1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * PACKET - implements raw packet sockets. 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Alan Cox, <gw4pts@gw4pts.ampr.org> 11 * 12 * Fixes: 13 * Alan Cox : verify_area() now used correctly 14 * Alan Cox : new skbuff lists, look ma no backlogs! 15 * Alan Cox : tidied skbuff lists. 16 * Alan Cox : Now uses generic datagram routines I 17 * added. Also fixed the peek/read crash 18 * from all old Linux datagram code. 19 * Alan Cox : Uses the improved datagram code. 20 * Alan Cox : Added NULL's for socket options. 21 * Alan Cox : Re-commented the code. 22 * Alan Cox : Use new kernel side addressing 23 * Rob Janssen : Correct MTU usage. 24 * Dave Platt : Counter leaks caused by incorrect 25 * interrupt locking and some slightly 26 * dubious gcc output. Can you read 27 * compiler: it said _VOLATILE_ 28 * Richard Kooijman : Timestamp fixes. 29 * Alan Cox : New buffers. Use sk->mac.raw. 30 * Alan Cox : sendmsg/recvmsg support. 31 * Alan Cox : Protocol setting support 32 * Alexey Kuznetsov : Untied from IPv4 stack. 33 * Cyrus Durgin : Fixed kerneld for kmod. 34 * Michal Ostrowski : Module initialization cleanup. 35 * Ulises Alonso : Frame number limit removal and 36 * packet_set_ring memory leak. 37 * Eric Biederman : Allow for > 8 byte hardware addresses. 38 * The convention is that longer addresses 39 * will simply extend the hardware address 40 * byte arrays at the end of sockaddr_ll 41 * and packet_mreq. 42 * Johann Baudy : Added TX RING. 43 * Chetan Loke : Implemented TPACKET_V3 block abstraction 44 * layer. 45 * Copyright (C) 2011, <lokec@ccs.neu.edu> 46 * 47 * 48 * This program is free software; you can redistribute it and/or 49 * modify it under the terms of the GNU General Public License 50 * as published by the Free Software Foundation; either version 51 * 2 of the License, or (at your option) any later version. 52 * 53 */ 54 55 #include <linux/types.h> 56 #include <linux/mm.h> 57 #include <linux/capability.h> 58 #include <linux/fcntl.h> 59 #include <linux/socket.h> 60 #include <linux/in.h> 61 #include <linux/inet.h> 62 #include <linux/netdevice.h> 63 #include <linux/if_packet.h> 64 #include <linux/wireless.h> 65 #include <linux/kernel.h> 66 #include <linux/kmod.h> 67 #include <linux/slab.h> 68 #include <linux/vmalloc.h> 69 #include <net/net_namespace.h> 70 #include <net/ip.h> 71 #include <net/protocol.h> 72 #include <linux/skbuff.h> 73 #include <net/sock.h> 74 #include <linux/errno.h> 75 #include <linux/timer.h> 76 #include <asm/system.h> 77 #include <asm/uaccess.h> 78 #include <asm/ioctls.h> 79 #include <asm/page.h> 80 #include <asm/cacheflush.h> 81 #include <asm/io.h> 82 #include <linux/proc_fs.h> 83 #include <linux/seq_file.h> 84 #include <linux/poll.h> 85 #include <linux/module.h> 86 #include <linux/init.h> 87 #include <linux/mutex.h> 88 #include <linux/if_vlan.h> 89 #include <linux/virtio_net.h> 90 #include <linux/errqueue.h> 91 #include <linux/net_tstamp.h> 92 93 #ifdef CONFIG_INET 94 #include <net/inet_common.h> 95 #endif 96 97 /* 98 Assumptions: 99 - if device has no dev->hard_header routine, it adds and removes ll header 100 inside itself. In this case ll header is invisible outside of device, 101 but higher levels still should reserve dev->hard_header_len. 102 Some devices are enough clever to reallocate skb, when header 103 will not fit to reserved space (tunnel), another ones are silly 104 (PPP). 105 - packet socket receives packets with pulled ll header, 106 so that SOCK_RAW should push it back. 107 108 On receive: 109 ----------- 110 111 Incoming, dev->hard_header!=NULL 112 mac_header -> ll header 113 data -> data 114 115 Outgoing, dev->hard_header!=NULL 116 mac_header -> ll header 117 data -> ll header 118 119 Incoming, dev->hard_header==NULL 120 mac_header -> UNKNOWN position. It is very likely, that it points to ll 121 header. PPP makes it, that is wrong, because introduce 122 assymetry between rx and tx paths. 123 data -> data 124 125 Outgoing, dev->hard_header==NULL 126 mac_header -> data. ll header is still not built! 127 data -> data 128 129 Resume 130 If dev->hard_header==NULL we are unlikely to restore sensible ll header. 131 132 133 On transmit: 134 ------------ 135 136 dev->hard_header != NULL 137 mac_header -> ll header 138 data -> ll header 139 140 dev->hard_header == NULL (ll header is added by device, we cannot control it) 141 mac_header -> data 142 data -> data 143 144 We should set nh.raw on output to correct posistion, 145 packet classifier depends on it. 146 */ 147 148 /* Private packet socket structures. */ 149 150 struct packet_mclist { 151 struct packet_mclist *next; 152 int ifindex; 153 int count; 154 unsigned short type; 155 unsigned short alen; 156 unsigned char addr[MAX_ADDR_LEN]; 157 }; 158 /* identical to struct packet_mreq except it has 159 * a longer address field. 160 */ 161 struct packet_mreq_max { 162 int mr_ifindex; 163 unsigned short mr_type; 164 unsigned short mr_alen; 165 unsigned char mr_address[MAX_ADDR_LEN]; 166 }; 167 168 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 169 int closing, int tx_ring); 170 171 172 #define V3_ALIGNMENT (8) 173 174 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT)) 175 176 #define BLK_PLUS_PRIV(sz_of_priv) \ 177 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT)) 178 179 /* kbdq - kernel block descriptor queue */ 180 struct tpacket_kbdq_core { 181 struct pgv *pkbdq; 182 unsigned int feature_req_word; 183 unsigned int hdrlen; 184 unsigned char reset_pending_on_curr_blk; 185 unsigned char delete_blk_timer; 186 unsigned short kactive_blk_num; 187 unsigned short blk_sizeof_priv; 188 189 /* last_kactive_blk_num: 190 * trick to see if user-space has caught up 191 * in order to avoid refreshing timer when every single pkt arrives. 192 */ 193 unsigned short last_kactive_blk_num; 194 195 char *pkblk_start; 196 char *pkblk_end; 197 int kblk_size; 198 unsigned int knum_blocks; 199 uint64_t knxt_seq_num; 200 char *prev; 201 char *nxt_offset; 202 struct sk_buff *skb; 203 204 atomic_t blk_fill_in_prog; 205 206 /* Default is set to 8ms */ 207 #define DEFAULT_PRB_RETIRE_TOV (8) 208 209 unsigned short retire_blk_tov; 210 unsigned short version; 211 unsigned long tov_in_jiffies; 212 213 /* timer to retire an outstanding block */ 214 struct timer_list retire_blk_timer; 215 }; 216 217 #define PGV_FROM_VMALLOC 1 218 struct pgv { 219 char *buffer; 220 }; 221 222 struct packet_ring_buffer { 223 struct pgv *pg_vec; 224 unsigned int head; 225 unsigned int frames_per_block; 226 unsigned int frame_size; 227 unsigned int frame_max; 228 229 unsigned int pg_vec_order; 230 unsigned int pg_vec_pages; 231 unsigned int pg_vec_len; 232 233 struct tpacket_kbdq_core prb_bdqc; 234 atomic_t pending; 235 }; 236 237 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status) 238 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts) 239 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt) 240 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len) 241 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num) 242 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv) 243 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x))) 244 245 struct packet_sock; 246 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg); 247 248 static void *packet_previous_frame(struct packet_sock *po, 249 struct packet_ring_buffer *rb, 250 int status); 251 static void packet_increment_head(struct packet_ring_buffer *buff); 252 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *, 253 struct tpacket_block_desc *); 254 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *, 255 struct packet_sock *); 256 static void prb_retire_current_block(struct tpacket_kbdq_core *, 257 struct packet_sock *, unsigned int status); 258 static int prb_queue_frozen(struct tpacket_kbdq_core *); 259 static void prb_open_block(struct tpacket_kbdq_core *, 260 struct tpacket_block_desc *); 261 static void prb_retire_rx_blk_timer_expired(unsigned long); 262 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *); 263 static void prb_init_blk_timer(struct packet_sock *, 264 struct tpacket_kbdq_core *, 265 void (*func) (unsigned long)); 266 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *); 267 static void prb_clear_rxhash(struct tpacket_kbdq_core *, 268 struct tpacket3_hdr *); 269 static void prb_fill_vlan_info(struct tpacket_kbdq_core *, 270 struct tpacket3_hdr *); 271 static void packet_flush_mclist(struct sock *sk); 272 273 struct packet_fanout; 274 struct packet_sock { 275 /* struct sock has to be the first member of packet_sock */ 276 struct sock sk; 277 struct packet_fanout *fanout; 278 struct tpacket_stats stats; 279 union tpacket_stats_u stats_u; 280 struct packet_ring_buffer rx_ring; 281 struct packet_ring_buffer tx_ring; 282 int copy_thresh; 283 spinlock_t bind_lock; 284 struct mutex pg_vec_lock; 285 unsigned int running:1, /* prot_hook is attached*/ 286 auxdata:1, 287 origdev:1, 288 has_vnet_hdr:1; 289 int ifindex; /* bound device */ 290 __be16 num; 291 struct packet_mclist *mclist; 292 atomic_t mapped; 293 enum tpacket_versions tp_version; 294 unsigned int tp_hdrlen; 295 unsigned int tp_reserve; 296 unsigned int tp_loss:1; 297 unsigned int tp_tstamp; 298 struct packet_type prot_hook ____cacheline_aligned_in_smp; 299 }; 300 301 #define PACKET_FANOUT_MAX 256 302 303 struct packet_fanout { 304 #ifdef CONFIG_NET_NS 305 struct net *net; 306 #endif 307 unsigned int num_members; 308 u16 id; 309 u8 type; 310 u8 defrag; 311 atomic_t rr_cur; 312 struct list_head list; 313 struct sock *arr[PACKET_FANOUT_MAX]; 314 spinlock_t lock; 315 atomic_t sk_ref; 316 struct packet_type prot_hook ____cacheline_aligned_in_smp; 317 }; 318 319 struct packet_skb_cb { 320 unsigned int origlen; 321 union { 322 struct sockaddr_pkt pkt; 323 struct sockaddr_ll ll; 324 } sa; 325 }; 326 327 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb)) 328 329 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc)) 330 #define GET_PBLOCK_DESC(x, bid) \ 331 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer)) 332 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \ 333 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer)) 334 #define GET_NEXT_PRB_BLK_NUM(x) \ 335 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \ 336 ((x)->kactive_blk_num+1) : 0) 337 338 static struct packet_sock *pkt_sk(struct sock *sk) 339 { 340 return (struct packet_sock *)sk; 341 } 342 343 static void __fanout_unlink(struct sock *sk, struct packet_sock *po); 344 static void __fanout_link(struct sock *sk, struct packet_sock *po); 345 346 /* register_prot_hook must be invoked with the po->bind_lock held, 347 * or from a context in which asynchronous accesses to the packet 348 * socket is not possible (packet_create()). 349 */ 350 static void register_prot_hook(struct sock *sk) 351 { 352 struct packet_sock *po = pkt_sk(sk); 353 if (!po->running) { 354 if (po->fanout) 355 __fanout_link(sk, po); 356 else 357 dev_add_pack(&po->prot_hook); 358 sock_hold(sk); 359 po->running = 1; 360 } 361 } 362 363 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock 364 * held. If the sync parameter is true, we will temporarily drop 365 * the po->bind_lock and do a synchronize_net to make sure no 366 * asynchronous packet processing paths still refer to the elements 367 * of po->prot_hook. If the sync parameter is false, it is the 368 * callers responsibility to take care of this. 369 */ 370 static void __unregister_prot_hook(struct sock *sk, bool sync) 371 { 372 struct packet_sock *po = pkt_sk(sk); 373 374 po->running = 0; 375 if (po->fanout) 376 __fanout_unlink(sk, po); 377 else 378 __dev_remove_pack(&po->prot_hook); 379 __sock_put(sk); 380 381 if (sync) { 382 spin_unlock(&po->bind_lock); 383 synchronize_net(); 384 spin_lock(&po->bind_lock); 385 } 386 } 387 388 static void unregister_prot_hook(struct sock *sk, bool sync) 389 { 390 struct packet_sock *po = pkt_sk(sk); 391 392 if (po->running) 393 __unregister_prot_hook(sk, sync); 394 } 395 396 static inline __pure struct page *pgv_to_page(void *addr) 397 { 398 if (is_vmalloc_addr(addr)) 399 return vmalloc_to_page(addr); 400 return virt_to_page(addr); 401 } 402 403 static void __packet_set_status(struct packet_sock *po, void *frame, int status) 404 { 405 union { 406 struct tpacket_hdr *h1; 407 struct tpacket2_hdr *h2; 408 void *raw; 409 } h; 410 411 h.raw = frame; 412 switch (po->tp_version) { 413 case TPACKET_V1: 414 h.h1->tp_status = status; 415 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 416 break; 417 case TPACKET_V2: 418 h.h2->tp_status = status; 419 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 420 break; 421 case TPACKET_V3: 422 default: 423 WARN(1, "TPACKET version not supported.\n"); 424 BUG(); 425 } 426 427 smp_wmb(); 428 } 429 430 static int __packet_get_status(struct packet_sock *po, void *frame) 431 { 432 union { 433 struct tpacket_hdr *h1; 434 struct tpacket2_hdr *h2; 435 void *raw; 436 } h; 437 438 smp_rmb(); 439 440 h.raw = frame; 441 switch (po->tp_version) { 442 case TPACKET_V1: 443 flush_dcache_page(pgv_to_page(&h.h1->tp_status)); 444 return h.h1->tp_status; 445 case TPACKET_V2: 446 flush_dcache_page(pgv_to_page(&h.h2->tp_status)); 447 return h.h2->tp_status; 448 case TPACKET_V3: 449 default: 450 WARN(1, "TPACKET version not supported.\n"); 451 BUG(); 452 return 0; 453 } 454 } 455 456 static void *packet_lookup_frame(struct packet_sock *po, 457 struct packet_ring_buffer *rb, 458 unsigned int position, 459 int status) 460 { 461 unsigned int pg_vec_pos, frame_offset; 462 union { 463 struct tpacket_hdr *h1; 464 struct tpacket2_hdr *h2; 465 void *raw; 466 } h; 467 468 pg_vec_pos = position / rb->frames_per_block; 469 frame_offset = position % rb->frames_per_block; 470 471 h.raw = rb->pg_vec[pg_vec_pos].buffer + 472 (frame_offset * rb->frame_size); 473 474 if (status != __packet_get_status(po, h.raw)) 475 return NULL; 476 477 return h.raw; 478 } 479 480 static void *packet_current_frame(struct packet_sock *po, 481 struct packet_ring_buffer *rb, 482 int status) 483 { 484 return packet_lookup_frame(po, rb, rb->head, status); 485 } 486 487 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc) 488 { 489 del_timer_sync(&pkc->retire_blk_timer); 490 } 491 492 static void prb_shutdown_retire_blk_timer(struct packet_sock *po, 493 int tx_ring, 494 struct sk_buff_head *rb_queue) 495 { 496 struct tpacket_kbdq_core *pkc; 497 498 pkc = tx_ring ? &po->tx_ring.prb_bdqc : &po->rx_ring.prb_bdqc; 499 500 spin_lock(&rb_queue->lock); 501 pkc->delete_blk_timer = 1; 502 spin_unlock(&rb_queue->lock); 503 504 prb_del_retire_blk_timer(pkc); 505 } 506 507 static void prb_init_blk_timer(struct packet_sock *po, 508 struct tpacket_kbdq_core *pkc, 509 void (*func) (unsigned long)) 510 { 511 init_timer(&pkc->retire_blk_timer); 512 pkc->retire_blk_timer.data = (long)po; 513 pkc->retire_blk_timer.function = func; 514 pkc->retire_blk_timer.expires = jiffies; 515 } 516 517 static void prb_setup_retire_blk_timer(struct packet_sock *po, int tx_ring) 518 { 519 struct tpacket_kbdq_core *pkc; 520 521 if (tx_ring) 522 BUG(); 523 524 pkc = tx_ring ? &po->tx_ring.prb_bdqc : &po->rx_ring.prb_bdqc; 525 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired); 526 } 527 528 static int prb_calc_retire_blk_tmo(struct packet_sock *po, 529 int blk_size_in_bytes) 530 { 531 struct net_device *dev; 532 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0; 533 struct ethtool_cmd ecmd; 534 int err; 535 536 rtnl_lock(); 537 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex); 538 if (unlikely(!dev)) { 539 rtnl_unlock(); 540 return DEFAULT_PRB_RETIRE_TOV; 541 } 542 err = __ethtool_get_settings(dev, &ecmd); 543 rtnl_unlock(); 544 if (!err) { 545 switch (ecmd.speed) { 546 case SPEED_10000: 547 msec = 1; 548 div = 10000/1000; 549 break; 550 case SPEED_1000: 551 msec = 1; 552 div = 1000/1000; 553 break; 554 /* 555 * If the link speed is so slow you don't really 556 * need to worry about perf anyways 557 */ 558 case SPEED_100: 559 case SPEED_10: 560 default: 561 return DEFAULT_PRB_RETIRE_TOV; 562 } 563 } 564 565 mbits = (blk_size_in_bytes * 8) / (1024 * 1024); 566 567 if (div) 568 mbits /= div; 569 570 tmo = mbits * msec; 571 572 if (div) 573 return tmo+1; 574 return tmo; 575 } 576 577 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1, 578 union tpacket_req_u *req_u) 579 { 580 p1->feature_req_word = req_u->req3.tp_feature_req_word; 581 } 582 583 static void init_prb_bdqc(struct packet_sock *po, 584 struct packet_ring_buffer *rb, 585 struct pgv *pg_vec, 586 union tpacket_req_u *req_u, int tx_ring) 587 { 588 struct tpacket_kbdq_core *p1 = &rb->prb_bdqc; 589 struct tpacket_block_desc *pbd; 590 591 memset(p1, 0x0, sizeof(*p1)); 592 593 p1->knxt_seq_num = 1; 594 p1->pkbdq = pg_vec; 595 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer; 596 p1->pkblk_start = (char *)pg_vec[0].buffer; 597 p1->kblk_size = req_u->req3.tp_block_size; 598 p1->knum_blocks = req_u->req3.tp_block_nr; 599 p1->hdrlen = po->tp_hdrlen; 600 p1->version = po->tp_version; 601 p1->last_kactive_blk_num = 0; 602 po->stats_u.stats3.tp_freeze_q_cnt = 0; 603 if (req_u->req3.tp_retire_blk_tov) 604 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov; 605 else 606 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po, 607 req_u->req3.tp_block_size); 608 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov); 609 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv; 610 611 prb_init_ft_ops(p1, req_u); 612 prb_setup_retire_blk_timer(po, tx_ring); 613 prb_open_block(p1, pbd); 614 } 615 616 /* Do NOT update the last_blk_num first. 617 * Assumes sk_buff_head lock is held. 618 */ 619 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc) 620 { 621 mod_timer(&pkc->retire_blk_timer, 622 jiffies + pkc->tov_in_jiffies); 623 pkc->last_kactive_blk_num = pkc->kactive_blk_num; 624 } 625 626 /* 627 * Timer logic: 628 * 1) We refresh the timer only when we open a block. 629 * By doing this we don't waste cycles refreshing the timer 630 * on packet-by-packet basis. 631 * 632 * With a 1MB block-size, on a 1Gbps line, it will take 633 * i) ~8 ms to fill a block + ii) memcpy etc. 634 * In this cut we are not accounting for the memcpy time. 635 * 636 * So, if the user sets the 'tmo' to 10ms then the timer 637 * will never fire while the block is still getting filled 638 * (which is what we want). However, the user could choose 639 * to close a block early and that's fine. 640 * 641 * But when the timer does fire, we check whether or not to refresh it. 642 * Since the tmo granularity is in msecs, it is not too expensive 643 * to refresh the timer, lets say every '8' msecs. 644 * Either the user can set the 'tmo' or we can derive it based on 645 * a) line-speed and b) block-size. 646 * prb_calc_retire_blk_tmo() calculates the tmo. 647 * 648 */ 649 static void prb_retire_rx_blk_timer_expired(unsigned long data) 650 { 651 struct packet_sock *po = (struct packet_sock *)data; 652 struct tpacket_kbdq_core *pkc = &po->rx_ring.prb_bdqc; 653 unsigned int frozen; 654 struct tpacket_block_desc *pbd; 655 656 spin_lock(&po->sk.sk_receive_queue.lock); 657 658 frozen = prb_queue_frozen(pkc); 659 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 660 661 if (unlikely(pkc->delete_blk_timer)) 662 goto out; 663 664 /* We only need to plug the race when the block is partially filled. 665 * tpacket_rcv: 666 * lock(); increment BLOCK_NUM_PKTS; unlock() 667 * copy_bits() is in progress ... 668 * timer fires on other cpu: 669 * we can't retire the current block because copy_bits 670 * is in progress. 671 * 672 */ 673 if (BLOCK_NUM_PKTS(pbd)) { 674 while (atomic_read(&pkc->blk_fill_in_prog)) { 675 /* Waiting for skb_copy_bits to finish... */ 676 cpu_relax(); 677 } 678 } 679 680 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) { 681 if (!frozen) { 682 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO); 683 if (!prb_dispatch_next_block(pkc, po)) 684 goto refresh_timer; 685 else 686 goto out; 687 } else { 688 /* Case 1. Queue was frozen because user-space was 689 * lagging behind. 690 */ 691 if (prb_curr_blk_in_use(pkc, pbd)) { 692 /* 693 * Ok, user-space is still behind. 694 * So just refresh the timer. 695 */ 696 goto refresh_timer; 697 } else { 698 /* Case 2. queue was frozen,user-space caught up, 699 * now the link went idle && the timer fired. 700 * We don't have a block to close.So we open this 701 * block and restart the timer. 702 * opening a block thaws the queue,restarts timer 703 * Thawing/timer-refresh is a side effect. 704 */ 705 prb_open_block(pkc, pbd); 706 goto out; 707 } 708 } 709 } 710 711 refresh_timer: 712 _prb_refresh_rx_retire_blk_timer(pkc); 713 714 out: 715 spin_unlock(&po->sk.sk_receive_queue.lock); 716 } 717 718 static void prb_flush_block(struct tpacket_kbdq_core *pkc1, 719 struct tpacket_block_desc *pbd1, __u32 status) 720 { 721 /* Flush everything minus the block header */ 722 723 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 724 u8 *start, *end; 725 726 start = (u8 *)pbd1; 727 728 /* Skip the block header(we know header WILL fit in 4K) */ 729 start += PAGE_SIZE; 730 731 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end); 732 for (; start < end; start += PAGE_SIZE) 733 flush_dcache_page(pgv_to_page(start)); 734 735 smp_wmb(); 736 #endif 737 738 /* Now update the block status. */ 739 740 BLOCK_STATUS(pbd1) = status; 741 742 /* Flush the block header */ 743 744 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 745 start = (u8 *)pbd1; 746 flush_dcache_page(pgv_to_page(start)); 747 748 smp_wmb(); 749 #endif 750 } 751 752 /* 753 * Side effect: 754 * 755 * 1) flush the block 756 * 2) Increment active_blk_num 757 * 758 * Note:We DONT refresh the timer on purpose. 759 * Because almost always the next block will be opened. 760 */ 761 static void prb_close_block(struct tpacket_kbdq_core *pkc1, 762 struct tpacket_block_desc *pbd1, 763 struct packet_sock *po, unsigned int stat) 764 { 765 __u32 status = TP_STATUS_USER | stat; 766 767 struct tpacket3_hdr *last_pkt; 768 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 769 770 if (po->stats.tp_drops) 771 status |= TP_STATUS_LOSING; 772 773 last_pkt = (struct tpacket3_hdr *)pkc1->prev; 774 last_pkt->tp_next_offset = 0; 775 776 /* Get the ts of the last pkt */ 777 if (BLOCK_NUM_PKTS(pbd1)) { 778 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec; 779 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec; 780 } else { 781 /* Ok, we tmo'd - so get the current time */ 782 struct timespec ts; 783 getnstimeofday(&ts); 784 h1->ts_last_pkt.ts_sec = ts.tv_sec; 785 h1->ts_last_pkt.ts_nsec = ts.tv_nsec; 786 } 787 788 smp_wmb(); 789 790 /* Flush the block */ 791 prb_flush_block(pkc1, pbd1, status); 792 793 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1); 794 } 795 796 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc) 797 { 798 pkc->reset_pending_on_curr_blk = 0; 799 } 800 801 /* 802 * Side effect of opening a block: 803 * 804 * 1) prb_queue is thawed. 805 * 2) retire_blk_timer is refreshed. 806 * 807 */ 808 static void prb_open_block(struct tpacket_kbdq_core *pkc1, 809 struct tpacket_block_desc *pbd1) 810 { 811 struct timespec ts; 812 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1; 813 814 smp_rmb(); 815 816 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd1))) { 817 818 /* We could have just memset this but we will lose the 819 * flexibility of making the priv area sticky 820 */ 821 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++; 822 BLOCK_NUM_PKTS(pbd1) = 0; 823 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 824 getnstimeofday(&ts); 825 h1->ts_first_pkt.ts_sec = ts.tv_sec; 826 h1->ts_first_pkt.ts_nsec = ts.tv_nsec; 827 pkc1->pkblk_start = (char *)pbd1; 828 pkc1->nxt_offset = (char *)(pkc1->pkblk_start + 829 BLK_PLUS_PRIV(pkc1->blk_sizeof_priv)); 830 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv); 831 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN; 832 pbd1->version = pkc1->version; 833 pkc1->prev = pkc1->nxt_offset; 834 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size; 835 prb_thaw_queue(pkc1); 836 _prb_refresh_rx_retire_blk_timer(pkc1); 837 838 smp_wmb(); 839 840 return; 841 } 842 843 WARN(1, "ERROR block:%p is NOT FREE status:%d kactive_blk_num:%d\n", 844 pbd1, BLOCK_STATUS(pbd1), pkc1->kactive_blk_num); 845 dump_stack(); 846 BUG(); 847 } 848 849 /* 850 * Queue freeze logic: 851 * 1) Assume tp_block_nr = 8 blocks. 852 * 2) At time 't0', user opens Rx ring. 853 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7 854 * 4) user-space is either sleeping or processing block '0'. 855 * 5) tpacket_rcv is currently filling block '7', since there is no space left, 856 * it will close block-7,loop around and try to fill block '0'. 857 * call-flow: 858 * __packet_lookup_frame_in_block 859 * prb_retire_current_block() 860 * prb_dispatch_next_block() 861 * |->(BLOCK_STATUS == USER) evaluates to true 862 * 5.1) Since block-0 is currently in-use, we just freeze the queue. 863 * 6) Now there are two cases: 864 * 6.1) Link goes idle right after the queue is frozen. 865 * But remember, the last open_block() refreshed the timer. 866 * When this timer expires,it will refresh itself so that we can 867 * re-open block-0 in near future. 868 * 6.2) Link is busy and keeps on receiving packets. This is a simple 869 * case and __packet_lookup_frame_in_block will check if block-0 870 * is free and can now be re-used. 871 */ 872 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc, 873 struct packet_sock *po) 874 { 875 pkc->reset_pending_on_curr_blk = 1; 876 po->stats_u.stats3.tp_freeze_q_cnt++; 877 } 878 879 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT)) 880 881 /* 882 * If the next block is free then we will dispatch it 883 * and return a good offset. 884 * Else, we will freeze the queue. 885 * So, caller must check the return value. 886 */ 887 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc, 888 struct packet_sock *po) 889 { 890 struct tpacket_block_desc *pbd; 891 892 smp_rmb(); 893 894 /* 1. Get current block num */ 895 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 896 897 /* 2. If this block is currently in_use then freeze the queue */ 898 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) { 899 prb_freeze_queue(pkc, po); 900 return NULL; 901 } 902 903 /* 904 * 3. 905 * open this block and return the offset where the first packet 906 * needs to get stored. 907 */ 908 prb_open_block(pkc, pbd); 909 return (void *)pkc->nxt_offset; 910 } 911 912 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc, 913 struct packet_sock *po, unsigned int status) 914 { 915 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 916 917 /* retire/close the current block */ 918 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) { 919 /* 920 * Plug the case where copy_bits() is in progress on 921 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't 922 * have space to copy the pkt in the current block and 923 * called prb_retire_current_block() 924 * 925 * We don't need to worry about the TMO case because 926 * the timer-handler already handled this case. 927 */ 928 if (!(status & TP_STATUS_BLK_TMO)) { 929 while (atomic_read(&pkc->blk_fill_in_prog)) { 930 /* Waiting for skb_copy_bits to finish... */ 931 cpu_relax(); 932 } 933 } 934 prb_close_block(pkc, pbd, po, status); 935 return; 936 } 937 938 WARN(1, "ERROR-pbd[%d]:%p\n", pkc->kactive_blk_num, pbd); 939 dump_stack(); 940 BUG(); 941 } 942 943 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc, 944 struct tpacket_block_desc *pbd) 945 { 946 return TP_STATUS_USER & BLOCK_STATUS(pbd); 947 } 948 949 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc) 950 { 951 return pkc->reset_pending_on_curr_blk; 952 } 953 954 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb) 955 { 956 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 957 atomic_dec(&pkc->blk_fill_in_prog); 958 } 959 960 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc, 961 struct tpacket3_hdr *ppd) 962 { 963 ppd->hv1.tp_rxhash = skb_get_rxhash(pkc->skb); 964 } 965 966 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc, 967 struct tpacket3_hdr *ppd) 968 { 969 ppd->hv1.tp_rxhash = 0; 970 } 971 972 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc, 973 struct tpacket3_hdr *ppd) 974 { 975 if (vlan_tx_tag_present(pkc->skb)) { 976 ppd->hv1.tp_vlan_tci = vlan_tx_tag_get(pkc->skb); 977 ppd->tp_status = TP_STATUS_VLAN_VALID; 978 } else { 979 ppd->hv1.tp_vlan_tci = ppd->tp_status = 0; 980 } 981 } 982 983 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc, 984 struct tpacket3_hdr *ppd) 985 { 986 prb_fill_vlan_info(pkc, ppd); 987 988 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH) 989 prb_fill_rxhash(pkc, ppd); 990 else 991 prb_clear_rxhash(pkc, ppd); 992 } 993 994 static void prb_fill_curr_block(char *curr, 995 struct tpacket_kbdq_core *pkc, 996 struct tpacket_block_desc *pbd, 997 unsigned int len) 998 { 999 struct tpacket3_hdr *ppd; 1000 1001 ppd = (struct tpacket3_hdr *)curr; 1002 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len); 1003 pkc->prev = curr; 1004 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len); 1005 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len); 1006 BLOCK_NUM_PKTS(pbd) += 1; 1007 atomic_inc(&pkc->blk_fill_in_prog); 1008 prb_run_all_ft_ops(pkc, ppd); 1009 } 1010 1011 /* Assumes caller has the sk->rx_queue.lock */ 1012 static void *__packet_lookup_frame_in_block(struct packet_sock *po, 1013 struct sk_buff *skb, 1014 int status, 1015 unsigned int len 1016 ) 1017 { 1018 struct tpacket_kbdq_core *pkc; 1019 struct tpacket_block_desc *pbd; 1020 char *curr, *end; 1021 1022 pkc = GET_PBDQC_FROM_RB(((struct packet_ring_buffer *)&po->rx_ring)); 1023 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1024 1025 /* Queue is frozen when user space is lagging behind */ 1026 if (prb_queue_frozen(pkc)) { 1027 /* 1028 * Check if that last block which caused the queue to freeze, 1029 * is still in_use by user-space. 1030 */ 1031 if (prb_curr_blk_in_use(pkc, pbd)) { 1032 /* Can't record this packet */ 1033 return NULL; 1034 } else { 1035 /* 1036 * Ok, the block was released by user-space. 1037 * Now let's open that block. 1038 * opening a block also thaws the queue. 1039 * Thawing is a side effect. 1040 */ 1041 prb_open_block(pkc, pbd); 1042 } 1043 } 1044 1045 smp_mb(); 1046 curr = pkc->nxt_offset; 1047 pkc->skb = skb; 1048 end = (char *) ((char *)pbd + pkc->kblk_size); 1049 1050 /* first try the current block */ 1051 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) { 1052 prb_fill_curr_block(curr, pkc, pbd, len); 1053 return (void *)curr; 1054 } 1055 1056 /* Ok, close the current block */ 1057 prb_retire_current_block(pkc, po, 0); 1058 1059 /* Now, try to dispatch the next block */ 1060 curr = (char *)prb_dispatch_next_block(pkc, po); 1061 if (curr) { 1062 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc); 1063 prb_fill_curr_block(curr, pkc, pbd, len); 1064 return (void *)curr; 1065 } 1066 1067 /* 1068 * No free blocks are available.user_space hasn't caught up yet. 1069 * Queue was just frozen and now this packet will get dropped. 1070 */ 1071 return NULL; 1072 } 1073 1074 static void *packet_current_rx_frame(struct packet_sock *po, 1075 struct sk_buff *skb, 1076 int status, unsigned int len) 1077 { 1078 char *curr = NULL; 1079 switch (po->tp_version) { 1080 case TPACKET_V1: 1081 case TPACKET_V2: 1082 curr = packet_lookup_frame(po, &po->rx_ring, 1083 po->rx_ring.head, status); 1084 return curr; 1085 case TPACKET_V3: 1086 return __packet_lookup_frame_in_block(po, skb, status, len); 1087 default: 1088 WARN(1, "TPACKET version not supported\n"); 1089 BUG(); 1090 return 0; 1091 } 1092 } 1093 1094 static void *prb_lookup_block(struct packet_sock *po, 1095 struct packet_ring_buffer *rb, 1096 unsigned int previous, 1097 int status) 1098 { 1099 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb); 1100 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, previous); 1101 1102 if (status != BLOCK_STATUS(pbd)) 1103 return NULL; 1104 return pbd; 1105 } 1106 1107 static int prb_previous_blk_num(struct packet_ring_buffer *rb) 1108 { 1109 unsigned int prev; 1110 if (rb->prb_bdqc.kactive_blk_num) 1111 prev = rb->prb_bdqc.kactive_blk_num-1; 1112 else 1113 prev = rb->prb_bdqc.knum_blocks-1; 1114 return prev; 1115 } 1116 1117 /* Assumes caller has held the rx_queue.lock */ 1118 static void *__prb_previous_block(struct packet_sock *po, 1119 struct packet_ring_buffer *rb, 1120 int status) 1121 { 1122 unsigned int previous = prb_previous_blk_num(rb); 1123 return prb_lookup_block(po, rb, previous, status); 1124 } 1125 1126 static void *packet_previous_rx_frame(struct packet_sock *po, 1127 struct packet_ring_buffer *rb, 1128 int status) 1129 { 1130 if (po->tp_version <= TPACKET_V2) 1131 return packet_previous_frame(po, rb, status); 1132 1133 return __prb_previous_block(po, rb, status); 1134 } 1135 1136 static void packet_increment_rx_head(struct packet_sock *po, 1137 struct packet_ring_buffer *rb) 1138 { 1139 switch (po->tp_version) { 1140 case TPACKET_V1: 1141 case TPACKET_V2: 1142 return packet_increment_head(rb); 1143 case TPACKET_V3: 1144 default: 1145 WARN(1, "TPACKET version not supported.\n"); 1146 BUG(); 1147 return; 1148 } 1149 } 1150 1151 static void *packet_previous_frame(struct packet_sock *po, 1152 struct packet_ring_buffer *rb, 1153 int status) 1154 { 1155 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max; 1156 return packet_lookup_frame(po, rb, previous, status); 1157 } 1158 1159 static void packet_increment_head(struct packet_ring_buffer *buff) 1160 { 1161 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0; 1162 } 1163 1164 static void packet_sock_destruct(struct sock *sk) 1165 { 1166 skb_queue_purge(&sk->sk_error_queue); 1167 1168 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 1169 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 1170 1171 if (!sock_flag(sk, SOCK_DEAD)) { 1172 pr_err("Attempt to release alive packet socket: %p\n", sk); 1173 return; 1174 } 1175 1176 sk_refcnt_debug_dec(sk); 1177 } 1178 1179 static int fanout_rr_next(struct packet_fanout *f, unsigned int num) 1180 { 1181 int x = atomic_read(&f->rr_cur) + 1; 1182 1183 if (x >= num) 1184 x = 0; 1185 1186 return x; 1187 } 1188 1189 static struct sock *fanout_demux_hash(struct packet_fanout *f, struct sk_buff *skb, unsigned int num) 1190 { 1191 u32 idx, hash = skb->rxhash; 1192 1193 idx = ((u64)hash * num) >> 32; 1194 1195 return f->arr[idx]; 1196 } 1197 1198 static struct sock *fanout_demux_lb(struct packet_fanout *f, struct sk_buff *skb, unsigned int num) 1199 { 1200 int cur, old; 1201 1202 cur = atomic_read(&f->rr_cur); 1203 while ((old = atomic_cmpxchg(&f->rr_cur, cur, 1204 fanout_rr_next(f, num))) != cur) 1205 cur = old; 1206 return f->arr[cur]; 1207 } 1208 1209 static struct sock *fanout_demux_cpu(struct packet_fanout *f, struct sk_buff *skb, unsigned int num) 1210 { 1211 unsigned int cpu = smp_processor_id(); 1212 1213 return f->arr[cpu % num]; 1214 } 1215 1216 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev, 1217 struct packet_type *pt, struct net_device *orig_dev) 1218 { 1219 struct packet_fanout *f = pt->af_packet_priv; 1220 unsigned int num = f->num_members; 1221 struct packet_sock *po; 1222 struct sock *sk; 1223 1224 if (!net_eq(dev_net(dev), read_pnet(&f->net)) || 1225 !num) { 1226 kfree_skb(skb); 1227 return 0; 1228 } 1229 1230 switch (f->type) { 1231 case PACKET_FANOUT_HASH: 1232 default: 1233 if (f->defrag) { 1234 skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET); 1235 if (!skb) 1236 return 0; 1237 } 1238 skb_get_rxhash(skb); 1239 sk = fanout_demux_hash(f, skb, num); 1240 break; 1241 case PACKET_FANOUT_LB: 1242 sk = fanout_demux_lb(f, skb, num); 1243 break; 1244 case PACKET_FANOUT_CPU: 1245 sk = fanout_demux_cpu(f, skb, num); 1246 break; 1247 } 1248 1249 po = pkt_sk(sk); 1250 1251 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev); 1252 } 1253 1254 static DEFINE_MUTEX(fanout_mutex); 1255 static LIST_HEAD(fanout_list); 1256 1257 static void __fanout_link(struct sock *sk, struct packet_sock *po) 1258 { 1259 struct packet_fanout *f = po->fanout; 1260 1261 spin_lock(&f->lock); 1262 f->arr[f->num_members] = sk; 1263 smp_wmb(); 1264 f->num_members++; 1265 spin_unlock(&f->lock); 1266 } 1267 1268 static void __fanout_unlink(struct sock *sk, struct packet_sock *po) 1269 { 1270 struct packet_fanout *f = po->fanout; 1271 int i; 1272 1273 spin_lock(&f->lock); 1274 for (i = 0; i < f->num_members; i++) { 1275 if (f->arr[i] == sk) 1276 break; 1277 } 1278 BUG_ON(i >= f->num_members); 1279 f->arr[i] = f->arr[f->num_members - 1]; 1280 f->num_members--; 1281 spin_unlock(&f->lock); 1282 } 1283 1284 static int fanout_add(struct sock *sk, u16 id, u16 type_flags) 1285 { 1286 struct packet_sock *po = pkt_sk(sk); 1287 struct packet_fanout *f, *match; 1288 u8 type = type_flags & 0xff; 1289 u8 defrag = (type_flags & PACKET_FANOUT_FLAG_DEFRAG) ? 1 : 0; 1290 int err; 1291 1292 switch (type) { 1293 case PACKET_FANOUT_HASH: 1294 case PACKET_FANOUT_LB: 1295 case PACKET_FANOUT_CPU: 1296 break; 1297 default: 1298 return -EINVAL; 1299 } 1300 1301 if (!po->running) 1302 return -EINVAL; 1303 1304 if (po->fanout) 1305 return -EALREADY; 1306 1307 mutex_lock(&fanout_mutex); 1308 match = NULL; 1309 list_for_each_entry(f, &fanout_list, list) { 1310 if (f->id == id && 1311 read_pnet(&f->net) == sock_net(sk)) { 1312 match = f; 1313 break; 1314 } 1315 } 1316 err = -EINVAL; 1317 if (match && match->defrag != defrag) 1318 goto out; 1319 if (!match) { 1320 err = -ENOMEM; 1321 match = kzalloc(sizeof(*match), GFP_KERNEL); 1322 if (!match) 1323 goto out; 1324 write_pnet(&match->net, sock_net(sk)); 1325 match->id = id; 1326 match->type = type; 1327 match->defrag = defrag; 1328 atomic_set(&match->rr_cur, 0); 1329 INIT_LIST_HEAD(&match->list); 1330 spin_lock_init(&match->lock); 1331 atomic_set(&match->sk_ref, 0); 1332 match->prot_hook.type = po->prot_hook.type; 1333 match->prot_hook.dev = po->prot_hook.dev; 1334 match->prot_hook.func = packet_rcv_fanout; 1335 match->prot_hook.af_packet_priv = match; 1336 dev_add_pack(&match->prot_hook); 1337 list_add(&match->list, &fanout_list); 1338 } 1339 err = -EINVAL; 1340 if (match->type == type && 1341 match->prot_hook.type == po->prot_hook.type && 1342 match->prot_hook.dev == po->prot_hook.dev) { 1343 err = -ENOSPC; 1344 if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) { 1345 __dev_remove_pack(&po->prot_hook); 1346 po->fanout = match; 1347 atomic_inc(&match->sk_ref); 1348 __fanout_link(sk, po); 1349 err = 0; 1350 } 1351 } 1352 out: 1353 mutex_unlock(&fanout_mutex); 1354 return err; 1355 } 1356 1357 static void fanout_release(struct sock *sk) 1358 { 1359 struct packet_sock *po = pkt_sk(sk); 1360 struct packet_fanout *f; 1361 1362 f = po->fanout; 1363 if (!f) 1364 return; 1365 1366 po->fanout = NULL; 1367 1368 mutex_lock(&fanout_mutex); 1369 if (atomic_dec_and_test(&f->sk_ref)) { 1370 list_del(&f->list); 1371 dev_remove_pack(&f->prot_hook); 1372 kfree(f); 1373 } 1374 mutex_unlock(&fanout_mutex); 1375 } 1376 1377 static const struct proto_ops packet_ops; 1378 1379 static const struct proto_ops packet_ops_spkt; 1380 1381 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev, 1382 struct packet_type *pt, struct net_device *orig_dev) 1383 { 1384 struct sock *sk; 1385 struct sockaddr_pkt *spkt; 1386 1387 /* 1388 * When we registered the protocol we saved the socket in the data 1389 * field for just this event. 1390 */ 1391 1392 sk = pt->af_packet_priv; 1393 1394 /* 1395 * Yank back the headers [hope the device set this 1396 * right or kerboom...] 1397 * 1398 * Incoming packets have ll header pulled, 1399 * push it back. 1400 * 1401 * For outgoing ones skb->data == skb_mac_header(skb) 1402 * so that this procedure is noop. 1403 */ 1404 1405 if (skb->pkt_type == PACKET_LOOPBACK) 1406 goto out; 1407 1408 if (!net_eq(dev_net(dev), sock_net(sk))) 1409 goto out; 1410 1411 skb = skb_share_check(skb, GFP_ATOMIC); 1412 if (skb == NULL) 1413 goto oom; 1414 1415 /* drop any routing info */ 1416 skb_dst_drop(skb); 1417 1418 /* drop conntrack reference */ 1419 nf_reset(skb); 1420 1421 spkt = &PACKET_SKB_CB(skb)->sa.pkt; 1422 1423 skb_push(skb, skb->data - skb_mac_header(skb)); 1424 1425 /* 1426 * The SOCK_PACKET socket receives _all_ frames. 1427 */ 1428 1429 spkt->spkt_family = dev->type; 1430 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device)); 1431 spkt->spkt_protocol = skb->protocol; 1432 1433 /* 1434 * Charge the memory to the socket. This is done specifically 1435 * to prevent sockets using all the memory up. 1436 */ 1437 1438 if (sock_queue_rcv_skb(sk, skb) == 0) 1439 return 0; 1440 1441 out: 1442 kfree_skb(skb); 1443 oom: 1444 return 0; 1445 } 1446 1447 1448 /* 1449 * Output a raw packet to a device layer. This bypasses all the other 1450 * protocol layers and you must therefore supply it with a complete frame 1451 */ 1452 1453 static int packet_sendmsg_spkt(struct kiocb *iocb, struct socket *sock, 1454 struct msghdr *msg, size_t len) 1455 { 1456 struct sock *sk = sock->sk; 1457 struct sockaddr_pkt *saddr = (struct sockaddr_pkt *)msg->msg_name; 1458 struct sk_buff *skb = NULL; 1459 struct net_device *dev; 1460 __be16 proto = 0; 1461 int err; 1462 1463 /* 1464 * Get and verify the address. 1465 */ 1466 1467 if (saddr) { 1468 if (msg->msg_namelen < sizeof(struct sockaddr)) 1469 return -EINVAL; 1470 if (msg->msg_namelen == sizeof(struct sockaddr_pkt)) 1471 proto = saddr->spkt_protocol; 1472 } else 1473 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */ 1474 1475 /* 1476 * Find the device first to size check it 1477 */ 1478 1479 saddr->spkt_device[13] = 0; 1480 retry: 1481 rcu_read_lock(); 1482 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device); 1483 err = -ENODEV; 1484 if (dev == NULL) 1485 goto out_unlock; 1486 1487 err = -ENETDOWN; 1488 if (!(dev->flags & IFF_UP)) 1489 goto out_unlock; 1490 1491 /* 1492 * You may not queue a frame bigger than the mtu. This is the lowest level 1493 * raw protocol and you must do your own fragmentation at this level. 1494 */ 1495 1496 err = -EMSGSIZE; 1497 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN) 1498 goto out_unlock; 1499 1500 if (!skb) { 1501 size_t reserved = LL_RESERVED_SPACE(dev); 1502 int tlen = dev->needed_tailroom; 1503 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0; 1504 1505 rcu_read_unlock(); 1506 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL); 1507 if (skb == NULL) 1508 return -ENOBUFS; 1509 /* FIXME: Save some space for broken drivers that write a hard 1510 * header at transmission time by themselves. PPP is the notable 1511 * one here. This should really be fixed at the driver level. 1512 */ 1513 skb_reserve(skb, reserved); 1514 skb_reset_network_header(skb); 1515 1516 /* Try to align data part correctly */ 1517 if (hhlen) { 1518 skb->data -= hhlen; 1519 skb->tail -= hhlen; 1520 if (len < hhlen) 1521 skb_reset_network_header(skb); 1522 } 1523 err = memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len); 1524 if (err) 1525 goto out_free; 1526 goto retry; 1527 } 1528 1529 if (len > (dev->mtu + dev->hard_header_len)) { 1530 /* Earlier code assumed this would be a VLAN pkt, 1531 * double-check this now that we have the actual 1532 * packet in hand. 1533 */ 1534 struct ethhdr *ehdr; 1535 skb_reset_mac_header(skb); 1536 ehdr = eth_hdr(skb); 1537 if (ehdr->h_proto != htons(ETH_P_8021Q)) { 1538 err = -EMSGSIZE; 1539 goto out_unlock; 1540 } 1541 } 1542 1543 skb->protocol = proto; 1544 skb->dev = dev; 1545 skb->priority = sk->sk_priority; 1546 skb->mark = sk->sk_mark; 1547 err = sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags); 1548 if (err < 0) 1549 goto out_unlock; 1550 1551 dev_queue_xmit(skb); 1552 rcu_read_unlock(); 1553 return len; 1554 1555 out_unlock: 1556 rcu_read_unlock(); 1557 out_free: 1558 kfree_skb(skb); 1559 return err; 1560 } 1561 1562 static unsigned int run_filter(const struct sk_buff *skb, 1563 const struct sock *sk, 1564 unsigned int res) 1565 { 1566 struct sk_filter *filter; 1567 1568 rcu_read_lock(); 1569 filter = rcu_dereference(sk->sk_filter); 1570 if (filter != NULL) 1571 res = SK_RUN_FILTER(filter, skb); 1572 rcu_read_unlock(); 1573 1574 return res; 1575 } 1576 1577 /* 1578 * This function makes lazy skb cloning in hope that most of packets 1579 * are discarded by BPF. 1580 * 1581 * Note tricky part: we DO mangle shared skb! skb->data, skb->len 1582 * and skb->cb are mangled. It works because (and until) packets 1583 * falling here are owned by current CPU. Output packets are cloned 1584 * by dev_queue_xmit_nit(), input packets are processed by net_bh 1585 * sequencially, so that if we return skb to original state on exit, 1586 * we will not harm anyone. 1587 */ 1588 1589 static int packet_rcv(struct sk_buff *skb, struct net_device *dev, 1590 struct packet_type *pt, struct net_device *orig_dev) 1591 { 1592 struct sock *sk; 1593 struct sockaddr_ll *sll; 1594 struct packet_sock *po; 1595 u8 *skb_head = skb->data; 1596 int skb_len = skb->len; 1597 unsigned int snaplen, res; 1598 1599 if (skb->pkt_type == PACKET_LOOPBACK) 1600 goto drop; 1601 1602 sk = pt->af_packet_priv; 1603 po = pkt_sk(sk); 1604 1605 if (!net_eq(dev_net(dev), sock_net(sk))) 1606 goto drop; 1607 1608 skb->dev = dev; 1609 1610 if (dev->header_ops) { 1611 /* The device has an explicit notion of ll header, 1612 * exported to higher levels. 1613 * 1614 * Otherwise, the device hides details of its frame 1615 * structure, so that corresponding packet head is 1616 * never delivered to user. 1617 */ 1618 if (sk->sk_type != SOCK_DGRAM) 1619 skb_push(skb, skb->data - skb_mac_header(skb)); 1620 else if (skb->pkt_type == PACKET_OUTGOING) { 1621 /* Special case: outgoing packets have ll header at head */ 1622 skb_pull(skb, skb_network_offset(skb)); 1623 } 1624 } 1625 1626 snaplen = skb->len; 1627 1628 res = run_filter(skb, sk, snaplen); 1629 if (!res) 1630 goto drop_n_restore; 1631 if (snaplen > res) 1632 snaplen = res; 1633 1634 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 1635 goto drop_n_acct; 1636 1637 if (skb_shared(skb)) { 1638 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 1639 if (nskb == NULL) 1640 goto drop_n_acct; 1641 1642 if (skb_head != skb->data) { 1643 skb->data = skb_head; 1644 skb->len = skb_len; 1645 } 1646 kfree_skb(skb); 1647 skb = nskb; 1648 } 1649 1650 BUILD_BUG_ON(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8 > 1651 sizeof(skb->cb)); 1652 1653 sll = &PACKET_SKB_CB(skb)->sa.ll; 1654 sll->sll_family = AF_PACKET; 1655 sll->sll_hatype = dev->type; 1656 sll->sll_protocol = skb->protocol; 1657 sll->sll_pkttype = skb->pkt_type; 1658 if (unlikely(po->origdev)) 1659 sll->sll_ifindex = orig_dev->ifindex; 1660 else 1661 sll->sll_ifindex = dev->ifindex; 1662 1663 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 1664 1665 PACKET_SKB_CB(skb)->origlen = skb->len; 1666 1667 if (pskb_trim(skb, snaplen)) 1668 goto drop_n_acct; 1669 1670 skb_set_owner_r(skb, sk); 1671 skb->dev = NULL; 1672 skb_dst_drop(skb); 1673 1674 /* drop conntrack reference */ 1675 nf_reset(skb); 1676 1677 spin_lock(&sk->sk_receive_queue.lock); 1678 po->stats.tp_packets++; 1679 skb->dropcount = atomic_read(&sk->sk_drops); 1680 __skb_queue_tail(&sk->sk_receive_queue, skb); 1681 spin_unlock(&sk->sk_receive_queue.lock); 1682 sk->sk_data_ready(sk, skb->len); 1683 return 0; 1684 1685 drop_n_acct: 1686 spin_lock(&sk->sk_receive_queue.lock); 1687 po->stats.tp_drops++; 1688 atomic_inc(&sk->sk_drops); 1689 spin_unlock(&sk->sk_receive_queue.lock); 1690 1691 drop_n_restore: 1692 if (skb_head != skb->data && skb_shared(skb)) { 1693 skb->data = skb_head; 1694 skb->len = skb_len; 1695 } 1696 drop: 1697 consume_skb(skb); 1698 return 0; 1699 } 1700 1701 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev, 1702 struct packet_type *pt, struct net_device *orig_dev) 1703 { 1704 struct sock *sk; 1705 struct packet_sock *po; 1706 struct sockaddr_ll *sll; 1707 union { 1708 struct tpacket_hdr *h1; 1709 struct tpacket2_hdr *h2; 1710 struct tpacket3_hdr *h3; 1711 void *raw; 1712 } h; 1713 u8 *skb_head = skb->data; 1714 int skb_len = skb->len; 1715 unsigned int snaplen, res; 1716 unsigned long status = TP_STATUS_USER; 1717 unsigned short macoff, netoff, hdrlen; 1718 struct sk_buff *copy_skb = NULL; 1719 struct timeval tv; 1720 struct timespec ts; 1721 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 1722 1723 if (skb->pkt_type == PACKET_LOOPBACK) 1724 goto drop; 1725 1726 sk = pt->af_packet_priv; 1727 po = pkt_sk(sk); 1728 1729 if (!net_eq(dev_net(dev), sock_net(sk))) 1730 goto drop; 1731 1732 if (dev->header_ops) { 1733 if (sk->sk_type != SOCK_DGRAM) 1734 skb_push(skb, skb->data - skb_mac_header(skb)); 1735 else if (skb->pkt_type == PACKET_OUTGOING) { 1736 /* Special case: outgoing packets have ll header at head */ 1737 skb_pull(skb, skb_network_offset(skb)); 1738 } 1739 } 1740 1741 if (skb->ip_summed == CHECKSUM_PARTIAL) 1742 status |= TP_STATUS_CSUMNOTREADY; 1743 1744 snaplen = skb->len; 1745 1746 res = run_filter(skb, sk, snaplen); 1747 if (!res) 1748 goto drop_n_restore; 1749 if (snaplen > res) 1750 snaplen = res; 1751 1752 if (sk->sk_type == SOCK_DGRAM) { 1753 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 + 1754 po->tp_reserve; 1755 } else { 1756 unsigned maclen = skb_network_offset(skb); 1757 netoff = TPACKET_ALIGN(po->tp_hdrlen + 1758 (maclen < 16 ? 16 : maclen)) + 1759 po->tp_reserve; 1760 macoff = netoff - maclen; 1761 } 1762 if (po->tp_version <= TPACKET_V2) { 1763 if (macoff + snaplen > po->rx_ring.frame_size) { 1764 if (po->copy_thresh && 1765 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) { 1766 if (skb_shared(skb)) { 1767 copy_skb = skb_clone(skb, GFP_ATOMIC); 1768 } else { 1769 copy_skb = skb_get(skb); 1770 skb_head = skb->data; 1771 } 1772 if (copy_skb) 1773 skb_set_owner_r(copy_skb, sk); 1774 } 1775 snaplen = po->rx_ring.frame_size - macoff; 1776 if ((int)snaplen < 0) 1777 snaplen = 0; 1778 } 1779 } 1780 spin_lock(&sk->sk_receive_queue.lock); 1781 h.raw = packet_current_rx_frame(po, skb, 1782 TP_STATUS_KERNEL, (macoff+snaplen)); 1783 if (!h.raw) 1784 goto ring_is_full; 1785 if (po->tp_version <= TPACKET_V2) { 1786 packet_increment_rx_head(po, &po->rx_ring); 1787 /* 1788 * LOSING will be reported till you read the stats, 1789 * because it's COR - Clear On Read. 1790 * Anyways, moving it for V1/V2 only as V3 doesn't need this 1791 * at packet level. 1792 */ 1793 if (po->stats.tp_drops) 1794 status |= TP_STATUS_LOSING; 1795 } 1796 po->stats.tp_packets++; 1797 if (copy_skb) { 1798 status |= TP_STATUS_COPY; 1799 __skb_queue_tail(&sk->sk_receive_queue, copy_skb); 1800 } 1801 spin_unlock(&sk->sk_receive_queue.lock); 1802 1803 skb_copy_bits(skb, 0, h.raw + macoff, snaplen); 1804 1805 switch (po->tp_version) { 1806 case TPACKET_V1: 1807 h.h1->tp_len = skb->len; 1808 h.h1->tp_snaplen = snaplen; 1809 h.h1->tp_mac = macoff; 1810 h.h1->tp_net = netoff; 1811 if ((po->tp_tstamp & SOF_TIMESTAMPING_SYS_HARDWARE) 1812 && shhwtstamps->syststamp.tv64) 1813 tv = ktime_to_timeval(shhwtstamps->syststamp); 1814 else if ((po->tp_tstamp & SOF_TIMESTAMPING_RAW_HARDWARE) 1815 && shhwtstamps->hwtstamp.tv64) 1816 tv = ktime_to_timeval(shhwtstamps->hwtstamp); 1817 else if (skb->tstamp.tv64) 1818 tv = ktime_to_timeval(skb->tstamp); 1819 else 1820 do_gettimeofday(&tv); 1821 h.h1->tp_sec = tv.tv_sec; 1822 h.h1->tp_usec = tv.tv_usec; 1823 hdrlen = sizeof(*h.h1); 1824 break; 1825 case TPACKET_V2: 1826 h.h2->tp_len = skb->len; 1827 h.h2->tp_snaplen = snaplen; 1828 h.h2->tp_mac = macoff; 1829 h.h2->tp_net = netoff; 1830 if ((po->tp_tstamp & SOF_TIMESTAMPING_SYS_HARDWARE) 1831 && shhwtstamps->syststamp.tv64) 1832 ts = ktime_to_timespec(shhwtstamps->syststamp); 1833 else if ((po->tp_tstamp & SOF_TIMESTAMPING_RAW_HARDWARE) 1834 && shhwtstamps->hwtstamp.tv64) 1835 ts = ktime_to_timespec(shhwtstamps->hwtstamp); 1836 else if (skb->tstamp.tv64) 1837 ts = ktime_to_timespec(skb->tstamp); 1838 else 1839 getnstimeofday(&ts); 1840 h.h2->tp_sec = ts.tv_sec; 1841 h.h2->tp_nsec = ts.tv_nsec; 1842 if (vlan_tx_tag_present(skb)) { 1843 h.h2->tp_vlan_tci = vlan_tx_tag_get(skb); 1844 status |= TP_STATUS_VLAN_VALID; 1845 } else { 1846 h.h2->tp_vlan_tci = 0; 1847 } 1848 h.h2->tp_padding = 0; 1849 hdrlen = sizeof(*h.h2); 1850 break; 1851 case TPACKET_V3: 1852 /* tp_nxt_offset,vlan are already populated above. 1853 * So DONT clear those fields here 1854 */ 1855 h.h3->tp_status |= status; 1856 h.h3->tp_len = skb->len; 1857 h.h3->tp_snaplen = snaplen; 1858 h.h3->tp_mac = macoff; 1859 h.h3->tp_net = netoff; 1860 if ((po->tp_tstamp & SOF_TIMESTAMPING_SYS_HARDWARE) 1861 && shhwtstamps->syststamp.tv64) 1862 ts = ktime_to_timespec(shhwtstamps->syststamp); 1863 else if ((po->tp_tstamp & SOF_TIMESTAMPING_RAW_HARDWARE) 1864 && shhwtstamps->hwtstamp.tv64) 1865 ts = ktime_to_timespec(shhwtstamps->hwtstamp); 1866 else if (skb->tstamp.tv64) 1867 ts = ktime_to_timespec(skb->tstamp); 1868 else 1869 getnstimeofday(&ts); 1870 h.h3->tp_sec = ts.tv_sec; 1871 h.h3->tp_nsec = ts.tv_nsec; 1872 hdrlen = sizeof(*h.h3); 1873 break; 1874 default: 1875 BUG(); 1876 } 1877 1878 sll = h.raw + TPACKET_ALIGN(hdrlen); 1879 sll->sll_halen = dev_parse_header(skb, sll->sll_addr); 1880 sll->sll_family = AF_PACKET; 1881 sll->sll_hatype = dev->type; 1882 sll->sll_protocol = skb->protocol; 1883 sll->sll_pkttype = skb->pkt_type; 1884 if (unlikely(po->origdev)) 1885 sll->sll_ifindex = orig_dev->ifindex; 1886 else 1887 sll->sll_ifindex = dev->ifindex; 1888 1889 smp_mb(); 1890 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 1891 { 1892 u8 *start, *end; 1893 1894 if (po->tp_version <= TPACKET_V2) { 1895 end = (u8 *)PAGE_ALIGN((unsigned long)h.raw 1896 + macoff + snaplen); 1897 for (start = h.raw; start < end; start += PAGE_SIZE) 1898 flush_dcache_page(pgv_to_page(start)); 1899 } 1900 smp_wmb(); 1901 } 1902 #endif 1903 if (po->tp_version <= TPACKET_V2) 1904 __packet_set_status(po, h.raw, status); 1905 else 1906 prb_clear_blk_fill_status(&po->rx_ring); 1907 1908 sk->sk_data_ready(sk, 0); 1909 1910 drop_n_restore: 1911 if (skb_head != skb->data && skb_shared(skb)) { 1912 skb->data = skb_head; 1913 skb->len = skb_len; 1914 } 1915 drop: 1916 kfree_skb(skb); 1917 return 0; 1918 1919 ring_is_full: 1920 po->stats.tp_drops++; 1921 spin_unlock(&sk->sk_receive_queue.lock); 1922 1923 sk->sk_data_ready(sk, 0); 1924 kfree_skb(copy_skb); 1925 goto drop_n_restore; 1926 } 1927 1928 static void tpacket_destruct_skb(struct sk_buff *skb) 1929 { 1930 struct packet_sock *po = pkt_sk(skb->sk); 1931 void *ph; 1932 1933 if (likely(po->tx_ring.pg_vec)) { 1934 ph = skb_shinfo(skb)->destructor_arg; 1935 BUG_ON(__packet_get_status(po, ph) != TP_STATUS_SENDING); 1936 BUG_ON(atomic_read(&po->tx_ring.pending) == 0); 1937 atomic_dec(&po->tx_ring.pending); 1938 __packet_set_status(po, ph, TP_STATUS_AVAILABLE); 1939 } 1940 1941 sock_wfree(skb); 1942 } 1943 1944 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb, 1945 void *frame, struct net_device *dev, int size_max, 1946 __be16 proto, unsigned char *addr, int hlen) 1947 { 1948 union { 1949 struct tpacket_hdr *h1; 1950 struct tpacket2_hdr *h2; 1951 void *raw; 1952 } ph; 1953 int to_write, offset, len, tp_len, nr_frags, len_max; 1954 struct socket *sock = po->sk.sk_socket; 1955 struct page *page; 1956 void *data; 1957 int err; 1958 1959 ph.raw = frame; 1960 1961 skb->protocol = proto; 1962 skb->dev = dev; 1963 skb->priority = po->sk.sk_priority; 1964 skb->mark = po->sk.sk_mark; 1965 skb_shinfo(skb)->destructor_arg = ph.raw; 1966 1967 switch (po->tp_version) { 1968 case TPACKET_V2: 1969 tp_len = ph.h2->tp_len; 1970 break; 1971 default: 1972 tp_len = ph.h1->tp_len; 1973 break; 1974 } 1975 if (unlikely(tp_len > size_max)) { 1976 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max); 1977 return -EMSGSIZE; 1978 } 1979 1980 skb_reserve(skb, hlen); 1981 skb_reset_network_header(skb); 1982 1983 data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll); 1984 to_write = tp_len; 1985 1986 if (sock->type == SOCK_DGRAM) { 1987 err = dev_hard_header(skb, dev, ntohs(proto), addr, 1988 NULL, tp_len); 1989 if (unlikely(err < 0)) 1990 return -EINVAL; 1991 } else if (dev->hard_header_len) { 1992 /* net device doesn't like empty head */ 1993 if (unlikely(tp_len <= dev->hard_header_len)) { 1994 pr_err("packet size is too short (%d < %d)\n", 1995 tp_len, dev->hard_header_len); 1996 return -EINVAL; 1997 } 1998 1999 skb_push(skb, dev->hard_header_len); 2000 err = skb_store_bits(skb, 0, data, 2001 dev->hard_header_len); 2002 if (unlikely(err)) 2003 return err; 2004 2005 data += dev->hard_header_len; 2006 to_write -= dev->hard_header_len; 2007 } 2008 2009 err = -EFAULT; 2010 offset = offset_in_page(data); 2011 len_max = PAGE_SIZE - offset; 2012 len = ((to_write > len_max) ? len_max : to_write); 2013 2014 skb->data_len = to_write; 2015 skb->len += to_write; 2016 skb->truesize += to_write; 2017 atomic_add(to_write, &po->sk.sk_wmem_alloc); 2018 2019 while (likely(to_write)) { 2020 nr_frags = skb_shinfo(skb)->nr_frags; 2021 2022 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) { 2023 pr_err("Packet exceed the number of skb frags(%lu)\n", 2024 MAX_SKB_FRAGS); 2025 return -EFAULT; 2026 } 2027 2028 page = pgv_to_page(data); 2029 data += len; 2030 flush_dcache_page(page); 2031 get_page(page); 2032 skb_fill_page_desc(skb, nr_frags, page, offset, len); 2033 to_write -= len; 2034 offset = 0; 2035 len_max = PAGE_SIZE; 2036 len = ((to_write > len_max) ? len_max : to_write); 2037 } 2038 2039 return tp_len; 2040 } 2041 2042 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg) 2043 { 2044 struct sk_buff *skb; 2045 struct net_device *dev; 2046 __be16 proto; 2047 bool need_rls_dev = false; 2048 int err, reserve = 0; 2049 void *ph; 2050 struct sockaddr_ll *saddr = (struct sockaddr_ll *)msg->msg_name; 2051 int tp_len, size_max; 2052 unsigned char *addr; 2053 int len_sum = 0; 2054 int status = 0; 2055 int hlen, tlen; 2056 2057 mutex_lock(&po->pg_vec_lock); 2058 2059 err = -EBUSY; 2060 if (saddr == NULL) { 2061 dev = po->prot_hook.dev; 2062 proto = po->num; 2063 addr = NULL; 2064 } else { 2065 err = -EINVAL; 2066 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2067 goto out; 2068 if (msg->msg_namelen < (saddr->sll_halen 2069 + offsetof(struct sockaddr_ll, 2070 sll_addr))) 2071 goto out; 2072 proto = saddr->sll_protocol; 2073 addr = saddr->sll_addr; 2074 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex); 2075 need_rls_dev = true; 2076 } 2077 2078 err = -ENXIO; 2079 if (unlikely(dev == NULL)) 2080 goto out; 2081 2082 reserve = dev->hard_header_len; 2083 2084 err = -ENETDOWN; 2085 if (unlikely(!(dev->flags & IFF_UP))) 2086 goto out_put; 2087 2088 size_max = po->tx_ring.frame_size 2089 - (po->tp_hdrlen - sizeof(struct sockaddr_ll)); 2090 2091 if (size_max > dev->mtu + reserve) 2092 size_max = dev->mtu + reserve; 2093 2094 do { 2095 ph = packet_current_frame(po, &po->tx_ring, 2096 TP_STATUS_SEND_REQUEST); 2097 2098 if (unlikely(ph == NULL)) { 2099 schedule(); 2100 continue; 2101 } 2102 2103 status = TP_STATUS_SEND_REQUEST; 2104 hlen = LL_RESERVED_SPACE(dev); 2105 tlen = dev->needed_tailroom; 2106 skb = sock_alloc_send_skb(&po->sk, 2107 hlen + tlen + sizeof(struct sockaddr_ll), 2108 0, &err); 2109 2110 if (unlikely(skb == NULL)) 2111 goto out_status; 2112 2113 tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto, 2114 addr, hlen); 2115 2116 if (unlikely(tp_len < 0)) { 2117 if (po->tp_loss) { 2118 __packet_set_status(po, ph, 2119 TP_STATUS_AVAILABLE); 2120 packet_increment_head(&po->tx_ring); 2121 kfree_skb(skb); 2122 continue; 2123 } else { 2124 status = TP_STATUS_WRONG_FORMAT; 2125 err = tp_len; 2126 goto out_status; 2127 } 2128 } 2129 2130 skb->destructor = tpacket_destruct_skb; 2131 __packet_set_status(po, ph, TP_STATUS_SENDING); 2132 atomic_inc(&po->tx_ring.pending); 2133 2134 status = TP_STATUS_SEND_REQUEST; 2135 err = dev_queue_xmit(skb); 2136 if (unlikely(err > 0)) { 2137 err = net_xmit_errno(err); 2138 if (err && __packet_get_status(po, ph) == 2139 TP_STATUS_AVAILABLE) { 2140 /* skb was destructed already */ 2141 skb = NULL; 2142 goto out_status; 2143 } 2144 /* 2145 * skb was dropped but not destructed yet; 2146 * let's treat it like congestion or err < 0 2147 */ 2148 err = 0; 2149 } 2150 packet_increment_head(&po->tx_ring); 2151 len_sum += tp_len; 2152 } while (likely((ph != NULL) || 2153 ((!(msg->msg_flags & MSG_DONTWAIT)) && 2154 (atomic_read(&po->tx_ring.pending)))) 2155 ); 2156 2157 err = len_sum; 2158 goto out_put; 2159 2160 out_status: 2161 __packet_set_status(po, ph, status); 2162 kfree_skb(skb); 2163 out_put: 2164 if (need_rls_dev) 2165 dev_put(dev); 2166 out: 2167 mutex_unlock(&po->pg_vec_lock); 2168 return err; 2169 } 2170 2171 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad, 2172 size_t reserve, size_t len, 2173 size_t linear, int noblock, 2174 int *err) 2175 { 2176 struct sk_buff *skb; 2177 2178 /* Under a page? Don't bother with paged skb. */ 2179 if (prepad + len < PAGE_SIZE || !linear) 2180 linear = len; 2181 2182 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock, 2183 err); 2184 if (!skb) 2185 return NULL; 2186 2187 skb_reserve(skb, reserve); 2188 skb_put(skb, linear); 2189 skb->data_len = len - linear; 2190 skb->len += len - linear; 2191 2192 return skb; 2193 } 2194 2195 static int packet_snd(struct socket *sock, 2196 struct msghdr *msg, size_t len) 2197 { 2198 struct sock *sk = sock->sk; 2199 struct sockaddr_ll *saddr = (struct sockaddr_ll *)msg->msg_name; 2200 struct sk_buff *skb; 2201 struct net_device *dev; 2202 __be16 proto; 2203 bool need_rls_dev = false; 2204 unsigned char *addr; 2205 int err, reserve = 0; 2206 struct virtio_net_hdr vnet_hdr = { 0 }; 2207 int offset = 0; 2208 int vnet_hdr_len; 2209 struct packet_sock *po = pkt_sk(sk); 2210 unsigned short gso_type = 0; 2211 int hlen, tlen; 2212 2213 /* 2214 * Get and verify the address. 2215 */ 2216 2217 if (saddr == NULL) { 2218 dev = po->prot_hook.dev; 2219 proto = po->num; 2220 addr = NULL; 2221 } else { 2222 err = -EINVAL; 2223 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) 2224 goto out; 2225 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr))) 2226 goto out; 2227 proto = saddr->sll_protocol; 2228 addr = saddr->sll_addr; 2229 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex); 2230 need_rls_dev = true; 2231 } 2232 2233 err = -ENXIO; 2234 if (dev == NULL) 2235 goto out_unlock; 2236 if (sock->type == SOCK_RAW) 2237 reserve = dev->hard_header_len; 2238 2239 err = -ENETDOWN; 2240 if (!(dev->flags & IFF_UP)) 2241 goto out_unlock; 2242 2243 if (po->has_vnet_hdr) { 2244 vnet_hdr_len = sizeof(vnet_hdr); 2245 2246 err = -EINVAL; 2247 if (len < vnet_hdr_len) 2248 goto out_unlock; 2249 2250 len -= vnet_hdr_len; 2251 2252 err = memcpy_fromiovec((void *)&vnet_hdr, msg->msg_iov, 2253 vnet_hdr_len); 2254 if (err < 0) 2255 goto out_unlock; 2256 2257 if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) && 2258 (vnet_hdr.csum_start + vnet_hdr.csum_offset + 2 > 2259 vnet_hdr.hdr_len)) 2260 vnet_hdr.hdr_len = vnet_hdr.csum_start + 2261 vnet_hdr.csum_offset + 2; 2262 2263 err = -EINVAL; 2264 if (vnet_hdr.hdr_len > len) 2265 goto out_unlock; 2266 2267 if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) { 2268 switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) { 2269 case VIRTIO_NET_HDR_GSO_TCPV4: 2270 gso_type = SKB_GSO_TCPV4; 2271 break; 2272 case VIRTIO_NET_HDR_GSO_TCPV6: 2273 gso_type = SKB_GSO_TCPV6; 2274 break; 2275 case VIRTIO_NET_HDR_GSO_UDP: 2276 gso_type = SKB_GSO_UDP; 2277 break; 2278 default: 2279 goto out_unlock; 2280 } 2281 2282 if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN) 2283 gso_type |= SKB_GSO_TCP_ECN; 2284 2285 if (vnet_hdr.gso_size == 0) 2286 goto out_unlock; 2287 2288 } 2289 } 2290 2291 err = -EMSGSIZE; 2292 if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN)) 2293 goto out_unlock; 2294 2295 err = -ENOBUFS; 2296 hlen = LL_RESERVED_SPACE(dev); 2297 tlen = dev->needed_tailroom; 2298 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, vnet_hdr.hdr_len, 2299 msg->msg_flags & MSG_DONTWAIT, &err); 2300 if (skb == NULL) 2301 goto out_unlock; 2302 2303 skb_set_network_header(skb, reserve); 2304 2305 err = -EINVAL; 2306 if (sock->type == SOCK_DGRAM && 2307 (offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len)) < 0) 2308 goto out_free; 2309 2310 /* Returns -EFAULT on error */ 2311 err = skb_copy_datagram_from_iovec(skb, offset, msg->msg_iov, 0, len); 2312 if (err) 2313 goto out_free; 2314 err = sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags); 2315 if (err < 0) 2316 goto out_free; 2317 2318 if (!gso_type && (len > dev->mtu + reserve)) { 2319 /* Earlier code assumed this would be a VLAN pkt, 2320 * double-check this now that we have the actual 2321 * packet in hand. 2322 */ 2323 struct ethhdr *ehdr; 2324 skb_reset_mac_header(skb); 2325 ehdr = eth_hdr(skb); 2326 if (ehdr->h_proto != htons(ETH_P_8021Q)) { 2327 err = -EMSGSIZE; 2328 goto out_free; 2329 } 2330 } 2331 2332 skb->protocol = proto; 2333 skb->dev = dev; 2334 skb->priority = sk->sk_priority; 2335 skb->mark = sk->sk_mark; 2336 2337 if (po->has_vnet_hdr) { 2338 if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) { 2339 if (!skb_partial_csum_set(skb, vnet_hdr.csum_start, 2340 vnet_hdr.csum_offset)) { 2341 err = -EINVAL; 2342 goto out_free; 2343 } 2344 } 2345 2346 skb_shinfo(skb)->gso_size = vnet_hdr.gso_size; 2347 skb_shinfo(skb)->gso_type = gso_type; 2348 2349 /* Header must be checked, and gso_segs computed. */ 2350 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2351 skb_shinfo(skb)->gso_segs = 0; 2352 2353 len += vnet_hdr_len; 2354 } 2355 2356 /* 2357 * Now send it 2358 */ 2359 2360 err = dev_queue_xmit(skb); 2361 if (err > 0 && (err = net_xmit_errno(err)) != 0) 2362 goto out_unlock; 2363 2364 if (need_rls_dev) 2365 dev_put(dev); 2366 2367 return len; 2368 2369 out_free: 2370 kfree_skb(skb); 2371 out_unlock: 2372 if (dev && need_rls_dev) 2373 dev_put(dev); 2374 out: 2375 return err; 2376 } 2377 2378 static int packet_sendmsg(struct kiocb *iocb, struct socket *sock, 2379 struct msghdr *msg, size_t len) 2380 { 2381 struct sock *sk = sock->sk; 2382 struct packet_sock *po = pkt_sk(sk); 2383 if (po->tx_ring.pg_vec) 2384 return tpacket_snd(po, msg); 2385 else 2386 return packet_snd(sock, msg, len); 2387 } 2388 2389 /* 2390 * Close a PACKET socket. This is fairly simple. We immediately go 2391 * to 'closed' state and remove our protocol entry in the device list. 2392 */ 2393 2394 static int packet_release(struct socket *sock) 2395 { 2396 struct sock *sk = sock->sk; 2397 struct packet_sock *po; 2398 struct net *net; 2399 union tpacket_req_u req_u; 2400 2401 if (!sk) 2402 return 0; 2403 2404 net = sock_net(sk); 2405 po = pkt_sk(sk); 2406 2407 spin_lock_bh(&net->packet.sklist_lock); 2408 sk_del_node_init_rcu(sk); 2409 sock_prot_inuse_add(net, sk->sk_prot, -1); 2410 spin_unlock_bh(&net->packet.sklist_lock); 2411 2412 spin_lock(&po->bind_lock); 2413 unregister_prot_hook(sk, false); 2414 if (po->prot_hook.dev) { 2415 dev_put(po->prot_hook.dev); 2416 po->prot_hook.dev = NULL; 2417 } 2418 spin_unlock(&po->bind_lock); 2419 2420 packet_flush_mclist(sk); 2421 2422 memset(&req_u, 0, sizeof(req_u)); 2423 2424 if (po->rx_ring.pg_vec) 2425 packet_set_ring(sk, &req_u, 1, 0); 2426 2427 if (po->tx_ring.pg_vec) 2428 packet_set_ring(sk, &req_u, 1, 1); 2429 2430 fanout_release(sk); 2431 2432 synchronize_net(); 2433 /* 2434 * Now the socket is dead. No more input will appear. 2435 */ 2436 sock_orphan(sk); 2437 sock->sk = NULL; 2438 2439 /* Purge queues */ 2440 2441 skb_queue_purge(&sk->sk_receive_queue); 2442 sk_refcnt_debug_release(sk); 2443 2444 sock_put(sk); 2445 return 0; 2446 } 2447 2448 /* 2449 * Attach a packet hook. 2450 */ 2451 2452 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 protocol) 2453 { 2454 struct packet_sock *po = pkt_sk(sk); 2455 2456 if (po->fanout) { 2457 if (dev) 2458 dev_put(dev); 2459 2460 return -EINVAL; 2461 } 2462 2463 lock_sock(sk); 2464 2465 spin_lock(&po->bind_lock); 2466 unregister_prot_hook(sk, true); 2467 po->num = protocol; 2468 po->prot_hook.type = protocol; 2469 if (po->prot_hook.dev) 2470 dev_put(po->prot_hook.dev); 2471 po->prot_hook.dev = dev; 2472 2473 po->ifindex = dev ? dev->ifindex : 0; 2474 2475 if (protocol == 0) 2476 goto out_unlock; 2477 2478 if (!dev || (dev->flags & IFF_UP)) { 2479 register_prot_hook(sk); 2480 } else { 2481 sk->sk_err = ENETDOWN; 2482 if (!sock_flag(sk, SOCK_DEAD)) 2483 sk->sk_error_report(sk); 2484 } 2485 2486 out_unlock: 2487 spin_unlock(&po->bind_lock); 2488 release_sock(sk); 2489 return 0; 2490 } 2491 2492 /* 2493 * Bind a packet socket to a device 2494 */ 2495 2496 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr, 2497 int addr_len) 2498 { 2499 struct sock *sk = sock->sk; 2500 char name[15]; 2501 struct net_device *dev; 2502 int err = -ENODEV; 2503 2504 /* 2505 * Check legality 2506 */ 2507 2508 if (addr_len != sizeof(struct sockaddr)) 2509 return -EINVAL; 2510 strlcpy(name, uaddr->sa_data, sizeof(name)); 2511 2512 dev = dev_get_by_name(sock_net(sk), name); 2513 if (dev) 2514 err = packet_do_bind(sk, dev, pkt_sk(sk)->num); 2515 return err; 2516 } 2517 2518 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) 2519 { 2520 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr; 2521 struct sock *sk = sock->sk; 2522 struct net_device *dev = NULL; 2523 int err; 2524 2525 2526 /* 2527 * Check legality 2528 */ 2529 2530 if (addr_len < sizeof(struct sockaddr_ll)) 2531 return -EINVAL; 2532 if (sll->sll_family != AF_PACKET) 2533 return -EINVAL; 2534 2535 if (sll->sll_ifindex) { 2536 err = -ENODEV; 2537 dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex); 2538 if (dev == NULL) 2539 goto out; 2540 } 2541 err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num); 2542 2543 out: 2544 return err; 2545 } 2546 2547 static struct proto packet_proto = { 2548 .name = "PACKET", 2549 .owner = THIS_MODULE, 2550 .obj_size = sizeof(struct packet_sock), 2551 }; 2552 2553 /* 2554 * Create a packet of type SOCK_PACKET. 2555 */ 2556 2557 static int packet_create(struct net *net, struct socket *sock, int protocol, 2558 int kern) 2559 { 2560 struct sock *sk; 2561 struct packet_sock *po; 2562 __be16 proto = (__force __be16)protocol; /* weird, but documented */ 2563 int err; 2564 2565 if (!capable(CAP_NET_RAW)) 2566 return -EPERM; 2567 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW && 2568 sock->type != SOCK_PACKET) 2569 return -ESOCKTNOSUPPORT; 2570 2571 sock->state = SS_UNCONNECTED; 2572 2573 err = -ENOBUFS; 2574 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto); 2575 if (sk == NULL) 2576 goto out; 2577 2578 sock->ops = &packet_ops; 2579 if (sock->type == SOCK_PACKET) 2580 sock->ops = &packet_ops_spkt; 2581 2582 sock_init_data(sock, sk); 2583 2584 po = pkt_sk(sk); 2585 sk->sk_family = PF_PACKET; 2586 po->num = proto; 2587 2588 sk->sk_destruct = packet_sock_destruct; 2589 sk_refcnt_debug_inc(sk); 2590 2591 /* 2592 * Attach a protocol block 2593 */ 2594 2595 spin_lock_init(&po->bind_lock); 2596 mutex_init(&po->pg_vec_lock); 2597 po->prot_hook.func = packet_rcv; 2598 2599 if (sock->type == SOCK_PACKET) 2600 po->prot_hook.func = packet_rcv_spkt; 2601 2602 po->prot_hook.af_packet_priv = sk; 2603 2604 if (proto) { 2605 po->prot_hook.type = proto; 2606 register_prot_hook(sk); 2607 } 2608 2609 spin_lock_bh(&net->packet.sklist_lock); 2610 sk_add_node_rcu(sk, &net->packet.sklist); 2611 sock_prot_inuse_add(net, &packet_proto, 1); 2612 spin_unlock_bh(&net->packet.sklist_lock); 2613 2614 return 0; 2615 out: 2616 return err; 2617 } 2618 2619 static int packet_recv_error(struct sock *sk, struct msghdr *msg, int len) 2620 { 2621 struct sock_exterr_skb *serr; 2622 struct sk_buff *skb, *skb2; 2623 int copied, err; 2624 2625 err = -EAGAIN; 2626 skb = skb_dequeue(&sk->sk_error_queue); 2627 if (skb == NULL) 2628 goto out; 2629 2630 copied = skb->len; 2631 if (copied > len) { 2632 msg->msg_flags |= MSG_TRUNC; 2633 copied = len; 2634 } 2635 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 2636 if (err) 2637 goto out_free_skb; 2638 2639 sock_recv_timestamp(msg, sk, skb); 2640 2641 serr = SKB_EXT_ERR(skb); 2642 put_cmsg(msg, SOL_PACKET, PACKET_TX_TIMESTAMP, 2643 sizeof(serr->ee), &serr->ee); 2644 2645 msg->msg_flags |= MSG_ERRQUEUE; 2646 err = copied; 2647 2648 /* Reset and regenerate socket error */ 2649 spin_lock_bh(&sk->sk_error_queue.lock); 2650 sk->sk_err = 0; 2651 if ((skb2 = skb_peek(&sk->sk_error_queue)) != NULL) { 2652 sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno; 2653 spin_unlock_bh(&sk->sk_error_queue.lock); 2654 sk->sk_error_report(sk); 2655 } else 2656 spin_unlock_bh(&sk->sk_error_queue.lock); 2657 2658 out_free_skb: 2659 kfree_skb(skb); 2660 out: 2661 return err; 2662 } 2663 2664 /* 2665 * Pull a packet from our receive queue and hand it to the user. 2666 * If necessary we block. 2667 */ 2668 2669 static int packet_recvmsg(struct kiocb *iocb, struct socket *sock, 2670 struct msghdr *msg, size_t len, int flags) 2671 { 2672 struct sock *sk = sock->sk; 2673 struct sk_buff *skb; 2674 int copied, err; 2675 struct sockaddr_ll *sll; 2676 int vnet_hdr_len = 0; 2677 2678 err = -EINVAL; 2679 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE)) 2680 goto out; 2681 2682 #if 0 2683 /* What error should we return now? EUNATTACH? */ 2684 if (pkt_sk(sk)->ifindex < 0) 2685 return -ENODEV; 2686 #endif 2687 2688 if (flags & MSG_ERRQUEUE) { 2689 err = packet_recv_error(sk, msg, len); 2690 goto out; 2691 } 2692 2693 /* 2694 * Call the generic datagram receiver. This handles all sorts 2695 * of horrible races and re-entrancy so we can forget about it 2696 * in the protocol layers. 2697 * 2698 * Now it will return ENETDOWN, if device have just gone down, 2699 * but then it will block. 2700 */ 2701 2702 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err); 2703 2704 /* 2705 * An error occurred so return it. Because skb_recv_datagram() 2706 * handles the blocking we don't see and worry about blocking 2707 * retries. 2708 */ 2709 2710 if (skb == NULL) 2711 goto out; 2712 2713 if (pkt_sk(sk)->has_vnet_hdr) { 2714 struct virtio_net_hdr vnet_hdr = { 0 }; 2715 2716 err = -EINVAL; 2717 vnet_hdr_len = sizeof(vnet_hdr); 2718 if (len < vnet_hdr_len) 2719 goto out_free; 2720 2721 len -= vnet_hdr_len; 2722 2723 if (skb_is_gso(skb)) { 2724 struct skb_shared_info *sinfo = skb_shinfo(skb); 2725 2726 /* This is a hint as to how much should be linear. */ 2727 vnet_hdr.hdr_len = skb_headlen(skb); 2728 vnet_hdr.gso_size = sinfo->gso_size; 2729 if (sinfo->gso_type & SKB_GSO_TCPV4) 2730 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4; 2731 else if (sinfo->gso_type & SKB_GSO_TCPV6) 2732 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6; 2733 else if (sinfo->gso_type & SKB_GSO_UDP) 2734 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP; 2735 else if (sinfo->gso_type & SKB_GSO_FCOE) 2736 goto out_free; 2737 else 2738 BUG(); 2739 if (sinfo->gso_type & SKB_GSO_TCP_ECN) 2740 vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN; 2741 } else 2742 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE; 2743 2744 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2745 vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM; 2746 vnet_hdr.csum_start = skb_checksum_start_offset(skb); 2747 vnet_hdr.csum_offset = skb->csum_offset; 2748 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 2749 vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID; 2750 } /* else everything is zero */ 2751 2752 err = memcpy_toiovec(msg->msg_iov, (void *)&vnet_hdr, 2753 vnet_hdr_len); 2754 if (err < 0) 2755 goto out_free; 2756 } 2757 2758 /* 2759 * If the address length field is there to be filled in, we fill 2760 * it in now. 2761 */ 2762 2763 sll = &PACKET_SKB_CB(skb)->sa.ll; 2764 if (sock->type == SOCK_PACKET) 2765 msg->msg_namelen = sizeof(struct sockaddr_pkt); 2766 else 2767 msg->msg_namelen = sll->sll_halen + offsetof(struct sockaddr_ll, sll_addr); 2768 2769 /* 2770 * You lose any data beyond the buffer you gave. If it worries a 2771 * user program they can ask the device for its MTU anyway. 2772 */ 2773 2774 copied = skb->len; 2775 if (copied > len) { 2776 copied = len; 2777 msg->msg_flags |= MSG_TRUNC; 2778 } 2779 2780 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 2781 if (err) 2782 goto out_free; 2783 2784 sock_recv_ts_and_drops(msg, sk, skb); 2785 2786 if (msg->msg_name) 2787 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, 2788 msg->msg_namelen); 2789 2790 if (pkt_sk(sk)->auxdata) { 2791 struct tpacket_auxdata aux; 2792 2793 aux.tp_status = TP_STATUS_USER; 2794 if (skb->ip_summed == CHECKSUM_PARTIAL) 2795 aux.tp_status |= TP_STATUS_CSUMNOTREADY; 2796 aux.tp_len = PACKET_SKB_CB(skb)->origlen; 2797 aux.tp_snaplen = skb->len; 2798 aux.tp_mac = 0; 2799 aux.tp_net = skb_network_offset(skb); 2800 if (vlan_tx_tag_present(skb)) { 2801 aux.tp_vlan_tci = vlan_tx_tag_get(skb); 2802 aux.tp_status |= TP_STATUS_VLAN_VALID; 2803 } else { 2804 aux.tp_vlan_tci = 0; 2805 } 2806 aux.tp_padding = 0; 2807 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux); 2808 } 2809 2810 /* 2811 * Free or return the buffer as appropriate. Again this 2812 * hides all the races and re-entrancy issues from us. 2813 */ 2814 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied); 2815 2816 out_free: 2817 skb_free_datagram(sk, skb); 2818 out: 2819 return err; 2820 } 2821 2822 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr, 2823 int *uaddr_len, int peer) 2824 { 2825 struct net_device *dev; 2826 struct sock *sk = sock->sk; 2827 2828 if (peer) 2829 return -EOPNOTSUPP; 2830 2831 uaddr->sa_family = AF_PACKET; 2832 rcu_read_lock(); 2833 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex); 2834 if (dev) 2835 strncpy(uaddr->sa_data, dev->name, 14); 2836 else 2837 memset(uaddr->sa_data, 0, 14); 2838 rcu_read_unlock(); 2839 *uaddr_len = sizeof(*uaddr); 2840 2841 return 0; 2842 } 2843 2844 static int packet_getname(struct socket *sock, struct sockaddr *uaddr, 2845 int *uaddr_len, int peer) 2846 { 2847 struct net_device *dev; 2848 struct sock *sk = sock->sk; 2849 struct packet_sock *po = pkt_sk(sk); 2850 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr); 2851 2852 if (peer) 2853 return -EOPNOTSUPP; 2854 2855 sll->sll_family = AF_PACKET; 2856 sll->sll_ifindex = po->ifindex; 2857 sll->sll_protocol = po->num; 2858 sll->sll_pkttype = 0; 2859 rcu_read_lock(); 2860 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex); 2861 if (dev) { 2862 sll->sll_hatype = dev->type; 2863 sll->sll_halen = dev->addr_len; 2864 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len); 2865 } else { 2866 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */ 2867 sll->sll_halen = 0; 2868 } 2869 rcu_read_unlock(); 2870 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen; 2871 2872 return 0; 2873 } 2874 2875 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i, 2876 int what) 2877 { 2878 switch (i->type) { 2879 case PACKET_MR_MULTICAST: 2880 if (i->alen != dev->addr_len) 2881 return -EINVAL; 2882 if (what > 0) 2883 return dev_mc_add(dev, i->addr); 2884 else 2885 return dev_mc_del(dev, i->addr); 2886 break; 2887 case PACKET_MR_PROMISC: 2888 return dev_set_promiscuity(dev, what); 2889 break; 2890 case PACKET_MR_ALLMULTI: 2891 return dev_set_allmulti(dev, what); 2892 break; 2893 case PACKET_MR_UNICAST: 2894 if (i->alen != dev->addr_len) 2895 return -EINVAL; 2896 if (what > 0) 2897 return dev_uc_add(dev, i->addr); 2898 else 2899 return dev_uc_del(dev, i->addr); 2900 break; 2901 default: 2902 break; 2903 } 2904 return 0; 2905 } 2906 2907 static void packet_dev_mclist(struct net_device *dev, struct packet_mclist *i, int what) 2908 { 2909 for ( ; i; i = i->next) { 2910 if (i->ifindex == dev->ifindex) 2911 packet_dev_mc(dev, i, what); 2912 } 2913 } 2914 2915 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq) 2916 { 2917 struct packet_sock *po = pkt_sk(sk); 2918 struct packet_mclist *ml, *i; 2919 struct net_device *dev; 2920 int err; 2921 2922 rtnl_lock(); 2923 2924 err = -ENODEV; 2925 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex); 2926 if (!dev) 2927 goto done; 2928 2929 err = -EINVAL; 2930 if (mreq->mr_alen > dev->addr_len) 2931 goto done; 2932 2933 err = -ENOBUFS; 2934 i = kmalloc(sizeof(*i), GFP_KERNEL); 2935 if (i == NULL) 2936 goto done; 2937 2938 err = 0; 2939 for (ml = po->mclist; ml; ml = ml->next) { 2940 if (ml->ifindex == mreq->mr_ifindex && 2941 ml->type == mreq->mr_type && 2942 ml->alen == mreq->mr_alen && 2943 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 2944 ml->count++; 2945 /* Free the new element ... */ 2946 kfree(i); 2947 goto done; 2948 } 2949 } 2950 2951 i->type = mreq->mr_type; 2952 i->ifindex = mreq->mr_ifindex; 2953 i->alen = mreq->mr_alen; 2954 memcpy(i->addr, mreq->mr_address, i->alen); 2955 i->count = 1; 2956 i->next = po->mclist; 2957 po->mclist = i; 2958 err = packet_dev_mc(dev, i, 1); 2959 if (err) { 2960 po->mclist = i->next; 2961 kfree(i); 2962 } 2963 2964 done: 2965 rtnl_unlock(); 2966 return err; 2967 } 2968 2969 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq) 2970 { 2971 struct packet_mclist *ml, **mlp; 2972 2973 rtnl_lock(); 2974 2975 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) { 2976 if (ml->ifindex == mreq->mr_ifindex && 2977 ml->type == mreq->mr_type && 2978 ml->alen == mreq->mr_alen && 2979 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) { 2980 if (--ml->count == 0) { 2981 struct net_device *dev; 2982 *mlp = ml->next; 2983 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 2984 if (dev) 2985 packet_dev_mc(dev, ml, -1); 2986 kfree(ml); 2987 } 2988 rtnl_unlock(); 2989 return 0; 2990 } 2991 } 2992 rtnl_unlock(); 2993 return -EADDRNOTAVAIL; 2994 } 2995 2996 static void packet_flush_mclist(struct sock *sk) 2997 { 2998 struct packet_sock *po = pkt_sk(sk); 2999 struct packet_mclist *ml; 3000 3001 if (!po->mclist) 3002 return; 3003 3004 rtnl_lock(); 3005 while ((ml = po->mclist) != NULL) { 3006 struct net_device *dev; 3007 3008 po->mclist = ml->next; 3009 dev = __dev_get_by_index(sock_net(sk), ml->ifindex); 3010 if (dev != NULL) 3011 packet_dev_mc(dev, ml, -1); 3012 kfree(ml); 3013 } 3014 rtnl_unlock(); 3015 } 3016 3017 static int 3018 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) 3019 { 3020 struct sock *sk = sock->sk; 3021 struct packet_sock *po = pkt_sk(sk); 3022 int ret; 3023 3024 if (level != SOL_PACKET) 3025 return -ENOPROTOOPT; 3026 3027 switch (optname) { 3028 case PACKET_ADD_MEMBERSHIP: 3029 case PACKET_DROP_MEMBERSHIP: 3030 { 3031 struct packet_mreq_max mreq; 3032 int len = optlen; 3033 memset(&mreq, 0, sizeof(mreq)); 3034 if (len < sizeof(struct packet_mreq)) 3035 return -EINVAL; 3036 if (len > sizeof(mreq)) 3037 len = sizeof(mreq); 3038 if (copy_from_user(&mreq, optval, len)) 3039 return -EFAULT; 3040 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address))) 3041 return -EINVAL; 3042 if (optname == PACKET_ADD_MEMBERSHIP) 3043 ret = packet_mc_add(sk, &mreq); 3044 else 3045 ret = packet_mc_drop(sk, &mreq); 3046 return ret; 3047 } 3048 3049 case PACKET_RX_RING: 3050 case PACKET_TX_RING: 3051 { 3052 union tpacket_req_u req_u; 3053 int len; 3054 3055 switch (po->tp_version) { 3056 case TPACKET_V1: 3057 case TPACKET_V2: 3058 len = sizeof(req_u.req); 3059 break; 3060 case TPACKET_V3: 3061 default: 3062 len = sizeof(req_u.req3); 3063 break; 3064 } 3065 if (optlen < len) 3066 return -EINVAL; 3067 if (pkt_sk(sk)->has_vnet_hdr) 3068 return -EINVAL; 3069 if (copy_from_user(&req_u.req, optval, len)) 3070 return -EFAULT; 3071 return packet_set_ring(sk, &req_u, 0, 3072 optname == PACKET_TX_RING); 3073 } 3074 case PACKET_COPY_THRESH: 3075 { 3076 int val; 3077 3078 if (optlen != sizeof(val)) 3079 return -EINVAL; 3080 if (copy_from_user(&val, optval, sizeof(val))) 3081 return -EFAULT; 3082 3083 pkt_sk(sk)->copy_thresh = val; 3084 return 0; 3085 } 3086 case PACKET_VERSION: 3087 { 3088 int val; 3089 3090 if (optlen != sizeof(val)) 3091 return -EINVAL; 3092 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3093 return -EBUSY; 3094 if (copy_from_user(&val, optval, sizeof(val))) 3095 return -EFAULT; 3096 switch (val) { 3097 case TPACKET_V1: 3098 case TPACKET_V2: 3099 case TPACKET_V3: 3100 po->tp_version = val; 3101 return 0; 3102 default: 3103 return -EINVAL; 3104 } 3105 } 3106 case PACKET_RESERVE: 3107 { 3108 unsigned int val; 3109 3110 if (optlen != sizeof(val)) 3111 return -EINVAL; 3112 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3113 return -EBUSY; 3114 if (copy_from_user(&val, optval, sizeof(val))) 3115 return -EFAULT; 3116 po->tp_reserve = val; 3117 return 0; 3118 } 3119 case PACKET_LOSS: 3120 { 3121 unsigned int val; 3122 3123 if (optlen != sizeof(val)) 3124 return -EINVAL; 3125 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3126 return -EBUSY; 3127 if (copy_from_user(&val, optval, sizeof(val))) 3128 return -EFAULT; 3129 po->tp_loss = !!val; 3130 return 0; 3131 } 3132 case PACKET_AUXDATA: 3133 { 3134 int val; 3135 3136 if (optlen < sizeof(val)) 3137 return -EINVAL; 3138 if (copy_from_user(&val, optval, sizeof(val))) 3139 return -EFAULT; 3140 3141 po->auxdata = !!val; 3142 return 0; 3143 } 3144 case PACKET_ORIGDEV: 3145 { 3146 int val; 3147 3148 if (optlen < sizeof(val)) 3149 return -EINVAL; 3150 if (copy_from_user(&val, optval, sizeof(val))) 3151 return -EFAULT; 3152 3153 po->origdev = !!val; 3154 return 0; 3155 } 3156 case PACKET_VNET_HDR: 3157 { 3158 int val; 3159 3160 if (sock->type != SOCK_RAW) 3161 return -EINVAL; 3162 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) 3163 return -EBUSY; 3164 if (optlen < sizeof(val)) 3165 return -EINVAL; 3166 if (copy_from_user(&val, optval, sizeof(val))) 3167 return -EFAULT; 3168 3169 po->has_vnet_hdr = !!val; 3170 return 0; 3171 } 3172 case PACKET_TIMESTAMP: 3173 { 3174 int val; 3175 3176 if (optlen != sizeof(val)) 3177 return -EINVAL; 3178 if (copy_from_user(&val, optval, sizeof(val))) 3179 return -EFAULT; 3180 3181 po->tp_tstamp = val; 3182 return 0; 3183 } 3184 case PACKET_FANOUT: 3185 { 3186 int val; 3187 3188 if (optlen != sizeof(val)) 3189 return -EINVAL; 3190 if (copy_from_user(&val, optval, sizeof(val))) 3191 return -EFAULT; 3192 3193 return fanout_add(sk, val & 0xffff, val >> 16); 3194 } 3195 default: 3196 return -ENOPROTOOPT; 3197 } 3198 } 3199 3200 static int packet_getsockopt(struct socket *sock, int level, int optname, 3201 char __user *optval, int __user *optlen) 3202 { 3203 int len; 3204 int val; 3205 struct sock *sk = sock->sk; 3206 struct packet_sock *po = pkt_sk(sk); 3207 void *data; 3208 struct tpacket_stats st; 3209 union tpacket_stats_u st_u; 3210 3211 if (level != SOL_PACKET) 3212 return -ENOPROTOOPT; 3213 3214 if (get_user(len, optlen)) 3215 return -EFAULT; 3216 3217 if (len < 0) 3218 return -EINVAL; 3219 3220 switch (optname) { 3221 case PACKET_STATISTICS: 3222 if (po->tp_version == TPACKET_V3) { 3223 len = sizeof(struct tpacket_stats_v3); 3224 } else { 3225 if (len > sizeof(struct tpacket_stats)) 3226 len = sizeof(struct tpacket_stats); 3227 } 3228 spin_lock_bh(&sk->sk_receive_queue.lock); 3229 if (po->tp_version == TPACKET_V3) { 3230 memcpy(&st_u.stats3, &po->stats, 3231 sizeof(struct tpacket_stats)); 3232 st_u.stats3.tp_freeze_q_cnt = 3233 po->stats_u.stats3.tp_freeze_q_cnt; 3234 st_u.stats3.tp_packets += po->stats.tp_drops; 3235 data = &st_u.stats3; 3236 } else { 3237 st = po->stats; 3238 st.tp_packets += st.tp_drops; 3239 data = &st; 3240 } 3241 memset(&po->stats, 0, sizeof(st)); 3242 spin_unlock_bh(&sk->sk_receive_queue.lock); 3243 break; 3244 case PACKET_AUXDATA: 3245 if (len > sizeof(int)) 3246 len = sizeof(int); 3247 val = po->auxdata; 3248 3249 data = &val; 3250 break; 3251 case PACKET_ORIGDEV: 3252 if (len > sizeof(int)) 3253 len = sizeof(int); 3254 val = po->origdev; 3255 3256 data = &val; 3257 break; 3258 case PACKET_VNET_HDR: 3259 if (len > sizeof(int)) 3260 len = sizeof(int); 3261 val = po->has_vnet_hdr; 3262 3263 data = &val; 3264 break; 3265 case PACKET_VERSION: 3266 if (len > sizeof(int)) 3267 len = sizeof(int); 3268 val = po->tp_version; 3269 data = &val; 3270 break; 3271 case PACKET_HDRLEN: 3272 if (len > sizeof(int)) 3273 len = sizeof(int); 3274 if (copy_from_user(&val, optval, len)) 3275 return -EFAULT; 3276 switch (val) { 3277 case TPACKET_V1: 3278 val = sizeof(struct tpacket_hdr); 3279 break; 3280 case TPACKET_V2: 3281 val = sizeof(struct tpacket2_hdr); 3282 break; 3283 case TPACKET_V3: 3284 val = sizeof(struct tpacket3_hdr); 3285 break; 3286 default: 3287 return -EINVAL; 3288 } 3289 data = &val; 3290 break; 3291 case PACKET_RESERVE: 3292 if (len > sizeof(unsigned int)) 3293 len = sizeof(unsigned int); 3294 val = po->tp_reserve; 3295 data = &val; 3296 break; 3297 case PACKET_LOSS: 3298 if (len > sizeof(unsigned int)) 3299 len = sizeof(unsigned int); 3300 val = po->tp_loss; 3301 data = &val; 3302 break; 3303 case PACKET_TIMESTAMP: 3304 if (len > sizeof(int)) 3305 len = sizeof(int); 3306 val = po->tp_tstamp; 3307 data = &val; 3308 break; 3309 case PACKET_FANOUT: 3310 if (len > sizeof(int)) 3311 len = sizeof(int); 3312 val = (po->fanout ? 3313 ((u32)po->fanout->id | 3314 ((u32)po->fanout->type << 16)) : 3315 0); 3316 data = &val; 3317 break; 3318 default: 3319 return -ENOPROTOOPT; 3320 } 3321 3322 if (put_user(len, optlen)) 3323 return -EFAULT; 3324 if (copy_to_user(optval, data, len)) 3325 return -EFAULT; 3326 return 0; 3327 } 3328 3329 3330 static int packet_notifier(struct notifier_block *this, unsigned long msg, void *data) 3331 { 3332 struct sock *sk; 3333 struct hlist_node *node; 3334 struct net_device *dev = data; 3335 struct net *net = dev_net(dev); 3336 3337 rcu_read_lock(); 3338 sk_for_each_rcu(sk, node, &net->packet.sklist) { 3339 struct packet_sock *po = pkt_sk(sk); 3340 3341 switch (msg) { 3342 case NETDEV_UNREGISTER: 3343 if (po->mclist) 3344 packet_dev_mclist(dev, po->mclist, -1); 3345 /* fallthrough */ 3346 3347 case NETDEV_DOWN: 3348 if (dev->ifindex == po->ifindex) { 3349 spin_lock(&po->bind_lock); 3350 if (po->running) { 3351 __unregister_prot_hook(sk, false); 3352 sk->sk_err = ENETDOWN; 3353 if (!sock_flag(sk, SOCK_DEAD)) 3354 sk->sk_error_report(sk); 3355 } 3356 if (msg == NETDEV_UNREGISTER) { 3357 po->ifindex = -1; 3358 if (po->prot_hook.dev) 3359 dev_put(po->prot_hook.dev); 3360 po->prot_hook.dev = NULL; 3361 } 3362 spin_unlock(&po->bind_lock); 3363 } 3364 break; 3365 case NETDEV_UP: 3366 if (dev->ifindex == po->ifindex) { 3367 spin_lock(&po->bind_lock); 3368 if (po->num) 3369 register_prot_hook(sk); 3370 spin_unlock(&po->bind_lock); 3371 } 3372 break; 3373 } 3374 } 3375 rcu_read_unlock(); 3376 return NOTIFY_DONE; 3377 } 3378 3379 3380 static int packet_ioctl(struct socket *sock, unsigned int cmd, 3381 unsigned long arg) 3382 { 3383 struct sock *sk = sock->sk; 3384 3385 switch (cmd) { 3386 case SIOCOUTQ: 3387 { 3388 int amount = sk_wmem_alloc_get(sk); 3389 3390 return put_user(amount, (int __user *)arg); 3391 } 3392 case SIOCINQ: 3393 { 3394 struct sk_buff *skb; 3395 int amount = 0; 3396 3397 spin_lock_bh(&sk->sk_receive_queue.lock); 3398 skb = skb_peek(&sk->sk_receive_queue); 3399 if (skb) 3400 amount = skb->len; 3401 spin_unlock_bh(&sk->sk_receive_queue.lock); 3402 return put_user(amount, (int __user *)arg); 3403 } 3404 case SIOCGSTAMP: 3405 return sock_get_timestamp(sk, (struct timeval __user *)arg); 3406 case SIOCGSTAMPNS: 3407 return sock_get_timestampns(sk, (struct timespec __user *)arg); 3408 3409 #ifdef CONFIG_INET 3410 case SIOCADDRT: 3411 case SIOCDELRT: 3412 case SIOCDARP: 3413 case SIOCGARP: 3414 case SIOCSARP: 3415 case SIOCGIFADDR: 3416 case SIOCSIFADDR: 3417 case SIOCGIFBRDADDR: 3418 case SIOCSIFBRDADDR: 3419 case SIOCGIFNETMASK: 3420 case SIOCSIFNETMASK: 3421 case SIOCGIFDSTADDR: 3422 case SIOCSIFDSTADDR: 3423 case SIOCSIFFLAGS: 3424 return inet_dgram_ops.ioctl(sock, cmd, arg); 3425 #endif 3426 3427 default: 3428 return -ENOIOCTLCMD; 3429 } 3430 return 0; 3431 } 3432 3433 static unsigned int packet_poll(struct file *file, struct socket *sock, 3434 poll_table *wait) 3435 { 3436 struct sock *sk = sock->sk; 3437 struct packet_sock *po = pkt_sk(sk); 3438 unsigned int mask = datagram_poll(file, sock, wait); 3439 3440 spin_lock_bh(&sk->sk_receive_queue.lock); 3441 if (po->rx_ring.pg_vec) { 3442 if (!packet_previous_rx_frame(po, &po->rx_ring, 3443 TP_STATUS_KERNEL)) 3444 mask |= POLLIN | POLLRDNORM; 3445 } 3446 spin_unlock_bh(&sk->sk_receive_queue.lock); 3447 spin_lock_bh(&sk->sk_write_queue.lock); 3448 if (po->tx_ring.pg_vec) { 3449 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE)) 3450 mask |= POLLOUT | POLLWRNORM; 3451 } 3452 spin_unlock_bh(&sk->sk_write_queue.lock); 3453 return mask; 3454 } 3455 3456 3457 /* Dirty? Well, I still did not learn better way to account 3458 * for user mmaps. 3459 */ 3460 3461 static void packet_mm_open(struct vm_area_struct *vma) 3462 { 3463 struct file *file = vma->vm_file; 3464 struct socket *sock = file->private_data; 3465 struct sock *sk = sock->sk; 3466 3467 if (sk) 3468 atomic_inc(&pkt_sk(sk)->mapped); 3469 } 3470 3471 static void packet_mm_close(struct vm_area_struct *vma) 3472 { 3473 struct file *file = vma->vm_file; 3474 struct socket *sock = file->private_data; 3475 struct sock *sk = sock->sk; 3476 3477 if (sk) 3478 atomic_dec(&pkt_sk(sk)->mapped); 3479 } 3480 3481 static const struct vm_operations_struct packet_mmap_ops = { 3482 .open = packet_mm_open, 3483 .close = packet_mm_close, 3484 }; 3485 3486 static void free_pg_vec(struct pgv *pg_vec, unsigned int order, 3487 unsigned int len) 3488 { 3489 int i; 3490 3491 for (i = 0; i < len; i++) { 3492 if (likely(pg_vec[i].buffer)) { 3493 if (is_vmalloc_addr(pg_vec[i].buffer)) 3494 vfree(pg_vec[i].buffer); 3495 else 3496 free_pages((unsigned long)pg_vec[i].buffer, 3497 order); 3498 pg_vec[i].buffer = NULL; 3499 } 3500 } 3501 kfree(pg_vec); 3502 } 3503 3504 static char *alloc_one_pg_vec_page(unsigned long order) 3505 { 3506 char *buffer = NULL; 3507 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | 3508 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY; 3509 3510 buffer = (char *) __get_free_pages(gfp_flags, order); 3511 3512 if (buffer) 3513 return buffer; 3514 3515 /* 3516 * __get_free_pages failed, fall back to vmalloc 3517 */ 3518 buffer = vzalloc((1 << order) * PAGE_SIZE); 3519 3520 if (buffer) 3521 return buffer; 3522 3523 /* 3524 * vmalloc failed, lets dig into swap here 3525 */ 3526 gfp_flags &= ~__GFP_NORETRY; 3527 buffer = (char *)__get_free_pages(gfp_flags, order); 3528 if (buffer) 3529 return buffer; 3530 3531 /* 3532 * complete and utter failure 3533 */ 3534 return NULL; 3535 } 3536 3537 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order) 3538 { 3539 unsigned int block_nr = req->tp_block_nr; 3540 struct pgv *pg_vec; 3541 int i; 3542 3543 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL); 3544 if (unlikely(!pg_vec)) 3545 goto out; 3546 3547 for (i = 0; i < block_nr; i++) { 3548 pg_vec[i].buffer = alloc_one_pg_vec_page(order); 3549 if (unlikely(!pg_vec[i].buffer)) 3550 goto out_free_pgvec; 3551 } 3552 3553 out: 3554 return pg_vec; 3555 3556 out_free_pgvec: 3557 free_pg_vec(pg_vec, order, block_nr); 3558 pg_vec = NULL; 3559 goto out; 3560 } 3561 3562 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u, 3563 int closing, int tx_ring) 3564 { 3565 struct pgv *pg_vec = NULL; 3566 struct packet_sock *po = pkt_sk(sk); 3567 int was_running, order = 0; 3568 struct packet_ring_buffer *rb; 3569 struct sk_buff_head *rb_queue; 3570 __be16 num; 3571 int err = -EINVAL; 3572 /* Added to avoid minimal code churn */ 3573 struct tpacket_req *req = &req_u->req; 3574 3575 /* Opening a Tx-ring is NOT supported in TPACKET_V3 */ 3576 if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) { 3577 WARN(1, "Tx-ring is not supported.\n"); 3578 goto out; 3579 } 3580 3581 rb = tx_ring ? &po->tx_ring : &po->rx_ring; 3582 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 3583 3584 err = -EBUSY; 3585 if (!closing) { 3586 if (atomic_read(&po->mapped)) 3587 goto out; 3588 if (atomic_read(&rb->pending)) 3589 goto out; 3590 } 3591 3592 if (req->tp_block_nr) { 3593 /* Sanity tests and some calculations */ 3594 err = -EBUSY; 3595 if (unlikely(rb->pg_vec)) 3596 goto out; 3597 3598 switch (po->tp_version) { 3599 case TPACKET_V1: 3600 po->tp_hdrlen = TPACKET_HDRLEN; 3601 break; 3602 case TPACKET_V2: 3603 po->tp_hdrlen = TPACKET2_HDRLEN; 3604 break; 3605 case TPACKET_V3: 3606 po->tp_hdrlen = TPACKET3_HDRLEN; 3607 break; 3608 } 3609 3610 err = -EINVAL; 3611 if (unlikely((int)req->tp_block_size <= 0)) 3612 goto out; 3613 if (unlikely(req->tp_block_size & (PAGE_SIZE - 1))) 3614 goto out; 3615 if (unlikely(req->tp_frame_size < po->tp_hdrlen + 3616 po->tp_reserve)) 3617 goto out; 3618 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1))) 3619 goto out; 3620 3621 rb->frames_per_block = req->tp_block_size/req->tp_frame_size; 3622 if (unlikely(rb->frames_per_block <= 0)) 3623 goto out; 3624 if (unlikely((rb->frames_per_block * req->tp_block_nr) != 3625 req->tp_frame_nr)) 3626 goto out; 3627 3628 err = -ENOMEM; 3629 order = get_order(req->tp_block_size); 3630 pg_vec = alloc_pg_vec(req, order); 3631 if (unlikely(!pg_vec)) 3632 goto out; 3633 switch (po->tp_version) { 3634 case TPACKET_V3: 3635 /* Transmit path is not supported. We checked 3636 * it above but just being paranoid 3637 */ 3638 if (!tx_ring) 3639 init_prb_bdqc(po, rb, pg_vec, req_u, tx_ring); 3640 break; 3641 default: 3642 break; 3643 } 3644 } 3645 /* Done */ 3646 else { 3647 err = -EINVAL; 3648 if (unlikely(req->tp_frame_nr)) 3649 goto out; 3650 } 3651 3652 lock_sock(sk); 3653 3654 /* Detach socket from network */ 3655 spin_lock(&po->bind_lock); 3656 was_running = po->running; 3657 num = po->num; 3658 if (was_running) { 3659 po->num = 0; 3660 __unregister_prot_hook(sk, false); 3661 } 3662 spin_unlock(&po->bind_lock); 3663 3664 synchronize_net(); 3665 3666 err = -EBUSY; 3667 mutex_lock(&po->pg_vec_lock); 3668 if (closing || atomic_read(&po->mapped) == 0) { 3669 err = 0; 3670 spin_lock_bh(&rb_queue->lock); 3671 swap(rb->pg_vec, pg_vec); 3672 rb->frame_max = (req->tp_frame_nr - 1); 3673 rb->head = 0; 3674 rb->frame_size = req->tp_frame_size; 3675 spin_unlock_bh(&rb_queue->lock); 3676 3677 swap(rb->pg_vec_order, order); 3678 swap(rb->pg_vec_len, req->tp_block_nr); 3679 3680 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE; 3681 po->prot_hook.func = (po->rx_ring.pg_vec) ? 3682 tpacket_rcv : packet_rcv; 3683 skb_queue_purge(rb_queue); 3684 if (atomic_read(&po->mapped)) 3685 pr_err("packet_mmap: vma is busy: %d\n", 3686 atomic_read(&po->mapped)); 3687 } 3688 mutex_unlock(&po->pg_vec_lock); 3689 3690 spin_lock(&po->bind_lock); 3691 if (was_running) { 3692 po->num = num; 3693 register_prot_hook(sk); 3694 } 3695 spin_unlock(&po->bind_lock); 3696 if (closing && (po->tp_version > TPACKET_V2)) { 3697 /* Because we don't support block-based V3 on tx-ring */ 3698 if (!tx_ring) 3699 prb_shutdown_retire_blk_timer(po, tx_ring, rb_queue); 3700 } 3701 release_sock(sk); 3702 3703 if (pg_vec) 3704 free_pg_vec(pg_vec, order, req->tp_block_nr); 3705 out: 3706 return err; 3707 } 3708 3709 static int packet_mmap(struct file *file, struct socket *sock, 3710 struct vm_area_struct *vma) 3711 { 3712 struct sock *sk = sock->sk; 3713 struct packet_sock *po = pkt_sk(sk); 3714 unsigned long size, expected_size; 3715 struct packet_ring_buffer *rb; 3716 unsigned long start; 3717 int err = -EINVAL; 3718 int i; 3719 3720 if (vma->vm_pgoff) 3721 return -EINVAL; 3722 3723 mutex_lock(&po->pg_vec_lock); 3724 3725 expected_size = 0; 3726 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 3727 if (rb->pg_vec) { 3728 expected_size += rb->pg_vec_len 3729 * rb->pg_vec_pages 3730 * PAGE_SIZE; 3731 } 3732 } 3733 3734 if (expected_size == 0) 3735 goto out; 3736 3737 size = vma->vm_end - vma->vm_start; 3738 if (size != expected_size) 3739 goto out; 3740 3741 start = vma->vm_start; 3742 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) { 3743 if (rb->pg_vec == NULL) 3744 continue; 3745 3746 for (i = 0; i < rb->pg_vec_len; i++) { 3747 struct page *page; 3748 void *kaddr = rb->pg_vec[i].buffer; 3749 int pg_num; 3750 3751 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) { 3752 page = pgv_to_page(kaddr); 3753 err = vm_insert_page(vma, start, page); 3754 if (unlikely(err)) 3755 goto out; 3756 start += PAGE_SIZE; 3757 kaddr += PAGE_SIZE; 3758 } 3759 } 3760 } 3761 3762 atomic_inc(&po->mapped); 3763 vma->vm_ops = &packet_mmap_ops; 3764 err = 0; 3765 3766 out: 3767 mutex_unlock(&po->pg_vec_lock); 3768 return err; 3769 } 3770 3771 static const struct proto_ops packet_ops_spkt = { 3772 .family = PF_PACKET, 3773 .owner = THIS_MODULE, 3774 .release = packet_release, 3775 .bind = packet_bind_spkt, 3776 .connect = sock_no_connect, 3777 .socketpair = sock_no_socketpair, 3778 .accept = sock_no_accept, 3779 .getname = packet_getname_spkt, 3780 .poll = datagram_poll, 3781 .ioctl = packet_ioctl, 3782 .listen = sock_no_listen, 3783 .shutdown = sock_no_shutdown, 3784 .setsockopt = sock_no_setsockopt, 3785 .getsockopt = sock_no_getsockopt, 3786 .sendmsg = packet_sendmsg_spkt, 3787 .recvmsg = packet_recvmsg, 3788 .mmap = sock_no_mmap, 3789 .sendpage = sock_no_sendpage, 3790 }; 3791 3792 static const struct proto_ops packet_ops = { 3793 .family = PF_PACKET, 3794 .owner = THIS_MODULE, 3795 .release = packet_release, 3796 .bind = packet_bind, 3797 .connect = sock_no_connect, 3798 .socketpair = sock_no_socketpair, 3799 .accept = sock_no_accept, 3800 .getname = packet_getname, 3801 .poll = packet_poll, 3802 .ioctl = packet_ioctl, 3803 .listen = sock_no_listen, 3804 .shutdown = sock_no_shutdown, 3805 .setsockopt = packet_setsockopt, 3806 .getsockopt = packet_getsockopt, 3807 .sendmsg = packet_sendmsg, 3808 .recvmsg = packet_recvmsg, 3809 .mmap = packet_mmap, 3810 .sendpage = sock_no_sendpage, 3811 }; 3812 3813 static const struct net_proto_family packet_family_ops = { 3814 .family = PF_PACKET, 3815 .create = packet_create, 3816 .owner = THIS_MODULE, 3817 }; 3818 3819 static struct notifier_block packet_netdev_notifier = { 3820 .notifier_call = packet_notifier, 3821 }; 3822 3823 #ifdef CONFIG_PROC_FS 3824 3825 static void *packet_seq_start(struct seq_file *seq, loff_t *pos) 3826 __acquires(RCU) 3827 { 3828 struct net *net = seq_file_net(seq); 3829 3830 rcu_read_lock(); 3831 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos); 3832 } 3833 3834 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3835 { 3836 struct net *net = seq_file_net(seq); 3837 return seq_hlist_next_rcu(v, &net->packet.sklist, pos); 3838 } 3839 3840 static void packet_seq_stop(struct seq_file *seq, void *v) 3841 __releases(RCU) 3842 { 3843 rcu_read_unlock(); 3844 } 3845 3846 static int packet_seq_show(struct seq_file *seq, void *v) 3847 { 3848 if (v == SEQ_START_TOKEN) 3849 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n"); 3850 else { 3851 struct sock *s = sk_entry(v); 3852 const struct packet_sock *po = pkt_sk(s); 3853 3854 seq_printf(seq, 3855 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n", 3856 s, 3857 atomic_read(&s->sk_refcnt), 3858 s->sk_type, 3859 ntohs(po->num), 3860 po->ifindex, 3861 po->running, 3862 atomic_read(&s->sk_rmem_alloc), 3863 sock_i_uid(s), 3864 sock_i_ino(s)); 3865 } 3866 3867 return 0; 3868 } 3869 3870 static const struct seq_operations packet_seq_ops = { 3871 .start = packet_seq_start, 3872 .next = packet_seq_next, 3873 .stop = packet_seq_stop, 3874 .show = packet_seq_show, 3875 }; 3876 3877 static int packet_seq_open(struct inode *inode, struct file *file) 3878 { 3879 return seq_open_net(inode, file, &packet_seq_ops, 3880 sizeof(struct seq_net_private)); 3881 } 3882 3883 static const struct file_operations packet_seq_fops = { 3884 .owner = THIS_MODULE, 3885 .open = packet_seq_open, 3886 .read = seq_read, 3887 .llseek = seq_lseek, 3888 .release = seq_release_net, 3889 }; 3890 3891 #endif 3892 3893 static int __net_init packet_net_init(struct net *net) 3894 { 3895 spin_lock_init(&net->packet.sklist_lock); 3896 INIT_HLIST_HEAD(&net->packet.sklist); 3897 3898 if (!proc_net_fops_create(net, "packet", 0, &packet_seq_fops)) 3899 return -ENOMEM; 3900 3901 return 0; 3902 } 3903 3904 static void __net_exit packet_net_exit(struct net *net) 3905 { 3906 proc_net_remove(net, "packet"); 3907 } 3908 3909 static struct pernet_operations packet_net_ops = { 3910 .init = packet_net_init, 3911 .exit = packet_net_exit, 3912 }; 3913 3914 3915 static void __exit packet_exit(void) 3916 { 3917 unregister_netdevice_notifier(&packet_netdev_notifier); 3918 unregister_pernet_subsys(&packet_net_ops); 3919 sock_unregister(PF_PACKET); 3920 proto_unregister(&packet_proto); 3921 } 3922 3923 static int __init packet_init(void) 3924 { 3925 int rc = proto_register(&packet_proto, 0); 3926 3927 if (rc != 0) 3928 goto out; 3929 3930 sock_register(&packet_family_ops); 3931 register_pernet_subsys(&packet_net_ops); 3932 register_netdevice_notifier(&packet_netdev_notifier); 3933 out: 3934 return rc; 3935 } 3936 3937 module_init(packet_init); 3938 module_exit(packet_exit); 3939 MODULE_LICENSE("GPL"); 3940 MODULE_ALIAS_NETPROTO(PF_PACKET); 3941