xref: /linux/net/sctp/outqueue.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /* SCTP kernel reference Implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001-2003 Intel Corp.
6  *
7  * This file is part of the SCTP kernel reference Implementation
8  *
9  * These functions implement the sctp_outq class.   The outqueue handles
10  * bundling and queueing of outgoing SCTP chunks.
11  *
12  * The SCTP reference implementation is free software;
13  * you can redistribute it and/or modify it under the terms of
14  * the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * The SCTP reference implementation is distributed in the hope that it
19  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20  *                 ************************
21  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22  * See the GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with GNU CC; see the file COPYING.  If not, write to
26  * the Free Software Foundation, 59 Temple Place - Suite 330,
27  * Boston, MA 02111-1307, USA.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
32  *
33  * Or submit a bug report through the following website:
34  *    http://www.sf.net/projects/lksctp
35  *
36  * Written or modified by:
37  *    La Monte H.P. Yarroll <piggy@acm.org>
38  *    Karl Knutson          <karl@athena.chicago.il.us>
39  *    Perry Melange         <pmelange@null.cc.uic.edu>
40  *    Xingang Guo           <xingang.guo@intel.com>
41  *    Hui Huang 	    <hui.huang@nokia.com>
42  *    Sridhar Samudrala     <sri@us.ibm.com>
43  *    Jon Grimm             <jgrimm@us.ibm.com>
44  *
45  * Any bugs reported given to us we will try to fix... any fixes shared will
46  * be incorporated into the next SCTP release.
47  */
48 
49 #include <linux/types.h>
50 #include <linux/list.h>   /* For struct list_head */
51 #include <linux/socket.h>
52 #include <linux/ip.h>
53 #include <net/sock.h>	  /* For skb_set_owner_w */
54 
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 
58 /* Declare internal functions here.  */
59 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
60 static void sctp_check_transmitted(struct sctp_outq *q,
61 				   struct list_head *transmitted_queue,
62 				   struct sctp_transport *transport,
63 				   struct sctp_sackhdr *sack,
64 				   __u32 highest_new_tsn);
65 
66 static void sctp_mark_missing(struct sctp_outq *q,
67 			      struct list_head *transmitted_queue,
68 			      struct sctp_transport *transport,
69 			      __u32 highest_new_tsn,
70 			      int count_of_newacks);
71 
72 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
73 
74 /* Add data to the front of the queue. */
75 static inline void sctp_outq_head_data(struct sctp_outq *q,
76 					struct sctp_chunk *ch)
77 {
78 	list_add(&ch->list, &q->out_chunk_list);
79 	q->out_qlen += ch->skb->len;
80 	return;
81 }
82 
83 /* Take data from the front of the queue. */
84 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
85 {
86 	struct sctp_chunk *ch = NULL;
87 
88 	if (!list_empty(&q->out_chunk_list)) {
89 		struct list_head *entry = q->out_chunk_list.next;
90 
91 		ch = list_entry(entry, struct sctp_chunk, list);
92 		list_del_init(entry);
93 		q->out_qlen -= ch->skb->len;
94 	}
95 	return ch;
96 }
97 /* Add data chunk to the end of the queue. */
98 static inline void sctp_outq_tail_data(struct sctp_outq *q,
99 				       struct sctp_chunk *ch)
100 {
101 	list_add_tail(&ch->list, &q->out_chunk_list);
102 	q->out_qlen += ch->skb->len;
103 	return;
104 }
105 
106 /*
107  * SFR-CACC algorithm:
108  * D) If count_of_newacks is greater than or equal to 2
109  * and t was not sent to the current primary then the
110  * sender MUST NOT increment missing report count for t.
111  */
112 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
113 				       struct sctp_transport *transport,
114 				       int count_of_newacks)
115 {
116 	if (count_of_newacks >=2 && transport != primary)
117 		return 1;
118 	return 0;
119 }
120 
121 /*
122  * SFR-CACC algorithm:
123  * F) If count_of_newacks is less than 2, let d be the
124  * destination to which t was sent. If cacc_saw_newack
125  * is 0 for destination d, then the sender MUST NOT
126  * increment missing report count for t.
127  */
128 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
129 				       int count_of_newacks)
130 {
131 	if (count_of_newacks < 2 && !transport->cacc.cacc_saw_newack)
132 		return 1;
133 	return 0;
134 }
135 
136 /*
137  * SFR-CACC algorithm:
138  * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
139  * execute steps C, D, F.
140  *
141  * C has been implemented in sctp_outq_sack
142  */
143 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
144 				     struct sctp_transport *transport,
145 				     int count_of_newacks)
146 {
147 	if (!primary->cacc.cycling_changeover) {
148 		if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
149 			return 1;
150 		if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
151 			return 1;
152 		return 0;
153 	}
154 	return 0;
155 }
156 
157 /*
158  * SFR-CACC algorithm:
159  * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
160  * than next_tsn_at_change of the current primary, then
161  * the sender MUST NOT increment missing report count
162  * for t.
163  */
164 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
165 {
166 	if (primary->cacc.cycling_changeover &&
167 	    TSN_lt(tsn, primary->cacc.next_tsn_at_change))
168 		return 1;
169 	return 0;
170 }
171 
172 /*
173  * SFR-CACC algorithm:
174  * 3) If the missing report count for TSN t is to be
175  * incremented according to [RFC2960] and
176  * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
177  * then the sender MUST futher execute steps 3.1 and
178  * 3.2 to determine if the missing report count for
179  * TSN t SHOULD NOT be incremented.
180  *
181  * 3.3) If 3.1 and 3.2 do not dictate that the missing
182  * report count for t should not be incremented, then
183  * the sender SOULD increment missing report count for
184  * t (according to [RFC2960] and [SCTP_STEWART_2002]).
185  */
186 static inline int sctp_cacc_skip(struct sctp_transport *primary,
187 				 struct sctp_transport *transport,
188 				 int count_of_newacks,
189 				 __u32 tsn)
190 {
191 	if (primary->cacc.changeover_active &&
192 	    (sctp_cacc_skip_3_1(primary, transport, count_of_newacks)
193 	     || sctp_cacc_skip_3_2(primary, tsn)))
194 		return 1;
195 	return 0;
196 }
197 
198 /* Initialize an existing sctp_outq.  This does the boring stuff.
199  * You still need to define handlers if you really want to DO
200  * something with this structure...
201  */
202 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
203 {
204 	q->asoc = asoc;
205 	INIT_LIST_HEAD(&q->out_chunk_list);
206 	INIT_LIST_HEAD(&q->control_chunk_list);
207 	INIT_LIST_HEAD(&q->retransmit);
208 	INIT_LIST_HEAD(&q->sacked);
209 	INIT_LIST_HEAD(&q->abandoned);
210 
211 	q->outstanding_bytes = 0;
212 	q->empty = 1;
213 	q->cork  = 0;
214 
215 	q->malloced = 0;
216 	q->out_qlen = 0;
217 }
218 
219 /* Free the outqueue structure and any related pending chunks.
220  */
221 void sctp_outq_teardown(struct sctp_outq *q)
222 {
223 	struct sctp_transport *transport;
224 	struct list_head *lchunk, *pos, *temp;
225 	struct sctp_chunk *chunk, *tmp;
226 
227 	/* Throw away unacknowledged chunks. */
228 	list_for_each(pos, &q->asoc->peer.transport_addr_list) {
229 		transport = list_entry(pos, struct sctp_transport, transports);
230 		while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
231 			chunk = list_entry(lchunk, struct sctp_chunk,
232 					   transmitted_list);
233 			/* Mark as part of a failed message. */
234 			sctp_chunk_fail(chunk, q->error);
235 			sctp_chunk_free(chunk);
236 		}
237 	}
238 
239 	/* Throw away chunks that have been gap ACKed.  */
240 	list_for_each_safe(lchunk, temp, &q->sacked) {
241 		list_del_init(lchunk);
242 		chunk = list_entry(lchunk, struct sctp_chunk,
243 				   transmitted_list);
244 		sctp_chunk_fail(chunk, q->error);
245 		sctp_chunk_free(chunk);
246 	}
247 
248 	/* Throw away any chunks in the retransmit queue. */
249 	list_for_each_safe(lchunk, temp, &q->retransmit) {
250 		list_del_init(lchunk);
251 		chunk = list_entry(lchunk, struct sctp_chunk,
252 				   transmitted_list);
253 		sctp_chunk_fail(chunk, q->error);
254 		sctp_chunk_free(chunk);
255 	}
256 
257 	/* Throw away any chunks that are in the abandoned queue. */
258 	list_for_each_safe(lchunk, temp, &q->abandoned) {
259 		list_del_init(lchunk);
260 		chunk = list_entry(lchunk, struct sctp_chunk,
261 				   transmitted_list);
262 		sctp_chunk_fail(chunk, q->error);
263 		sctp_chunk_free(chunk);
264 	}
265 
266 	/* Throw away any leftover data chunks. */
267 	while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
268 
269 		/* Mark as send failure. */
270 		sctp_chunk_fail(chunk, q->error);
271 		sctp_chunk_free(chunk);
272 	}
273 
274 	q->error = 0;
275 
276 	/* Throw away any leftover control chunks. */
277 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
278 		list_del_init(&chunk->list);
279 		sctp_chunk_free(chunk);
280 	}
281 }
282 
283 /* Free the outqueue structure and any related pending chunks.  */
284 void sctp_outq_free(struct sctp_outq *q)
285 {
286 	/* Throw away leftover chunks. */
287 	sctp_outq_teardown(q);
288 
289 	/* If we were kmalloc()'d, free the memory.  */
290 	if (q->malloced)
291 		kfree(q);
292 }
293 
294 /* Put a new chunk in an sctp_outq.  */
295 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk)
296 {
297 	int error = 0;
298 
299 	SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n",
300 			  q, chunk, chunk && chunk->chunk_hdr ?
301 			  sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
302 			  : "Illegal Chunk");
303 
304 	/* If it is data, queue it up, otherwise, send it
305 	 * immediately.
306 	 */
307 	if (SCTP_CID_DATA == chunk->chunk_hdr->type) {
308 		/* Is it OK to queue data chunks?  */
309 		/* From 9. Termination of Association
310 		 *
311 		 * When either endpoint performs a shutdown, the
312 		 * association on each peer will stop accepting new
313 		 * data from its user and only deliver data in queue
314 		 * at the time of sending or receiving the SHUTDOWN
315 		 * chunk.
316 		 */
317 		switch (q->asoc->state) {
318 		case SCTP_STATE_EMPTY:
319 		case SCTP_STATE_CLOSED:
320 		case SCTP_STATE_SHUTDOWN_PENDING:
321 		case SCTP_STATE_SHUTDOWN_SENT:
322 		case SCTP_STATE_SHUTDOWN_RECEIVED:
323 		case SCTP_STATE_SHUTDOWN_ACK_SENT:
324 			/* Cannot send after transport endpoint shutdown */
325 			error = -ESHUTDOWN;
326 			break;
327 
328 		default:
329 			SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n",
330 			  q, chunk, chunk && chunk->chunk_hdr ?
331 			  sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type))
332 			  : "Illegal Chunk");
333 
334 			sctp_outq_tail_data(q, chunk);
335 			if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
336 				SCTP_INC_STATS(SCTP_MIB_OUTUNORDERCHUNKS);
337 			else
338 				SCTP_INC_STATS(SCTP_MIB_OUTORDERCHUNKS);
339 			q->empty = 0;
340 			break;
341 		};
342 	} else {
343 		list_add_tail(&chunk->list, &q->control_chunk_list);
344 		SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
345 	}
346 
347 	if (error < 0)
348 		return error;
349 
350 	if (!q->cork)
351 		error = sctp_outq_flush(q, 0);
352 
353 	return error;
354 }
355 
356 /* Insert a chunk into the sorted list based on the TSNs.  The retransmit list
357  * and the abandoned list are in ascending order.
358  */
359 static void sctp_insert_list(struct list_head *head, struct list_head *new)
360 {
361 	struct list_head *pos;
362 	struct sctp_chunk *nchunk, *lchunk;
363 	__u32 ntsn, ltsn;
364 	int done = 0;
365 
366 	nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
367 	ntsn = ntohl(nchunk->subh.data_hdr->tsn);
368 
369 	list_for_each(pos, head) {
370 		lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
371 		ltsn = ntohl(lchunk->subh.data_hdr->tsn);
372 		if (TSN_lt(ntsn, ltsn)) {
373 			list_add(new, pos->prev);
374 			done = 1;
375 			break;
376 		}
377 	}
378 	if (!done)
379 		list_add_tail(new, head);
380 }
381 
382 /* Mark all the eligible packets on a transport for retransmission.  */
383 void sctp_retransmit_mark(struct sctp_outq *q,
384 			  struct sctp_transport *transport,
385 			  __u8 fast_retransmit)
386 {
387 	struct list_head *lchunk, *ltemp;
388 	struct sctp_chunk *chunk;
389 
390 	/* Walk through the specified transmitted queue.  */
391 	list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
392 		chunk = list_entry(lchunk, struct sctp_chunk,
393 				   transmitted_list);
394 
395 		/* If the chunk is abandoned, move it to abandoned list. */
396 		if (sctp_chunk_abandoned(chunk)) {
397 			list_del_init(lchunk);
398 			sctp_insert_list(&q->abandoned, lchunk);
399 
400 			/* If this chunk has not been previousely acked,
401 			 * stop considering it 'outstanding'.  Our peer
402 			 * will most likely never see it since it will
403 			 * not be retransmitted
404 			 */
405 			if (!chunk->tsn_gap_acked) {
406 				chunk->transport->flight_size -=
407 						sctp_data_size(chunk);
408 				q->outstanding_bytes -= sctp_data_size(chunk);
409 				q->asoc->peer.rwnd += (sctp_data_size(chunk) +
410 							sizeof(struct sk_buff));
411 			}
412 			continue;
413 		}
414 
415 		/* If we are doing retransmission due to a fast retransmit,
416 		 * only the chunk's that are marked for fast retransmit
417 		 * should be added to the retransmit queue.  If we are doing
418 		 * retransmission due to a timeout or pmtu discovery, only the
419 		 * chunks that are not yet acked should be added to the
420 		 * retransmit queue.
421 		 */
422 		if ((fast_retransmit && (chunk->fast_retransmit > 0)) ||
423 		   (!fast_retransmit && !chunk->tsn_gap_acked)) {
424 			/* RFC 2960 6.2.1 Processing a Received SACK
425 			 *
426 			 * C) Any time a DATA chunk is marked for
427 			 * retransmission (via either T3-rtx timer expiration
428 			 * (Section 6.3.3) or via fast retransmit
429 			 * (Section 7.2.4)), add the data size of those
430 			 * chunks to the rwnd.
431 			 */
432 			q->asoc->peer.rwnd += (sctp_data_size(chunk) +
433 						sizeof(struct sk_buff));
434 			q->outstanding_bytes -= sctp_data_size(chunk);
435 			transport->flight_size -= sctp_data_size(chunk);
436 
437 			/* sctpimpguide-05 Section 2.8.2
438 			 * M5) If a T3-rtx timer expires, the
439 			 * 'TSN.Missing.Report' of all affected TSNs is set
440 			 * to 0.
441 			 */
442 			chunk->tsn_missing_report = 0;
443 
444 			/* If a chunk that is being used for RTT measurement
445 			 * has to be retransmitted, we cannot use this chunk
446 			 * anymore for RTT measurements. Reset rto_pending so
447 			 * that a new RTT measurement is started when a new
448 			 * data chunk is sent.
449 			 */
450 			if (chunk->rtt_in_progress) {
451 				chunk->rtt_in_progress = 0;
452 				transport->rto_pending = 0;
453 			}
454 
455 			/* Move the chunk to the retransmit queue. The chunks
456 			 * on the retransmit queue are always kept in order.
457 			 */
458 			list_del_init(lchunk);
459 			sctp_insert_list(&q->retransmit, lchunk);
460 		}
461 	}
462 
463 	SCTP_DEBUG_PRINTK("%s: transport: %p, fast_retransmit: %d, "
464 			  "cwnd: %d, ssthresh: %d, flight_size: %d, "
465 			  "pba: %d\n", __FUNCTION__,
466 			  transport, fast_retransmit,
467 			  transport->cwnd, transport->ssthresh,
468 			  transport->flight_size,
469 			  transport->partial_bytes_acked);
470 
471 }
472 
473 /* Mark all the eligible packets on a transport for retransmission and force
474  * one packet out.
475  */
476 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
477 		     sctp_retransmit_reason_t reason)
478 {
479 	int error = 0;
480 	__u8 fast_retransmit = 0;
481 
482 	switch(reason) {
483 	case SCTP_RTXR_T3_RTX:
484 		SCTP_INC_STATS(SCTP_MIB_T3_RETRANSMITS);
485 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
486 		/* Update the retran path if the T3-rtx timer has expired for
487 		 * the current retran path.
488 		 */
489 		if (transport == transport->asoc->peer.retran_path)
490 			sctp_assoc_update_retran_path(transport->asoc);
491 		break;
492 	case SCTP_RTXR_FAST_RTX:
493 		SCTP_INC_STATS(SCTP_MIB_FAST_RETRANSMITS);
494 		sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
495 		fast_retransmit = 1;
496 		break;
497 	case SCTP_RTXR_PMTUD:
498 		SCTP_INC_STATS(SCTP_MIB_PMTUD_RETRANSMITS);
499 		break;
500 	default:
501 		BUG();
502 	}
503 
504 	sctp_retransmit_mark(q, transport, fast_retransmit);
505 
506 	/* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
507 	 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
508 	 * following the procedures outlined in C1 - C5.
509 	 */
510 	sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
511 
512 	error = sctp_outq_flush(q, /* rtx_timeout */ 1);
513 
514 	if (error)
515 		q->asoc->base.sk->sk_err = -error;
516 }
517 
518 /*
519  * Transmit DATA chunks on the retransmit queue.  Upon return from
520  * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
521  * need to be transmitted by the caller.
522  * We assume that pkt->transport has already been set.
523  *
524  * The return value is a normal kernel error return value.
525  */
526 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
527 			       int rtx_timeout, int *start_timer)
528 {
529 	struct list_head *lqueue;
530 	struct list_head *lchunk, *lchunk1;
531 	struct sctp_transport *transport = pkt->transport;
532 	sctp_xmit_t status;
533 	struct sctp_chunk *chunk, *chunk1;
534 	struct sctp_association *asoc;
535 	int error = 0;
536 
537 	asoc = q->asoc;
538 	lqueue = &q->retransmit;
539 
540 	/* RFC 2960 6.3.3 Handle T3-rtx Expiration
541 	 *
542 	 * E3) Determine how many of the earliest (i.e., lowest TSN)
543 	 * outstanding DATA chunks for the address for which the
544 	 * T3-rtx has expired will fit into a single packet, subject
545 	 * to the MTU constraint for the path corresponding to the
546 	 * destination transport address to which the retransmission
547 	 * is being sent (this may be different from the address for
548 	 * which the timer expires [see Section 6.4]). Call this value
549 	 * K. Bundle and retransmit those K DATA chunks in a single
550 	 * packet to the destination endpoint.
551 	 *
552 	 * [Just to be painfully clear, if we are retransmitting
553 	 * because a timeout just happened, we should send only ONE
554 	 * packet of retransmitted data.]
555 	 */
556 	lchunk = sctp_list_dequeue(lqueue);
557 
558 	while (lchunk) {
559 		chunk = list_entry(lchunk, struct sctp_chunk,
560 				   transmitted_list);
561 
562 		/* Make sure that Gap Acked TSNs are not retransmitted.  A
563 		 * simple approach is just to move such TSNs out of the
564 		 * way and into a 'transmitted' queue and skip to the
565 		 * next chunk.
566 		 */
567 		if (chunk->tsn_gap_acked) {
568 			list_add_tail(lchunk, &transport->transmitted);
569 			lchunk = sctp_list_dequeue(lqueue);
570 			continue;
571 		}
572 
573 		/* Attempt to append this chunk to the packet. */
574 		status = sctp_packet_append_chunk(pkt, chunk);
575 
576 		switch (status) {
577 		case SCTP_XMIT_PMTU_FULL:
578 			/* Send this packet.  */
579 			if ((error = sctp_packet_transmit(pkt)) == 0)
580 				*start_timer = 1;
581 
582 			/* If we are retransmitting, we should only
583 			 * send a single packet.
584 			 */
585 			if (rtx_timeout) {
586 				list_add(lchunk, lqueue);
587 				lchunk = NULL;
588 			}
589 
590 			/* Bundle lchunk in the next round.  */
591 			break;
592 
593 		case SCTP_XMIT_RWND_FULL:
594 			/* Send this packet. */
595 			if ((error = sctp_packet_transmit(pkt)) == 0)
596 				*start_timer = 1;
597 
598 			/* Stop sending DATA as there is no more room
599 			 * at the receiver.
600 			 */
601 			list_add(lchunk, lqueue);
602 			lchunk = NULL;
603 			break;
604 
605 		case SCTP_XMIT_NAGLE_DELAY:
606 			/* Send this packet. */
607 			if ((error = sctp_packet_transmit(pkt)) == 0)
608 				*start_timer = 1;
609 
610 			/* Stop sending DATA because of nagle delay. */
611 			list_add(lchunk, lqueue);
612 			lchunk = NULL;
613 			break;
614 
615 		default:
616 			/* The append was successful, so add this chunk to
617 			 * the transmitted list.
618 			 */
619 			list_add_tail(lchunk, &transport->transmitted);
620 
621 			/* Mark the chunk as ineligible for fast retransmit
622 			 * after it is retransmitted.
623 			 */
624 			if (chunk->fast_retransmit > 0)
625 				chunk->fast_retransmit = -1;
626 
627 			*start_timer = 1;
628 			q->empty = 0;
629 
630 			/* Retrieve a new chunk to bundle. */
631 			lchunk = sctp_list_dequeue(lqueue);
632 			break;
633 		};
634 
635 		/* If we are here due to a retransmit timeout or a fast
636 		 * retransmit and if there are any chunks left in the retransmit
637 		 * queue that could not fit in the PMTU sized packet, they need			 * to be marked as ineligible for a subsequent fast retransmit.
638 		 */
639 		if (rtx_timeout && !lchunk) {
640 			list_for_each(lchunk1, lqueue) {
641 				chunk1 = list_entry(lchunk1, struct sctp_chunk,
642 						    transmitted_list);
643 				if (chunk1->fast_retransmit > 0)
644 					chunk1->fast_retransmit = -1;
645 			}
646 		}
647 	}
648 
649 	return error;
650 }
651 
652 /* Cork the outqueue so queued chunks are really queued. */
653 int sctp_outq_uncork(struct sctp_outq *q)
654 {
655 	int error = 0;
656 	if (q->cork) {
657 		q->cork = 0;
658 		error = sctp_outq_flush(q, 0);
659 	}
660 	return error;
661 }
662 
663 /*
664  * Try to flush an outqueue.
665  *
666  * Description: Send everything in q which we legally can, subject to
667  * congestion limitations.
668  * * Note: This function can be called from multiple contexts so appropriate
669  * locking concerns must be made.  Today we use the sock lock to protect
670  * this function.
671  */
672 int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
673 {
674 	struct sctp_packet *packet;
675 	struct sctp_packet singleton;
676 	struct sctp_association *asoc = q->asoc;
677 	__u16 sport = asoc->base.bind_addr.port;
678 	__u16 dport = asoc->peer.port;
679 	__u32 vtag = asoc->peer.i.init_tag;
680 	struct sctp_transport *transport = NULL;
681 	struct sctp_transport *new_transport;
682 	struct sctp_chunk *chunk, *tmp;
683 	sctp_xmit_t status;
684 	int error = 0;
685 	int start_timer = 0;
686 
687 	/* These transports have chunks to send. */
688 	struct list_head transport_list;
689 	struct list_head *ltransport;
690 
691 	INIT_LIST_HEAD(&transport_list);
692 	packet = NULL;
693 
694 	/*
695 	 * 6.10 Bundling
696 	 *   ...
697 	 *   When bundling control chunks with DATA chunks, an
698 	 *   endpoint MUST place control chunks first in the outbound
699 	 *   SCTP packet.  The transmitter MUST transmit DATA chunks
700 	 *   within a SCTP packet in increasing order of TSN.
701 	 *   ...
702 	 */
703 
704 	list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
705 		list_del_init(&chunk->list);
706 
707 		/* Pick the right transport to use. */
708 		new_transport = chunk->transport;
709 
710 		if (!new_transport) {
711 			new_transport = asoc->peer.active_path;
712 		} else if ((new_transport->state == SCTP_INACTIVE) ||
713 			   (new_transport->state == SCTP_UNCONFIRMED)) {
714 			/* If the chunk is Heartbeat or Heartbeat Ack,
715 			 * send it to chunk->transport, even if it's
716 			 * inactive.
717 			 *
718 			 * 3.3.6 Heartbeat Acknowledgement:
719 			 * ...
720 			 * A HEARTBEAT ACK is always sent to the source IP
721 			 * address of the IP datagram containing the
722 			 * HEARTBEAT chunk to which this ack is responding.
723 			 * ...
724 			 */
725 			if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
726 			    chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK)
727 				new_transport = asoc->peer.active_path;
728 		}
729 
730 		/* Are we switching transports?
731 		 * Take care of transport locks.
732 		 */
733 		if (new_transport != transport) {
734 			transport = new_transport;
735 			if (list_empty(&transport->send_ready)) {
736 				list_add_tail(&transport->send_ready,
737 					      &transport_list);
738 			}
739 			packet = &transport->packet;
740 			sctp_packet_config(packet, vtag,
741 					   asoc->peer.ecn_capable);
742 		}
743 
744 		switch (chunk->chunk_hdr->type) {
745 		/*
746 		 * 6.10 Bundling
747 		 *   ...
748 		 *   An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
749 		 *   COMPLETE with any other chunks.  [Send them immediately.]
750 		 */
751 		case SCTP_CID_INIT:
752 		case SCTP_CID_INIT_ACK:
753 		case SCTP_CID_SHUTDOWN_COMPLETE:
754 			sctp_packet_init(&singleton, transport, sport, dport);
755 			sctp_packet_config(&singleton, vtag, 0);
756 			sctp_packet_append_chunk(&singleton, chunk);
757 			error = sctp_packet_transmit(&singleton);
758 			if (error < 0)
759 				return error;
760 			break;
761 
762 		case SCTP_CID_ABORT:
763 		case SCTP_CID_SACK:
764 		case SCTP_CID_HEARTBEAT:
765 		case SCTP_CID_HEARTBEAT_ACK:
766 		case SCTP_CID_SHUTDOWN:
767 		case SCTP_CID_SHUTDOWN_ACK:
768 		case SCTP_CID_ERROR:
769 		case SCTP_CID_COOKIE_ECHO:
770 		case SCTP_CID_COOKIE_ACK:
771 		case SCTP_CID_ECN_ECNE:
772 		case SCTP_CID_ECN_CWR:
773 		case SCTP_CID_ASCONF:
774 		case SCTP_CID_ASCONF_ACK:
775 		case SCTP_CID_FWD_TSN:
776 			sctp_packet_transmit_chunk(packet, chunk);
777 			break;
778 
779 		default:
780 			/* We built a chunk with an illegal type! */
781 			BUG();
782 		};
783 	}
784 
785 	/* Is it OK to send data chunks?  */
786 	switch (asoc->state) {
787 	case SCTP_STATE_COOKIE_ECHOED:
788 		/* Only allow bundling when this packet has a COOKIE-ECHO
789 		 * chunk.
790 		 */
791 		if (!packet || !packet->has_cookie_echo)
792 			break;
793 
794 		/* fallthru */
795 	case SCTP_STATE_ESTABLISHED:
796 	case SCTP_STATE_SHUTDOWN_PENDING:
797 	case SCTP_STATE_SHUTDOWN_RECEIVED:
798 		/*
799 		 * RFC 2960 6.1  Transmission of DATA Chunks
800 		 *
801 		 * C) When the time comes for the sender to transmit,
802 		 * before sending new DATA chunks, the sender MUST
803 		 * first transmit any outstanding DATA chunks which
804 		 * are marked for retransmission (limited by the
805 		 * current cwnd).
806 		 */
807 		if (!list_empty(&q->retransmit)) {
808 			if (transport == asoc->peer.retran_path)
809 				goto retran;
810 
811 			/* Switch transports & prepare the packet.  */
812 
813 			transport = asoc->peer.retran_path;
814 
815 			if (list_empty(&transport->send_ready)) {
816 				list_add_tail(&transport->send_ready,
817 					      &transport_list);
818 			}
819 
820 			packet = &transport->packet;
821 			sctp_packet_config(packet, vtag,
822 					   asoc->peer.ecn_capable);
823 		retran:
824 			error = sctp_outq_flush_rtx(q, packet,
825 						    rtx_timeout, &start_timer);
826 
827 			if (start_timer)
828 				sctp_transport_reset_timers(transport);
829 
830 			/* This can happen on COOKIE-ECHO resend.  Only
831 			 * one chunk can get bundled with a COOKIE-ECHO.
832 			 */
833 			if (packet->has_cookie_echo)
834 				goto sctp_flush_out;
835 
836 			/* Don't send new data if there is still data
837 			 * waiting to retransmit.
838 			 */
839 			if (!list_empty(&q->retransmit))
840 				goto sctp_flush_out;
841 		}
842 
843 		/* Finally, transmit new packets.  */
844 		start_timer = 0;
845 		while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
846 			/* RFC 2960 6.5 Every DATA chunk MUST carry a valid
847 			 * stream identifier.
848 			 */
849 			if (chunk->sinfo.sinfo_stream >=
850 			    asoc->c.sinit_num_ostreams) {
851 
852 				/* Mark as failed send. */
853 				sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM);
854 				sctp_chunk_free(chunk);
855 				continue;
856 			}
857 
858 			/* Has this chunk expired? */
859 			if (sctp_chunk_abandoned(chunk)) {
860 				sctp_chunk_fail(chunk, 0);
861 				sctp_chunk_free(chunk);
862 				continue;
863 			}
864 
865 			/* If there is a specified transport, use it.
866 			 * Otherwise, we want to use the active path.
867 			 */
868 			new_transport = chunk->transport;
869 			if (!new_transport ||
870 			    ((new_transport->state == SCTP_INACTIVE) ||
871 			     (new_transport->state == SCTP_UNCONFIRMED)))
872 				new_transport = asoc->peer.active_path;
873 
874 			/* Change packets if necessary.  */
875 			if (new_transport != transport) {
876 				transport = new_transport;
877 
878 				/* Schedule to have this transport's
879 				 * packet flushed.
880 				 */
881 				if (list_empty(&transport->send_ready)) {
882 					list_add_tail(&transport->send_ready,
883 						      &transport_list);
884 				}
885 
886 				packet = &transport->packet;
887 				sctp_packet_config(packet, vtag,
888 						   asoc->peer.ecn_capable);
889 			}
890 
891 			SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ",
892 					  q, chunk,
893 					  chunk && chunk->chunk_hdr ?
894 					  sctp_cname(SCTP_ST_CHUNK(
895 						  chunk->chunk_hdr->type))
896 					  : "Illegal Chunk");
897 
898 			SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head "
899 					"%p skb->users %d.\n",
900 					ntohl(chunk->subh.data_hdr->tsn),
901 					chunk->skb ?chunk->skb->head : NULL,
902 					chunk->skb ?
903 					atomic_read(&chunk->skb->users) : -1);
904 
905 			/* Add the chunk to the packet.  */
906 			status = sctp_packet_transmit_chunk(packet, chunk);
907 
908 			switch (status) {
909 			case SCTP_XMIT_PMTU_FULL:
910 			case SCTP_XMIT_RWND_FULL:
911 			case SCTP_XMIT_NAGLE_DELAY:
912 				/* We could not append this chunk, so put
913 				 * the chunk back on the output queue.
914 				 */
915 				SCTP_DEBUG_PRINTK("sctp_outq_flush: could "
916 					"not transmit TSN: 0x%x, status: %d\n",
917 					ntohl(chunk->subh.data_hdr->tsn),
918 					status);
919 				sctp_outq_head_data(q, chunk);
920 				goto sctp_flush_out;
921 				break;
922 
923 			case SCTP_XMIT_OK:
924 				break;
925 
926 			default:
927 				BUG();
928 			}
929 
930 			/* BUG: We assume that the sctp_packet_transmit()
931 			 * call below will succeed all the time and add the
932 			 * chunk to the transmitted list and restart the
933 			 * timers.
934 			 * It is possible that the call can fail under OOM
935 			 * conditions.
936 			 *
937 			 * Is this really a problem?  Won't this behave
938 			 * like a lost TSN?
939 			 */
940 			list_add_tail(&chunk->transmitted_list,
941 				      &transport->transmitted);
942 
943 			sctp_transport_reset_timers(transport);
944 
945 			q->empty = 0;
946 
947 			/* Only let one DATA chunk get bundled with a
948 			 * COOKIE-ECHO chunk.
949 			 */
950 			if (packet->has_cookie_echo)
951 				goto sctp_flush_out;
952 		}
953 		break;
954 
955 	default:
956 		/* Do nothing.  */
957 		break;
958 	}
959 
960 sctp_flush_out:
961 
962 	/* Before returning, examine all the transports touched in
963 	 * this call.  Right now, we bluntly force clear all the
964 	 * transports.  Things might change after we implement Nagle.
965 	 * But such an examination is still required.
966 	 *
967 	 * --xguo
968 	 */
969 	while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL ) {
970 		struct sctp_transport *t = list_entry(ltransport,
971 						      struct sctp_transport,
972 						      send_ready);
973 		packet = &t->packet;
974 		if (!sctp_packet_empty(packet))
975 			error = sctp_packet_transmit(packet);
976 	}
977 
978 	return error;
979 }
980 
981 /* Update unack_data based on the incoming SACK chunk */
982 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
983 					struct sctp_sackhdr *sack)
984 {
985 	sctp_sack_variable_t *frags;
986 	__u16 unack_data;
987 	int i;
988 
989 	unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
990 
991 	frags = sack->variable;
992 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
993 		unack_data -= ((ntohs(frags[i].gab.end) -
994 				ntohs(frags[i].gab.start) + 1));
995 	}
996 
997 	assoc->unack_data = unack_data;
998 }
999 
1000 /* Return the highest new tsn that is acknowledged by the given SACK chunk. */
1001 static __u32 sctp_highest_new_tsn(struct sctp_sackhdr *sack,
1002 				  struct sctp_association *asoc)
1003 {
1004 	struct list_head *ltransport, *lchunk;
1005 	struct sctp_transport *transport;
1006 	struct sctp_chunk *chunk;
1007 	__u32 highest_new_tsn, tsn;
1008 	struct list_head *transport_list = &asoc->peer.transport_addr_list;
1009 
1010 	highest_new_tsn = ntohl(sack->cum_tsn_ack);
1011 
1012 	list_for_each(ltransport, transport_list) {
1013 		transport = list_entry(ltransport, struct sctp_transport,
1014 				       transports);
1015 		list_for_each(lchunk, &transport->transmitted) {
1016 			chunk = list_entry(lchunk, struct sctp_chunk,
1017 					   transmitted_list);
1018 			tsn = ntohl(chunk->subh.data_hdr->tsn);
1019 
1020 			if (!chunk->tsn_gap_acked &&
1021 			    TSN_lt(highest_new_tsn, tsn) &&
1022 			    sctp_acked(sack, tsn))
1023 				highest_new_tsn = tsn;
1024 		}
1025 	}
1026 
1027 	return highest_new_tsn;
1028 }
1029 
1030 /* This is where we REALLY process a SACK.
1031  *
1032  * Process the SACK against the outqueue.  Mostly, this just frees
1033  * things off the transmitted queue.
1034  */
1035 int sctp_outq_sack(struct sctp_outq *q, struct sctp_sackhdr *sack)
1036 {
1037 	struct sctp_association *asoc = q->asoc;
1038 	struct sctp_transport *transport;
1039 	struct sctp_chunk *tchunk = NULL;
1040 	struct list_head *lchunk, *transport_list, *pos, *temp;
1041 	sctp_sack_variable_t *frags = sack->variable;
1042 	__u32 sack_ctsn, ctsn, tsn;
1043 	__u32 highest_tsn, highest_new_tsn;
1044 	__u32 sack_a_rwnd;
1045 	unsigned outstanding;
1046 	struct sctp_transport *primary = asoc->peer.primary_path;
1047 	int count_of_newacks = 0;
1048 
1049 	/* Grab the association's destination address list. */
1050 	transport_list = &asoc->peer.transport_addr_list;
1051 
1052 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1053 
1054 	/*
1055 	 * SFR-CACC algorithm:
1056 	 * On receipt of a SACK the sender SHOULD execute the
1057 	 * following statements.
1058 	 *
1059 	 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1060 	 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1061 	 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1062 	 * all destinations.
1063 	 */
1064 	if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1065 		primary->cacc.changeover_active = 0;
1066 		list_for_each(pos, transport_list) {
1067 			transport = list_entry(pos, struct sctp_transport,
1068 					transports);
1069 			transport->cacc.cycling_changeover = 0;
1070 		}
1071 	}
1072 
1073 	/*
1074 	 * SFR-CACC algorithm:
1075 	 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1076 	 * is set the receiver of the SACK MUST take the following actions:
1077 	 *
1078 	 * A) Initialize the cacc_saw_newack to 0 for all destination
1079 	 * addresses.
1080 	 */
1081 	if (sack->num_gap_ack_blocks &&
1082 	    primary->cacc.changeover_active) {
1083 		list_for_each(pos, transport_list) {
1084 			transport = list_entry(pos, struct sctp_transport,
1085 					transports);
1086 			transport->cacc.cacc_saw_newack = 0;
1087 		}
1088 	}
1089 
1090 	/* Get the highest TSN in the sack. */
1091 	highest_tsn = sack_ctsn;
1092 	if (sack->num_gap_ack_blocks)
1093 		highest_tsn +=
1094 		    ntohs(frags[ntohs(sack->num_gap_ack_blocks) - 1].gab.end);
1095 
1096 	if (TSN_lt(asoc->highest_sacked, highest_tsn)) {
1097 		highest_new_tsn = highest_tsn;
1098 		asoc->highest_sacked = highest_tsn;
1099 	} else {
1100 		highest_new_tsn = sctp_highest_new_tsn(sack, asoc);
1101 	}
1102 
1103 	/* Run through the retransmit queue.  Credit bytes received
1104 	 * and free those chunks that we can.
1105 	 */
1106 	sctp_check_transmitted(q, &q->retransmit, NULL, sack, highest_new_tsn);
1107 	sctp_mark_missing(q, &q->retransmit, NULL, highest_new_tsn, 0);
1108 
1109 	/* Run through the transmitted queue.
1110 	 * Credit bytes received and free those chunks which we can.
1111 	 *
1112 	 * This is a MASSIVE candidate for optimization.
1113 	 */
1114 	list_for_each(pos, transport_list) {
1115 		transport  = list_entry(pos, struct sctp_transport,
1116 					transports);
1117 		sctp_check_transmitted(q, &transport->transmitted,
1118 				       transport, sack, highest_new_tsn);
1119 		/*
1120 		 * SFR-CACC algorithm:
1121 		 * C) Let count_of_newacks be the number of
1122 		 * destinations for which cacc_saw_newack is set.
1123 		 */
1124 		if (transport->cacc.cacc_saw_newack)
1125 			count_of_newacks ++;
1126 	}
1127 
1128 	list_for_each(pos, transport_list) {
1129 		transport  = list_entry(pos, struct sctp_transport,
1130 					transports);
1131 		sctp_mark_missing(q, &transport->transmitted, transport,
1132 				  highest_new_tsn, count_of_newacks);
1133 	}
1134 
1135 	/* Move the Cumulative TSN Ack Point if appropriate.  */
1136 	if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn))
1137 		asoc->ctsn_ack_point = sack_ctsn;
1138 
1139 	/* Update unack_data field in the assoc. */
1140 	sctp_sack_update_unack_data(asoc, sack);
1141 
1142 	ctsn = asoc->ctsn_ack_point;
1143 
1144 	/* Throw away stuff rotting on the sack queue.  */
1145 	list_for_each_safe(lchunk, temp, &q->sacked) {
1146 		tchunk = list_entry(lchunk, struct sctp_chunk,
1147 				    transmitted_list);
1148 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1149 		if (TSN_lte(tsn, ctsn))
1150 			sctp_chunk_free(tchunk);
1151 	}
1152 
1153 	/* ii) Set rwnd equal to the newly received a_rwnd minus the
1154 	 *     number of bytes still outstanding after processing the
1155 	 *     Cumulative TSN Ack and the Gap Ack Blocks.
1156 	 */
1157 
1158 	sack_a_rwnd = ntohl(sack->a_rwnd);
1159 	outstanding = q->outstanding_bytes;
1160 
1161 	if (outstanding < sack_a_rwnd)
1162 		sack_a_rwnd -= outstanding;
1163 	else
1164 		sack_a_rwnd = 0;
1165 
1166 	asoc->peer.rwnd = sack_a_rwnd;
1167 
1168 	sctp_generate_fwdtsn(q, sack_ctsn);
1169 
1170 	SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n",
1171 			  __FUNCTION__, sack_ctsn);
1172 	SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, "
1173 			  "%p is 0x%x. Adv peer ack point: 0x%x\n",
1174 			  __FUNCTION__, asoc, ctsn, asoc->adv_peer_ack_point);
1175 
1176 	/* See if all chunks are acked.
1177 	 * Make sure the empty queue handler will get run later.
1178 	 */
1179 	q->empty = (list_empty(&q->out_chunk_list) &&
1180 		    list_empty(&q->control_chunk_list) &&
1181 		    list_empty(&q->retransmit));
1182 	if (!q->empty)
1183 		goto finish;
1184 
1185 	list_for_each(pos, transport_list) {
1186 		transport  = list_entry(pos, struct sctp_transport,
1187 					transports);
1188 		q->empty = q->empty && list_empty(&transport->transmitted);
1189 		if (!q->empty)
1190 			goto finish;
1191 	}
1192 
1193 	SCTP_DEBUG_PRINTK("sack queue is empty.\n");
1194 finish:
1195 	return q->empty;
1196 }
1197 
1198 /* Is the outqueue empty?  */
1199 int sctp_outq_is_empty(const struct sctp_outq *q)
1200 {
1201 	return q->empty;
1202 }
1203 
1204 /********************************************************************
1205  * 2nd Level Abstractions
1206  ********************************************************************/
1207 
1208 /* Go through a transport's transmitted list or the association's retransmit
1209  * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1210  * The retransmit list will not have an associated transport.
1211  *
1212  * I added coherent debug information output.	--xguo
1213  *
1214  * Instead of printing 'sacked' or 'kept' for each TSN on the
1215  * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1216  * KEPT TSN6-TSN7, etc.
1217  */
1218 static void sctp_check_transmitted(struct sctp_outq *q,
1219 				   struct list_head *transmitted_queue,
1220 				   struct sctp_transport *transport,
1221 				   struct sctp_sackhdr *sack,
1222 				   __u32 highest_new_tsn_in_sack)
1223 {
1224 	struct list_head *lchunk;
1225 	struct sctp_chunk *tchunk;
1226 	struct list_head tlist;
1227 	__u32 tsn;
1228 	__u32 sack_ctsn;
1229 	__u32 rtt;
1230 	__u8 restart_timer = 0;
1231 	int bytes_acked = 0;
1232 
1233 	/* These state variables are for coherent debug output. --xguo */
1234 
1235 #if SCTP_DEBUG
1236 	__u32 dbg_ack_tsn = 0;	/* An ACKed TSN range starts here... */
1237 	__u32 dbg_last_ack_tsn = 0;  /* ...and finishes here.	     */
1238 	__u32 dbg_kept_tsn = 0;	/* An un-ACKed range starts here...  */
1239 	__u32 dbg_last_kept_tsn = 0; /* ...and finishes here.	     */
1240 
1241 	/* 0 : The last TSN was ACKed.
1242 	 * 1 : The last TSN was NOT ACKed (i.e. KEPT).
1243 	 * -1: We need to initialize.
1244 	 */
1245 	int dbg_prt_state = -1;
1246 #endif /* SCTP_DEBUG */
1247 
1248 	sack_ctsn = ntohl(sack->cum_tsn_ack);
1249 
1250 	INIT_LIST_HEAD(&tlist);
1251 
1252 	/* The while loop will skip empty transmitted queues. */
1253 	while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1254 		tchunk = list_entry(lchunk, struct sctp_chunk,
1255 				    transmitted_list);
1256 
1257 		if (sctp_chunk_abandoned(tchunk)) {
1258 			/* Move the chunk to abandoned list. */
1259 			sctp_insert_list(&q->abandoned, lchunk);
1260 
1261 			/* If this chunk has not been acked, stop
1262 			 * considering it as 'outstanding'.
1263 			 */
1264 			if (!tchunk->tsn_gap_acked) {
1265 				tchunk->transport->flight_size -=
1266 						sctp_data_size(tchunk);
1267 				q->outstanding_bytes -= sctp_data_size(tchunk);
1268 			}
1269 			continue;
1270 		}
1271 
1272 		tsn = ntohl(tchunk->subh.data_hdr->tsn);
1273 		if (sctp_acked(sack, tsn)) {
1274 			/* If this queue is the retransmit queue, the
1275 			 * retransmit timer has already reclaimed
1276 			 * the outstanding bytes for this chunk, so only
1277 			 * count bytes associated with a transport.
1278 			 */
1279 			if (transport) {
1280 				/* If this chunk is being used for RTT
1281 				 * measurement, calculate the RTT and update
1282 				 * the RTO using this value.
1283 				 *
1284 				 * 6.3.1 C5) Karn's algorithm: RTT measurements
1285 				 * MUST NOT be made using packets that were
1286 				 * retransmitted (and thus for which it is
1287 				 * ambiguous whether the reply was for the
1288 				 * first instance of the packet or a later
1289 				 * instance).
1290 				 */
1291 				if (!tchunk->tsn_gap_acked &&
1292 				    !tchunk->resent &&
1293 				    tchunk->rtt_in_progress) {
1294 					tchunk->rtt_in_progress = 0;
1295 					rtt = jiffies - tchunk->sent_at;
1296 					sctp_transport_update_rto(transport,
1297 								  rtt);
1298 				}
1299 			}
1300 			if (TSN_lte(tsn, sack_ctsn)) {
1301 				/* RFC 2960  6.3.2 Retransmission Timer Rules
1302 				 *
1303 				 * R3) Whenever a SACK is received
1304 				 * that acknowledges the DATA chunk
1305 				 * with the earliest outstanding TSN
1306 				 * for that address, restart T3-rtx
1307 				 * timer for that address with its
1308 				 * current RTO.
1309 				 */
1310 				restart_timer = 1;
1311 
1312 				if (!tchunk->tsn_gap_acked) {
1313 					tchunk->tsn_gap_acked = 1;
1314 					bytes_acked += sctp_data_size(tchunk);
1315 					/*
1316 					 * SFR-CACC algorithm:
1317 					 * 2) If the SACK contains gap acks
1318 					 * and the flag CHANGEOVER_ACTIVE is
1319 					 * set the receiver of the SACK MUST
1320 					 * take the following action:
1321 					 *
1322 					 * B) For each TSN t being acked that
1323 					 * has not been acked in any SACK so
1324 					 * far, set cacc_saw_newack to 1 for
1325 					 * the destination that the TSN was
1326 					 * sent to.
1327 					 */
1328 					if (transport &&
1329 					    sack->num_gap_ack_blocks &&
1330 					    q->asoc->peer.primary_path->cacc.
1331 					    changeover_active)
1332 						transport->cacc.cacc_saw_newack
1333 							= 1;
1334 				}
1335 
1336 				list_add_tail(&tchunk->transmitted_list,
1337 					      &q->sacked);
1338 			} else {
1339 				/* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1340 				 * M2) Each time a SACK arrives reporting
1341 				 * 'Stray DATA chunk(s)' record the highest TSN
1342 				 * reported as newly acknowledged, call this
1343 				 * value 'HighestTSNinSack'. A newly
1344 				 * acknowledged DATA chunk is one not
1345 				 * previously acknowledged in a SACK.
1346 				 *
1347 				 * When the SCTP sender of data receives a SACK
1348 				 * chunk that acknowledges, for the first time,
1349 				 * the receipt of a DATA chunk, all the still
1350 				 * unacknowledged DATA chunks whose TSN is
1351 				 * older than that newly acknowledged DATA
1352 				 * chunk, are qualified as 'Stray DATA chunks'.
1353 				 */
1354 				if (!tchunk->tsn_gap_acked) {
1355 					tchunk->tsn_gap_acked = 1;
1356 					bytes_acked += sctp_data_size(tchunk);
1357 				}
1358 				list_add_tail(lchunk, &tlist);
1359 			}
1360 
1361 #if SCTP_DEBUG
1362 			switch (dbg_prt_state) {
1363 			case 0:	/* last TSN was ACKed */
1364 				if (dbg_last_ack_tsn + 1 == tsn) {
1365 					/* This TSN belongs to the
1366 					 * current ACK range.
1367 					 */
1368 					break;
1369 				}
1370 
1371 				if (dbg_last_ack_tsn != dbg_ack_tsn) {
1372 					/* Display the end of the
1373 					 * current range.
1374 					 */
1375 					SCTP_DEBUG_PRINTK("-%08x",
1376 							  dbg_last_ack_tsn);
1377 				}
1378 
1379 				/* Start a new range.  */
1380 				SCTP_DEBUG_PRINTK(",%08x", tsn);
1381 				dbg_ack_tsn = tsn;
1382 				break;
1383 
1384 			case 1:	/* The last TSN was NOT ACKed. */
1385 				if (dbg_last_kept_tsn != dbg_kept_tsn) {
1386 					/* Display the end of current range. */
1387 					SCTP_DEBUG_PRINTK("-%08x",
1388 							  dbg_last_kept_tsn);
1389 				}
1390 
1391 				SCTP_DEBUG_PRINTK("\n");
1392 
1393 				/* FALL THROUGH... */
1394 			default:
1395 				/* This is the first-ever TSN we examined.  */
1396 				/* Start a new range of ACK-ed TSNs.  */
1397 				SCTP_DEBUG_PRINTK("ACKed: %08x", tsn);
1398 				dbg_prt_state = 0;
1399 				dbg_ack_tsn = tsn;
1400 			};
1401 
1402 			dbg_last_ack_tsn = tsn;
1403 #endif /* SCTP_DEBUG */
1404 
1405 		} else {
1406 			if (tchunk->tsn_gap_acked) {
1407 				SCTP_DEBUG_PRINTK("%s: Receiver reneged on "
1408 						  "data TSN: 0x%x\n",
1409 						  __FUNCTION__,
1410 						  tsn);
1411 				tchunk->tsn_gap_acked = 0;
1412 
1413 				bytes_acked -= sctp_data_size(tchunk);
1414 
1415 				/* RFC 2960 6.3.2 Retransmission Timer Rules
1416 				 *
1417 				 * R4) Whenever a SACK is received missing a
1418 				 * TSN that was previously acknowledged via a
1419 				 * Gap Ack Block, start T3-rtx for the
1420 				 * destination address to which the DATA
1421 				 * chunk was originally
1422 				 * transmitted if it is not already running.
1423 				 */
1424 				restart_timer = 1;
1425 			}
1426 
1427 			list_add_tail(lchunk, &tlist);
1428 
1429 #if SCTP_DEBUG
1430 			/* See the above comments on ACK-ed TSNs. */
1431 			switch (dbg_prt_state) {
1432 			case 1:
1433 				if (dbg_last_kept_tsn + 1 == tsn)
1434 					break;
1435 
1436 				if (dbg_last_kept_tsn != dbg_kept_tsn)
1437 					SCTP_DEBUG_PRINTK("-%08x",
1438 							  dbg_last_kept_tsn);
1439 
1440 				SCTP_DEBUG_PRINTK(",%08x", tsn);
1441 				dbg_kept_tsn = tsn;
1442 				break;
1443 
1444 			case 0:
1445 				if (dbg_last_ack_tsn != dbg_ack_tsn)
1446 					SCTP_DEBUG_PRINTK("-%08x",
1447 							  dbg_last_ack_tsn);
1448 				SCTP_DEBUG_PRINTK("\n");
1449 
1450 				/* FALL THROUGH... */
1451 			default:
1452 				SCTP_DEBUG_PRINTK("KEPT: %08x",tsn);
1453 				dbg_prt_state = 1;
1454 				dbg_kept_tsn = tsn;
1455 			};
1456 
1457 			dbg_last_kept_tsn = tsn;
1458 #endif /* SCTP_DEBUG */
1459 		}
1460 	}
1461 
1462 #if SCTP_DEBUG
1463 	/* Finish off the last range, displaying its ending TSN.  */
1464 	switch (dbg_prt_state) {
1465 	case 0:
1466 		if (dbg_last_ack_tsn != dbg_ack_tsn) {
1467 			SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_ack_tsn);
1468 		} else {
1469 			SCTP_DEBUG_PRINTK("\n");
1470 		}
1471 	break;
1472 
1473 	case 1:
1474 		if (dbg_last_kept_tsn != dbg_kept_tsn) {
1475 			SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_kept_tsn);
1476 		} else {
1477 			SCTP_DEBUG_PRINTK("\n");
1478 		}
1479 	};
1480 #endif /* SCTP_DEBUG */
1481 	if (transport) {
1482 		if (bytes_acked) {
1483 			/* 8.2. When an outstanding TSN is acknowledged,
1484 			 * the endpoint shall clear the error counter of
1485 			 * the destination transport address to which the
1486 			 * DATA chunk was last sent.
1487 			 * The association's overall error counter is
1488 			 * also cleared.
1489 			 */
1490 			transport->error_count = 0;
1491 			transport->asoc->overall_error_count = 0;
1492 
1493 			/* Mark the destination transport address as
1494 			 * active if it is not so marked.
1495 			 */
1496 			if ((transport->state == SCTP_INACTIVE) ||
1497 			    (transport->state == SCTP_UNCONFIRMED)) {
1498 				sctp_assoc_control_transport(
1499 					transport->asoc,
1500 					transport,
1501 					SCTP_TRANSPORT_UP,
1502 					SCTP_RECEIVED_SACK);
1503 			}
1504 
1505 			sctp_transport_raise_cwnd(transport, sack_ctsn,
1506 						  bytes_acked);
1507 
1508 			transport->flight_size -= bytes_acked;
1509 			q->outstanding_bytes -= bytes_acked;
1510 		} else {
1511 			/* RFC 2960 6.1, sctpimpguide-06 2.15.2
1512 			 * When a sender is doing zero window probing, it
1513 			 * should not timeout the association if it continues
1514 			 * to receive new packets from the receiver. The
1515 			 * reason is that the receiver MAY keep its window
1516 			 * closed for an indefinite time.
1517 			 * A sender is doing zero window probing when the
1518 			 * receiver's advertised window is zero, and there is
1519 			 * only one data chunk in flight to the receiver.
1520 			 */
1521 			if (!q->asoc->peer.rwnd &&
1522 			    !list_empty(&tlist) &&
1523 			    (sack_ctsn+2 == q->asoc->next_tsn)) {
1524 				SCTP_DEBUG_PRINTK("%s: SACK received for zero "
1525 						  "window probe: %u\n",
1526 						  __FUNCTION__, sack_ctsn);
1527 				q->asoc->overall_error_count = 0;
1528 				transport->error_count = 0;
1529 			}
1530 		}
1531 
1532 		/* RFC 2960 6.3.2 Retransmission Timer Rules
1533 		 *
1534 		 * R2) Whenever all outstanding data sent to an address have
1535 		 * been acknowledged, turn off the T3-rtx timer of that
1536 		 * address.
1537 		 */
1538 		if (!transport->flight_size) {
1539 			if (timer_pending(&transport->T3_rtx_timer) &&
1540 			    del_timer(&transport->T3_rtx_timer)) {
1541 				sctp_transport_put(transport);
1542 			}
1543 		} else if (restart_timer) {
1544 			if (!mod_timer(&transport->T3_rtx_timer,
1545 				       jiffies + transport->rto))
1546 				sctp_transport_hold(transport);
1547 		}
1548 	}
1549 
1550 	list_splice(&tlist, transmitted_queue);
1551 }
1552 
1553 /* Mark chunks as missing and consequently may get retransmitted. */
1554 static void sctp_mark_missing(struct sctp_outq *q,
1555 			      struct list_head *transmitted_queue,
1556 			      struct sctp_transport *transport,
1557 			      __u32 highest_new_tsn_in_sack,
1558 			      int count_of_newacks)
1559 {
1560 	struct sctp_chunk *chunk;
1561 	struct list_head *pos;
1562 	__u32 tsn;
1563 	char do_fast_retransmit = 0;
1564 	struct sctp_transport *primary = q->asoc->peer.primary_path;
1565 
1566 	list_for_each(pos, transmitted_queue) {
1567 
1568 		chunk = list_entry(pos, struct sctp_chunk, transmitted_list);
1569 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1570 
1571 		/* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1572 		 * 'Unacknowledged TSN's', if the TSN number of an
1573 		 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1574 		 * value, increment the 'TSN.Missing.Report' count on that
1575 		 * chunk if it has NOT been fast retransmitted or marked for
1576 		 * fast retransmit already.
1577 		 */
1578 		if (!chunk->fast_retransmit &&
1579 		    !chunk->tsn_gap_acked &&
1580 		    TSN_lt(tsn, highest_new_tsn_in_sack)) {
1581 
1582 			/* SFR-CACC may require us to skip marking
1583 			 * this chunk as missing.
1584 			 */
1585 			if (!transport || !sctp_cacc_skip(primary, transport,
1586 					    count_of_newacks, tsn)) {
1587 				chunk->tsn_missing_report++;
1588 
1589 				SCTP_DEBUG_PRINTK(
1590 					"%s: TSN 0x%x missing counter: %d\n",
1591 					__FUNCTION__, tsn,
1592 					chunk->tsn_missing_report);
1593 			}
1594 		}
1595 		/*
1596 		 * M4) If any DATA chunk is found to have a
1597 		 * 'TSN.Missing.Report'
1598 		 * value larger than or equal to 3, mark that chunk for
1599 		 * retransmission and start the fast retransmit procedure.
1600 		 */
1601 
1602 		if (chunk->tsn_missing_report >= 3) {
1603 			chunk->fast_retransmit = 1;
1604 			do_fast_retransmit = 1;
1605 		}
1606 	}
1607 
1608 	if (transport) {
1609 		if (do_fast_retransmit)
1610 			sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1611 
1612 		SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
1613 				  "ssthresh: %d, flight_size: %d, pba: %d\n",
1614 				  __FUNCTION__, transport, transport->cwnd,
1615 				  transport->ssthresh, transport->flight_size,
1616 				  transport->partial_bytes_acked);
1617 	}
1618 }
1619 
1620 /* Is the given TSN acked by this packet?  */
1621 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1622 {
1623 	int i;
1624 	sctp_sack_variable_t *frags;
1625 	__u16 gap;
1626 	__u32 ctsn = ntohl(sack->cum_tsn_ack);
1627 
1628 	if (TSN_lte(tsn, ctsn))
1629 		goto pass;
1630 
1631 	/* 3.3.4 Selective Acknowledgement (SACK) (3):
1632 	 *
1633 	 * Gap Ack Blocks:
1634 	 *  These fields contain the Gap Ack Blocks. They are repeated
1635 	 *  for each Gap Ack Block up to the number of Gap Ack Blocks
1636 	 *  defined in the Number of Gap Ack Blocks field. All DATA
1637 	 *  chunks with TSNs greater than or equal to (Cumulative TSN
1638 	 *  Ack + Gap Ack Block Start) and less than or equal to
1639 	 *  (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1640 	 *  Block are assumed to have been received correctly.
1641 	 */
1642 
1643 	frags = sack->variable;
1644 	gap = tsn - ctsn;
1645 	for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) {
1646 		if (TSN_lte(ntohs(frags[i].gab.start), gap) &&
1647 		    TSN_lte(gap, ntohs(frags[i].gab.end)))
1648 			goto pass;
1649 	}
1650 
1651 	return 0;
1652 pass:
1653 	return 1;
1654 }
1655 
1656 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1657 				    int nskips, __be16 stream)
1658 {
1659 	int i;
1660 
1661 	for (i = 0; i < nskips; i++) {
1662 		if (skiplist[i].stream == stream)
1663 			return i;
1664 	}
1665 	return i;
1666 }
1667 
1668 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1669 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1670 {
1671 	struct sctp_association *asoc = q->asoc;
1672 	struct sctp_chunk *ftsn_chunk = NULL;
1673 	struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1674 	int nskips = 0;
1675 	int skip_pos = 0;
1676 	__u32 tsn;
1677 	struct sctp_chunk *chunk;
1678 	struct list_head *lchunk, *temp;
1679 
1680 	/* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1681 	 * received SACK.
1682 	 *
1683 	 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1684 	 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1685 	 */
1686 	if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1687 		asoc->adv_peer_ack_point = ctsn;
1688 
1689 	/* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1690 	 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1691 	 * the chunk next in the out-queue space is marked as "abandoned" as
1692 	 * shown in the following example:
1693 	 *
1694 	 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1695 	 * and the Advanced.Peer.Ack.Point is updated to this value:
1696 	 *
1697 	 *   out-queue at the end of  ==>   out-queue after Adv.Ack.Point
1698 	 *   normal SACK processing           local advancement
1699 	 *                ...                           ...
1700 	 *   Adv.Ack.Pt-> 102 acked                     102 acked
1701 	 *                103 abandoned                 103 abandoned
1702 	 *                104 abandoned     Adv.Ack.P-> 104 abandoned
1703 	 *                105                           105
1704 	 *                106 acked                     106 acked
1705 	 *                ...                           ...
1706 	 *
1707 	 * In this example, the data sender successfully advanced the
1708 	 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1709 	 */
1710 	list_for_each_safe(lchunk, temp, &q->abandoned) {
1711 		chunk = list_entry(lchunk, struct sctp_chunk,
1712 					transmitted_list);
1713 		tsn = ntohl(chunk->subh.data_hdr->tsn);
1714 
1715 		/* Remove any chunks in the abandoned queue that are acked by
1716 		 * the ctsn.
1717 		 */
1718 		if (TSN_lte(tsn, ctsn)) {
1719 			list_del_init(lchunk);
1720 			sctp_chunk_free(chunk);
1721 		} else {
1722 			if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1723 				asoc->adv_peer_ack_point = tsn;
1724 				if (chunk->chunk_hdr->flags &
1725 					 SCTP_DATA_UNORDERED)
1726 					continue;
1727 				skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1728 						nskips,
1729 						chunk->subh.data_hdr->stream);
1730 				ftsn_skip_arr[skip_pos].stream =
1731 					chunk->subh.data_hdr->stream;
1732 				ftsn_skip_arr[skip_pos].ssn =
1733 					 chunk->subh.data_hdr->ssn;
1734 				if (skip_pos == nskips)
1735 					nskips++;
1736 				if (nskips == 10)
1737 					break;
1738 			} else
1739 				break;
1740 		}
1741 	}
1742 
1743 	/* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1744 	 * is greater than the Cumulative TSN ACK carried in the received
1745 	 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1746 	 * chunk containing the latest value of the
1747 	 * "Advanced.Peer.Ack.Point".
1748 	 *
1749 	 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1750 	 * list each stream and sequence number in the forwarded TSN. This
1751 	 * information will enable the receiver to easily find any
1752 	 * stranded TSN's waiting on stream reorder queues. Each stream
1753 	 * SHOULD only be reported once; this means that if multiple
1754 	 * abandoned messages occur in the same stream then only the
1755 	 * highest abandoned stream sequence number is reported. If the
1756 	 * total size of the FORWARD TSN does NOT fit in a single MTU then
1757 	 * the sender of the FORWARD TSN SHOULD lower the
1758 	 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1759 	 * single MTU.
1760 	 */
1761 	if (asoc->adv_peer_ack_point > ctsn)
1762 		ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1763 					      nskips, &ftsn_skip_arr[0]);
1764 
1765 	if (ftsn_chunk) {
1766 		list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1767 		SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS);
1768 	}
1769 }
1770