xref: /linux/net/sctp/input.c (revision 36ca1195ad7f760a6af3814cb002bd3a3d4b4db1)
1 /* SCTP kernel reference Implementation
2  * Copyright (c) 1999-2000 Cisco, Inc.
3  * Copyright (c) 1999-2001 Motorola, Inc.
4  * Copyright (c) 2001-2003 International Business Machines, Corp.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This file is part of the SCTP kernel reference Implementation
10  *
11  * These functions handle all input from the IP layer into SCTP.
12  *
13  * The SCTP reference implementation is free software;
14  * you can redistribute it and/or modify it under the terms of
15  * the GNU General Public License as published by
16  * the Free Software Foundation; either version 2, or (at your option)
17  * any later version.
18  *
19  * The SCTP reference implementation is distributed in the hope that it
20  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
21  *                 ************************
22  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
23  * See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License
26  * along with GNU CC; see the file COPYING.  If not, write to
27  * the Free Software Foundation, 59 Temple Place - Suite 330,
28  * Boston, MA 02111-1307, USA.
29  *
30  * Please send any bug reports or fixes you make to the
31  * email address(es):
32  *    lksctp developers <lksctp-developers@lists.sourceforge.net>
33  *
34  * Or submit a bug report through the following website:
35  *    http://www.sf.net/projects/lksctp
36  *
37  * Written or modified by:
38  *    La Monte H.P. Yarroll <piggy@acm.org>
39  *    Karl Knutson <karl@athena.chicago.il.us>
40  *    Xingang Guo <xingang.guo@intel.com>
41  *    Jon Grimm <jgrimm@us.ibm.com>
42  *    Hui Huang <hui.huang@nokia.com>
43  *    Daisy Chang <daisyc@us.ibm.com>
44  *    Sridhar Samudrala <sri@us.ibm.com>
45  *    Ardelle Fan <ardelle.fan@intel.com>
46  *
47  * Any bugs reported given to us we will try to fix... any fixes shared will
48  * be incorporated into the next SCTP release.
49  */
50 
51 #include <linux/types.h>
52 #include <linux/list.h> /* For struct list_head */
53 #include <linux/socket.h>
54 #include <linux/ip.h>
55 #include <linux/time.h> /* For struct timeval */
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/snmp.h>
59 #include <net/sock.h>
60 #include <net/xfrm.h>
61 #include <net/sctp/sctp.h>
62 #include <net/sctp/sm.h>
63 
64 /* Forward declarations for internal helpers. */
65 static int sctp_rcv_ootb(struct sk_buff *);
66 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
67 				      const union sctp_addr *laddr,
68 				      const union sctp_addr *paddr,
69 				      struct sctp_transport **transportp);
70 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr);
71 static struct sctp_association *__sctp_lookup_association(
72 					const union sctp_addr *local,
73 					const union sctp_addr *peer,
74 					struct sctp_transport **pt);
75 
76 
77 /* Calculate the SCTP checksum of an SCTP packet.  */
78 static inline int sctp_rcv_checksum(struct sk_buff *skb)
79 {
80 	struct sctphdr *sh;
81 	__u32 cmp, val;
82 	struct sk_buff *list = skb_shinfo(skb)->frag_list;
83 
84 	sh = (struct sctphdr *) skb->h.raw;
85 	cmp = ntohl(sh->checksum);
86 
87 	val = sctp_start_cksum((__u8 *)sh, skb_headlen(skb));
88 
89 	for (; list; list = list->next)
90 		val = sctp_update_cksum((__u8 *)list->data, skb_headlen(list),
91 					val);
92 
93 	val = sctp_end_cksum(val);
94 
95 	if (val != cmp) {
96 		/* CRC failure, dump it. */
97 		SCTP_INC_STATS_BH(SCTP_MIB_CHECKSUMERRORS);
98 		return -1;
99 	}
100 	return 0;
101 }
102 
103 /* The free routine for skbuffs that sctp receives */
104 static void sctp_rfree(struct sk_buff *skb)
105 {
106 	atomic_sub(sizeof(struct sctp_chunk),&skb->sk->sk_rmem_alloc);
107 	sock_rfree(skb);
108 }
109 
110 /* The ownership wrapper routine to do receive buffer accounting */
111 static void sctp_rcv_set_owner_r(struct sk_buff *skb, struct sock *sk)
112 {
113 	skb_set_owner_r(skb,sk);
114 	skb->destructor = sctp_rfree;
115 	atomic_add(sizeof(struct sctp_chunk),&sk->sk_rmem_alloc);
116 }
117 
118 /*
119  * This is the routine which IP calls when receiving an SCTP packet.
120  */
121 int sctp_rcv(struct sk_buff *skb)
122 {
123 	struct sock *sk;
124 	struct sctp_association *asoc;
125 	struct sctp_endpoint *ep = NULL;
126 	struct sctp_ep_common *rcvr;
127 	struct sctp_transport *transport = NULL;
128 	struct sctp_chunk *chunk;
129 	struct sctphdr *sh;
130 	union sctp_addr src;
131 	union sctp_addr dest;
132 	int family;
133 	struct sctp_af *af;
134 	int ret = 0;
135 
136 	if (skb->pkt_type!=PACKET_HOST)
137 		goto discard_it;
138 
139 	SCTP_INC_STATS_BH(SCTP_MIB_INSCTPPACKS);
140 
141 	sh = (struct sctphdr *) skb->h.raw;
142 
143 	/* Pull up the IP and SCTP headers. */
144 	__skb_pull(skb, skb->h.raw - skb->data);
145 	if (skb->len < sizeof(struct sctphdr))
146 		goto discard_it;
147 	if (sctp_rcv_checksum(skb) < 0)
148 		goto discard_it;
149 
150 	skb_pull(skb, sizeof(struct sctphdr));
151 
152 	/* Make sure we at least have chunk headers worth of data left. */
153 	if (skb->len < sizeof(struct sctp_chunkhdr))
154 		goto discard_it;
155 
156 	family = ipver2af(skb->nh.iph->version);
157 	af = sctp_get_af_specific(family);
158 	if (unlikely(!af))
159 		goto discard_it;
160 
161 	/* Initialize local addresses for lookups. */
162 	af->from_skb(&src, skb, 1);
163 	af->from_skb(&dest, skb, 0);
164 
165 	/* If the packet is to or from a non-unicast address,
166 	 * silently discard the packet.
167 	 *
168 	 * This is not clearly defined in the RFC except in section
169 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
170 	 * Transmission Protocol" 2.1, "It is important to note that the
171 	 * IP address of an SCTP transport address must be a routable
172 	 * unicast address.  In other words, IP multicast addresses and
173 	 * IP broadcast addresses cannot be used in an SCTP transport
174 	 * address."
175 	 */
176 	if (!af->addr_valid(&src, NULL) || !af->addr_valid(&dest, NULL))
177 		goto discard_it;
178 
179 	asoc = __sctp_rcv_lookup(skb, &src, &dest, &transport);
180 
181 	if (!asoc)
182 		ep = __sctp_rcv_lookup_endpoint(&dest);
183 
184 	/* Retrieve the common input handling substructure. */
185 	rcvr = asoc ? &asoc->base : &ep->base;
186 	sk = rcvr->sk;
187 
188 	/*
189 	 * If a frame arrives on an interface and the receiving socket is
190 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
191 	 */
192 	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb)))
193 	{
194 		sock_put(sk);
195 		if (asoc) {
196 			sctp_association_put(asoc);
197 			asoc = NULL;
198 		} else {
199 			sctp_endpoint_put(ep);
200 			ep = NULL;
201 		}
202 		sk = sctp_get_ctl_sock();
203 		ep = sctp_sk(sk)->ep;
204 		sctp_endpoint_hold(ep);
205 		sock_hold(sk);
206 		rcvr = &ep->base;
207 	}
208 
209 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
210 		goto discard_release;
211 
212 	/*
213 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
214 	 * An SCTP packet is called an "out of the blue" (OOTB)
215 	 * packet if it is correctly formed, i.e., passed the
216 	 * receiver's checksum check, but the receiver is not
217 	 * able to identify the association to which this
218 	 * packet belongs.
219 	 */
220 	if (!asoc) {
221 		if (sctp_rcv_ootb(skb)) {
222 			SCTP_INC_STATS_BH(SCTP_MIB_OUTOFBLUES);
223 			goto discard_release;
224 		}
225 	}
226 
227 	/* SCTP seems to always need a timestamp right now (FIXME) */
228 	if (skb->stamp.tv_sec == 0) {
229 		do_gettimeofday(&skb->stamp);
230 		sock_enable_timestamp(sk);
231 	}
232 
233 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
234 		goto discard_release;
235 
236 	ret = sk_filter(sk, skb, 1);
237 	if (ret)
238                 goto discard_release;
239 
240 	/* Create an SCTP packet structure. */
241 	chunk = sctp_chunkify(skb, asoc, sk);
242 	if (!chunk) {
243 		ret = -ENOMEM;
244 		goto discard_release;
245 	}
246 
247 	sctp_rcv_set_owner_r(skb,sk);
248 
249 	/* Remember what endpoint is to handle this packet. */
250 	chunk->rcvr = rcvr;
251 
252 	/* Remember the SCTP header. */
253 	chunk->sctp_hdr = sh;
254 
255 	/* Set the source and destination addresses of the incoming chunk.  */
256 	sctp_init_addrs(chunk, &src, &dest);
257 
258 	/* Remember where we came from.  */
259 	chunk->transport = transport;
260 
261 	/* Acquire access to the sock lock. Note: We are safe from other
262 	 * bottom halves on this lock, but a user may be in the lock too,
263 	 * so check if it is busy.
264 	 */
265 	sctp_bh_lock_sock(sk);
266 
267 	if (sock_owned_by_user(sk))
268 		sk_add_backlog(sk, (struct sk_buff *) chunk);
269 	else
270 		sctp_backlog_rcv(sk, (struct sk_buff *) chunk);
271 
272 	/* Release the sock and any reference counts we took in the
273 	 * lookup calls.
274 	 */
275 	sctp_bh_unlock_sock(sk);
276 	if (asoc)
277 		sctp_association_put(asoc);
278 	else
279 		sctp_endpoint_put(ep);
280 	sock_put(sk);
281 	return ret;
282 
283 discard_it:
284 	kfree_skb(skb);
285 	return ret;
286 
287 discard_release:
288 	/* Release any structures we may be holding. */
289 	sock_put(sk);
290 	if (asoc)
291 		sctp_association_put(asoc);
292 	else
293 		sctp_endpoint_put(ep);
294 
295 	goto discard_it;
296 }
297 
298 /* Handle second half of inbound skb processing.  If the sock was busy,
299  * we may have need to delay processing until later when the sock is
300  * released (on the backlog).   If not busy, we call this routine
301  * directly from the bottom half.
302  */
303 int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
304 {
305 	struct sctp_chunk *chunk;
306 	struct sctp_inq *inqueue;
307 
308 	/* One day chunk will live inside the skb, but for
309 	 * now this works.
310 	 */
311 	chunk = (struct sctp_chunk *) skb;
312 	inqueue = &chunk->rcvr->inqueue;
313 
314 	sctp_inq_push(inqueue, chunk);
315         return 0;
316 }
317 
318 /* Handle icmp frag needed error. */
319 void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
320 			   struct sctp_transport *t, __u32 pmtu)
321 {
322 	if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) {
323 		printk(KERN_WARNING "%s: Reported pmtu %d too low, "
324 		       "using default minimum of %d\n", __FUNCTION__, pmtu,
325 		       SCTP_DEFAULT_MINSEGMENT);
326 		pmtu = SCTP_DEFAULT_MINSEGMENT;
327 	}
328 
329 	if (!sock_owned_by_user(sk) && t && (t->pmtu != pmtu)) {
330 		t->pmtu = pmtu;
331 		sctp_assoc_sync_pmtu(asoc);
332 		sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
333 	}
334 }
335 
336 /*
337  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
338  *
339  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
340  *        or a "Protocol Unreachable" treat this message as an abort
341  *        with the T bit set.
342  *
343  * This function sends an event to the state machine, which will abort the
344  * association.
345  *
346  */
347 void sctp_icmp_proto_unreachable(struct sock *sk,
348                            struct sctp_endpoint *ep,
349                            struct sctp_association *asoc,
350                            struct sctp_transport *t)
351 {
352 	SCTP_DEBUG_PRINTK("%s\n",  __FUNCTION__);
353 
354 	sctp_do_sm(SCTP_EVENT_T_OTHER,
355 		   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
356 		   asoc->state, asoc->ep, asoc, NULL,
357 		   GFP_ATOMIC);
358 
359 }
360 
361 /* Common lookup code for icmp/icmpv6 error handler. */
362 struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
363 			     struct sctphdr *sctphdr,
364 			     struct sctp_endpoint **epp,
365 			     struct sctp_association **app,
366 			     struct sctp_transport **tpp)
367 {
368 	union sctp_addr saddr;
369 	union sctp_addr daddr;
370 	struct sctp_af *af;
371 	struct sock *sk = NULL;
372 	struct sctp_endpoint *ep = NULL;
373 	struct sctp_association *asoc = NULL;
374 	struct sctp_transport *transport = NULL;
375 
376 	*app = NULL; *epp = NULL; *tpp = NULL;
377 
378 	af = sctp_get_af_specific(family);
379 	if (unlikely(!af)) {
380 		return NULL;
381 	}
382 
383 	/* Initialize local addresses for lookups. */
384 	af->from_skb(&saddr, skb, 1);
385 	af->from_skb(&daddr, skb, 0);
386 
387 	/* Look for an association that matches the incoming ICMP error
388 	 * packet.
389 	 */
390 	asoc = __sctp_lookup_association(&saddr, &daddr, &transport);
391 	if (!asoc) {
392 		/* If there is no matching association, see if it matches any
393 		 * endpoint. This may happen for an ICMP error generated in
394 		 * response to an INIT_ACK.
395 		 */
396 		ep = __sctp_rcv_lookup_endpoint(&daddr);
397 		if (!ep) {
398 			return NULL;
399 		}
400 	}
401 
402 	if (asoc) {
403 		sk = asoc->base.sk;
404 
405 		if (ntohl(sctphdr->vtag) != asoc->c.peer_vtag) {
406 			ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
407 			goto out;
408 		}
409 	} else
410 		sk = ep->base.sk;
411 
412 	sctp_bh_lock_sock(sk);
413 
414 	/* If too many ICMPs get dropped on busy
415 	 * servers this needs to be solved differently.
416 	 */
417 	if (sock_owned_by_user(sk))
418 		NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
419 
420 	*epp = ep;
421 	*app = asoc;
422 	*tpp = transport;
423 	return sk;
424 
425 out:
426 	sock_put(sk);
427 	if (asoc)
428 		sctp_association_put(asoc);
429 	if (ep)
430 		sctp_endpoint_put(ep);
431 	return NULL;
432 }
433 
434 /* Common cleanup code for icmp/icmpv6 error handler. */
435 void sctp_err_finish(struct sock *sk, struct sctp_endpoint *ep,
436 		     struct sctp_association *asoc)
437 {
438 	sctp_bh_unlock_sock(sk);
439 	sock_put(sk);
440 	if (asoc)
441 		sctp_association_put(asoc);
442 	if (ep)
443 		sctp_endpoint_put(ep);
444 }
445 
446 /*
447  * This routine is called by the ICMP module when it gets some
448  * sort of error condition.  If err < 0 then the socket should
449  * be closed and the error returned to the user.  If err > 0
450  * it's just the icmp type << 8 | icmp code.  After adjustment
451  * header points to the first 8 bytes of the sctp header.  We need
452  * to find the appropriate port.
453  *
454  * The locking strategy used here is very "optimistic". When
455  * someone else accesses the socket the ICMP is just dropped
456  * and for some paths there is no check at all.
457  * A more general error queue to queue errors for later handling
458  * is probably better.
459  *
460  */
461 void sctp_v4_err(struct sk_buff *skb, __u32 info)
462 {
463 	struct iphdr *iph = (struct iphdr *)skb->data;
464 	struct sctphdr *sh = (struct sctphdr *)(skb->data + (iph->ihl <<2));
465 	int type = skb->h.icmph->type;
466 	int code = skb->h.icmph->code;
467 	struct sock *sk;
468 	struct sctp_endpoint *ep;
469 	struct sctp_association *asoc;
470 	struct sctp_transport *transport;
471 	struct inet_sock *inet;
472 	char *saveip, *savesctp;
473 	int err;
474 
475 	if (skb->len < ((iph->ihl << 2) + 8)) {
476 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
477 		return;
478 	}
479 
480 	/* Fix up skb to look at the embedded net header. */
481 	saveip = skb->nh.raw;
482 	savesctp  = skb->h.raw;
483 	skb->nh.iph = iph;
484 	skb->h.raw = (char *)sh;
485 	sk = sctp_err_lookup(AF_INET, skb, sh, &ep, &asoc, &transport);
486 	/* Put back, the original pointers. */
487 	skb->nh.raw = saveip;
488 	skb->h.raw = savesctp;
489 	if (!sk) {
490 		ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
491 		return;
492 	}
493 	/* Warning:  The sock lock is held.  Remember to call
494 	 * sctp_err_finish!
495 	 */
496 
497 	switch (type) {
498 	case ICMP_PARAMETERPROB:
499 		err = EPROTO;
500 		break;
501 	case ICMP_DEST_UNREACH:
502 		if (code > NR_ICMP_UNREACH)
503 			goto out_unlock;
504 
505 		/* PMTU discovery (RFC1191) */
506 		if (ICMP_FRAG_NEEDED == code) {
507 			sctp_icmp_frag_needed(sk, asoc, transport, info);
508 			goto out_unlock;
509 		}
510 		else {
511 			if (ICMP_PROT_UNREACH == code) {
512 				sctp_icmp_proto_unreachable(sk, ep, asoc,
513 							    transport);
514 				goto out_unlock;
515 			}
516 		}
517 		err = icmp_err_convert[code].errno;
518 		break;
519 	case ICMP_TIME_EXCEEDED:
520 		/* Ignore any time exceeded errors due to fragment reassembly
521 		 * timeouts.
522 		 */
523 		if (ICMP_EXC_FRAGTIME == code)
524 			goto out_unlock;
525 
526 		err = EHOSTUNREACH;
527 		break;
528 	default:
529 		goto out_unlock;
530 	}
531 
532 	inet = inet_sk(sk);
533 	if (!sock_owned_by_user(sk) && inet->recverr) {
534 		sk->sk_err = err;
535 		sk->sk_error_report(sk);
536 	} else {  /* Only an error on timeout */
537 		sk->sk_err_soft = err;
538 	}
539 
540 out_unlock:
541 	sctp_err_finish(sk, ep, asoc);
542 }
543 
544 /*
545  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
546  *
547  * This function scans all the chunks in the OOTB packet to determine if
548  * the packet should be discarded right away.  If a response might be needed
549  * for this packet, or, if further processing is possible, the packet will
550  * be queued to a proper inqueue for the next phase of handling.
551  *
552  * Output:
553  * Return 0 - If further processing is needed.
554  * Return 1 - If the packet can be discarded right away.
555  */
556 int sctp_rcv_ootb(struct sk_buff *skb)
557 {
558 	sctp_chunkhdr_t *ch;
559 	__u8 *ch_end;
560 	sctp_errhdr_t *err;
561 
562 	ch = (sctp_chunkhdr_t *) skb->data;
563 	ch_end = ((__u8 *) ch) + WORD_ROUND(ntohs(ch->length));
564 
565 	/* Scan through all the chunks in the packet.  */
566 	while (ch_end > (__u8 *)ch && ch_end < skb->tail) {
567 
568 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
569 		 * receiver MUST silently discard the OOTB packet and take no
570 		 * further action.
571 		 */
572 		if (SCTP_CID_ABORT == ch->type)
573 			goto discard;
574 
575 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
576 		 * chunk, the receiver should silently discard the packet
577 		 * and take no further action.
578 		 */
579 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
580 			goto discard;
581 
582 		/* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR
583 		 * or a COOKIE ACK the SCTP Packet should be silently
584 		 * discarded.
585 		 */
586 		if (SCTP_CID_COOKIE_ACK == ch->type)
587 			goto discard;
588 
589 		if (SCTP_CID_ERROR == ch->type) {
590 			sctp_walk_errors(err, ch) {
591 				if (SCTP_ERROR_STALE_COOKIE == err->cause)
592 					goto discard;
593 			}
594 		}
595 
596 		ch = (sctp_chunkhdr_t *) ch_end;
597 	        ch_end = ((__u8 *) ch) + WORD_ROUND(ntohs(ch->length));
598 	}
599 
600 	return 0;
601 
602 discard:
603 	return 1;
604 }
605 
606 /* Insert endpoint into the hash table.  */
607 static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
608 {
609 	struct sctp_ep_common **epp;
610 	struct sctp_ep_common *epb;
611 	struct sctp_hashbucket *head;
612 
613 	epb = &ep->base;
614 
615 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
616 	head = &sctp_ep_hashtable[epb->hashent];
617 
618 	sctp_write_lock(&head->lock);
619 	epp = &head->chain;
620 	epb->next = *epp;
621 	if (epb->next)
622 		(*epp)->pprev = &epb->next;
623 	*epp = epb;
624 	epb->pprev = epp;
625 	sctp_write_unlock(&head->lock);
626 }
627 
628 /* Add an endpoint to the hash. Local BH-safe. */
629 void sctp_hash_endpoint(struct sctp_endpoint *ep)
630 {
631 	sctp_local_bh_disable();
632 	__sctp_hash_endpoint(ep);
633 	sctp_local_bh_enable();
634 }
635 
636 /* Remove endpoint from the hash table.  */
637 static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
638 {
639 	struct sctp_hashbucket *head;
640 	struct sctp_ep_common *epb;
641 
642 	epb = &ep->base;
643 
644 	epb->hashent = sctp_ep_hashfn(epb->bind_addr.port);
645 
646 	head = &sctp_ep_hashtable[epb->hashent];
647 
648 	sctp_write_lock(&head->lock);
649 
650 	if (epb->pprev) {
651 		if (epb->next)
652 			epb->next->pprev = epb->pprev;
653 		*epb->pprev = epb->next;
654 		epb->pprev = NULL;
655 	}
656 
657 	sctp_write_unlock(&head->lock);
658 }
659 
660 /* Remove endpoint from the hash.  Local BH-safe. */
661 void sctp_unhash_endpoint(struct sctp_endpoint *ep)
662 {
663 	sctp_local_bh_disable();
664 	__sctp_unhash_endpoint(ep);
665 	sctp_local_bh_enable();
666 }
667 
668 /* Look up an endpoint. */
669 static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(const union sctp_addr *laddr)
670 {
671 	struct sctp_hashbucket *head;
672 	struct sctp_ep_common *epb;
673 	struct sctp_endpoint *ep;
674 	int hash;
675 
676 	hash = sctp_ep_hashfn(laddr->v4.sin_port);
677 	head = &sctp_ep_hashtable[hash];
678 	read_lock(&head->lock);
679 	for (epb = head->chain; epb; epb = epb->next) {
680 		ep = sctp_ep(epb);
681 		if (sctp_endpoint_is_match(ep, laddr))
682 			goto hit;
683 	}
684 
685 	ep = sctp_sk((sctp_get_ctl_sock()))->ep;
686 	epb = &ep->base;
687 
688 hit:
689 	sctp_endpoint_hold(ep);
690 	sock_hold(epb->sk);
691 	read_unlock(&head->lock);
692 	return ep;
693 }
694 
695 /* Insert association into the hash table.  */
696 static void __sctp_hash_established(struct sctp_association *asoc)
697 {
698 	struct sctp_ep_common **epp;
699 	struct sctp_ep_common *epb;
700 	struct sctp_hashbucket *head;
701 
702 	epb = &asoc->base;
703 
704 	/* Calculate which chain this entry will belong to. */
705 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port, asoc->peer.port);
706 
707 	head = &sctp_assoc_hashtable[epb->hashent];
708 
709 	sctp_write_lock(&head->lock);
710 	epp = &head->chain;
711 	epb->next = *epp;
712 	if (epb->next)
713 		(*epp)->pprev = &epb->next;
714 	*epp = epb;
715 	epb->pprev = epp;
716 	sctp_write_unlock(&head->lock);
717 }
718 
719 /* Add an association to the hash. Local BH-safe. */
720 void sctp_hash_established(struct sctp_association *asoc)
721 {
722 	sctp_local_bh_disable();
723 	__sctp_hash_established(asoc);
724 	sctp_local_bh_enable();
725 }
726 
727 /* Remove association from the hash table.  */
728 static void __sctp_unhash_established(struct sctp_association *asoc)
729 {
730 	struct sctp_hashbucket *head;
731 	struct sctp_ep_common *epb;
732 
733 	epb = &asoc->base;
734 
735 	epb->hashent = sctp_assoc_hashfn(epb->bind_addr.port,
736 					 asoc->peer.port);
737 
738 	head = &sctp_assoc_hashtable[epb->hashent];
739 
740 	sctp_write_lock(&head->lock);
741 
742 	if (epb->pprev) {
743 		if (epb->next)
744 			epb->next->pprev = epb->pprev;
745 		*epb->pprev = epb->next;
746 		epb->pprev = NULL;
747 	}
748 
749 	sctp_write_unlock(&head->lock);
750 }
751 
752 /* Remove association from the hash table.  Local BH-safe. */
753 void sctp_unhash_established(struct sctp_association *asoc)
754 {
755 	sctp_local_bh_disable();
756 	__sctp_unhash_established(asoc);
757 	sctp_local_bh_enable();
758 }
759 
760 /* Look up an association. */
761 static struct sctp_association *__sctp_lookup_association(
762 					const union sctp_addr *local,
763 					const union sctp_addr *peer,
764 					struct sctp_transport **pt)
765 {
766 	struct sctp_hashbucket *head;
767 	struct sctp_ep_common *epb;
768 	struct sctp_association *asoc;
769 	struct sctp_transport *transport;
770 	int hash;
771 
772 	/* Optimize here for direct hit, only listening connections can
773 	 * have wildcards anyways.
774 	 */
775 	hash = sctp_assoc_hashfn(local->v4.sin_port, peer->v4.sin_port);
776 	head = &sctp_assoc_hashtable[hash];
777 	read_lock(&head->lock);
778 	for (epb = head->chain; epb; epb = epb->next) {
779 		asoc = sctp_assoc(epb);
780 		transport = sctp_assoc_is_match(asoc, local, peer);
781 		if (transport)
782 			goto hit;
783 	}
784 
785 	read_unlock(&head->lock);
786 
787 	return NULL;
788 
789 hit:
790 	*pt = transport;
791 	sctp_association_hold(asoc);
792 	sock_hold(epb->sk);
793 	read_unlock(&head->lock);
794 	return asoc;
795 }
796 
797 /* Look up an association. BH-safe. */
798 SCTP_STATIC
799 struct sctp_association *sctp_lookup_association(const union sctp_addr *laddr,
800 						 const union sctp_addr *paddr,
801 					    struct sctp_transport **transportp)
802 {
803 	struct sctp_association *asoc;
804 
805 	sctp_local_bh_disable();
806 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
807 	sctp_local_bh_enable();
808 
809 	return asoc;
810 }
811 
812 /* Is there an association matching the given local and peer addresses? */
813 int sctp_has_association(const union sctp_addr *laddr,
814 			 const union sctp_addr *paddr)
815 {
816 	struct sctp_association *asoc;
817 	struct sctp_transport *transport;
818 
819 	if ((asoc = sctp_lookup_association(laddr, paddr, &transport))) {
820 		sock_put(asoc->base.sk);
821 		sctp_association_put(asoc);
822 		return 1;
823 	}
824 
825 	return 0;
826 }
827 
828 /*
829  * SCTP Implementors Guide, 2.18 Handling of address
830  * parameters within the INIT or INIT-ACK.
831  *
832  * D) When searching for a matching TCB upon reception of an INIT
833  *    or INIT-ACK chunk the receiver SHOULD use not only the
834  *    source address of the packet (containing the INIT or
835  *    INIT-ACK) but the receiver SHOULD also use all valid
836  *    address parameters contained within the chunk.
837  *
838  * 2.18.3 Solution description
839  *
840  * This new text clearly specifies to an implementor the need
841  * to look within the INIT or INIT-ACK. Any implementation that
842  * does not do this, may not be able to establish associations
843  * in certain circumstances.
844  *
845  */
846 static struct sctp_association *__sctp_rcv_init_lookup(struct sk_buff *skb,
847 	const union sctp_addr *laddr, struct sctp_transport **transportp)
848 {
849 	struct sctp_association *asoc;
850 	union sctp_addr addr;
851 	union sctp_addr *paddr = &addr;
852 	struct sctphdr *sh = (struct sctphdr *) skb->h.raw;
853 	sctp_chunkhdr_t *ch;
854 	union sctp_params params;
855 	sctp_init_chunk_t *init;
856 	struct sctp_transport *transport;
857 	struct sctp_af *af;
858 
859 	ch = (sctp_chunkhdr_t *) skb->data;
860 
861 	/* If this is INIT/INIT-ACK look inside the chunk too. */
862 	switch (ch->type) {
863 	case SCTP_CID_INIT:
864 	case SCTP_CID_INIT_ACK:
865 		break;
866 	default:
867 		return NULL;
868 	}
869 
870 	/* The code below will attempt to walk the chunk and extract
871 	 * parameter information.  Before we do that, we need to verify
872 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
873 	 * walk off the end.
874 	 */
875 	if (WORD_ROUND(ntohs(ch->length)) > skb->len)
876 		return NULL;
877 
878 	/*
879 	 * This code will NOT touch anything inside the chunk--it is
880 	 * strictly READ-ONLY.
881 	 *
882 	 * RFC 2960 3  SCTP packet Format
883 	 *
884 	 * Multiple chunks can be bundled into one SCTP packet up to
885 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
886 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
887 	 * other chunk in a packet.  See Section 6.10 for more details
888 	 * on chunk bundling.
889 	 */
890 
891 	/* Find the start of the TLVs and the end of the chunk.  This is
892 	 * the region we search for address parameters.
893 	 */
894 	init = (sctp_init_chunk_t *)skb->data;
895 
896 	/* Walk the parameters looking for embedded addresses. */
897 	sctp_walk_params(params, init, init_hdr.params) {
898 
899 		/* Note: Ignoring hostname addresses. */
900 		af = sctp_get_af_specific(param_type2af(params.p->type));
901 		if (!af)
902 			continue;
903 
904 		af->from_addr_param(paddr, params.addr, ntohs(sh->source), 0);
905 
906 		asoc = __sctp_lookup_association(laddr, paddr, &transport);
907 		if (asoc)
908 			return asoc;
909 	}
910 
911 	return NULL;
912 }
913 
914 /* Lookup an association for an inbound skb. */
915 static struct sctp_association *__sctp_rcv_lookup(struct sk_buff *skb,
916 				      const union sctp_addr *paddr,
917 				      const union sctp_addr *laddr,
918 				      struct sctp_transport **transportp)
919 {
920 	struct sctp_association *asoc;
921 
922 	asoc = __sctp_lookup_association(laddr, paddr, transportp);
923 
924 	/* Further lookup for INIT/INIT-ACK packets.
925 	 * SCTP Implementors Guide, 2.18 Handling of address
926 	 * parameters within the INIT or INIT-ACK.
927 	 */
928 	if (!asoc)
929 		asoc = __sctp_rcv_init_lookup(skb, laddr, transportp);
930 
931 	return asoc;
932 }
933