xref: /linux/net/sctp/input.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /* SCTP kernel reference Implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * The SCTP reference implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * The SCTP reference implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, write to
27  * the Free Software Foundation, 59 Temple Place - Suite 330,
28  * Boston, MA 02111-1307, USA.
29  *
30  * Please send any bug reports or fixes you make to the
31  * email address(es):
32  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
33  *
34  * Or submit a bug report through the following website:
35  *    http://www.sf.net/projects/lksctp
36  *
37  * Written or modified by:
38  *    La Monte H.P. Yarroll <piggy@acm.org>
39  *    Karl Knutson <karl@athena.chicago.il.us>
40  *    Xingang Guo <xingang.guo@intel.com>
41  *    Jon Grimm <jgrimm@us.ibm.com>
42  *    Hui Huang <hui.huang@nokia.com>
43  *    Daisy Chang <daisyc@us.ibm.com>
44  *    Sridhar Samudrala <sri@us.ibm.com>
45  *    Ardelle Fan <ardelle.fan@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #include <linux/types.h>
52 #include <linux/list.h> /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/time.h> /* For struct timeval */
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/snmp.h>
59 #include <net/sock.h>
60 #include <net/xfrm.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63 
64 /* Forward declarations for internal helpers. */
65 static int sctp_rcv_ootb(struct sk_buff *);
66 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
67 				      const union sctp_addr *laddr,
68 				      const union sctp_addr *paddr,
69 				      struct sctp_transport **transportp);
70 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
71 static struct sctp_association *__sctp_lookup_association(
72 					const union sctp_addr *local,
73 					const union sctp_addr *peer,
74 					struct sctp_transport **pt);
75 
76 
77 /* Calculate the SCTP checksum of an SCTP packet.  */
78 static inline int sctp_rcv_checksum(struct sk_buff *skb)
79 {
80 	struct sctphdr *sh;
81 	__u32 cmp, val;
82 	struct sk_buff *list = skb_shinfo(skb)->frag_list;
83 
84 	sh = (struct sctphdr *) skb->h.raw;
85 	cmp = ntohl(sh->checksum);
86 
87 	val = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
88 
89 	for (; list; list = list->next)
90 		val = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
91 					val);
92 
93 	val = sctp_end_cksum(val);
94 
95 	if (val != cmp) {
96 		/* CRC failure, dump it. */
97 		SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
98 		return -1;
99 	}
100 	return 0;
101 }
102 
103 struct sctp_input_cb {
104 	union {
105 		struct inet_skb_parm	h4;
106 #if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
107 		struct inet6_skb_parm	h6;
108 #endif
109 	} header;
110 	struct sctp_chunk *chunk;
111 };
112 #define SCTP_INPUT_CB(__skb)	((struct sctp_input_cb *)&((__skb)->cb[0]))
113 
114 /*
115  * This is the routine which IP calls when receiving an SCTP packet.
116  */
117 int sctp_rcv(struct sk_buff *skb)
118 {
119 	struct sock *sk;
120 	struct sctp_association *asoc;
121 	struct sctp_endpoint *ep = NULL;
122 	struct sctp_ep_common *rcvr;
123 	struct sctp_transport *transport = NULL;
124 	struct sctp_chunk *chunk;
125 	struct sctphdr *sh;
126 	union sctp_addr src;
127 	union sctp_addr dest;
128 	int family;
129 	struct sctp_af *af;
130 	int ret = 0;
131 
132 	if (skb->pkt_type!=PACKET_HOST)
133 		goto discard_it;
134 
135 	SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
136 
137 	sh = (struct sctphdr *) skb->h.raw;
138 
139 	/* Pull up the IP and SCTP headers. */
140 	__skb_pull(skb, skb->h.raw - skb->data);
141 	if (skb->len < sizeof(struct sctphdr))
142 		goto discard_it;
143 	if (sctp_rcv_checksum(skb) < 0)
144 		goto discard_it;
145 
146 	skb_pull(skb, sizeof(struct sctphdr));
147 
148 	/* Make sure we at least have chunk headers worth of data left. */
149 	if (skb->len < sizeof(struct sctp_chunkhdr))
150 		goto discard_it;
151 
152 	family = ipver2af(skb->nh.iph->version);
153 	af = sctp_get_af_specific(family);
154 	if (unlikely(!af))
155 		goto discard_it;
156 
157 	/* Initialize local addresses for lookups. */
158 	af->from_skb(&src, skb, 1);
159 	af->from_skb(&dest, skb, 0);
160 
161 	/* If the packet is to or from a non-unicast address,
162 	 * silently discard the packet.
163 	 *
164 	 * This is not clearly defined in the RFC except in section
165 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
166 	 * Transmission Protocol" 2.1, "It is important to note that the
167 	 * IP address of an SCTP transport address must be a routable
168 	 * unicast address.  In other words, IP multicast addresses and
169 	 * IP broadcast addresses cannot be used in an SCTP transport
170 	 * address."
171 	 */
172 	if (!af->addr_valid(&src, NULL) || !af->addr_valid(&dest, NULL))
173 		goto discard_it;
174 
175 	asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
176 
177 	if (!asoc)
178 		ep = __sctp_rcv_lookup_endpoint(&dest);
179 
180 	/* Retrieve the common input handling substructure. */
181 	rcvr = asoc ? &asoc->base : &ep->base;
182 	sk = rcvr->sk;
183 
184 	/*
185 	 * If a frame arrives on an interface and the receiving socket is
186 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
187 	 */
188 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
189 	{
190 		sock_put(sk);
191 		if (asoc) {
192 			sctp_association_put(asoc);
193 			asoc = NULL;
194 		} else {
195 			sctp_endpoint_put(ep);
196 			ep = NULL;
197 		}
198 		sk = sctp_get_ctl_sock();
199 		ep = sctp_sk(sk)->ep;
200 		sctp_endpoint_hold(ep);
201 		sock_hold(sk);
202 		rcvr = &ep->base;
203 	}
204 
205 	/*
206 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
207 	 * An SCTP packet is called an "out of the blue" (OOTB)
208 	 * packet if it is correctly formed, i.e., passed the
209 	 * receiver's checksum check, but the receiver is not
210 	 * able to identify the association to which this
211 	 * packet belongs.
212 	 */
213 	if (!asoc) {
214 		if (sctp_rcv_ootb(skb)) {
215 			SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
216 			goto discard_release;
217 		}
218 	}
219 
220 	/* SCTP seems to always need a timestamp right now (FIXME) */
221 	if (skb->tstamp.off_sec == 0) {
222 		__net_timestamp(skb);
223 		sock_enable_timestamp(sk);
224 	}
225 
226 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
227 		goto discard_release;
228 
229 	ret = sk_filter(sk, skb, 1);
230 	if (ret)
231                 goto discard_release;
232 
233 	/* Create an SCTP packet structure. */
234 	chunk = sctp_chunkify(skb, asoc, sk);
235 	if (!chunk) {
236 		ret = -ENOMEM;
237 		goto discard_release;
238 	}
239 	SCTP_INPUT_CB(skb)->chunk = chunk;
240 
241 	/* Remember what endpoint is to handle this packet. */
242 	chunk->rcvr = rcvr;
243 
244 	/* Remember the SCTP header. */
245 	chunk->sctp_hdr = sh;
246 
247 	/* Set the source and destination addresses of the incoming chunk.  */
248 	sctp_init_addrs(chunk, &src, &dest);
249 
250 	/* Remember where we came from.  */
251 	chunk->transport = transport;
252 
253 	/* Acquire access to the sock lock. Note: We are safe from other
254 	 * bottom halves on this lock, but a user may be in the lock too,
255 	 * so check if it is busy.
256 	 */
257 	sctp_bh_lock_sock(sk);
258 
259 	if (sock_owned_by_user(sk))
260 		sk_add_backlog(sk, skb);
261 	else
262 		sctp_backlog_rcv(sk, skb);
263 
264 	/* Release the sock and any reference counts we took in the
265 	 * lookup calls.
266 	 */
267 	sctp_bh_unlock_sock(sk);
268 	if (asoc)
269 		sctp_association_put(asoc);
270 	else
271 		sctp_endpoint_put(ep);
272 	sock_put(sk);
273 	return ret;
274 
275 discard_it:
276 	kfree_skb(skb);
277 	return ret;
278 
279 discard_release:
280 	/* Release any structures we may be holding. */
281 	sock_put(sk);
282 	if (asoc)
283 		sctp_association_put(asoc);
284 	else
285 		sctp_endpoint_put(ep);
286 
287 	goto discard_it;
288 }
289 
290 /* Handle second half of inbound skb processing.  If the sock was busy,
291  * we may have need to delay processing until later when the sock is
292  * released (on the backlog).   If not busy, we call this routine
293  * directly from the bottom half.
294  */
295 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
296 {
297 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
298 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
299 
300 	sctp_inq_push(inqueue, chunk);
301         return 0;
302 }
303 
304 /* Handle icmp frag needed error. */
305 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
306 			   struct sctp_transport *t, __u32 pmtu)
307 {
308 	if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) {
309 		printk(KERN_WARNING "%s: Reported pmtu %d too low, "
310 		       "using default minimum of %d\n", __FUNCTION__, pmtu,
311 		       SCTP_DEFAULT_MINSEGMENT);
312 		pmtu = SCTP_DEFAULT_MINSEGMENT;
313 	}
314 
315 	if (!sock_owned_by_user(sk) && t && (t->pmtu != pmtu)) {
316 		t->pmtu = pmtu;
317 		sctp_assoc_sync_pmtu(asoc);
318 		sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
319 	}
320 }
321 
322 /*
323  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
324  *
325  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
326  *        or a "Protocol Unreachable" treat this message as an abort
327  *        with the T bit set.
328  *
329  * This function sends an event to the state machine, which will abort the
330  * association.
331  *
332  */
333 void sctp_icmp_proto_unreachable(struct sock *sk,
334                            struct sctp_association *asoc,
335                            struct sctp_transport *t)
336 {
337 	SCTP_DEBUG_PRINTK("%s\n",  __FUNCTION__);
338 
339 	sctp_do_sm(SCTP_EVENT_T_OTHER,
340 		   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
341 		   asoc->state, asoc->ep, asoc, t,
342 		   GFP_ATOMIC);
343 
344 }
345 
346 /* Common lookup code for icmp/icmpv6 error handler. */
347 struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
348 			     struct sctphdr *sctphdr,
349 			     struct sctp_association **app,
350 			     struct sctp_transport **tpp)
351 {
352 	union sctp_addr saddr;
353 	union sctp_addr daddr;
354 	struct sctp_af *af;
355 	struct sock *sk = NULL;
356 	struct sctp_association *asoc = NULL;
357 	struct sctp_transport *transport = NULL;
358 
359 	*app = NULL; *tpp = NULL;
360 
361 	af = sctp_get_af_specific(family);
362 	if (unlikely(!af)) {
363 		return NULL;
364 	}
365 
366 	/* Initialize local addresses for lookups. */
367 	af->from_skb(&saddr, skb, 1);
368 	af->from_skb(&daddr, skb, 0);
369 
370 	/* Look for an association that matches the incoming ICMP error
371 	 * packet.
372 	 */
373 	asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
374 	if (!asoc)
375 		return NULL;
376 
377 	sk = asoc->base.sk;
378 
379 	if (ntohl(sctphdr->vtag) != asoc->c.peer_vtag) {
380 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
381 		goto out;
382 	}
383 
384 	sctp_bh_lock_sock(sk);
385 
386 	/* If too many ICMPs get dropped on busy
387 	 * servers this needs to be solved differently.
388 	 */
389 	if (sock_owned_by_user(sk))
390 		NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
391 
392 	*app = asoc;
393 	*tpp = transport;
394 	return sk;
395 
396 out:
397 	sock_put(sk);
398 	if (asoc)
399 		sctp_association_put(asoc);
400 	return NULL;
401 }
402 
403 /* Common cleanup code for icmp/icmpv6 error handler. */
404 void sctp_err_finish(struct sock *sk, struct sctp_association *asoc)
405 {
406 	sctp_bh_unlock_sock(sk);
407 	sock_put(sk);
408 	if (asoc)
409 		sctp_association_put(asoc);
410 }
411 
412 /*
413  * This routine is called by the ICMP module when it gets some
414  * sort of error condition.  If err < 0 then the socket should
415  * be closed and the error returned to the user.  If err > 0
416  * it's just the icmp type << 8 | icmp code.  After adjustment
417  * header points to the first 8 bytes of the sctp header.  We need
418  * to find the appropriate port.
419  *
420  * The locking strategy used here is very "optimistic". When
421  * someone else accesses the socket the ICMP is just dropped
422  * and for some paths there is no check at all.
423  * A more general error queue to queue errors for later handling
424  * is probably better.
425  *
426  */
427 void sctp_v4_err(struct sk_buff *skb, __u32 info)
428 {
429 	struct iphdr *iph = (struct iphdr *)skb->data;
430 	struct sctphdr *sh = (struct sctphdr *)(skb->data + (iph->ihl <<2));
431 	int type = skb->h.icmph->type;
432 	int code = skb->h.icmph->code;
433 	struct sock *sk;
434 	struct sctp_association *asoc;
435 	struct sctp_transport *transport;
436 	struct inet_sock *inet;
437 	char *saveip, *savesctp;
438 	int err;
439 
440 	if (skb->len < ((iph->ihl << 2) + 8)) {
441 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
442 		return;
443 	}
444 
445 	/* Fix up skb to look at the embedded net header. */
446 	saveip = skb->nh.raw;
447 	savesctp  = skb->h.raw;
448 	skb->nh.iph = iph;
449 	skb->h.raw = (char *)sh;
450 	sk = sctp_err_lookup(AF_INET, skb, sh, &asoc, &transport);
451 	/* Put back, the original pointers. */
452 	skb->nh.raw = saveip;
453 	skb->h.raw = savesctp;
454 	if (!sk) {
455 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
456 		return;
457 	}
458 	/* Warning:  The sock lock is held.  Remember to call
459 	 * sctp_err_finish!
460 	 */
461 
462 	switch (type) {
463 	case ICMP_PARAMETERPROB:
464 		err = EPROTO;
465 		break;
466 	case ICMP_DEST_UNREACH:
467 		if (code > NR_ICMP_UNREACH)
468 			goto out_unlock;
469 
470 		/* PMTU discovery (RFC1191) */
471 		if (ICMP_FRAG_NEEDED == code) {
472 			sctp_icmp_frag_needed(sk, asoc, transport, info);
473 			goto out_unlock;
474 		}
475 		else {
476 			if (ICMP_PROT_UNREACH == code) {
477 				sctp_icmp_proto_unreachable(sk, asoc,
478 							    transport);
479 				goto out_unlock;
480 			}
481 		}
482 		err = icmp_err_convert[code].errno;
483 		break;
484 	case ICMP_TIME_EXCEEDED:
485 		/* Ignore any time exceeded errors due to fragment reassembly
486 		 * timeouts.
487 		 */
488 		if (ICMP_EXC_FRAGTIME == code)
489 			goto out_unlock;
490 
491 		err = EHOSTUNREACH;
492 		break;
493 	default:
494 		goto out_unlock;
495 	}
496 
497 	inet = inet_sk(sk);
498 	if (!sock_owned_by_user(sk) && inet->recverr) {
499 		sk->sk_err = err;
500 		sk->sk_error_report(sk);
501 	} else {  /* Only an error on timeout */
502 		sk->sk_err_soft = err;
503 	}
504 
505 out_unlock:
506 	sctp_err_finish(sk, asoc);
507 }
508 
509 /*
510  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
511  *
512  * This function scans all the chunks in the OOTB packet to determine if
513  * the packet should be discarded right away.  If a response might be needed
514  * for this packet, or, if further processing is possible, the packet will
515  * be queued to a proper inqueue for the next phase of handling.
516  *
517  * Output:
518  * Return 0 - If further processing is needed.
519  * Return 1 - If the packet can be discarded right away.
520  */
521 int sctp_rcv_ootb(struct sk_buff *skb)
522 {
523 	sctp_chunkhdr_t *ch;
524 	__u8 *ch_end;
525 	sctp_errhdr_t *err;
526 
527 	ch = (sctp_chunkhdr_t *) skb->data;
528 	ch_end = ((__u8 *) ch) + WORD_ROUND(ntohs(ch->length));
529 
530 	/* Scan through all the chunks in the packet.  */
531 	while (ch_end > (__u8 *)ch && ch_end < skb->tail) {
532 
533 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
534 		 * receiver MUST silently discard the OOTB packet and take no
535 		 * further action.
536 		 */
537 		if (SCTP_CID_ABORT == ch->type)
538 			goto discard;
539 
540 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
541 		 * chunk, the receiver should silently discard the packet
542 		 * and take no further action.
543 		 */
544 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
545 			goto discard;
546 
547 		/* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR
548 		 * or a COOKIE ACK the SCTP Packet should be silently
549 		 * discarded.
550 		 */
551 		if (SCTP_CID_COOKIE_ACK == ch->type)
552 			goto discard;
553 
554 		if (SCTP_CID_ERROR == ch->type) {
555 			sctp_walk_errors(err, ch) {
556 				if (SCTP_ERROR_STALE_COOKIE == err->cause)
557 					goto discard;
558 			}
559 		}
560 
561 		ch = (sctp_chunkhdr_t *) ch_end;
562 	        ch_end = ((__u8 *) ch) + WORD_ROUND(ntohs(ch->length));
563 	}
564 
565 	return 0;
566 
567 discard:
568 	return 1;
569 }
570 
571 /* Insert endpoint into the hash table.  */
572 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
573 {
574 	struct sctp_ep_common **epp;
575 	struct sctp_ep_common *epb;
576 	struct sctp_hashbucket *head;
577 
578 	epb = &ep->base;
579 
580 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
581 	head = &sctp_ep_hashtable[epb->hashent];
582 
583 	sctp_write_lock(&head->lock);
584 	epp = &head->chain;
585 	epb->next = *epp;
586 	if (epb->next)
587 		(*epp)->pprev = &epb->next;
588 	*epp = epb;
589 	epb->pprev = epp;
590 	sctp_write_unlock(&head->lock);
591 }
592 
593 /* Add an endpoint to the hash. Local BH-safe. */
594 void sctp_hash_endpoint(struct sctp_endpoint *ep)
595 {
596 	sctp_local_bh_disable();
597 	__sctp_hash_endpoint(ep);
598 	sctp_local_bh_enable();
599 }
600 
601 /* Remove endpoint from the hash table.  */
602 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
603 {
604 	struct sctp_hashbucket *head;
605 	struct sctp_ep_common *epb;
606 
607 	epb = &ep->base;
608 
609 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
610 
611 	head = &sctp_ep_hashtable[epb->hashent];
612 
613 	sctp_write_lock(&head->lock);
614 
615 	if (epb->pprev) {
616 		if (epb->next)
617 			epb->next->pprev = epb->pprev;
618 		*epb->pprev = epb->next;
619 		epb->pprev = NULL;
620 	}
621 
622 	sctp_write_unlock(&head->lock);
623 }
624 
625 /* Remove endpoint from the hash.  Local BH-safe. */
626 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
627 {
628 	sctp_local_bh_disable();
629 	__sctp_unhash_endpoint(ep);
630 	sctp_local_bh_enable();
631 }
632 
633 /* Look up an endpoint. */
634 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
635 {
636 	struct sctp_hashbucket *head;
637 	struct sctp_ep_common *epb;
638 	struct sctp_endpoint *ep;
639 	int hash;
640 
641 	hash = sctp_ep_hashfn(laddr->v4.sin_port);
642 	head = &sctp_ep_hashtable[hash];
643 	read_lock(&head->lock);
644 	for (epb = head->chain; epb; epb = epb->next) {
645 		ep = sctp_ep(epb);
646 		if (sctp_endpoint_is_match(ep, laddr))
647 			goto hit;
648 	}
649 
650 	ep = sctp_sk((sctp_get_ctl_sock()))->ep;
651 	epb = &ep->base;
652 
653 hit:
654 	sctp_endpoint_hold(ep);
655 	sock_hold(epb->sk);
656 	read_unlock(&head->lock);
657 	return ep;
658 }
659 
660 /* Insert association into the hash table.  */
661 static void __sctp_hash_established(struct sctp_association *asoc)
662 {
663 	struct sctp_ep_common **epp;
664 	struct sctp_ep_common *epb;
665 	struct sctp_hashbucket *head;
666 
667 	epb = &asoc->base;
668 
669 	/* Calculate which chain this entry will belong to. */
670 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
671 
672 	head = &sctp_assoc_hashtable[epb->hashent];
673 
674 	sctp_write_lock(&head->lock);
675 	epp = &head->chain;
676 	epb->next = *epp;
677 	if (epb->next)
678 		(*epp)->pprev = &epb->next;
679 	*epp = epb;
680 	epb->pprev = epp;
681 	sctp_write_unlock(&head->lock);
682 }
683 
684 /* Add an association to the hash. Local BH-safe. */
685 void sctp_hash_established(struct sctp_association *asoc)
686 {
687 	sctp_local_bh_disable();
688 	__sctp_hash_established(asoc);
689 	sctp_local_bh_enable();
690 }
691 
692 /* Remove association from the hash table.  */
693 static void __sctp_unhash_established(struct sctp_association *asoc)
694 {
695 	struct sctp_hashbucket *head;
696 	struct sctp_ep_common *epb;
697 
698 	epb = &asoc->base;
699 
700 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
701 					 asoc->peer.port);
702 
703 	head = &sctp_assoc_hashtable[epb->hashent];
704 
705 	sctp_write_lock(&head->lock);
706 
707 	if (epb->pprev) {
708 		if (epb->next)
709 			epb->next->pprev = epb->pprev;
710 		*epb->pprev = epb->next;
711 		epb->pprev = NULL;
712 	}
713 
714 	sctp_write_unlock(&head->lock);
715 }
716 
717 /* Remove association from the hash table.  Local BH-safe. */
718 void sctp_unhash_established(struct sctp_association *asoc)
719 {
720 	sctp_local_bh_disable();
721 	__sctp_unhash_established(asoc);
722 	sctp_local_bh_enable();
723 }
724 
725 /* Look up an association. */
726 static struct sctp_association *__sctp_lookup_association(
727 					const union sctp_addr *local,
728 					const union sctp_addr *peer,
729 					struct sctp_transport **pt)
730 {
731 	struct sctp_hashbucket *head;
732 	struct sctp_ep_common *epb;
733 	struct sctp_association *asoc;
734 	struct sctp_transport *transport;
735 	int hash;
736 
737 	/* Optimize here for direct hit, only listening connections can
738 	 * have wildcards anyways.
739 	 */
740 	hash = sctp_assoc_hashfn(local->v4.sin_port, peer->v4.sin_port);
741 	head = &sctp_assoc_hashtable[hash];
742 	read_lock(&head->lock);
743 	for (epb = head->chain; epb; epb = epb->next) {
744 		asoc = sctp_assoc(epb);
745 		transport = sctp_assoc_is_match(asoc, local, peer);
746 		if (transport)
747 			goto hit;
748 	}
749 
750 	read_unlock(&head->lock);
751 
752 	return NULL;
753 
754 hit:
755 	*pt = transport;
756 	sctp_association_hold(asoc);
757 	sock_hold(epb->sk);
758 	read_unlock(&head->lock);
759 	return asoc;
760 }
761 
762 /* Look up an association. BH-safe. */
763 SCTP_STATIC
764 struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
765 						 const union sctp_addr *paddr,
766 					    struct sctp_transport **transportp)
767 {
768 	struct sctp_association *asoc;
769 
770 	sctp_local_bh_disable();
771 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
772 	sctp_local_bh_enable();
773 
774 	return asoc;
775 }
776 
777 /* Is there an association matching the given local and peer addresses? */
778 int sctp_has_association(const union sctp_addr *laddr,
779 			 const union sctp_addr *paddr)
780 {
781 	struct sctp_association *asoc;
782 	struct sctp_transport *transport;
783 
784 	if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
785 		sock_put(asoc->base.sk);
786 		sctp_association_put(asoc);
787 		return 1;
788 	}
789 
790 	return 0;
791 }
792 
793 /*
794  * SCTP Implementors Guide, 2.18 Handling of address
795  * parameters within the INIT or INIT-ACK.
796  *
797  * D) When searching for a matching TCB upon reception of an INIT
798  *    or INIT-ACK chunk the receiver SHOULD use not only the
799  *    source address of the packet (containing the INIT or
800  *    INIT-ACK) but the receiver SHOULD also use all valid
801  *    address parameters contained within the chunk.
802  *
803  * 2.18.3 Solution description
804  *
805  * This new text clearly specifies to an implementor the need
806  * to look within the INIT or INIT-ACK. Any implementation that
807  * does not do this, may not be able to establish associations
808  * in certain circumstances.
809  *
810  */
811 static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
812 	const union sctp_addr *laddr, struct sctp_transport **transportp)
813 {
814 	struct sctp_association *asoc;
815 	union sctp_addr addr;
816 	union sctp_addr *paddr = &addr;
817 	struct sctphdr *sh = (struct sctphdr *) skb->h.raw;
818 	sctp_chunkhdr_t *ch;
819 	union sctp_params params;
820 	sctp_init_chunk_t *init;
821 	struct sctp_transport *transport;
822 	struct sctp_af *af;
823 
824 	ch = (sctp_chunkhdr_t *) skb->data;
825 
826 	/* If this is INIT/INIT-ACK look inside the chunk too. */
827 	switch (ch->type) {
828 	case SCTP_CID_INIT:
829 	case SCTP_CID_INIT_ACK:
830 		break;
831 	default:
832 		return NULL;
833 	}
834 
835 	/* The code below will attempt to walk the chunk and extract
836 	 * parameter information.  Before we do that, we need to verify
837 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
838 	 * walk off the end.
839 	 */
840 	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
841 		return NULL;
842 
843 	/*
844 	 * This code will NOT touch anything inside the chunk--it is
845 	 * strictly READ-ONLY.
846 	 *
847 	 * RFC 2960 3  SCTP packet Format
848 	 *
849 	 * Multiple chunks can be bundled into one SCTP packet up to
850 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
851 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
852 	 * other chunk in a packet.  See Section 6.10 for more details
853 	 * on chunk bundling.
854 	 */
855 
856 	/* Find the start of the TLVs and the end of the chunk.  This is
857 	 * the region we search for address parameters.
858 	 */
859 	init = (sctp_init_chunk_t *)skb->data;
860 
861 	/* Walk the parameters looking for embedded addresses. */
862 	sctp_walk_params(params, init, init_hdr.params) {
863 
864 		/* Note: Ignoring hostname addresses. */
865 		af = sctp_get_af_specific(param_type2af(params.p->type));
866 		if (!af)
867 			continue;
868 
869 		af->from_addr_param(paddr, params.addr, ntohs(sh->source), 0);
870 
871 		asoc = __sctp_lookup_association(laddr, paddr, &transport);
872 		if (asoc)
873 			return asoc;
874 	}
875 
876 	return NULL;
877 }
878 
879 /* Lookup an association for an inbound skb. */
880 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
881 				      const union sctp_addr *paddr,
882 				      const union sctp_addr *laddr,
883 				      struct sctp_transport **transportp)
884 {
885 	struct sctp_association *asoc;
886 
887 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
888 
889 	/* Further lookup for INIT/INIT-ACK packets.
890 	 * SCTP Implementors Guide, 2.18 Handling of address
891 	 * parameters within the INIT or INIT-ACK.
892 	 */
893 	if (!asoc)
894 		asoc = __sctp_rcv_init_lookup(skb, laddr, transportp);
895 
896 	return asoc;
897 }
898