabel &
5660 						    SCTP_FLOWLABEL_VAL_MASK;
5661 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5662 		}
5663 		if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5664 			params.spp_dscp	= asoc->dscp & SCTP_DSCP_VAL_MASK;
5665 			params.spp_flags |= SPP_DSCP;
5666 		}
5667 	} else {
5668 		/* Fetch socket values. */
5669 		params.spp_hbinterval = sp->hbinterval;
5670 		params.spp_pathmtu    = sp->pathmtu;
5671 		params.spp_sackdelay  = sp->sackdelay;
5672 		params.spp_pathmaxrxt = sp->pathmaxrxt;
5673 
5674 		/*draft-11 doesn't say what to return in spp_flags*/
5675 		params.spp_flags      = sp->param_flags;
5676 		if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5677 			params.spp_ipv6_flowlabel = sp->flowlabel &
5678 						    SCTP_FLOWLABEL_VAL_MASK;
5679 			params.spp_flags |= SPP_IPV6_FLOWLABEL;
5680 		}
5681 		if (sp->dscp & SCTP_DSCP_SET_MASK) {
5682 			params.spp_dscp	= sp->dscp & SCTP_DSCP_VAL_MASK;
5683 			params.spp_flags |= SPP_DSCP;
5684 		}
5685 	}
5686 
5687 	if (copy_to_user(optval, &params, len))
5688 		return -EFAULT;
5689 
5690 	if (put_user(len, optlen))
5691 		return -EFAULT;
5692 
5693 	return 0;
5694 }
5695 
5696 /*
5697  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
5698  *
5699  * This option will effect the way delayed acks are performed.  This
5700  * option allows you to get or set the delayed ack time, in
5701  * milliseconds.  It also allows changing the delayed ack frequency.
5702  * Changing the frequency to 1 disables the delayed sack algorithm.  If
5703  * the assoc_id is 0, then this sets or gets the endpoints default
5704  * values.  If the assoc_id field is non-zero, then the set or get
5705  * effects the specified association for the one to many model (the
5706  * assoc_id field is ignored by the one to one model).  Note that if
5707  * sack_delay or sack_freq are 0 when setting this option, then the
5708  * current values will remain unchanged.
5709  *
5710  * struct sctp_sack_info {
5711  *     sctp_assoc_t            sack_assoc_id;
5712  *     uint32_t                sack_delay;
5713  *     uint32_t                sack_freq;
5714  * };
5715  *
5716  * sack_assoc_id -  This parameter, indicates which association the user
5717  *    is performing an action upon.  Note that if this field's value is
5718  *    zero then the endpoints default value is changed (effecting future
5719  *    associations only).
5720  *
5721  * sack_delay -  This parameter contains the number of milliseconds that
5722  *    the user is requesting the delayed ACK timer be set to.  Note that
5723  *    this value is defined in the standard to be between 200 and 500
5724  *    milliseconds.
5725  *
5726  * sack_freq -  This parameter contains the number of packets that must
5727  *    be received before a sack is sent without waiting for the delay
5728  *    timer to expire.  The default value for this is 2, setting this
5729  *    value to 1 will disable the delayed sack algorithm.
5730  */
5731 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5732 					    char __user *optval,
5733 					    int __user *optlen)
5734 {
5735 	struct sctp_sack_info    params;
5736 	struct sctp_association *asoc = NULL;
5737 	struct sctp_sock        *sp = sctp_sk(sk);
5738 
5739 	if (len >= sizeof(struct sctp_sack_info)) {
5740 		len = sizeof(struct sctp_sack_info);
5741 
5742 		if (copy_from_user(&params, optval, len))
5743 			return -EFAULT;
5744 	} else if (len == sizeof(struct sctp_assoc_value)) {
5745 		pr_warn_ratelimited(DEPRECATED
5746 				    "%s (pid %d) "
5747 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5748 				    "Use struct sctp_sack_info instead\n",
5749 				    current->comm, task_pid_nr(current));
5750 		if (copy_from_user(&params, optval, len))
5751 			return -EFAULT;
5752 	} else
5753 		return -EINVAL;
5754 
5755 	/* Get association, if sack_assoc_id != 0 and the socket is a one
5756 	 * to many style socket, and an association was not found, then
5757 	 * the id was invalid.
5758 	 */
5759 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5760 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
5761 		return -EINVAL;
5762 
5763 	if (asoc) {
5764 		/* Fetch association values. */
5765 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5766 			params.sack_delay = jiffies_to_msecs(
5767 				asoc->sackdelay);
5768 			params.sack_freq = asoc->sackfreq;
5769 
5770 		} else {
5771 			params.sack_delay = 0;
5772 			params.sack_freq = 1;
5773 		}
5774 	} else {
5775 		/* Fetch socket values. */
5776 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5777 			params.sack_delay  = sp->sackdelay;
5778 			params.sack_freq = sp->sackfreq;
5779 		} else {
5780 			params.sack_delay  = 0;
5781 			params.sack_freq = 1;
5782 		}
5783 	}
5784 
5785 	if (copy_to_user(optval, &params, len))
5786 		return -EFAULT;
5787 
5788 	if (put_user(len, optlen))
5789 		return -EFAULT;
5790 
5791 	return 0;
5792 }
5793 
5794 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5795  *
5796  * Applications can specify protocol parameters for the default association
5797  * initialization.  The option name argument to setsockopt() and getsockopt()
5798  * is SCTP_INITMSG.
5799  *
5800  * Setting initialization parameters is effective only on an unconnected
5801  * socket (for UDP-style sockets only future associations are effected
5802  * by the change).  With TCP-style sockets, this option is inherited by
5803  * sockets derived from a listener socket.
5804  */
5805 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5806 {
5807 	if (len < sizeof(struct sctp_initmsg))
5808 		return -EINVAL;
5809 	len = sizeof(struct sctp_initmsg);
5810 	if (put_user(len, optlen))
5811 		return -EFAULT;
5812 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5813 		return -EFAULT;
5814 	return 0;
5815 }
5816 
5817 
5818 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5819 				      char __user *optval, int __user *optlen)
5820 {
5821 	struct sctp_association *asoc;
5822 	int cnt = 0;
5823 	struct sctp_getaddrs getaddrs;
5824 	struct sctp_transport *from;
5825 	void __user *to;
5826 	union sctp_addr temp;
5827 	struct sctp_sock *sp = sctp_sk(sk);
5828 	int addrlen;
5829 	size_t space_left;
5830 	int bytes_copied;
5831 
5832 	if (len < sizeof(struct sctp_getaddrs))
5833 		return -EINVAL;
5834 
5835 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5836 		return -EFAULT;
5837 
5838 	/* For UDP-style sockets, id specifies the association to query.  */
5839 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5840 	if (!asoc)
5841 		return -EINVAL;
5842 
5843 	to = optval + offsetof(struct sctp_getaddrs, addrs);
5844 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
5845 
5846 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
5847 				transports) {
5848 		memcpy(&temp, &from->ipaddr, sizeof(temp));
5849 		addrlen = sctp_get_pf_specific(sk->sk_family)
5850 			      ->addr_to_user(sp, &temp);
5851 		if (space_left < addrlen)
5852 			return -ENOMEM;
5853 		if (copy_to_user(to, &temp, addrlen))
5854 			return -EFAULT;
5855 		to += addrlen;
5856 		cnt++;
5857 		space_left -= addrlen;
5858 	}
5859 
5860 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
5861 		return -EFAULT;
5862 	bytes_copied = ((char __user *)to) - optval;
5863 	if (put_user(bytes_copied, optlen))
5864 		return -EFAULT;
5865 
5866 	return 0;
5867 }
5868 
5869 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
5870 			    size_t space_left, int *bytes_copied)
5871 {
5872 	struct sctp_sockaddr_entry *addr;
5873 	union sctp_addr temp;
5874 	int cnt = 0;
5875 	int addrlen;
5876 	struct net *net = sock_net(sk);
5877 
5878 	rcu_read_lock();
5879 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
5880 		if (!addr->valid)
5881 			continue;
5882 
5883 		if ((PF_INET == sk->sk_family) &&
5884 		    (AF_INET6 == addr->a.sa.sa_family))
5885 			continue;
5886 		if ((PF_INET6 == sk->sk_family) &&
5887 		    inet_v6_ipv6only(sk) &&
5888 		    (AF_INET == addr->a.sa.sa_family))
5889 			continue;
5890 		memcpy(&temp, &addr->a, sizeof(temp));
5891 		if (!temp.v4.sin_port)
5892 			temp.v4.sin_port = htons(port);
5893 
5894 		addrlen = sctp_get_pf_specific(sk->sk_family)
5895 			      ->addr_to_user(sctp_sk(sk), &temp);
5896 
5897 		if (space_left < addrlen) {
5898 			cnt =  -ENOMEM;
5899 			break;
5900 		}
5901 		memcpy(to, &temp, addrlen);
5902 
5903 		to += addrlen;
5904 		cnt++;
5905 		space_left -= addrlen;
5906 		*bytes_copied += addrlen;
5907 	}
5908 	rcu_read_unlock();
5909 
5910 	return cnt;
5911 }
5912 
5913 
5914 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
5915 				       char __user *optval, int __user *optlen)
5916 {
5917 	struct sctp_bind_addr *bp;
5918 	struct sctp_association *asoc;
5919 	int cnt = 0;
5920 	struct sctp_getaddrs getaddrs;
5921 	struct sctp_sockaddr_entry *addr;
5922 	void __user *to;
5923 	union sctp_addr temp;
5924 	struct sctp_sock *sp = sctp_sk(sk);
5925 	int addrlen;
5926 	int err = 0;
5927 	size_t space_left;
5928 	int bytes_copied = 0;
5929 	void *addrs;
5930 	void *buf;
5931 
5932 	if (len < sizeof(struct sctp_getaddrs))
5933 		return -EINVAL;
5934 
5935 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
5936 		return -EFAULT;
5937 
5938 	/*
5939 	 *  For UDP-style sockets, id specifies the association to query.
5940 	 *  If the id field is set to the value '0' then the locally bound
5941 	 *  addresses are returned without regard to any particular
5942 	 *  association.
5943 	 */
5944 	if (0 == getaddrs.assoc_id) {
5945 		bp = &sctp_sk(sk)->ep->base.bind_addr;
5946 	} else {
5947 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
5948 		if (!asoc)
5949 			return -EINVAL;
5950 		bp = &asoc->base.bind_addr;
5951 	}
5952 
5953 	to = optval + offsetof(struct sctp_getaddrs, addrs);
5954 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
5955 
5956 	addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
5957 	if (!addrs)
5958 		return -ENOMEM;
5959 
5960 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
5961 	 * addresses from the global local address list.
5962 	 */
5963 	if (sctp_list_single_entry(&bp->address_list)) {
5964 		addr = list_entry(bp->address_list.next,
5965 				  struct sctp_sockaddr_entry, list);
5966 		if (sctp_is_any(sk, &addr->a)) {
5967 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
5968 						space_left, &bytes_copied);
5969 			if (cnt < 0) {
5970 				err = cnt;
5971 				goto out;
5972 			}
5973 			goto copy_getaddrs;
5974 		}
5975 	}
5976 
5977 	buf = addrs;
5978 	/* Protection on the bound address list is not needed since
5979 	 * in the socket option context we hold a socket lock and
5980 	 * thus the bound address list can't change.
5981 	 */
5982 	list_for_each_entry(addr, &bp->address_list, list) {
5983 		memcpy(&temp, &addr->a, sizeof(temp));
5984 		addrlen = sctp_get_pf_specific(sk->sk_family)
5985 			      ->addr_to_user(sp, &temp);
5986 		if (space_left < addrlen) {
5987 			err =  -ENOMEM; /*fixme: right error?*/
5988 			goto out;
5989 		}
5990 		memcpy(buf, &temp, addrlen);
5991 		buf += addrlen;
5992 		bytes_copied += addrlen;
5993 		cnt++;
5994 		space_left -= addrlen;
5995 	}
5996 
5997 copy_getaddrs:
5998 	if (copy_to_user(to, addrs, bytes_copied)) {
5999 		err = -EFAULT;
6000 		goto out;
6001 	}
6002 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6003 		err = -EFAULT;
6004 		goto out;
6005 	}
6006 	/* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6007 	 * but we can't change it anymore.
6008 	 */
6009 	if (put_user(bytes_copied, optlen))
6010 		err = -EFAULT;
6011 out:
6012 	kfree(addrs);
6013 	return err;
6014 }
6015 
6016 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6017  *
6018  * Requests that the local SCTP stack use the enclosed peer address as
6019  * the association primary.  The enclosed address must be one of the
6020  * association peer's addresses.
6021  */
6022 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6023 					char __user *optval, int __user *optlen)
6024 {
6025 	struct sctp_prim prim;
6026 	struct sctp_association *asoc;
6027 	struct sctp_sock *sp = sctp_sk(sk);
6028 
6029 	if (len < sizeof(struct sctp_prim))
6030 		return -EINVAL;
6031 
6032 	len = sizeof(struct sctp_prim);
6033 
6034 	if (copy_from_user(&prim, optval, len))
6035 		return -EFAULT;
6036 
6037 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6038 	if (!asoc)
6039 		return -EINVAL;
6040 
6041 	if (!asoc->peer.primary_path)
6042 		return -ENOTCONN;
6043 
6044 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6045 		asoc->peer.primary_path->af_specific->sockaddr_len);
6046 
6047 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6048 			(union sctp_addr *)&prim.ssp_addr);
6049 
6050 	if (put_user(len, optlen))
6051 		return -EFAULT;
6052 	if (copy_to_user(optval, &prim, len))
6053 		return -EFAULT;
6054 
6055 	return 0;
6056 }
6057 
6058 /*
6059  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6060  *
6061  * Requests that the local endpoint set the specified Adaptation Layer
6062  * Indication parameter for all future INIT and INIT-ACK exchanges.
6063  */
6064 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6065 				  char __user *optval, int __user *optlen)
6066 {
6067 	struct sctp_setadaptation adaptation;
6068 
6069 	if (len < sizeof(struct sctp_setadaptation))
6070 		return -EINVAL;
6071 
6072 	len = sizeof(struct sctp_setadaptation);
6073 
6074 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6075 
6076 	if (put_user(len, optlen))
6077 		return -EFAULT;
6078 	if (copy_to_user(optval, &adaptation, len))
6079 		return -EFAULT;
6080 
6081 	return 0;
6082 }
6083 
6084 /*
6085  *
6086  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6087  *
6088  *   Applications that wish to use the sendto() system call may wish to
6089  *   specify a default set of parameters that would normally be supplied
6090  *   through the inclusion of ancillary data.  This socket option allows
6091  *   such an application to set the default sctp_sndrcvinfo structure.
6092 
6093 
6094  *   The application that wishes to use this socket option simply passes
6095  *   in to this call the sctp_sndrcvinfo structure defined in Section
6096  *   5.2.2) The input parameters accepted by this call include
6097  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6098  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
6099  *   to this call if the caller is using the UDP model.
6100  *
6101  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
6102  */
6103 static int sctp_getsockopt_default_send_param(struct sock *sk,
6104 					int len, char __user *optval,
6105 					int __user *optlen)
6106 {
6107 	struct sctp_sock *sp = sctp_sk(sk);
6108 	struct sctp_association *asoc;
6109 	struct sctp_sndrcvinfo info;
6110 
6111 	if (len < sizeof(info))
6112 		return -EINVAL;
6113 
6114 	len = sizeof(info);
6115 
6116 	if (copy_from_user(&info, optval, len))
6117 		return -EFAULT;
6118 
6119 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6120 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
6121 		return -EINVAL;
6122 	if (asoc) {
6123 		info.sinfo_stream = asoc->default_stream;
6124 		info.sinfo_flags = asoc->default_flags;
6125 		info.sinfo_ppid = asoc->default_ppid;
6126 		info.sinfo_context = asoc->default_context;
6127 		info.sinfo_timetolive = asoc->default_timetolive;
6128 	} else {
6129 		info.sinfo_stream = sp->default_stream;
6130 		info.sinfo_flags = sp->default_flags;
6131 		info.sinfo_ppid = sp->default_ppid;
6132 		info.sinfo_context = sp->default_context;
6133 		info.sinfo_timetolive = sp->default_timetolive;
6134 	}
6135 
6136 	if (put_user(len, optlen))
6137 		return -EFAULT;
6138 	if (copy_to_user(optval, &info, len))
6139 		return -EFAULT;
6140 
6141 	return 0;
6142 }
6143 
6144 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6145  * (SCTP_DEFAULT_SNDINFO)
6146  */
6147 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6148 					   char __user *optval,
6149 					   int __user *optlen)
6150 {
6151 	struct sctp_sock *sp = sctp_sk(sk);
6152 	struct sctp_association *asoc;
6153 	struct sctp_sndinfo info;
6154 
6155 	if (len < sizeof(info))
6156 		return -EINVAL;
6157 
6158 	len = sizeof(info);
6159 
6160 	if (copy_from_user(&info, optval, len))
6161 		return -EFAULT;
6162 
6163 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6164 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
6165 		return -EINVAL;
6166 	if (asoc) {
6167 		info.snd_sid = asoc->default_stream;
6168 		info.snd_flags = asoc->default_flags;
6169 		info.snd_ppid = asoc->default_ppid;
6170 		info.snd_context = asoc->default_context;
6171 	} else {
6172 		info.snd_sid = sp->default_stream;
6173 		info.snd_flags = sp->default_flags;
6174 		info.snd_ppid = sp->default_ppid;
6175 		info.snd_context = sp->default_context;
6176 	}
6177 
6178 	if (put_user(len, optlen))
6179 		return -EFAULT;
6180 	if (copy_to_user(optval, &info, len))
6181 		return -EFAULT;
6182 
6183 	return 0;
6184 }
6185 
6186 /*
6187  *
6188  * 7.1.5 SCTP_NODELAY
6189  *
6190  * Turn on/off any Nagle-like algorithm.  This means that packets are
6191  * generally sent as soon as possible and no unnecessary delays are
6192  * introduced, at the cost of more packets in the network.  Expects an
6193  * integer boolean flag.
6194  */
6195 
6196 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6197 				   char __user *optval, int __user *optlen)
6198 {
6199 	int val;
6200 
6201 	if (len < sizeof(int))
6202 		return -EINVAL;
6203 
6204 	len = sizeof(int);
6205 	val = (sctp_sk(sk)->nodelay == 1);
6206 	if (put_user(len, optlen))
6207 		return -EFAULT;
6208 	if (copy_to_user(optval, &val, len))
6209 		return -EFAULT;
6210 	return 0;
6211 }
6212 
6213 /*
6214  *
6215  * 7.1.1 SCTP_RTOINFO
6216  *
6217  * The protocol parameters used to initialize and bound retransmission
6218  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6219  * and modify these parameters.
6220  * All parameters are time values, in milliseconds.  A value of 0, when
6221  * modifying the parameters, indicates that the current value should not
6222  * be changed.
6223  *
6224  */
6225 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6226 				char __user *optval,
6227 				int __user *optlen) {
6228 	struct sctp_rtoinfo rtoinfo;
6229 	struct sctp_association *asoc;
6230 
6231 	if (len < sizeof (struct sctp_rtoinfo))
6232 		return -EINVAL;
6233 
6234 	len = sizeof(struct sctp_rtoinfo);
6235 
6236 	if (copy_from_user(&rtoinfo, optval, len))
6237 		return -EFAULT;
6238 
6239 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6240 
6241 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
6242 		return -EINVAL;
6243 
6244 	/* Values corresponding to the specific association. */
6245 	if (asoc) {
6246 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6247 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6248 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6249 	} else {
6250 		/* Values corresponding to the endpoint. */
6251 		struct sctp_sock *sp = sctp_sk(sk);
6252 
6253 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6254 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
6255 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
6256 	}
6257 
6258 	if (put_user(len, optlen))
6259 		return -EFAULT;
6260 
6261 	if (copy_to_user(optval, &rtoinfo, len))
6262 		return -EFAULT;
6263 
6264 	return 0;
6265 }
6266 
6267 /*
6268  *
6269  * 7.1.2 SCTP_ASSOCINFO
6270  *
6271  * This option is used to tune the maximum retransmission attempts
6272  * of the association.
6273  * Returns an error if the new association retransmission value is
6274  * greater than the sum of the retransmission value  of the peer.
6275  * See [SCTP] for more information.
6276  *
6277  */
6278 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6279 				     char __user *optval,
6280 				     int __user *optlen)
6281 {
6282 
6283 	struct sctp_assocparams assocparams;
6284 	struct sctp_association *asoc;
6285 	struct list_head *pos;
6286 	int cnt = 0;
6287 
6288 	if (len < sizeof (struct sctp_assocparams))
6289 		return -EINVAL;
6290 
6291 	len = sizeof(struct sctp_assocparams);
6292 
6293 	if (copy_from_user(&assocparams, optval, len))
6294 		return -EFAULT;
6295 
6296 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6297 
6298 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
6299 		return -EINVAL;
6300 
6301 	/* Values correspoinding to the specific association */
6302 	if (asoc) {
6303 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6304 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6305 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6306 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6307 
6308 		list_for_each(pos, &asoc->peer.transport_addr_list) {
6309 			cnt++;
6310 		}
6311 
6312 		assocparams.sasoc_number_peer_destinations = cnt;
6313 	} else {
6314 		/* Values corresponding to the endpoint */
6315 		struct sctp_sock *sp = sctp_sk(sk);
6316 
6317 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6318 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6319 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6320 		assocparams.sasoc_cookie_life =
6321 					sp->assocparams.sasoc_cookie_life;
6322 		assocparams.sasoc_number_peer_destinations =
6323 					sp->assocparams.
6324 					sasoc_number_peer_destinations;
6325 	}
6326 
6327 	if (put_user(len, optlen))
6328 		return -EFAULT;
6329 
6330 	if (copy_to_user(optval, &assocparams, len))
6331 		return -EFAULT;
6332 
6333 	return 0;
6334 }
6335 
6336 /*
6337  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6338  *
6339  * This socket option is a boolean flag which turns on or off mapped V4
6340  * addresses.  If this option is turned on and the socket is type
6341  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6342  * If this option is turned off, then no mapping will be done of V4
6343  * addresses and a user will receive both PF_INET6 and PF_INET type
6344  * addresses on the socket.
6345  */
6346 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6347 				    char __user *optval, int __user *optlen)
6348 {
6349 	int val;
6350 	struct sctp_sock *sp = sctp_sk(sk);
6351 
6352 	if (len < sizeof(int))
6353 		return -EINVAL;
6354 
6355 	len = sizeof(int);
6356 	val = sp->v4mapped;
6357 	if (put_user(len, optlen))
6358 		return -EFAULT;
6359 	if (copy_to_user(optval, &val, len))
6360 		return -EFAULT;
6361 
6362 	return 0;
6363 }
6364 
6365 /*
6366  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
6367  * (chapter and verse is quoted at sctp_setsockopt_context())
6368  */
6369 static int sctp_getsockopt_context(struct sock *sk, int len,
6370 				   char __user *optval, int __user *optlen)
6371 {
6372 	struct sctp_assoc_value params;
6373 	struct sctp_sock *sp;
6374 	struct sctp_association *asoc;
6375 
6376 	if (len < sizeof(struct sctp_assoc_value))
6377 		return -EINVAL;
6378 
6379 	len = sizeof(struct sctp_assoc_value);
6380 
6381 	if (copy_from_user(&params, optval, len))
6382 		return -EFAULT;
6383 
6384 	sp = sctp_sk(sk);
6385 
6386 	if (params.assoc_id != 0) {
6387 		asoc = sctp_id2assoc(sk, params.assoc_id);
6388 		if (!asoc)
6389 			return -EINVAL;
6390 		params.assoc_value = asoc->default_rcv_context;
6391 	} else {
6392 		params.assoc_value = sp->default_rcv_context;
6393 	}
6394 
6395 	if (put_user(len, optlen))
6396 		return -EFAULT;
6397 	if (copy_to_user(optval, &params, len))
6398 		return -EFAULT;
6399 
6400 	return 0;
6401 }
6402 
6403 /*
6404  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6405  * This option will get or set the maximum size to put in any outgoing
6406  * SCTP DATA chunk.  If a message is larger than this size it will be
6407  * fragmented by SCTP into the specified size.  Note that the underlying
6408  * SCTP implementation may fragment into smaller sized chunks when the
6409  * PMTU of the underlying association is smaller than the value set by
6410  * the user.  The default value for this option is '0' which indicates
6411  * the user is NOT limiting fragmentation and only the PMTU will effect
6412  * SCTP's choice of DATA chunk size.  Note also that values set larger
6413  * than the maximum size of an IP datagram will effectively let SCTP
6414  * control fragmentation (i.e. the same as setting this option to 0).
6415  *
6416  * The following structure is used to access and modify this parameter:
6417  *
6418  * struct sctp_assoc_value {
6419  *   sctp_assoc_t assoc_id;
6420  *   uint32_t assoc_value;
6421  * };
6422  *
6423  * assoc_id:  This parameter is ignored for one-to-one style sockets.
6424  *    For one-to-many style sockets this parameter indicates which
6425  *    association the user is performing an action upon.  Note that if
6426  *    this field's value is zero then the endpoints default value is
6427  *    changed (effecting future associations only).
6428  * assoc_value:  This parameter specifies the maximum size in bytes.
6429  */
6430 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6431 				  char __user *optval, int __user *optlen)
6432 {
6433 	struct sctp_assoc_value params;
6434 	struct sctp_association *asoc;
6435 
6436 	if (len == sizeof(int)) {
6437 		pr_warn_ratelimited(DEPRECATED
6438 				    "%s (pid %d) "
6439 				    "Use of int in maxseg socket option.\n"
6440 				    "Use struct sctp_assoc_value instead\n",
6441 				    current->comm, task_pid_nr(current));
6442 		params.assoc_id = 0;
6443 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6444 		len = sizeof(struct sctp_assoc_value);
6445 		if (copy_from_user(&params, optval, len))
6446 			return -EFAULT;
6447 	} else
6448 		return -EINVAL;
6449 
6450 	asoc = sctp_id2assoc(sk, params.assoc_id);
6451 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
6452 		return -EINVAL;
6453 
6454 	if (asoc)
6455 		params.assoc_value = asoc->frag_point;
6456 	else
6457 		params.assoc_value = sctp_sk(sk)->user_frag;
6458 
6459 	if (put_user(len, optlen))
6460 		return -EFAULT;
6461 	if (len == sizeof(int)) {
6462 		if (copy_to_user(optval, &params.assoc_value, len))
6463 			return -EFAULT;
6464 	} else {
6465 		if (copy_to_user(optval, &params, len))
6466 			return -EFAULT;
6467 	}
6468 
6469 	return 0;
6470 }
6471 
6472 /*
6473  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6474  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6475  */
6476 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6477 					       char __user *optval, int __user *optlen)
6478 {
6479 	int val;
6480 
6481 	if (len < sizeof(int))
6482 		return -EINVAL;
6483 
6484 	len = sizeof(int);
6485 
6486 	val = sctp_sk(sk)->frag_interleave;
6487 	if (put_user(len, optlen))
6488 		return -EFAULT;
6489 	if (copy_to_user(optval, &val, len))
6490 		return -EFAULT;
6491 
6492 	return 0;
6493 }
6494 
6495 /*
6496  * 7.1.25.  Set or Get the sctp partial delivery point
6497  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6498  */
6499 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6500 						  char __user *optval,
6501 						  int __user *optlen)
6502 {
6503 	u32 val;
6504 
6505 	if (len < sizeof(u32))
6506 		return -EINVAL;
6507 
6508 	len = sizeof(u32);
6509 
6510 	val = sctp_sk(sk)->pd_point;
6511 	if (put_user(len, optlen))
6512 		return -EFAULT;
6513 	if (copy_to_user(optval, &val, len))
6514 		return -EFAULT;
6515 
6516 	return 0;
6517 }
6518 
6519 /*
6520  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
6521  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6522  */
6523 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6524 				    char __user *optval,
6525 				    int __user *optlen)
6526 {
6527 	struct sctp_assoc_value params;
6528 	struct sctp_sock *sp;
6529 	struct sctp_association *asoc;
6530 
6531 	if (len == sizeof(int)) {
6532 		pr_warn_ratelimited(DEPRECATED
6533 				    "%s (pid %d) "
6534 				    "Use of int in max_burst socket option.\n"
6535 				    "Use struct sctp_assoc_value instead\n",
6536 				    current->comm, task_pid_nr(current));
6537 		params.assoc_id = 0;
6538 	} else if (len >= sizeof(struct sctp_assoc_value)) {
6539 		len = sizeof(struct sctp_assoc_value);
6540 		if (copy_from_user(&params, optval, len))
6541 			return -EFAULT;
6542 	} else
6543 		return -EINVAL;
6544 
6545 	sp = sctp_sk(sk);
6546 
6547 	if (params.assoc_id != 0) {
6548 		asoc = sctp_id2assoc(sk, params.assoc_id);
6549 		if (!asoc)
6550 			return -EINVAL;
6551 		params.assoc_value = asoc->max_burst;
6552 	} else
6553 		params.assoc_value = sp->max_burst;
6554 
6555 	if (len == sizeof(int)) {
6556 		if (copy_to_user(optval, &params.assoc_value, len))
6557 			return -EFAULT;
6558 	} else {
6559 		if (copy_to_user(optval, &params, len))
6560 			return -EFAULT;
6561 	}
6562 
6563 	return 0;
6564 
6565 }
6566 
6567 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6568 				    char __user *optval, int __user *optlen)
6569 {
6570 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6571 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
6572 	struct sctp_hmac_algo_param *hmacs;
6573 	__u16 data_len = 0;
6574 	u32 num_idents;
6575 	int i;
6576 
6577 	if (!ep->auth_enable)
6578 		return -EACCES;
6579 
6580 	hmacs = ep->auth_hmacs_list;
6581 	data_len = ntohs(hmacs->param_hdr.length) -
6582 		   sizeof(struct sctp_paramhdr);
6583 
6584 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
6585 		return -EINVAL;
6586 
6587 	len = sizeof(struct sctp_hmacalgo) + data_len;
6588 	num_idents = data_len / sizeof(u16);
6589 
6590 	if (put_user(len, optlen))
6591 		return -EFAULT;
6592 	if (put_user(num_idents, &p->shmac_num_idents))
6593 		return -EFAULT;
6594 	for (i = 0; i < num_idents; i++) {
6595 		__u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6596 
6597 		if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6598 			return -EFAULT;
6599 	}
6600 	return 0;
6601 }
6602 
6603 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6604 				    char __user *optval, int __user *optlen)
6605 {
6606 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6607 	struct sctp_authkeyid val;
6608 	struct sctp_association *asoc;
6609 
6610 	if (!ep->auth_enable)
6611 		return -EACCES;
6612 
6613 	if (len < sizeof(struct sctp_authkeyid))
6614 		return -EINVAL;
6615 
6616 	len = sizeof(struct sctp_authkeyid);
6617 	if (copy_from_user(&val, optval, len))
6618 		return -EFAULT;
6619 
6620 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6621 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6622 		return -EINVAL;
6623 
6624 	if (asoc)
6625 		val.scact_keynumber = asoc->active_key_id;
6626 	else
6627 		val.scact_keynumber = ep->active_key_id;
6628 
6629 	if (put_user(len, optlen))
6630 		return -EFAULT;
6631 	if (copy_to_user(optval, &val, len))
6632 		return -EFAULT;
6633 
6634 	return 0;
6635 }
6636 
6637 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6638 				    char __user *optval, int __user *optlen)
6639 {
6640 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6641 	struct sctp_authchunks __user *p = (void __user *)optval;
6642 	struct sctp_authchunks val;
6643 	struct sctp_association *asoc;
6644 	struct sctp_chunks_param *ch;
6645 	u32    num_chunks = 0;
6646 	char __user *to;
6647 
6648 	if (!ep->auth_enable)
6649 		return -EACCES;
6650 
6651 	if (len < sizeof(struct sctp_authchunks))
6652 		return -EINVAL;
6653 
6654 	if (copy_from_user(&val, optval, sizeof(val)))
6655 		return -EFAULT;
6656 
6657 	to = p->gauth_chunks;
6658 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6659 	if (!asoc)
6660 		return -EINVAL;
6661 
6662 	ch = asoc->peer.peer_chunks;
6663 	if (!ch)
6664 		goto num;
6665 
6666 	/* See if the user provided enough room for all the data */
6667 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6668 	if (len < num_chunks)
6669 		return -EINVAL;
6670 
6671 	if (copy_to_user(to, ch->chunks, num_chunks))
6672 		return -EFAULT;
6673 num:
6674 	len = sizeof(struct sctp_authchunks) + num_chunks;
6675 	if (put_user(len, optlen))
6676 		return -EFAULT;
6677 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6678 		return -EFAULT;
6679 	return 0;
6680 }
6681 
6682 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6683 				    char __user *optval, int __user *optlen)
6684 {
6685 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6686 	struct sctp_authchunks __user *p = (void __user *)optval;
6687 	struct sctp_authchunks val;
6688 	struct sctp_association *asoc;
6689 	struct sctp_chunks_param *ch;
6690 	u32    num_chunks = 0;
6691 	char __user *to;
6692 
6693 	if (!ep->auth_enable)
6694 		return -EACCES;
6695 
6696 	if (len < sizeof(struct sctp_authchunks))
6697 		return -EINVAL;
6698 
6699 	if (copy_from_user(&val, optval, sizeof(val)))
6700 		return -EFAULT;
6701 
6702 	to = p->gauth_chunks;
6703 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6704 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
6705 		return -EINVAL;
6706 
6707 	if (asoc)
6708 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6709 	else
6710 		ch = ep->auth_chunk_list;
6711 
6712 	if (!ch)
6713 		goto num;
6714 
6715 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6716 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
6717 		return -EINVAL;
6718 
6719 	if (copy_to_user(to, ch->chunks, num_chunks))
6720 		return -EFAULT;
6721 num:
6722 	len = sizeof(struct sctp_authchunks) + num_chunks;
6723 	if (put_user(len, optlen))
6724 		return -EFAULT;
6725 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
6726 		return -EFAULT;
6727 
6728 	return 0;
6729 }
6730 
6731 /*
6732  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6733  * This option gets the current number of associations that are attached
6734  * to a one-to-many style socket.  The option value is an uint32_t.
6735  */
6736 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6737 				    char __user *optval, int __user *optlen)
6738 {
6739 	struct sctp_sock *sp = sctp_sk(sk);
6740 	struct sctp_association *asoc;
6741 	u32 val = 0;
6742 
6743 	if (sctp_style(sk, TCP))
6744 		return -EOPNOTSUPP;
6745 
6746 	if (len < sizeof(u32))
6747 		return -EINVAL;
6748 
6749 	len = sizeof(u32);
6750 
6751 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6752 		val++;
6753 	}
6754 
6755 	if (put_user(len, optlen))
6756 		return -EFAULT;
6757 	if (copy_to_user(optval, &val, len))
6758 		return -EFAULT;
6759 
6760 	return 0;
6761 }
6762 
6763 /*
6764  * 8.1.23 SCTP_AUTO_ASCONF
6765  * See the corresponding setsockopt entry as description
6766  */
6767 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6768 				   char __user *optval, int __user *optlen)
6769 {
6770 	int val = 0;
6771 
6772 	if (len < sizeof(int))
6773 		return -EINVAL;
6774 
6775 	len = sizeof(int);
6776 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6777 		val = 1;
6778 	if (put_user(len, optlen))
6779 		return -EFAULT;
6780 	if (copy_to_user(optval, &val, len))
6781 		return -EFAULT;
6782 	return 0;
6783 }
6784 
6785 /*
6786  * 8.2.6. Get the Current Identifiers of Associations
6787  *        (SCTP_GET_ASSOC_ID_LIST)
6788  *
6789  * This option gets the current list of SCTP association identifiers of
6790  * the SCTP associations handled by a one-to-many style socket.
6791  */
6792 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6793 				    char __user *optval, int __user *optlen)
6794 {
6795 	struct sctp_sock *sp = sctp_sk(sk);
6796 	struct sctp_association *asoc;
6797 	struct sctp_assoc_ids *ids;
6798 	u32 num = 0;
6799 
6800 	if (sctp_style(sk, TCP))
6801 		return -EOPNOTSUPP;
6802 
6803 	if (len < sizeof(struct sctp_assoc_ids))
6804 		return -EINVAL;
6805 
6806 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6807 		num++;
6808 	}
6809 
6810 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6811 		return -EINVAL;
6812 
6813 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6814 
6815 	ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6816 	if (unlikely(!ids))
6817 		return -ENOMEM;
6818 
6819 	ids->gaids_number_of_ids = num;
6820 	num = 0;
6821 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6822 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
6823 	}
6824 
6825 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
6826 		kfree(ids);
6827 		return -EFAULT;
6828 	}
6829 
6830 	kfree(ids);
6831 	return 0;
6832 }
6833 
6834 /*
6835  * SCTP_PEER_ADDR_THLDS
6836  *
6837  * This option allows us to fetch the partially failed threshold for one or all
6838  * transports in an association.  See Section 6.1 of:
6839  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
6840  */
6841 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
6842 					    char __user *optval,
6843 					    int len,
6844 					    int __user *optlen)
6845 {
6846 	struct sctp_paddrthlds val;
6847 	struct sctp_transport *trans;
6848 	struct sctp_association *asoc;
6849 
6850 	if (len < sizeof(struct sctp_paddrthlds))
6851 		return -EINVAL;
6852 	len = sizeof(struct sctp_paddrthlds);
6853 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
6854 		return -EFAULT;
6855 
6856 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
6857 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
6858 		if (!asoc)
6859 			return -ENOENT;
6860 
6861 		val.spt_pathpfthld = asoc->pf_retrans;
6862 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
6863 	} else {
6864 		trans = sctp_addr_id2transport(sk, &val.spt_address,
6865 					       val.spt_assoc_id);
6866 		if (!trans)
6867 			return -ENOENT;
6868 
6869 		val.spt_pathmaxrxt = trans->pathmaxrxt;
6870 		val.spt_pathpfthld = trans->pf_retrans;
6871 	}
6872 
6873 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
6874 		return -EFAULT;
6875 
6876 	return 0;
6877 }
6878 
6879 /*
6880  * SCTP_GET_ASSOC_STATS
6881  *
6882  * This option retrieves local per endpoint statistics. It is modeled
6883  * after OpenSolaris' implementation
6884  */
6885 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
6886 				       char __user *optval,
6887 				       int __user *optlen)
6888 {
6889 	struct sctp_assoc_stats sas;
6890 	struct sctp_association *asoc = NULL;
6891 
6892 	/* User must provide at least the assoc id */
6893 	if (len < sizeof(sctp_assoc_t))
6894 		return -EINVAL;
6895 
6896 	/* Allow the struct to grow and fill in as much as possible */
6897 	len = min_t(size_t, len, sizeof(sas));
6898 
6899 	if (copy_from_user(&sas, optval, len))
6900 		return -EFAULT;
6901 
6902 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
6903 	if (!asoc)
6904 		return -EINVAL;
6905 
6906 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
6907 	sas.sas_gapcnt = asoc->stats.gapcnt;
6908 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
6909 	sas.sas_osacks = asoc->stats.osacks;
6910 	sas.sas_isacks = asoc->stats.isacks;
6911 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
6912 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
6913 	sas.sas_oodchunks = asoc->stats.oodchunks;
6914 	sas.sas_iodchunks = asoc->stats.iodchunks;
6915 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
6916 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
6917 	sas.sas_idupchunks = asoc->stats.idupchunks;
6918 	sas.sas_opackets = asoc->stats.opackets;
6919 	sas.sas_ipackets = asoc->stats.ipackets;
6920 
6921 	/* New high max rto observed, will return 0 if not a single
6922 	 * RTO update took place. obs_rto_ipaddr will be bogus
6923 	 * in such a case
6924 	 */
6925 	sas.sas_maxrto = asoc->stats.max_obs_rto;
6926 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
6927 		sizeof(struct sockaddr_storage));
6928 
6929 	/* Mark beginning of a new observation period */
6930 	asoc->stats.max_obs_rto = asoc->rto_min;
6931 
6932 	if (put_user(len, optlen))
6933 		return -EFAULT;
6934 
6935 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
6936 
6937 	if (copy_to_user(optval, &sas, len))
6938 		return -EFAULT;
6939 
6940 	return 0;
6941 }
6942 
6943 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
6944 				       char __user *optval,
6945 				       int __user *optlen)
6946 {
6947 	int val = 0;
6948 
6949 	if (len < sizeof(int))
6950 		return -EINVAL;
6951 
6952 	len = sizeof(int);
6953 	if (sctp_sk(sk)->recvrcvinfo)
6954 		val = 1;
6955 	if (put_user(len, optlen))
6956 		return -EFAULT;
6957 	if (copy_to_user(optval, &val, len))
6958 		return -EFAULT;
6959 
6960 	return 0;
6961 }
6962 
6963 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
6964 				       char __user *optval,
6965 				       int __user *optlen)
6966 {
6967 	int val = 0;
6968 
6969 	if (len < sizeof(int))
6970 		return -EINVAL;
6971 
6972 	len = sizeof(int);
6973 	if (sctp_sk(sk)->recvnxtinfo)
6974 		val = 1;
6975 	if (put_user(len, optlen))
6976 		return -EFAULT;
6977 	if (copy_to_user(optval, &val, len))
6978 		return -EFAULT;
6979 
6980 	return 0;
6981 }
6982 
6983 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
6984 					char __user *optval,
6985 					int __user *optlen)
6986 {
6987 	struct sctp_assoc_value params;
6988 	struct sctp_association *asoc;
6989 	int retval = -EFAULT;
6990 
6991 	if (len < sizeof(params)) {
6992 		retval = -EINVAL;
6993 		goto out;
6994 	}
6995 
6996 	len = sizeof(params);
6997 	if (copy_from_user(&params, optval, len))
6998 		goto out;
6999 
7000 	asoc = sctp_id2assoc(sk, params.assoc_id);
7001 	if (asoc) {
7002 		params.assoc_value = asoc->prsctp_enable;
7003 	} else if (!params.assoc_id) {
7004 		struct sctp_sock *sp = sctp_sk(sk);
7005 
7006 		params.assoc_value = sp->ep->prsctp_enable;
7007 	} else {
7008 		retval = -EINVAL;
7009 		goto out;
7010 	}
7011 
7012 	if (put_user(len, optlen))
7013 		goto out;
7014 
7015 	if (copy_to_user(optval, &params, len))
7016 		goto out;
7017 
7018 	retval = 0;
7019 
7020 out:
7021 	return retval;
7022 }
7023 
7024 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7025 					  char __user *optval,
7026 					  int __user *optlen)
7027 {
7028 	struct sctp_default_prinfo info;
7029 	struct sctp_association *asoc;
7030 	int retval = -EFAULT;
7031 
7032 	if (len < sizeof(info)) {
7033 		retval = -EINVAL;
7034 		goto out;
7035 	}
7036 
7037 	len = sizeof(info);
7038 	if (copy_from_user(&info, optval, len))
7039 		goto out;
7040 
7041 	asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7042 	if (asoc) {
7043 		info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7044 		info.pr_value = asoc->default_timetolive;
7045 	} else if (!info.pr_assoc_id) {
7046 		struct sctp_sock *sp = sctp_sk(sk);
7047 
7048 		info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7049 		info.pr_value = sp->default_timetolive;
7050 	} else {
7051 		retval = -EINVAL;
7052 		goto out;
7053 	}
7054 
7055 	if (put_user(len, optlen))
7056 		goto out;
7057 
7058 	if (copy_to_user(optval, &info, len))
7059 		goto out;
7060 
7061 	retval = 0;
7062 
7063 out:
7064 	return retval;
7065 }
7066 
7067 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7068 					  char __user *optval,
7069 					  int __user *optlen)
7070 {
7071 	struct sctp_prstatus params;
7072 	struct sctp_association *asoc;
7073 	int policy;
7074 	int retval = -EINVAL;
7075 
7076 	if (len < sizeof(params))
7077 		goto out;
7078 
7079 	len = sizeof(params);
7080 	if (copy_from_user(&params, optval, len)) {
7081 		retval = -EFAULT;
7082 		goto out;
7083 	}
7084 
7085 	policy = params.sprstat_policy;
7086 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)))
7087 		goto out;
7088 
7089 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7090 	if (!asoc)
7091 		goto out;
7092 
7093 	if (policy & SCTP_PR_SCTP_ALL) {
7094 		params.sprstat_abandoned_unsent = 0;
7095 		params.sprstat_abandoned_sent = 0;
7096 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7097 			params.sprstat_abandoned_unsent +=
7098 				asoc->abandoned_unsent[policy];
7099 			params.sprstat_abandoned_sent +=
7100 				asoc->abandoned_sent[policy];
7101 		}
7102 	} else {
7103 		params.sprstat_abandoned_unsent =
7104 			asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7105 		params.sprstat_abandoned_sent =
7106 			asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7107 	}
7108 
7109 	if (put_user(len, optlen)) {
7110 		retval = -EFAULT;
7111 		goto out;
7112 	}
7113 
7114 	if (copy_to_user(optval, &params, len)) {
7115 		retval = -EFAULT;
7116 		goto out;
7117 	}
7118 
7119 	retval = 0;
7120 
7121 out:
7122 	return retval;
7123 }
7124 
7125 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7126 					   char __user *optval,
7127 					   int __user *optlen)
7128 {
7129 	struct sctp_stream_out_ext *streamoute;
7130 	struct sctp_association *asoc;
7131 	struct sctp_prstatus params;
7132 	int retval = -EINVAL;
7133 	int policy;
7134 
7135 	if (len < sizeof(params))
7136 		goto out;
7137 
7138 	len = sizeof(params);
7139 	if (copy_from_user(&params, optval, len)) {
7140 		retval = -EFAULT;
7141 		goto out;
7142 	}
7143 
7144 	policy = params.sprstat_policy;
7145 	if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)))
7146 		goto out;
7147 
7148 	asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7149 	if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7150 		goto out;
7151 
7152 	streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7153 	if (!streamoute) {
7154 		/* Not allocated yet, means all stats are 0 */
7155 		params.sprstat_abandoned_unsent = 0;
7156 		params.sprstat_abandoned_sent = 0;
7157 		retval = 0;
7158 		goto out;
7159 	}
7160 
7161 	if (policy == SCTP_PR_SCTP_ALL) {
7162 		params.sprstat_abandoned_unsent = 0;
7163 		params.sprstat_abandoned_sent = 0;
7164 		for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7165 			params.sprstat_abandoned_unsent +=
7166 				streamoute->abandoned_unsent[policy];
7167 			params.sprstat_abandoned_sent +=
7168 				streamoute->abandoned_sent[policy];
7169 		}
7170 	} else {
7171 		params.sprstat_abandoned_unsent =
7172 			streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7173 		params.sprstat_abandoned_sent =
7174 			streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7175 	}
7176 
7177 	if (put_user(len, optlen) || copy_to_user(optval, &params, len)) {
7178 		retval = -EFAULT;
7179 		goto out;
7180 	}
7181 
7182 	retval = 0;
7183 
7184 out:
7185 	return retval;
7186 }
7187 
7188 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7189 					      char __user *optval,
7190 					      int __user *optlen)
7191 {
7192 	struct sctp_assoc_value params;
7193 	struct sctp_association *asoc;
7194 	int retval = -EFAULT;
7195 
7196 	if (len < sizeof(params)) {
7197 		retval = -EINVAL;
7198 		goto out;
7199 	}
7200 
7201 	len = sizeof(params);
7202 	if (copy_from_user(&params, optval, len))
7203 		goto out;
7204 
7205 	asoc = sctp_id2assoc(sk, params.assoc_id);
7206 	if (asoc) {
7207 		params.assoc_value = asoc->reconf_enable;
7208 	} else if (!params.assoc_id) {
7209 		struct sctp_sock *sp = sctp_sk(sk);
7210 
7211 		params.assoc_value = sp->ep->reconf_enable;
7212 	} else {
7213 		retval = -EINVAL;
7214 		goto out;
7215 	}
7216 
7217 	if (put_user(len, optlen))
7218 		goto out;
7219 
7220 	if (copy_to_user(optval, &params, len))
7221 		goto out;
7222 
7223 	retval = 0;
7224 
7225 out:
7226 	return retval;
7227 }
7228 
7229 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7230 					   char __user *optval,
7231 					   int __user *optlen)
7232 {
7233 	struct sctp_assoc_value params;
7234 	struct sctp_association *asoc;
7235 	int retval = -EFAULT;
7236 
7237 	if (len < sizeof(params)) {
7238 		retval = -EINVAL;
7239 		goto out;
7240 	}
7241 
7242 	len = sizeof(params);
7243 	if (copy_from_user(&params, optval, len))
7244 		goto out;
7245 
7246 	asoc = sctp_id2assoc(sk, params.assoc_id);
7247 	if (asoc) {
7248 		params.assoc_value = asoc->strreset_enable;
7249 	} else if (!params.assoc_id) {
7250 		struct sctp_sock *sp = sctp_sk(sk);
7251 
7252 		params.assoc_value = sp->ep->strreset_enable;
7253 	} else {
7254 		retval = -EINVAL;
7255 		goto out;
7256 	}
7257 
7258 	if (put_user(len, optlen))
7259 		goto out;
7260 
7261 	if (copy_to_user(optval, &params, len))
7262 		goto out;
7263 
7264 	retval = 0;
7265 
7266 out:
7267 	return retval;
7268 }
7269 
7270 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7271 				     char __user *optval,
7272 				     int __user *optlen)
7273 {
7274 	struct sctp_assoc_value params;
7275 	struct sctp_association *asoc;
7276 	int retval = -EFAULT;
7277 
7278 	if (len < sizeof(params)) {
7279 		retval = -EINVAL;
7280 		goto out;
7281 	}
7282 
7283 	len = sizeof(params);
7284 	if (copy_from_user(&params, optval, len))
7285 		goto out;
7286 
7287 	asoc = sctp_id2assoc(sk, params.assoc_id);
7288 	if (!asoc) {
7289 		retval = -EINVAL;
7290 		goto out;
7291 	}
7292 
7293 	params.assoc_value = sctp_sched_get_sched(asoc);
7294 
7295 	if (put_user(len, optlen))
7296 		goto out;
7297 
7298 	if (copy_to_user(optval, &params, len))
7299 		goto out;
7300 
7301 	retval = 0;
7302 
7303 out:
7304 	return retval;
7305 }
7306 
7307 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7308 					   char __user *optval,
7309 					   int __user *optlen)
7310 {
7311 	struct sctp_stream_value params;
7312 	struct sctp_association *asoc;
7313 	int retval = -EFAULT;
7314 
7315 	if (len < sizeof(params)) {
7316 		retval = -EINVAL;
7317 		goto out;
7318 	}
7319 
7320 	len = sizeof(params);
7321 	if (copy_from_user(&params, optval, len))
7322 		goto out;
7323 
7324 	asoc = sctp_id2assoc(sk, params.assoc_id);
7325 	if (!asoc) {
7326 		retval = -EINVAL;
7327 		goto out;
7328 	}
7329 
7330 	retval = sctp_sched_get_value(asoc, params.stream_id,
7331 				      &params.stream_value);
7332 	if (retval)
7333 		goto out;
7334 
7335 	if (put_user(len, optlen)) {
7336 		retval = -EFAULT;
7337 		goto out;
7338 	}
7339 
7340 	if (copy_to_user(optval, &params, len)) {
7341 		retval = -EFAULT;
7342 		goto out;
7343 	}
7344 
7345 out:
7346 	return retval;
7347 }
7348 
7349 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7350 						  char __user *optval,
7351 						  int __user *optlen)
7352 {
7353 	struct sctp_assoc_value params;
7354 	struct sctp_association *asoc;
7355 	int retval = -EFAULT;
7356 
7357 	if (len < sizeof(params)) {
7358 		retval = -EINVAL;
7359 		goto out;
7360 	}
7361 
7362 	len = sizeof(params);
7363 	if (copy_from_user(&params, optval, len))
7364 		goto out;
7365 
7366 	asoc = sctp_id2assoc(sk, params.assoc_id);
7367 	if (asoc) {
7368 		params.assoc_value = asoc->intl_enable;
7369 	} else if (!params.assoc_id) {
7370 		struct sctp_sock *sp = sctp_sk(sk);
7371 
7372 		params.assoc_value = sp->strm_interleave;
7373 	} else {
7374 		retval = -EINVAL;
7375 		goto out;
7376 	}
7377 
7378 	if (put_user(len, optlen))
7379 		goto out;
7380 
7381 	if (copy_to_user(optval, &params, len))
7382 		goto out;
7383 
7384 	retval = 0;
7385 
7386 out:
7387 	return retval;
7388 }
7389 
7390 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7391 				      char __user *optval,
7392 				      int __user *optlen)
7393 {
7394 	int val;
7395 
7396 	if (len < sizeof(int))
7397 		return -EINVAL;
7398 
7399 	len = sizeof(int);
7400 	val = sctp_sk(sk)->reuse;
7401 	if (put_user(len, optlen))
7402 		return -EFAULT;
7403 
7404 	if (copy_to_user(optval, &val, len))
7405 		return -EFAULT;
7406 
7407 	return 0;
7408 }
7409 
7410 static int sctp_getsockopt(struct sock *sk, int level, int optname,
7411 			   char __user *optval, int __user *optlen)
7412 {
7413 	int retval = 0;
7414 	int len;
7415 
7416 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7417 
7418 	/* I can hardly begin to describe how wrong this is.  This is
7419 	 * so broken as to be worse than useless.  The API draft
7420 	 * REALLY is NOT helpful here...  I am not convinced that the
7421 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7422 	 * are at all well-founded.
7423 	 */
7424 	if (level != SOL_SCTP) {
7425 		struct sctp_af *af = sctp_sk(sk)->pf->af;
7426 
7427 		retval = af->getsockopt(sk, level, optname, optval, optlen);
7428 		return retval;
7429 	}
7430 
7431 	if (get_user(len, optlen))
7432 		return -EFAULT;
7433 
7434 	if (len < 0)
7435 		return -EINVAL;
7436 
7437 	lock_sock(sk);
7438 
7439 	switch (optname) {
7440 	case SCTP_STATUS:
7441 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7442 		break;
7443 	case SCTP_DISABLE_FRAGMENTS:
7444 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7445 							   optlen);
7446 		break;
7447 	case SCTP_EVENTS:
7448 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
7449 		break;
7450 	case SCTP_AUTOCLOSE:
7451 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7452 		break;
7453 	case SCTP_SOCKOPT_PEELOFF:
7454 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7455 		break;
7456 	case SCTP_SOCKOPT_PEELOFF_FLAGS:
7457 		retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7458 		break;
7459 	case SCTP_PEER_ADDR_PARAMS:
7460 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7461 							  optlen);
7462 		break;
7463 	case SCTP_DELAYED_SACK:
7464 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7465 							  optlen);
7466 		break;
7467 	case SCTP_INITMSG:
7468 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7469 		break;
7470 	case SCTP_GET_PEER_ADDRS:
7471 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7472 						    optlen);
7473 		break;
7474 	case SCTP_GET_LOCAL_ADDRS:
7475 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
7476 						     optlen);
7477 		break;
7478 	case SCTP_SOCKOPT_CONNECTX3:
7479 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7480 		break;
7481 	case SCTP_DEFAULT_SEND_PARAM:
7482 		retval = sctp_getsockopt_default_send_param(sk, len,
7483 							    optval, optlen);
7484 		break;
7485 	case SCTP_DEFAULT_SNDINFO:
7486 		retval = sctp_getsockopt_default_sndinfo(sk, len,
7487 							 optval, optlen);
7488 		break;
7489 	case SCTP_PRIMARY_ADDR:
7490 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7491 		break;
7492 	case SCTP_NODELAY:
7493 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7494 		break;
7495 	case SCTP_RTOINFO:
7496 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7497 		break;
7498 	case SCTP_ASSOCINFO:
7499 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7500 		break;
7501 	case SCTP_I_WANT_MAPPED_V4_ADDR:
7502 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7503 		break;
7504 	case SCTP_MAXSEG:
7505 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7506 		break;
7507 	case SCTP_GET_PEER_ADDR_INFO:
7508 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7509 							optlen);
7510 		break;
7511 	case SCTP_ADAPTATION_LAYER:
7512 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7513 							optlen);
7514 		break;
7515 	case SCTP_CONTEXT:
7516 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
7517 		break;
7518 	case SCTP_FRAGMENT_INTERLEAVE:
7519 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7520 							     optlen);
7521 		break;
7522 	case SCTP_PARTIAL_DELIVERY_POINT:
7523 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7524 								optlen);
7525 		break;
7526 	case SCTP_MAX_BURST:
7527 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7528 		break;
7529 	case SCTP_AUTH_KEY:
7530 	case SCTP_AUTH_CHUNK:
7531 	case SCTP_AUTH_DELETE_KEY:
7532 	case SCTP_AUTH_DEACTIVATE_KEY:
7533 		retval = -EOPNOTSUPP;
7534 		break;
7535 	case SCTP_HMAC_IDENT:
7536 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7537 		break;
7538 	case SCTP_AUTH_ACTIVE_KEY:
7539 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7540 		break;
7541 	case SCTP_PEER_AUTH_CHUNKS:
7542 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7543 							optlen);
7544 		break;
7545 	case SCTP_LOCAL_AUTH_CHUNKS:
7546 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7547 							optlen);
7548 		break;
7549 	case SCTP_GET_ASSOC_NUMBER:
7550 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7551 		break;
7552 	case SCTP_GET_ASSOC_ID_LIST:
7553 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7554 		break;
7555 	case SCTP_AUTO_ASCONF:
7556 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7557 		break;
7558 	case SCTP_PEER_ADDR_THLDS:
7559 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
7560 		break;
7561 	case SCTP_GET_ASSOC_STATS:
7562 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7563 		break;
7564 	case SCTP_RECVRCVINFO:
7565 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7566 		break;
7567 	case SCTP_RECVNXTINFO:
7568 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7569 		break;
7570 	case SCTP_PR_SUPPORTED:
7571 		retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7572 		break;
7573 	case SCTP_DEFAULT_PRINFO:
7574 		retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7575 							optlen);
7576 		break;
7577 	case SCTP_PR_ASSOC_STATUS:
7578 		retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7579 							optlen);
7580 		break;
7581 	case SCTP_PR_STREAM_STATUS:
7582 		retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7583 							 optlen);
7584 		break;
7585 	case SCTP_RECONFIG_SUPPORTED:
7586 		retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7587 							    optlen);
7588 		break;
7589 	case SCTP_ENABLE_STREAM_RESET:
7590 		retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7591 							 optlen);
7592 		break;
7593 	case SCTP_STREAM_SCHEDULER:
7594 		retval = sctp_getsockopt_scheduler(sk, len, optval,
7595 						   optlen);
7596 		break;
7597 	case SCTP_STREAM_SCHEDULER_VALUE:
7598 		retval = sctp_getsockopt_scheduler_value(sk, len, optval,
7599 							 optlen);
7600 		break;
7601 	case SCTP_INTERLEAVING_SUPPORTED:
7602 		retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
7603 								optlen);
7604 		break;
7605 	case SCTP_REUSE_PORT:
7606 		retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
7607 		break;
7608 	default:
7609 		retval = -ENOPROTOOPT;
7610 		break;
7611 	}
7612 
7613 	release_sock(sk);
7614 	return retval;
7615 }
7616 
7617 static int sctp_hash(struct sock *sk)
7618 {
7619 	/* STUB */
7620 	return 0;
7621 }
7622 
7623 static void sctp_unhash(struct sock *sk)
7624 {
7625 	/* STUB */
7626 }
7627 
7628 /* Check if port is acceptable.  Possibly find first available port.
7629  *
7630  * The port hash table (contained in the 'global' SCTP protocol storage
7631  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
7632  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
7633  * list (the list number is the port number hashed out, so as you
7634  * would expect from a hash function, all the ports in a given list have
7635  * such a number that hashes out to the same list number; you were
7636  * expecting that, right?); so each list has a set of ports, with a
7637  * link to the socket (struct sock) that uses it, the port number and
7638  * a fastreuse flag (FIXME: NPI ipg).
7639  */
7640 static struct sctp_bind_bucket *sctp_bucket_create(
7641 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
7642 
7643 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
7644 {
7645 	bool reuse = (sk->sk_reuse || sctp_sk(sk)->reuse);
7646 	struct sctp_bind_hashbucket *head; /* hash list */
7647 	struct sctp_bind_bucket *pp;
7648 	unsigned short snum;
7649 	int ret;
7650 
7651 	snum = ntohs(addr->v4.sin_port);
7652 
7653 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
7654 
7655 	local_bh_disable();
7656 
7657 	if (snum == 0) {
7658 		/* Search for an available port. */
7659 		int low, high, remaining, index;
7660 		unsigned int rover;
7661 		struct net *net = sock_net(sk);
7662 
7663 		inet_get_local_port_range(net, &low, &high);
7664 		remaining = (high - low) + 1;
7665 		rover = prandom_u32() % remaining + low;
7666 
7667 		do {
7668 			rover++;
7669 			if ((rover < low) || (rover > high))
7670 				rover = low;
7671 			if (inet_is_local_reserved_port(net, rover))
7672 				continue;
7673 			index = sctp_phashfn(sock_net(sk), rover);
7674 			head = &sctp_port_hashtable[index];
7675 			spin_lock(&head->lock);
7676 			sctp_for_each_hentry(pp, &head->chain)
7677 				if ((pp->port == rover) &&
7678 				    net_eq(sock_net(sk), pp->net))
7679 					goto next;
7680 			break;
7681 		next:
7682 			spin_unlock(&head->lock);
7683 		} while (--remaining > 0);
7684 
7685 		/* Exhausted local port range during search? */
7686 		ret = 1;
7687 		if (remaining <= 0)
7688 			goto fail;
7689 
7690 		/* OK, here is the one we will use.  HEAD (the port
7691 		 * hash table list entry) is non-NULL and we hold it's
7692 		 * mutex.
7693 		 */
7694 		snum = rover;
7695 	} else {
7696 		/* We are given an specific port number; we verify
7697 		 * that it is not being used. If it is used, we will
7698 		 * exahust the search in the hash list corresponding
7699 		 * to the port number (snum) - we detect that with the
7700 		 * port iterator, pp being NULL.
7701 		 */
7702 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
7703 		spin_lock(&head->lock);
7704 		sctp_for_each_hentry(pp, &head->chain) {
7705 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
7706 				goto pp_found;
7707 		}
7708 	}
7709 	pp = NULL;
7710 	goto pp_not_found;
7711 pp_found:
7712 	if (!hlist_empty(&pp->owner)) {
7713 		/* We had a port hash table hit - there is an
7714 		 * available port (pp != NULL) and it is being
7715 		 * used by other socket (pp->owner not empty); that other
7716 		 * socket is going to be sk2.
7717 		 */
7718 		struct sock *sk2;
7719 
7720 		pr_debug("%s: found a possible match\n", __func__);
7721 
7722 		if (pp->fastreuse && reuse && sk->sk_state != SCTP_SS_LISTENING)
7723 			goto success;
7724 
7725 		/* Run through the list of sockets bound to the port
7726 		 * (pp->port) [via the pointers bind_next and
7727 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
7728 		 * we get the endpoint they describe and run through
7729 		 * the endpoint's list of IP (v4 or v6) addresses,
7730 		 * comparing each of the addresses with the address of
7731 		 * the socket sk. If we find a match, then that means
7732 		 * that this port/socket (sk) combination are already
7733 		 * in an endpoint.
7734 		 */
7735 		sk_for_each_bound(sk2, &pp->owner) {
7736 			struct sctp_endpoint *ep2;
7737 			ep2 = sctp_sk(sk2)->ep;
7738 
7739 			if (sk == sk2 ||
7740 			    (reuse && (sk2->sk_reuse || sctp_sk(sk2)->reuse) &&
7741 			     sk2->sk_state != SCTP_SS_LISTENING))
7742 				continue;
7743 
7744 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
7745 						 sctp_sk(sk2), sctp_sk(sk))) {
7746 				ret = (long)sk2;
7747 				goto fail_unlock;
7748 			}
7749 		}
7750 
7751 		pr_debug("%s: found a match\n", __func__);
7752 	}
7753 pp_not_found:
7754 	/* If there was a hash table miss, create a new port.  */
7755 	ret = 1;
7756 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
7757 		goto fail_unlock;
7758 
7759 	/* In either case (hit or miss), make sure fastreuse is 1 only
7760 	 * if sk->sk_reuse is too (that is, if the caller requested
7761 	 * SO_REUSEADDR on this socket -sk-).
7762 	 */
7763 	if (hlist_empty(&pp->owner)) {
7764 		if (reuse && sk->sk_state != SCTP_SS_LISTENING)
7765 			pp->fastreuse = 1;
7766 		else
7767 			pp->fastreuse = 0;
7768 	} else if (pp->fastreuse &&
7769 		   (!reuse || sk->sk_state == SCTP_SS_LISTENING))
7770 		pp->fastreuse = 0;
7771 
7772 	/* We are set, so fill up all the data in the hash table
7773 	 * entry, tie the socket list information with the rest of the
7774 	 * sockets FIXME: Blurry, NPI (ipg).
7775 	 */
7776 success:
7777 	if (!sctp_sk(sk)->bind_hash) {
7778 		inet_sk(sk)->inet_num = snum;
7779 		sk_add_bind_node(sk, &pp->owner);
7780 		sctp_sk(sk)->bind_hash = pp;
7781 	}
7782 	ret = 0;
7783 
7784 fail_unlock:
7785 	spin_unlock(&head->lock);
7786 
7787 fail:
7788 	local_bh_enable();
7789 	return ret;
7790 }
7791 
7792 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
7793  * port is requested.
7794  */
7795 static int sctp_get_port(struct sock *sk, unsigned short snum)
7796 {
7797 	union sctp_addr addr;
7798 	struct sctp_af *af = sctp_sk(sk)->pf->af;
7799 
7800 	/* Set up a dummy address struct from the sk. */
7801 	af->from_sk(&addr, sk);
7802 	addr.v4.sin_port = htons(snum);
7803 
7804 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
7805 	return !!sctp_get_port_local(sk, &addr);
7806 }
7807 
7808 /*
7809  *  Move a socket to LISTENING state.
7810  */
7811 static int sctp_listen_start(struct sock *sk, int backlog)
7812 {
7813 	struct sctp_sock *sp = sctp_sk(sk);
7814 	struct sctp_endpoint *ep = sp->ep;
7815 	struct crypto_shash *tfm = NULL;
7816 	char alg[32];
7817 
7818 	/* Allocate HMAC for generating cookie. */
7819 	if (!sp->hmac && sp->sctp_hmac_alg) {
7820 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
7821 		tfm = crypto_alloc_shash(alg, 0, 0);
7822 		if (IS_ERR(tfm)) {
7823 			net_info_ratelimited("failed to load transform for %s: %ld\n",
7824 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
7825 			return -ENOSYS;
7826 		}
7827 		sctp_sk(sk)->hmac = tfm;
7828 	}
7829 
7830 	/*
7831 	 * If a bind() or sctp_bindx() is not called prior to a listen()
7832 	 * call that allows new associations to be accepted, the system
7833 	 * picks an ephemeral port and will choose an address set equivalent
7834 	 * to binding with a wildcard address.
7835 	 *
7836 	 * This is not currently spelled out in the SCTP sockets
7837 	 * extensions draft, but follows the practice as seen in TCP
7838 	 * sockets.
7839 	 *
7840 	 */
7841 	inet_sk_set_state(sk, SCTP_SS_LISTENING);
7842 	if (!ep->base.bind_addr.port) {
7843 		if (sctp_autobind(sk))
7844 			return -EAGAIN;
7845 	} else {
7846 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
7847 			inet_sk_set_state(sk, SCTP_SS_CLOSED);
7848 			return -EADDRINUSE;
7849 		}
7850 	}
7851 
7852 	sk->sk_max_ack_backlog = backlog;
7853 	sctp_hash_endpoint(ep);
7854 	return 0;
7855 }
7856 
7857 /*
7858  * 4.1.3 / 5.1.3 listen()
7859  *
7860  *   By default, new associations are not accepted for UDP style sockets.
7861  *   An application uses listen() to mark a socket as being able to
7862  *   accept new associations.
7863  *
7864  *   On TCP style sockets, applications use listen() to ready the SCTP
7865  *   endpoint for accepting inbound associations.
7866  *
7867  *   On both types of endpoints a backlog of '0' disables listening.
7868  *
7869  *  Move a socket to LISTENING state.
7870  */
7871 int sctp_inet_listen(struct socket *sock, int backlog)
7872 {
7873 	struct sock *sk = sock->sk;
7874 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
7875 	int err = -EINVAL;
7876 
7877 	if (unlikely(backlog < 0))
7878 		return err;
7879 
7880 	lock_sock(sk);
7881 
7882 	/* Peeled-off sockets are not allowed to listen().  */
7883 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
7884 		goto out;
7885 
7886 	if (sock->state != SS_UNCONNECTED)
7887 		goto out;
7888 
7889 	if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
7890 		goto out;
7891 
7892 	/* If backlog is zero, disable listening. */
7893 	if (!backlog) {
7894 		if (sctp_sstate(sk, CLOSED))
7895 			goto out;
7896 
7897 		err = 0;
7898 		sctp_unhash_endpoint(ep);
7899 		sk->sk_state = SCTP_SS_CLOSED;
7900 		if (sk->sk_reuse || sctp_sk(sk)->reuse)
7901 			sctp_sk(sk)->bind_hash->fastreuse = 1;
7902 		goto out;
7903 	}
7904 
7905 	/* If we are already listening, just update the backlog */
7906 	if (sctp_sstate(sk, LISTENING))
7907 		sk->sk_max_ack_backlog = backlog;
7908 	else {
7909 		err = sctp_listen_start(sk, backlog);
7910 		if (err)
7911 			goto out;
7912 	}
7913 
7914 	err = 0;
7915 out:
7916 	release_sock(sk);
7917 	return err;
7918 }
7919 
7920 /*
7921  * This function is done by modeling the current datagram_poll() and the
7922  * tcp_poll().  Note that, based on these implementations, we don't
7923  * lock the socket in this function, even though it seems that,
7924  * ideally, locking or some other mechanisms can be used to ensure
7925  * the integrity of the counters (sndbuf and wmem_alloc) used
7926  * in this place.  We assume that we don't need locks either until proven
7927  * otherwise.
7928  *
7929  * Another thing to note is that we include the Async I/O support
7930  * here, again, by modeling the current TCP/UDP code.  We don't have
7931  * a good way to test with it yet.
7932  */
7933 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
7934 {
7935 	struct sock *sk = sock->sk;
7936 	struct sctp_sock *sp = sctp_sk(sk);
7937 	__poll_t mask;
7938 
7939 	poll_wait(file, sk_sleep(sk), wait);
7940 
7941 	sock_rps_record_flow(sk);
7942 
7943 	/* A TCP-style listening socket becomes readable when the accept queue
7944 	 * is not empty.
7945 	 */
7946 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
7947 		return (!list_empty(&sp->ep->asocs)) ?
7948 			(EPOLLIN | EPOLLRDNORM) : 0;
7949 
7950 	mask = 0;
7951 
7952 	/* Is there any exceptional events?  */
7953 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
7954 		mask |= EPOLLERR |
7955 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
7956 	if (sk->sk_shutdown & RCV_SHUTDOWN)
7957 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
7958 	if (sk->sk_shutdown == SHUTDOWN_MASK)
7959 		mask |= EPOLLHUP;
7960 
7961 	/* Is it readable?  Reconsider this code with TCP-style support.  */
7962 	if (!skb_queue_empty(&sk->sk_receive_queue))
7963 		mask |= EPOLLIN | EPOLLRDNORM;
7964 
7965 	/* The association is either gone or not ready.  */
7966 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
7967 		return mask;
7968 
7969 	/* Is it writable?  */
7970 	if (sctp_writeable(sk)) {
7971 		mask |= EPOLLOUT | EPOLLWRNORM;
7972 	} else {
7973 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
7974 		/*
7975 		 * Since the socket is not locked, the buffer
7976 		 * might be made available after the writeable check and
7977 		 * before the bit is set.  This could cause a lost I/O
7978 		 * signal.  tcp_poll() has a race breaker for this race
7979 		 * condition.  Based on their implementation, we put
7980 		 * in the following code to cover it as well.
7981 		 */
7982 		if (sctp_writeable(sk))
7983 			mask |= EPOLLOUT | EPOLLWRNORM;
7984 	}
7985 	return mask;
7986 }
7987 
7988 /********************************************************************
7989  * 2nd Level Abstractions
7990  ********************************************************************/
7991 
7992 static struct sctp_bind_bucket *sctp_bucket_create(
7993 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
7994 {
7995 	struct sctp_bind_bucket *pp;
7996 
7997 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
7998 	if (pp) {
7999 		SCTP_DBG_OBJCNT_INC(bind_bucket);
8000 		pp->port = snum;
8001 		pp->fastreuse = 0;
8002 		INIT_HLIST_HEAD(&pp->owner);
8003 		pp->net = net;
8004 		hlist_add_head(&pp->node, &head->chain);
8005 	}
8006 	return pp;
8007 }
8008 
8009 /* Caller must hold hashbucket lock for this tb with local BH disabled */
8010 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8011 {
8012 	if (pp && hlist_empty(&pp->owner)) {
8013 		__hlist_del(&pp->node);
8014 		kmem_cache_free(sctp_bucket_cachep, pp);
8015 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
8016 	}
8017 }
8018 
8019 /* Release this socket's reference to a local port.  */
8020 static inline void __sctp_put_port(struct sock *sk)
8021 {
8022 	struct sctp_bind_hashbucket *head =
8023 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8024 						  inet_sk(sk)->inet_num)];
8025 	struct sctp_bind_bucket *pp;
8026 
8027 	spin_lock(&head->lock);
8028 	pp = sctp_sk(sk)->bind_hash;
8029 	__sk_del_bind_node(sk);
8030 	sctp_sk(sk)->bind_hash = NULL;
8031 	inet_sk(sk)->inet_num = 0;
8032 	sctp_bucket_destroy(pp);
8033 	spin_unlock(&head->lock);
8034 }
8035 
8036 void sctp_put_port(struct sock *sk)
8037 {
8038 	local_bh_disable();
8039 	__sctp_put_port(sk);
8040 	local_bh_enable();
8041 }
8042 
8043 /*
8044  * The system picks an ephemeral port and choose an address set equivalent
8045  * to binding with a wildcard address.
8046  * One of those addresses will be the primary address for the association.
8047  * This automatically enables the multihoming capability of SCTP.
8048  */
8049 static int sctp_autobind(struct sock *sk)
8050 {
8051 	union sctp_addr autoaddr;
8052 	struct sctp_af *af;
8053 	__be16 port;
8054 
8055 	/* Initialize a local sockaddr structure to INADDR_ANY. */
8056 	af = sctp_sk(sk)->pf->af;
8057 
8058 	port = htons(inet_sk(sk)->inet_num);
8059 	af->inaddr_any(&autoaddr, port);
8060 
8061 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8062 }
8063 
8064 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
8065  *
8066  * From RFC 2292
8067  * 4.2 The cmsghdr Structure *
8068  *
8069  * When ancillary data is sent or received, any number of ancillary data
8070  * objects can be specified by the msg_control and msg_controllen members of
8071  * the msghdr structure, because each object is preceded by
8072  * a cmsghdr structure defining the object's length (the cmsg_len member).
8073  * Historically Berkeley-derived implementations have passed only one object
8074  * at a time, but this API allows multiple objects to be
8075  * passed in a single call to sendmsg() or recvmsg(). The following example
8076  * shows two ancillary data objects in a control buffer.
8077  *
8078  *   |<--------------------------- msg_controllen -------------------------->|
8079  *   |                                                                       |
8080  *
8081  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
8082  *
8083  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8084  *   |                                   |                                   |
8085  *
8086  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
8087  *
8088  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
8089  *   |                                |  |                                |  |
8090  *
8091  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8092  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
8093  *
8094  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
8095  *
8096  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8097  *    ^
8098  *    |
8099  *
8100  * msg_control
8101  * points here
8102  */
8103 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8104 {
8105 	struct msghdr *my_msg = (struct msghdr *)msg;
8106 	struct cmsghdr *cmsg;
8107 
8108 	for_each_cmsghdr(cmsg, my_msg) {
8109 		if (!CMSG_OK(my_msg, cmsg))
8110 			return -EINVAL;
8111 
8112 		/* Should we parse this header or ignore?  */
8113 		if (cmsg->cmsg_level != IPPROTO_SCTP)
8114 			continue;
8115 
8116 		/* Strictly check lengths following example in SCM code.  */
8117 		switch (cmsg->cmsg_type) {
8118 		case SCTP_INIT:
8119 			/* SCTP Socket API Extension
8120 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8121 			 *
8122 			 * This cmsghdr structure provides information for
8123 			 * initializing new SCTP associations with sendmsg().
8124 			 * The SCTP_INITMSG socket option uses this same data
8125 			 * structure.  This structure is not used for
8126 			 * recvmsg().
8127 			 *
8128 			 * cmsg_level    cmsg_type      cmsg_data[]
8129 			 * ------------  ------------   ----------------------
8130 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
8131 			 */
8132 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8133 				return -EINVAL;
8134 
8135 			cmsgs->init = CMSG_DATA(cmsg);
8136 			break;
8137 
8138 		case SCTP_SNDRCV:
8139 			/* SCTP Socket API Extension
8140 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8141 			 *
8142 			 * This cmsghdr structure specifies SCTP options for
8143 			 * sendmsg() and describes SCTP header information
8144 			 * about a received message through recvmsg().
8145 			 *
8146 			 * cmsg_level    cmsg_type      cmsg_data[]
8147 			 * ------------  ------------   ----------------------
8148 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
8149 			 */
8150 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8151 				return -EINVAL;
8152 
8153 			cmsgs->srinfo = CMSG_DATA(cmsg);
8154 
8155 			if (cmsgs->srinfo->sinfo_flags &
8156 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8157 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8158 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8159 				return -EINVAL;
8160 			break;
8161 
8162 		case SCTP_SNDINFO:
8163 			/* SCTP Socket API Extension
8164 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8165 			 *
8166 			 * This cmsghdr structure specifies SCTP options for
8167 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
8168 			 * SCTP_SNDRCV which has been deprecated.
8169 			 *
8170 			 * cmsg_level    cmsg_type      cmsg_data[]
8171 			 * ------------  ------------   ---------------------
8172 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
8173 			 */
8174 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8175 				return -EINVAL;
8176 
8177 			cmsgs->sinfo = CMSG_DATA(cmsg);
8178 
8179 			if (cmsgs->sinfo->snd_flags &
8180 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8181 			      SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8182 			      SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8183 				return -EINVAL;
8184 			break;
8185 		case SCTP_PRINFO:
8186 			/* SCTP Socket API Extension
8187 			 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8188 			 *
8189 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8190 			 *
8191 			 * cmsg_level    cmsg_type      cmsg_data[]
8192 			 * ------------  ------------   ---------------------
8193 			 * IPPROTO_SCTP  SCTP_PRINFO    struct sctp_prinfo
8194 			 */
8195 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8196 				return -EINVAL;
8197 
8198 			cmsgs->prinfo = CMSG_DATA(cmsg);
8199 			if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8200 				return -EINVAL;
8201 
8202 			if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8203 				cmsgs->prinfo->pr_value = 0;
8204 			break;
8205 		case SCTP_AUTHINFO:
8206 			/* SCTP Socket API Extension
8207 			 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8208 			 *
8209 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8210 			 *
8211 			 * cmsg_level    cmsg_type      cmsg_data[]
8212 			 * ------------  ------------   ---------------------
8213 			 * IPPROTO_SCTP  SCTP_AUTHINFO  struct sctp_authinfo
8214 			 */
8215 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8216 				return -EINVAL;
8217 
8218 			cmsgs->authinfo = CMSG_DATA(cmsg);
8219 			break;
8220 		case SCTP_DSTADDRV4:
8221 		case SCTP_DSTADDRV6:
8222 			/* SCTP Socket API Extension
8223 			 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8224 			 *
8225 			 * This cmsghdr structure specifies SCTP options for sendmsg().
8226 			 *
8227 			 * cmsg_level    cmsg_type         cmsg_data[]
8228 			 * ------------  ------------   ---------------------
8229 			 * IPPROTO_SCTP  SCTP_DSTADDRV4 struct in_addr
8230 			 * ------------  ------------   ---------------------
8231 			 * IPPROTO_SCTP  SCTP_DSTADDRV6 struct in6_addr
8232 			 */
8233 			cmsgs->addrs_msg = my_msg;
8234 			break;
8235 		default:
8236 			return -EINVAL;
8237 		}
8238 	}
8239 
8240 	return 0;
8241 }
8242 
8243 /*
8244  * Wait for a packet..
8245  * Note: This function is the same function as in core/datagram.c
8246  * with a few modifications to make lksctp work.
8247  */
8248 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8249 {
8250 	int error;
8251 	DEFINE_WAIT(wait);
8252 
8253 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8254 
8255 	/* Socket errors? */
8256 	error = sock_error(sk);
8257 	if (error)
8258 		goto out;
8259 
8260 	if (!skb_queue_empty(&sk->sk_receive_queue))
8261 		goto ready;
8262 
8263 	/* Socket shut down?  */
8264 	if (sk->sk_shutdown & RCV_SHUTDOWN)
8265 		goto out;
8266 
8267 	/* Sequenced packets can come disconnected.  If so we report the
8268 	 * problem.
8269 	 */
8270 	error = -ENOTCONN;
8271 
8272 	/* Is there a good reason to think that we may receive some data?  */
8273 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8274 		goto out;
8275 
8276 	/* Handle signals.  */
8277 	if (signal_pending(current))
8278 		goto interrupted;
8279 
8280 	/* Let another process have a go.  Since we are going to sleep
8281 	 * anyway.  Note: This may cause odd behaviors if the message
8282 	 * does not fit in the user's buffer, but this seems to be the
8283 	 * only way to honor MSG_DONTWAIT realistically.
8284 	 */
8285 	release_sock(sk);
8286 	*timeo_p = schedule_timeout(*timeo_p);
8287 	lock_sock(sk);
8288 
8289 ready:
8290 	finish_wait(sk_sleep(sk), &wait);
8291 	return 0;
8292 
8293 interrupted:
8294 	error = sock_intr_errno(*timeo_p);
8295 
8296 out:
8297 	finish_wait(sk_sleep(sk), &wait);
8298 	*err = error;
8299 	return error;
8300 }
8301 
8302 /* Receive a datagram.
8303  * Note: This is pretty much the same routine as in core/datagram.c
8304  * with a few changes to make lksctp work.
8305  */
8306 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8307 				       int noblock, int *err)
8308 {
8309 	int error;
8310 	struct sk_buff *skb;
8311 	long timeo;
8312 
8313 	timeo = sock_rcvtimeo(sk, noblock);
8314 
8315 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8316 		 MAX_SCHEDULE_TIMEOUT);
8317 
8318 	do {
8319 		/* Again only user level code calls this function,
8320 		 * so nothing interrupt level
8321 		 * will suddenly eat the receive_queue.
8322 		 *
8323 		 *  Look at current nfs client by the way...
8324 		 *  However, this function was correct in any case. 8)
8325 		 */
8326 		if (flags & MSG_PEEK) {
8327 			skb = skb_peek(&sk->sk_receive_queue);
8328 			if (skb)
8329 				refcount_inc(&skb->users);
8330 		} else {
8331 			skb = __skb_dequeue(&sk->sk_receive_queue);
8332 		}
8333 
8334 		if (skb)
8335 			return skb;
8336 
8337 		/* Caller is allowed not to check sk->sk_err before calling. */
8338 		error = sock_error(sk);
8339 		if (error)
8340 			goto no_packet;
8341 
8342 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8343 			break;
8344 
8345 		if (sk_can_busy_loop(sk)) {
8346 			sk_busy_loop(sk, noblock);
8347 
8348 			if (!skb_queue_empty(&sk->sk_receive_queue))
8349 				continue;
8350 		}
8351 
8352 		/* User doesn't want to wait.  */
8353 		error = -EAGAIN;
8354 		if (!timeo)
8355 			goto no_packet;
8356 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8357 
8358 	return NULL;
8359 
8360 no_packet:
8361 	*err = error;
8362 	return NULL;
8363 }
8364 
8365 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
8366 static void __sctp_write_space(struct sctp_association *asoc)
8367 {
8368 	struct sock *sk = asoc->base.sk;
8369 
8370 	if (sctp_wspace(asoc) <= 0)
8371 		return;
8372 
8373 	if (waitqueue_active(&asoc->wait))
8374 		wake_up_interruptible(&asoc->wait);
8375 
8376 	if (sctp_writeable(sk)) {
8377 		struct socket_wq *wq;
8378 
8379 		rcu_read_lock();
8380 		wq = rcu_dereference(sk->sk_wq);
8381 		if (wq) {
8382 			if (waitqueue_active(&wq->wait))
8383 				wake_up_interruptible(&wq->wait);
8384 
8385 			/* Note that we try to include the Async I/O support
8386 			 * here by modeling from the current TCP/UDP code.
8387 			 * We have not tested with it yet.
8388 			 */
8389 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8390 				sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8391 		}
8392 		rcu_read_unlock();
8393 	}
8394 }
8395 
8396 static void sctp_wake_up_waiters(struct sock *sk,
8397 				 struct sctp_association *asoc)
8398 {
8399 	struct sctp_association *tmp = asoc;
8400 
8401 	/* We do accounting for the sndbuf space per association,
8402 	 * so we only need to wake our own association.
8403 	 */
8404 	if (asoc->ep->sndbuf_policy)
8405 		return __sctp_write_space(asoc);
8406 
8407 	/* If association goes down and is just flushing its
8408 	 * outq, then just normally notify others.
8409 	 */
8410 	if (asoc->base.dead)
8411 		return sctp_write_space(sk);
8412 
8413 	/* Accounting for the sndbuf space is per socket, so we
8414 	 * need to wake up others, try to be fair and in case of
8415 	 * other associations, let them have a go first instead
8416 	 * of just doing a sctp_write_space() call.
8417 	 *
8418 	 * Note that we reach sctp_wake_up_waiters() only when
8419 	 * associations free up queued chunks, thus we are under
8420 	 * lock and the list of associations on a socket is
8421 	 * guaranteed not to change.
8422 	 */
8423 	for (tmp = list_next_entry(tmp, asocs); 1;
8424 	     tmp = list_next_entry(tmp, asocs)) {
8425 		/* Manually skip the head element. */
8426 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8427 			continue;
8428 		/* Wake up association. */
8429 		__sctp_write_space(tmp);
8430 		/* We've reached the end. */
8431 		if (tmp == asoc)
8432 			break;
8433 	}
8434 }
8435 
8436 /* Do accounting for the sndbuf space.
8437  * Decrement the used sndbuf space of the corresponding association by the
8438  * data size which was just transmitted(freed).
8439  */
8440 static void sctp_wfree(struct sk_buff *skb)
8441 {
8442 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8443 	struct sctp_association *asoc = chunk->asoc;
8444 	struct sock *sk = asoc->base.sk;
8445 
8446 	sk_mem_uncharge(sk, skb->truesize);
8447 	sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8448 	asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8449 	WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8450 				      &sk->sk_wmem_alloc));
8451 
8452 	if (chunk->shkey) {
8453 		struct sctp_shared_key *shkey = chunk->shkey;
8454 
8455 		/* refcnt == 2 and !list_empty mean after this release, it's
8456 		 * not being used anywhere, and it's time to notify userland
8457 		 * that this shkey can be freed if it's been deactivated.
8458 		 */
8459 		if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8460 		    refcount_read(&shkey->refcnt) == 2) {
8461 			struct sctp_ulpevent *ev;
8462 
8463 			ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8464 							SCTP_AUTH_FREE_KEY,
8465 							GFP_KERNEL);
8466 			if (ev)
8467 				asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
8468 		}
8469 		sctp_auth_shkey_release(chunk->shkey);
8470 	}
8471 
8472 	sock_wfree(skb);
8473 	sctp_wake_up_waiters(sk, asoc);
8474 
8475 	sctp_association_put(asoc);
8476 }
8477 
8478 /* Do accounting for the receive space on the socket.
8479  * Accounting for the association is done in ulpevent.c
8480  * We set this as a destructor for the cloned data skbs so that
8481  * accounting is done at the correct time.
8482  */
8483 void sctp_sock_rfree(struct sk_buff *skb)
8484 {
8485 	struct sock *sk = skb->sk;
8486 	struct sctp_ulpevent *event = sctp_skb2event(skb);
8487 
8488 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
8489 
8490 	/*
8491 	 * Mimic the behavior of sock_rfree
8492 	 */
8493 	sk_mem_uncharge(sk, event->rmem_len);
8494 }
8495 
8496 
8497 /* Helper function to wait for space in the sndbuf.  */
8498 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
8499 				size_t msg_len)
8500 {
8501 	struct sock *sk = asoc->base.sk;
8502 	long current_timeo = *timeo_p;
8503 	DEFINE_WAIT(wait);
8504 	int err = 0;
8505 
8506 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8507 		 *timeo_p, msg_len);
8508 
8509 	/* Increment the association's refcnt.  */
8510 	sctp_association_hold(asoc);
8511 
8512 	/* Wait on the association specific sndbuf space. */
8513 	for (;;) {
8514 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8515 					  TASK_INTERRUPTIBLE);
8516 		if (asoc->base.dead)
8517 			goto do_dead;
8518 		if (!*timeo_p)
8519 			goto do_nonblock;
8520 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
8521 			goto do_error;
8522 		if (signal_pending(current))
8523 			goto do_interrupted;
8524 		if ((int)msg_len <= sctp_wspace(asoc))
8525 			break;
8526 
8527 		/* Let another process have a go.  Since we are going
8528 		 * to sleep anyway.
8529 		 */
8530 		release_sock(sk);
8531 		current_timeo = schedule_timeout(current_timeo);
8532 		lock_sock(sk);
8533 		if (sk != asoc->base.sk)
8534 			goto do_error;
8535 
8536 		*timeo_p = current_timeo;
8537 	}
8538 
8539 out:
8540 	finish_wait(&asoc->wait, &wait);
8541 
8542 	/* Release the association's refcnt.  */
8543 	sctp_association_put(asoc);
8544 
8545 	return err;
8546 
8547 do_dead:
8548 	err = -ESRCH;
8549 	goto out;
8550 
8551 do_error:
8552 	err = -EPIPE;
8553 	goto out;
8554 
8555 do_interrupted:
8556 	err = sock_intr_errno(*timeo_p);
8557 	goto out;
8558 
8559 do_nonblock:
8560 	err = -EAGAIN;
8561 	goto out;
8562 }
8563 
8564 void sctp_data_ready(struct sock *sk)
8565 {
8566 	struct socket_wq *wq;
8567 
8568 	rcu_read_lock();
8569 	wq = rcu_dereference(sk->sk_wq);
8570 	if (skwq_has_sleeper(wq))
8571 		wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
8572 						EPOLLRDNORM | EPOLLRDBAND);
8573 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
8574 	rcu_read_unlock();
8575 }
8576 
8577 /* If socket sndbuf has changed, wake up all per association waiters.  */
8578 void sctp_write_space(struct sock *sk)
8579 {
8580 	struct sctp_association *asoc;
8581 
8582 	/* Wake up the tasks in each wait queue.  */
8583 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
8584 		__sctp_write_space(asoc);
8585 	}
8586 }
8587 
8588 /* Is there any sndbuf space available on the socket?
8589  *
8590  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
8591  * associations on the same socket.  For a UDP-style socket with
8592  * multiple associations, it is possible for it to be "unwriteable"
8593  * prematurely.  I assume that this is acceptable because
8594  * a premature "unwriteable" is better than an accidental "writeable" which
8595  * would cause an unwanted block under certain circumstances.  For the 1-1
8596  * UDP-style sockets or TCP-style sockets, this code should work.
8597  *  - Daisy
8598  */
8599 static bool sctp_writeable(struct sock *sk)
8600 {
8601 	return sk->sk_sndbuf > sk->sk_wmem_queued;
8602 }
8603 
8604 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
8605  * returns immediately with EINPROGRESS.
8606  */
8607 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
8608 {
8609 	struct sock *sk = asoc->base.sk;
8610 	int err = 0;
8611 	long current_timeo = *timeo_p;
8612 	DEFINE_WAIT(wait);
8613 
8614 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
8615 
8616 	/* Increment the association's refcnt.  */
8617 	sctp_association_hold(asoc);
8618 
8619 	for (;;) {
8620 		prepare_to_wait_exclusive(&asoc->wait, &wait,
8621 					  TASK_INTERRUPTIBLE);
8622 		if (!*timeo_p)
8623 			goto do_nonblock;
8624 		if (sk->sk_shutdown & RCV_SHUTDOWN)
8625 			break;
8626 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
8627 		    asoc->base.dead)
8628 			goto do_error;
8629 		if (signal_pending(current))
8630 			goto do_interrupted;
8631 
8632 		if (sctp_state(asoc, ESTABLISHED))
8633 			break;
8634 
8635 		/* Let another process have a go.  Since we are going
8636 		 * to sleep anyway.
8637 		 */
8638 		release_sock(sk);
8639 		current_timeo = schedule_timeout(current_timeo);
8640 		lock_sock(sk);
8641 
8642 		*timeo_p = current_timeo;
8643 	}
8644 
8645 out:
8646 	finish_wait(&asoc->wait, &wait);
8647 
8648 	/* Release the association's refcnt.  */
8649 	sctp_association_put(asoc);
8650 
8651 	return err;
8652 
8653 do_error:
8654 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
8655 		err = -ETIMEDOUT;
8656 	else
8657 		err = -ECONNREFUSED;
8658 	goto out;
8659 
8660 do_interrupted:
8661 	err = sock_intr_errno(*timeo_p);
8662 	goto out;
8663 
8664 do_nonblock:
8665 	err = -EINPROGRESS;
8666 	goto out;
8667 }
8668 
8669 static int sctp_wait_for_accept(struct sock *sk, long timeo)
8670 {
8671 	struct sctp_endpoint *ep;
8672 	int err = 0;
8673 	DEFINE_WAIT(wait);
8674 
8675 	ep = sctp_sk(sk)->ep;
8676 
8677 
8678 	for (;;) {
8679 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
8680 					  TASK_INTERRUPTIBLE);
8681 
8682 		if (list_empty(&ep->asocs)) {
8683 			release_sock(sk);
8684 			timeo = schedule_timeout(timeo);
8685 			lock_sock(sk);
8686 		}
8687 
8688 		err = -EINVAL;
8689 		if (!sctp_sstate(sk, LISTENING))
8690 			break;
8691 
8692 		err = 0;
8693 		if (!list_empty(&ep->asocs))
8694 			break;
8695 
8696 		err = sock_intr_errno(timeo);
8697 		if (signal_pending(current))
8698 			break;
8699 
8700 		err = -EAGAIN;
8701 		if (!timeo)
8702 			break;
8703 	}
8704 
8705 	finish_wait(sk_sleep(sk), &wait);
8706 
8707 	return err;
8708 }
8709 
8710 static void sctp_wait_for_close(struct sock *sk, long timeout)
8711 {
8712 	DEFINE_WAIT(wait);
8713 
8714 	do {
8715 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8716 		if (list_empty(&sctp_sk(sk)->ep->asocs))
8717 			break;
8718 		release_sock(sk);
8719 		timeout = schedule_timeout(timeout);
8720 		lock_sock(sk);
8721 	} while (!signal_pending(current) && timeout);
8722 
8723 	finish_wait(sk_sleep(sk), &wait);
8724 }
8725 
8726 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
8727 {
8728 	struct sk_buff *frag;
8729 
8730 	if (!skb->data_len)
8731 		goto done;
8732 
8733 	/* Don't forget the fragments. */
8734 	skb_walk_frags(skb, frag)
8735 		sctp_skb_set_owner_r_frag(frag, sk);
8736 
8737 done:
8738 	sctp_skb_set_owner_r(skb, sk);
8739 }
8740 
8741 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
8742 		    struct sctp_association *asoc)
8743 {
8744 	struct inet_sock *inet = inet_sk(sk);
8745 	struct inet_sock *newinet;
8746 	struct sctp_sock *sp = sctp_sk(sk);
8747 	struct sctp_endpoint *ep = sp->ep;
8748 
8749 	newsk->sk_type = sk->sk_type;
8750 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
8751 	newsk->sk_flags = sk->sk_flags;
8752 	newsk->sk_tsflags = sk->sk_tsflags;
8753 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
8754 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
8755 	newsk->sk_reuse = sk->sk_reuse;
8756 	sctp_sk(newsk)->reuse = sp->reuse;
8757 
8758 	newsk->sk_shutdown = sk->sk_shutdown;
8759 	newsk->sk_destruct = sctp_destruct_sock;
8760 	newsk->sk_family = sk->sk_family;
8761 	newsk->sk_protocol = IPPROTO_SCTP;
8762 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
8763 	newsk->sk_sndbuf = sk->sk_sndbuf;
8764 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
8765 	newsk->sk_lingertime = sk->sk_lingertime;
8766 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
8767 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
8768 	newsk->sk_rxhash = sk->sk_rxhash;
8769 
8770 	newinet = inet_sk(newsk);
8771 
8772 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
8773 	 * getsockname() and getpeername()
8774 	 */
8775 	newinet->inet_sport = inet->inet_sport;
8776 	newinet->inet_saddr = inet->inet_saddr;
8777 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
8778 	newinet->inet_dport = htons(asoc->peer.port);
8779 	newinet->pmtudisc = inet->pmtudisc;
8780 	newinet->inet_id = asoc->next_tsn ^ jiffies;
8781 
8782 	newinet->uc_ttl = inet->uc_ttl;
8783 	newinet->mc_loop = 1;
8784 	newinet->mc_ttl = 1;
8785 	newinet->mc_index = 0;
8786 	newinet->mc_list = NULL;
8787 
8788 	if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
8789 		net_enable_timestamp();
8790 
8791 	/* Set newsk security attributes from orginal sk and connection
8792 	 * security attribute from ep.
8793 	 */
8794 	security_sctp_sk_clone(ep, sk, newsk);
8795 }
8796 
8797 static inline void sctp_copy_descendant(struct sock *sk_to,
8798 					const struct sock *sk_from)
8799 {
8800 	int ancestor_size = sizeof(struct inet_sock) +
8801 			    sizeof(struct sctp_sock) -
8802 			    offsetof(struct sctp_sock, auto_asconf_list);
8803 
8804 	if (sk_from->sk_family == PF_INET6)
8805 		ancestor_size += sizeof(struct ipv6_pinfo);
8806 
8807 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
8808 }
8809 
8810 /* Populate the fields of the newsk from the oldsk and migrate the assoc
8811  * and its messages to the newsk.
8812  */
8813 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
8814 			      struct sctp_association *assoc,
8815 			      enum sctp_socket_type type)
8816 {
8817 	struct sctp_sock *oldsp = sctp_sk(oldsk);
8818 	struct sctp_sock *newsp = sctp_sk(newsk);
8819 	struct sctp_bind_bucket *pp; /* hash list port iterator */
8820 	struct sctp_endpoint *newep = newsp->ep;
8821 	struct sk_buff *skb, *tmp;
8822 	struct sctp_ulpevent *event;
8823 	struct sctp_bind_hashbucket *head;
8824 
8825 	/* Migrate socket buffer sizes and all the socket level options to the
8826 	 * new socket.
8827 	 */
8828 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
8829 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
8830 	/* Brute force copy old sctp opt. */
8831 	sctp_copy_descendant(newsk, oldsk);
8832 
8833 	/* Restore the ep value that was overwritten with the above structure
8834 	 * copy.
8835 	 */
8836 	newsp->ep = newep;
8837 	newsp->hmac = NULL;
8838 
8839 	/* Hook this new socket in to the bind_hash list. */
8840 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
8841 						 inet_sk(oldsk)->inet_num)];
8842 	spin_lock_bh(&head->lock);
8843 	pp = sctp_sk(oldsk)->bind_hash;
8844 	sk_add_bind_node(newsk, &pp->owner);
8845 	sctp_sk(newsk)->bind_hash = pp;
8846 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
8847 	spin_unlock_bh(&head->lock);
8848 
8849 	/* Copy the bind_addr list from the original endpoint to the new
8850 	 * endpoint so that we can handle restarts properly
8851 	 */
8852 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
8853 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
8854 
8855 	/* Move any messages in the old socket's receive queue that are for the
8856 	 * peeled off association to the new socket's receive queue.
8857 	 */
8858 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
8859 		event = sctp_skb2event(skb);
8860 		if (event->asoc == assoc) {
8861 			__skb_unlink(skb, &oldsk->sk_receive_queue);
8862 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
8863 			sctp_skb_set_owner_r_frag(skb, newsk);
8864 		}
8865 	}
8866 
8867 	/* Clean up any messages pending delivery due to partial
8868 	 * delivery.   Three cases:
8869 	 * 1) No partial deliver;  no work.
8870 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
8871 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
8872 	 */
8873 	skb_queue_head_init(&newsp->pd_lobby);
8874 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
8875 
8876 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
8877 		struct sk_buff_head *queue;
8878 
8879 		/* Decide which queue to move pd_lobby skbs to. */
8880 		if (assoc->ulpq.pd_mode) {
8881 			queue = &newsp->pd_lobby;
8882 		} else
8883 			queue = &newsk->sk_receive_queue;
8884 
8885 		/* Walk through the pd_lobby, looking for skbs that
8886 		 * need moved to the new socket.
8887 		 */
8888 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
8889 			event = sctp_skb2event(skb);
8890 			if (event->asoc == assoc) {
8891 				__skb_unlink(skb, &oldsp->pd_lobby);
8892 				__skb_queue_tail(queue, skb);
8893 				sctp_skb_set_owner_r_frag(skb, newsk);
8894 			}
8895 		}
8896 
8897 		/* Clear up any skbs waiting for the partial
8898 		 * delivery to finish.
8899 		 */
8900 		if (assoc->ulpq.pd_mode)
8901 			sctp_clear_pd(oldsk, NULL);
8902 
8903 	}
8904 
8905 	sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
8906 
8907 	/* Set the type of socket to indicate that it is peeled off from the
8908 	 * original UDP-style socket or created with the accept() call on a
8909 	 * TCP-style socket..
8910 	 */
8911 	newsp->type = type;
8912 
8913 	/* Mark the new socket "in-use" by the user so that any packets
8914 	 * that may arrive on the association after we've moved it are
8915 	 * queued to the backlog.  This prevents a potential race between
8916 	 * backlog processing on the old socket and new-packet processing
8917 	 * on the new socket.
8918 	 *
8919 	 * The caller has just allocated newsk so we can guarantee that other
8920 	 * paths won't try to lock it and then oldsk.
8921 	 */
8922 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
8923 	sctp_for_each_tx_datachunk(assoc, sctp_clear_owner_w);
8924 	sctp_assoc_migrate(assoc, newsk);
8925 	sctp_for_each_tx_datachunk(assoc, sctp_set_owner_w);
8926 
8927 	/* If the association on the newsk is already closed before accept()
8928 	 * is called, set RCV_SHUTDOWN flag.
8929 	 */
8930 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
8931 		inet_sk_set_state(newsk, SCTP_SS_CLOSED);
8932 		newsk->sk_shutdown |= RCV_SHUTDOWN;
8933 	} else {
8934 		inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
8935 	}
8936 
8937 	release_sock(newsk);
8938 }
8939 
8940 
8941 /* This proto struct describes the ULP interface for SCTP.  */
8942 struct proto sctp_prot = {
8943 	.name        =	"SCTP",
8944 	.owner       =	THIS_MODULE,
8945 	.close       =	sctp_close,
8946 	.disconnect  =	sctp_disconnect,
8947 	.accept      =	sctp_accept,
8948 	.ioctl       =	sctp_ioctl,
8949 	.init        =	sctp_init_sock,
8950 	.destroy     =	sctp_destroy_sock,
8951 	.shutdown    =	sctp_shutdown,
8952 	.setsockopt  =	sctp_setsockopt,
8953 	.getsockopt  =	sctp_getsockopt,
8954 	.sendmsg     =	sctp_sendmsg,
8955 	.recvmsg     =	sctp_recvmsg,
8956 	.bind        =	sctp_bind,
8957 	.backlog_rcv =	sctp_backlog_rcv,
8958 	.hash        =	sctp_hash,
8959 	.unhash      =	sctp_unhash,
8960 	.get_port    =	sctp_get_port,
8961 	.obj_size    =  sizeof(struct sctp_sock),
8962 	.useroffset  =  offsetof(struct sctp_sock, subscribe),
8963 	.usersize    =  offsetof(struct sctp_sock, initmsg) -
8964 				offsetof(struct sctp_sock, subscribe) +
8965 				sizeof_field(struct sctp_sock, initmsg),
8966 	.sysctl_mem  =  sysctl_sctp_mem,
8967 	.sysctl_rmem =  sysctl_sctp_rmem,
8968 	.sysctl_wmem =  sysctl_sctp_wmem,
8969 	.memory_pressure = &sctp_memory_pressure,
8970 	.enter_memory_pressure = sctp_enter_memory_pressure,
8971 	.memory_allocated = &sctp_memory_allocated,
8972 	.sockets_allocated = &sctp_sockets_allocated,
8973 };
8974 
8975 #if IS_ENABLED(CONFIG_IPV6)
8976 
8977 #include <net/transp_v6.h>
8978 static void sctp_v6_destroy_sock(struct sock *sk)
8979 {
8980 	sctp_destroy_sock(sk);
8981 	inet6_destroy_sock(sk);
8982 }
8983 
8984 struct proto sctpv6_prot = {
8985 	.name		= "SCTPv6",
8986 	.owner		= THIS_MODULE,
8987 	.close		= sctp_close,
8988 	.disconnect	= sctp_disconnect,
8989 	.accept		= sctp_accept,
8990 	.ioctl		= sctp_ioctl,
8991 	.init		= sctp_init_sock,
8992 	.destroy	= sctp_v6_destroy_sock,
8993 	.shutdown	= sctp_shutdown,
8994 	.setsockopt	= sctp_setsockopt,
8995 	.getsockopt	= sctp_getsockopt,
8996 	.sendmsg	= sctp_sendmsg,
8997 	.recvmsg	= sctp_recvmsg,
8998 	.bind		= sctp_bind,
8999 	.backlog_rcv	= sctp_backlog_rcv,
9000 	.hash		= sctp_hash,
9001 	.unhash		= sctp_unhash,
9002 	.get_port	= sctp_get_port,
9003 	.obj_size	= sizeof(struct sctp6_sock),
9004 	.useroffset	= offsetof(struct sctp6_sock, sctp.subscribe),
9005 	.usersize	= offsetof(struct sctp6_sock, sctp.initmsg) -
9006 				offsetof(struct sctp6_sock, sctp.subscribe) +
9007 				sizeof_field(struct sctp6_sock, sctp.initmsg),
9008 	.sysctl_mem	= sysctl_sctp_mem,
9009 	.sysctl_rmem	= sysctl_sctp_rmem,
9010 	.sysctl_wmem	= sysctl_sctp_wmem,
9011 	.memory_pressure = &sctp_memory_pressure,
9012 	.enter_memory_pressure = sctp_enter_memory_pressure,
9013 	.memory_allocated = &sctp_memory_allocated,
9014 	.sockets_allocated = &sctp_sockets_allocated,
9015 };
9016 #endif /* IS_ENABLED(CONFIG_IPV6) */
9017