1 /* 2 * Copyright (c) 2015 Nicira, Inc. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of version 2 of the GNU General Public 6 * License as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 */ 13 14 #include <linux/module.h> 15 #include <linux/openvswitch.h> 16 #include <linux/tcp.h> 17 #include <linux/udp.h> 18 #include <linux/sctp.h> 19 #include <net/ip.h> 20 #include <net/netfilter/nf_conntrack_core.h> 21 #include <net/netfilter/nf_conntrack_helper.h> 22 #include <net/netfilter/nf_conntrack_labels.h> 23 #include <net/netfilter/nf_conntrack_seqadj.h> 24 #include <net/netfilter/nf_conntrack_zones.h> 25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h> 26 27 #ifdef CONFIG_NF_NAT_NEEDED 28 #include <linux/netfilter/nf_nat.h> 29 #include <net/netfilter/nf_nat_core.h> 30 #include <net/netfilter/nf_nat_l3proto.h> 31 #endif 32 33 #include "datapath.h" 34 #include "conntrack.h" 35 #include "flow.h" 36 #include "flow_netlink.h" 37 38 struct ovs_ct_len_tbl { 39 int maxlen; 40 int minlen; 41 }; 42 43 /* Metadata mark for masked write to conntrack mark */ 44 struct md_mark { 45 u32 value; 46 u32 mask; 47 }; 48 49 /* Metadata label for masked write to conntrack label. */ 50 struct md_labels { 51 struct ovs_key_ct_labels value; 52 struct ovs_key_ct_labels mask; 53 }; 54 55 enum ovs_ct_nat { 56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */ 57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */ 58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */ 59 }; 60 61 /* Conntrack action context for execution. */ 62 struct ovs_conntrack_info { 63 struct nf_conntrack_helper *helper; 64 struct nf_conntrack_zone zone; 65 struct nf_conn *ct; 66 u8 commit : 1; 67 u8 nat : 3; /* enum ovs_ct_nat */ 68 u16 family; 69 struct md_mark mark; 70 struct md_labels labels; 71 #ifdef CONFIG_NF_NAT_NEEDED 72 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */ 73 #endif 74 }; 75 76 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info); 77 78 static u16 key_to_nfproto(const struct sw_flow_key *key) 79 { 80 switch (ntohs(key->eth.type)) { 81 case ETH_P_IP: 82 return NFPROTO_IPV4; 83 case ETH_P_IPV6: 84 return NFPROTO_IPV6; 85 default: 86 return NFPROTO_UNSPEC; 87 } 88 } 89 90 /* Map SKB connection state into the values used by flow definition. */ 91 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo) 92 { 93 u8 ct_state = OVS_CS_F_TRACKED; 94 95 switch (ctinfo) { 96 case IP_CT_ESTABLISHED_REPLY: 97 case IP_CT_RELATED_REPLY: 98 ct_state |= OVS_CS_F_REPLY_DIR; 99 break; 100 default: 101 break; 102 } 103 104 switch (ctinfo) { 105 case IP_CT_ESTABLISHED: 106 case IP_CT_ESTABLISHED_REPLY: 107 ct_state |= OVS_CS_F_ESTABLISHED; 108 break; 109 case IP_CT_RELATED: 110 case IP_CT_RELATED_REPLY: 111 ct_state |= OVS_CS_F_RELATED; 112 break; 113 case IP_CT_NEW: 114 ct_state |= OVS_CS_F_NEW; 115 break; 116 default: 117 break; 118 } 119 120 return ct_state; 121 } 122 123 static u32 ovs_ct_get_mark(const struct nf_conn *ct) 124 { 125 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 126 return ct ? ct->mark : 0; 127 #else 128 return 0; 129 #endif 130 } 131 132 static void ovs_ct_get_labels(const struct nf_conn *ct, 133 struct ovs_key_ct_labels *labels) 134 { 135 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL; 136 137 if (cl) { 138 size_t len = cl->words * sizeof(long); 139 140 if (len > OVS_CT_LABELS_LEN) 141 len = OVS_CT_LABELS_LEN; 142 else if (len < OVS_CT_LABELS_LEN) 143 memset(labels, 0, OVS_CT_LABELS_LEN); 144 memcpy(labels, cl->bits, len); 145 } else { 146 memset(labels, 0, OVS_CT_LABELS_LEN); 147 } 148 } 149 150 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state, 151 const struct nf_conntrack_zone *zone, 152 const struct nf_conn *ct) 153 { 154 key->ct.state = state; 155 key->ct.zone = zone->id; 156 key->ct.mark = ovs_ct_get_mark(ct); 157 ovs_ct_get_labels(ct, &key->ct.labels); 158 } 159 160 /* Update 'key' based on skb->nfct. If 'post_ct' is true, then OVS has 161 * previously sent the packet to conntrack via the ct action. If 162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are 163 * initialized from the connection status. 164 */ 165 static void ovs_ct_update_key(const struct sk_buff *skb, 166 const struct ovs_conntrack_info *info, 167 struct sw_flow_key *key, bool post_ct, 168 bool keep_nat_flags) 169 { 170 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt; 171 enum ip_conntrack_info ctinfo; 172 struct nf_conn *ct; 173 u8 state = 0; 174 175 ct = nf_ct_get(skb, &ctinfo); 176 if (ct) { 177 state = ovs_ct_get_state(ctinfo); 178 /* All unconfirmed entries are NEW connections. */ 179 if (!nf_ct_is_confirmed(ct)) 180 state |= OVS_CS_F_NEW; 181 /* OVS persists the related flag for the duration of the 182 * connection. 183 */ 184 if (ct->master) 185 state |= OVS_CS_F_RELATED; 186 if (keep_nat_flags) { 187 state |= key->ct.state & OVS_CS_F_NAT_MASK; 188 } else { 189 if (ct->status & IPS_SRC_NAT) 190 state |= OVS_CS_F_SRC_NAT; 191 if (ct->status & IPS_DST_NAT) 192 state |= OVS_CS_F_DST_NAT; 193 } 194 zone = nf_ct_zone(ct); 195 } else if (post_ct) { 196 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID; 197 if (info) 198 zone = &info->zone; 199 } 200 __ovs_ct_update_key(key, state, zone, ct); 201 } 202 203 /* This is called to initialize CT key fields possibly coming in from the local 204 * stack. 205 */ 206 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key) 207 { 208 ovs_ct_update_key(skb, NULL, key, false, false); 209 } 210 211 int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb) 212 { 213 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state)) 214 return -EMSGSIZE; 215 216 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 217 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone)) 218 return -EMSGSIZE; 219 220 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 221 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark)) 222 return -EMSGSIZE; 223 224 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 225 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels), 226 &key->ct.labels)) 227 return -EMSGSIZE; 228 229 return 0; 230 } 231 232 static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key, 233 u32 ct_mark, u32 mask) 234 { 235 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) 236 enum ip_conntrack_info ctinfo; 237 struct nf_conn *ct; 238 u32 new_mark; 239 240 /* The connection could be invalid, in which case set_mark is no-op. */ 241 ct = nf_ct_get(skb, &ctinfo); 242 if (!ct) 243 return 0; 244 245 new_mark = ct_mark | (ct->mark & ~(mask)); 246 if (ct->mark != new_mark) { 247 ct->mark = new_mark; 248 nf_conntrack_event_cache(IPCT_MARK, ct); 249 key->ct.mark = new_mark; 250 } 251 252 return 0; 253 #else 254 return -ENOTSUPP; 255 #endif 256 } 257 258 static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key, 259 const struct ovs_key_ct_labels *labels, 260 const struct ovs_key_ct_labels *mask) 261 { 262 enum ip_conntrack_info ctinfo; 263 struct nf_conn_labels *cl; 264 struct nf_conn *ct; 265 int err; 266 267 /* The connection could be invalid, in which case set_label is no-op.*/ 268 ct = nf_ct_get(skb, &ctinfo); 269 if (!ct) 270 return 0; 271 272 cl = nf_ct_labels_find(ct); 273 if (!cl) { 274 nf_ct_labels_ext_add(ct); 275 cl = nf_ct_labels_find(ct); 276 } 277 if (!cl || cl->words * sizeof(long) < OVS_CT_LABELS_LEN) 278 return -ENOSPC; 279 280 err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask, 281 OVS_CT_LABELS_LEN / sizeof(u32)); 282 if (err) 283 return err; 284 285 ovs_ct_get_labels(ct, &key->ct.labels); 286 return 0; 287 } 288 289 /* 'skb' should already be pulled to nh_ofs. */ 290 static int ovs_ct_helper(struct sk_buff *skb, u16 proto) 291 { 292 const struct nf_conntrack_helper *helper; 293 const struct nf_conn_help *help; 294 enum ip_conntrack_info ctinfo; 295 unsigned int protoff; 296 struct nf_conn *ct; 297 int err; 298 299 ct = nf_ct_get(skb, &ctinfo); 300 if (!ct || ctinfo == IP_CT_RELATED_REPLY) 301 return NF_ACCEPT; 302 303 help = nfct_help(ct); 304 if (!help) 305 return NF_ACCEPT; 306 307 helper = rcu_dereference(help->helper); 308 if (!helper) 309 return NF_ACCEPT; 310 311 switch (proto) { 312 case NFPROTO_IPV4: 313 protoff = ip_hdrlen(skb); 314 break; 315 case NFPROTO_IPV6: { 316 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 317 __be16 frag_off; 318 int ofs; 319 320 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, 321 &frag_off); 322 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) { 323 pr_debug("proto header not found\n"); 324 return NF_ACCEPT; 325 } 326 protoff = ofs; 327 break; 328 } 329 default: 330 WARN_ONCE(1, "helper invoked on non-IP family!"); 331 return NF_DROP; 332 } 333 334 err = helper->help(skb, protoff, ct, ctinfo); 335 if (err != NF_ACCEPT) 336 return err; 337 338 /* Adjust seqs after helper. This is needed due to some helpers (e.g., 339 * FTP with NAT) adusting the TCP payload size when mangling IP 340 * addresses and/or port numbers in the text-based control connection. 341 */ 342 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) && 343 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) 344 return NF_DROP; 345 return NF_ACCEPT; 346 } 347 348 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 349 * value if 'skb' is freed. 350 */ 351 static int handle_fragments(struct net *net, struct sw_flow_key *key, 352 u16 zone, struct sk_buff *skb) 353 { 354 struct ovs_skb_cb ovs_cb = *OVS_CB(skb); 355 int err; 356 357 if (key->eth.type == htons(ETH_P_IP)) { 358 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; 359 360 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); 361 err = ip_defrag(net, skb, user); 362 if (err) 363 return err; 364 365 ovs_cb.mru = IPCB(skb)->frag_max_size; 366 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) 367 } else if (key->eth.type == htons(ETH_P_IPV6)) { 368 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; 369 370 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); 371 err = nf_ct_frag6_gather(net, skb, user); 372 if (err) 373 return err; 374 375 key->ip.proto = ipv6_hdr(skb)->nexthdr; 376 ovs_cb.mru = IP6CB(skb)->frag_max_size; 377 #endif 378 } else { 379 kfree_skb(skb); 380 return -EPFNOSUPPORT; 381 } 382 383 key->ip.frag = OVS_FRAG_TYPE_NONE; 384 skb_clear_hash(skb); 385 skb->ignore_df = 1; 386 *OVS_CB(skb) = ovs_cb; 387 388 return 0; 389 } 390 391 static struct nf_conntrack_expect * 392 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone, 393 u16 proto, const struct sk_buff *skb) 394 { 395 struct nf_conntrack_tuple tuple; 396 397 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple)) 398 return NULL; 399 return __nf_ct_expect_find(net, zone, &tuple); 400 } 401 402 /* This replicates logic from nf_conntrack_core.c that is not exported. */ 403 static enum ip_conntrack_info 404 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h) 405 { 406 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h); 407 408 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) 409 return IP_CT_ESTABLISHED_REPLY; 410 /* Once we've had two way comms, always ESTABLISHED. */ 411 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) 412 return IP_CT_ESTABLISHED; 413 if (test_bit(IPS_EXPECTED_BIT, &ct->status)) 414 return IP_CT_RELATED; 415 return IP_CT_NEW; 416 } 417 418 /* Find an existing connection which this packet belongs to without 419 * re-attributing statistics or modifying the connection state. This allows an 420 * skb->nfct lost due to an upcall to be recovered during actions execution. 421 * 422 * Must be called with rcu_read_lock. 423 * 424 * On success, populates skb->nfct and skb->nfctinfo, and returns the 425 * connection. Returns NULL if there is no existing entry. 426 */ 427 static struct nf_conn * 428 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone, 429 u8 l3num, struct sk_buff *skb) 430 { 431 struct nf_conntrack_l3proto *l3proto; 432 struct nf_conntrack_l4proto *l4proto; 433 struct nf_conntrack_tuple tuple; 434 struct nf_conntrack_tuple_hash *h; 435 enum ip_conntrack_info ctinfo; 436 struct nf_conn *ct; 437 unsigned int dataoff; 438 u8 protonum; 439 440 l3proto = __nf_ct_l3proto_find(l3num); 441 if (!l3proto) { 442 pr_debug("ovs_ct_find_existing: Can't get l3proto\n"); 443 return NULL; 444 } 445 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff, 446 &protonum) <= 0) { 447 pr_debug("ovs_ct_find_existing: Can't get protonum\n"); 448 return NULL; 449 } 450 l4proto = __nf_ct_l4proto_find(l3num, protonum); 451 if (!l4proto) { 452 pr_debug("ovs_ct_find_existing: Can't get l4proto\n"); 453 return NULL; 454 } 455 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num, 456 protonum, net, &tuple, l3proto, l4proto)) { 457 pr_debug("ovs_ct_find_existing: Can't get tuple\n"); 458 return NULL; 459 } 460 461 /* look for tuple match */ 462 h = nf_conntrack_find_get(net, zone, &tuple); 463 if (!h) 464 return NULL; /* Not found. */ 465 466 ct = nf_ct_tuplehash_to_ctrack(h); 467 468 ctinfo = ovs_ct_get_info(h); 469 if (ctinfo == IP_CT_NEW) { 470 /* This should not happen. */ 471 WARN_ONCE(1, "ovs_ct_find_existing: new packet for %p\n", ct); 472 } 473 skb->nfct = &ct->ct_general; 474 skb->nfctinfo = ctinfo; 475 return ct; 476 } 477 478 /* Determine whether skb->nfct is equal to the result of conntrack lookup. */ 479 static bool skb_nfct_cached(struct net *net, 480 const struct sw_flow_key *key, 481 const struct ovs_conntrack_info *info, 482 struct sk_buff *skb) 483 { 484 enum ip_conntrack_info ctinfo; 485 struct nf_conn *ct; 486 487 ct = nf_ct_get(skb, &ctinfo); 488 /* If no ct, check if we have evidence that an existing conntrack entry 489 * might be found for this skb. This happens when we lose a skb->nfct 490 * due to an upcall. If the connection was not confirmed, it is not 491 * cached and needs to be run through conntrack again. 492 */ 493 if (!ct && key->ct.state & OVS_CS_F_TRACKED && 494 !(key->ct.state & OVS_CS_F_INVALID) && 495 key->ct.zone == info->zone.id) 496 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb); 497 if (!ct) 498 return false; 499 if (!net_eq(net, read_pnet(&ct->ct_net))) 500 return false; 501 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct))) 502 return false; 503 if (info->helper) { 504 struct nf_conn_help *help; 505 506 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER); 507 if (help && rcu_access_pointer(help->helper) != info->helper) 508 return false; 509 } 510 511 return true; 512 } 513 514 #ifdef CONFIG_NF_NAT_NEEDED 515 /* Modelled after nf_nat_ipv[46]_fn(). 516 * range is only used for new, uninitialized NAT state. 517 * Returns either NF_ACCEPT or NF_DROP. 518 */ 519 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, 520 enum ip_conntrack_info ctinfo, 521 const struct nf_nat_range *range, 522 enum nf_nat_manip_type maniptype) 523 { 524 int hooknum, nh_off, err = NF_ACCEPT; 525 526 nh_off = skb_network_offset(skb); 527 skb_pull(skb, nh_off); 528 529 /* See HOOK2MANIP(). */ 530 if (maniptype == NF_NAT_MANIP_SRC) 531 hooknum = NF_INET_LOCAL_IN; /* Source NAT */ 532 else 533 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ 534 535 switch (ctinfo) { 536 case IP_CT_RELATED: 537 case IP_CT_RELATED_REPLY: 538 if (skb->protocol == htons(ETH_P_IP) && 539 ip_hdr(skb)->protocol == IPPROTO_ICMP) { 540 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, 541 hooknum)) 542 err = NF_DROP; 543 goto push; 544 #if IS_ENABLED(CONFIG_NF_NAT_IPV6) 545 } else if (skb->protocol == htons(ETH_P_IPV6)) { 546 __be16 frag_off; 547 u8 nexthdr = ipv6_hdr(skb)->nexthdr; 548 int hdrlen = ipv6_skip_exthdr(skb, 549 sizeof(struct ipv6hdr), 550 &nexthdr, &frag_off); 551 552 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { 553 if (!nf_nat_icmpv6_reply_translation(skb, ct, 554 ctinfo, 555 hooknum, 556 hdrlen)) 557 err = NF_DROP; 558 goto push; 559 } 560 #endif 561 } 562 /* Non-ICMP, fall thru to initialize if needed. */ 563 case IP_CT_NEW: 564 /* Seen it before? This can happen for loopback, retrans, 565 * or local packets. 566 */ 567 if (!nf_nat_initialized(ct, maniptype)) { 568 /* Initialize according to the NAT action. */ 569 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) 570 /* Action is set up to establish a new 571 * mapping. 572 */ 573 ? nf_nat_setup_info(ct, range, maniptype) 574 : nf_nat_alloc_null_binding(ct, hooknum); 575 if (err != NF_ACCEPT) 576 goto push; 577 } 578 break; 579 580 case IP_CT_ESTABLISHED: 581 case IP_CT_ESTABLISHED_REPLY: 582 break; 583 584 default: 585 err = NF_DROP; 586 goto push; 587 } 588 589 err = nf_nat_packet(ct, ctinfo, hooknum, skb); 590 push: 591 skb_push(skb, nh_off); 592 593 return err; 594 } 595 596 static void ovs_nat_update_key(struct sw_flow_key *key, 597 const struct sk_buff *skb, 598 enum nf_nat_manip_type maniptype) 599 { 600 if (maniptype == NF_NAT_MANIP_SRC) { 601 __be16 src; 602 603 key->ct.state |= OVS_CS_F_SRC_NAT; 604 if (key->eth.type == htons(ETH_P_IP)) 605 key->ipv4.addr.src = ip_hdr(skb)->saddr; 606 else if (key->eth.type == htons(ETH_P_IPV6)) 607 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr, 608 sizeof(key->ipv6.addr.src)); 609 else 610 return; 611 612 if (key->ip.proto == IPPROTO_UDP) 613 src = udp_hdr(skb)->source; 614 else if (key->ip.proto == IPPROTO_TCP) 615 src = tcp_hdr(skb)->source; 616 else if (key->ip.proto == IPPROTO_SCTP) 617 src = sctp_hdr(skb)->source; 618 else 619 return; 620 621 key->tp.src = src; 622 } else { 623 __be16 dst; 624 625 key->ct.state |= OVS_CS_F_DST_NAT; 626 if (key->eth.type == htons(ETH_P_IP)) 627 key->ipv4.addr.dst = ip_hdr(skb)->daddr; 628 else if (key->eth.type == htons(ETH_P_IPV6)) 629 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr, 630 sizeof(key->ipv6.addr.dst)); 631 else 632 return; 633 634 if (key->ip.proto == IPPROTO_UDP) 635 dst = udp_hdr(skb)->dest; 636 else if (key->ip.proto == IPPROTO_TCP) 637 dst = tcp_hdr(skb)->dest; 638 else if (key->ip.proto == IPPROTO_SCTP) 639 dst = sctp_hdr(skb)->dest; 640 else 641 return; 642 643 key->tp.dst = dst; 644 } 645 } 646 647 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */ 648 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 649 const struct ovs_conntrack_info *info, 650 struct sk_buff *skb, struct nf_conn *ct, 651 enum ip_conntrack_info ctinfo) 652 { 653 enum nf_nat_manip_type maniptype; 654 int err; 655 656 if (nf_ct_is_untracked(ct)) { 657 /* A NAT action may only be performed on tracked packets. */ 658 return NF_ACCEPT; 659 } 660 661 /* Add NAT extension if not confirmed yet. */ 662 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) 663 return NF_ACCEPT; /* Can't NAT. */ 664 665 /* Determine NAT type. 666 * Check if the NAT type can be deduced from the tracked connection. 667 * Make sure expected traffic is NATted only when committing. 668 */ 669 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW && 670 ct->status & IPS_NAT_MASK && 671 (!(ct->status & IPS_EXPECTED_BIT) || info->commit)) { 672 /* NAT an established or related connection like before. */ 673 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) 674 /* This is the REPLY direction for a connection 675 * for which NAT was applied in the forward 676 * direction. Do the reverse NAT. 677 */ 678 maniptype = ct->status & IPS_SRC_NAT 679 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; 680 else 681 maniptype = ct->status & IPS_SRC_NAT 682 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; 683 } else if (info->nat & OVS_CT_SRC_NAT) { 684 maniptype = NF_NAT_MANIP_SRC; 685 } else if (info->nat & OVS_CT_DST_NAT) { 686 maniptype = NF_NAT_MANIP_DST; 687 } else { 688 return NF_ACCEPT; /* Connection is not NATed. */ 689 } 690 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype); 691 692 /* Mark NAT done if successful and update the flow key. */ 693 if (err == NF_ACCEPT) 694 ovs_nat_update_key(key, skb, maniptype); 695 696 return err; 697 } 698 #else /* !CONFIG_NF_NAT_NEEDED */ 699 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key, 700 const struct ovs_conntrack_info *info, 701 struct sk_buff *skb, struct nf_conn *ct, 702 enum ip_conntrack_info ctinfo) 703 { 704 return NF_ACCEPT; 705 } 706 #endif 707 708 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if 709 * not done already. Update key with new CT state after passing the packet 710 * through conntrack. 711 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be 712 * set to NULL and 0 will be returned. 713 */ 714 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 715 const struct ovs_conntrack_info *info, 716 struct sk_buff *skb) 717 { 718 /* If we are recirculating packets to match on conntrack fields and 719 * committing with a separate conntrack action, then we don't need to 720 * actually run the packet through conntrack twice unless it's for a 721 * different zone. 722 */ 723 bool cached = skb_nfct_cached(net, key, info, skb); 724 enum ip_conntrack_info ctinfo; 725 struct nf_conn *ct; 726 727 if (!cached) { 728 struct nf_conn *tmpl = info->ct; 729 int err; 730 731 /* Associate skb with specified zone. */ 732 if (tmpl) { 733 if (skb->nfct) 734 nf_conntrack_put(skb->nfct); 735 nf_conntrack_get(&tmpl->ct_general); 736 skb->nfct = &tmpl->ct_general; 737 skb->nfctinfo = IP_CT_NEW; 738 } 739 740 /* Repeat if requested, see nf_iterate(). */ 741 do { 742 err = nf_conntrack_in(net, info->family, 743 NF_INET_PRE_ROUTING, skb); 744 } while (err == NF_REPEAT); 745 746 if (err != NF_ACCEPT) 747 return -ENOENT; 748 749 /* Clear CT state NAT flags to mark that we have not yet done 750 * NAT after the nf_conntrack_in() call. We can actually clear 751 * the whole state, as it will be re-initialized below. 752 */ 753 key->ct.state = 0; 754 755 /* Update the key, but keep the NAT flags. */ 756 ovs_ct_update_key(skb, info, key, true, true); 757 } 758 759 ct = nf_ct_get(skb, &ctinfo); 760 if (ct) { 761 /* Packets starting a new connection must be NATted before the 762 * helper, so that the helper knows about the NAT. We enforce 763 * this by delaying both NAT and helper calls for unconfirmed 764 * connections until the committing CT action. For later 765 * packets NAT and Helper may be called in either order. 766 * 767 * NAT will be done only if the CT action has NAT, and only 768 * once per packet (per zone), as guarded by the NAT bits in 769 * the key->ct.state. 770 */ 771 if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) && 772 (nf_ct_is_confirmed(ct) || info->commit) && 773 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) { 774 return -EINVAL; 775 } 776 777 /* Call the helper only if: 778 * - nf_conntrack_in() was executed above ("!cached") for a 779 * confirmed connection, or 780 * - When committing an unconfirmed connection. 781 */ 782 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) && 783 ovs_ct_helper(skb, info->family) != NF_ACCEPT) { 784 return -EINVAL; 785 } 786 } 787 788 return 0; 789 } 790 791 /* Lookup connection and read fields into key. */ 792 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key, 793 const struct ovs_conntrack_info *info, 794 struct sk_buff *skb) 795 { 796 struct nf_conntrack_expect *exp; 797 798 /* If we pass an expected packet through nf_conntrack_in() the 799 * expectation is typically removed, but the packet could still be 800 * lost in upcall processing. To prevent this from happening we 801 * perform an explicit expectation lookup. Expected connections are 802 * always new, and will be passed through conntrack only when they are 803 * committed, as it is OK to remove the expectation at that time. 804 */ 805 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb); 806 if (exp) { 807 u8 state; 808 809 /* NOTE: New connections are NATted and Helped only when 810 * committed, so we are not calling into NAT here. 811 */ 812 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED; 813 __ovs_ct_update_key(key, state, &info->zone, exp->master); 814 } else 815 return __ovs_ct_lookup(net, key, info, skb); 816 817 return 0; 818 } 819 820 /* Lookup connection and confirm if unconfirmed. */ 821 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key, 822 const struct ovs_conntrack_info *info, 823 struct sk_buff *skb) 824 { 825 int err; 826 827 err = __ovs_ct_lookup(net, key, info, skb); 828 if (err) 829 return err; 830 /* This is a no-op if the connection has already been confirmed. */ 831 if (nf_conntrack_confirm(skb) != NF_ACCEPT) 832 return -EINVAL; 833 834 return 0; 835 } 836 837 static bool labels_nonzero(const struct ovs_key_ct_labels *labels) 838 { 839 size_t i; 840 841 for (i = 0; i < sizeof(*labels); i++) 842 if (labels->ct_labels[i]) 843 return true; 844 845 return false; 846 } 847 848 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero 849 * value if 'skb' is freed. 850 */ 851 int ovs_ct_execute(struct net *net, struct sk_buff *skb, 852 struct sw_flow_key *key, 853 const struct ovs_conntrack_info *info) 854 { 855 int nh_ofs; 856 int err; 857 858 /* The conntrack module expects to be working at L3. */ 859 nh_ofs = skb_network_offset(skb); 860 skb_pull(skb, nh_ofs); 861 862 if (key->ip.frag != OVS_FRAG_TYPE_NONE) { 863 err = handle_fragments(net, key, info->zone.id, skb); 864 if (err) 865 return err; 866 } 867 868 if (info->commit) 869 err = ovs_ct_commit(net, key, info, skb); 870 else 871 err = ovs_ct_lookup(net, key, info, skb); 872 if (err) 873 goto err; 874 875 if (info->mark.mask) { 876 err = ovs_ct_set_mark(skb, key, info->mark.value, 877 info->mark.mask); 878 if (err) 879 goto err; 880 } 881 if (labels_nonzero(&info->labels.mask)) 882 err = ovs_ct_set_labels(skb, key, &info->labels.value, 883 &info->labels.mask); 884 err: 885 skb_push(skb, nh_ofs); 886 if (err) 887 kfree_skb(skb); 888 return err; 889 } 890 891 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name, 892 const struct sw_flow_key *key, bool log) 893 { 894 struct nf_conntrack_helper *helper; 895 struct nf_conn_help *help; 896 897 helper = nf_conntrack_helper_try_module_get(name, info->family, 898 key->ip.proto); 899 if (!helper) { 900 OVS_NLERR(log, "Unknown helper \"%s\"", name); 901 return -EINVAL; 902 } 903 904 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL); 905 if (!help) { 906 module_put(helper->me); 907 return -ENOMEM; 908 } 909 910 rcu_assign_pointer(help->helper, helper); 911 info->helper = helper; 912 return 0; 913 } 914 915 #ifdef CONFIG_NF_NAT_NEEDED 916 static int parse_nat(const struct nlattr *attr, 917 struct ovs_conntrack_info *info, bool log) 918 { 919 struct nlattr *a; 920 int rem; 921 bool have_ip_max = false; 922 bool have_proto_max = false; 923 bool ip_vers = (info->family == NFPROTO_IPV6); 924 925 nla_for_each_nested(a, attr, rem) { 926 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = { 927 [OVS_NAT_ATTR_SRC] = {0, 0}, 928 [OVS_NAT_ATTR_DST] = {0, 0}, 929 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr), 930 sizeof(struct in6_addr)}, 931 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr), 932 sizeof(struct in6_addr)}, 933 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)}, 934 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)}, 935 [OVS_NAT_ATTR_PERSISTENT] = {0, 0}, 936 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0}, 937 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0}, 938 }; 939 int type = nla_type(a); 940 941 if (type > OVS_NAT_ATTR_MAX) { 942 OVS_NLERR(log, 943 "Unknown NAT attribute (type=%d, max=%d).\n", 944 type, OVS_NAT_ATTR_MAX); 945 return -EINVAL; 946 } 947 948 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) { 949 OVS_NLERR(log, 950 "NAT attribute type %d has unexpected length (%d != %d).\n", 951 type, nla_len(a), 952 ovs_nat_attr_lens[type][ip_vers]); 953 return -EINVAL; 954 } 955 956 switch (type) { 957 case OVS_NAT_ATTR_SRC: 958 case OVS_NAT_ATTR_DST: 959 if (info->nat) { 960 OVS_NLERR(log, 961 "Only one type of NAT may be specified.\n" 962 ); 963 return -ERANGE; 964 } 965 info->nat |= OVS_CT_NAT; 966 info->nat |= ((type == OVS_NAT_ATTR_SRC) 967 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT); 968 break; 969 970 case OVS_NAT_ATTR_IP_MIN: 971 nla_memcpy(&info->range.min_addr, a, nla_len(a)); 972 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 973 break; 974 975 case OVS_NAT_ATTR_IP_MAX: 976 have_ip_max = true; 977 nla_memcpy(&info->range.max_addr, a, 978 sizeof(info->range.max_addr)); 979 info->range.flags |= NF_NAT_RANGE_MAP_IPS; 980 break; 981 982 case OVS_NAT_ATTR_PROTO_MIN: 983 info->range.min_proto.all = htons(nla_get_u16(a)); 984 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 985 break; 986 987 case OVS_NAT_ATTR_PROTO_MAX: 988 have_proto_max = true; 989 info->range.max_proto.all = htons(nla_get_u16(a)); 990 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED; 991 break; 992 993 case OVS_NAT_ATTR_PERSISTENT: 994 info->range.flags |= NF_NAT_RANGE_PERSISTENT; 995 break; 996 997 case OVS_NAT_ATTR_PROTO_HASH: 998 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM; 999 break; 1000 1001 case OVS_NAT_ATTR_PROTO_RANDOM: 1002 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY; 1003 break; 1004 1005 default: 1006 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type); 1007 return -EINVAL; 1008 } 1009 } 1010 1011 if (rem > 0) { 1012 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem); 1013 return -EINVAL; 1014 } 1015 if (!info->nat) { 1016 /* Do not allow flags if no type is given. */ 1017 if (info->range.flags) { 1018 OVS_NLERR(log, 1019 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n" 1020 ); 1021 return -EINVAL; 1022 } 1023 info->nat = OVS_CT_NAT; /* NAT existing connections. */ 1024 } else if (!info->commit) { 1025 OVS_NLERR(log, 1026 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n" 1027 ); 1028 return -EINVAL; 1029 } 1030 /* Allow missing IP_MAX. */ 1031 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) { 1032 memcpy(&info->range.max_addr, &info->range.min_addr, 1033 sizeof(info->range.max_addr)); 1034 } 1035 /* Allow missing PROTO_MAX. */ 1036 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1037 !have_proto_max) { 1038 info->range.max_proto.all = info->range.min_proto.all; 1039 } 1040 return 0; 1041 } 1042 #endif 1043 1044 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = { 1045 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 }, 1046 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16), 1047 .maxlen = sizeof(u16) }, 1048 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark), 1049 .maxlen = sizeof(struct md_mark) }, 1050 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels), 1051 .maxlen = sizeof(struct md_labels) }, 1052 [OVS_CT_ATTR_HELPER] = { .minlen = 1, 1053 .maxlen = NF_CT_HELPER_NAME_LEN }, 1054 #ifdef CONFIG_NF_NAT_NEEDED 1055 /* NAT length is checked when parsing the nested attributes. */ 1056 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX }, 1057 #endif 1058 }; 1059 1060 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info, 1061 const char **helper, bool log) 1062 { 1063 struct nlattr *a; 1064 int rem; 1065 1066 nla_for_each_nested(a, attr, rem) { 1067 int type = nla_type(a); 1068 int maxlen = ovs_ct_attr_lens[type].maxlen; 1069 int minlen = ovs_ct_attr_lens[type].minlen; 1070 1071 if (type > OVS_CT_ATTR_MAX) { 1072 OVS_NLERR(log, 1073 "Unknown conntrack attr (type=%d, max=%d)", 1074 type, OVS_CT_ATTR_MAX); 1075 return -EINVAL; 1076 } 1077 if (nla_len(a) < minlen || nla_len(a) > maxlen) { 1078 OVS_NLERR(log, 1079 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)", 1080 type, nla_len(a), maxlen); 1081 return -EINVAL; 1082 } 1083 1084 switch (type) { 1085 case OVS_CT_ATTR_COMMIT: 1086 info->commit = true; 1087 break; 1088 #ifdef CONFIG_NF_CONNTRACK_ZONES 1089 case OVS_CT_ATTR_ZONE: 1090 info->zone.id = nla_get_u16(a); 1091 break; 1092 #endif 1093 #ifdef CONFIG_NF_CONNTRACK_MARK 1094 case OVS_CT_ATTR_MARK: { 1095 struct md_mark *mark = nla_data(a); 1096 1097 if (!mark->mask) { 1098 OVS_NLERR(log, "ct_mark mask cannot be 0"); 1099 return -EINVAL; 1100 } 1101 info->mark = *mark; 1102 break; 1103 } 1104 #endif 1105 #ifdef CONFIG_NF_CONNTRACK_LABELS 1106 case OVS_CT_ATTR_LABELS: { 1107 struct md_labels *labels = nla_data(a); 1108 1109 if (!labels_nonzero(&labels->mask)) { 1110 OVS_NLERR(log, "ct_labels mask cannot be 0"); 1111 return -EINVAL; 1112 } 1113 info->labels = *labels; 1114 break; 1115 } 1116 #endif 1117 case OVS_CT_ATTR_HELPER: 1118 *helper = nla_data(a); 1119 if (!memchr(*helper, '\0', nla_len(a))) { 1120 OVS_NLERR(log, "Invalid conntrack helper"); 1121 return -EINVAL; 1122 } 1123 break; 1124 #ifdef CONFIG_NF_NAT_NEEDED 1125 case OVS_CT_ATTR_NAT: { 1126 int err = parse_nat(a, info, log); 1127 1128 if (err) 1129 return err; 1130 break; 1131 } 1132 #endif 1133 default: 1134 OVS_NLERR(log, "Unknown conntrack attr (%d)", 1135 type); 1136 return -EINVAL; 1137 } 1138 } 1139 1140 if (rem > 0) { 1141 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem); 1142 return -EINVAL; 1143 } 1144 1145 return 0; 1146 } 1147 1148 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr) 1149 { 1150 if (attr == OVS_KEY_ATTR_CT_STATE) 1151 return true; 1152 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1153 attr == OVS_KEY_ATTR_CT_ZONE) 1154 return true; 1155 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && 1156 attr == OVS_KEY_ATTR_CT_MARK) 1157 return true; 1158 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1159 attr == OVS_KEY_ATTR_CT_LABELS) { 1160 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1161 1162 return ovs_net->xt_label; 1163 } 1164 1165 return false; 1166 } 1167 1168 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr, 1169 const struct sw_flow_key *key, 1170 struct sw_flow_actions **sfa, bool log) 1171 { 1172 struct ovs_conntrack_info ct_info; 1173 const char *helper = NULL; 1174 u16 family; 1175 int err; 1176 1177 family = key_to_nfproto(key); 1178 if (family == NFPROTO_UNSPEC) { 1179 OVS_NLERR(log, "ct family unspecified"); 1180 return -EINVAL; 1181 } 1182 1183 memset(&ct_info, 0, sizeof(ct_info)); 1184 ct_info.family = family; 1185 1186 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID, 1187 NF_CT_DEFAULT_ZONE_DIR, 0); 1188 1189 err = parse_ct(attr, &ct_info, &helper, log); 1190 if (err) 1191 return err; 1192 1193 /* Set up template for tracking connections in specific zones. */ 1194 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL); 1195 if (!ct_info.ct) { 1196 OVS_NLERR(log, "Failed to allocate conntrack template"); 1197 return -ENOMEM; 1198 } 1199 1200 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status); 1201 nf_conntrack_get(&ct_info.ct->ct_general); 1202 1203 if (helper) { 1204 err = ovs_ct_add_helper(&ct_info, helper, key, log); 1205 if (err) 1206 goto err_free_ct; 1207 } 1208 1209 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info, 1210 sizeof(ct_info), log); 1211 if (err) 1212 goto err_free_ct; 1213 1214 return 0; 1215 err_free_ct: 1216 __ovs_ct_free_action(&ct_info); 1217 return err; 1218 } 1219 1220 #ifdef CONFIG_NF_NAT_NEEDED 1221 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info, 1222 struct sk_buff *skb) 1223 { 1224 struct nlattr *start; 1225 1226 start = nla_nest_start(skb, OVS_CT_ATTR_NAT); 1227 if (!start) 1228 return false; 1229 1230 if (info->nat & OVS_CT_SRC_NAT) { 1231 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC)) 1232 return false; 1233 } else if (info->nat & OVS_CT_DST_NAT) { 1234 if (nla_put_flag(skb, OVS_NAT_ATTR_DST)) 1235 return false; 1236 } else { 1237 goto out; 1238 } 1239 1240 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) { 1241 if (info->family == NFPROTO_IPV4) { 1242 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN, 1243 info->range.min_addr.ip) || 1244 (info->range.max_addr.ip 1245 != info->range.min_addr.ip && 1246 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX, 1247 info->range.max_addr.ip)))) 1248 return false; 1249 #if IS_ENABLED(CONFIG_NF_NAT_IPV6) 1250 } else if (info->family == NFPROTO_IPV6) { 1251 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN, 1252 &info->range.min_addr.in6) || 1253 (memcmp(&info->range.max_addr.in6, 1254 &info->range.min_addr.in6, 1255 sizeof(info->range.max_addr.in6)) && 1256 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX, 1257 &info->range.max_addr.in6)))) 1258 return false; 1259 #endif 1260 } else { 1261 return false; 1262 } 1263 } 1264 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED && 1265 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN, 1266 ntohs(info->range.min_proto.all)) || 1267 (info->range.max_proto.all != info->range.min_proto.all && 1268 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX, 1269 ntohs(info->range.max_proto.all))))) 1270 return false; 1271 1272 if (info->range.flags & NF_NAT_RANGE_PERSISTENT && 1273 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT)) 1274 return false; 1275 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM && 1276 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH)) 1277 return false; 1278 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY && 1279 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM)) 1280 return false; 1281 out: 1282 nla_nest_end(skb, start); 1283 1284 return true; 1285 } 1286 #endif 1287 1288 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info, 1289 struct sk_buff *skb) 1290 { 1291 struct nlattr *start; 1292 1293 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT); 1294 if (!start) 1295 return -EMSGSIZE; 1296 1297 if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT)) 1298 return -EMSGSIZE; 1299 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && 1300 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id)) 1301 return -EMSGSIZE; 1302 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask && 1303 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark), 1304 &ct_info->mark)) 1305 return -EMSGSIZE; 1306 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && 1307 labels_nonzero(&ct_info->labels.mask) && 1308 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels), 1309 &ct_info->labels)) 1310 return -EMSGSIZE; 1311 if (ct_info->helper) { 1312 if (nla_put_string(skb, OVS_CT_ATTR_HELPER, 1313 ct_info->helper->name)) 1314 return -EMSGSIZE; 1315 } 1316 #ifdef CONFIG_NF_NAT_NEEDED 1317 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb)) 1318 return -EMSGSIZE; 1319 #endif 1320 nla_nest_end(skb, start); 1321 1322 return 0; 1323 } 1324 1325 void ovs_ct_free_action(const struct nlattr *a) 1326 { 1327 struct ovs_conntrack_info *ct_info = nla_data(a); 1328 1329 __ovs_ct_free_action(ct_info); 1330 } 1331 1332 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info) 1333 { 1334 if (ct_info->helper) 1335 module_put(ct_info->helper->me); 1336 if (ct_info->ct) 1337 nf_ct_put(ct_info->ct); 1338 } 1339 1340 void ovs_ct_init(struct net *net) 1341 { 1342 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE; 1343 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1344 1345 if (nf_connlabels_get(net, n_bits)) { 1346 ovs_net->xt_label = false; 1347 OVS_NLERR(true, "Failed to set connlabel length"); 1348 } else { 1349 ovs_net->xt_label = true; 1350 } 1351 } 1352 1353 void ovs_ct_exit(struct net *net) 1354 { 1355 struct ovs_net *ovs_net = net_generic(net, ovs_net_id); 1356 1357 if (ovs_net->xt_label) 1358 nf_connlabels_put(net); 1359 } 1360