xref: /linux/net/sctp/input.c (revision 81fa7a69c2174ed8de314b9c231ef30a8718e5e1)
1 /* SCTP kernel implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * This SCTP implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * This SCTP implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, see
27  * <http://www.gnu.org/licenses/>.
28  *
29  * Please send any bug reports or fixes you make to the
30  * email address(es):
31  *    lksctp developers <linux-sctp@vger.kernel.org>
32  *
33  * Written or modified by:
34  *    La Monte H.P. Yarroll <piggy@acm.org>
35  *    Karl Knutson <karl@athena.chicago.il.us>
36  *    Xingang Guo <xingang.guo@intel.com>
37  *    Jon Grimm <jgrimm@us.ibm.com>
38  *    Hui Huang <hui.huang@nokia.com>
39  *    Daisy Chang <daisyc@us.ibm.com>
40  *    Sridhar Samudrala <sri@us.ibm.com>
41  *    Ardelle Fan <ardelle.fan@intel.com>
42  */
43 
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/time.h> /* For struct timeval */
49 #include <linux/slab.h>
50 #include <net/ip.h>
51 #include <net/icmp.h>
52 #include <net/snmp.h>
53 #include <net/sock.h>
54 #include <net/xfrm.h>
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
57 #include <net/sctp/checksum.h>
58 #include <net/net_namespace.h>
59 #include <linux/rhashtable.h>
60 
61 /* Forward declarations for internal helpers. */
62 static int sctp_rcv_ootb(struct sk_buff *);
63 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
64 				      struct sk_buff *skb,
65 				      const union sctp_addr *paddr,
66 				      const union sctp_addr *laddr,
67 				      struct sctp_transport **transportp);
68 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
69 						const union sctp_addr *laddr);
70 static struct sctp_association *__sctp_lookup_association(
71 					struct net *net,
72 					const union sctp_addr *local,
73 					const union sctp_addr *peer,
74 					struct sctp_transport **pt);
75 
76 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
77 
78 
79 /* Calculate the SCTP checksum of an SCTP packet.  */
80 static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
81 {
82 	struct sctphdr *sh = sctp_hdr(skb);
83 	__le32 cmp = sh->checksum;
84 	__le32 val = sctp_compute_cksum(skb, 0);
85 
86 	if (val != cmp) {
87 		/* CRC failure, dump it. */
88 		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
89 		return -1;
90 	}
91 	return 0;
92 }
93 
94 /*
95  * This is the routine which IP calls when receiving an SCTP packet.
96  */
97 int sctp_rcv(struct sk_buff *skb)
98 {
99 	struct sock *sk;
100 	struct sctp_association *asoc;
101 	struct sctp_endpoint *ep = NULL;
102 	struct sctp_ep_common *rcvr;
103 	struct sctp_transport *transport = NULL;
104 	struct sctp_chunk *chunk;
105 	union sctp_addr src;
106 	union sctp_addr dest;
107 	int family;
108 	struct sctp_af *af;
109 	struct net *net = dev_net(skb->dev);
110 	bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
111 
112 	if (skb->pkt_type != PACKET_HOST)
113 		goto discard_it;
114 
115 	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
116 
117 	/* If packet is too small to contain a single chunk, let's not
118 	 * waste time on it anymore.
119 	 */
120 	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
121 		       skb_transport_offset(skb))
122 		goto discard_it;
123 
124 	/* If the packet is fragmented and we need to do crc checking,
125 	 * it's better to just linearize it otherwise crc computing
126 	 * takes longer.
127 	 */
128 	if ((!is_gso && skb_linearize(skb)) ||
129 	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
130 		goto discard_it;
131 
132 	/* Pull up the IP header. */
133 	__skb_pull(skb, skb_transport_offset(skb));
134 
135 	skb->csum_valid = 0; /* Previous value not applicable */
136 	if (skb_csum_unnecessary(skb))
137 		__skb_decr_checksum_unnecessary(skb);
138 	else if (!sctp_checksum_disable &&
139 		 !is_gso &&
140 		 sctp_rcv_checksum(net, skb) < 0)
141 		goto discard_it;
142 	skb->csum_valid = 1;
143 
144 	__skb_pull(skb, sizeof(struct sctphdr));
145 
146 	family = ipver2af(ip_hdr(skb)->version);
147 	af = sctp_get_af_specific(family);
148 	if (unlikely(!af))
149 		goto discard_it;
150 	SCTP_INPUT_CB(skb)->af = af;
151 
152 	/* Initialize local addresses for lookups. */
153 	af->from_skb(&src, skb, 1);
154 	af->from_skb(&dest, skb, 0);
155 
156 	/* If the packet is to or from a non-unicast address,
157 	 * silently discard the packet.
158 	 *
159 	 * This is not clearly defined in the RFC except in section
160 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
161 	 * Transmission Protocol" 2.1, "It is important to note that the
162 	 * IP address of an SCTP transport address must be a routable
163 	 * unicast address.  In other words, IP multicast addresses and
164 	 * IP broadcast addresses cannot be used in an SCTP transport
165 	 * address."
166 	 */
167 	if (!af->addr_valid(&src, NULL, skb) ||
168 	    !af->addr_valid(&dest, NULL, skb))
169 		goto discard_it;
170 
171 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
172 
173 	if (!asoc)
174 		ep = __sctp_rcv_lookup_endpoint(net, &dest);
175 
176 	/* Retrieve the common input handling substructure. */
177 	rcvr = asoc ? &asoc->base : &ep->base;
178 	sk = rcvr->sk;
179 
180 	/*
181 	 * If a frame arrives on an interface and the receiving socket is
182 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
183 	 */
184 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
185 		if (transport) {
186 			sctp_transport_put(transport);
187 			asoc = NULL;
188 			transport = NULL;
189 		} else {
190 			sctp_endpoint_put(ep);
191 			ep = NULL;
192 		}
193 		sk = net->sctp.ctl_sock;
194 		ep = sctp_sk(sk)->ep;
195 		sctp_endpoint_hold(ep);
196 		rcvr = &ep->base;
197 	}
198 
199 	/*
200 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
201 	 * An SCTP packet is called an "out of the blue" (OOTB)
202 	 * packet if it is correctly formed, i.e., passed the
203 	 * receiver's checksum check, but the receiver is not
204 	 * able to identify the association to which this
205 	 * packet belongs.
206 	 */
207 	if (!asoc) {
208 		if (sctp_rcv_ootb(skb)) {
209 			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
210 			goto discard_release;
211 		}
212 	}
213 
214 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
215 		goto discard_release;
216 	nf_reset(skb);
217 
218 	if (sk_filter(sk, skb))
219 		goto discard_release;
220 
221 	/* Create an SCTP packet structure. */
222 	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
223 	if (!chunk)
224 		goto discard_release;
225 	SCTP_INPUT_CB(skb)->chunk = chunk;
226 
227 	/* Remember what endpoint is to handle this packet. */
228 	chunk->rcvr = rcvr;
229 
230 	/* Remember the SCTP header. */
231 	chunk->sctp_hdr = sctp_hdr(skb);
232 
233 	/* Set the source and destination addresses of the incoming chunk.  */
234 	sctp_init_addrs(chunk, &src, &dest);
235 
236 	/* Remember where we came from.  */
237 	chunk->transport = transport;
238 
239 	/* Acquire access to the sock lock. Note: We are safe from other
240 	 * bottom halves on this lock, but a user may be in the lock too,
241 	 * so check if it is busy.
242 	 */
243 	bh_lock_sock(sk);
244 
245 	if (sk != rcvr->sk) {
246 		/* Our cached sk is different from the rcvr->sk.  This is
247 		 * because migrate()/accept() may have moved the association
248 		 * to a new socket and released all the sockets.  So now we
249 		 * are holding a lock on the old socket while the user may
250 		 * be doing something with the new socket.  Switch our veiw
251 		 * of the current sk.
252 		 */
253 		bh_unlock_sock(sk);
254 		sk = rcvr->sk;
255 		bh_lock_sock(sk);
256 	}
257 
258 	if (sock_owned_by_user(sk)) {
259 		if (sctp_add_backlog(sk, skb)) {
260 			bh_unlock_sock(sk);
261 			sctp_chunk_free(chunk);
262 			skb = NULL; /* sctp_chunk_free already freed the skb */
263 			goto discard_release;
264 		}
265 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
266 	} else {
267 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
268 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
269 	}
270 
271 	bh_unlock_sock(sk);
272 
273 	/* Release the asoc/ep ref we took in the lookup calls. */
274 	if (transport)
275 		sctp_transport_put(transport);
276 	else
277 		sctp_endpoint_put(ep);
278 
279 	return 0;
280 
281 discard_it:
282 	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
283 	kfree_skb(skb);
284 	return 0;
285 
286 discard_release:
287 	/* Release the asoc/ep ref we took in the lookup calls. */
288 	if (transport)
289 		sctp_transport_put(transport);
290 	else
291 		sctp_endpoint_put(ep);
292 
293 	goto discard_it;
294 }
295 
296 /* Process the backlog queue of the socket.  Every skb on
297  * the backlog holds a ref on an association or endpoint.
298  * We hold this ref throughout the state machine to make
299  * sure that the structure we need is still around.
300  */
301 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
302 {
303 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
304 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
305 	struct sctp_transport *t = chunk->transport;
306 	struct sctp_ep_common *rcvr = NULL;
307 	int backloged = 0;
308 
309 	rcvr = chunk->rcvr;
310 
311 	/* If the rcvr is dead then the association or endpoint
312 	 * has been deleted and we can safely drop the chunk
313 	 * and refs that we are holding.
314 	 */
315 	if (rcvr->dead) {
316 		sctp_chunk_free(chunk);
317 		goto done;
318 	}
319 
320 	if (unlikely(rcvr->sk != sk)) {
321 		/* In this case, the association moved from one socket to
322 		 * another.  We are currently sitting on the backlog of the
323 		 * old socket, so we need to move.
324 		 * However, since we are here in the process context we
325 		 * need to take make sure that the user doesn't own
326 		 * the new socket when we process the packet.
327 		 * If the new socket is user-owned, queue the chunk to the
328 		 * backlog of the new socket without dropping any refs.
329 		 * Otherwise, we can safely push the chunk on the inqueue.
330 		 */
331 
332 		sk = rcvr->sk;
333 		local_bh_disable();
334 		bh_lock_sock(sk);
335 
336 		if (sock_owned_by_user(sk)) {
337 			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
338 				sctp_chunk_free(chunk);
339 			else
340 				backloged = 1;
341 		} else
342 			sctp_inq_push(inqueue, chunk);
343 
344 		bh_unlock_sock(sk);
345 		local_bh_enable();
346 
347 		/* If the chunk was backloged again, don't drop refs */
348 		if (backloged)
349 			return 0;
350 	} else {
351 		sctp_inq_push(inqueue, chunk);
352 	}
353 
354 done:
355 	/* Release the refs we took in sctp_add_backlog */
356 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
357 		sctp_transport_put(t);
358 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
359 		sctp_endpoint_put(sctp_ep(rcvr));
360 	else
361 		BUG();
362 
363 	return 0;
364 }
365 
366 static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
367 {
368 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
369 	struct sctp_transport *t = chunk->transport;
370 	struct sctp_ep_common *rcvr = chunk->rcvr;
371 	int ret;
372 
373 	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
374 	if (!ret) {
375 		/* Hold the assoc/ep while hanging on the backlog queue.
376 		 * This way, we know structures we need will not disappear
377 		 * from us
378 		 */
379 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
380 			sctp_transport_hold(t);
381 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
382 			sctp_endpoint_hold(sctp_ep(rcvr));
383 		else
384 			BUG();
385 	}
386 	return ret;
387 
388 }
389 
390 /* Handle icmp frag needed error. */
391 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
392 			   struct sctp_transport *t, __u32 pmtu)
393 {
394 	if (!t || (t->pathmtu <= pmtu))
395 		return;
396 
397 	if (sock_owned_by_user(sk)) {
398 		atomic_set(&t->mtu_info, pmtu);
399 		asoc->pmtu_pending = 1;
400 		t->pmtu_pending = 1;
401 		return;
402 	}
403 
404 	if (!(t->param_flags & SPP_PMTUD_ENABLE))
405 		/* We can't allow retransmitting in such case, as the
406 		 * retransmission would be sized just as before, and thus we
407 		 * would get another icmp, and retransmit again.
408 		 */
409 		return;
410 
411 	/* Update transports view of the MTU. Return if no update was needed.
412 	 * If an update wasn't needed/possible, it also doesn't make sense to
413 	 * try to retransmit now.
414 	 */
415 	if (!sctp_transport_update_pmtu(t, pmtu))
416 		return;
417 
418 	/* Update association pmtu. */
419 	sctp_assoc_sync_pmtu(asoc);
420 
421 	/* Retransmit with the new pmtu setting. */
422 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
423 }
424 
425 void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
426 			struct sk_buff *skb)
427 {
428 	struct dst_entry *dst;
429 
430 	if (sock_owned_by_user(sk) || !t)
431 		return;
432 	dst = sctp_transport_dst_check(t);
433 	if (dst)
434 		dst->ops->redirect(dst, sk, skb);
435 }
436 
437 /*
438  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
439  *
440  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
441  *        or a "Protocol Unreachable" treat this message as an abort
442  *        with the T bit set.
443  *
444  * This function sends an event to the state machine, which will abort the
445  * association.
446  *
447  */
448 void sctp_icmp_proto_unreachable(struct sock *sk,
449 			   struct sctp_association *asoc,
450 			   struct sctp_transport *t)
451 {
452 	if (sock_owned_by_user(sk)) {
453 		if (timer_pending(&t->proto_unreach_timer))
454 			return;
455 		else {
456 			if (!mod_timer(&t->proto_unreach_timer,
457 						jiffies + (HZ/20)))
458 				sctp_association_hold(asoc);
459 		}
460 	} else {
461 		struct net *net = sock_net(sk);
462 
463 		pr_debug("%s: unrecognized next header type "
464 			 "encountered!\n", __func__);
465 
466 		if (del_timer(&t->proto_unreach_timer))
467 			sctp_association_put(asoc);
468 
469 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
470 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
471 			   asoc->state, asoc->ep, asoc, t,
472 			   GFP_ATOMIC);
473 	}
474 }
475 
476 /* Common lookup code for icmp/icmpv6 error handler. */
477 struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
478 			     struct sctphdr *sctphdr,
479 			     struct sctp_association **app,
480 			     struct sctp_transport **tpp)
481 {
482 	struct sctp_init_chunk *chunkhdr, _chunkhdr;
483 	union sctp_addr saddr;
484 	union sctp_addr daddr;
485 	struct sctp_af *af;
486 	struct sock *sk = NULL;
487 	struct sctp_association *asoc;
488 	struct sctp_transport *transport = NULL;
489 	__u32 vtag = ntohl(sctphdr->vtag);
490 
491 	*app = NULL; *tpp = NULL;
492 
493 	af = sctp_get_af_specific(family);
494 	if (unlikely(!af)) {
495 		return NULL;
496 	}
497 
498 	/* Initialize local addresses for lookups. */
499 	af->from_skb(&saddr, skb, 1);
500 	af->from_skb(&daddr, skb, 0);
501 
502 	/* Look for an association that matches the incoming ICMP error
503 	 * packet.
504 	 */
505 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
506 	if (!asoc)
507 		return NULL;
508 
509 	sk = asoc->base.sk;
510 
511 	/* RFC 4960, Appendix C. ICMP Handling
512 	 *
513 	 * ICMP6) An implementation MUST validate that the Verification Tag
514 	 * contained in the ICMP message matches the Verification Tag of
515 	 * the peer.  If the Verification Tag is not 0 and does NOT
516 	 * match, discard the ICMP message.  If it is 0 and the ICMP
517 	 * message contains enough bytes to verify that the chunk type is
518 	 * an INIT chunk and that the Initiate Tag matches the tag of the
519 	 * peer, continue with ICMP7.  If the ICMP message is too short
520 	 * or the chunk type or the Initiate Tag does not match, silently
521 	 * discard the packet.
522 	 */
523 	if (vtag == 0) {
524 		/* chunk header + first 4 octects of init header */
525 		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
526 					      sizeof(struct sctphdr),
527 					      sizeof(struct sctp_chunkhdr) +
528 					      sizeof(__be32), &_chunkhdr);
529 		if (!chunkhdr ||
530 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
531 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
532 			goto out;
533 
534 	} else if (vtag != asoc->c.peer_vtag) {
535 		goto out;
536 	}
537 
538 	bh_lock_sock(sk);
539 
540 	/* If too many ICMPs get dropped on busy
541 	 * servers this needs to be solved differently.
542 	 */
543 	if (sock_owned_by_user(sk))
544 		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
545 
546 	*app = asoc;
547 	*tpp = transport;
548 	return sk;
549 
550 out:
551 	sctp_transport_put(transport);
552 	return NULL;
553 }
554 
555 /* Common cleanup code for icmp/icmpv6 error handler. */
556 void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
557 {
558 	bh_unlock_sock(sk);
559 	sctp_transport_put(t);
560 }
561 
562 /*
563  * This routine is called by the ICMP module when it gets some
564  * sort of error condition.  If err < 0 then the socket should
565  * be closed and the error returned to the user.  If err > 0
566  * it's just the icmp type << 8 | icmp code.  After adjustment
567  * header points to the first 8 bytes of the sctp header.  We need
568  * to find the appropriate port.
569  *
570  * The locking strategy used here is very "optimistic". When
571  * someone else accesses the socket the ICMP is just dropped
572  * and for some paths there is no check at all.
573  * A more general error queue to queue errors for later handling
574  * is probably better.
575  *
576  */
577 void sctp_v4_err(struct sk_buff *skb, __u32 info)
578 {
579 	const struct iphdr *iph = (const struct iphdr *)skb->data;
580 	const int ihlen = iph->ihl * 4;
581 	const int type = icmp_hdr(skb)->type;
582 	const int code = icmp_hdr(skb)->code;
583 	struct sock *sk;
584 	struct sctp_association *asoc = NULL;
585 	struct sctp_transport *transport;
586 	struct inet_sock *inet;
587 	__u16 saveip, savesctp;
588 	int err;
589 	struct net *net = dev_net(skb->dev);
590 
591 	/* Fix up skb to look at the embedded net header. */
592 	saveip = skb->network_header;
593 	savesctp = skb->transport_header;
594 	skb_reset_network_header(skb);
595 	skb_set_transport_header(skb, ihlen);
596 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
597 	/* Put back, the original values. */
598 	skb->network_header = saveip;
599 	skb->transport_header = savesctp;
600 	if (!sk) {
601 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
602 		return;
603 	}
604 	/* Warning:  The sock lock is held.  Remember to call
605 	 * sctp_err_finish!
606 	 */
607 
608 	switch (type) {
609 	case ICMP_PARAMETERPROB:
610 		err = EPROTO;
611 		break;
612 	case ICMP_DEST_UNREACH:
613 		if (code > NR_ICMP_UNREACH)
614 			goto out_unlock;
615 
616 		/* PMTU discovery (RFC1191) */
617 		if (ICMP_FRAG_NEEDED == code) {
618 			sctp_icmp_frag_needed(sk, asoc, transport,
619 					      SCTP_TRUNC4(info));
620 			goto out_unlock;
621 		} else {
622 			if (ICMP_PROT_UNREACH == code) {
623 				sctp_icmp_proto_unreachable(sk, asoc,
624 							    transport);
625 				goto out_unlock;
626 			}
627 		}
628 		err = icmp_err_convert[code].errno;
629 		break;
630 	case ICMP_TIME_EXCEEDED:
631 		/* Ignore any time exceeded errors due to fragment reassembly
632 		 * timeouts.
633 		 */
634 		if (ICMP_EXC_FRAGTIME == code)
635 			goto out_unlock;
636 
637 		err = EHOSTUNREACH;
638 		break;
639 	case ICMP_REDIRECT:
640 		sctp_icmp_redirect(sk, transport, skb);
641 		/* Fall through to out_unlock. */
642 	default:
643 		goto out_unlock;
644 	}
645 
646 	inet = inet_sk(sk);
647 	if (!sock_owned_by_user(sk) && inet->recverr) {
648 		sk->sk_err = err;
649 		sk->sk_error_report(sk);
650 	} else {  /* Only an error on timeout */
651 		sk->sk_err_soft = err;
652 	}
653 
654 out_unlock:
655 	sctp_err_finish(sk, transport);
656 }
657 
658 /*
659  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
660  *
661  * This function scans all the chunks in the OOTB packet to determine if
662  * the packet should be discarded right away.  If a response might be needed
663  * for this packet, or, if further processing is possible, the packet will
664  * be queued to a proper inqueue for the next phase of handling.
665  *
666  * Output:
667  * Return 0 - If further processing is needed.
668  * Return 1 - If the packet can be discarded right away.
669  */
670 static int sctp_rcv_ootb(struct sk_buff *skb)
671 {
672 	struct sctp_chunkhdr *ch, _ch;
673 	int ch_end, offset = 0;
674 
675 	/* Scan through all the chunks in the packet.  */
676 	do {
677 		/* Make sure we have at least the header there */
678 		if (offset + sizeof(_ch) > skb->len)
679 			break;
680 
681 		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
682 
683 		/* Break out if chunk length is less then minimal. */
684 		if (ntohs(ch->length) < sizeof(_ch))
685 			break;
686 
687 		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
688 		if (ch_end > skb->len)
689 			break;
690 
691 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
692 		 * receiver MUST silently discard the OOTB packet and take no
693 		 * further action.
694 		 */
695 		if (SCTP_CID_ABORT == ch->type)
696 			goto discard;
697 
698 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
699 		 * chunk, the receiver should silently discard the packet
700 		 * and take no further action.
701 		 */
702 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
703 			goto discard;
704 
705 		/* RFC 4460, 2.11.2
706 		 * This will discard packets with INIT chunk bundled as
707 		 * subsequent chunks in the packet.  When INIT is first,
708 		 * the normal INIT processing will discard the chunk.
709 		 */
710 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
711 			goto discard;
712 
713 		offset = ch_end;
714 	} while (ch_end < skb->len);
715 
716 	return 0;
717 
718 discard:
719 	return 1;
720 }
721 
722 /* Insert endpoint into the hash table.  */
723 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
724 {
725 	struct net *net = sock_net(ep->base.sk);
726 	struct sctp_ep_common *epb;
727 	struct sctp_hashbucket *head;
728 
729 	epb = &ep->base;
730 
731 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
732 	head = &sctp_ep_hashtable[epb->hashent];
733 
734 	write_lock(&head->lock);
735 	hlist_add_head(&epb->node, &head->chain);
736 	write_unlock(&head->lock);
737 }
738 
739 /* Add an endpoint to the hash. Local BH-safe. */
740 void sctp_hash_endpoint(struct sctp_endpoint *ep)
741 {
742 	local_bh_disable();
743 	__sctp_hash_endpoint(ep);
744 	local_bh_enable();
745 }
746 
747 /* Remove endpoint from the hash table.  */
748 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
749 {
750 	struct net *net = sock_net(ep->base.sk);
751 	struct sctp_hashbucket *head;
752 	struct sctp_ep_common *epb;
753 
754 	epb = &ep->base;
755 
756 	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
757 
758 	head = &sctp_ep_hashtable[epb->hashent];
759 
760 	write_lock(&head->lock);
761 	hlist_del_init(&epb->node);
762 	write_unlock(&head->lock);
763 }
764 
765 /* Remove endpoint from the hash.  Local BH-safe. */
766 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
767 {
768 	local_bh_disable();
769 	__sctp_unhash_endpoint(ep);
770 	local_bh_enable();
771 }
772 
773 /* Look up an endpoint. */
774 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
775 						const union sctp_addr *laddr)
776 {
777 	struct sctp_hashbucket *head;
778 	struct sctp_ep_common *epb;
779 	struct sctp_endpoint *ep;
780 	int hash;
781 
782 	hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
783 	head = &sctp_ep_hashtable[hash];
784 	read_lock(&head->lock);
785 	sctp_for_each_hentry(epb, &head->chain) {
786 		ep = sctp_ep(epb);
787 		if (sctp_endpoint_is_match(ep, net, laddr))
788 			goto hit;
789 	}
790 
791 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
792 
793 hit:
794 	sctp_endpoint_hold(ep);
795 	read_unlock(&head->lock);
796 	return ep;
797 }
798 
799 /* rhashtable for transport */
800 struct sctp_hash_cmp_arg {
801 	const union sctp_addr	*paddr;
802 	const struct net	*net;
803 	__be16			lport;
804 };
805 
806 static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
807 				const void *ptr)
808 {
809 	struct sctp_transport *t = (struct sctp_transport *)ptr;
810 	const struct sctp_hash_cmp_arg *x = arg->key;
811 	int err = 1;
812 
813 	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
814 		return err;
815 	if (!sctp_transport_hold(t))
816 		return err;
817 
818 	if (!net_eq(sock_net(t->asoc->base.sk), x->net))
819 		goto out;
820 	if (x->lport != htons(t->asoc->base.bind_addr.port))
821 		goto out;
822 
823 	err = 0;
824 out:
825 	sctp_transport_put(t);
826 	return err;
827 }
828 
829 static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
830 {
831 	const struct sctp_transport *t = data;
832 	const union sctp_addr *paddr = &t->ipaddr;
833 	const struct net *net = sock_net(t->asoc->base.sk);
834 	__be16 lport = htons(t->asoc->base.bind_addr.port);
835 	__u32 addr;
836 
837 	if (paddr->sa.sa_family == AF_INET6)
838 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
839 	else
840 		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
841 
842 	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
843 			     (__force __u32)lport, net_hash_mix(net), seed);
844 }
845 
846 static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
847 {
848 	const struct sctp_hash_cmp_arg *x = data;
849 	const union sctp_addr *paddr = x->paddr;
850 	const struct net *net = x->net;
851 	__be16 lport = x->lport;
852 	__u32 addr;
853 
854 	if (paddr->sa.sa_family == AF_INET6)
855 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
856 	else
857 		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
858 
859 	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
860 			     (__force __u32)lport, net_hash_mix(net), seed);
861 }
862 
863 static const struct rhashtable_params sctp_hash_params = {
864 	.head_offset		= offsetof(struct sctp_transport, node),
865 	.hashfn			= sctp_hash_key,
866 	.obj_hashfn		= sctp_hash_obj,
867 	.obj_cmpfn		= sctp_hash_cmp,
868 	.automatic_shrinking	= true,
869 };
870 
871 int sctp_transport_hashtable_init(void)
872 {
873 	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
874 }
875 
876 void sctp_transport_hashtable_destroy(void)
877 {
878 	rhltable_destroy(&sctp_transport_hashtable);
879 }
880 
881 int sctp_hash_transport(struct sctp_transport *t)
882 {
883 	struct sctp_transport *transport;
884 	struct rhlist_head *tmp, *list;
885 	struct sctp_hash_cmp_arg arg;
886 	int err;
887 
888 	if (t->asoc->temp)
889 		return 0;
890 
891 	arg.net   = sock_net(t->asoc->base.sk);
892 	arg.paddr = &t->ipaddr;
893 	arg.lport = htons(t->asoc->base.bind_addr.port);
894 
895 	rcu_read_lock();
896 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
897 			       sctp_hash_params);
898 
899 	rhl_for_each_entry_rcu(transport, tmp, list, node)
900 		if (transport->asoc->ep == t->asoc->ep) {
901 			rcu_read_unlock();
902 			return -EEXIST;
903 		}
904 	rcu_read_unlock();
905 
906 	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
907 				  &t->node, sctp_hash_params);
908 	if (err)
909 		pr_err_once("insert transport fail, errno %d\n", err);
910 
911 	return err;
912 }
913 
914 void sctp_unhash_transport(struct sctp_transport *t)
915 {
916 	if (t->asoc->temp)
917 		return;
918 
919 	rhltable_remove(&sctp_transport_hashtable, &t->node,
920 			sctp_hash_params);
921 }
922 
923 /* return a transport with holding it */
924 struct sctp_transport *sctp_addrs_lookup_transport(
925 				struct net *net,
926 				const union sctp_addr *laddr,
927 				const union sctp_addr *paddr)
928 {
929 	struct rhlist_head *tmp, *list;
930 	struct sctp_transport *t;
931 	struct sctp_hash_cmp_arg arg = {
932 		.paddr = paddr,
933 		.net   = net,
934 		.lport = laddr->v4.sin_port,
935 	};
936 
937 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
938 			       sctp_hash_params);
939 
940 	rhl_for_each_entry_rcu(t, tmp, list, node) {
941 		if (!sctp_transport_hold(t))
942 			continue;
943 
944 		if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
945 					 laddr, sctp_sk(t->asoc->base.sk)))
946 			return t;
947 		sctp_transport_put(t);
948 	}
949 
950 	return NULL;
951 }
952 
953 /* return a transport without holding it, as it's only used under sock lock */
954 struct sctp_transport *sctp_epaddr_lookup_transport(
955 				const struct sctp_endpoint *ep,
956 				const union sctp_addr *paddr)
957 {
958 	struct net *net = sock_net(ep->base.sk);
959 	struct rhlist_head *tmp, *list;
960 	struct sctp_transport *t;
961 	struct sctp_hash_cmp_arg arg = {
962 		.paddr = paddr,
963 		.net   = net,
964 		.lport = htons(ep->base.bind_addr.port),
965 	};
966 
967 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
968 			       sctp_hash_params);
969 
970 	rhl_for_each_entry_rcu(t, tmp, list, node)
971 		if (ep == t->asoc->ep)
972 			return t;
973 
974 	return NULL;
975 }
976 
977 /* Look up an association. */
978 static struct sctp_association *__sctp_lookup_association(
979 					struct net *net,
980 					const union sctp_addr *local,
981 					const union sctp_addr *peer,
982 					struct sctp_transport **pt)
983 {
984 	struct sctp_transport *t;
985 	struct sctp_association *asoc = NULL;
986 
987 	t = sctp_addrs_lookup_transport(net, local, peer);
988 	if (!t)
989 		goto out;
990 
991 	asoc = t->asoc;
992 	*pt = t;
993 
994 out:
995 	return asoc;
996 }
997 
998 /* Look up an association. protected by RCU read lock */
999 static
1000 struct sctp_association *sctp_lookup_association(struct net *net,
1001 						 const union sctp_addr *laddr,
1002 						 const union sctp_addr *paddr,
1003 						 struct sctp_transport **transportp)
1004 {
1005 	struct sctp_association *asoc;
1006 
1007 	rcu_read_lock();
1008 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1009 	rcu_read_unlock();
1010 
1011 	return asoc;
1012 }
1013 
1014 /* Is there an association matching the given local and peer addresses? */
1015 bool sctp_has_association(struct net *net,
1016 			  const union sctp_addr *laddr,
1017 			  const union sctp_addr *paddr)
1018 {
1019 	struct sctp_transport *transport;
1020 
1021 	if (sctp_lookup_association(net, laddr, paddr, &transport)) {
1022 		sctp_transport_put(transport);
1023 		return true;
1024 	}
1025 
1026 	return false;
1027 }
1028 
1029 /*
1030  * SCTP Implementors Guide, 2.18 Handling of address
1031  * parameters within the INIT or INIT-ACK.
1032  *
1033  * D) When searching for a matching TCB upon reception of an INIT
1034  *    or INIT-ACK chunk the receiver SHOULD use not only the
1035  *    source address of the packet (containing the INIT or
1036  *    INIT-ACK) but the receiver SHOULD also use all valid
1037  *    address parameters contained within the chunk.
1038  *
1039  * 2.18.3 Solution description
1040  *
1041  * This new text clearly specifies to an implementor the need
1042  * to look within the INIT or INIT-ACK. Any implementation that
1043  * does not do this, may not be able to establish associations
1044  * in certain circumstances.
1045  *
1046  */
1047 static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1048 	struct sk_buff *skb,
1049 	const union sctp_addr *laddr, struct sctp_transport **transportp)
1050 {
1051 	struct sctp_association *asoc;
1052 	union sctp_addr addr;
1053 	union sctp_addr *paddr = &addr;
1054 	struct sctphdr *sh = sctp_hdr(skb);
1055 	union sctp_params params;
1056 	struct sctp_init_chunk *init;
1057 	struct sctp_af *af;
1058 
1059 	/*
1060 	 * This code will NOT touch anything inside the chunk--it is
1061 	 * strictly READ-ONLY.
1062 	 *
1063 	 * RFC 2960 3  SCTP packet Format
1064 	 *
1065 	 * Multiple chunks can be bundled into one SCTP packet up to
1066 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1067 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1068 	 * other chunk in a packet.  See Section 6.10 for more details
1069 	 * on chunk bundling.
1070 	 */
1071 
1072 	/* Find the start of the TLVs and the end of the chunk.  This is
1073 	 * the region we search for address parameters.
1074 	 */
1075 	init = (struct sctp_init_chunk *)skb->data;
1076 
1077 	/* Walk the parameters looking for embedded addresses. */
1078 	sctp_walk_params(params, init, init_hdr.params) {
1079 
1080 		/* Note: Ignoring hostname addresses. */
1081 		af = sctp_get_af_specific(param_type2af(params.p->type));
1082 		if (!af)
1083 			continue;
1084 
1085 		af->from_addr_param(paddr, params.addr, sh->source, 0);
1086 
1087 		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1088 		if (asoc)
1089 			return asoc;
1090 	}
1091 
1092 	return NULL;
1093 }
1094 
1095 /* ADD-IP, Section 5.2
1096  * When an endpoint receives an ASCONF Chunk from the remote peer
1097  * special procedures may be needed to identify the association the
1098  * ASCONF Chunk is associated with. To properly find the association
1099  * the following procedures SHOULD be followed:
1100  *
1101  * D2) If the association is not found, use the address found in the
1102  * Address Parameter TLV combined with the port number found in the
1103  * SCTP common header. If found proceed to rule D4.
1104  *
1105  * D2-ext) If more than one ASCONF Chunks are packed together, use the
1106  * address found in the ASCONF Address Parameter TLV of each of the
1107  * subsequent ASCONF Chunks. If found, proceed to rule D4.
1108  */
1109 static struct sctp_association *__sctp_rcv_asconf_lookup(
1110 					struct net *net,
1111 					struct sctp_chunkhdr *ch,
1112 					const union sctp_addr *laddr,
1113 					__be16 peer_port,
1114 					struct sctp_transport **transportp)
1115 {
1116 	struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1117 	struct sctp_af *af;
1118 	union sctp_addr_param *param;
1119 	union sctp_addr paddr;
1120 
1121 	/* Skip over the ADDIP header and find the Address parameter */
1122 	param = (union sctp_addr_param *)(asconf + 1);
1123 
1124 	af = sctp_get_af_specific(param_type2af(param->p.type));
1125 	if (unlikely(!af))
1126 		return NULL;
1127 
1128 	af->from_addr_param(&paddr, param, peer_port, 0);
1129 
1130 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1131 }
1132 
1133 
1134 /* SCTP-AUTH, Section 6.3:
1135 *    If the receiver does not find a STCB for a packet containing an AUTH
1136 *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1137 *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1138 *    association.
1139 *
1140 * This means that any chunks that can help us identify the association need
1141 * to be looked at to find this association.
1142 */
1143 static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1144 				      struct sk_buff *skb,
1145 				      const union sctp_addr *laddr,
1146 				      struct sctp_transport **transportp)
1147 {
1148 	struct sctp_association *asoc = NULL;
1149 	struct sctp_chunkhdr *ch;
1150 	int have_auth = 0;
1151 	unsigned int chunk_num = 1;
1152 	__u8 *ch_end;
1153 
1154 	/* Walk through the chunks looking for AUTH or ASCONF chunks
1155 	 * to help us find the association.
1156 	 */
1157 	ch = (struct sctp_chunkhdr *)skb->data;
1158 	do {
1159 		/* Break out if chunk length is less then minimal. */
1160 		if (ntohs(ch->length) < sizeof(*ch))
1161 			break;
1162 
1163 		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1164 		if (ch_end > skb_tail_pointer(skb))
1165 			break;
1166 
1167 		switch (ch->type) {
1168 		case SCTP_CID_AUTH:
1169 			have_auth = chunk_num;
1170 			break;
1171 
1172 		case SCTP_CID_COOKIE_ECHO:
1173 			/* If a packet arrives containing an AUTH chunk as
1174 			 * a first chunk, a COOKIE-ECHO chunk as the second
1175 			 * chunk, and possibly more chunks after them, and
1176 			 * the receiver does not have an STCB for that
1177 			 * packet, then authentication is based on
1178 			 * the contents of the COOKIE- ECHO chunk.
1179 			 */
1180 			if (have_auth == 1 && chunk_num == 2)
1181 				return NULL;
1182 			break;
1183 
1184 		case SCTP_CID_ASCONF:
1185 			if (have_auth || net->sctp.addip_noauth)
1186 				asoc = __sctp_rcv_asconf_lookup(
1187 						net, ch, laddr,
1188 						sctp_hdr(skb)->source,
1189 						transportp);
1190 		default:
1191 			break;
1192 		}
1193 
1194 		if (asoc)
1195 			break;
1196 
1197 		ch = (struct sctp_chunkhdr *)ch_end;
1198 		chunk_num++;
1199 	} while (ch_end < skb_tail_pointer(skb));
1200 
1201 	return asoc;
1202 }
1203 
1204 /*
1205  * There are circumstances when we need to look inside the SCTP packet
1206  * for information to help us find the association.   Examples
1207  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1208  * chunks.
1209  */
1210 static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1211 				      struct sk_buff *skb,
1212 				      const union sctp_addr *laddr,
1213 				      struct sctp_transport **transportp)
1214 {
1215 	struct sctp_chunkhdr *ch;
1216 
1217 	/* We do not allow GSO frames here as we need to linearize and
1218 	 * then cannot guarantee frame boundaries. This shouldn't be an
1219 	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1220 	 * those cannot be on GSO-style anyway.
1221 	 */
1222 	if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1223 		return NULL;
1224 
1225 	ch = (struct sctp_chunkhdr *)skb->data;
1226 
1227 	/* The code below will attempt to walk the chunk and extract
1228 	 * parameter information.  Before we do that, we need to verify
1229 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1230 	 * walk off the end.
1231 	 */
1232 	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1233 		return NULL;
1234 
1235 	/* If this is INIT/INIT-ACK look inside the chunk too. */
1236 	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1237 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1238 
1239 	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1240 }
1241 
1242 /* Lookup an association for an inbound skb. */
1243 static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1244 				      struct sk_buff *skb,
1245 				      const union sctp_addr *paddr,
1246 				      const union sctp_addr *laddr,
1247 				      struct sctp_transport **transportp)
1248 {
1249 	struct sctp_association *asoc;
1250 
1251 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1252 	if (asoc)
1253 		goto out;
1254 
1255 	/* Further lookup for INIT/INIT-ACK packets.
1256 	 * SCTP Implementors Guide, 2.18 Handling of address
1257 	 * parameters within the INIT or INIT-ACK.
1258 	 */
1259 	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1260 	if (asoc)
1261 		goto out;
1262 
1263 	if (paddr->sa.sa_family == AF_INET)
1264 		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1265 			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1266 			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1267 	else
1268 		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1269 			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1270 			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1271 
1272 out:
1273 	return asoc;
1274 }
1275