xref: /linux/net/sctp/socket.c (revision 3e44c471a2dab210f7e9b1e5f7d4d54d52df59eb)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  * Copyright (c) 2001-2002 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions interface with the sockets layer to implement the
12  * SCTP Extensions for the Sockets API.
13  *
14  * Note that the descriptions from the specification are USER level
15  * functions--this file is the functions which populate the struct proto
16  * for SCTP which is the BOTTOM of the sockets interface.
17  *
18  * This SCTP implementation is free software;
19  * you can redistribute it and/or modify it under the terms of
20  * the GNU General Public License as published by
21  * the Free Software Foundation; either version 2, or (at your option)
22  * any later version.
23  *
24  * This SCTP implementation is distributed in the hope that it
25  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26  *                 ************************
27  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28  * See the GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with GNU CC; see the file COPYING.  If not, see
32  * <http://www.gnu.org/licenses/>.
33  *
34  * Please send any bug reports or fixes you make to the
35  * email address(es):
36  *    lksctp developers <linux-sctp@vger.kernel.org>
37  *
38  * Written or modified by:
39  *    La Monte H.P. Yarroll <piggy@acm.org>
40  *    Narasimha Budihal     <narsi@refcode.org>
41  *    Karl Knutson          <karl@athena.chicago.il.us>
42  *    Jon Grimm             <jgrimm@us.ibm.com>
43  *    Xingang Guo           <xingang.guo@intel.com>
44  *    Daisy Chang           <daisyc@us.ibm.com>
45  *    Sridhar Samudrala     <samudrala@us.ibm.com>
46  *    Inaky Perez-Gonzalez  <inaky.gonzalez@intel.com>
47  *    Ardelle Fan	    <ardelle.fan@intel.com>
48  *    Ryan Layer	    <rmlayer@us.ibm.com>
49  *    Anup Pemmaiah         <pemmaiah@cc.usu.edu>
50  *    Kevin Gao             <kevin.gao@intel.com>
51  */
52 
53 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54 
55 #include <linux/types.h>
56 #include <linux/kernel.h>
57 #include <linux/wait.h>
58 #include <linux/time.h>
59 #include <linux/ip.h>
60 #include <linux/capability.h>
61 #include <linux/fcntl.h>
62 #include <linux/poll.h>
63 #include <linux/init.h>
64 #include <linux/crypto.h>
65 #include <linux/slab.h>
66 #include <linux/file.h>
67 #include <linux/compat.h>
68 
69 #include <net/ip.h>
70 #include <net/icmp.h>
71 #include <net/route.h>
72 #include <net/ipv6.h>
73 #include <net/inet_common.h>
74 #include <net/busy_poll.h>
75 
76 #include <linux/socket.h> /* for sa_family_t */
77 #include <linux/export.h>
78 #include <net/sock.h>
79 #include <net/sctp/sctp.h>
80 #include <net/sctp/sm.h>
81 
82 /* Forward declarations for internal helper functions. */
83 static int sctp_writeable(struct sock *sk);
84 static void sctp_wfree(struct sk_buff *skb);
85 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 				size_t msg_len);
87 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89 static int sctp_wait_for_accept(struct sock *sk, long timeo);
90 static void sctp_wait_for_close(struct sock *sk, long timeo);
91 static void sctp_destruct_sock(struct sock *sk);
92 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 					union sctp_addr *addr, int len);
94 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98 static int sctp_send_asconf(struct sctp_association *asoc,
99 			    struct sctp_chunk *chunk);
100 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101 static int sctp_autobind(struct sock *sk);
102 static void sctp_sock_migrate(struct sock *, struct sock *,
103 			      struct sctp_association *, sctp_socket_type_t);
104 
105 static int sctp_memory_pressure;
106 static atomic_long_t sctp_memory_allocated;
107 struct percpu_counter sctp_sockets_allocated;
108 
109 static void sctp_enter_memory_pressure(struct sock *sk)
110 {
111 	sctp_memory_pressure = 1;
112 }
113 
114 
115 /* Get the sndbuf space available at the time on the association.  */
116 static inline int sctp_wspace(struct sctp_association *asoc)
117 {
118 	int amt;
119 
120 	if (asoc->ep->sndbuf_policy)
121 		amt = asoc->sndbuf_used;
122 	else
123 		amt = sk_wmem_alloc_get(asoc->base.sk);
124 
125 	if (amt >= asoc->base.sk->sk_sndbuf) {
126 		if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 			amt = 0;
128 		else {
129 			amt = sk_stream_wspace(asoc->base.sk);
130 			if (amt < 0)
131 				amt = 0;
132 		}
133 	} else {
134 		amt = asoc->base.sk->sk_sndbuf - amt;
135 	}
136 	return amt;
137 }
138 
139 /* Increment the used sndbuf space count of the corresponding association by
140  * the size of the outgoing data chunk.
141  * Also, set the skb destructor for sndbuf accounting later.
142  *
143  * Since it is always 1-1 between chunk and skb, and also a new skb is always
144  * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145  * destructor in the data chunk skb for the purpose of the sndbuf space
146  * tracking.
147  */
148 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149 {
150 	struct sctp_association *asoc = chunk->asoc;
151 	struct sock *sk = asoc->base.sk;
152 
153 	/* The sndbuf space is tracked per association.  */
154 	sctp_association_hold(asoc);
155 
156 	skb_set_owner_w(chunk->skb, sk);
157 
158 	chunk->skb->destructor = sctp_wfree;
159 	/* Save the chunk pointer in skb for sctp_wfree to use later.  */
160 	skb_shinfo(chunk->skb)->destructor_arg = chunk;
161 
162 	asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 				sizeof(struct sk_buff) +
164 				sizeof(struct sctp_chunk);
165 
166 	atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 	sk->sk_wmem_queued += chunk->skb->truesize;
168 	sk_mem_charge(sk, chunk->skb->truesize);
169 }
170 
171 /* Verify that this is a valid address. */
172 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 				   int len)
174 {
175 	struct sctp_af *af;
176 
177 	/* Verify basic sockaddr. */
178 	af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 	if (!af)
180 		return -EINVAL;
181 
182 	/* Is this a valid SCTP address?  */
183 	if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 		return -EINVAL;
185 
186 	if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 		return -EINVAL;
188 
189 	return 0;
190 }
191 
192 /* Look up the association by its id.  If this is not a UDP-style
193  * socket, the ID field is always ignored.
194  */
195 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196 {
197 	struct sctp_association *asoc = NULL;
198 
199 	/* If this is not a UDP-style socket, assoc id should be ignored. */
200 	if (!sctp_style(sk, UDP)) {
201 		/* Return NULL if the socket state is not ESTABLISHED. It
202 		 * could be a TCP-style listening socket or a socket which
203 		 * hasn't yet called connect() to establish an association.
204 		 */
205 		if (!sctp_sstate(sk, ESTABLISHED))
206 			return NULL;
207 
208 		/* Get the first and the only association from the list. */
209 		if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 			asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 					  struct sctp_association, asocs);
212 		return asoc;
213 	}
214 
215 	/* Otherwise this is a UDP-style socket. */
216 	if (!id || (id == (sctp_assoc_t)-1))
217 		return NULL;
218 
219 	spin_lock_bh(&sctp_assocs_id_lock);
220 	asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 	spin_unlock_bh(&sctp_assocs_id_lock);
222 
223 	if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 		return NULL;
225 
226 	return asoc;
227 }
228 
229 /* Look up the transport from an address and an assoc id. If both address and
230  * id are specified, the associations matching the address and the id should be
231  * the same.
232  */
233 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 					      struct sockaddr_storage *addr,
235 					      sctp_assoc_t id)
236 {
237 	struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 	struct sctp_transport *transport;
239 	union sctp_addr *laddr = (union sctp_addr *)addr;
240 
241 	addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
242 					       laddr,
243 					       &transport);
244 
245 	if (!addr_asoc)
246 		return NULL;
247 
248 	id_asoc = sctp_id2assoc(sk, id);
249 	if (id_asoc && (id_asoc != addr_asoc))
250 		return NULL;
251 
252 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
253 						(union sctp_addr *)addr);
254 
255 	return transport;
256 }
257 
258 /* API 3.1.2 bind() - UDP Style Syntax
259  * The syntax of bind() is,
260  *
261  *   ret = bind(int sd, struct sockaddr *addr, int addrlen);
262  *
263  *   sd      - the socket descriptor returned by socket().
264  *   addr    - the address structure (struct sockaddr_in or struct
265  *             sockaddr_in6 [RFC 2553]),
266  *   addr_len - the size of the address structure.
267  */
268 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
269 {
270 	int retval = 0;
271 
272 	lock_sock(sk);
273 
274 	pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
275 		 addr, addr_len);
276 
277 	/* Disallow binding twice. */
278 	if (!sctp_sk(sk)->ep->base.bind_addr.port)
279 		retval = sctp_do_bind(sk, (union sctp_addr *)addr,
280 				      addr_len);
281 	else
282 		retval = -EINVAL;
283 
284 	release_sock(sk);
285 
286 	return retval;
287 }
288 
289 static long sctp_get_port_local(struct sock *, union sctp_addr *);
290 
291 /* Verify this is a valid sockaddr. */
292 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
293 					union sctp_addr *addr, int len)
294 {
295 	struct sctp_af *af;
296 
297 	/* Check minimum size.  */
298 	if (len < sizeof (struct sockaddr))
299 		return NULL;
300 
301 	/* V4 mapped address are really of AF_INET family */
302 	if (addr->sa.sa_family == AF_INET6 &&
303 	    ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
304 		if (!opt->pf->af_supported(AF_INET, opt))
305 			return NULL;
306 	} else {
307 		/* Does this PF support this AF? */
308 		if (!opt->pf->af_supported(addr->sa.sa_family, opt))
309 			return NULL;
310 	}
311 
312 	/* If we get this far, af is valid. */
313 	af = sctp_get_af_specific(addr->sa.sa_family);
314 
315 	if (len < af->sockaddr_len)
316 		return NULL;
317 
318 	return af;
319 }
320 
321 /* Bind a local address either to an endpoint or to an association.  */
322 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
323 {
324 	struct net *net = sock_net(sk);
325 	struct sctp_sock *sp = sctp_sk(sk);
326 	struct sctp_endpoint *ep = sp->ep;
327 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
328 	struct sctp_af *af;
329 	unsigned short snum;
330 	int ret = 0;
331 
332 	/* Common sockaddr verification. */
333 	af = sctp_sockaddr_af(sp, addr, len);
334 	if (!af) {
335 		pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
336 			 __func__, sk, addr, len);
337 		return -EINVAL;
338 	}
339 
340 	snum = ntohs(addr->v4.sin_port);
341 
342 	pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
343 		 __func__, sk, &addr->sa, bp->port, snum, len);
344 
345 	/* PF specific bind() address verification. */
346 	if (!sp->pf->bind_verify(sp, addr))
347 		return -EADDRNOTAVAIL;
348 
349 	/* We must either be unbound, or bind to the same port.
350 	 * It's OK to allow 0 ports if we are already bound.
351 	 * We'll just inhert an already bound port in this case
352 	 */
353 	if (bp->port) {
354 		if (!snum)
355 			snum = bp->port;
356 		else if (snum != bp->port) {
357 			pr_debug("%s: new port %d doesn't match existing port "
358 				 "%d\n", __func__, snum, bp->port);
359 			return -EINVAL;
360 		}
361 	}
362 
363 	if (snum && snum < PROT_SOCK &&
364 	    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
365 		return -EACCES;
366 
367 	/* See if the address matches any of the addresses we may have
368 	 * already bound before checking against other endpoints.
369 	 */
370 	if (sctp_bind_addr_match(bp, addr, sp))
371 		return -EINVAL;
372 
373 	/* Make sure we are allowed to bind here.
374 	 * The function sctp_get_port_local() does duplicate address
375 	 * detection.
376 	 */
377 	addr->v4.sin_port = htons(snum);
378 	if ((ret = sctp_get_port_local(sk, addr))) {
379 		return -EADDRINUSE;
380 	}
381 
382 	/* Refresh ephemeral port.  */
383 	if (!bp->port)
384 		bp->port = inet_sk(sk)->inet_num;
385 
386 	/* Add the address to the bind address list.
387 	 * Use GFP_ATOMIC since BHs will be disabled.
388 	 */
389 	ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
390 
391 	/* Copy back into socket for getsockname() use. */
392 	if (!ret) {
393 		inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
394 		sp->pf->to_sk_saddr(addr, sk);
395 	}
396 
397 	return ret;
398 }
399 
400  /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
401  *
402  * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
403  * at any one time.  If a sender, after sending an ASCONF chunk, decides
404  * it needs to transfer another ASCONF Chunk, it MUST wait until the
405  * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
406  * subsequent ASCONF. Note this restriction binds each side, so at any
407  * time two ASCONF may be in-transit on any given association (one sent
408  * from each endpoint).
409  */
410 static int sctp_send_asconf(struct sctp_association *asoc,
411 			    struct sctp_chunk *chunk)
412 {
413 	struct net 	*net = sock_net(asoc->base.sk);
414 	int		retval = 0;
415 
416 	/* If there is an outstanding ASCONF chunk, queue it for later
417 	 * transmission.
418 	 */
419 	if (asoc->addip_last_asconf) {
420 		list_add_tail(&chunk->list, &asoc->addip_chunk_list);
421 		goto out;
422 	}
423 
424 	/* Hold the chunk until an ASCONF_ACK is received. */
425 	sctp_chunk_hold(chunk);
426 	retval = sctp_primitive_ASCONF(net, asoc, chunk);
427 	if (retval)
428 		sctp_chunk_free(chunk);
429 	else
430 		asoc->addip_last_asconf = chunk;
431 
432 out:
433 	return retval;
434 }
435 
436 /* Add a list of addresses as bind addresses to local endpoint or
437  * association.
438  *
439  * Basically run through each address specified in the addrs/addrcnt
440  * array/length pair, determine if it is IPv6 or IPv4 and call
441  * sctp_do_bind() on it.
442  *
443  * If any of them fails, then the operation will be reversed and the
444  * ones that were added will be removed.
445  *
446  * Only sctp_setsockopt_bindx() is supposed to call this function.
447  */
448 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
449 {
450 	int cnt;
451 	int retval = 0;
452 	void *addr_buf;
453 	struct sockaddr *sa_addr;
454 	struct sctp_af *af;
455 
456 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
457 		 addrs, addrcnt);
458 
459 	addr_buf = addrs;
460 	for (cnt = 0; cnt < addrcnt; cnt++) {
461 		/* The list may contain either IPv4 or IPv6 address;
462 		 * determine the address length for walking thru the list.
463 		 */
464 		sa_addr = addr_buf;
465 		af = sctp_get_af_specific(sa_addr->sa_family);
466 		if (!af) {
467 			retval = -EINVAL;
468 			goto err_bindx_add;
469 		}
470 
471 		retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
472 				      af->sockaddr_len);
473 
474 		addr_buf += af->sockaddr_len;
475 
476 err_bindx_add:
477 		if (retval < 0) {
478 			/* Failed. Cleanup the ones that have been added */
479 			if (cnt > 0)
480 				sctp_bindx_rem(sk, addrs, cnt);
481 			return retval;
482 		}
483 	}
484 
485 	return retval;
486 }
487 
488 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
489  * associations that are part of the endpoint indicating that a list of local
490  * addresses are added to the endpoint.
491  *
492  * If any of the addresses is already in the bind address list of the
493  * association, we do not send the chunk for that association.  But it will not
494  * affect other associations.
495  *
496  * Only sctp_setsockopt_bindx() is supposed to call this function.
497  */
498 static int sctp_send_asconf_add_ip(struct sock		*sk,
499 				   struct sockaddr	*addrs,
500 				   int 			addrcnt)
501 {
502 	struct net *net = sock_net(sk);
503 	struct sctp_sock		*sp;
504 	struct sctp_endpoint		*ep;
505 	struct sctp_association		*asoc;
506 	struct sctp_bind_addr		*bp;
507 	struct sctp_chunk		*chunk;
508 	struct sctp_sockaddr_entry	*laddr;
509 	union sctp_addr			*addr;
510 	union sctp_addr			saveaddr;
511 	void				*addr_buf;
512 	struct sctp_af			*af;
513 	struct list_head		*p;
514 	int 				i;
515 	int 				retval = 0;
516 
517 	if (!net->sctp.addip_enable)
518 		return retval;
519 
520 	sp = sctp_sk(sk);
521 	ep = sp->ep;
522 
523 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
524 		 __func__, sk, addrs, addrcnt);
525 
526 	list_for_each_entry(asoc, &ep->asocs, asocs) {
527 		if (!asoc->peer.asconf_capable)
528 			continue;
529 
530 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
531 			continue;
532 
533 		if (!sctp_state(asoc, ESTABLISHED))
534 			continue;
535 
536 		/* Check if any address in the packed array of addresses is
537 		 * in the bind address list of the association. If so,
538 		 * do not send the asconf chunk to its peer, but continue with
539 		 * other associations.
540 		 */
541 		addr_buf = addrs;
542 		for (i = 0; i < addrcnt; i++) {
543 			addr = addr_buf;
544 			af = sctp_get_af_specific(addr->v4.sin_family);
545 			if (!af) {
546 				retval = -EINVAL;
547 				goto out;
548 			}
549 
550 			if (sctp_assoc_lookup_laddr(asoc, addr))
551 				break;
552 
553 			addr_buf += af->sockaddr_len;
554 		}
555 		if (i < addrcnt)
556 			continue;
557 
558 		/* Use the first valid address in bind addr list of
559 		 * association as Address Parameter of ASCONF CHUNK.
560 		 */
561 		bp = &asoc->base.bind_addr;
562 		p = bp->address_list.next;
563 		laddr = list_entry(p, struct sctp_sockaddr_entry, list);
564 		chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
565 						   addrcnt, SCTP_PARAM_ADD_IP);
566 		if (!chunk) {
567 			retval = -ENOMEM;
568 			goto out;
569 		}
570 
571 		/* Add the new addresses to the bind address list with
572 		 * use_as_src set to 0.
573 		 */
574 		addr_buf = addrs;
575 		for (i = 0; i < addrcnt; i++) {
576 			addr = addr_buf;
577 			af = sctp_get_af_specific(addr->v4.sin_family);
578 			memcpy(&saveaddr, addr, af->sockaddr_len);
579 			retval = sctp_add_bind_addr(bp, &saveaddr,
580 						    SCTP_ADDR_NEW, GFP_ATOMIC);
581 			addr_buf += af->sockaddr_len;
582 		}
583 		if (asoc->src_out_of_asoc_ok) {
584 			struct sctp_transport *trans;
585 
586 			list_for_each_entry(trans,
587 			    &asoc->peer.transport_addr_list, transports) {
588 				/* Clear the source and route cache */
589 				dst_release(trans->dst);
590 				trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
591 				    2*asoc->pathmtu, 4380));
592 				trans->ssthresh = asoc->peer.i.a_rwnd;
593 				trans->rto = asoc->rto_initial;
594 				sctp_max_rto(asoc, trans);
595 				trans->rtt = trans->srtt = trans->rttvar = 0;
596 				sctp_transport_route(trans, NULL,
597 				    sctp_sk(asoc->base.sk));
598 			}
599 		}
600 		retval = sctp_send_asconf(asoc, chunk);
601 	}
602 
603 out:
604 	return retval;
605 }
606 
607 /* Remove a list of addresses from bind addresses list.  Do not remove the
608  * last address.
609  *
610  * Basically run through each address specified in the addrs/addrcnt
611  * array/length pair, determine if it is IPv6 or IPv4 and call
612  * sctp_del_bind() on it.
613  *
614  * If any of them fails, then the operation will be reversed and the
615  * ones that were removed will be added back.
616  *
617  * At least one address has to be left; if only one address is
618  * available, the operation will return -EBUSY.
619  *
620  * Only sctp_setsockopt_bindx() is supposed to call this function.
621  */
622 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
623 {
624 	struct sctp_sock *sp = sctp_sk(sk);
625 	struct sctp_endpoint *ep = sp->ep;
626 	int cnt;
627 	struct sctp_bind_addr *bp = &ep->base.bind_addr;
628 	int retval = 0;
629 	void *addr_buf;
630 	union sctp_addr *sa_addr;
631 	struct sctp_af *af;
632 
633 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
634 		 __func__, sk, addrs, addrcnt);
635 
636 	addr_buf = addrs;
637 	for (cnt = 0; cnt < addrcnt; cnt++) {
638 		/* If the bind address list is empty or if there is only one
639 		 * bind address, there is nothing more to be removed (we need
640 		 * at least one address here).
641 		 */
642 		if (list_empty(&bp->address_list) ||
643 		    (sctp_list_single_entry(&bp->address_list))) {
644 			retval = -EBUSY;
645 			goto err_bindx_rem;
646 		}
647 
648 		sa_addr = addr_buf;
649 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
650 		if (!af) {
651 			retval = -EINVAL;
652 			goto err_bindx_rem;
653 		}
654 
655 		if (!af->addr_valid(sa_addr, sp, NULL)) {
656 			retval = -EADDRNOTAVAIL;
657 			goto err_bindx_rem;
658 		}
659 
660 		if (sa_addr->v4.sin_port &&
661 		    sa_addr->v4.sin_port != htons(bp->port)) {
662 			retval = -EINVAL;
663 			goto err_bindx_rem;
664 		}
665 
666 		if (!sa_addr->v4.sin_port)
667 			sa_addr->v4.sin_port = htons(bp->port);
668 
669 		/* FIXME - There is probably a need to check if sk->sk_saddr and
670 		 * sk->sk_rcv_addr are currently set to one of the addresses to
671 		 * be removed. This is something which needs to be looked into
672 		 * when we are fixing the outstanding issues with multi-homing
673 		 * socket routing and failover schemes. Refer to comments in
674 		 * sctp_do_bind(). -daisy
675 		 */
676 		retval = sctp_del_bind_addr(bp, sa_addr);
677 
678 		addr_buf += af->sockaddr_len;
679 err_bindx_rem:
680 		if (retval < 0) {
681 			/* Failed. Add the ones that has been removed back */
682 			if (cnt > 0)
683 				sctp_bindx_add(sk, addrs, cnt);
684 			return retval;
685 		}
686 	}
687 
688 	return retval;
689 }
690 
691 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
692  * the associations that are part of the endpoint indicating that a list of
693  * local addresses are removed from the endpoint.
694  *
695  * If any of the addresses is already in the bind address list of the
696  * association, we do not send the chunk for that association.  But it will not
697  * affect other associations.
698  *
699  * Only sctp_setsockopt_bindx() is supposed to call this function.
700  */
701 static int sctp_send_asconf_del_ip(struct sock		*sk,
702 				   struct sockaddr	*addrs,
703 				   int			addrcnt)
704 {
705 	struct net *net = sock_net(sk);
706 	struct sctp_sock	*sp;
707 	struct sctp_endpoint	*ep;
708 	struct sctp_association	*asoc;
709 	struct sctp_transport	*transport;
710 	struct sctp_bind_addr	*bp;
711 	struct sctp_chunk	*chunk;
712 	union sctp_addr		*laddr;
713 	void			*addr_buf;
714 	struct sctp_af		*af;
715 	struct sctp_sockaddr_entry *saddr;
716 	int 			i;
717 	int 			retval = 0;
718 	int			stored = 0;
719 
720 	chunk = NULL;
721 	if (!net->sctp.addip_enable)
722 		return retval;
723 
724 	sp = sctp_sk(sk);
725 	ep = sp->ep;
726 
727 	pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
728 		 __func__, sk, addrs, addrcnt);
729 
730 	list_for_each_entry(asoc, &ep->asocs, asocs) {
731 
732 		if (!asoc->peer.asconf_capable)
733 			continue;
734 
735 		if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
736 			continue;
737 
738 		if (!sctp_state(asoc, ESTABLISHED))
739 			continue;
740 
741 		/* Check if any address in the packed array of addresses is
742 		 * not present in the bind address list of the association.
743 		 * If so, do not send the asconf chunk to its peer, but
744 		 * continue with other associations.
745 		 */
746 		addr_buf = addrs;
747 		for (i = 0; i < addrcnt; i++) {
748 			laddr = addr_buf;
749 			af = sctp_get_af_specific(laddr->v4.sin_family);
750 			if (!af) {
751 				retval = -EINVAL;
752 				goto out;
753 			}
754 
755 			if (!sctp_assoc_lookup_laddr(asoc, laddr))
756 				break;
757 
758 			addr_buf += af->sockaddr_len;
759 		}
760 		if (i < addrcnt)
761 			continue;
762 
763 		/* Find one address in the association's bind address list
764 		 * that is not in the packed array of addresses. This is to
765 		 * make sure that we do not delete all the addresses in the
766 		 * association.
767 		 */
768 		bp = &asoc->base.bind_addr;
769 		laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
770 					       addrcnt, sp);
771 		if ((laddr == NULL) && (addrcnt == 1)) {
772 			if (asoc->asconf_addr_del_pending)
773 				continue;
774 			asoc->asconf_addr_del_pending =
775 			    kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
776 			if (asoc->asconf_addr_del_pending == NULL) {
777 				retval = -ENOMEM;
778 				goto out;
779 			}
780 			asoc->asconf_addr_del_pending->sa.sa_family =
781 				    addrs->sa_family;
782 			asoc->asconf_addr_del_pending->v4.sin_port =
783 				    htons(bp->port);
784 			if (addrs->sa_family == AF_INET) {
785 				struct sockaddr_in *sin;
786 
787 				sin = (struct sockaddr_in *)addrs;
788 				asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
789 			} else if (addrs->sa_family == AF_INET6) {
790 				struct sockaddr_in6 *sin6;
791 
792 				sin6 = (struct sockaddr_in6 *)addrs;
793 				asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
794 			}
795 
796 			pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
797 				 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
798 				 asoc->asconf_addr_del_pending);
799 
800 			asoc->src_out_of_asoc_ok = 1;
801 			stored = 1;
802 			goto skip_mkasconf;
803 		}
804 
805 		if (laddr == NULL)
806 			return -EINVAL;
807 
808 		/* We do not need RCU protection throughout this loop
809 		 * because this is done under a socket lock from the
810 		 * setsockopt call.
811 		 */
812 		chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
813 						   SCTP_PARAM_DEL_IP);
814 		if (!chunk) {
815 			retval = -ENOMEM;
816 			goto out;
817 		}
818 
819 skip_mkasconf:
820 		/* Reset use_as_src flag for the addresses in the bind address
821 		 * list that are to be deleted.
822 		 */
823 		addr_buf = addrs;
824 		for (i = 0; i < addrcnt; i++) {
825 			laddr = addr_buf;
826 			af = sctp_get_af_specific(laddr->v4.sin_family);
827 			list_for_each_entry(saddr, &bp->address_list, list) {
828 				if (sctp_cmp_addr_exact(&saddr->a, laddr))
829 					saddr->state = SCTP_ADDR_DEL;
830 			}
831 			addr_buf += af->sockaddr_len;
832 		}
833 
834 		/* Update the route and saddr entries for all the transports
835 		 * as some of the addresses in the bind address list are
836 		 * about to be deleted and cannot be used as source addresses.
837 		 */
838 		list_for_each_entry(transport, &asoc->peer.transport_addr_list,
839 					transports) {
840 			dst_release(transport->dst);
841 			sctp_transport_route(transport, NULL,
842 					     sctp_sk(asoc->base.sk));
843 		}
844 
845 		if (stored)
846 			/* We don't need to transmit ASCONF */
847 			continue;
848 		retval = sctp_send_asconf(asoc, chunk);
849 	}
850 out:
851 	return retval;
852 }
853 
854 /* set addr events to assocs in the endpoint.  ep and addr_wq must be locked */
855 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
856 {
857 	struct sock *sk = sctp_opt2sk(sp);
858 	union sctp_addr *addr;
859 	struct sctp_af *af;
860 
861 	/* It is safe to write port space in caller. */
862 	addr = &addrw->a;
863 	addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
864 	af = sctp_get_af_specific(addr->sa.sa_family);
865 	if (!af)
866 		return -EINVAL;
867 	if (sctp_verify_addr(sk, addr, af->sockaddr_len))
868 		return -EINVAL;
869 
870 	if (addrw->state == SCTP_ADDR_NEW)
871 		return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
872 	else
873 		return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
874 }
875 
876 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
877  *
878  * API 8.1
879  * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
880  *                int flags);
881  *
882  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
883  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
884  * or IPv6 addresses.
885  *
886  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
887  * Section 3.1.2 for this usage.
888  *
889  * addrs is a pointer to an array of one or more socket addresses. Each
890  * address is contained in its appropriate structure (i.e. struct
891  * sockaddr_in or struct sockaddr_in6) the family of the address type
892  * must be used to distinguish the address length (note that this
893  * representation is termed a "packed array" of addresses). The caller
894  * specifies the number of addresses in the array with addrcnt.
895  *
896  * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
897  * -1, and sets errno to the appropriate error code.
898  *
899  * For SCTP, the port given in each socket address must be the same, or
900  * sctp_bindx() will fail, setting errno to EINVAL.
901  *
902  * The flags parameter is formed from the bitwise OR of zero or more of
903  * the following currently defined flags:
904  *
905  * SCTP_BINDX_ADD_ADDR
906  *
907  * SCTP_BINDX_REM_ADDR
908  *
909  * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
910  * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
911  * addresses from the association. The two flags are mutually exclusive;
912  * if both are given, sctp_bindx() will fail with EINVAL. A caller may
913  * not remove all addresses from an association; sctp_bindx() will
914  * reject such an attempt with EINVAL.
915  *
916  * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
917  * additional addresses with an endpoint after calling bind().  Or use
918  * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
919  * socket is associated with so that no new association accepted will be
920  * associated with those addresses. If the endpoint supports dynamic
921  * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
922  * endpoint to send the appropriate message to the peer to change the
923  * peers address lists.
924  *
925  * Adding and removing addresses from a connected association is
926  * optional functionality. Implementations that do not support this
927  * functionality should return EOPNOTSUPP.
928  *
929  * Basically do nothing but copying the addresses from user to kernel
930  * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
931  * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
932  * from userspace.
933  *
934  * We don't use copy_from_user() for optimization: we first do the
935  * sanity checks (buffer size -fast- and access check-healthy
936  * pointer); if all of those succeed, then we can alloc the memory
937  * (expensive operation) needed to copy the data to kernel. Then we do
938  * the copying without checking the user space area
939  * (__copy_from_user()).
940  *
941  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
942  * it.
943  *
944  * sk        The sk of the socket
945  * addrs     The pointer to the addresses in user land
946  * addrssize Size of the addrs buffer
947  * op        Operation to perform (add or remove, see the flags of
948  *           sctp_bindx)
949  *
950  * Returns 0 if ok, <0 errno code on error.
951  */
952 static int sctp_setsockopt_bindx(struct sock *sk,
953 				 struct sockaddr __user *addrs,
954 				 int addrs_size, int op)
955 {
956 	struct sockaddr *kaddrs;
957 	int err;
958 	int addrcnt = 0;
959 	int walk_size = 0;
960 	struct sockaddr *sa_addr;
961 	void *addr_buf;
962 	struct sctp_af *af;
963 
964 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
965 		 __func__, sk, addrs, addrs_size, op);
966 
967 	if (unlikely(addrs_size <= 0))
968 		return -EINVAL;
969 
970 	/* Check the user passed a healthy pointer.  */
971 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
972 		return -EFAULT;
973 
974 	/* Alloc space for the address array in kernel memory.  */
975 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
976 	if (unlikely(!kaddrs))
977 		return -ENOMEM;
978 
979 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
980 		kfree(kaddrs);
981 		return -EFAULT;
982 	}
983 
984 	/* Walk through the addrs buffer and count the number of addresses. */
985 	addr_buf = kaddrs;
986 	while (walk_size < addrs_size) {
987 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
988 			kfree(kaddrs);
989 			return -EINVAL;
990 		}
991 
992 		sa_addr = addr_buf;
993 		af = sctp_get_af_specific(sa_addr->sa_family);
994 
995 		/* If the address family is not supported or if this address
996 		 * causes the address buffer to overflow return EINVAL.
997 		 */
998 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
999 			kfree(kaddrs);
1000 			return -EINVAL;
1001 		}
1002 		addrcnt++;
1003 		addr_buf += af->sockaddr_len;
1004 		walk_size += af->sockaddr_len;
1005 	}
1006 
1007 	/* Do the work. */
1008 	switch (op) {
1009 	case SCTP_BINDX_ADD_ADDR:
1010 		err = sctp_bindx_add(sk, kaddrs, addrcnt);
1011 		if (err)
1012 			goto out;
1013 		err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1014 		break;
1015 
1016 	case SCTP_BINDX_REM_ADDR:
1017 		err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1018 		if (err)
1019 			goto out;
1020 		err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1021 		break;
1022 
1023 	default:
1024 		err = -EINVAL;
1025 		break;
1026 	}
1027 
1028 out:
1029 	kfree(kaddrs);
1030 
1031 	return err;
1032 }
1033 
1034 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1035  *
1036  * Common routine for handling connect() and sctp_connectx().
1037  * Connect will come in with just a single address.
1038  */
1039 static int __sctp_connect(struct sock *sk,
1040 			  struct sockaddr *kaddrs,
1041 			  int addrs_size,
1042 			  sctp_assoc_t *assoc_id)
1043 {
1044 	struct net *net = sock_net(sk);
1045 	struct sctp_sock *sp;
1046 	struct sctp_endpoint *ep;
1047 	struct sctp_association *asoc = NULL;
1048 	struct sctp_association *asoc2;
1049 	struct sctp_transport *transport;
1050 	union sctp_addr to;
1051 	sctp_scope_t scope;
1052 	long timeo;
1053 	int err = 0;
1054 	int addrcnt = 0;
1055 	int walk_size = 0;
1056 	union sctp_addr *sa_addr = NULL;
1057 	void *addr_buf;
1058 	unsigned short port;
1059 	unsigned int f_flags = 0;
1060 
1061 	sp = sctp_sk(sk);
1062 	ep = sp->ep;
1063 
1064 	/* connect() cannot be done on a socket that is already in ESTABLISHED
1065 	 * state - UDP-style peeled off socket or a TCP-style socket that
1066 	 * is already connected.
1067 	 * It cannot be done even on a TCP-style listening socket.
1068 	 */
1069 	if (sctp_sstate(sk, ESTABLISHED) ||
1070 	    (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1071 		err = -EISCONN;
1072 		goto out_free;
1073 	}
1074 
1075 	/* Walk through the addrs buffer and count the number of addresses. */
1076 	addr_buf = kaddrs;
1077 	while (walk_size < addrs_size) {
1078 		struct sctp_af *af;
1079 
1080 		if (walk_size + sizeof(sa_family_t) > addrs_size) {
1081 			err = -EINVAL;
1082 			goto out_free;
1083 		}
1084 
1085 		sa_addr = addr_buf;
1086 		af = sctp_get_af_specific(sa_addr->sa.sa_family);
1087 
1088 		/* If the address family is not supported or if this address
1089 		 * causes the address buffer to overflow return EINVAL.
1090 		 */
1091 		if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1092 			err = -EINVAL;
1093 			goto out_free;
1094 		}
1095 
1096 		port = ntohs(sa_addr->v4.sin_port);
1097 
1098 		/* Save current address so we can work with it */
1099 		memcpy(&to, sa_addr, af->sockaddr_len);
1100 
1101 		err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1102 		if (err)
1103 			goto out_free;
1104 
1105 		/* Make sure the destination port is correctly set
1106 		 * in all addresses.
1107 		 */
1108 		if (asoc && asoc->peer.port && asoc->peer.port != port) {
1109 			err = -EINVAL;
1110 			goto out_free;
1111 		}
1112 
1113 		/* Check if there already is a matching association on the
1114 		 * endpoint (other than the one created here).
1115 		 */
1116 		asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1117 		if (asoc2 && asoc2 != asoc) {
1118 			if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1119 				err = -EISCONN;
1120 			else
1121 				err = -EALREADY;
1122 			goto out_free;
1123 		}
1124 
1125 		/* If we could not find a matching association on the endpoint,
1126 		 * make sure that there is no peeled-off association matching
1127 		 * the peer address even on another socket.
1128 		 */
1129 		if (sctp_endpoint_is_peeled_off(ep, &to)) {
1130 			err = -EADDRNOTAVAIL;
1131 			goto out_free;
1132 		}
1133 
1134 		if (!asoc) {
1135 			/* If a bind() or sctp_bindx() is not called prior to
1136 			 * an sctp_connectx() call, the system picks an
1137 			 * ephemeral port and will choose an address set
1138 			 * equivalent to binding with a wildcard address.
1139 			 */
1140 			if (!ep->base.bind_addr.port) {
1141 				if (sctp_autobind(sk)) {
1142 					err = -EAGAIN;
1143 					goto out_free;
1144 				}
1145 			} else {
1146 				/*
1147 				 * If an unprivileged user inherits a 1-many
1148 				 * style socket with open associations on a
1149 				 * privileged port, it MAY be permitted to
1150 				 * accept new associations, but it SHOULD NOT
1151 				 * be permitted to open new associations.
1152 				 */
1153 				if (ep->base.bind_addr.port < PROT_SOCK &&
1154 				    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1155 					err = -EACCES;
1156 					goto out_free;
1157 				}
1158 			}
1159 
1160 			scope = sctp_scope(&to);
1161 			asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1162 			if (!asoc) {
1163 				err = -ENOMEM;
1164 				goto out_free;
1165 			}
1166 
1167 			err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1168 							      GFP_KERNEL);
1169 			if (err < 0) {
1170 				goto out_free;
1171 			}
1172 
1173 		}
1174 
1175 		/* Prime the peer's transport structures.  */
1176 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1177 						SCTP_UNKNOWN);
1178 		if (!transport) {
1179 			err = -ENOMEM;
1180 			goto out_free;
1181 		}
1182 
1183 		addrcnt++;
1184 		addr_buf += af->sockaddr_len;
1185 		walk_size += af->sockaddr_len;
1186 	}
1187 
1188 	/* In case the user of sctp_connectx() wants an association
1189 	 * id back, assign one now.
1190 	 */
1191 	if (assoc_id) {
1192 		err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1193 		if (err < 0)
1194 			goto out_free;
1195 	}
1196 
1197 	err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1198 	if (err < 0) {
1199 		goto out_free;
1200 	}
1201 
1202 	/* Initialize sk's dport and daddr for getpeername() */
1203 	inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1204 	sp->pf->to_sk_daddr(sa_addr, sk);
1205 	sk->sk_err = 0;
1206 
1207 	/* in-kernel sockets don't generally have a file allocated to them
1208 	 * if all they do is call sock_create_kern().
1209 	 */
1210 	if (sk->sk_socket->file)
1211 		f_flags = sk->sk_socket->file->f_flags;
1212 
1213 	timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1214 
1215 	err = sctp_wait_for_connect(asoc, &timeo);
1216 	if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1217 		*assoc_id = asoc->assoc_id;
1218 
1219 	/* Don't free association on exit. */
1220 	asoc = NULL;
1221 
1222 out_free:
1223 	pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1224 		 __func__, asoc, kaddrs, err);
1225 
1226 	if (asoc) {
1227 		/* sctp_primitive_ASSOCIATE may have added this association
1228 		 * To the hash table, try to unhash it, just in case, its a noop
1229 		 * if it wasn't hashed so we're safe
1230 		 */
1231 		sctp_unhash_established(asoc);
1232 		sctp_association_free(asoc);
1233 	}
1234 	return err;
1235 }
1236 
1237 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1238  *
1239  * API 8.9
1240  * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1241  * 			sctp_assoc_t *asoc);
1242  *
1243  * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1244  * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1245  * or IPv6 addresses.
1246  *
1247  * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1248  * Section 3.1.2 for this usage.
1249  *
1250  * addrs is a pointer to an array of one or more socket addresses. Each
1251  * address is contained in its appropriate structure (i.e. struct
1252  * sockaddr_in or struct sockaddr_in6) the family of the address type
1253  * must be used to distengish the address length (note that this
1254  * representation is termed a "packed array" of addresses). The caller
1255  * specifies the number of addresses in the array with addrcnt.
1256  *
1257  * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1258  * the association id of the new association.  On failure, sctp_connectx()
1259  * returns -1, and sets errno to the appropriate error code.  The assoc_id
1260  * is not touched by the kernel.
1261  *
1262  * For SCTP, the port given in each socket address must be the same, or
1263  * sctp_connectx() will fail, setting errno to EINVAL.
1264  *
1265  * An application can use sctp_connectx to initiate an association with
1266  * an endpoint that is multi-homed.  Much like sctp_bindx() this call
1267  * allows a caller to specify multiple addresses at which a peer can be
1268  * reached.  The way the SCTP stack uses the list of addresses to set up
1269  * the association is implementation dependent.  This function only
1270  * specifies that the stack will try to make use of all the addresses in
1271  * the list when needed.
1272  *
1273  * Note that the list of addresses passed in is only used for setting up
1274  * the association.  It does not necessarily equal the set of addresses
1275  * the peer uses for the resulting association.  If the caller wants to
1276  * find out the set of peer addresses, it must use sctp_getpaddrs() to
1277  * retrieve them after the association has been set up.
1278  *
1279  * Basically do nothing but copying the addresses from user to kernel
1280  * land and invoking either sctp_connectx(). This is used for tunneling
1281  * the sctp_connectx() request through sctp_setsockopt() from userspace.
1282  *
1283  * We don't use copy_from_user() for optimization: we first do the
1284  * sanity checks (buffer size -fast- and access check-healthy
1285  * pointer); if all of those succeed, then we can alloc the memory
1286  * (expensive operation) needed to copy the data to kernel. Then we do
1287  * the copying without checking the user space area
1288  * (__copy_from_user()).
1289  *
1290  * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1291  * it.
1292  *
1293  * sk        The sk of the socket
1294  * addrs     The pointer to the addresses in user land
1295  * addrssize Size of the addrs buffer
1296  *
1297  * Returns >=0 if ok, <0 errno code on error.
1298  */
1299 static int __sctp_setsockopt_connectx(struct sock *sk,
1300 				      struct sockaddr __user *addrs,
1301 				      int addrs_size,
1302 				      sctp_assoc_t *assoc_id)
1303 {
1304 	int err = 0;
1305 	struct sockaddr *kaddrs;
1306 
1307 	pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1308 		 __func__, sk, addrs, addrs_size);
1309 
1310 	if (unlikely(addrs_size <= 0))
1311 		return -EINVAL;
1312 
1313 	/* Check the user passed a healthy pointer.  */
1314 	if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1315 		return -EFAULT;
1316 
1317 	/* Alloc space for the address array in kernel memory.  */
1318 	kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1319 	if (unlikely(!kaddrs))
1320 		return -ENOMEM;
1321 
1322 	if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1323 		err = -EFAULT;
1324 	} else {
1325 		err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1326 	}
1327 
1328 	kfree(kaddrs);
1329 
1330 	return err;
1331 }
1332 
1333 /*
1334  * This is an older interface.  It's kept for backward compatibility
1335  * to the option that doesn't provide association id.
1336  */
1337 static int sctp_setsockopt_connectx_old(struct sock *sk,
1338 					struct sockaddr __user *addrs,
1339 					int addrs_size)
1340 {
1341 	return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1342 }
1343 
1344 /*
1345  * New interface for the API.  The since the API is done with a socket
1346  * option, to make it simple we feed back the association id is as a return
1347  * indication to the call.  Error is always negative and association id is
1348  * always positive.
1349  */
1350 static int sctp_setsockopt_connectx(struct sock *sk,
1351 				    struct sockaddr __user *addrs,
1352 				    int addrs_size)
1353 {
1354 	sctp_assoc_t assoc_id = 0;
1355 	int err = 0;
1356 
1357 	err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1358 
1359 	if (err)
1360 		return err;
1361 	else
1362 		return assoc_id;
1363 }
1364 
1365 /*
1366  * New (hopefully final) interface for the API.
1367  * We use the sctp_getaddrs_old structure so that use-space library
1368  * can avoid any unnecessary allocations. The only different part
1369  * is that we store the actual length of the address buffer into the
1370  * addrs_num structure member. That way we can re-use the existing
1371  * code.
1372  */
1373 #ifdef CONFIG_COMPAT
1374 struct compat_sctp_getaddrs_old {
1375 	sctp_assoc_t	assoc_id;
1376 	s32		addr_num;
1377 	compat_uptr_t	addrs;		/* struct sockaddr * */
1378 };
1379 #endif
1380 
1381 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1382 				     char __user *optval,
1383 				     int __user *optlen)
1384 {
1385 	struct sctp_getaddrs_old param;
1386 	sctp_assoc_t assoc_id = 0;
1387 	int err = 0;
1388 
1389 #ifdef CONFIG_COMPAT
1390 	if (is_compat_task()) {
1391 		struct compat_sctp_getaddrs_old param32;
1392 
1393 		if (len < sizeof(param32))
1394 			return -EINVAL;
1395 		if (copy_from_user(&param32, optval, sizeof(param32)))
1396 			return -EFAULT;
1397 
1398 		param.assoc_id = param32.assoc_id;
1399 		param.addr_num = param32.addr_num;
1400 		param.addrs = compat_ptr(param32.addrs);
1401 	} else
1402 #endif
1403 	{
1404 		if (len < sizeof(param))
1405 			return -EINVAL;
1406 		if (copy_from_user(&param, optval, sizeof(param)))
1407 			return -EFAULT;
1408 	}
1409 
1410 	err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1411 					 param.addrs, param.addr_num,
1412 					 &assoc_id);
1413 	if (err == 0 || err == -EINPROGRESS) {
1414 		if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1415 			return -EFAULT;
1416 		if (put_user(sizeof(assoc_id), optlen))
1417 			return -EFAULT;
1418 	}
1419 
1420 	return err;
1421 }
1422 
1423 /* API 3.1.4 close() - UDP Style Syntax
1424  * Applications use close() to perform graceful shutdown (as described in
1425  * Section 10.1 of [SCTP]) on ALL the associations currently represented
1426  * by a UDP-style socket.
1427  *
1428  * The syntax is
1429  *
1430  *   ret = close(int sd);
1431  *
1432  *   sd      - the socket descriptor of the associations to be closed.
1433  *
1434  * To gracefully shutdown a specific association represented by the
1435  * UDP-style socket, an application should use the sendmsg() call,
1436  * passing no user data, but including the appropriate flag in the
1437  * ancillary data (see Section xxxx).
1438  *
1439  * If sd in the close() call is a branched-off socket representing only
1440  * one association, the shutdown is performed on that association only.
1441  *
1442  * 4.1.6 close() - TCP Style Syntax
1443  *
1444  * Applications use close() to gracefully close down an association.
1445  *
1446  * The syntax is:
1447  *
1448  *    int close(int sd);
1449  *
1450  *      sd      - the socket descriptor of the association to be closed.
1451  *
1452  * After an application calls close() on a socket descriptor, no further
1453  * socket operations will succeed on that descriptor.
1454  *
1455  * API 7.1.4 SO_LINGER
1456  *
1457  * An application using the TCP-style socket can use this option to
1458  * perform the SCTP ABORT primitive.  The linger option structure is:
1459  *
1460  *  struct  linger {
1461  *     int     l_onoff;                // option on/off
1462  *     int     l_linger;               // linger time
1463  * };
1464  *
1465  * To enable the option, set l_onoff to 1.  If the l_linger value is set
1466  * to 0, calling close() is the same as the ABORT primitive.  If the
1467  * value is set to a negative value, the setsockopt() call will return
1468  * an error.  If the value is set to a positive value linger_time, the
1469  * close() can be blocked for at most linger_time ms.  If the graceful
1470  * shutdown phase does not finish during this period, close() will
1471  * return but the graceful shutdown phase continues in the system.
1472  */
1473 static void sctp_close(struct sock *sk, long timeout)
1474 {
1475 	struct net *net = sock_net(sk);
1476 	struct sctp_endpoint *ep;
1477 	struct sctp_association *asoc;
1478 	struct list_head *pos, *temp;
1479 	unsigned int data_was_unread;
1480 
1481 	pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1482 
1483 	lock_sock(sk);
1484 	sk->sk_shutdown = SHUTDOWN_MASK;
1485 	sk->sk_state = SCTP_SS_CLOSING;
1486 
1487 	ep = sctp_sk(sk)->ep;
1488 
1489 	/* Clean up any skbs sitting on the receive queue.  */
1490 	data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1491 	data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1492 
1493 	/* Walk all associations on an endpoint.  */
1494 	list_for_each_safe(pos, temp, &ep->asocs) {
1495 		asoc = list_entry(pos, struct sctp_association, asocs);
1496 
1497 		if (sctp_style(sk, TCP)) {
1498 			/* A closed association can still be in the list if
1499 			 * it belongs to a TCP-style listening socket that is
1500 			 * not yet accepted. If so, free it. If not, send an
1501 			 * ABORT or SHUTDOWN based on the linger options.
1502 			 */
1503 			if (sctp_state(asoc, CLOSED)) {
1504 				sctp_unhash_established(asoc);
1505 				sctp_association_free(asoc);
1506 				continue;
1507 			}
1508 		}
1509 
1510 		if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1511 		    !skb_queue_empty(&asoc->ulpq.reasm) ||
1512 		    (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1513 			struct sctp_chunk *chunk;
1514 
1515 			chunk = sctp_make_abort_user(asoc, NULL, 0);
1516 			if (chunk)
1517 				sctp_primitive_ABORT(net, asoc, chunk);
1518 		} else
1519 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1520 	}
1521 
1522 	/* On a TCP-style socket, block for at most linger_time if set. */
1523 	if (sctp_style(sk, TCP) && timeout)
1524 		sctp_wait_for_close(sk, timeout);
1525 
1526 	/* This will run the backlog queue.  */
1527 	release_sock(sk);
1528 
1529 	/* Supposedly, no process has access to the socket, but
1530 	 * the net layers still may.
1531 	 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1532 	 * held and that should be grabbed before socket lock.
1533 	 */
1534 	spin_lock_bh(&net->sctp.addr_wq_lock);
1535 	bh_lock_sock(sk);
1536 
1537 	/* Hold the sock, since sk_common_release() will put sock_put()
1538 	 * and we have just a little more cleanup.
1539 	 */
1540 	sock_hold(sk);
1541 	sk_common_release(sk);
1542 
1543 	bh_unlock_sock(sk);
1544 	spin_unlock_bh(&net->sctp.addr_wq_lock);
1545 
1546 	sock_put(sk);
1547 
1548 	SCTP_DBG_OBJCNT_DEC(sock);
1549 }
1550 
1551 /* Handle EPIPE error. */
1552 static int sctp_error(struct sock *sk, int flags, int err)
1553 {
1554 	if (err == -EPIPE)
1555 		err = sock_error(sk) ? : -EPIPE;
1556 	if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1557 		send_sig(SIGPIPE, current, 0);
1558 	return err;
1559 }
1560 
1561 /* API 3.1.3 sendmsg() - UDP Style Syntax
1562  *
1563  * An application uses sendmsg() and recvmsg() calls to transmit data to
1564  * and receive data from its peer.
1565  *
1566  *  ssize_t sendmsg(int socket, const struct msghdr *message,
1567  *                  int flags);
1568  *
1569  *  socket  - the socket descriptor of the endpoint.
1570  *  message - pointer to the msghdr structure which contains a single
1571  *            user message and possibly some ancillary data.
1572  *
1573  *            See Section 5 for complete description of the data
1574  *            structures.
1575  *
1576  *  flags   - flags sent or received with the user message, see Section
1577  *            5 for complete description of the flags.
1578  *
1579  * Note:  This function could use a rewrite especially when explicit
1580  * connect support comes in.
1581  */
1582 /* BUG:  We do not implement the equivalent of sk_stream_wait_memory(). */
1583 
1584 static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1585 
1586 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1587 {
1588 	struct net *net = sock_net(sk);
1589 	struct sctp_sock *sp;
1590 	struct sctp_endpoint *ep;
1591 	struct sctp_association *new_asoc = NULL, *asoc = NULL;
1592 	struct sctp_transport *transport, *chunk_tp;
1593 	struct sctp_chunk *chunk;
1594 	union sctp_addr to;
1595 	struct sockaddr *msg_name = NULL;
1596 	struct sctp_sndrcvinfo default_sinfo;
1597 	struct sctp_sndrcvinfo *sinfo;
1598 	struct sctp_initmsg *sinit;
1599 	sctp_assoc_t associd = 0;
1600 	sctp_cmsgs_t cmsgs = { NULL };
1601 	sctp_scope_t scope;
1602 	bool fill_sinfo_ttl = false, wait_connect = false;
1603 	struct sctp_datamsg *datamsg;
1604 	int msg_flags = msg->msg_flags;
1605 	__u16 sinfo_flags = 0;
1606 	long timeo;
1607 	int err;
1608 
1609 	err = 0;
1610 	sp = sctp_sk(sk);
1611 	ep = sp->ep;
1612 
1613 	pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1614 		 msg, msg_len, ep);
1615 
1616 	/* We cannot send a message over a TCP-style listening socket. */
1617 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1618 		err = -EPIPE;
1619 		goto out_nounlock;
1620 	}
1621 
1622 	/* Parse out the SCTP CMSGs.  */
1623 	err = sctp_msghdr_parse(msg, &cmsgs);
1624 	if (err) {
1625 		pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1626 		goto out_nounlock;
1627 	}
1628 
1629 	/* Fetch the destination address for this packet.  This
1630 	 * address only selects the association--it is not necessarily
1631 	 * the address we will send to.
1632 	 * For a peeled-off socket, msg_name is ignored.
1633 	 */
1634 	if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1635 		int msg_namelen = msg->msg_namelen;
1636 
1637 		err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1638 				       msg_namelen);
1639 		if (err)
1640 			return err;
1641 
1642 		if (msg_namelen > sizeof(to))
1643 			msg_namelen = sizeof(to);
1644 		memcpy(&to, msg->msg_name, msg_namelen);
1645 		msg_name = msg->msg_name;
1646 	}
1647 
1648 	sinit = cmsgs.init;
1649 	if (cmsgs.sinfo != NULL) {
1650 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1651 		default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1652 		default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1653 		default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1654 		default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1655 		default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1656 
1657 		sinfo = &default_sinfo;
1658 		fill_sinfo_ttl = true;
1659 	} else {
1660 		sinfo = cmsgs.srinfo;
1661 	}
1662 	/* Did the user specify SNDINFO/SNDRCVINFO? */
1663 	if (sinfo) {
1664 		sinfo_flags = sinfo->sinfo_flags;
1665 		associd = sinfo->sinfo_assoc_id;
1666 	}
1667 
1668 	pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1669 		 msg_len, sinfo_flags);
1670 
1671 	/* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1672 	if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1673 		err = -EINVAL;
1674 		goto out_nounlock;
1675 	}
1676 
1677 	/* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1678 	 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1679 	 * If SCTP_ABORT is set, the message length could be non zero with
1680 	 * the msg_iov set to the user abort reason.
1681 	 */
1682 	if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1683 	    (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1684 		err = -EINVAL;
1685 		goto out_nounlock;
1686 	}
1687 
1688 	/* If SCTP_ADDR_OVER is set, there must be an address
1689 	 * specified in msg_name.
1690 	 */
1691 	if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1692 		err = -EINVAL;
1693 		goto out_nounlock;
1694 	}
1695 
1696 	transport = NULL;
1697 
1698 	pr_debug("%s: about to look up association\n", __func__);
1699 
1700 	lock_sock(sk);
1701 
1702 	/* If a msg_name has been specified, assume this is to be used.  */
1703 	if (msg_name) {
1704 		/* Look for a matching association on the endpoint. */
1705 		asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1706 		if (!asoc) {
1707 			/* If we could not find a matching association on the
1708 			 * endpoint, make sure that it is not a TCP-style
1709 			 * socket that already has an association or there is
1710 			 * no peeled-off association on another socket.
1711 			 */
1712 			if ((sctp_style(sk, TCP) &&
1713 			     sctp_sstate(sk, ESTABLISHED)) ||
1714 			    sctp_endpoint_is_peeled_off(ep, &to)) {
1715 				err = -EADDRNOTAVAIL;
1716 				goto out_unlock;
1717 			}
1718 		}
1719 	} else {
1720 		asoc = sctp_id2assoc(sk, associd);
1721 		if (!asoc) {
1722 			err = -EPIPE;
1723 			goto out_unlock;
1724 		}
1725 	}
1726 
1727 	if (asoc) {
1728 		pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1729 
1730 		/* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1731 		 * socket that has an association in CLOSED state. This can
1732 		 * happen when an accepted socket has an association that is
1733 		 * already CLOSED.
1734 		 */
1735 		if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1736 			err = -EPIPE;
1737 			goto out_unlock;
1738 		}
1739 
1740 		if (sinfo_flags & SCTP_EOF) {
1741 			pr_debug("%s: shutting down association:%p\n",
1742 				 __func__, asoc);
1743 
1744 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
1745 			err = 0;
1746 			goto out_unlock;
1747 		}
1748 		if (sinfo_flags & SCTP_ABORT) {
1749 
1750 			chunk = sctp_make_abort_user(asoc, msg, msg_len);
1751 			if (!chunk) {
1752 				err = -ENOMEM;
1753 				goto out_unlock;
1754 			}
1755 
1756 			pr_debug("%s: aborting association:%p\n",
1757 				 __func__, asoc);
1758 
1759 			sctp_primitive_ABORT(net, asoc, chunk);
1760 			err = 0;
1761 			goto out_unlock;
1762 		}
1763 	}
1764 
1765 	/* Do we need to create the association?  */
1766 	if (!asoc) {
1767 		pr_debug("%s: there is no association yet\n", __func__);
1768 
1769 		if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1770 			err = -EINVAL;
1771 			goto out_unlock;
1772 		}
1773 
1774 		/* Check for invalid stream against the stream counts,
1775 		 * either the default or the user specified stream counts.
1776 		 */
1777 		if (sinfo) {
1778 			if (!sinit || !sinit->sinit_num_ostreams) {
1779 				/* Check against the defaults. */
1780 				if (sinfo->sinfo_stream >=
1781 				    sp->initmsg.sinit_num_ostreams) {
1782 					err = -EINVAL;
1783 					goto out_unlock;
1784 				}
1785 			} else {
1786 				/* Check against the requested.  */
1787 				if (sinfo->sinfo_stream >=
1788 				    sinit->sinit_num_ostreams) {
1789 					err = -EINVAL;
1790 					goto out_unlock;
1791 				}
1792 			}
1793 		}
1794 
1795 		/*
1796 		 * API 3.1.2 bind() - UDP Style Syntax
1797 		 * If a bind() or sctp_bindx() is not called prior to a
1798 		 * sendmsg() call that initiates a new association, the
1799 		 * system picks an ephemeral port and will choose an address
1800 		 * set equivalent to binding with a wildcard address.
1801 		 */
1802 		if (!ep->base.bind_addr.port) {
1803 			if (sctp_autobind(sk)) {
1804 				err = -EAGAIN;
1805 				goto out_unlock;
1806 			}
1807 		} else {
1808 			/*
1809 			 * If an unprivileged user inherits a one-to-many
1810 			 * style socket with open associations on a privileged
1811 			 * port, it MAY be permitted to accept new associations,
1812 			 * but it SHOULD NOT be permitted to open new
1813 			 * associations.
1814 			 */
1815 			if (ep->base.bind_addr.port < PROT_SOCK &&
1816 			    !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1817 				err = -EACCES;
1818 				goto out_unlock;
1819 			}
1820 		}
1821 
1822 		scope = sctp_scope(&to);
1823 		new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1824 		if (!new_asoc) {
1825 			err = -ENOMEM;
1826 			goto out_unlock;
1827 		}
1828 		asoc = new_asoc;
1829 		err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1830 		if (err < 0) {
1831 			err = -ENOMEM;
1832 			goto out_free;
1833 		}
1834 
1835 		/* If the SCTP_INIT ancillary data is specified, set all
1836 		 * the association init values accordingly.
1837 		 */
1838 		if (sinit) {
1839 			if (sinit->sinit_num_ostreams) {
1840 				asoc->c.sinit_num_ostreams =
1841 					sinit->sinit_num_ostreams;
1842 			}
1843 			if (sinit->sinit_max_instreams) {
1844 				asoc->c.sinit_max_instreams =
1845 					sinit->sinit_max_instreams;
1846 			}
1847 			if (sinit->sinit_max_attempts) {
1848 				asoc->max_init_attempts
1849 					= sinit->sinit_max_attempts;
1850 			}
1851 			if (sinit->sinit_max_init_timeo) {
1852 				asoc->max_init_timeo =
1853 				 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1854 			}
1855 		}
1856 
1857 		/* Prime the peer's transport structures.  */
1858 		transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1859 		if (!transport) {
1860 			err = -ENOMEM;
1861 			goto out_free;
1862 		}
1863 	}
1864 
1865 	/* ASSERT: we have a valid association at this point.  */
1866 	pr_debug("%s: we have a valid association\n", __func__);
1867 
1868 	if (!sinfo) {
1869 		/* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1870 		 * one with some defaults.
1871 		 */
1872 		memset(&default_sinfo, 0, sizeof(default_sinfo));
1873 		default_sinfo.sinfo_stream = asoc->default_stream;
1874 		default_sinfo.sinfo_flags = asoc->default_flags;
1875 		default_sinfo.sinfo_ppid = asoc->default_ppid;
1876 		default_sinfo.sinfo_context = asoc->default_context;
1877 		default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1878 		default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1879 
1880 		sinfo = &default_sinfo;
1881 	} else if (fill_sinfo_ttl) {
1882 		/* In case SNDINFO was specified, we still need to fill
1883 		 * it with a default ttl from the assoc here.
1884 		 */
1885 		sinfo->sinfo_timetolive = asoc->default_timetolive;
1886 	}
1887 
1888 	/* API 7.1.7, the sndbuf size per association bounds the
1889 	 * maximum size of data that can be sent in a single send call.
1890 	 */
1891 	if (msg_len > sk->sk_sndbuf) {
1892 		err = -EMSGSIZE;
1893 		goto out_free;
1894 	}
1895 
1896 	if (asoc->pmtu_pending)
1897 		sctp_assoc_pending_pmtu(sk, asoc);
1898 
1899 	/* If fragmentation is disabled and the message length exceeds the
1900 	 * association fragmentation point, return EMSGSIZE.  The I-D
1901 	 * does not specify what this error is, but this looks like
1902 	 * a great fit.
1903 	 */
1904 	if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1905 		err = -EMSGSIZE;
1906 		goto out_free;
1907 	}
1908 
1909 	/* Check for invalid stream. */
1910 	if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1911 		err = -EINVAL;
1912 		goto out_free;
1913 	}
1914 
1915 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1916 	if (!sctp_wspace(asoc)) {
1917 		err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1918 		if (err)
1919 			goto out_free;
1920 	}
1921 
1922 	/* If an address is passed with the sendto/sendmsg call, it is used
1923 	 * to override the primary destination address in the TCP model, or
1924 	 * when SCTP_ADDR_OVER flag is set in the UDP model.
1925 	 */
1926 	if ((sctp_style(sk, TCP) && msg_name) ||
1927 	    (sinfo_flags & SCTP_ADDR_OVER)) {
1928 		chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1929 		if (!chunk_tp) {
1930 			err = -EINVAL;
1931 			goto out_free;
1932 		}
1933 	} else
1934 		chunk_tp = NULL;
1935 
1936 	/* Auto-connect, if we aren't connected already. */
1937 	if (sctp_state(asoc, CLOSED)) {
1938 		err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1939 		if (err < 0)
1940 			goto out_free;
1941 
1942 		wait_connect = true;
1943 		pr_debug("%s: we associated primitively\n", __func__);
1944 	}
1945 
1946 	/* Break the message into multiple chunks of maximum size. */
1947 	datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1948 	if (IS_ERR(datamsg)) {
1949 		err = PTR_ERR(datamsg);
1950 		goto out_free;
1951 	}
1952 
1953 	/* Now send the (possibly) fragmented message. */
1954 	list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1955 		sctp_chunk_hold(chunk);
1956 
1957 		/* Do accounting for the write space.  */
1958 		sctp_set_owner_w(chunk);
1959 
1960 		chunk->transport = chunk_tp;
1961 	}
1962 
1963 	/* Send it to the lower layers.  Note:  all chunks
1964 	 * must either fail or succeed.   The lower layer
1965 	 * works that way today.  Keep it that way or this
1966 	 * breaks.
1967 	 */
1968 	err = sctp_primitive_SEND(net, asoc, datamsg);
1969 	/* Did the lower layer accept the chunk? */
1970 	if (err) {
1971 		sctp_datamsg_free(datamsg);
1972 		goto out_free;
1973 	}
1974 
1975 	pr_debug("%s: we sent primitively\n", __func__);
1976 
1977 	sctp_datamsg_put(datamsg);
1978 	err = msg_len;
1979 
1980 	if (unlikely(wait_connect)) {
1981 		timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1982 		sctp_wait_for_connect(asoc, &timeo);
1983 	}
1984 
1985 	/* If we are already past ASSOCIATE, the lower
1986 	 * layers are responsible for association cleanup.
1987 	 */
1988 	goto out_unlock;
1989 
1990 out_free:
1991 	if (new_asoc) {
1992 		sctp_unhash_established(asoc);
1993 		sctp_association_free(asoc);
1994 	}
1995 out_unlock:
1996 	release_sock(sk);
1997 
1998 out_nounlock:
1999 	return sctp_error(sk, msg_flags, err);
2000 
2001 #if 0
2002 do_sock_err:
2003 	if (msg_len)
2004 		err = msg_len;
2005 	else
2006 		err = sock_error(sk);
2007 	goto out;
2008 
2009 do_interrupted:
2010 	if (msg_len)
2011 		err = msg_len;
2012 	goto out;
2013 #endif /* 0 */
2014 }
2015 
2016 /* This is an extended version of skb_pull() that removes the data from the
2017  * start of a skb even when data is spread across the list of skb's in the
2018  * frag_list. len specifies the total amount of data that needs to be removed.
2019  * when 'len' bytes could be removed from the skb, it returns 0.
2020  * If 'len' exceeds the total skb length,  it returns the no. of bytes that
2021  * could not be removed.
2022  */
2023 static int sctp_skb_pull(struct sk_buff *skb, int len)
2024 {
2025 	struct sk_buff *list;
2026 	int skb_len = skb_headlen(skb);
2027 	int rlen;
2028 
2029 	if (len <= skb_len) {
2030 		__skb_pull(skb, len);
2031 		return 0;
2032 	}
2033 	len -= skb_len;
2034 	__skb_pull(skb, skb_len);
2035 
2036 	skb_walk_frags(skb, list) {
2037 		rlen = sctp_skb_pull(list, len);
2038 		skb->len -= (len-rlen);
2039 		skb->data_len -= (len-rlen);
2040 
2041 		if (!rlen)
2042 			return 0;
2043 
2044 		len = rlen;
2045 	}
2046 
2047 	return len;
2048 }
2049 
2050 /* API 3.1.3  recvmsg() - UDP Style Syntax
2051  *
2052  *  ssize_t recvmsg(int socket, struct msghdr *message,
2053  *                    int flags);
2054  *
2055  *  socket  - the socket descriptor of the endpoint.
2056  *  message - pointer to the msghdr structure which contains a single
2057  *            user message and possibly some ancillary data.
2058  *
2059  *            See Section 5 for complete description of the data
2060  *            structures.
2061  *
2062  *  flags   - flags sent or received with the user message, see Section
2063  *            5 for complete description of the flags.
2064  */
2065 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2066 			int noblock, int flags, int *addr_len)
2067 {
2068 	struct sctp_ulpevent *event = NULL;
2069 	struct sctp_sock *sp = sctp_sk(sk);
2070 	struct sk_buff *skb;
2071 	int copied;
2072 	int err = 0;
2073 	int skb_len;
2074 
2075 	pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2076 		 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2077 		 addr_len);
2078 
2079 	lock_sock(sk);
2080 
2081 	if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2082 		err = -ENOTCONN;
2083 		goto out;
2084 	}
2085 
2086 	skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2087 	if (!skb)
2088 		goto out;
2089 
2090 	/* Get the total length of the skb including any skb's in the
2091 	 * frag_list.
2092 	 */
2093 	skb_len = skb->len;
2094 
2095 	copied = skb_len;
2096 	if (copied > len)
2097 		copied = len;
2098 
2099 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
2100 
2101 	event = sctp_skb2event(skb);
2102 
2103 	if (err)
2104 		goto out_free;
2105 
2106 	sock_recv_ts_and_drops(msg, sk, skb);
2107 	if (sctp_ulpevent_is_notification(event)) {
2108 		msg->msg_flags |= MSG_NOTIFICATION;
2109 		sp->pf->event_msgname(event, msg->msg_name, addr_len);
2110 	} else {
2111 		sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2112 	}
2113 
2114 	/* Check if we allow SCTP_NXTINFO. */
2115 	if (sp->recvnxtinfo)
2116 		sctp_ulpevent_read_nxtinfo(event, msg, sk);
2117 	/* Check if we allow SCTP_RCVINFO. */
2118 	if (sp->recvrcvinfo)
2119 		sctp_ulpevent_read_rcvinfo(event, msg);
2120 	/* Check if we allow SCTP_SNDRCVINFO. */
2121 	if (sp->subscribe.sctp_data_io_event)
2122 		sctp_ulpevent_read_sndrcvinfo(event, msg);
2123 
2124 #if 0
2125 	/* FIXME: we should be calling IP/IPv6 layers.  */
2126 	if (sk->sk_protinfo.af_inet.cmsg_flags)
2127 		ip_cmsg_recv(msg, skb);
2128 #endif
2129 
2130 	err = copied;
2131 
2132 	/* If skb's length exceeds the user's buffer, update the skb and
2133 	 * push it back to the receive_queue so that the next call to
2134 	 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2135 	 */
2136 	if (skb_len > copied) {
2137 		msg->msg_flags &= ~MSG_EOR;
2138 		if (flags & MSG_PEEK)
2139 			goto out_free;
2140 		sctp_skb_pull(skb, copied);
2141 		skb_queue_head(&sk->sk_receive_queue, skb);
2142 
2143 		/* When only partial message is copied to the user, increase
2144 		 * rwnd by that amount. If all the data in the skb is read,
2145 		 * rwnd is updated when the event is freed.
2146 		 */
2147 		if (!sctp_ulpevent_is_notification(event))
2148 			sctp_assoc_rwnd_increase(event->asoc, copied);
2149 		goto out;
2150 	} else if ((event->msg_flags & MSG_NOTIFICATION) ||
2151 		   (event->msg_flags & MSG_EOR))
2152 		msg->msg_flags |= MSG_EOR;
2153 	else
2154 		msg->msg_flags &= ~MSG_EOR;
2155 
2156 out_free:
2157 	if (flags & MSG_PEEK) {
2158 		/* Release the skb reference acquired after peeking the skb in
2159 		 * sctp_skb_recv_datagram().
2160 		 */
2161 		kfree_skb(skb);
2162 	} else {
2163 		/* Free the event which includes releasing the reference to
2164 		 * the owner of the skb, freeing the skb and updating the
2165 		 * rwnd.
2166 		 */
2167 		sctp_ulpevent_free(event);
2168 	}
2169 out:
2170 	release_sock(sk);
2171 	return err;
2172 }
2173 
2174 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2175  *
2176  * This option is a on/off flag.  If enabled no SCTP message
2177  * fragmentation will be performed.  Instead if a message being sent
2178  * exceeds the current PMTU size, the message will NOT be sent and
2179  * instead a error will be indicated to the user.
2180  */
2181 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2182 					     char __user *optval,
2183 					     unsigned int optlen)
2184 {
2185 	int val;
2186 
2187 	if (optlen < sizeof(int))
2188 		return -EINVAL;
2189 
2190 	if (get_user(val, (int __user *)optval))
2191 		return -EFAULT;
2192 
2193 	sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2194 
2195 	return 0;
2196 }
2197 
2198 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2199 				  unsigned int optlen)
2200 {
2201 	struct sctp_association *asoc;
2202 	struct sctp_ulpevent *event;
2203 
2204 	if (optlen > sizeof(struct sctp_event_subscribe))
2205 		return -EINVAL;
2206 	if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2207 		return -EFAULT;
2208 
2209 	if (sctp_sk(sk)->subscribe.sctp_data_io_event)
2210 		pr_warn_ratelimited(DEPRECATED "%s (pid %d) "
2211 				    "Requested SCTP_SNDRCVINFO event.\n"
2212 				    "Use SCTP_RCVINFO through SCTP_RECVRCVINFO option instead.\n",
2213 				    current->comm, task_pid_nr(current));
2214 
2215 	/* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2216 	 * if there is no data to be sent or retransmit, the stack will
2217 	 * immediately send up this notification.
2218 	 */
2219 	if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2220 				       &sctp_sk(sk)->subscribe)) {
2221 		asoc = sctp_id2assoc(sk, 0);
2222 
2223 		if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2224 			event = sctp_ulpevent_make_sender_dry_event(asoc,
2225 					GFP_ATOMIC);
2226 			if (!event)
2227 				return -ENOMEM;
2228 
2229 			sctp_ulpq_tail_event(&asoc->ulpq, event);
2230 		}
2231 	}
2232 
2233 	return 0;
2234 }
2235 
2236 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2237  *
2238  * This socket option is applicable to the UDP-style socket only.  When
2239  * set it will cause associations that are idle for more than the
2240  * specified number of seconds to automatically close.  An association
2241  * being idle is defined an association that has NOT sent or received
2242  * user data.  The special value of '0' indicates that no automatic
2243  * close of any associations should be performed.  The option expects an
2244  * integer defining the number of seconds of idle time before an
2245  * association is closed.
2246  */
2247 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2248 				     unsigned int optlen)
2249 {
2250 	struct sctp_sock *sp = sctp_sk(sk);
2251 	struct net *net = sock_net(sk);
2252 
2253 	/* Applicable to UDP-style socket only */
2254 	if (sctp_style(sk, TCP))
2255 		return -EOPNOTSUPP;
2256 	if (optlen != sizeof(int))
2257 		return -EINVAL;
2258 	if (copy_from_user(&sp->autoclose, optval, optlen))
2259 		return -EFAULT;
2260 
2261 	if (sp->autoclose > net->sctp.max_autoclose)
2262 		sp->autoclose = net->sctp.max_autoclose;
2263 
2264 	return 0;
2265 }
2266 
2267 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2268  *
2269  * Applications can enable or disable heartbeats for any peer address of
2270  * an association, modify an address's heartbeat interval, force a
2271  * heartbeat to be sent immediately, and adjust the address's maximum
2272  * number of retransmissions sent before an address is considered
2273  * unreachable.  The following structure is used to access and modify an
2274  * address's parameters:
2275  *
2276  *  struct sctp_paddrparams {
2277  *     sctp_assoc_t            spp_assoc_id;
2278  *     struct sockaddr_storage spp_address;
2279  *     uint32_t                spp_hbinterval;
2280  *     uint16_t                spp_pathmaxrxt;
2281  *     uint32_t                spp_pathmtu;
2282  *     uint32_t                spp_sackdelay;
2283  *     uint32_t                spp_flags;
2284  * };
2285  *
2286  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
2287  *                     application, and identifies the association for
2288  *                     this query.
2289  *   spp_address     - This specifies which address is of interest.
2290  *   spp_hbinterval  - This contains the value of the heartbeat interval,
2291  *                     in milliseconds.  If a  value of zero
2292  *                     is present in this field then no changes are to
2293  *                     be made to this parameter.
2294  *   spp_pathmaxrxt  - This contains the maximum number of
2295  *                     retransmissions before this address shall be
2296  *                     considered unreachable. If a  value of zero
2297  *                     is present in this field then no changes are to
2298  *                     be made to this parameter.
2299  *   spp_pathmtu     - When Path MTU discovery is disabled the value
2300  *                     specified here will be the "fixed" path mtu.
2301  *                     Note that if the spp_address field is empty
2302  *                     then all associations on this address will
2303  *                     have this fixed path mtu set upon them.
2304  *
2305  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
2306  *                     the number of milliseconds that sacks will be delayed
2307  *                     for. This value will apply to all addresses of an
2308  *                     association if the spp_address field is empty. Note
2309  *                     also, that if delayed sack is enabled and this
2310  *                     value is set to 0, no change is made to the last
2311  *                     recorded delayed sack timer value.
2312  *
2313  *   spp_flags       - These flags are used to control various features
2314  *                     on an association. The flag field may contain
2315  *                     zero or more of the following options.
2316  *
2317  *                     SPP_HB_ENABLE  - Enable heartbeats on the
2318  *                     specified address. Note that if the address
2319  *                     field is empty all addresses for the association
2320  *                     have heartbeats enabled upon them.
2321  *
2322  *                     SPP_HB_DISABLE - Disable heartbeats on the
2323  *                     speicifed address. Note that if the address
2324  *                     field is empty all addresses for the association
2325  *                     will have their heartbeats disabled. Note also
2326  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
2327  *                     mutually exclusive, only one of these two should
2328  *                     be specified. Enabling both fields will have
2329  *                     undetermined results.
2330  *
2331  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
2332  *                     to be made immediately.
2333  *
2334  *                     SPP_HB_TIME_IS_ZERO - Specify's that the time for
2335  *                     heartbeat delayis to be set to the value of 0
2336  *                     milliseconds.
2337  *
2338  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
2339  *                     discovery upon the specified address. Note that
2340  *                     if the address feild is empty then all addresses
2341  *                     on the association are effected.
2342  *
2343  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
2344  *                     discovery upon the specified address. Note that
2345  *                     if the address feild is empty then all addresses
2346  *                     on the association are effected. Not also that
2347  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2348  *                     exclusive. Enabling both will have undetermined
2349  *                     results.
2350  *
2351  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
2352  *                     on delayed sack. The time specified in spp_sackdelay
2353  *                     is used to specify the sack delay for this address. Note
2354  *                     that if spp_address is empty then all addresses will
2355  *                     enable delayed sack and take on the sack delay
2356  *                     value specified in spp_sackdelay.
2357  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
2358  *                     off delayed sack. If the spp_address field is blank then
2359  *                     delayed sack is disabled for the entire association. Note
2360  *                     also that this field is mutually exclusive to
2361  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
2362  *                     results.
2363  */
2364 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2365 				       struct sctp_transport   *trans,
2366 				       struct sctp_association *asoc,
2367 				       struct sctp_sock        *sp,
2368 				       int                      hb_change,
2369 				       int                      pmtud_change,
2370 				       int                      sackdelay_change)
2371 {
2372 	int error;
2373 
2374 	if (params->spp_flags & SPP_HB_DEMAND && trans) {
2375 		struct net *net = sock_net(trans->asoc->base.sk);
2376 
2377 		error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2378 		if (error)
2379 			return error;
2380 	}
2381 
2382 	/* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2383 	 * this field is ignored.  Note also that a value of zero indicates
2384 	 * the current setting should be left unchanged.
2385 	 */
2386 	if (params->spp_flags & SPP_HB_ENABLE) {
2387 
2388 		/* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2389 		 * set.  This lets us use 0 value when this flag
2390 		 * is set.
2391 		 */
2392 		if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2393 			params->spp_hbinterval = 0;
2394 
2395 		if (params->spp_hbinterval ||
2396 		    (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2397 			if (trans) {
2398 				trans->hbinterval =
2399 				    msecs_to_jiffies(params->spp_hbinterval);
2400 			} else if (asoc) {
2401 				asoc->hbinterval =
2402 				    msecs_to_jiffies(params->spp_hbinterval);
2403 			} else {
2404 				sp->hbinterval = params->spp_hbinterval;
2405 			}
2406 		}
2407 	}
2408 
2409 	if (hb_change) {
2410 		if (trans) {
2411 			trans->param_flags =
2412 				(trans->param_flags & ~SPP_HB) | hb_change;
2413 		} else if (asoc) {
2414 			asoc->param_flags =
2415 				(asoc->param_flags & ~SPP_HB) | hb_change;
2416 		} else {
2417 			sp->param_flags =
2418 				(sp->param_flags & ~SPP_HB) | hb_change;
2419 		}
2420 	}
2421 
2422 	/* When Path MTU discovery is disabled the value specified here will
2423 	 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2424 	 * include the flag SPP_PMTUD_DISABLE for this field to have any
2425 	 * effect).
2426 	 */
2427 	if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2428 		if (trans) {
2429 			trans->pathmtu = params->spp_pathmtu;
2430 			sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2431 		} else if (asoc) {
2432 			asoc->pathmtu = params->spp_pathmtu;
2433 			sctp_frag_point(asoc, params->spp_pathmtu);
2434 		} else {
2435 			sp->pathmtu = params->spp_pathmtu;
2436 		}
2437 	}
2438 
2439 	if (pmtud_change) {
2440 		if (trans) {
2441 			int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2442 				(params->spp_flags & SPP_PMTUD_ENABLE);
2443 			trans->param_flags =
2444 				(trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2445 			if (update) {
2446 				sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2447 				sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2448 			}
2449 		} else if (asoc) {
2450 			asoc->param_flags =
2451 				(asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2452 		} else {
2453 			sp->param_flags =
2454 				(sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2455 		}
2456 	}
2457 
2458 	/* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2459 	 * value of this field is ignored.  Note also that a value of zero
2460 	 * indicates the current setting should be left unchanged.
2461 	 */
2462 	if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2463 		if (trans) {
2464 			trans->sackdelay =
2465 				msecs_to_jiffies(params->spp_sackdelay);
2466 		} else if (asoc) {
2467 			asoc->sackdelay =
2468 				msecs_to_jiffies(params->spp_sackdelay);
2469 		} else {
2470 			sp->sackdelay = params->spp_sackdelay;
2471 		}
2472 	}
2473 
2474 	if (sackdelay_change) {
2475 		if (trans) {
2476 			trans->param_flags =
2477 				(trans->param_flags & ~SPP_SACKDELAY) |
2478 				sackdelay_change;
2479 		} else if (asoc) {
2480 			asoc->param_flags =
2481 				(asoc->param_flags & ~SPP_SACKDELAY) |
2482 				sackdelay_change;
2483 		} else {
2484 			sp->param_flags =
2485 				(sp->param_flags & ~SPP_SACKDELAY) |
2486 				sackdelay_change;
2487 		}
2488 	}
2489 
2490 	/* Note that a value of zero indicates the current setting should be
2491 	   left unchanged.
2492 	 */
2493 	if (params->spp_pathmaxrxt) {
2494 		if (trans) {
2495 			trans->pathmaxrxt = params->spp_pathmaxrxt;
2496 		} else if (asoc) {
2497 			asoc->pathmaxrxt = params->spp_pathmaxrxt;
2498 		} else {
2499 			sp->pathmaxrxt = params->spp_pathmaxrxt;
2500 		}
2501 	}
2502 
2503 	return 0;
2504 }
2505 
2506 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2507 					    char __user *optval,
2508 					    unsigned int optlen)
2509 {
2510 	struct sctp_paddrparams  params;
2511 	struct sctp_transport   *trans = NULL;
2512 	struct sctp_association *asoc = NULL;
2513 	struct sctp_sock        *sp = sctp_sk(sk);
2514 	int error;
2515 	int hb_change, pmtud_change, sackdelay_change;
2516 
2517 	if (optlen != sizeof(struct sctp_paddrparams))
2518 		return -EINVAL;
2519 
2520 	if (copy_from_user(&params, optval, optlen))
2521 		return -EFAULT;
2522 
2523 	/* Validate flags and value parameters. */
2524 	hb_change        = params.spp_flags & SPP_HB;
2525 	pmtud_change     = params.spp_flags & SPP_PMTUD;
2526 	sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2527 
2528 	if (hb_change        == SPP_HB ||
2529 	    pmtud_change     == SPP_PMTUD ||
2530 	    sackdelay_change == SPP_SACKDELAY ||
2531 	    params.spp_sackdelay > 500 ||
2532 	    (params.spp_pathmtu &&
2533 	     params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2534 		return -EINVAL;
2535 
2536 	/* If an address other than INADDR_ANY is specified, and
2537 	 * no transport is found, then the request is invalid.
2538 	 */
2539 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
2540 		trans = sctp_addr_id2transport(sk, &params.spp_address,
2541 					       params.spp_assoc_id);
2542 		if (!trans)
2543 			return -EINVAL;
2544 	}
2545 
2546 	/* Get association, if assoc_id != 0 and the socket is a one
2547 	 * to many style socket, and an association was not found, then
2548 	 * the id was invalid.
2549 	 */
2550 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2551 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2552 		return -EINVAL;
2553 
2554 	/* Heartbeat demand can only be sent on a transport or
2555 	 * association, but not a socket.
2556 	 */
2557 	if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2558 		return -EINVAL;
2559 
2560 	/* Process parameters. */
2561 	error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2562 					    hb_change, pmtud_change,
2563 					    sackdelay_change);
2564 
2565 	if (error)
2566 		return error;
2567 
2568 	/* If changes are for association, also apply parameters to each
2569 	 * transport.
2570 	 */
2571 	if (!trans && asoc) {
2572 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2573 				transports) {
2574 			sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2575 						    hb_change, pmtud_change,
2576 						    sackdelay_change);
2577 		}
2578 	}
2579 
2580 	return 0;
2581 }
2582 
2583 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2584 {
2585 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2586 }
2587 
2588 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2589 {
2590 	return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2591 }
2592 
2593 /*
2594  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
2595  *
2596  * This option will effect the way delayed acks are performed.  This
2597  * option allows you to get or set the delayed ack time, in
2598  * milliseconds.  It also allows changing the delayed ack frequency.
2599  * Changing the frequency to 1 disables the delayed sack algorithm.  If
2600  * the assoc_id is 0, then this sets or gets the endpoints default
2601  * values.  If the assoc_id field is non-zero, then the set or get
2602  * effects the specified association for the one to many model (the
2603  * assoc_id field is ignored by the one to one model).  Note that if
2604  * sack_delay or sack_freq are 0 when setting this option, then the
2605  * current values will remain unchanged.
2606  *
2607  * struct sctp_sack_info {
2608  *     sctp_assoc_t            sack_assoc_id;
2609  *     uint32_t                sack_delay;
2610  *     uint32_t                sack_freq;
2611  * };
2612  *
2613  * sack_assoc_id -  This parameter, indicates which association the user
2614  *    is performing an action upon.  Note that if this field's value is
2615  *    zero then the endpoints default value is changed (effecting future
2616  *    associations only).
2617  *
2618  * sack_delay -  This parameter contains the number of milliseconds that
2619  *    the user is requesting the delayed ACK timer be set to.  Note that
2620  *    this value is defined in the standard to be between 200 and 500
2621  *    milliseconds.
2622  *
2623  * sack_freq -  This parameter contains the number of packets that must
2624  *    be received before a sack is sent without waiting for the delay
2625  *    timer to expire.  The default value for this is 2, setting this
2626  *    value to 1 will disable the delayed sack algorithm.
2627  */
2628 
2629 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2630 				       char __user *optval, unsigned int optlen)
2631 {
2632 	struct sctp_sack_info    params;
2633 	struct sctp_transport   *trans = NULL;
2634 	struct sctp_association *asoc = NULL;
2635 	struct sctp_sock        *sp = sctp_sk(sk);
2636 
2637 	if (optlen == sizeof(struct sctp_sack_info)) {
2638 		if (copy_from_user(&params, optval, optlen))
2639 			return -EFAULT;
2640 
2641 		if (params.sack_delay == 0 && params.sack_freq == 0)
2642 			return 0;
2643 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
2644 		pr_warn_ratelimited(DEPRECATED
2645 				    "%s (pid %d) "
2646 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2647 				    "Use struct sctp_sack_info instead\n",
2648 				    current->comm, task_pid_nr(current));
2649 		if (copy_from_user(&params, optval, optlen))
2650 			return -EFAULT;
2651 
2652 		if (params.sack_delay == 0)
2653 			params.sack_freq = 1;
2654 		else
2655 			params.sack_freq = 0;
2656 	} else
2657 		return -EINVAL;
2658 
2659 	/* Validate value parameter. */
2660 	if (params.sack_delay > 500)
2661 		return -EINVAL;
2662 
2663 	/* Get association, if sack_assoc_id != 0 and the socket is a one
2664 	 * to many style socket, and an association was not found, then
2665 	 * the id was invalid.
2666 	 */
2667 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2668 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2669 		return -EINVAL;
2670 
2671 	if (params.sack_delay) {
2672 		if (asoc) {
2673 			asoc->sackdelay =
2674 				msecs_to_jiffies(params.sack_delay);
2675 			asoc->param_flags =
2676 				sctp_spp_sackdelay_enable(asoc->param_flags);
2677 		} else {
2678 			sp->sackdelay = params.sack_delay;
2679 			sp->param_flags =
2680 				sctp_spp_sackdelay_enable(sp->param_flags);
2681 		}
2682 	}
2683 
2684 	if (params.sack_freq == 1) {
2685 		if (asoc) {
2686 			asoc->param_flags =
2687 				sctp_spp_sackdelay_disable(asoc->param_flags);
2688 		} else {
2689 			sp->param_flags =
2690 				sctp_spp_sackdelay_disable(sp->param_flags);
2691 		}
2692 	} else if (params.sack_freq > 1) {
2693 		if (asoc) {
2694 			asoc->sackfreq = params.sack_freq;
2695 			asoc->param_flags =
2696 				sctp_spp_sackdelay_enable(asoc->param_flags);
2697 		} else {
2698 			sp->sackfreq = params.sack_freq;
2699 			sp->param_flags =
2700 				sctp_spp_sackdelay_enable(sp->param_flags);
2701 		}
2702 	}
2703 
2704 	/* If change is for association, also apply to each transport. */
2705 	if (asoc) {
2706 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2707 				transports) {
2708 			if (params.sack_delay) {
2709 				trans->sackdelay =
2710 					msecs_to_jiffies(params.sack_delay);
2711 				trans->param_flags =
2712 					sctp_spp_sackdelay_enable(trans->param_flags);
2713 			}
2714 			if (params.sack_freq == 1) {
2715 				trans->param_flags =
2716 					sctp_spp_sackdelay_disable(trans->param_flags);
2717 			} else if (params.sack_freq > 1) {
2718 				trans->sackfreq = params.sack_freq;
2719 				trans->param_flags =
2720 					sctp_spp_sackdelay_enable(trans->param_flags);
2721 			}
2722 		}
2723 	}
2724 
2725 	return 0;
2726 }
2727 
2728 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2729  *
2730  * Applications can specify protocol parameters for the default association
2731  * initialization.  The option name argument to setsockopt() and getsockopt()
2732  * is SCTP_INITMSG.
2733  *
2734  * Setting initialization parameters is effective only on an unconnected
2735  * socket (for UDP-style sockets only future associations are effected
2736  * by the change).  With TCP-style sockets, this option is inherited by
2737  * sockets derived from a listener socket.
2738  */
2739 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2740 {
2741 	struct sctp_initmsg sinit;
2742 	struct sctp_sock *sp = sctp_sk(sk);
2743 
2744 	if (optlen != sizeof(struct sctp_initmsg))
2745 		return -EINVAL;
2746 	if (copy_from_user(&sinit, optval, optlen))
2747 		return -EFAULT;
2748 
2749 	if (sinit.sinit_num_ostreams)
2750 		sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2751 	if (sinit.sinit_max_instreams)
2752 		sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2753 	if (sinit.sinit_max_attempts)
2754 		sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2755 	if (sinit.sinit_max_init_timeo)
2756 		sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2757 
2758 	return 0;
2759 }
2760 
2761 /*
2762  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2763  *
2764  *   Applications that wish to use the sendto() system call may wish to
2765  *   specify a default set of parameters that would normally be supplied
2766  *   through the inclusion of ancillary data.  This socket option allows
2767  *   such an application to set the default sctp_sndrcvinfo structure.
2768  *   The application that wishes to use this socket option simply passes
2769  *   in to this call the sctp_sndrcvinfo structure defined in Section
2770  *   5.2.2) The input parameters accepted by this call include
2771  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2772  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
2773  *   to this call if the caller is using the UDP model.
2774  */
2775 static int sctp_setsockopt_default_send_param(struct sock *sk,
2776 					      char __user *optval,
2777 					      unsigned int optlen)
2778 {
2779 	struct sctp_sock *sp = sctp_sk(sk);
2780 	struct sctp_association *asoc;
2781 	struct sctp_sndrcvinfo info;
2782 
2783 	if (optlen != sizeof(info))
2784 		return -EINVAL;
2785 	if (copy_from_user(&info, optval, optlen))
2786 		return -EFAULT;
2787 	if (info.sinfo_flags &
2788 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2789 	      SCTP_ABORT | SCTP_EOF))
2790 		return -EINVAL;
2791 
2792 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2793 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2794 		return -EINVAL;
2795 	if (asoc) {
2796 		asoc->default_stream = info.sinfo_stream;
2797 		asoc->default_flags = info.sinfo_flags;
2798 		asoc->default_ppid = info.sinfo_ppid;
2799 		asoc->default_context = info.sinfo_context;
2800 		asoc->default_timetolive = info.sinfo_timetolive;
2801 	} else {
2802 		sp->default_stream = info.sinfo_stream;
2803 		sp->default_flags = info.sinfo_flags;
2804 		sp->default_ppid = info.sinfo_ppid;
2805 		sp->default_context = info.sinfo_context;
2806 		sp->default_timetolive = info.sinfo_timetolive;
2807 	}
2808 
2809 	return 0;
2810 }
2811 
2812 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2813  * (SCTP_DEFAULT_SNDINFO)
2814  */
2815 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2816 					   char __user *optval,
2817 					   unsigned int optlen)
2818 {
2819 	struct sctp_sock *sp = sctp_sk(sk);
2820 	struct sctp_association *asoc;
2821 	struct sctp_sndinfo info;
2822 
2823 	if (optlen != sizeof(info))
2824 		return -EINVAL;
2825 	if (copy_from_user(&info, optval, optlen))
2826 		return -EFAULT;
2827 	if (info.snd_flags &
2828 	    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2829 	      SCTP_ABORT | SCTP_EOF))
2830 		return -EINVAL;
2831 
2832 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2833 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2834 		return -EINVAL;
2835 	if (asoc) {
2836 		asoc->default_stream = info.snd_sid;
2837 		asoc->default_flags = info.snd_flags;
2838 		asoc->default_ppid = info.snd_ppid;
2839 		asoc->default_context = info.snd_context;
2840 	} else {
2841 		sp->default_stream = info.snd_sid;
2842 		sp->default_flags = info.snd_flags;
2843 		sp->default_ppid = info.snd_ppid;
2844 		sp->default_context = info.snd_context;
2845 	}
2846 
2847 	return 0;
2848 }
2849 
2850 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2851  *
2852  * Requests that the local SCTP stack use the enclosed peer address as
2853  * the association primary.  The enclosed address must be one of the
2854  * association peer's addresses.
2855  */
2856 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2857 					unsigned int optlen)
2858 {
2859 	struct sctp_prim prim;
2860 	struct sctp_transport *trans;
2861 
2862 	if (optlen != sizeof(struct sctp_prim))
2863 		return -EINVAL;
2864 
2865 	if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2866 		return -EFAULT;
2867 
2868 	trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2869 	if (!trans)
2870 		return -EINVAL;
2871 
2872 	sctp_assoc_set_primary(trans->asoc, trans);
2873 
2874 	return 0;
2875 }
2876 
2877 /*
2878  * 7.1.5 SCTP_NODELAY
2879  *
2880  * Turn on/off any Nagle-like algorithm.  This means that packets are
2881  * generally sent as soon as possible and no unnecessary delays are
2882  * introduced, at the cost of more packets in the network.  Expects an
2883  *  integer boolean flag.
2884  */
2885 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2886 				   unsigned int optlen)
2887 {
2888 	int val;
2889 
2890 	if (optlen < sizeof(int))
2891 		return -EINVAL;
2892 	if (get_user(val, (int __user *)optval))
2893 		return -EFAULT;
2894 
2895 	sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2896 	return 0;
2897 }
2898 
2899 /*
2900  *
2901  * 7.1.1 SCTP_RTOINFO
2902  *
2903  * The protocol parameters used to initialize and bound retransmission
2904  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2905  * and modify these parameters.
2906  * All parameters are time values, in milliseconds.  A value of 0, when
2907  * modifying the parameters, indicates that the current value should not
2908  * be changed.
2909  *
2910  */
2911 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2912 {
2913 	struct sctp_rtoinfo rtoinfo;
2914 	struct sctp_association *asoc;
2915 	unsigned long rto_min, rto_max;
2916 	struct sctp_sock *sp = sctp_sk(sk);
2917 
2918 	if (optlen != sizeof (struct sctp_rtoinfo))
2919 		return -EINVAL;
2920 
2921 	if (copy_from_user(&rtoinfo, optval, optlen))
2922 		return -EFAULT;
2923 
2924 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2925 
2926 	/* Set the values to the specific association */
2927 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2928 		return -EINVAL;
2929 
2930 	rto_max = rtoinfo.srto_max;
2931 	rto_min = rtoinfo.srto_min;
2932 
2933 	if (rto_max)
2934 		rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2935 	else
2936 		rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2937 
2938 	if (rto_min)
2939 		rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2940 	else
2941 		rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2942 
2943 	if (rto_min > rto_max)
2944 		return -EINVAL;
2945 
2946 	if (asoc) {
2947 		if (rtoinfo.srto_initial != 0)
2948 			asoc->rto_initial =
2949 				msecs_to_jiffies(rtoinfo.srto_initial);
2950 		asoc->rto_max = rto_max;
2951 		asoc->rto_min = rto_min;
2952 	} else {
2953 		/* If there is no association or the association-id = 0
2954 		 * set the values to the endpoint.
2955 		 */
2956 		if (rtoinfo.srto_initial != 0)
2957 			sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2958 		sp->rtoinfo.srto_max = rto_max;
2959 		sp->rtoinfo.srto_min = rto_min;
2960 	}
2961 
2962 	return 0;
2963 }
2964 
2965 /*
2966  *
2967  * 7.1.2 SCTP_ASSOCINFO
2968  *
2969  * This option is used to tune the maximum retransmission attempts
2970  * of the association.
2971  * Returns an error if the new association retransmission value is
2972  * greater than the sum of the retransmission value  of the peer.
2973  * See [SCTP] for more information.
2974  *
2975  */
2976 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2977 {
2978 
2979 	struct sctp_assocparams assocparams;
2980 	struct sctp_association *asoc;
2981 
2982 	if (optlen != sizeof(struct sctp_assocparams))
2983 		return -EINVAL;
2984 	if (copy_from_user(&assocparams, optval, optlen))
2985 		return -EFAULT;
2986 
2987 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2988 
2989 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2990 		return -EINVAL;
2991 
2992 	/* Set the values to the specific association */
2993 	if (asoc) {
2994 		if (assocparams.sasoc_asocmaxrxt != 0) {
2995 			__u32 path_sum = 0;
2996 			int   paths = 0;
2997 			struct sctp_transport *peer_addr;
2998 
2999 			list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3000 					transports) {
3001 				path_sum += peer_addr->pathmaxrxt;
3002 				paths++;
3003 			}
3004 
3005 			/* Only validate asocmaxrxt if we have more than
3006 			 * one path/transport.  We do this because path
3007 			 * retransmissions are only counted when we have more
3008 			 * then one path.
3009 			 */
3010 			if (paths > 1 &&
3011 			    assocparams.sasoc_asocmaxrxt > path_sum)
3012 				return -EINVAL;
3013 
3014 			asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
3015 		}
3016 
3017 		if (assocparams.sasoc_cookie_life != 0)
3018 			asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3019 	} else {
3020 		/* Set the values to the endpoint */
3021 		struct sctp_sock *sp = sctp_sk(sk);
3022 
3023 		if (assocparams.sasoc_asocmaxrxt != 0)
3024 			sp->assocparams.sasoc_asocmaxrxt =
3025 						assocparams.sasoc_asocmaxrxt;
3026 		if (assocparams.sasoc_cookie_life != 0)
3027 			sp->assocparams.sasoc_cookie_life =
3028 						assocparams.sasoc_cookie_life;
3029 	}
3030 	return 0;
3031 }
3032 
3033 /*
3034  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3035  *
3036  * This socket option is a boolean flag which turns on or off mapped V4
3037  * addresses.  If this option is turned on and the socket is type
3038  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3039  * If this option is turned off, then no mapping will be done of V4
3040  * addresses and a user will receive both PF_INET6 and PF_INET type
3041  * addresses on the socket.
3042  */
3043 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3044 {
3045 	int val;
3046 	struct sctp_sock *sp = sctp_sk(sk);
3047 
3048 	if (optlen < sizeof(int))
3049 		return -EINVAL;
3050 	if (get_user(val, (int __user *)optval))
3051 		return -EFAULT;
3052 	if (val)
3053 		sp->v4mapped = 1;
3054 	else
3055 		sp->v4mapped = 0;
3056 
3057 	return 0;
3058 }
3059 
3060 /*
3061  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3062  * This option will get or set the maximum size to put in any outgoing
3063  * SCTP DATA chunk.  If a message is larger than this size it will be
3064  * fragmented by SCTP into the specified size.  Note that the underlying
3065  * SCTP implementation may fragment into smaller sized chunks when the
3066  * PMTU of the underlying association is smaller than the value set by
3067  * the user.  The default value for this option is '0' which indicates
3068  * the user is NOT limiting fragmentation and only the PMTU will effect
3069  * SCTP's choice of DATA chunk size.  Note also that values set larger
3070  * than the maximum size of an IP datagram will effectively let SCTP
3071  * control fragmentation (i.e. the same as setting this option to 0).
3072  *
3073  * The following structure is used to access and modify this parameter:
3074  *
3075  * struct sctp_assoc_value {
3076  *   sctp_assoc_t assoc_id;
3077  *   uint32_t assoc_value;
3078  * };
3079  *
3080  * assoc_id:  This parameter is ignored for one-to-one style sockets.
3081  *    For one-to-many style sockets this parameter indicates which
3082  *    association the user is performing an action upon.  Note that if
3083  *    this field's value is zero then the endpoints default value is
3084  *    changed (effecting future associations only).
3085  * assoc_value:  This parameter specifies the maximum size in bytes.
3086  */
3087 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3088 {
3089 	struct sctp_assoc_value params;
3090 	struct sctp_association *asoc;
3091 	struct sctp_sock *sp = sctp_sk(sk);
3092 	int val;
3093 
3094 	if (optlen == sizeof(int)) {
3095 		pr_warn_ratelimited(DEPRECATED
3096 				    "%s (pid %d) "
3097 				    "Use of int in maxseg socket option.\n"
3098 				    "Use struct sctp_assoc_value instead\n",
3099 				    current->comm, task_pid_nr(current));
3100 		if (copy_from_user(&val, optval, optlen))
3101 			return -EFAULT;
3102 		params.assoc_id = 0;
3103 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3104 		if (copy_from_user(&params, optval, optlen))
3105 			return -EFAULT;
3106 		val = params.assoc_value;
3107 	} else
3108 		return -EINVAL;
3109 
3110 	if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3111 		return -EINVAL;
3112 
3113 	asoc = sctp_id2assoc(sk, params.assoc_id);
3114 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3115 		return -EINVAL;
3116 
3117 	if (asoc) {
3118 		if (val == 0) {
3119 			val = asoc->pathmtu;
3120 			val -= sp->pf->af->net_header_len;
3121 			val -= sizeof(struct sctphdr) +
3122 					sizeof(struct sctp_data_chunk);
3123 		}
3124 		asoc->user_frag = val;
3125 		asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3126 	} else {
3127 		sp->user_frag = val;
3128 	}
3129 
3130 	return 0;
3131 }
3132 
3133 
3134 /*
3135  *  7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3136  *
3137  *   Requests that the peer mark the enclosed address as the association
3138  *   primary. The enclosed address must be one of the association's
3139  *   locally bound addresses. The following structure is used to make a
3140  *   set primary request:
3141  */
3142 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3143 					     unsigned int optlen)
3144 {
3145 	struct net *net = sock_net(sk);
3146 	struct sctp_sock	*sp;
3147 	struct sctp_association	*asoc = NULL;
3148 	struct sctp_setpeerprim	prim;
3149 	struct sctp_chunk	*chunk;
3150 	struct sctp_af		*af;
3151 	int 			err;
3152 
3153 	sp = sctp_sk(sk);
3154 
3155 	if (!net->sctp.addip_enable)
3156 		return -EPERM;
3157 
3158 	if (optlen != sizeof(struct sctp_setpeerprim))
3159 		return -EINVAL;
3160 
3161 	if (copy_from_user(&prim, optval, optlen))
3162 		return -EFAULT;
3163 
3164 	asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3165 	if (!asoc)
3166 		return -EINVAL;
3167 
3168 	if (!asoc->peer.asconf_capable)
3169 		return -EPERM;
3170 
3171 	if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3172 		return -EPERM;
3173 
3174 	if (!sctp_state(asoc, ESTABLISHED))
3175 		return -ENOTCONN;
3176 
3177 	af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3178 	if (!af)
3179 		return -EINVAL;
3180 
3181 	if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3182 		return -EADDRNOTAVAIL;
3183 
3184 	if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3185 		return -EADDRNOTAVAIL;
3186 
3187 	/* Create an ASCONF chunk with SET_PRIMARY parameter	*/
3188 	chunk = sctp_make_asconf_set_prim(asoc,
3189 					  (union sctp_addr *)&prim.sspp_addr);
3190 	if (!chunk)
3191 		return -ENOMEM;
3192 
3193 	err = sctp_send_asconf(asoc, chunk);
3194 
3195 	pr_debug("%s: we set peer primary addr primitively\n", __func__);
3196 
3197 	return err;
3198 }
3199 
3200 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3201 					    unsigned int optlen)
3202 {
3203 	struct sctp_setadaptation adaptation;
3204 
3205 	if (optlen != sizeof(struct sctp_setadaptation))
3206 		return -EINVAL;
3207 	if (copy_from_user(&adaptation, optval, optlen))
3208 		return -EFAULT;
3209 
3210 	sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3211 
3212 	return 0;
3213 }
3214 
3215 /*
3216  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
3217  *
3218  * The context field in the sctp_sndrcvinfo structure is normally only
3219  * used when a failed message is retrieved holding the value that was
3220  * sent down on the actual send call.  This option allows the setting of
3221  * a default context on an association basis that will be received on
3222  * reading messages from the peer.  This is especially helpful in the
3223  * one-2-many model for an application to keep some reference to an
3224  * internal state machine that is processing messages on the
3225  * association.  Note that the setting of this value only effects
3226  * received messages from the peer and does not effect the value that is
3227  * saved with outbound messages.
3228  */
3229 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3230 				   unsigned int optlen)
3231 {
3232 	struct sctp_assoc_value params;
3233 	struct sctp_sock *sp;
3234 	struct sctp_association *asoc;
3235 
3236 	if (optlen != sizeof(struct sctp_assoc_value))
3237 		return -EINVAL;
3238 	if (copy_from_user(&params, optval, optlen))
3239 		return -EFAULT;
3240 
3241 	sp = sctp_sk(sk);
3242 
3243 	if (params.assoc_id != 0) {
3244 		asoc = sctp_id2assoc(sk, params.assoc_id);
3245 		if (!asoc)
3246 			return -EINVAL;
3247 		asoc->default_rcv_context = params.assoc_value;
3248 	} else {
3249 		sp->default_rcv_context = params.assoc_value;
3250 	}
3251 
3252 	return 0;
3253 }
3254 
3255 /*
3256  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3257  *
3258  * This options will at a minimum specify if the implementation is doing
3259  * fragmented interleave.  Fragmented interleave, for a one to many
3260  * socket, is when subsequent calls to receive a message may return
3261  * parts of messages from different associations.  Some implementations
3262  * may allow you to turn this value on or off.  If so, when turned off,
3263  * no fragment interleave will occur (which will cause a head of line
3264  * blocking amongst multiple associations sharing the same one to many
3265  * socket).  When this option is turned on, then each receive call may
3266  * come from a different association (thus the user must receive data
3267  * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3268  * association each receive belongs to.
3269  *
3270  * This option takes a boolean value.  A non-zero value indicates that
3271  * fragmented interleave is on.  A value of zero indicates that
3272  * fragmented interleave is off.
3273  *
3274  * Note that it is important that an implementation that allows this
3275  * option to be turned on, have it off by default.  Otherwise an unaware
3276  * application using the one to many model may become confused and act
3277  * incorrectly.
3278  */
3279 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3280 					       char __user *optval,
3281 					       unsigned int optlen)
3282 {
3283 	int val;
3284 
3285 	if (optlen != sizeof(int))
3286 		return -EINVAL;
3287 	if (get_user(val, (int __user *)optval))
3288 		return -EFAULT;
3289 
3290 	sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3291 
3292 	return 0;
3293 }
3294 
3295 /*
3296  * 8.1.21.  Set or Get the SCTP Partial Delivery Point
3297  *       (SCTP_PARTIAL_DELIVERY_POINT)
3298  *
3299  * This option will set or get the SCTP partial delivery point.  This
3300  * point is the size of a message where the partial delivery API will be
3301  * invoked to help free up rwnd space for the peer.  Setting this to a
3302  * lower value will cause partial deliveries to happen more often.  The
3303  * calls argument is an integer that sets or gets the partial delivery
3304  * point.  Note also that the call will fail if the user attempts to set
3305  * this value larger than the socket receive buffer size.
3306  *
3307  * Note that any single message having a length smaller than or equal to
3308  * the SCTP partial delivery point will be delivered in one single read
3309  * call as long as the user provided buffer is large enough to hold the
3310  * message.
3311  */
3312 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3313 						  char __user *optval,
3314 						  unsigned int optlen)
3315 {
3316 	u32 val;
3317 
3318 	if (optlen != sizeof(u32))
3319 		return -EINVAL;
3320 	if (get_user(val, (int __user *)optval))
3321 		return -EFAULT;
3322 
3323 	/* Note: We double the receive buffer from what the user sets
3324 	 * it to be, also initial rwnd is based on rcvbuf/2.
3325 	 */
3326 	if (val > (sk->sk_rcvbuf >> 1))
3327 		return -EINVAL;
3328 
3329 	sctp_sk(sk)->pd_point = val;
3330 
3331 	return 0; /* is this the right error code? */
3332 }
3333 
3334 /*
3335  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
3336  *
3337  * This option will allow a user to change the maximum burst of packets
3338  * that can be emitted by this association.  Note that the default value
3339  * is 4, and some implementations may restrict this setting so that it
3340  * can only be lowered.
3341  *
3342  * NOTE: This text doesn't seem right.  Do this on a socket basis with
3343  * future associations inheriting the socket value.
3344  */
3345 static int sctp_setsockopt_maxburst(struct sock *sk,
3346 				    char __user *optval,
3347 				    unsigned int optlen)
3348 {
3349 	struct sctp_assoc_value params;
3350 	struct sctp_sock *sp;
3351 	struct sctp_association *asoc;
3352 	int val;
3353 	int assoc_id = 0;
3354 
3355 	if (optlen == sizeof(int)) {
3356 		pr_warn_ratelimited(DEPRECATED
3357 				    "%s (pid %d) "
3358 				    "Use of int in max_burst socket option deprecated.\n"
3359 				    "Use struct sctp_assoc_value instead\n",
3360 				    current->comm, task_pid_nr(current));
3361 		if (copy_from_user(&val, optval, optlen))
3362 			return -EFAULT;
3363 	} else if (optlen == sizeof(struct sctp_assoc_value)) {
3364 		if (copy_from_user(&params, optval, optlen))
3365 			return -EFAULT;
3366 		val = params.assoc_value;
3367 		assoc_id = params.assoc_id;
3368 	} else
3369 		return -EINVAL;
3370 
3371 	sp = sctp_sk(sk);
3372 
3373 	if (assoc_id != 0) {
3374 		asoc = sctp_id2assoc(sk, assoc_id);
3375 		if (!asoc)
3376 			return -EINVAL;
3377 		asoc->max_burst = val;
3378 	} else
3379 		sp->max_burst = val;
3380 
3381 	return 0;
3382 }
3383 
3384 /*
3385  * 7.1.18.  Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3386  *
3387  * This set option adds a chunk type that the user is requesting to be
3388  * received only in an authenticated way.  Changes to the list of chunks
3389  * will only effect future associations on the socket.
3390  */
3391 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3392 				      char __user *optval,
3393 				      unsigned int optlen)
3394 {
3395 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3396 	struct sctp_authchunk val;
3397 
3398 	if (!ep->auth_enable)
3399 		return -EACCES;
3400 
3401 	if (optlen != sizeof(struct sctp_authchunk))
3402 		return -EINVAL;
3403 	if (copy_from_user(&val, optval, optlen))
3404 		return -EFAULT;
3405 
3406 	switch (val.sauth_chunk) {
3407 	case SCTP_CID_INIT:
3408 	case SCTP_CID_INIT_ACK:
3409 	case SCTP_CID_SHUTDOWN_COMPLETE:
3410 	case SCTP_CID_AUTH:
3411 		return -EINVAL;
3412 	}
3413 
3414 	/* add this chunk id to the endpoint */
3415 	return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3416 }
3417 
3418 /*
3419  * 7.1.19.  Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3420  *
3421  * This option gets or sets the list of HMAC algorithms that the local
3422  * endpoint requires the peer to use.
3423  */
3424 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3425 				      char __user *optval,
3426 				      unsigned int optlen)
3427 {
3428 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3429 	struct sctp_hmacalgo *hmacs;
3430 	u32 idents;
3431 	int err;
3432 
3433 	if (!ep->auth_enable)
3434 		return -EACCES;
3435 
3436 	if (optlen < sizeof(struct sctp_hmacalgo))
3437 		return -EINVAL;
3438 
3439 	hmacs = memdup_user(optval, optlen);
3440 	if (IS_ERR(hmacs))
3441 		return PTR_ERR(hmacs);
3442 
3443 	idents = hmacs->shmac_num_idents;
3444 	if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3445 	    (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3446 		err = -EINVAL;
3447 		goto out;
3448 	}
3449 
3450 	err = sctp_auth_ep_set_hmacs(ep, hmacs);
3451 out:
3452 	kfree(hmacs);
3453 	return err;
3454 }
3455 
3456 /*
3457  * 7.1.20.  Set a shared key (SCTP_AUTH_KEY)
3458  *
3459  * This option will set a shared secret key which is used to build an
3460  * association shared key.
3461  */
3462 static int sctp_setsockopt_auth_key(struct sock *sk,
3463 				    char __user *optval,
3464 				    unsigned int optlen)
3465 {
3466 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3467 	struct sctp_authkey *authkey;
3468 	struct sctp_association *asoc;
3469 	int ret;
3470 
3471 	if (!ep->auth_enable)
3472 		return -EACCES;
3473 
3474 	if (optlen <= sizeof(struct sctp_authkey))
3475 		return -EINVAL;
3476 
3477 	authkey = memdup_user(optval, optlen);
3478 	if (IS_ERR(authkey))
3479 		return PTR_ERR(authkey);
3480 
3481 	if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3482 		ret = -EINVAL;
3483 		goto out;
3484 	}
3485 
3486 	asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3487 	if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3488 		ret = -EINVAL;
3489 		goto out;
3490 	}
3491 
3492 	ret = sctp_auth_set_key(ep, asoc, authkey);
3493 out:
3494 	kzfree(authkey);
3495 	return ret;
3496 }
3497 
3498 /*
3499  * 7.1.21.  Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3500  *
3501  * This option will get or set the active shared key to be used to build
3502  * the association shared key.
3503  */
3504 static int sctp_setsockopt_active_key(struct sock *sk,
3505 				      char __user *optval,
3506 				      unsigned int optlen)
3507 {
3508 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3509 	struct sctp_authkeyid val;
3510 	struct sctp_association *asoc;
3511 
3512 	if (!ep->auth_enable)
3513 		return -EACCES;
3514 
3515 	if (optlen != sizeof(struct sctp_authkeyid))
3516 		return -EINVAL;
3517 	if (copy_from_user(&val, optval, optlen))
3518 		return -EFAULT;
3519 
3520 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3521 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3522 		return -EINVAL;
3523 
3524 	return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3525 }
3526 
3527 /*
3528  * 7.1.22.  Delete a shared key (SCTP_AUTH_DELETE_KEY)
3529  *
3530  * This set option will delete a shared secret key from use.
3531  */
3532 static int sctp_setsockopt_del_key(struct sock *sk,
3533 				   char __user *optval,
3534 				   unsigned int optlen)
3535 {
3536 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3537 	struct sctp_authkeyid val;
3538 	struct sctp_association *asoc;
3539 
3540 	if (!ep->auth_enable)
3541 		return -EACCES;
3542 
3543 	if (optlen != sizeof(struct sctp_authkeyid))
3544 		return -EINVAL;
3545 	if (copy_from_user(&val, optval, optlen))
3546 		return -EFAULT;
3547 
3548 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3549 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3550 		return -EINVAL;
3551 
3552 	return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3553 
3554 }
3555 
3556 /*
3557  * 8.1.23 SCTP_AUTO_ASCONF
3558  *
3559  * This option will enable or disable the use of the automatic generation of
3560  * ASCONF chunks to add and delete addresses to an existing association.  Note
3561  * that this option has two caveats namely: a) it only affects sockets that
3562  * are bound to all addresses available to the SCTP stack, and b) the system
3563  * administrator may have an overriding control that turns the ASCONF feature
3564  * off no matter what setting the socket option may have.
3565  * This option expects an integer boolean flag, where a non-zero value turns on
3566  * the option, and a zero value turns off the option.
3567  * Note. In this implementation, socket operation overrides default parameter
3568  * being set by sysctl as well as FreeBSD implementation
3569  */
3570 static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3571 					unsigned int optlen)
3572 {
3573 	int val;
3574 	struct sctp_sock *sp = sctp_sk(sk);
3575 
3576 	if (optlen < sizeof(int))
3577 		return -EINVAL;
3578 	if (get_user(val, (int __user *)optval))
3579 		return -EFAULT;
3580 	if (!sctp_is_ep_boundall(sk) && val)
3581 		return -EINVAL;
3582 	if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3583 		return 0;
3584 
3585 	spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3586 	if (val == 0 && sp->do_auto_asconf) {
3587 		list_del(&sp->auto_asconf_list);
3588 		sp->do_auto_asconf = 0;
3589 	} else if (val && !sp->do_auto_asconf) {
3590 		list_add_tail(&sp->auto_asconf_list,
3591 		    &sock_net(sk)->sctp.auto_asconf_splist);
3592 		sp->do_auto_asconf = 1;
3593 	}
3594 	spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3595 	return 0;
3596 }
3597 
3598 /*
3599  * SCTP_PEER_ADDR_THLDS
3600  *
3601  * This option allows us to alter the partially failed threshold for one or all
3602  * transports in an association.  See Section 6.1 of:
3603  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3604  */
3605 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3606 					    char __user *optval,
3607 					    unsigned int optlen)
3608 {
3609 	struct sctp_paddrthlds val;
3610 	struct sctp_transport *trans;
3611 	struct sctp_association *asoc;
3612 
3613 	if (optlen < sizeof(struct sctp_paddrthlds))
3614 		return -EINVAL;
3615 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3616 			   sizeof(struct sctp_paddrthlds)))
3617 		return -EFAULT;
3618 
3619 
3620 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3621 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3622 		if (!asoc)
3623 			return -ENOENT;
3624 		list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3625 				    transports) {
3626 			if (val.spt_pathmaxrxt)
3627 				trans->pathmaxrxt = val.spt_pathmaxrxt;
3628 			trans->pf_retrans = val.spt_pathpfthld;
3629 		}
3630 
3631 		if (val.spt_pathmaxrxt)
3632 			asoc->pathmaxrxt = val.spt_pathmaxrxt;
3633 		asoc->pf_retrans = val.spt_pathpfthld;
3634 	} else {
3635 		trans = sctp_addr_id2transport(sk, &val.spt_address,
3636 					       val.spt_assoc_id);
3637 		if (!trans)
3638 			return -ENOENT;
3639 
3640 		if (val.spt_pathmaxrxt)
3641 			trans->pathmaxrxt = val.spt_pathmaxrxt;
3642 		trans->pf_retrans = val.spt_pathpfthld;
3643 	}
3644 
3645 	return 0;
3646 }
3647 
3648 static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3649 				       char __user *optval,
3650 				       unsigned int optlen)
3651 {
3652 	int val;
3653 
3654 	if (optlen < sizeof(int))
3655 		return -EINVAL;
3656 	if (get_user(val, (int __user *) optval))
3657 		return -EFAULT;
3658 
3659 	sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3660 
3661 	return 0;
3662 }
3663 
3664 static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3665 				       char __user *optval,
3666 				       unsigned int optlen)
3667 {
3668 	int val;
3669 
3670 	if (optlen < sizeof(int))
3671 		return -EINVAL;
3672 	if (get_user(val, (int __user *) optval))
3673 		return -EFAULT;
3674 
3675 	sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3676 
3677 	return 0;
3678 }
3679 
3680 /* API 6.2 setsockopt(), getsockopt()
3681  *
3682  * Applications use setsockopt() and getsockopt() to set or retrieve
3683  * socket options.  Socket options are used to change the default
3684  * behavior of sockets calls.  They are described in Section 7.
3685  *
3686  * The syntax is:
3687  *
3688  *   ret = getsockopt(int sd, int level, int optname, void __user *optval,
3689  *                    int __user *optlen);
3690  *   ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3691  *                    int optlen);
3692  *
3693  *   sd      - the socket descript.
3694  *   level   - set to IPPROTO_SCTP for all SCTP options.
3695  *   optname - the option name.
3696  *   optval  - the buffer to store the value of the option.
3697  *   optlen  - the size of the buffer.
3698  */
3699 static int sctp_setsockopt(struct sock *sk, int level, int optname,
3700 			   char __user *optval, unsigned int optlen)
3701 {
3702 	int retval = 0;
3703 
3704 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3705 
3706 	/* I can hardly begin to describe how wrong this is.  This is
3707 	 * so broken as to be worse than useless.  The API draft
3708 	 * REALLY is NOT helpful here...  I am not convinced that the
3709 	 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3710 	 * are at all well-founded.
3711 	 */
3712 	if (level != SOL_SCTP) {
3713 		struct sctp_af *af = sctp_sk(sk)->pf->af;
3714 		retval = af->setsockopt(sk, level, optname, optval, optlen);
3715 		goto out_nounlock;
3716 	}
3717 
3718 	lock_sock(sk);
3719 
3720 	switch (optname) {
3721 	case SCTP_SOCKOPT_BINDX_ADD:
3722 		/* 'optlen' is the size of the addresses buffer. */
3723 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3724 					       optlen, SCTP_BINDX_ADD_ADDR);
3725 		break;
3726 
3727 	case SCTP_SOCKOPT_BINDX_REM:
3728 		/* 'optlen' is the size of the addresses buffer. */
3729 		retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3730 					       optlen, SCTP_BINDX_REM_ADDR);
3731 		break;
3732 
3733 	case SCTP_SOCKOPT_CONNECTX_OLD:
3734 		/* 'optlen' is the size of the addresses buffer. */
3735 		retval = sctp_setsockopt_connectx_old(sk,
3736 					    (struct sockaddr __user *)optval,
3737 					    optlen);
3738 		break;
3739 
3740 	case SCTP_SOCKOPT_CONNECTX:
3741 		/* 'optlen' is the size of the addresses buffer. */
3742 		retval = sctp_setsockopt_connectx(sk,
3743 					    (struct sockaddr __user *)optval,
3744 					    optlen);
3745 		break;
3746 
3747 	case SCTP_DISABLE_FRAGMENTS:
3748 		retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3749 		break;
3750 
3751 	case SCTP_EVENTS:
3752 		retval = sctp_setsockopt_events(sk, optval, optlen);
3753 		break;
3754 
3755 	case SCTP_AUTOCLOSE:
3756 		retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3757 		break;
3758 
3759 	case SCTP_PEER_ADDR_PARAMS:
3760 		retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3761 		break;
3762 
3763 	case SCTP_DELAYED_SACK:
3764 		retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3765 		break;
3766 	case SCTP_PARTIAL_DELIVERY_POINT:
3767 		retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3768 		break;
3769 
3770 	case SCTP_INITMSG:
3771 		retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3772 		break;
3773 	case SCTP_DEFAULT_SEND_PARAM:
3774 		retval = sctp_setsockopt_default_send_param(sk, optval,
3775 							    optlen);
3776 		break;
3777 	case SCTP_DEFAULT_SNDINFO:
3778 		retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3779 		break;
3780 	case SCTP_PRIMARY_ADDR:
3781 		retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3782 		break;
3783 	case SCTP_SET_PEER_PRIMARY_ADDR:
3784 		retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3785 		break;
3786 	case SCTP_NODELAY:
3787 		retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3788 		break;
3789 	case SCTP_RTOINFO:
3790 		retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3791 		break;
3792 	case SCTP_ASSOCINFO:
3793 		retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3794 		break;
3795 	case SCTP_I_WANT_MAPPED_V4_ADDR:
3796 		retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3797 		break;
3798 	case SCTP_MAXSEG:
3799 		retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3800 		break;
3801 	case SCTP_ADAPTATION_LAYER:
3802 		retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3803 		break;
3804 	case SCTP_CONTEXT:
3805 		retval = sctp_setsockopt_context(sk, optval, optlen);
3806 		break;
3807 	case SCTP_FRAGMENT_INTERLEAVE:
3808 		retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3809 		break;
3810 	case SCTP_MAX_BURST:
3811 		retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3812 		break;
3813 	case SCTP_AUTH_CHUNK:
3814 		retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3815 		break;
3816 	case SCTP_HMAC_IDENT:
3817 		retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3818 		break;
3819 	case SCTP_AUTH_KEY:
3820 		retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3821 		break;
3822 	case SCTP_AUTH_ACTIVE_KEY:
3823 		retval = sctp_setsockopt_active_key(sk, optval, optlen);
3824 		break;
3825 	case SCTP_AUTH_DELETE_KEY:
3826 		retval = sctp_setsockopt_del_key(sk, optval, optlen);
3827 		break;
3828 	case SCTP_AUTO_ASCONF:
3829 		retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3830 		break;
3831 	case SCTP_PEER_ADDR_THLDS:
3832 		retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3833 		break;
3834 	case SCTP_RECVRCVINFO:
3835 		retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3836 		break;
3837 	case SCTP_RECVNXTINFO:
3838 		retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3839 		break;
3840 	default:
3841 		retval = -ENOPROTOOPT;
3842 		break;
3843 	}
3844 
3845 	release_sock(sk);
3846 
3847 out_nounlock:
3848 	return retval;
3849 }
3850 
3851 /* API 3.1.6 connect() - UDP Style Syntax
3852  *
3853  * An application may use the connect() call in the UDP model to initiate an
3854  * association without sending data.
3855  *
3856  * The syntax is:
3857  *
3858  * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3859  *
3860  * sd: the socket descriptor to have a new association added to.
3861  *
3862  * nam: the address structure (either struct sockaddr_in or struct
3863  *    sockaddr_in6 defined in RFC2553 [7]).
3864  *
3865  * len: the size of the address.
3866  */
3867 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3868 			int addr_len)
3869 {
3870 	int err = 0;
3871 	struct sctp_af *af;
3872 
3873 	lock_sock(sk);
3874 
3875 	pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3876 		 addr, addr_len);
3877 
3878 	/* Validate addr_len before calling common connect/connectx routine. */
3879 	af = sctp_get_af_specific(addr->sa_family);
3880 	if (!af || addr_len < af->sockaddr_len) {
3881 		err = -EINVAL;
3882 	} else {
3883 		/* Pass correct addr len to common routine (so it knows there
3884 		 * is only one address being passed.
3885 		 */
3886 		err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3887 	}
3888 
3889 	release_sock(sk);
3890 	return err;
3891 }
3892 
3893 /* FIXME: Write comments. */
3894 static int sctp_disconnect(struct sock *sk, int flags)
3895 {
3896 	return -EOPNOTSUPP; /* STUB */
3897 }
3898 
3899 /* 4.1.4 accept() - TCP Style Syntax
3900  *
3901  * Applications use accept() call to remove an established SCTP
3902  * association from the accept queue of the endpoint.  A new socket
3903  * descriptor will be returned from accept() to represent the newly
3904  * formed association.
3905  */
3906 static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3907 {
3908 	struct sctp_sock *sp;
3909 	struct sctp_endpoint *ep;
3910 	struct sock *newsk = NULL;
3911 	struct sctp_association *asoc;
3912 	long timeo;
3913 	int error = 0;
3914 
3915 	lock_sock(sk);
3916 
3917 	sp = sctp_sk(sk);
3918 	ep = sp->ep;
3919 
3920 	if (!sctp_style(sk, TCP)) {
3921 		error = -EOPNOTSUPP;
3922 		goto out;
3923 	}
3924 
3925 	if (!sctp_sstate(sk, LISTENING)) {
3926 		error = -EINVAL;
3927 		goto out;
3928 	}
3929 
3930 	timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3931 
3932 	error = sctp_wait_for_accept(sk, timeo);
3933 	if (error)
3934 		goto out;
3935 
3936 	/* We treat the list of associations on the endpoint as the accept
3937 	 * queue and pick the first association on the list.
3938 	 */
3939 	asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3940 
3941 	newsk = sp->pf->create_accept_sk(sk, asoc);
3942 	if (!newsk) {
3943 		error = -ENOMEM;
3944 		goto out;
3945 	}
3946 
3947 	/* Populate the fields of the newsk from the oldsk and migrate the
3948 	 * asoc to the newsk.
3949 	 */
3950 	sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3951 
3952 out:
3953 	release_sock(sk);
3954 	*err = error;
3955 	return newsk;
3956 }
3957 
3958 /* The SCTP ioctl handler. */
3959 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3960 {
3961 	int rc = -ENOTCONN;
3962 
3963 	lock_sock(sk);
3964 
3965 	/*
3966 	 * SEQPACKET-style sockets in LISTENING state are valid, for
3967 	 * SCTP, so only discard TCP-style sockets in LISTENING state.
3968 	 */
3969 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3970 		goto out;
3971 
3972 	switch (cmd) {
3973 	case SIOCINQ: {
3974 		struct sk_buff *skb;
3975 		unsigned int amount = 0;
3976 
3977 		skb = skb_peek(&sk->sk_receive_queue);
3978 		if (skb != NULL) {
3979 			/*
3980 			 * We will only return the amount of this packet since
3981 			 * that is all that will be read.
3982 			 */
3983 			amount = skb->len;
3984 		}
3985 		rc = put_user(amount, (int __user *)arg);
3986 		break;
3987 	}
3988 	default:
3989 		rc = -ENOIOCTLCMD;
3990 		break;
3991 	}
3992 out:
3993 	release_sock(sk);
3994 	return rc;
3995 }
3996 
3997 /* This is the function which gets called during socket creation to
3998  * initialized the SCTP-specific portion of the sock.
3999  * The sock structure should already be zero-filled memory.
4000  */
4001 static int sctp_init_sock(struct sock *sk)
4002 {
4003 	struct net *net = sock_net(sk);
4004 	struct sctp_sock *sp;
4005 
4006 	pr_debug("%s: sk:%p\n", __func__, sk);
4007 
4008 	sp = sctp_sk(sk);
4009 
4010 	/* Initialize the SCTP per socket area.  */
4011 	switch (sk->sk_type) {
4012 	case SOCK_SEQPACKET:
4013 		sp->type = SCTP_SOCKET_UDP;
4014 		break;
4015 	case SOCK_STREAM:
4016 		sp->type = SCTP_SOCKET_TCP;
4017 		break;
4018 	default:
4019 		return -ESOCKTNOSUPPORT;
4020 	}
4021 
4022 	/* Initialize default send parameters. These parameters can be
4023 	 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4024 	 */
4025 	sp->default_stream = 0;
4026 	sp->default_ppid = 0;
4027 	sp->default_flags = 0;
4028 	sp->default_context = 0;
4029 	sp->default_timetolive = 0;
4030 
4031 	sp->default_rcv_context = 0;
4032 	sp->max_burst = net->sctp.max_burst;
4033 
4034 	sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4035 
4036 	/* Initialize default setup parameters. These parameters
4037 	 * can be modified with the SCTP_INITMSG socket option or
4038 	 * overridden by the SCTP_INIT CMSG.
4039 	 */
4040 	sp->initmsg.sinit_num_ostreams   = sctp_max_outstreams;
4041 	sp->initmsg.sinit_max_instreams  = sctp_max_instreams;
4042 	sp->initmsg.sinit_max_attempts   = net->sctp.max_retrans_init;
4043 	sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4044 
4045 	/* Initialize default RTO related parameters.  These parameters can
4046 	 * be modified for with the SCTP_RTOINFO socket option.
4047 	 */
4048 	sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4049 	sp->rtoinfo.srto_max     = net->sctp.rto_max;
4050 	sp->rtoinfo.srto_min     = net->sctp.rto_min;
4051 
4052 	/* Initialize default association related parameters. These parameters
4053 	 * can be modified with the SCTP_ASSOCINFO socket option.
4054 	 */
4055 	sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4056 	sp->assocparams.sasoc_number_peer_destinations = 0;
4057 	sp->assocparams.sasoc_peer_rwnd = 0;
4058 	sp->assocparams.sasoc_local_rwnd = 0;
4059 	sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4060 
4061 	/* Initialize default event subscriptions. By default, all the
4062 	 * options are off.
4063 	 */
4064 	memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4065 
4066 	/* Default Peer Address Parameters.  These defaults can
4067 	 * be modified via SCTP_PEER_ADDR_PARAMS
4068 	 */
4069 	sp->hbinterval  = net->sctp.hb_interval;
4070 	sp->pathmaxrxt  = net->sctp.max_retrans_path;
4071 	sp->pathmtu     = 0; /* allow default discovery */
4072 	sp->sackdelay   = net->sctp.sack_timeout;
4073 	sp->sackfreq	= 2;
4074 	sp->param_flags = SPP_HB_ENABLE |
4075 			  SPP_PMTUD_ENABLE |
4076 			  SPP_SACKDELAY_ENABLE;
4077 
4078 	/* If enabled no SCTP message fragmentation will be performed.
4079 	 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4080 	 */
4081 	sp->disable_fragments = 0;
4082 
4083 	/* Enable Nagle algorithm by default.  */
4084 	sp->nodelay           = 0;
4085 
4086 	sp->recvrcvinfo = 0;
4087 	sp->recvnxtinfo = 0;
4088 
4089 	/* Enable by default. */
4090 	sp->v4mapped          = 1;
4091 
4092 	/* Auto-close idle associations after the configured
4093 	 * number of seconds.  A value of 0 disables this
4094 	 * feature.  Configure through the SCTP_AUTOCLOSE socket option,
4095 	 * for UDP-style sockets only.
4096 	 */
4097 	sp->autoclose         = 0;
4098 
4099 	/* User specified fragmentation limit. */
4100 	sp->user_frag         = 0;
4101 
4102 	sp->adaptation_ind = 0;
4103 
4104 	sp->pf = sctp_get_pf_specific(sk->sk_family);
4105 
4106 	/* Control variables for partial data delivery. */
4107 	atomic_set(&sp->pd_mode, 0);
4108 	skb_queue_head_init(&sp->pd_lobby);
4109 	sp->frag_interleave = 0;
4110 
4111 	/* Create a per socket endpoint structure.  Even if we
4112 	 * change the data structure relationships, this may still
4113 	 * be useful for storing pre-connect address information.
4114 	 */
4115 	sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4116 	if (!sp->ep)
4117 		return -ENOMEM;
4118 
4119 	sp->hmac = NULL;
4120 
4121 	sk->sk_destruct = sctp_destruct_sock;
4122 
4123 	SCTP_DBG_OBJCNT_INC(sock);
4124 
4125 	local_bh_disable();
4126 	percpu_counter_inc(&sctp_sockets_allocated);
4127 	sock_prot_inuse_add(net, sk->sk_prot, 1);
4128 
4129 	/* Nothing can fail after this block, otherwise
4130 	 * sctp_destroy_sock() will be called without addr_wq_lock held
4131 	 */
4132 	if (net->sctp.default_auto_asconf) {
4133 		spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4134 		list_add_tail(&sp->auto_asconf_list,
4135 		    &net->sctp.auto_asconf_splist);
4136 		sp->do_auto_asconf = 1;
4137 		spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4138 	} else {
4139 		sp->do_auto_asconf = 0;
4140 	}
4141 
4142 	local_bh_enable();
4143 
4144 	return 0;
4145 }
4146 
4147 /* Cleanup any SCTP per socket resources. Must be called with
4148  * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4149  */
4150 static void sctp_destroy_sock(struct sock *sk)
4151 {
4152 	struct sctp_sock *sp;
4153 
4154 	pr_debug("%s: sk:%p\n", __func__, sk);
4155 
4156 	/* Release our hold on the endpoint. */
4157 	sp = sctp_sk(sk);
4158 	/* This could happen during socket init, thus we bail out
4159 	 * early, since the rest of the below is not setup either.
4160 	 */
4161 	if (sp->ep == NULL)
4162 		return;
4163 
4164 	if (sp->do_auto_asconf) {
4165 		sp->do_auto_asconf = 0;
4166 		list_del(&sp->auto_asconf_list);
4167 	}
4168 	sctp_endpoint_free(sp->ep);
4169 	local_bh_disable();
4170 	percpu_counter_dec(&sctp_sockets_allocated);
4171 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4172 	local_bh_enable();
4173 }
4174 
4175 /* Triggered when there are no references on the socket anymore */
4176 static void sctp_destruct_sock(struct sock *sk)
4177 {
4178 	struct sctp_sock *sp = sctp_sk(sk);
4179 
4180 	/* Free up the HMAC transform. */
4181 	crypto_free_hash(sp->hmac);
4182 
4183 	inet_sock_destruct(sk);
4184 }
4185 
4186 /* API 4.1.7 shutdown() - TCP Style Syntax
4187  *     int shutdown(int socket, int how);
4188  *
4189  *     sd      - the socket descriptor of the association to be closed.
4190  *     how     - Specifies the type of shutdown.  The  values  are
4191  *               as follows:
4192  *               SHUT_RD
4193  *                     Disables further receive operations. No SCTP
4194  *                     protocol action is taken.
4195  *               SHUT_WR
4196  *                     Disables further send operations, and initiates
4197  *                     the SCTP shutdown sequence.
4198  *               SHUT_RDWR
4199  *                     Disables further send  and  receive  operations
4200  *                     and initiates the SCTP shutdown sequence.
4201  */
4202 static void sctp_shutdown(struct sock *sk, int how)
4203 {
4204 	struct net *net = sock_net(sk);
4205 	struct sctp_endpoint *ep;
4206 	struct sctp_association *asoc;
4207 
4208 	if (!sctp_style(sk, TCP))
4209 		return;
4210 
4211 	if (how & SEND_SHUTDOWN) {
4212 		ep = sctp_sk(sk)->ep;
4213 		if (!list_empty(&ep->asocs)) {
4214 			asoc = list_entry(ep->asocs.next,
4215 					  struct sctp_association, asocs);
4216 			sctp_primitive_SHUTDOWN(net, asoc, NULL);
4217 		}
4218 	}
4219 }
4220 
4221 /* 7.2.1 Association Status (SCTP_STATUS)
4222 
4223  * Applications can retrieve current status information about an
4224  * association, including association state, peer receiver window size,
4225  * number of unacked data chunks, and number of data chunks pending
4226  * receipt.  This information is read-only.
4227  */
4228 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4229 				       char __user *optval,
4230 				       int __user *optlen)
4231 {
4232 	struct sctp_status status;
4233 	struct sctp_association *asoc = NULL;
4234 	struct sctp_transport *transport;
4235 	sctp_assoc_t associd;
4236 	int retval = 0;
4237 
4238 	if (len < sizeof(status)) {
4239 		retval = -EINVAL;
4240 		goto out;
4241 	}
4242 
4243 	len = sizeof(status);
4244 	if (copy_from_user(&status, optval, len)) {
4245 		retval = -EFAULT;
4246 		goto out;
4247 	}
4248 
4249 	associd = status.sstat_assoc_id;
4250 	asoc = sctp_id2assoc(sk, associd);
4251 	if (!asoc) {
4252 		retval = -EINVAL;
4253 		goto out;
4254 	}
4255 
4256 	transport = asoc->peer.primary_path;
4257 
4258 	status.sstat_assoc_id = sctp_assoc2id(asoc);
4259 	status.sstat_state = sctp_assoc_to_state(asoc);
4260 	status.sstat_rwnd =  asoc->peer.rwnd;
4261 	status.sstat_unackdata = asoc->unack_data;
4262 
4263 	status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4264 	status.sstat_instrms = asoc->c.sinit_max_instreams;
4265 	status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4266 	status.sstat_fragmentation_point = asoc->frag_point;
4267 	status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4268 	memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4269 			transport->af_specific->sockaddr_len);
4270 	/* Map ipv4 address into v4-mapped-on-v6 address.  */
4271 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4272 		(union sctp_addr *)&status.sstat_primary.spinfo_address);
4273 	status.sstat_primary.spinfo_state = transport->state;
4274 	status.sstat_primary.spinfo_cwnd = transport->cwnd;
4275 	status.sstat_primary.spinfo_srtt = transport->srtt;
4276 	status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4277 	status.sstat_primary.spinfo_mtu = transport->pathmtu;
4278 
4279 	if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4280 		status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4281 
4282 	if (put_user(len, optlen)) {
4283 		retval = -EFAULT;
4284 		goto out;
4285 	}
4286 
4287 	pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4288 		 __func__, len, status.sstat_state, status.sstat_rwnd,
4289 		 status.sstat_assoc_id);
4290 
4291 	if (copy_to_user(optval, &status, len)) {
4292 		retval = -EFAULT;
4293 		goto out;
4294 	}
4295 
4296 out:
4297 	return retval;
4298 }
4299 
4300 
4301 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4302  *
4303  * Applications can retrieve information about a specific peer address
4304  * of an association, including its reachability state, congestion
4305  * window, and retransmission timer values.  This information is
4306  * read-only.
4307  */
4308 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4309 					  char __user *optval,
4310 					  int __user *optlen)
4311 {
4312 	struct sctp_paddrinfo pinfo;
4313 	struct sctp_transport *transport;
4314 	int retval = 0;
4315 
4316 	if (len < sizeof(pinfo)) {
4317 		retval = -EINVAL;
4318 		goto out;
4319 	}
4320 
4321 	len = sizeof(pinfo);
4322 	if (copy_from_user(&pinfo, optval, len)) {
4323 		retval = -EFAULT;
4324 		goto out;
4325 	}
4326 
4327 	transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4328 					   pinfo.spinfo_assoc_id);
4329 	if (!transport)
4330 		return -EINVAL;
4331 
4332 	pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4333 	pinfo.spinfo_state = transport->state;
4334 	pinfo.spinfo_cwnd = transport->cwnd;
4335 	pinfo.spinfo_srtt = transport->srtt;
4336 	pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4337 	pinfo.spinfo_mtu = transport->pathmtu;
4338 
4339 	if (pinfo.spinfo_state == SCTP_UNKNOWN)
4340 		pinfo.spinfo_state = SCTP_ACTIVE;
4341 
4342 	if (put_user(len, optlen)) {
4343 		retval = -EFAULT;
4344 		goto out;
4345 	}
4346 
4347 	if (copy_to_user(optval, &pinfo, len)) {
4348 		retval = -EFAULT;
4349 		goto out;
4350 	}
4351 
4352 out:
4353 	return retval;
4354 }
4355 
4356 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4357  *
4358  * This option is a on/off flag.  If enabled no SCTP message
4359  * fragmentation will be performed.  Instead if a message being sent
4360  * exceeds the current PMTU size, the message will NOT be sent and
4361  * instead a error will be indicated to the user.
4362  */
4363 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4364 					char __user *optval, int __user *optlen)
4365 {
4366 	int val;
4367 
4368 	if (len < sizeof(int))
4369 		return -EINVAL;
4370 
4371 	len = sizeof(int);
4372 	val = (sctp_sk(sk)->disable_fragments == 1);
4373 	if (put_user(len, optlen))
4374 		return -EFAULT;
4375 	if (copy_to_user(optval, &val, len))
4376 		return -EFAULT;
4377 	return 0;
4378 }
4379 
4380 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4381  *
4382  * This socket option is used to specify various notifications and
4383  * ancillary data the user wishes to receive.
4384  */
4385 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4386 				  int __user *optlen)
4387 {
4388 	if (len <= 0)
4389 		return -EINVAL;
4390 	if (len > sizeof(struct sctp_event_subscribe))
4391 		len = sizeof(struct sctp_event_subscribe);
4392 	if (put_user(len, optlen))
4393 		return -EFAULT;
4394 	if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4395 		return -EFAULT;
4396 	return 0;
4397 }
4398 
4399 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4400  *
4401  * This socket option is applicable to the UDP-style socket only.  When
4402  * set it will cause associations that are idle for more than the
4403  * specified number of seconds to automatically close.  An association
4404  * being idle is defined an association that has NOT sent or received
4405  * user data.  The special value of '0' indicates that no automatic
4406  * close of any associations should be performed.  The option expects an
4407  * integer defining the number of seconds of idle time before an
4408  * association is closed.
4409  */
4410 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4411 {
4412 	/* Applicable to UDP-style socket only */
4413 	if (sctp_style(sk, TCP))
4414 		return -EOPNOTSUPP;
4415 	if (len < sizeof(int))
4416 		return -EINVAL;
4417 	len = sizeof(int);
4418 	if (put_user(len, optlen))
4419 		return -EFAULT;
4420 	if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4421 		return -EFAULT;
4422 	return 0;
4423 }
4424 
4425 /* Helper routine to branch off an association to a new socket.  */
4426 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4427 {
4428 	struct sctp_association *asoc = sctp_id2assoc(sk, id);
4429 	struct sctp_sock *sp = sctp_sk(sk);
4430 	struct socket *sock;
4431 	int err = 0;
4432 
4433 	if (!asoc)
4434 		return -EINVAL;
4435 
4436 	/* An association cannot be branched off from an already peeled-off
4437 	 * socket, nor is this supported for tcp style sockets.
4438 	 */
4439 	if (!sctp_style(sk, UDP))
4440 		return -EINVAL;
4441 
4442 	/* Create a new socket.  */
4443 	err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4444 	if (err < 0)
4445 		return err;
4446 
4447 	sctp_copy_sock(sock->sk, sk, asoc);
4448 
4449 	/* Make peeled-off sockets more like 1-1 accepted sockets.
4450 	 * Set the daddr and initialize id to something more random
4451 	 */
4452 	sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4453 
4454 	/* Populate the fields of the newsk from the oldsk and migrate the
4455 	 * asoc to the newsk.
4456 	 */
4457 	sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4458 
4459 	*sockp = sock;
4460 
4461 	return err;
4462 }
4463 EXPORT_SYMBOL(sctp_do_peeloff);
4464 
4465 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4466 {
4467 	sctp_peeloff_arg_t peeloff;
4468 	struct socket *newsock;
4469 	struct file *newfile;
4470 	int retval = 0;
4471 
4472 	if (len < sizeof(sctp_peeloff_arg_t))
4473 		return -EINVAL;
4474 	len = sizeof(sctp_peeloff_arg_t);
4475 	if (copy_from_user(&peeloff, optval, len))
4476 		return -EFAULT;
4477 
4478 	retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4479 	if (retval < 0)
4480 		goto out;
4481 
4482 	/* Map the socket to an unused fd that can be returned to the user.  */
4483 	retval = get_unused_fd_flags(0);
4484 	if (retval < 0) {
4485 		sock_release(newsock);
4486 		goto out;
4487 	}
4488 
4489 	newfile = sock_alloc_file(newsock, 0, NULL);
4490 	if (unlikely(IS_ERR(newfile))) {
4491 		put_unused_fd(retval);
4492 		sock_release(newsock);
4493 		return PTR_ERR(newfile);
4494 	}
4495 
4496 	pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4497 		 retval);
4498 
4499 	/* Return the fd mapped to the new socket.  */
4500 	if (put_user(len, optlen)) {
4501 		fput(newfile);
4502 		put_unused_fd(retval);
4503 		return -EFAULT;
4504 	}
4505 	peeloff.sd = retval;
4506 	if (copy_to_user(optval, &peeloff, len)) {
4507 		fput(newfile);
4508 		put_unused_fd(retval);
4509 		return -EFAULT;
4510 	}
4511 	fd_install(retval, newfile);
4512 out:
4513 	return retval;
4514 }
4515 
4516 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4517  *
4518  * Applications can enable or disable heartbeats for any peer address of
4519  * an association, modify an address's heartbeat interval, force a
4520  * heartbeat to be sent immediately, and adjust the address's maximum
4521  * number of retransmissions sent before an address is considered
4522  * unreachable.  The following structure is used to access and modify an
4523  * address's parameters:
4524  *
4525  *  struct sctp_paddrparams {
4526  *     sctp_assoc_t            spp_assoc_id;
4527  *     struct sockaddr_storage spp_address;
4528  *     uint32_t                spp_hbinterval;
4529  *     uint16_t                spp_pathmaxrxt;
4530  *     uint32_t                spp_pathmtu;
4531  *     uint32_t                spp_sackdelay;
4532  *     uint32_t                spp_flags;
4533  * };
4534  *
4535  *   spp_assoc_id    - (one-to-many style socket) This is filled in the
4536  *                     application, and identifies the association for
4537  *                     this query.
4538  *   spp_address     - This specifies which address is of interest.
4539  *   spp_hbinterval  - This contains the value of the heartbeat interval,
4540  *                     in milliseconds.  If a  value of zero
4541  *                     is present in this field then no changes are to
4542  *                     be made to this parameter.
4543  *   spp_pathmaxrxt  - This contains the maximum number of
4544  *                     retransmissions before this address shall be
4545  *                     considered unreachable. If a  value of zero
4546  *                     is present in this field then no changes are to
4547  *                     be made to this parameter.
4548  *   spp_pathmtu     - When Path MTU discovery is disabled the value
4549  *                     specified here will be the "fixed" path mtu.
4550  *                     Note that if the spp_address field is empty
4551  *                     then all associations on this address will
4552  *                     have this fixed path mtu set upon them.
4553  *
4554  *   spp_sackdelay   - When delayed sack is enabled, this value specifies
4555  *                     the number of milliseconds that sacks will be delayed
4556  *                     for. This value will apply to all addresses of an
4557  *                     association if the spp_address field is empty. Note
4558  *                     also, that if delayed sack is enabled and this
4559  *                     value is set to 0, no change is made to the last
4560  *                     recorded delayed sack timer value.
4561  *
4562  *   spp_flags       - These flags are used to control various features
4563  *                     on an association. The flag field may contain
4564  *                     zero or more of the following options.
4565  *
4566  *                     SPP_HB_ENABLE  - Enable heartbeats on the
4567  *                     specified address. Note that if the address
4568  *                     field is empty all addresses for the association
4569  *                     have heartbeats enabled upon them.
4570  *
4571  *                     SPP_HB_DISABLE - Disable heartbeats on the
4572  *                     speicifed address. Note that if the address
4573  *                     field is empty all addresses for the association
4574  *                     will have their heartbeats disabled. Note also
4575  *                     that SPP_HB_ENABLE and SPP_HB_DISABLE are
4576  *                     mutually exclusive, only one of these two should
4577  *                     be specified. Enabling both fields will have
4578  *                     undetermined results.
4579  *
4580  *                     SPP_HB_DEMAND - Request a user initiated heartbeat
4581  *                     to be made immediately.
4582  *
4583  *                     SPP_PMTUD_ENABLE - This field will enable PMTU
4584  *                     discovery upon the specified address. Note that
4585  *                     if the address feild is empty then all addresses
4586  *                     on the association are effected.
4587  *
4588  *                     SPP_PMTUD_DISABLE - This field will disable PMTU
4589  *                     discovery upon the specified address. Note that
4590  *                     if the address feild is empty then all addresses
4591  *                     on the association are effected. Not also that
4592  *                     SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4593  *                     exclusive. Enabling both will have undetermined
4594  *                     results.
4595  *
4596  *                     SPP_SACKDELAY_ENABLE - Setting this flag turns
4597  *                     on delayed sack. The time specified in spp_sackdelay
4598  *                     is used to specify the sack delay for this address. Note
4599  *                     that if spp_address is empty then all addresses will
4600  *                     enable delayed sack and take on the sack delay
4601  *                     value specified in spp_sackdelay.
4602  *                     SPP_SACKDELAY_DISABLE - Setting this flag turns
4603  *                     off delayed sack. If the spp_address field is blank then
4604  *                     delayed sack is disabled for the entire association. Note
4605  *                     also that this field is mutually exclusive to
4606  *                     SPP_SACKDELAY_ENABLE, setting both will have undefined
4607  *                     results.
4608  */
4609 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4610 					    char __user *optval, int __user *optlen)
4611 {
4612 	struct sctp_paddrparams  params;
4613 	struct sctp_transport   *trans = NULL;
4614 	struct sctp_association *asoc = NULL;
4615 	struct sctp_sock        *sp = sctp_sk(sk);
4616 
4617 	if (len < sizeof(struct sctp_paddrparams))
4618 		return -EINVAL;
4619 	len = sizeof(struct sctp_paddrparams);
4620 	if (copy_from_user(&params, optval, len))
4621 		return -EFAULT;
4622 
4623 	/* If an address other than INADDR_ANY is specified, and
4624 	 * no transport is found, then the request is invalid.
4625 	 */
4626 	if (!sctp_is_any(sk, (union sctp_addr *)&params.spp_address)) {
4627 		trans = sctp_addr_id2transport(sk, &params.spp_address,
4628 					       params.spp_assoc_id);
4629 		if (!trans) {
4630 			pr_debug("%s: failed no transport\n", __func__);
4631 			return -EINVAL;
4632 		}
4633 	}
4634 
4635 	/* Get association, if assoc_id != 0 and the socket is a one
4636 	 * to many style socket, and an association was not found, then
4637 	 * the id was invalid.
4638 	 */
4639 	asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4640 	if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4641 		pr_debug("%s: failed no association\n", __func__);
4642 		return -EINVAL;
4643 	}
4644 
4645 	if (trans) {
4646 		/* Fetch transport values. */
4647 		params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4648 		params.spp_pathmtu    = trans->pathmtu;
4649 		params.spp_pathmaxrxt = trans->pathmaxrxt;
4650 		params.spp_sackdelay  = jiffies_to_msecs(trans->sackdelay);
4651 
4652 		/*draft-11 doesn't say what to return in spp_flags*/
4653 		params.spp_flags      = trans->param_flags;
4654 	} else if (asoc) {
4655 		/* Fetch association values. */
4656 		params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4657 		params.spp_pathmtu    = asoc->pathmtu;
4658 		params.spp_pathmaxrxt = asoc->pathmaxrxt;
4659 		params.spp_sackdelay  = jiffies_to_msecs(asoc->sackdelay);
4660 
4661 		/*draft-11 doesn't say what to return in spp_flags*/
4662 		params.spp_flags      = asoc->param_flags;
4663 	} else {
4664 		/* Fetch socket values. */
4665 		params.spp_hbinterval = sp->hbinterval;
4666 		params.spp_pathmtu    = sp->pathmtu;
4667 		params.spp_sackdelay  = sp->sackdelay;
4668 		params.spp_pathmaxrxt = sp->pathmaxrxt;
4669 
4670 		/*draft-11 doesn't say what to return in spp_flags*/
4671 		params.spp_flags      = sp->param_flags;
4672 	}
4673 
4674 	if (copy_to_user(optval, &params, len))
4675 		return -EFAULT;
4676 
4677 	if (put_user(len, optlen))
4678 		return -EFAULT;
4679 
4680 	return 0;
4681 }
4682 
4683 /*
4684  * 7.1.23.  Get or set delayed ack timer (SCTP_DELAYED_SACK)
4685  *
4686  * This option will effect the way delayed acks are performed.  This
4687  * option allows you to get or set the delayed ack time, in
4688  * milliseconds.  It also allows changing the delayed ack frequency.
4689  * Changing the frequency to 1 disables the delayed sack algorithm.  If
4690  * the assoc_id is 0, then this sets or gets the endpoints default
4691  * values.  If the assoc_id field is non-zero, then the set or get
4692  * effects the specified association for the one to many model (the
4693  * assoc_id field is ignored by the one to one model).  Note that if
4694  * sack_delay or sack_freq are 0 when setting this option, then the
4695  * current values will remain unchanged.
4696  *
4697  * struct sctp_sack_info {
4698  *     sctp_assoc_t            sack_assoc_id;
4699  *     uint32_t                sack_delay;
4700  *     uint32_t                sack_freq;
4701  * };
4702  *
4703  * sack_assoc_id -  This parameter, indicates which association the user
4704  *    is performing an action upon.  Note that if this field's value is
4705  *    zero then the endpoints default value is changed (effecting future
4706  *    associations only).
4707  *
4708  * sack_delay -  This parameter contains the number of milliseconds that
4709  *    the user is requesting the delayed ACK timer be set to.  Note that
4710  *    this value is defined in the standard to be between 200 and 500
4711  *    milliseconds.
4712  *
4713  * sack_freq -  This parameter contains the number of packets that must
4714  *    be received before a sack is sent without waiting for the delay
4715  *    timer to expire.  The default value for this is 2, setting this
4716  *    value to 1 will disable the delayed sack algorithm.
4717  */
4718 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4719 					    char __user *optval,
4720 					    int __user *optlen)
4721 {
4722 	struct sctp_sack_info    params;
4723 	struct sctp_association *asoc = NULL;
4724 	struct sctp_sock        *sp = sctp_sk(sk);
4725 
4726 	if (len >= sizeof(struct sctp_sack_info)) {
4727 		len = sizeof(struct sctp_sack_info);
4728 
4729 		if (copy_from_user(&params, optval, len))
4730 			return -EFAULT;
4731 	} else if (len == sizeof(struct sctp_assoc_value)) {
4732 		pr_warn_ratelimited(DEPRECATED
4733 				    "%s (pid %d) "
4734 				    "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4735 				    "Use struct sctp_sack_info instead\n",
4736 				    current->comm, task_pid_nr(current));
4737 		if (copy_from_user(&params, optval, len))
4738 			return -EFAULT;
4739 	} else
4740 		return -EINVAL;
4741 
4742 	/* Get association, if sack_assoc_id != 0 and the socket is a one
4743 	 * to many style socket, and an association was not found, then
4744 	 * the id was invalid.
4745 	 */
4746 	asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4747 	if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4748 		return -EINVAL;
4749 
4750 	if (asoc) {
4751 		/* Fetch association values. */
4752 		if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4753 			params.sack_delay = jiffies_to_msecs(
4754 				asoc->sackdelay);
4755 			params.sack_freq = asoc->sackfreq;
4756 
4757 		} else {
4758 			params.sack_delay = 0;
4759 			params.sack_freq = 1;
4760 		}
4761 	} else {
4762 		/* Fetch socket values. */
4763 		if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4764 			params.sack_delay  = sp->sackdelay;
4765 			params.sack_freq = sp->sackfreq;
4766 		} else {
4767 			params.sack_delay  = 0;
4768 			params.sack_freq = 1;
4769 		}
4770 	}
4771 
4772 	if (copy_to_user(optval, &params, len))
4773 		return -EFAULT;
4774 
4775 	if (put_user(len, optlen))
4776 		return -EFAULT;
4777 
4778 	return 0;
4779 }
4780 
4781 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4782  *
4783  * Applications can specify protocol parameters for the default association
4784  * initialization.  The option name argument to setsockopt() and getsockopt()
4785  * is SCTP_INITMSG.
4786  *
4787  * Setting initialization parameters is effective only on an unconnected
4788  * socket (for UDP-style sockets only future associations are effected
4789  * by the change).  With TCP-style sockets, this option is inherited by
4790  * sockets derived from a listener socket.
4791  */
4792 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4793 {
4794 	if (len < sizeof(struct sctp_initmsg))
4795 		return -EINVAL;
4796 	len = sizeof(struct sctp_initmsg);
4797 	if (put_user(len, optlen))
4798 		return -EFAULT;
4799 	if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4800 		return -EFAULT;
4801 	return 0;
4802 }
4803 
4804 
4805 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4806 				      char __user *optval, int __user *optlen)
4807 {
4808 	struct sctp_association *asoc;
4809 	int cnt = 0;
4810 	struct sctp_getaddrs getaddrs;
4811 	struct sctp_transport *from;
4812 	void __user *to;
4813 	union sctp_addr temp;
4814 	struct sctp_sock *sp = sctp_sk(sk);
4815 	int addrlen;
4816 	size_t space_left;
4817 	int bytes_copied;
4818 
4819 	if (len < sizeof(struct sctp_getaddrs))
4820 		return -EINVAL;
4821 
4822 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4823 		return -EFAULT;
4824 
4825 	/* For UDP-style sockets, id specifies the association to query.  */
4826 	asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4827 	if (!asoc)
4828 		return -EINVAL;
4829 
4830 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4831 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4832 
4833 	list_for_each_entry(from, &asoc->peer.transport_addr_list,
4834 				transports) {
4835 		memcpy(&temp, &from->ipaddr, sizeof(temp));
4836 		addrlen = sctp_get_pf_specific(sk->sk_family)
4837 			      ->addr_to_user(sp, &temp);
4838 		if (space_left < addrlen)
4839 			return -ENOMEM;
4840 		if (copy_to_user(to, &temp, addrlen))
4841 			return -EFAULT;
4842 		to += addrlen;
4843 		cnt++;
4844 		space_left -= addrlen;
4845 	}
4846 
4847 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4848 		return -EFAULT;
4849 	bytes_copied = ((char __user *)to) - optval;
4850 	if (put_user(bytes_copied, optlen))
4851 		return -EFAULT;
4852 
4853 	return 0;
4854 }
4855 
4856 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4857 			    size_t space_left, int *bytes_copied)
4858 {
4859 	struct sctp_sockaddr_entry *addr;
4860 	union sctp_addr temp;
4861 	int cnt = 0;
4862 	int addrlen;
4863 	struct net *net = sock_net(sk);
4864 
4865 	rcu_read_lock();
4866 	list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4867 		if (!addr->valid)
4868 			continue;
4869 
4870 		if ((PF_INET == sk->sk_family) &&
4871 		    (AF_INET6 == addr->a.sa.sa_family))
4872 			continue;
4873 		if ((PF_INET6 == sk->sk_family) &&
4874 		    inet_v6_ipv6only(sk) &&
4875 		    (AF_INET == addr->a.sa.sa_family))
4876 			continue;
4877 		memcpy(&temp, &addr->a, sizeof(temp));
4878 		if (!temp.v4.sin_port)
4879 			temp.v4.sin_port = htons(port);
4880 
4881 		addrlen = sctp_get_pf_specific(sk->sk_family)
4882 			      ->addr_to_user(sctp_sk(sk), &temp);
4883 
4884 		if (space_left < addrlen) {
4885 			cnt =  -ENOMEM;
4886 			break;
4887 		}
4888 		memcpy(to, &temp, addrlen);
4889 
4890 		to += addrlen;
4891 		cnt++;
4892 		space_left -= addrlen;
4893 		*bytes_copied += addrlen;
4894 	}
4895 	rcu_read_unlock();
4896 
4897 	return cnt;
4898 }
4899 
4900 
4901 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4902 				       char __user *optval, int __user *optlen)
4903 {
4904 	struct sctp_bind_addr *bp;
4905 	struct sctp_association *asoc;
4906 	int cnt = 0;
4907 	struct sctp_getaddrs getaddrs;
4908 	struct sctp_sockaddr_entry *addr;
4909 	void __user *to;
4910 	union sctp_addr temp;
4911 	struct sctp_sock *sp = sctp_sk(sk);
4912 	int addrlen;
4913 	int err = 0;
4914 	size_t space_left;
4915 	int bytes_copied = 0;
4916 	void *addrs;
4917 	void *buf;
4918 
4919 	if (len < sizeof(struct sctp_getaddrs))
4920 		return -EINVAL;
4921 
4922 	if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4923 		return -EFAULT;
4924 
4925 	/*
4926 	 *  For UDP-style sockets, id specifies the association to query.
4927 	 *  If the id field is set to the value '0' then the locally bound
4928 	 *  addresses are returned without regard to any particular
4929 	 *  association.
4930 	 */
4931 	if (0 == getaddrs.assoc_id) {
4932 		bp = &sctp_sk(sk)->ep->base.bind_addr;
4933 	} else {
4934 		asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4935 		if (!asoc)
4936 			return -EINVAL;
4937 		bp = &asoc->base.bind_addr;
4938 	}
4939 
4940 	to = optval + offsetof(struct sctp_getaddrs, addrs);
4941 	space_left = len - offsetof(struct sctp_getaddrs, addrs);
4942 
4943 	addrs = kmalloc(space_left, GFP_KERNEL);
4944 	if (!addrs)
4945 		return -ENOMEM;
4946 
4947 	/* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4948 	 * addresses from the global local address list.
4949 	 */
4950 	if (sctp_list_single_entry(&bp->address_list)) {
4951 		addr = list_entry(bp->address_list.next,
4952 				  struct sctp_sockaddr_entry, list);
4953 		if (sctp_is_any(sk, &addr->a)) {
4954 			cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4955 						space_left, &bytes_copied);
4956 			if (cnt < 0) {
4957 				err = cnt;
4958 				goto out;
4959 			}
4960 			goto copy_getaddrs;
4961 		}
4962 	}
4963 
4964 	buf = addrs;
4965 	/* Protection on the bound address list is not needed since
4966 	 * in the socket option context we hold a socket lock and
4967 	 * thus the bound address list can't change.
4968 	 */
4969 	list_for_each_entry(addr, &bp->address_list, list) {
4970 		memcpy(&temp, &addr->a, sizeof(temp));
4971 		addrlen = sctp_get_pf_specific(sk->sk_family)
4972 			      ->addr_to_user(sp, &temp);
4973 		if (space_left < addrlen) {
4974 			err =  -ENOMEM; /*fixme: right error?*/
4975 			goto out;
4976 		}
4977 		memcpy(buf, &temp, addrlen);
4978 		buf += addrlen;
4979 		bytes_copied += addrlen;
4980 		cnt++;
4981 		space_left -= addrlen;
4982 	}
4983 
4984 copy_getaddrs:
4985 	if (copy_to_user(to, addrs, bytes_copied)) {
4986 		err = -EFAULT;
4987 		goto out;
4988 	}
4989 	if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4990 		err = -EFAULT;
4991 		goto out;
4992 	}
4993 	if (put_user(bytes_copied, optlen))
4994 		err = -EFAULT;
4995 out:
4996 	kfree(addrs);
4997 	return err;
4998 }
4999 
5000 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
5001  *
5002  * Requests that the local SCTP stack use the enclosed peer address as
5003  * the association primary.  The enclosed address must be one of the
5004  * association peer's addresses.
5005  */
5006 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
5007 					char __user *optval, int __user *optlen)
5008 {
5009 	struct sctp_prim prim;
5010 	struct sctp_association *asoc;
5011 	struct sctp_sock *sp = sctp_sk(sk);
5012 
5013 	if (len < sizeof(struct sctp_prim))
5014 		return -EINVAL;
5015 
5016 	len = sizeof(struct sctp_prim);
5017 
5018 	if (copy_from_user(&prim, optval, len))
5019 		return -EFAULT;
5020 
5021 	asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5022 	if (!asoc)
5023 		return -EINVAL;
5024 
5025 	if (!asoc->peer.primary_path)
5026 		return -ENOTCONN;
5027 
5028 	memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5029 		asoc->peer.primary_path->af_specific->sockaddr_len);
5030 
5031 	sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5032 			(union sctp_addr *)&prim.ssp_addr);
5033 
5034 	if (put_user(len, optlen))
5035 		return -EFAULT;
5036 	if (copy_to_user(optval, &prim, len))
5037 		return -EFAULT;
5038 
5039 	return 0;
5040 }
5041 
5042 /*
5043  * 7.1.11  Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5044  *
5045  * Requests that the local endpoint set the specified Adaptation Layer
5046  * Indication parameter for all future INIT and INIT-ACK exchanges.
5047  */
5048 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5049 				  char __user *optval, int __user *optlen)
5050 {
5051 	struct sctp_setadaptation adaptation;
5052 
5053 	if (len < sizeof(struct sctp_setadaptation))
5054 		return -EINVAL;
5055 
5056 	len = sizeof(struct sctp_setadaptation);
5057 
5058 	adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5059 
5060 	if (put_user(len, optlen))
5061 		return -EFAULT;
5062 	if (copy_to_user(optval, &adaptation, len))
5063 		return -EFAULT;
5064 
5065 	return 0;
5066 }
5067 
5068 /*
5069  *
5070  * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5071  *
5072  *   Applications that wish to use the sendto() system call may wish to
5073  *   specify a default set of parameters that would normally be supplied
5074  *   through the inclusion of ancillary data.  This socket option allows
5075  *   such an application to set the default sctp_sndrcvinfo structure.
5076 
5077 
5078  *   The application that wishes to use this socket option simply passes
5079  *   in to this call the sctp_sndrcvinfo structure defined in Section
5080  *   5.2.2) The input parameters accepted by this call include
5081  *   sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5082  *   sinfo_timetolive.  The user must provide the sinfo_assoc_id field in
5083  *   to this call if the caller is using the UDP model.
5084  *
5085  *   For getsockopt, it get the default sctp_sndrcvinfo structure.
5086  */
5087 static int sctp_getsockopt_default_send_param(struct sock *sk,
5088 					int len, char __user *optval,
5089 					int __user *optlen)
5090 {
5091 	struct sctp_sock *sp = sctp_sk(sk);
5092 	struct sctp_association *asoc;
5093 	struct sctp_sndrcvinfo info;
5094 
5095 	if (len < sizeof(info))
5096 		return -EINVAL;
5097 
5098 	len = sizeof(info);
5099 
5100 	if (copy_from_user(&info, optval, len))
5101 		return -EFAULT;
5102 
5103 	asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5104 	if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5105 		return -EINVAL;
5106 	if (asoc) {
5107 		info.sinfo_stream = asoc->default_stream;
5108 		info.sinfo_flags = asoc->default_flags;
5109 		info.sinfo_ppid = asoc->default_ppid;
5110 		info.sinfo_context = asoc->default_context;
5111 		info.sinfo_timetolive = asoc->default_timetolive;
5112 	} else {
5113 		info.sinfo_stream = sp->default_stream;
5114 		info.sinfo_flags = sp->default_flags;
5115 		info.sinfo_ppid = sp->default_ppid;
5116 		info.sinfo_context = sp->default_context;
5117 		info.sinfo_timetolive = sp->default_timetolive;
5118 	}
5119 
5120 	if (put_user(len, optlen))
5121 		return -EFAULT;
5122 	if (copy_to_user(optval, &info, len))
5123 		return -EFAULT;
5124 
5125 	return 0;
5126 }
5127 
5128 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5129  * (SCTP_DEFAULT_SNDINFO)
5130  */
5131 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5132 					   char __user *optval,
5133 					   int __user *optlen)
5134 {
5135 	struct sctp_sock *sp = sctp_sk(sk);
5136 	struct sctp_association *asoc;
5137 	struct sctp_sndinfo info;
5138 
5139 	if (len < sizeof(info))
5140 		return -EINVAL;
5141 
5142 	len = sizeof(info);
5143 
5144 	if (copy_from_user(&info, optval, len))
5145 		return -EFAULT;
5146 
5147 	asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5148 	if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5149 		return -EINVAL;
5150 	if (asoc) {
5151 		info.snd_sid = asoc->default_stream;
5152 		info.snd_flags = asoc->default_flags;
5153 		info.snd_ppid = asoc->default_ppid;
5154 		info.snd_context = asoc->default_context;
5155 	} else {
5156 		info.snd_sid = sp->default_stream;
5157 		info.snd_flags = sp->default_flags;
5158 		info.snd_ppid = sp->default_ppid;
5159 		info.snd_context = sp->default_context;
5160 	}
5161 
5162 	if (put_user(len, optlen))
5163 		return -EFAULT;
5164 	if (copy_to_user(optval, &info, len))
5165 		return -EFAULT;
5166 
5167 	return 0;
5168 }
5169 
5170 /*
5171  *
5172  * 7.1.5 SCTP_NODELAY
5173  *
5174  * Turn on/off any Nagle-like algorithm.  This means that packets are
5175  * generally sent as soon as possible and no unnecessary delays are
5176  * introduced, at the cost of more packets in the network.  Expects an
5177  * integer boolean flag.
5178  */
5179 
5180 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5181 				   char __user *optval, int __user *optlen)
5182 {
5183 	int val;
5184 
5185 	if (len < sizeof(int))
5186 		return -EINVAL;
5187 
5188 	len = sizeof(int);
5189 	val = (sctp_sk(sk)->nodelay == 1);
5190 	if (put_user(len, optlen))
5191 		return -EFAULT;
5192 	if (copy_to_user(optval, &val, len))
5193 		return -EFAULT;
5194 	return 0;
5195 }
5196 
5197 /*
5198  *
5199  * 7.1.1 SCTP_RTOINFO
5200  *
5201  * The protocol parameters used to initialize and bound retransmission
5202  * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5203  * and modify these parameters.
5204  * All parameters are time values, in milliseconds.  A value of 0, when
5205  * modifying the parameters, indicates that the current value should not
5206  * be changed.
5207  *
5208  */
5209 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5210 				char __user *optval,
5211 				int __user *optlen) {
5212 	struct sctp_rtoinfo rtoinfo;
5213 	struct sctp_association *asoc;
5214 
5215 	if (len < sizeof (struct sctp_rtoinfo))
5216 		return -EINVAL;
5217 
5218 	len = sizeof(struct sctp_rtoinfo);
5219 
5220 	if (copy_from_user(&rtoinfo, optval, len))
5221 		return -EFAULT;
5222 
5223 	asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5224 
5225 	if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5226 		return -EINVAL;
5227 
5228 	/* Values corresponding to the specific association. */
5229 	if (asoc) {
5230 		rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5231 		rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5232 		rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5233 	} else {
5234 		/* Values corresponding to the endpoint. */
5235 		struct sctp_sock *sp = sctp_sk(sk);
5236 
5237 		rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5238 		rtoinfo.srto_max = sp->rtoinfo.srto_max;
5239 		rtoinfo.srto_min = sp->rtoinfo.srto_min;
5240 	}
5241 
5242 	if (put_user(len, optlen))
5243 		return -EFAULT;
5244 
5245 	if (copy_to_user(optval, &rtoinfo, len))
5246 		return -EFAULT;
5247 
5248 	return 0;
5249 }
5250 
5251 /*
5252  *
5253  * 7.1.2 SCTP_ASSOCINFO
5254  *
5255  * This option is used to tune the maximum retransmission attempts
5256  * of the association.
5257  * Returns an error if the new association retransmission value is
5258  * greater than the sum of the retransmission value  of the peer.
5259  * See [SCTP] for more information.
5260  *
5261  */
5262 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5263 				     char __user *optval,
5264 				     int __user *optlen)
5265 {
5266 
5267 	struct sctp_assocparams assocparams;
5268 	struct sctp_association *asoc;
5269 	struct list_head *pos;
5270 	int cnt = 0;
5271 
5272 	if (len < sizeof (struct sctp_assocparams))
5273 		return -EINVAL;
5274 
5275 	len = sizeof(struct sctp_assocparams);
5276 
5277 	if (copy_from_user(&assocparams, optval, len))
5278 		return -EFAULT;
5279 
5280 	asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5281 
5282 	if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5283 		return -EINVAL;
5284 
5285 	/* Values correspoinding to the specific association */
5286 	if (asoc) {
5287 		assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5288 		assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5289 		assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5290 		assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5291 
5292 		list_for_each(pos, &asoc->peer.transport_addr_list) {
5293 			cnt++;
5294 		}
5295 
5296 		assocparams.sasoc_number_peer_destinations = cnt;
5297 	} else {
5298 		/* Values corresponding to the endpoint */
5299 		struct sctp_sock *sp = sctp_sk(sk);
5300 
5301 		assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5302 		assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5303 		assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5304 		assocparams.sasoc_cookie_life =
5305 					sp->assocparams.sasoc_cookie_life;
5306 		assocparams.sasoc_number_peer_destinations =
5307 					sp->assocparams.
5308 					sasoc_number_peer_destinations;
5309 	}
5310 
5311 	if (put_user(len, optlen))
5312 		return -EFAULT;
5313 
5314 	if (copy_to_user(optval, &assocparams, len))
5315 		return -EFAULT;
5316 
5317 	return 0;
5318 }
5319 
5320 /*
5321  * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5322  *
5323  * This socket option is a boolean flag which turns on or off mapped V4
5324  * addresses.  If this option is turned on and the socket is type
5325  * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5326  * If this option is turned off, then no mapping will be done of V4
5327  * addresses and a user will receive both PF_INET6 and PF_INET type
5328  * addresses on the socket.
5329  */
5330 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5331 				    char __user *optval, int __user *optlen)
5332 {
5333 	int val;
5334 	struct sctp_sock *sp = sctp_sk(sk);
5335 
5336 	if (len < sizeof(int))
5337 		return -EINVAL;
5338 
5339 	len = sizeof(int);
5340 	val = sp->v4mapped;
5341 	if (put_user(len, optlen))
5342 		return -EFAULT;
5343 	if (copy_to_user(optval, &val, len))
5344 		return -EFAULT;
5345 
5346 	return 0;
5347 }
5348 
5349 /*
5350  * 7.1.29.  Set or Get the default context (SCTP_CONTEXT)
5351  * (chapter and verse is quoted at sctp_setsockopt_context())
5352  */
5353 static int sctp_getsockopt_context(struct sock *sk, int len,
5354 				   char __user *optval, int __user *optlen)
5355 {
5356 	struct sctp_assoc_value params;
5357 	struct sctp_sock *sp;
5358 	struct sctp_association *asoc;
5359 
5360 	if (len < sizeof(struct sctp_assoc_value))
5361 		return -EINVAL;
5362 
5363 	len = sizeof(struct sctp_assoc_value);
5364 
5365 	if (copy_from_user(&params, optval, len))
5366 		return -EFAULT;
5367 
5368 	sp = sctp_sk(sk);
5369 
5370 	if (params.assoc_id != 0) {
5371 		asoc = sctp_id2assoc(sk, params.assoc_id);
5372 		if (!asoc)
5373 			return -EINVAL;
5374 		params.assoc_value = asoc->default_rcv_context;
5375 	} else {
5376 		params.assoc_value = sp->default_rcv_context;
5377 	}
5378 
5379 	if (put_user(len, optlen))
5380 		return -EFAULT;
5381 	if (copy_to_user(optval, &params, len))
5382 		return -EFAULT;
5383 
5384 	return 0;
5385 }
5386 
5387 /*
5388  * 8.1.16.  Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5389  * This option will get or set the maximum size to put in any outgoing
5390  * SCTP DATA chunk.  If a message is larger than this size it will be
5391  * fragmented by SCTP into the specified size.  Note that the underlying
5392  * SCTP implementation may fragment into smaller sized chunks when the
5393  * PMTU of the underlying association is smaller than the value set by
5394  * the user.  The default value for this option is '0' which indicates
5395  * the user is NOT limiting fragmentation and only the PMTU will effect
5396  * SCTP's choice of DATA chunk size.  Note also that values set larger
5397  * than the maximum size of an IP datagram will effectively let SCTP
5398  * control fragmentation (i.e. the same as setting this option to 0).
5399  *
5400  * The following structure is used to access and modify this parameter:
5401  *
5402  * struct sctp_assoc_value {
5403  *   sctp_assoc_t assoc_id;
5404  *   uint32_t assoc_value;
5405  * };
5406  *
5407  * assoc_id:  This parameter is ignored for one-to-one style sockets.
5408  *    For one-to-many style sockets this parameter indicates which
5409  *    association the user is performing an action upon.  Note that if
5410  *    this field's value is zero then the endpoints default value is
5411  *    changed (effecting future associations only).
5412  * assoc_value:  This parameter specifies the maximum size in bytes.
5413  */
5414 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5415 				  char __user *optval, int __user *optlen)
5416 {
5417 	struct sctp_assoc_value params;
5418 	struct sctp_association *asoc;
5419 
5420 	if (len == sizeof(int)) {
5421 		pr_warn_ratelimited(DEPRECATED
5422 				    "%s (pid %d) "
5423 				    "Use of int in maxseg socket option.\n"
5424 				    "Use struct sctp_assoc_value instead\n",
5425 				    current->comm, task_pid_nr(current));
5426 		params.assoc_id = 0;
5427 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5428 		len = sizeof(struct sctp_assoc_value);
5429 		if (copy_from_user(&params, optval, sizeof(params)))
5430 			return -EFAULT;
5431 	} else
5432 		return -EINVAL;
5433 
5434 	asoc = sctp_id2assoc(sk, params.assoc_id);
5435 	if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5436 		return -EINVAL;
5437 
5438 	if (asoc)
5439 		params.assoc_value = asoc->frag_point;
5440 	else
5441 		params.assoc_value = sctp_sk(sk)->user_frag;
5442 
5443 	if (put_user(len, optlen))
5444 		return -EFAULT;
5445 	if (len == sizeof(int)) {
5446 		if (copy_to_user(optval, &params.assoc_value, len))
5447 			return -EFAULT;
5448 	} else {
5449 		if (copy_to_user(optval, &params, len))
5450 			return -EFAULT;
5451 	}
5452 
5453 	return 0;
5454 }
5455 
5456 /*
5457  * 7.1.24.  Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5458  * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5459  */
5460 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5461 					       char __user *optval, int __user *optlen)
5462 {
5463 	int val;
5464 
5465 	if (len < sizeof(int))
5466 		return -EINVAL;
5467 
5468 	len = sizeof(int);
5469 
5470 	val = sctp_sk(sk)->frag_interleave;
5471 	if (put_user(len, optlen))
5472 		return -EFAULT;
5473 	if (copy_to_user(optval, &val, len))
5474 		return -EFAULT;
5475 
5476 	return 0;
5477 }
5478 
5479 /*
5480  * 7.1.25.  Set or Get the sctp partial delivery point
5481  * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5482  */
5483 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5484 						  char __user *optval,
5485 						  int __user *optlen)
5486 {
5487 	u32 val;
5488 
5489 	if (len < sizeof(u32))
5490 		return -EINVAL;
5491 
5492 	len = sizeof(u32);
5493 
5494 	val = sctp_sk(sk)->pd_point;
5495 	if (put_user(len, optlen))
5496 		return -EFAULT;
5497 	if (copy_to_user(optval, &val, len))
5498 		return -EFAULT;
5499 
5500 	return 0;
5501 }
5502 
5503 /*
5504  * 7.1.28.  Set or Get the maximum burst (SCTP_MAX_BURST)
5505  * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5506  */
5507 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5508 				    char __user *optval,
5509 				    int __user *optlen)
5510 {
5511 	struct sctp_assoc_value params;
5512 	struct sctp_sock *sp;
5513 	struct sctp_association *asoc;
5514 
5515 	if (len == sizeof(int)) {
5516 		pr_warn_ratelimited(DEPRECATED
5517 				    "%s (pid %d) "
5518 				    "Use of int in max_burst socket option.\n"
5519 				    "Use struct sctp_assoc_value instead\n",
5520 				    current->comm, task_pid_nr(current));
5521 		params.assoc_id = 0;
5522 	} else if (len >= sizeof(struct sctp_assoc_value)) {
5523 		len = sizeof(struct sctp_assoc_value);
5524 		if (copy_from_user(&params, optval, len))
5525 			return -EFAULT;
5526 	} else
5527 		return -EINVAL;
5528 
5529 	sp = sctp_sk(sk);
5530 
5531 	if (params.assoc_id != 0) {
5532 		asoc = sctp_id2assoc(sk, params.assoc_id);
5533 		if (!asoc)
5534 			return -EINVAL;
5535 		params.assoc_value = asoc->max_burst;
5536 	} else
5537 		params.assoc_value = sp->max_burst;
5538 
5539 	if (len == sizeof(int)) {
5540 		if (copy_to_user(optval, &params.assoc_value, len))
5541 			return -EFAULT;
5542 	} else {
5543 		if (copy_to_user(optval, &params, len))
5544 			return -EFAULT;
5545 	}
5546 
5547 	return 0;
5548 
5549 }
5550 
5551 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5552 				    char __user *optval, int __user *optlen)
5553 {
5554 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5555 	struct sctp_hmacalgo  __user *p = (void __user *)optval;
5556 	struct sctp_hmac_algo_param *hmacs;
5557 	__u16 data_len = 0;
5558 	u32 num_idents;
5559 
5560 	if (!ep->auth_enable)
5561 		return -EACCES;
5562 
5563 	hmacs = ep->auth_hmacs_list;
5564 	data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5565 
5566 	if (len < sizeof(struct sctp_hmacalgo) + data_len)
5567 		return -EINVAL;
5568 
5569 	len = sizeof(struct sctp_hmacalgo) + data_len;
5570 	num_idents = data_len / sizeof(u16);
5571 
5572 	if (put_user(len, optlen))
5573 		return -EFAULT;
5574 	if (put_user(num_idents, &p->shmac_num_idents))
5575 		return -EFAULT;
5576 	if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5577 		return -EFAULT;
5578 	return 0;
5579 }
5580 
5581 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5582 				    char __user *optval, int __user *optlen)
5583 {
5584 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5585 	struct sctp_authkeyid val;
5586 	struct sctp_association *asoc;
5587 
5588 	if (!ep->auth_enable)
5589 		return -EACCES;
5590 
5591 	if (len < sizeof(struct sctp_authkeyid))
5592 		return -EINVAL;
5593 	if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5594 		return -EFAULT;
5595 
5596 	asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5597 	if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5598 		return -EINVAL;
5599 
5600 	if (asoc)
5601 		val.scact_keynumber = asoc->active_key_id;
5602 	else
5603 		val.scact_keynumber = ep->active_key_id;
5604 
5605 	len = sizeof(struct sctp_authkeyid);
5606 	if (put_user(len, optlen))
5607 		return -EFAULT;
5608 	if (copy_to_user(optval, &val, len))
5609 		return -EFAULT;
5610 
5611 	return 0;
5612 }
5613 
5614 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5615 				    char __user *optval, int __user *optlen)
5616 {
5617 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5618 	struct sctp_authchunks __user *p = (void __user *)optval;
5619 	struct sctp_authchunks val;
5620 	struct sctp_association *asoc;
5621 	struct sctp_chunks_param *ch;
5622 	u32    num_chunks = 0;
5623 	char __user *to;
5624 
5625 	if (!ep->auth_enable)
5626 		return -EACCES;
5627 
5628 	if (len < sizeof(struct sctp_authchunks))
5629 		return -EINVAL;
5630 
5631 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5632 		return -EFAULT;
5633 
5634 	to = p->gauth_chunks;
5635 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5636 	if (!asoc)
5637 		return -EINVAL;
5638 
5639 	ch = asoc->peer.peer_chunks;
5640 	if (!ch)
5641 		goto num;
5642 
5643 	/* See if the user provided enough room for all the data */
5644 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5645 	if (len < num_chunks)
5646 		return -EINVAL;
5647 
5648 	if (copy_to_user(to, ch->chunks, num_chunks))
5649 		return -EFAULT;
5650 num:
5651 	len = sizeof(struct sctp_authchunks) + num_chunks;
5652 	if (put_user(len, optlen))
5653 		return -EFAULT;
5654 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5655 		return -EFAULT;
5656 	return 0;
5657 }
5658 
5659 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5660 				    char __user *optval, int __user *optlen)
5661 {
5662 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5663 	struct sctp_authchunks __user *p = (void __user *)optval;
5664 	struct sctp_authchunks val;
5665 	struct sctp_association *asoc;
5666 	struct sctp_chunks_param *ch;
5667 	u32    num_chunks = 0;
5668 	char __user *to;
5669 
5670 	if (!ep->auth_enable)
5671 		return -EACCES;
5672 
5673 	if (len < sizeof(struct sctp_authchunks))
5674 		return -EINVAL;
5675 
5676 	if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5677 		return -EFAULT;
5678 
5679 	to = p->gauth_chunks;
5680 	asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5681 	if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5682 		return -EINVAL;
5683 
5684 	if (asoc)
5685 		ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5686 	else
5687 		ch = ep->auth_chunk_list;
5688 
5689 	if (!ch)
5690 		goto num;
5691 
5692 	num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5693 	if (len < sizeof(struct sctp_authchunks) + num_chunks)
5694 		return -EINVAL;
5695 
5696 	if (copy_to_user(to, ch->chunks, num_chunks))
5697 		return -EFAULT;
5698 num:
5699 	len = sizeof(struct sctp_authchunks) + num_chunks;
5700 	if (put_user(len, optlen))
5701 		return -EFAULT;
5702 	if (put_user(num_chunks, &p->gauth_number_of_chunks))
5703 		return -EFAULT;
5704 
5705 	return 0;
5706 }
5707 
5708 /*
5709  * 8.2.5.  Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5710  * This option gets the current number of associations that are attached
5711  * to a one-to-many style socket.  The option value is an uint32_t.
5712  */
5713 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5714 				    char __user *optval, int __user *optlen)
5715 {
5716 	struct sctp_sock *sp = sctp_sk(sk);
5717 	struct sctp_association *asoc;
5718 	u32 val = 0;
5719 
5720 	if (sctp_style(sk, TCP))
5721 		return -EOPNOTSUPP;
5722 
5723 	if (len < sizeof(u32))
5724 		return -EINVAL;
5725 
5726 	len = sizeof(u32);
5727 
5728 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5729 		val++;
5730 	}
5731 
5732 	if (put_user(len, optlen))
5733 		return -EFAULT;
5734 	if (copy_to_user(optval, &val, len))
5735 		return -EFAULT;
5736 
5737 	return 0;
5738 }
5739 
5740 /*
5741  * 8.1.23 SCTP_AUTO_ASCONF
5742  * See the corresponding setsockopt entry as description
5743  */
5744 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5745 				   char __user *optval, int __user *optlen)
5746 {
5747 	int val = 0;
5748 
5749 	if (len < sizeof(int))
5750 		return -EINVAL;
5751 
5752 	len = sizeof(int);
5753 	if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5754 		val = 1;
5755 	if (put_user(len, optlen))
5756 		return -EFAULT;
5757 	if (copy_to_user(optval, &val, len))
5758 		return -EFAULT;
5759 	return 0;
5760 }
5761 
5762 /*
5763  * 8.2.6. Get the Current Identifiers of Associations
5764  *        (SCTP_GET_ASSOC_ID_LIST)
5765  *
5766  * This option gets the current list of SCTP association identifiers of
5767  * the SCTP associations handled by a one-to-many style socket.
5768  */
5769 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5770 				    char __user *optval, int __user *optlen)
5771 {
5772 	struct sctp_sock *sp = sctp_sk(sk);
5773 	struct sctp_association *asoc;
5774 	struct sctp_assoc_ids *ids;
5775 	u32 num = 0;
5776 
5777 	if (sctp_style(sk, TCP))
5778 		return -EOPNOTSUPP;
5779 
5780 	if (len < sizeof(struct sctp_assoc_ids))
5781 		return -EINVAL;
5782 
5783 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5784 		num++;
5785 	}
5786 
5787 	if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5788 		return -EINVAL;
5789 
5790 	len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5791 
5792 	ids = kmalloc(len, GFP_KERNEL);
5793 	if (unlikely(!ids))
5794 		return -ENOMEM;
5795 
5796 	ids->gaids_number_of_ids = num;
5797 	num = 0;
5798 	list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5799 		ids->gaids_assoc_id[num++] = asoc->assoc_id;
5800 	}
5801 
5802 	if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5803 		kfree(ids);
5804 		return -EFAULT;
5805 	}
5806 
5807 	kfree(ids);
5808 	return 0;
5809 }
5810 
5811 /*
5812  * SCTP_PEER_ADDR_THLDS
5813  *
5814  * This option allows us to fetch the partially failed threshold for one or all
5815  * transports in an association.  See Section 6.1 of:
5816  * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5817  */
5818 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5819 					    char __user *optval,
5820 					    int len,
5821 					    int __user *optlen)
5822 {
5823 	struct sctp_paddrthlds val;
5824 	struct sctp_transport *trans;
5825 	struct sctp_association *asoc;
5826 
5827 	if (len < sizeof(struct sctp_paddrthlds))
5828 		return -EINVAL;
5829 	len = sizeof(struct sctp_paddrthlds);
5830 	if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5831 		return -EFAULT;
5832 
5833 	if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5834 		asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5835 		if (!asoc)
5836 			return -ENOENT;
5837 
5838 		val.spt_pathpfthld = asoc->pf_retrans;
5839 		val.spt_pathmaxrxt = asoc->pathmaxrxt;
5840 	} else {
5841 		trans = sctp_addr_id2transport(sk, &val.spt_address,
5842 					       val.spt_assoc_id);
5843 		if (!trans)
5844 			return -ENOENT;
5845 
5846 		val.spt_pathmaxrxt = trans->pathmaxrxt;
5847 		val.spt_pathpfthld = trans->pf_retrans;
5848 	}
5849 
5850 	if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5851 		return -EFAULT;
5852 
5853 	return 0;
5854 }
5855 
5856 /*
5857  * SCTP_GET_ASSOC_STATS
5858  *
5859  * This option retrieves local per endpoint statistics. It is modeled
5860  * after OpenSolaris' implementation
5861  */
5862 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5863 				       char __user *optval,
5864 				       int __user *optlen)
5865 {
5866 	struct sctp_assoc_stats sas;
5867 	struct sctp_association *asoc = NULL;
5868 
5869 	/* User must provide at least the assoc id */
5870 	if (len < sizeof(sctp_assoc_t))
5871 		return -EINVAL;
5872 
5873 	/* Allow the struct to grow and fill in as much as possible */
5874 	len = min_t(size_t, len, sizeof(sas));
5875 
5876 	if (copy_from_user(&sas, optval, len))
5877 		return -EFAULT;
5878 
5879 	asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5880 	if (!asoc)
5881 		return -EINVAL;
5882 
5883 	sas.sas_rtxchunks = asoc->stats.rtxchunks;
5884 	sas.sas_gapcnt = asoc->stats.gapcnt;
5885 	sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5886 	sas.sas_osacks = asoc->stats.osacks;
5887 	sas.sas_isacks = asoc->stats.isacks;
5888 	sas.sas_octrlchunks = asoc->stats.octrlchunks;
5889 	sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5890 	sas.sas_oodchunks = asoc->stats.oodchunks;
5891 	sas.sas_iodchunks = asoc->stats.iodchunks;
5892 	sas.sas_ouodchunks = asoc->stats.ouodchunks;
5893 	sas.sas_iuodchunks = asoc->stats.iuodchunks;
5894 	sas.sas_idupchunks = asoc->stats.idupchunks;
5895 	sas.sas_opackets = asoc->stats.opackets;
5896 	sas.sas_ipackets = asoc->stats.ipackets;
5897 
5898 	/* New high max rto observed, will return 0 if not a single
5899 	 * RTO update took place. obs_rto_ipaddr will be bogus
5900 	 * in such a case
5901 	 */
5902 	sas.sas_maxrto = asoc->stats.max_obs_rto;
5903 	memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5904 		sizeof(struct sockaddr_storage));
5905 
5906 	/* Mark beginning of a new observation period */
5907 	asoc->stats.max_obs_rto = asoc->rto_min;
5908 
5909 	if (put_user(len, optlen))
5910 		return -EFAULT;
5911 
5912 	pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5913 
5914 	if (copy_to_user(optval, &sas, len))
5915 		return -EFAULT;
5916 
5917 	return 0;
5918 }
5919 
5920 static int sctp_getsockopt_recvrcvinfo(struct sock *sk,	int len,
5921 				       char __user *optval,
5922 				       int __user *optlen)
5923 {
5924 	int val = 0;
5925 
5926 	if (len < sizeof(int))
5927 		return -EINVAL;
5928 
5929 	len = sizeof(int);
5930 	if (sctp_sk(sk)->recvrcvinfo)
5931 		val = 1;
5932 	if (put_user(len, optlen))
5933 		return -EFAULT;
5934 	if (copy_to_user(optval, &val, len))
5935 		return -EFAULT;
5936 
5937 	return 0;
5938 }
5939 
5940 static int sctp_getsockopt_recvnxtinfo(struct sock *sk,	int len,
5941 				       char __user *optval,
5942 				       int __user *optlen)
5943 {
5944 	int val = 0;
5945 
5946 	if (len < sizeof(int))
5947 		return -EINVAL;
5948 
5949 	len = sizeof(int);
5950 	if (sctp_sk(sk)->recvnxtinfo)
5951 		val = 1;
5952 	if (put_user(len, optlen))
5953 		return -EFAULT;
5954 	if (copy_to_user(optval, &val, len))
5955 		return -EFAULT;
5956 
5957 	return 0;
5958 }
5959 
5960 static int sctp_getsockopt(struct sock *sk, int level, int optname,
5961 			   char __user *optval, int __user *optlen)
5962 {
5963 	int retval = 0;
5964 	int len;
5965 
5966 	pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5967 
5968 	/* I can hardly begin to describe how wrong this is.  This is
5969 	 * so broken as to be worse than useless.  The API draft
5970 	 * REALLY is NOT helpful here...  I am not convinced that the
5971 	 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5972 	 * are at all well-founded.
5973 	 */
5974 	if (level != SOL_SCTP) {
5975 		struct sctp_af *af = sctp_sk(sk)->pf->af;
5976 
5977 		retval = af->getsockopt(sk, level, optname, optval, optlen);
5978 		return retval;
5979 	}
5980 
5981 	if (get_user(len, optlen))
5982 		return -EFAULT;
5983 
5984 	lock_sock(sk);
5985 
5986 	switch (optname) {
5987 	case SCTP_STATUS:
5988 		retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5989 		break;
5990 	case SCTP_DISABLE_FRAGMENTS:
5991 		retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5992 							   optlen);
5993 		break;
5994 	case SCTP_EVENTS:
5995 		retval = sctp_getsockopt_events(sk, len, optval, optlen);
5996 		break;
5997 	case SCTP_AUTOCLOSE:
5998 		retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5999 		break;
6000 	case SCTP_SOCKOPT_PEELOFF:
6001 		retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
6002 		break;
6003 	case SCTP_PEER_ADDR_PARAMS:
6004 		retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
6005 							  optlen);
6006 		break;
6007 	case SCTP_DELAYED_SACK:
6008 		retval = sctp_getsockopt_delayed_ack(sk, len, optval,
6009 							  optlen);
6010 		break;
6011 	case SCTP_INITMSG:
6012 		retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6013 		break;
6014 	case SCTP_GET_PEER_ADDRS:
6015 		retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6016 						    optlen);
6017 		break;
6018 	case SCTP_GET_LOCAL_ADDRS:
6019 		retval = sctp_getsockopt_local_addrs(sk, len, optval,
6020 						     optlen);
6021 		break;
6022 	case SCTP_SOCKOPT_CONNECTX3:
6023 		retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6024 		break;
6025 	case SCTP_DEFAULT_SEND_PARAM:
6026 		retval = sctp_getsockopt_default_send_param(sk, len,
6027 							    optval, optlen);
6028 		break;
6029 	case SCTP_DEFAULT_SNDINFO:
6030 		retval = sctp_getsockopt_default_sndinfo(sk, len,
6031 							 optval, optlen);
6032 		break;
6033 	case SCTP_PRIMARY_ADDR:
6034 		retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6035 		break;
6036 	case SCTP_NODELAY:
6037 		retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6038 		break;
6039 	case SCTP_RTOINFO:
6040 		retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6041 		break;
6042 	case SCTP_ASSOCINFO:
6043 		retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6044 		break;
6045 	case SCTP_I_WANT_MAPPED_V4_ADDR:
6046 		retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6047 		break;
6048 	case SCTP_MAXSEG:
6049 		retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6050 		break;
6051 	case SCTP_GET_PEER_ADDR_INFO:
6052 		retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6053 							optlen);
6054 		break;
6055 	case SCTP_ADAPTATION_LAYER:
6056 		retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6057 							optlen);
6058 		break;
6059 	case SCTP_CONTEXT:
6060 		retval = sctp_getsockopt_context(sk, len, optval, optlen);
6061 		break;
6062 	case SCTP_FRAGMENT_INTERLEAVE:
6063 		retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6064 							     optlen);
6065 		break;
6066 	case SCTP_PARTIAL_DELIVERY_POINT:
6067 		retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6068 								optlen);
6069 		break;
6070 	case SCTP_MAX_BURST:
6071 		retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6072 		break;
6073 	case SCTP_AUTH_KEY:
6074 	case SCTP_AUTH_CHUNK:
6075 	case SCTP_AUTH_DELETE_KEY:
6076 		retval = -EOPNOTSUPP;
6077 		break;
6078 	case SCTP_HMAC_IDENT:
6079 		retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6080 		break;
6081 	case SCTP_AUTH_ACTIVE_KEY:
6082 		retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6083 		break;
6084 	case SCTP_PEER_AUTH_CHUNKS:
6085 		retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6086 							optlen);
6087 		break;
6088 	case SCTP_LOCAL_AUTH_CHUNKS:
6089 		retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6090 							optlen);
6091 		break;
6092 	case SCTP_GET_ASSOC_NUMBER:
6093 		retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6094 		break;
6095 	case SCTP_GET_ASSOC_ID_LIST:
6096 		retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6097 		break;
6098 	case SCTP_AUTO_ASCONF:
6099 		retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6100 		break;
6101 	case SCTP_PEER_ADDR_THLDS:
6102 		retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6103 		break;
6104 	case SCTP_GET_ASSOC_STATS:
6105 		retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6106 		break;
6107 	case SCTP_RECVRCVINFO:
6108 		retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6109 		break;
6110 	case SCTP_RECVNXTINFO:
6111 		retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6112 		break;
6113 	default:
6114 		retval = -ENOPROTOOPT;
6115 		break;
6116 	}
6117 
6118 	release_sock(sk);
6119 	return retval;
6120 }
6121 
6122 static void sctp_hash(struct sock *sk)
6123 {
6124 	/* STUB */
6125 }
6126 
6127 static void sctp_unhash(struct sock *sk)
6128 {
6129 	/* STUB */
6130 }
6131 
6132 /* Check if port is acceptable.  Possibly find first available port.
6133  *
6134  * The port hash table (contained in the 'global' SCTP protocol storage
6135  * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6136  * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6137  * list (the list number is the port number hashed out, so as you
6138  * would expect from a hash function, all the ports in a given list have
6139  * such a number that hashes out to the same list number; you were
6140  * expecting that, right?); so each list has a set of ports, with a
6141  * link to the socket (struct sock) that uses it, the port number and
6142  * a fastreuse flag (FIXME: NPI ipg).
6143  */
6144 static struct sctp_bind_bucket *sctp_bucket_create(
6145 	struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6146 
6147 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6148 {
6149 	struct sctp_bind_hashbucket *head; /* hash list */
6150 	struct sctp_bind_bucket *pp;
6151 	unsigned short snum;
6152 	int ret;
6153 
6154 	snum = ntohs(addr->v4.sin_port);
6155 
6156 	pr_debug("%s: begins, snum:%d\n", __func__, snum);
6157 
6158 	local_bh_disable();
6159 
6160 	if (snum == 0) {
6161 		/* Search for an available port. */
6162 		int low, high, remaining, index;
6163 		unsigned int rover;
6164 		struct net *net = sock_net(sk);
6165 
6166 		inet_get_local_port_range(net, &low, &high);
6167 		remaining = (high - low) + 1;
6168 		rover = prandom_u32() % remaining + low;
6169 
6170 		do {
6171 			rover++;
6172 			if ((rover < low) || (rover > high))
6173 				rover = low;
6174 			if (inet_is_local_reserved_port(net, rover))
6175 				continue;
6176 			index = sctp_phashfn(sock_net(sk), rover);
6177 			head = &sctp_port_hashtable[index];
6178 			spin_lock(&head->lock);
6179 			sctp_for_each_hentry(pp, &head->chain)
6180 				if ((pp->port == rover) &&
6181 				    net_eq(sock_net(sk), pp->net))
6182 					goto next;
6183 			break;
6184 		next:
6185 			spin_unlock(&head->lock);
6186 		} while (--remaining > 0);
6187 
6188 		/* Exhausted local port range during search? */
6189 		ret = 1;
6190 		if (remaining <= 0)
6191 			goto fail;
6192 
6193 		/* OK, here is the one we will use.  HEAD (the port
6194 		 * hash table list entry) is non-NULL and we hold it's
6195 		 * mutex.
6196 		 */
6197 		snum = rover;
6198 	} else {
6199 		/* We are given an specific port number; we verify
6200 		 * that it is not being used. If it is used, we will
6201 		 * exahust the search in the hash list corresponding
6202 		 * to the port number (snum) - we detect that with the
6203 		 * port iterator, pp being NULL.
6204 		 */
6205 		head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6206 		spin_lock(&head->lock);
6207 		sctp_for_each_hentry(pp, &head->chain) {
6208 			if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6209 				goto pp_found;
6210 		}
6211 	}
6212 	pp = NULL;
6213 	goto pp_not_found;
6214 pp_found:
6215 	if (!hlist_empty(&pp->owner)) {
6216 		/* We had a port hash table hit - there is an
6217 		 * available port (pp != NULL) and it is being
6218 		 * used by other socket (pp->owner not empty); that other
6219 		 * socket is going to be sk2.
6220 		 */
6221 		int reuse = sk->sk_reuse;
6222 		struct sock *sk2;
6223 
6224 		pr_debug("%s: found a possible match\n", __func__);
6225 
6226 		if (pp->fastreuse && sk->sk_reuse &&
6227 			sk->sk_state != SCTP_SS_LISTENING)
6228 			goto success;
6229 
6230 		/* Run through the list of sockets bound to the port
6231 		 * (pp->port) [via the pointers bind_next and
6232 		 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6233 		 * we get the endpoint they describe and run through
6234 		 * the endpoint's list of IP (v4 or v6) addresses,
6235 		 * comparing each of the addresses with the address of
6236 		 * the socket sk. If we find a match, then that means
6237 		 * that this port/socket (sk) combination are already
6238 		 * in an endpoint.
6239 		 */
6240 		sk_for_each_bound(sk2, &pp->owner) {
6241 			struct sctp_endpoint *ep2;
6242 			ep2 = sctp_sk(sk2)->ep;
6243 
6244 			if (sk == sk2 ||
6245 			    (reuse && sk2->sk_reuse &&
6246 			     sk2->sk_state != SCTP_SS_LISTENING))
6247 				continue;
6248 
6249 			if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6250 						 sctp_sk(sk2), sctp_sk(sk))) {
6251 				ret = (long)sk2;
6252 				goto fail_unlock;
6253 			}
6254 		}
6255 
6256 		pr_debug("%s: found a match\n", __func__);
6257 	}
6258 pp_not_found:
6259 	/* If there was a hash table miss, create a new port.  */
6260 	ret = 1;
6261 	if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6262 		goto fail_unlock;
6263 
6264 	/* In either case (hit or miss), make sure fastreuse is 1 only
6265 	 * if sk->sk_reuse is too (that is, if the caller requested
6266 	 * SO_REUSEADDR on this socket -sk-).
6267 	 */
6268 	if (hlist_empty(&pp->owner)) {
6269 		if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6270 			pp->fastreuse = 1;
6271 		else
6272 			pp->fastreuse = 0;
6273 	} else if (pp->fastreuse &&
6274 		(!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6275 		pp->fastreuse = 0;
6276 
6277 	/* We are set, so fill up all the data in the hash table
6278 	 * entry, tie the socket list information with the rest of the
6279 	 * sockets FIXME: Blurry, NPI (ipg).
6280 	 */
6281 success:
6282 	if (!sctp_sk(sk)->bind_hash) {
6283 		inet_sk(sk)->inet_num = snum;
6284 		sk_add_bind_node(sk, &pp->owner);
6285 		sctp_sk(sk)->bind_hash = pp;
6286 	}
6287 	ret = 0;
6288 
6289 fail_unlock:
6290 	spin_unlock(&head->lock);
6291 
6292 fail:
6293 	local_bh_enable();
6294 	return ret;
6295 }
6296 
6297 /* Assign a 'snum' port to the socket.  If snum == 0, an ephemeral
6298  * port is requested.
6299  */
6300 static int sctp_get_port(struct sock *sk, unsigned short snum)
6301 {
6302 	union sctp_addr addr;
6303 	struct sctp_af *af = sctp_sk(sk)->pf->af;
6304 
6305 	/* Set up a dummy address struct from the sk. */
6306 	af->from_sk(&addr, sk);
6307 	addr.v4.sin_port = htons(snum);
6308 
6309 	/* Note: sk->sk_num gets filled in if ephemeral port request. */
6310 	return !!sctp_get_port_local(sk, &addr);
6311 }
6312 
6313 /*
6314  *  Move a socket to LISTENING state.
6315  */
6316 static int sctp_listen_start(struct sock *sk, int backlog)
6317 {
6318 	struct sctp_sock *sp = sctp_sk(sk);
6319 	struct sctp_endpoint *ep = sp->ep;
6320 	struct crypto_hash *tfm = NULL;
6321 	char alg[32];
6322 
6323 	/* Allocate HMAC for generating cookie. */
6324 	if (!sp->hmac && sp->sctp_hmac_alg) {
6325 		sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6326 		tfm = crypto_alloc_hash(alg, 0, CRYPTO_ALG_ASYNC);
6327 		if (IS_ERR(tfm)) {
6328 			net_info_ratelimited("failed to load transform for %s: %ld\n",
6329 					     sp->sctp_hmac_alg, PTR_ERR(tfm));
6330 			return -ENOSYS;
6331 		}
6332 		sctp_sk(sk)->hmac = tfm;
6333 	}
6334 
6335 	/*
6336 	 * If a bind() or sctp_bindx() is not called prior to a listen()
6337 	 * call that allows new associations to be accepted, the system
6338 	 * picks an ephemeral port and will choose an address set equivalent
6339 	 * to binding with a wildcard address.
6340 	 *
6341 	 * This is not currently spelled out in the SCTP sockets
6342 	 * extensions draft, but follows the practice as seen in TCP
6343 	 * sockets.
6344 	 *
6345 	 */
6346 	sk->sk_state = SCTP_SS_LISTENING;
6347 	if (!ep->base.bind_addr.port) {
6348 		if (sctp_autobind(sk))
6349 			return -EAGAIN;
6350 	} else {
6351 		if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6352 			sk->sk_state = SCTP_SS_CLOSED;
6353 			return -EADDRINUSE;
6354 		}
6355 	}
6356 
6357 	sk->sk_max_ack_backlog = backlog;
6358 	sctp_hash_endpoint(ep);
6359 	return 0;
6360 }
6361 
6362 /*
6363  * 4.1.3 / 5.1.3 listen()
6364  *
6365  *   By default, new associations are not accepted for UDP style sockets.
6366  *   An application uses listen() to mark a socket as being able to
6367  *   accept new associations.
6368  *
6369  *   On TCP style sockets, applications use listen() to ready the SCTP
6370  *   endpoint for accepting inbound associations.
6371  *
6372  *   On both types of endpoints a backlog of '0' disables listening.
6373  *
6374  *  Move a socket to LISTENING state.
6375  */
6376 int sctp_inet_listen(struct socket *sock, int backlog)
6377 {
6378 	struct sock *sk = sock->sk;
6379 	struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6380 	int err = -EINVAL;
6381 
6382 	if (unlikely(backlog < 0))
6383 		return err;
6384 
6385 	lock_sock(sk);
6386 
6387 	/* Peeled-off sockets are not allowed to listen().  */
6388 	if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6389 		goto out;
6390 
6391 	if (sock->state != SS_UNCONNECTED)
6392 		goto out;
6393 
6394 	/* If backlog is zero, disable listening. */
6395 	if (!backlog) {
6396 		if (sctp_sstate(sk, CLOSED))
6397 			goto out;
6398 
6399 		err = 0;
6400 		sctp_unhash_endpoint(ep);
6401 		sk->sk_state = SCTP_SS_CLOSED;
6402 		if (sk->sk_reuse)
6403 			sctp_sk(sk)->bind_hash->fastreuse = 1;
6404 		goto out;
6405 	}
6406 
6407 	/* If we are already listening, just update the backlog */
6408 	if (sctp_sstate(sk, LISTENING))
6409 		sk->sk_max_ack_backlog = backlog;
6410 	else {
6411 		err = sctp_listen_start(sk, backlog);
6412 		if (err)
6413 			goto out;
6414 	}
6415 
6416 	err = 0;
6417 out:
6418 	release_sock(sk);
6419 	return err;
6420 }
6421 
6422 /*
6423  * This function is done by modeling the current datagram_poll() and the
6424  * tcp_poll().  Note that, based on these implementations, we don't
6425  * lock the socket in this function, even though it seems that,
6426  * ideally, locking or some other mechanisms can be used to ensure
6427  * the integrity of the counters (sndbuf and wmem_alloc) used
6428  * in this place.  We assume that we don't need locks either until proven
6429  * otherwise.
6430  *
6431  * Another thing to note is that we include the Async I/O support
6432  * here, again, by modeling the current TCP/UDP code.  We don't have
6433  * a good way to test with it yet.
6434  */
6435 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6436 {
6437 	struct sock *sk = sock->sk;
6438 	struct sctp_sock *sp = sctp_sk(sk);
6439 	unsigned int mask;
6440 
6441 	poll_wait(file, sk_sleep(sk), wait);
6442 
6443 	/* A TCP-style listening socket becomes readable when the accept queue
6444 	 * is not empty.
6445 	 */
6446 	if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6447 		return (!list_empty(&sp->ep->asocs)) ?
6448 			(POLLIN | POLLRDNORM) : 0;
6449 
6450 	mask = 0;
6451 
6452 	/* Is there any exceptional events?  */
6453 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6454 		mask |= POLLERR |
6455 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6456 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6457 		mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6458 	if (sk->sk_shutdown == SHUTDOWN_MASK)
6459 		mask |= POLLHUP;
6460 
6461 	/* Is it readable?  Reconsider this code with TCP-style support.  */
6462 	if (!skb_queue_empty(&sk->sk_receive_queue))
6463 		mask |= POLLIN | POLLRDNORM;
6464 
6465 	/* The association is either gone or not ready.  */
6466 	if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6467 		return mask;
6468 
6469 	/* Is it writable?  */
6470 	if (sctp_writeable(sk)) {
6471 		mask |= POLLOUT | POLLWRNORM;
6472 	} else {
6473 		set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
6474 		/*
6475 		 * Since the socket is not locked, the buffer
6476 		 * might be made available after the writeable check and
6477 		 * before the bit is set.  This could cause a lost I/O
6478 		 * signal.  tcp_poll() has a race breaker for this race
6479 		 * condition.  Based on their implementation, we put
6480 		 * in the following code to cover it as well.
6481 		 */
6482 		if (sctp_writeable(sk))
6483 			mask |= POLLOUT | POLLWRNORM;
6484 	}
6485 	return mask;
6486 }
6487 
6488 /********************************************************************
6489  * 2nd Level Abstractions
6490  ********************************************************************/
6491 
6492 static struct sctp_bind_bucket *sctp_bucket_create(
6493 	struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6494 {
6495 	struct sctp_bind_bucket *pp;
6496 
6497 	pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6498 	if (pp) {
6499 		SCTP_DBG_OBJCNT_INC(bind_bucket);
6500 		pp->port = snum;
6501 		pp->fastreuse = 0;
6502 		INIT_HLIST_HEAD(&pp->owner);
6503 		pp->net = net;
6504 		hlist_add_head(&pp->node, &head->chain);
6505 	}
6506 	return pp;
6507 }
6508 
6509 /* Caller must hold hashbucket lock for this tb with local BH disabled */
6510 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6511 {
6512 	if (pp && hlist_empty(&pp->owner)) {
6513 		__hlist_del(&pp->node);
6514 		kmem_cache_free(sctp_bucket_cachep, pp);
6515 		SCTP_DBG_OBJCNT_DEC(bind_bucket);
6516 	}
6517 }
6518 
6519 /* Release this socket's reference to a local port.  */
6520 static inline void __sctp_put_port(struct sock *sk)
6521 {
6522 	struct sctp_bind_hashbucket *head =
6523 		&sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6524 						  inet_sk(sk)->inet_num)];
6525 	struct sctp_bind_bucket *pp;
6526 
6527 	spin_lock(&head->lock);
6528 	pp = sctp_sk(sk)->bind_hash;
6529 	__sk_del_bind_node(sk);
6530 	sctp_sk(sk)->bind_hash = NULL;
6531 	inet_sk(sk)->inet_num = 0;
6532 	sctp_bucket_destroy(pp);
6533 	spin_unlock(&head->lock);
6534 }
6535 
6536 void sctp_put_port(struct sock *sk)
6537 {
6538 	local_bh_disable();
6539 	__sctp_put_port(sk);
6540 	local_bh_enable();
6541 }
6542 
6543 /*
6544  * The system picks an ephemeral port and choose an address set equivalent
6545  * to binding with a wildcard address.
6546  * One of those addresses will be the primary address for the association.
6547  * This automatically enables the multihoming capability of SCTP.
6548  */
6549 static int sctp_autobind(struct sock *sk)
6550 {
6551 	union sctp_addr autoaddr;
6552 	struct sctp_af *af;
6553 	__be16 port;
6554 
6555 	/* Initialize a local sockaddr structure to INADDR_ANY. */
6556 	af = sctp_sk(sk)->pf->af;
6557 
6558 	port = htons(inet_sk(sk)->inet_num);
6559 	af->inaddr_any(&autoaddr, port);
6560 
6561 	return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6562 }
6563 
6564 /* Parse out IPPROTO_SCTP CMSG headers.  Perform only minimal validation.
6565  *
6566  * From RFC 2292
6567  * 4.2 The cmsghdr Structure *
6568  *
6569  * When ancillary data is sent or received, any number of ancillary data
6570  * objects can be specified by the msg_control and msg_controllen members of
6571  * the msghdr structure, because each object is preceded by
6572  * a cmsghdr structure defining the object's length (the cmsg_len member).
6573  * Historically Berkeley-derived implementations have passed only one object
6574  * at a time, but this API allows multiple objects to be
6575  * passed in a single call to sendmsg() or recvmsg(). The following example
6576  * shows two ancillary data objects in a control buffer.
6577  *
6578  *   |<--------------------------- msg_controllen -------------------------->|
6579  *   |                                                                       |
6580  *
6581  *   |<----- ancillary data object ----->|<----- ancillary data object ----->|
6582  *
6583  *   |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6584  *   |                                   |                                   |
6585  *
6586  *   |<---------- cmsg_len ---------->|  |<--------- cmsg_len ----------->|  |
6587  *
6588  *   |<--------- CMSG_LEN() --------->|  |<-------- CMSG_LEN() ---------->|  |
6589  *   |                                |  |                                |  |
6590  *
6591  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6592  *   |cmsg_|cmsg_|cmsg_|XX|           |XX|cmsg_|cmsg_|cmsg_|XX|           |XX|
6593  *
6594  *   |len  |level|type |XX|cmsg_data[]|XX|len  |level|type |XX|cmsg_data[]|XX|
6595  *
6596  *   +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6597  *    ^
6598  *    |
6599  *
6600  * msg_control
6601  * points here
6602  */
6603 static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6604 {
6605 	struct cmsghdr *cmsg;
6606 	struct msghdr *my_msg = (struct msghdr *)msg;
6607 
6608 	for_each_cmsghdr(cmsg, my_msg) {
6609 		if (!CMSG_OK(my_msg, cmsg))
6610 			return -EINVAL;
6611 
6612 		/* Should we parse this header or ignore?  */
6613 		if (cmsg->cmsg_level != IPPROTO_SCTP)
6614 			continue;
6615 
6616 		/* Strictly check lengths following example in SCM code.  */
6617 		switch (cmsg->cmsg_type) {
6618 		case SCTP_INIT:
6619 			/* SCTP Socket API Extension
6620 			 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
6621 			 *
6622 			 * This cmsghdr structure provides information for
6623 			 * initializing new SCTP associations with sendmsg().
6624 			 * The SCTP_INITMSG socket option uses this same data
6625 			 * structure.  This structure is not used for
6626 			 * recvmsg().
6627 			 *
6628 			 * cmsg_level    cmsg_type      cmsg_data[]
6629 			 * ------------  ------------   ----------------------
6630 			 * IPPROTO_SCTP  SCTP_INIT      struct sctp_initmsg
6631 			 */
6632 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
6633 				return -EINVAL;
6634 
6635 			cmsgs->init = CMSG_DATA(cmsg);
6636 			break;
6637 
6638 		case SCTP_SNDRCV:
6639 			/* SCTP Socket API Extension
6640 			 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
6641 			 *
6642 			 * This cmsghdr structure specifies SCTP options for
6643 			 * sendmsg() and describes SCTP header information
6644 			 * about a received message through recvmsg().
6645 			 *
6646 			 * cmsg_level    cmsg_type      cmsg_data[]
6647 			 * ------------  ------------   ----------------------
6648 			 * IPPROTO_SCTP  SCTP_SNDRCV    struct sctp_sndrcvinfo
6649 			 */
6650 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6651 				return -EINVAL;
6652 
6653 			cmsgs->srinfo = CMSG_DATA(cmsg);
6654 
6655 			if (cmsgs->srinfo->sinfo_flags &
6656 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6657 			      SCTP_ABORT | SCTP_EOF))
6658 				return -EINVAL;
6659 			break;
6660 
6661 		case SCTP_SNDINFO:
6662 			/* SCTP Socket API Extension
6663 			 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
6664 			 *
6665 			 * This cmsghdr structure specifies SCTP options for
6666 			 * sendmsg(). This structure and SCTP_RCVINFO replaces
6667 			 * SCTP_SNDRCV which has been deprecated.
6668 			 *
6669 			 * cmsg_level    cmsg_type      cmsg_data[]
6670 			 * ------------  ------------   ---------------------
6671 			 * IPPROTO_SCTP  SCTP_SNDINFO    struct sctp_sndinfo
6672 			 */
6673 			if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
6674 				return -EINVAL;
6675 
6676 			cmsgs->sinfo = CMSG_DATA(cmsg);
6677 
6678 			if (cmsgs->sinfo->snd_flags &
6679 			    ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6680 			      SCTP_ABORT | SCTP_EOF))
6681 				return -EINVAL;
6682 			break;
6683 		default:
6684 			return -EINVAL;
6685 		}
6686 	}
6687 
6688 	return 0;
6689 }
6690 
6691 /*
6692  * Wait for a packet..
6693  * Note: This function is the same function as in core/datagram.c
6694  * with a few modifications to make lksctp work.
6695  */
6696 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6697 {
6698 	int error;
6699 	DEFINE_WAIT(wait);
6700 
6701 	prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6702 
6703 	/* Socket errors? */
6704 	error = sock_error(sk);
6705 	if (error)
6706 		goto out;
6707 
6708 	if (!skb_queue_empty(&sk->sk_receive_queue))
6709 		goto ready;
6710 
6711 	/* Socket shut down?  */
6712 	if (sk->sk_shutdown & RCV_SHUTDOWN)
6713 		goto out;
6714 
6715 	/* Sequenced packets can come disconnected.  If so we report the
6716 	 * problem.
6717 	 */
6718 	error = -ENOTCONN;
6719 
6720 	/* Is there a good reason to think that we may receive some data?  */
6721 	if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6722 		goto out;
6723 
6724 	/* Handle signals.  */
6725 	if (signal_pending(current))
6726 		goto interrupted;
6727 
6728 	/* Let another process have a go.  Since we are going to sleep
6729 	 * anyway.  Note: This may cause odd behaviors if the message
6730 	 * does not fit in the user's buffer, but this seems to be the
6731 	 * only way to honor MSG_DONTWAIT realistically.
6732 	 */
6733 	release_sock(sk);
6734 	*timeo_p = schedule_timeout(*timeo_p);
6735 	lock_sock(sk);
6736 
6737 ready:
6738 	finish_wait(sk_sleep(sk), &wait);
6739 	return 0;
6740 
6741 interrupted:
6742 	error = sock_intr_errno(*timeo_p);
6743 
6744 out:
6745 	finish_wait(sk_sleep(sk), &wait);
6746 	*err = error;
6747 	return error;
6748 }
6749 
6750 /* Receive a datagram.
6751  * Note: This is pretty much the same routine as in core/datagram.c
6752  * with a few changes to make lksctp work.
6753  */
6754 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6755 				       int noblock, int *err)
6756 {
6757 	int error;
6758 	struct sk_buff *skb;
6759 	long timeo;
6760 
6761 	timeo = sock_rcvtimeo(sk, noblock);
6762 
6763 	pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6764 		 MAX_SCHEDULE_TIMEOUT);
6765 
6766 	do {
6767 		/* Again only user level code calls this function,
6768 		 * so nothing interrupt level
6769 		 * will suddenly eat the receive_queue.
6770 		 *
6771 		 *  Look at current nfs client by the way...
6772 		 *  However, this function was correct in any case. 8)
6773 		 */
6774 		if (flags & MSG_PEEK) {
6775 			spin_lock_bh(&sk->sk_receive_queue.lock);
6776 			skb = skb_peek(&sk->sk_receive_queue);
6777 			if (skb)
6778 				atomic_inc(&skb->users);
6779 			spin_unlock_bh(&sk->sk_receive_queue.lock);
6780 		} else {
6781 			skb = skb_dequeue(&sk->sk_receive_queue);
6782 		}
6783 
6784 		if (skb)
6785 			return skb;
6786 
6787 		/* Caller is allowed not to check sk->sk_err before calling. */
6788 		error = sock_error(sk);
6789 		if (error)
6790 			goto no_packet;
6791 
6792 		if (sk->sk_shutdown & RCV_SHUTDOWN)
6793 			break;
6794 
6795 		if (sk_can_busy_loop(sk) &&
6796 		    sk_busy_loop(sk, noblock))
6797 			continue;
6798 
6799 		/* User doesn't want to wait.  */
6800 		error = -EAGAIN;
6801 		if (!timeo)
6802 			goto no_packet;
6803 	} while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6804 
6805 	return NULL;
6806 
6807 no_packet:
6808 	*err = error;
6809 	return NULL;
6810 }
6811 
6812 /* If sndbuf has changed, wake up per association sndbuf waiters.  */
6813 static void __sctp_write_space(struct sctp_association *asoc)
6814 {
6815 	struct sock *sk = asoc->base.sk;
6816 	struct socket *sock = sk->sk_socket;
6817 
6818 	if ((sctp_wspace(asoc) > 0) && sock) {
6819 		if (waitqueue_active(&asoc->wait))
6820 			wake_up_interruptible(&asoc->wait);
6821 
6822 		if (sctp_writeable(sk)) {
6823 			wait_queue_head_t *wq = sk_sleep(sk);
6824 
6825 			if (wq && waitqueue_active(wq))
6826 				wake_up_interruptible(wq);
6827 
6828 			/* Note that we try to include the Async I/O support
6829 			 * here by modeling from the current TCP/UDP code.
6830 			 * We have not tested with it yet.
6831 			 */
6832 			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6833 				sock_wake_async(sock,
6834 						SOCK_WAKE_SPACE, POLL_OUT);
6835 		}
6836 	}
6837 }
6838 
6839 static void sctp_wake_up_waiters(struct sock *sk,
6840 				 struct sctp_association *asoc)
6841 {
6842 	struct sctp_association *tmp = asoc;
6843 
6844 	/* We do accounting for the sndbuf space per association,
6845 	 * so we only need to wake our own association.
6846 	 */
6847 	if (asoc->ep->sndbuf_policy)
6848 		return __sctp_write_space(asoc);
6849 
6850 	/* If association goes down and is just flushing its
6851 	 * outq, then just normally notify others.
6852 	 */
6853 	if (asoc->base.dead)
6854 		return sctp_write_space(sk);
6855 
6856 	/* Accounting for the sndbuf space is per socket, so we
6857 	 * need to wake up others, try to be fair and in case of
6858 	 * other associations, let them have a go first instead
6859 	 * of just doing a sctp_write_space() call.
6860 	 *
6861 	 * Note that we reach sctp_wake_up_waiters() only when
6862 	 * associations free up queued chunks, thus we are under
6863 	 * lock and the list of associations on a socket is
6864 	 * guaranteed not to change.
6865 	 */
6866 	for (tmp = list_next_entry(tmp, asocs); 1;
6867 	     tmp = list_next_entry(tmp, asocs)) {
6868 		/* Manually skip the head element. */
6869 		if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6870 			continue;
6871 		/* Wake up association. */
6872 		__sctp_write_space(tmp);
6873 		/* We've reached the end. */
6874 		if (tmp == asoc)
6875 			break;
6876 	}
6877 }
6878 
6879 /* Do accounting for the sndbuf space.
6880  * Decrement the used sndbuf space of the corresponding association by the
6881  * data size which was just transmitted(freed).
6882  */
6883 static void sctp_wfree(struct sk_buff *skb)
6884 {
6885 	struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
6886 	struct sctp_association *asoc = chunk->asoc;
6887 	struct sock *sk = asoc->base.sk;
6888 
6889 	asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6890 				sizeof(struct sk_buff) +
6891 				sizeof(struct sctp_chunk);
6892 
6893 	atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6894 
6895 	/*
6896 	 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6897 	 */
6898 	sk->sk_wmem_queued   -= skb->truesize;
6899 	sk_mem_uncharge(sk, skb->truesize);
6900 
6901 	sock_wfree(skb);
6902 	sctp_wake_up_waiters(sk, asoc);
6903 
6904 	sctp_association_put(asoc);
6905 }
6906 
6907 /* Do accounting for the receive space on the socket.
6908  * Accounting for the association is done in ulpevent.c
6909  * We set this as a destructor for the cloned data skbs so that
6910  * accounting is done at the correct time.
6911  */
6912 void sctp_sock_rfree(struct sk_buff *skb)
6913 {
6914 	struct sock *sk = skb->sk;
6915 	struct sctp_ulpevent *event = sctp_skb2event(skb);
6916 
6917 	atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6918 
6919 	/*
6920 	 * Mimic the behavior of sock_rfree
6921 	 */
6922 	sk_mem_uncharge(sk, event->rmem_len);
6923 }
6924 
6925 
6926 /* Helper function to wait for space in the sndbuf.  */
6927 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6928 				size_t msg_len)
6929 {
6930 	struct sock *sk = asoc->base.sk;
6931 	int err = 0;
6932 	long current_timeo = *timeo_p;
6933 	DEFINE_WAIT(wait);
6934 
6935 	pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6936 		 *timeo_p, msg_len);
6937 
6938 	/* Increment the association's refcnt.  */
6939 	sctp_association_hold(asoc);
6940 
6941 	/* Wait on the association specific sndbuf space. */
6942 	for (;;) {
6943 		prepare_to_wait_exclusive(&asoc->wait, &wait,
6944 					  TASK_INTERRUPTIBLE);
6945 		if (!*timeo_p)
6946 			goto do_nonblock;
6947 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6948 		    asoc->base.dead)
6949 			goto do_error;
6950 		if (signal_pending(current))
6951 			goto do_interrupted;
6952 		if (msg_len <= sctp_wspace(asoc))
6953 			break;
6954 
6955 		/* Let another process have a go.  Since we are going
6956 		 * to sleep anyway.
6957 		 */
6958 		release_sock(sk);
6959 		current_timeo = schedule_timeout(current_timeo);
6960 		BUG_ON(sk != asoc->base.sk);
6961 		lock_sock(sk);
6962 
6963 		*timeo_p = current_timeo;
6964 	}
6965 
6966 out:
6967 	finish_wait(&asoc->wait, &wait);
6968 
6969 	/* Release the association's refcnt.  */
6970 	sctp_association_put(asoc);
6971 
6972 	return err;
6973 
6974 do_error:
6975 	err = -EPIPE;
6976 	goto out;
6977 
6978 do_interrupted:
6979 	err = sock_intr_errno(*timeo_p);
6980 	goto out;
6981 
6982 do_nonblock:
6983 	err = -EAGAIN;
6984 	goto out;
6985 }
6986 
6987 void sctp_data_ready(struct sock *sk)
6988 {
6989 	struct socket_wq *wq;
6990 
6991 	rcu_read_lock();
6992 	wq = rcu_dereference(sk->sk_wq);
6993 	if (wq_has_sleeper(wq))
6994 		wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6995 						POLLRDNORM | POLLRDBAND);
6996 	sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6997 	rcu_read_unlock();
6998 }
6999 
7000 /* If socket sndbuf has changed, wake up all per association waiters.  */
7001 void sctp_write_space(struct sock *sk)
7002 {
7003 	struct sctp_association *asoc;
7004 
7005 	/* Wake up the tasks in each wait queue.  */
7006 	list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7007 		__sctp_write_space(asoc);
7008 	}
7009 }
7010 
7011 /* Is there any sndbuf space available on the socket?
7012  *
7013  * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7014  * associations on the same socket.  For a UDP-style socket with
7015  * multiple associations, it is possible for it to be "unwriteable"
7016  * prematurely.  I assume that this is acceptable because
7017  * a premature "unwriteable" is better than an accidental "writeable" which
7018  * would cause an unwanted block under certain circumstances.  For the 1-1
7019  * UDP-style sockets or TCP-style sockets, this code should work.
7020  *  - Daisy
7021  */
7022 static int sctp_writeable(struct sock *sk)
7023 {
7024 	int amt = 0;
7025 
7026 	amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7027 	if (amt < 0)
7028 		amt = 0;
7029 	return amt;
7030 }
7031 
7032 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7033  * returns immediately with EINPROGRESS.
7034  */
7035 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7036 {
7037 	struct sock *sk = asoc->base.sk;
7038 	int err = 0;
7039 	long current_timeo = *timeo_p;
7040 	DEFINE_WAIT(wait);
7041 
7042 	pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7043 
7044 	/* Increment the association's refcnt.  */
7045 	sctp_association_hold(asoc);
7046 
7047 	for (;;) {
7048 		prepare_to_wait_exclusive(&asoc->wait, &wait,
7049 					  TASK_INTERRUPTIBLE);
7050 		if (!*timeo_p)
7051 			goto do_nonblock;
7052 		if (sk->sk_shutdown & RCV_SHUTDOWN)
7053 			break;
7054 		if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7055 		    asoc->base.dead)
7056 			goto do_error;
7057 		if (signal_pending(current))
7058 			goto do_interrupted;
7059 
7060 		if (sctp_state(asoc, ESTABLISHED))
7061 			break;
7062 
7063 		/* Let another process have a go.  Since we are going
7064 		 * to sleep anyway.
7065 		 */
7066 		release_sock(sk);
7067 		current_timeo = schedule_timeout(current_timeo);
7068 		lock_sock(sk);
7069 
7070 		*timeo_p = current_timeo;
7071 	}
7072 
7073 out:
7074 	finish_wait(&asoc->wait, &wait);
7075 
7076 	/* Release the association's refcnt.  */
7077 	sctp_association_put(asoc);
7078 
7079 	return err;
7080 
7081 do_error:
7082 	if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7083 		err = -ETIMEDOUT;
7084 	else
7085 		err = -ECONNREFUSED;
7086 	goto out;
7087 
7088 do_interrupted:
7089 	err = sock_intr_errno(*timeo_p);
7090 	goto out;
7091 
7092 do_nonblock:
7093 	err = -EINPROGRESS;
7094 	goto out;
7095 }
7096 
7097 static int sctp_wait_for_accept(struct sock *sk, long timeo)
7098 {
7099 	struct sctp_endpoint *ep;
7100 	int err = 0;
7101 	DEFINE_WAIT(wait);
7102 
7103 	ep = sctp_sk(sk)->ep;
7104 
7105 
7106 	for (;;) {
7107 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7108 					  TASK_INTERRUPTIBLE);
7109 
7110 		if (list_empty(&ep->asocs)) {
7111 			release_sock(sk);
7112 			timeo = schedule_timeout(timeo);
7113 			lock_sock(sk);
7114 		}
7115 
7116 		err = -EINVAL;
7117 		if (!sctp_sstate(sk, LISTENING))
7118 			break;
7119 
7120 		err = 0;
7121 		if (!list_empty(&ep->asocs))
7122 			break;
7123 
7124 		err = sock_intr_errno(timeo);
7125 		if (signal_pending(current))
7126 			break;
7127 
7128 		err = -EAGAIN;
7129 		if (!timeo)
7130 			break;
7131 	}
7132 
7133 	finish_wait(sk_sleep(sk), &wait);
7134 
7135 	return err;
7136 }
7137 
7138 static void sctp_wait_for_close(struct sock *sk, long timeout)
7139 {
7140 	DEFINE_WAIT(wait);
7141 
7142 	do {
7143 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7144 		if (list_empty(&sctp_sk(sk)->ep->asocs))
7145 			break;
7146 		release_sock(sk);
7147 		timeout = schedule_timeout(timeout);
7148 		lock_sock(sk);
7149 	} while (!signal_pending(current) && timeout);
7150 
7151 	finish_wait(sk_sleep(sk), &wait);
7152 }
7153 
7154 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7155 {
7156 	struct sk_buff *frag;
7157 
7158 	if (!skb->data_len)
7159 		goto done;
7160 
7161 	/* Don't forget the fragments. */
7162 	skb_walk_frags(skb, frag)
7163 		sctp_skb_set_owner_r_frag(frag, sk);
7164 
7165 done:
7166 	sctp_skb_set_owner_r(skb, sk);
7167 }
7168 
7169 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7170 		    struct sctp_association *asoc)
7171 {
7172 	struct inet_sock *inet = inet_sk(sk);
7173 	struct inet_sock *newinet;
7174 
7175 	newsk->sk_type = sk->sk_type;
7176 	newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7177 	newsk->sk_flags = sk->sk_flags;
7178 	newsk->sk_no_check_tx = sk->sk_no_check_tx;
7179 	newsk->sk_no_check_rx = sk->sk_no_check_rx;
7180 	newsk->sk_reuse = sk->sk_reuse;
7181 
7182 	newsk->sk_shutdown = sk->sk_shutdown;
7183 	newsk->sk_destruct = sctp_destruct_sock;
7184 	newsk->sk_family = sk->sk_family;
7185 	newsk->sk_protocol = IPPROTO_SCTP;
7186 	newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7187 	newsk->sk_sndbuf = sk->sk_sndbuf;
7188 	newsk->sk_rcvbuf = sk->sk_rcvbuf;
7189 	newsk->sk_lingertime = sk->sk_lingertime;
7190 	newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7191 	newsk->sk_sndtimeo = sk->sk_sndtimeo;
7192 
7193 	newinet = inet_sk(newsk);
7194 
7195 	/* Initialize sk's sport, dport, rcv_saddr and daddr for
7196 	 * getsockname() and getpeername()
7197 	 */
7198 	newinet->inet_sport = inet->inet_sport;
7199 	newinet->inet_saddr = inet->inet_saddr;
7200 	newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7201 	newinet->inet_dport = htons(asoc->peer.port);
7202 	newinet->pmtudisc = inet->pmtudisc;
7203 	newinet->inet_id = asoc->next_tsn ^ jiffies;
7204 
7205 	newinet->uc_ttl = inet->uc_ttl;
7206 	newinet->mc_loop = 1;
7207 	newinet->mc_ttl = 1;
7208 	newinet->mc_index = 0;
7209 	newinet->mc_list = NULL;
7210 }
7211 
7212 static inline void sctp_copy_descendant(struct sock *sk_to,
7213 					const struct sock *sk_from)
7214 {
7215 	int ancestor_size = sizeof(struct inet_sock) +
7216 			    sizeof(struct sctp_sock) -
7217 			    offsetof(struct sctp_sock, auto_asconf_list);
7218 
7219 	if (sk_from->sk_family == PF_INET6)
7220 		ancestor_size += sizeof(struct ipv6_pinfo);
7221 
7222 	__inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7223 }
7224 
7225 /* Populate the fields of the newsk from the oldsk and migrate the assoc
7226  * and its messages to the newsk.
7227  */
7228 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7229 			      struct sctp_association *assoc,
7230 			      sctp_socket_type_t type)
7231 {
7232 	struct sctp_sock *oldsp = sctp_sk(oldsk);
7233 	struct sctp_sock *newsp = sctp_sk(newsk);
7234 	struct sctp_bind_bucket *pp; /* hash list port iterator */
7235 	struct sctp_endpoint *newep = newsp->ep;
7236 	struct sk_buff *skb, *tmp;
7237 	struct sctp_ulpevent *event;
7238 	struct sctp_bind_hashbucket *head;
7239 
7240 	/* Migrate socket buffer sizes and all the socket level options to the
7241 	 * new socket.
7242 	 */
7243 	newsk->sk_sndbuf = oldsk->sk_sndbuf;
7244 	newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7245 	/* Brute force copy old sctp opt. */
7246 	sctp_copy_descendant(newsk, oldsk);
7247 
7248 	/* Restore the ep value that was overwritten with the above structure
7249 	 * copy.
7250 	 */
7251 	newsp->ep = newep;
7252 	newsp->hmac = NULL;
7253 
7254 	/* Hook this new socket in to the bind_hash list. */
7255 	head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7256 						 inet_sk(oldsk)->inet_num)];
7257 	local_bh_disable();
7258 	spin_lock(&head->lock);
7259 	pp = sctp_sk(oldsk)->bind_hash;
7260 	sk_add_bind_node(newsk, &pp->owner);
7261 	sctp_sk(newsk)->bind_hash = pp;
7262 	inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7263 	spin_unlock(&head->lock);
7264 	local_bh_enable();
7265 
7266 	/* Copy the bind_addr list from the original endpoint to the new
7267 	 * endpoint so that we can handle restarts properly
7268 	 */
7269 	sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7270 				&oldsp->ep->base.bind_addr, GFP_KERNEL);
7271 
7272 	/* Move any messages in the old socket's receive queue that are for the
7273 	 * peeled off association to the new socket's receive queue.
7274 	 */
7275 	sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7276 		event = sctp_skb2event(skb);
7277 		if (event->asoc == assoc) {
7278 			__skb_unlink(skb, &oldsk->sk_receive_queue);
7279 			__skb_queue_tail(&newsk->sk_receive_queue, skb);
7280 			sctp_skb_set_owner_r_frag(skb, newsk);
7281 		}
7282 	}
7283 
7284 	/* Clean up any messages pending delivery due to partial
7285 	 * delivery.   Three cases:
7286 	 * 1) No partial deliver;  no work.
7287 	 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7288 	 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7289 	 */
7290 	skb_queue_head_init(&newsp->pd_lobby);
7291 	atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7292 
7293 	if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7294 		struct sk_buff_head *queue;
7295 
7296 		/* Decide which queue to move pd_lobby skbs to. */
7297 		if (assoc->ulpq.pd_mode) {
7298 			queue = &newsp->pd_lobby;
7299 		} else
7300 			queue = &newsk->sk_receive_queue;
7301 
7302 		/* Walk through the pd_lobby, looking for skbs that
7303 		 * need moved to the new socket.
7304 		 */
7305 		sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7306 			event = sctp_skb2event(skb);
7307 			if (event->asoc == assoc) {
7308 				__skb_unlink(skb, &oldsp->pd_lobby);
7309 				__skb_queue_tail(queue, skb);
7310 				sctp_skb_set_owner_r_frag(skb, newsk);
7311 			}
7312 		}
7313 
7314 		/* Clear up any skbs waiting for the partial
7315 		 * delivery to finish.
7316 		 */
7317 		if (assoc->ulpq.pd_mode)
7318 			sctp_clear_pd(oldsk, NULL);
7319 
7320 	}
7321 
7322 	sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7323 		sctp_skb_set_owner_r_frag(skb, newsk);
7324 
7325 	sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7326 		sctp_skb_set_owner_r_frag(skb, newsk);
7327 
7328 	/* Set the type of socket to indicate that it is peeled off from the
7329 	 * original UDP-style socket or created with the accept() call on a
7330 	 * TCP-style socket..
7331 	 */
7332 	newsp->type = type;
7333 
7334 	/* Mark the new socket "in-use" by the user so that any packets
7335 	 * that may arrive on the association after we've moved it are
7336 	 * queued to the backlog.  This prevents a potential race between
7337 	 * backlog processing on the old socket and new-packet processing
7338 	 * on the new socket.
7339 	 *
7340 	 * The caller has just allocated newsk so we can guarantee that other
7341 	 * paths won't try to lock it and then oldsk.
7342 	 */
7343 	lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7344 	sctp_assoc_migrate(assoc, newsk);
7345 
7346 	/* If the association on the newsk is already closed before accept()
7347 	 * is called, set RCV_SHUTDOWN flag.
7348 	 */
7349 	if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7350 		newsk->sk_shutdown |= RCV_SHUTDOWN;
7351 
7352 	newsk->sk_state = SCTP_SS_ESTABLISHED;
7353 	release_sock(newsk);
7354 }
7355 
7356 
7357 /* This proto struct describes the ULP interface for SCTP.  */
7358 struct proto sctp_prot = {
7359 	.name        =	"SCTP",
7360 	.owner       =	THIS_MODULE,
7361 	.close       =	sctp_close,
7362 	.connect     =	sctp_connect,
7363 	.disconnect  =	sctp_disconnect,
7364 	.accept      =	sctp_accept,
7365 	.ioctl       =	sctp_ioctl,
7366 	.init        =	sctp_init_sock,
7367 	.destroy     =	sctp_destroy_sock,
7368 	.shutdown    =	sctp_shutdown,
7369 	.setsockopt  =	sctp_setsockopt,
7370 	.getsockopt  =	sctp_getsockopt,
7371 	.sendmsg     =	sctp_sendmsg,
7372 	.recvmsg     =	sctp_recvmsg,
7373 	.bind        =	sctp_bind,
7374 	.backlog_rcv =	sctp_backlog_rcv,
7375 	.hash        =	sctp_hash,
7376 	.unhash      =	sctp_unhash,
7377 	.get_port    =	sctp_get_port,
7378 	.obj_size    =  sizeof(struct sctp_sock),
7379 	.sysctl_mem  =  sysctl_sctp_mem,
7380 	.sysctl_rmem =  sysctl_sctp_rmem,
7381 	.sysctl_wmem =  sysctl_sctp_wmem,
7382 	.memory_pressure = &sctp_memory_pressure,
7383 	.enter_memory_pressure = sctp_enter_memory_pressure,
7384 	.memory_allocated = &sctp_memory_allocated,
7385 	.sockets_allocated = &sctp_sockets_allocated,
7386 };
7387 
7388 #if IS_ENABLED(CONFIG_IPV6)
7389 
7390 struct proto sctpv6_prot = {
7391 	.name		= "SCTPv6",
7392 	.owner		= THIS_MODULE,
7393 	.close		= sctp_close,
7394 	.connect	= sctp_connect,
7395 	.disconnect	= sctp_disconnect,
7396 	.accept		= sctp_accept,
7397 	.ioctl		= sctp_ioctl,
7398 	.init		= sctp_init_sock,
7399 	.destroy	= sctp_destroy_sock,
7400 	.shutdown	= sctp_shutdown,
7401 	.setsockopt	= sctp_setsockopt,
7402 	.getsockopt	= sctp_getsockopt,
7403 	.sendmsg	= sctp_sendmsg,
7404 	.recvmsg	= sctp_recvmsg,
7405 	.bind		= sctp_bind,
7406 	.backlog_rcv	= sctp_backlog_rcv,
7407 	.hash		= sctp_hash,
7408 	.unhash		= sctp_unhash,
7409 	.get_port	= sctp_get_port,
7410 	.obj_size	= sizeof(struct sctp6_sock),
7411 	.sysctl_mem	= sysctl_sctp_mem,
7412 	.sysctl_rmem	= sysctl_sctp_rmem,
7413 	.sysctl_wmem	= sysctl_sctp_wmem,
7414 	.memory_pressure = &sctp_memory_pressure,
7415 	.enter_memory_pressure = sctp_enter_memory_pressure,
7416 	.memory_allocated = &sctp_memory_allocated,
7417 	.sockets_allocated = &sctp_sockets_allocated,
7418 };
7419 #endif /* IS_ENABLED(CONFIG_IPV6) */
7420