1 /* 2 * NETLINK Kernel-user communication protocol. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 6 * Patrick McHardy <kaber@trash.net> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 14 * added netlink_proto_exit 15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 16 * use nlk_sk, as sk->protinfo is on a diet 8) 17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 18 * - inc module use count of module that owns 19 * the kernel socket in case userspace opens 20 * socket of same protocol 21 * - remove all module support, since netlink is 22 * mandatory if CONFIG_NET=y these days 23 */ 24 25 #include <linux/module.h> 26 27 #include <linux/capability.h> 28 #include <linux/kernel.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/sched.h> 32 #include <linux/errno.h> 33 #include <linux/string.h> 34 #include <linux/stat.h> 35 #include <linux/socket.h> 36 #include <linux/un.h> 37 #include <linux/fcntl.h> 38 #include <linux/termios.h> 39 #include <linux/sockios.h> 40 #include <linux/net.h> 41 #include <linux/fs.h> 42 #include <linux/slab.h> 43 #include <asm/uaccess.h> 44 #include <linux/skbuff.h> 45 #include <linux/netdevice.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/proc_fs.h> 48 #include <linux/seq_file.h> 49 #include <linux/notifier.h> 50 #include <linux/security.h> 51 #include <linux/jhash.h> 52 #include <linux/jiffies.h> 53 #include <linux/random.h> 54 #include <linux/bitops.h> 55 #include <linux/mm.h> 56 #include <linux/types.h> 57 #include <linux/audit.h> 58 #include <linux/mutex.h> 59 #include <linux/vmalloc.h> 60 #include <linux/if_arp.h> 61 #include <linux/rhashtable.h> 62 #include <asm/cacheflush.h> 63 #include <linux/hash.h> 64 65 #include <net/net_namespace.h> 66 #include <net/sock.h> 67 #include <net/scm.h> 68 #include <net/netlink.h> 69 70 #include "af_netlink.h" 71 72 struct listeners { 73 struct rcu_head rcu; 74 unsigned long masks[0]; 75 }; 76 77 /* state bits */ 78 #define NETLINK_CONGESTED 0x0 79 80 /* flags */ 81 #define NETLINK_KERNEL_SOCKET 0x1 82 #define NETLINK_RECV_PKTINFO 0x2 83 #define NETLINK_BROADCAST_SEND_ERROR 0x4 84 #define NETLINK_RECV_NO_ENOBUFS 0x8 85 86 static inline int netlink_is_kernel(struct sock *sk) 87 { 88 return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET; 89 } 90 91 struct netlink_table *nl_table; 92 EXPORT_SYMBOL_GPL(nl_table); 93 94 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 95 96 static int netlink_dump(struct sock *sk); 97 static void netlink_skb_destructor(struct sk_buff *skb); 98 99 /* nl_table locking explained: 100 * Lookup and traversal are protected with nl_sk_hash_lock or nl_table_lock 101 * combined with an RCU read-side lock. Insertion and removal are protected 102 * with nl_sk_hash_lock while using RCU list modification primitives and may 103 * run in parallel to nl_table_lock protected lookups. Destruction of the 104 * Netlink socket may only occur *after* nl_table_lock has been acquired 105 * either during or after the socket has been removed from the list. 106 */ 107 DEFINE_RWLOCK(nl_table_lock); 108 EXPORT_SYMBOL_GPL(nl_table_lock); 109 static atomic_t nl_table_users = ATOMIC_INIT(0); 110 111 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 112 113 /* Protects netlink socket hash table mutations */ 114 DEFINE_MUTEX(nl_sk_hash_lock); 115 EXPORT_SYMBOL_GPL(nl_sk_hash_lock); 116 117 #ifdef CONFIG_PROVE_LOCKING 118 static int lockdep_nl_sk_hash_is_held(void *parent) 119 { 120 if (debug_locks) 121 return lockdep_is_held(&nl_sk_hash_lock) || lockdep_is_held(&nl_table_lock); 122 return 1; 123 } 124 #endif 125 126 static ATOMIC_NOTIFIER_HEAD(netlink_chain); 127 128 static DEFINE_SPINLOCK(netlink_tap_lock); 129 static struct list_head netlink_tap_all __read_mostly; 130 131 static inline u32 netlink_group_mask(u32 group) 132 { 133 return group ? 1 << (group - 1) : 0; 134 } 135 136 int netlink_add_tap(struct netlink_tap *nt) 137 { 138 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 139 return -EINVAL; 140 141 spin_lock(&netlink_tap_lock); 142 list_add_rcu(&nt->list, &netlink_tap_all); 143 spin_unlock(&netlink_tap_lock); 144 145 __module_get(nt->module); 146 147 return 0; 148 } 149 EXPORT_SYMBOL_GPL(netlink_add_tap); 150 151 static int __netlink_remove_tap(struct netlink_tap *nt) 152 { 153 bool found = false; 154 struct netlink_tap *tmp; 155 156 spin_lock(&netlink_tap_lock); 157 158 list_for_each_entry(tmp, &netlink_tap_all, list) { 159 if (nt == tmp) { 160 list_del_rcu(&nt->list); 161 found = true; 162 goto out; 163 } 164 } 165 166 pr_warn("__netlink_remove_tap: %p not found\n", nt); 167 out: 168 spin_unlock(&netlink_tap_lock); 169 170 if (found && nt->module) 171 module_put(nt->module); 172 173 return found ? 0 : -ENODEV; 174 } 175 176 int netlink_remove_tap(struct netlink_tap *nt) 177 { 178 int ret; 179 180 ret = __netlink_remove_tap(nt); 181 synchronize_net(); 182 183 return ret; 184 } 185 EXPORT_SYMBOL_GPL(netlink_remove_tap); 186 187 static bool netlink_filter_tap(const struct sk_buff *skb) 188 { 189 struct sock *sk = skb->sk; 190 191 /* We take the more conservative approach and 192 * whitelist socket protocols that may pass. 193 */ 194 switch (sk->sk_protocol) { 195 case NETLINK_ROUTE: 196 case NETLINK_USERSOCK: 197 case NETLINK_SOCK_DIAG: 198 case NETLINK_NFLOG: 199 case NETLINK_XFRM: 200 case NETLINK_FIB_LOOKUP: 201 case NETLINK_NETFILTER: 202 case NETLINK_GENERIC: 203 return true; 204 } 205 206 return false; 207 } 208 209 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 210 struct net_device *dev) 211 { 212 struct sk_buff *nskb; 213 struct sock *sk = skb->sk; 214 int ret = -ENOMEM; 215 216 dev_hold(dev); 217 nskb = skb_clone(skb, GFP_ATOMIC); 218 if (nskb) { 219 nskb->dev = dev; 220 nskb->protocol = htons((u16) sk->sk_protocol); 221 nskb->pkt_type = netlink_is_kernel(sk) ? 222 PACKET_KERNEL : PACKET_USER; 223 skb_reset_network_header(nskb); 224 ret = dev_queue_xmit(nskb); 225 if (unlikely(ret > 0)) 226 ret = net_xmit_errno(ret); 227 } 228 229 dev_put(dev); 230 return ret; 231 } 232 233 static void __netlink_deliver_tap(struct sk_buff *skb) 234 { 235 int ret; 236 struct netlink_tap *tmp; 237 238 if (!netlink_filter_tap(skb)) 239 return; 240 241 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) { 242 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 243 if (unlikely(ret)) 244 break; 245 } 246 } 247 248 static void netlink_deliver_tap(struct sk_buff *skb) 249 { 250 rcu_read_lock(); 251 252 if (unlikely(!list_empty(&netlink_tap_all))) 253 __netlink_deliver_tap(skb); 254 255 rcu_read_unlock(); 256 } 257 258 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 259 struct sk_buff *skb) 260 { 261 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 262 netlink_deliver_tap(skb); 263 } 264 265 static void netlink_overrun(struct sock *sk) 266 { 267 struct netlink_sock *nlk = nlk_sk(sk); 268 269 if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) { 270 if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) { 271 sk->sk_err = ENOBUFS; 272 sk->sk_error_report(sk); 273 } 274 } 275 atomic_inc(&sk->sk_drops); 276 } 277 278 static void netlink_rcv_wake(struct sock *sk) 279 { 280 struct netlink_sock *nlk = nlk_sk(sk); 281 282 if (skb_queue_empty(&sk->sk_receive_queue)) 283 clear_bit(NETLINK_CONGESTED, &nlk->state); 284 if (!test_bit(NETLINK_CONGESTED, &nlk->state)) 285 wake_up_interruptible(&nlk->wait); 286 } 287 288 #ifdef CONFIG_NETLINK_MMAP 289 static bool netlink_skb_is_mmaped(const struct sk_buff *skb) 290 { 291 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED; 292 } 293 294 static bool netlink_rx_is_mmaped(struct sock *sk) 295 { 296 return nlk_sk(sk)->rx_ring.pg_vec != NULL; 297 } 298 299 static bool netlink_tx_is_mmaped(struct sock *sk) 300 { 301 return nlk_sk(sk)->tx_ring.pg_vec != NULL; 302 } 303 304 static __pure struct page *pgvec_to_page(const void *addr) 305 { 306 if (is_vmalloc_addr(addr)) 307 return vmalloc_to_page(addr); 308 else 309 return virt_to_page(addr); 310 } 311 312 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len) 313 { 314 unsigned int i; 315 316 for (i = 0; i < len; i++) { 317 if (pg_vec[i] != NULL) { 318 if (is_vmalloc_addr(pg_vec[i])) 319 vfree(pg_vec[i]); 320 else 321 free_pages((unsigned long)pg_vec[i], order); 322 } 323 } 324 kfree(pg_vec); 325 } 326 327 static void *alloc_one_pg_vec_page(unsigned long order) 328 { 329 void *buffer; 330 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO | 331 __GFP_NOWARN | __GFP_NORETRY; 332 333 buffer = (void *)__get_free_pages(gfp_flags, order); 334 if (buffer != NULL) 335 return buffer; 336 337 buffer = vzalloc((1 << order) * PAGE_SIZE); 338 if (buffer != NULL) 339 return buffer; 340 341 gfp_flags &= ~__GFP_NORETRY; 342 return (void *)__get_free_pages(gfp_flags, order); 343 } 344 345 static void **alloc_pg_vec(struct netlink_sock *nlk, 346 struct nl_mmap_req *req, unsigned int order) 347 { 348 unsigned int block_nr = req->nm_block_nr; 349 unsigned int i; 350 void **pg_vec; 351 352 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL); 353 if (pg_vec == NULL) 354 return NULL; 355 356 for (i = 0; i < block_nr; i++) { 357 pg_vec[i] = alloc_one_pg_vec_page(order); 358 if (pg_vec[i] == NULL) 359 goto err1; 360 } 361 362 return pg_vec; 363 err1: 364 free_pg_vec(pg_vec, order, block_nr); 365 return NULL; 366 } 367 368 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, 369 bool closing, bool tx_ring) 370 { 371 struct netlink_sock *nlk = nlk_sk(sk); 372 struct netlink_ring *ring; 373 struct sk_buff_head *queue; 374 void **pg_vec = NULL; 375 unsigned int order = 0; 376 int err; 377 378 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring; 379 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 380 381 if (!closing) { 382 if (atomic_read(&nlk->mapped)) 383 return -EBUSY; 384 if (atomic_read(&ring->pending)) 385 return -EBUSY; 386 } 387 388 if (req->nm_block_nr) { 389 if (ring->pg_vec != NULL) 390 return -EBUSY; 391 392 if ((int)req->nm_block_size <= 0) 393 return -EINVAL; 394 if (!PAGE_ALIGNED(req->nm_block_size)) 395 return -EINVAL; 396 if (req->nm_frame_size < NL_MMAP_HDRLEN) 397 return -EINVAL; 398 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT)) 399 return -EINVAL; 400 401 ring->frames_per_block = req->nm_block_size / 402 req->nm_frame_size; 403 if (ring->frames_per_block == 0) 404 return -EINVAL; 405 if (ring->frames_per_block * req->nm_block_nr != 406 req->nm_frame_nr) 407 return -EINVAL; 408 409 order = get_order(req->nm_block_size); 410 pg_vec = alloc_pg_vec(nlk, req, order); 411 if (pg_vec == NULL) 412 return -ENOMEM; 413 } else { 414 if (req->nm_frame_nr) 415 return -EINVAL; 416 } 417 418 err = -EBUSY; 419 mutex_lock(&nlk->pg_vec_lock); 420 if (closing || atomic_read(&nlk->mapped) == 0) { 421 err = 0; 422 spin_lock_bh(&queue->lock); 423 424 ring->frame_max = req->nm_frame_nr - 1; 425 ring->head = 0; 426 ring->frame_size = req->nm_frame_size; 427 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE; 428 429 swap(ring->pg_vec_len, req->nm_block_nr); 430 swap(ring->pg_vec_order, order); 431 swap(ring->pg_vec, pg_vec); 432 433 __skb_queue_purge(queue); 434 spin_unlock_bh(&queue->lock); 435 436 WARN_ON(atomic_read(&nlk->mapped)); 437 } 438 mutex_unlock(&nlk->pg_vec_lock); 439 440 if (pg_vec) 441 free_pg_vec(pg_vec, order, req->nm_block_nr); 442 return err; 443 } 444 445 static void netlink_mm_open(struct vm_area_struct *vma) 446 { 447 struct file *file = vma->vm_file; 448 struct socket *sock = file->private_data; 449 struct sock *sk = sock->sk; 450 451 if (sk) 452 atomic_inc(&nlk_sk(sk)->mapped); 453 } 454 455 static void netlink_mm_close(struct vm_area_struct *vma) 456 { 457 struct file *file = vma->vm_file; 458 struct socket *sock = file->private_data; 459 struct sock *sk = sock->sk; 460 461 if (sk) 462 atomic_dec(&nlk_sk(sk)->mapped); 463 } 464 465 static const struct vm_operations_struct netlink_mmap_ops = { 466 .open = netlink_mm_open, 467 .close = netlink_mm_close, 468 }; 469 470 static int netlink_mmap(struct file *file, struct socket *sock, 471 struct vm_area_struct *vma) 472 { 473 struct sock *sk = sock->sk; 474 struct netlink_sock *nlk = nlk_sk(sk); 475 struct netlink_ring *ring; 476 unsigned long start, size, expected; 477 unsigned int i; 478 int err = -EINVAL; 479 480 if (vma->vm_pgoff) 481 return -EINVAL; 482 483 mutex_lock(&nlk->pg_vec_lock); 484 485 expected = 0; 486 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 487 if (ring->pg_vec == NULL) 488 continue; 489 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE; 490 } 491 492 if (expected == 0) 493 goto out; 494 495 size = vma->vm_end - vma->vm_start; 496 if (size != expected) 497 goto out; 498 499 start = vma->vm_start; 500 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 501 if (ring->pg_vec == NULL) 502 continue; 503 504 for (i = 0; i < ring->pg_vec_len; i++) { 505 struct page *page; 506 void *kaddr = ring->pg_vec[i]; 507 unsigned int pg_num; 508 509 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) { 510 page = pgvec_to_page(kaddr); 511 err = vm_insert_page(vma, start, page); 512 if (err < 0) 513 goto out; 514 start += PAGE_SIZE; 515 kaddr += PAGE_SIZE; 516 } 517 } 518 } 519 520 atomic_inc(&nlk->mapped); 521 vma->vm_ops = &netlink_mmap_ops; 522 err = 0; 523 out: 524 mutex_unlock(&nlk->pg_vec_lock); 525 return err; 526 } 527 528 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr) 529 { 530 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 531 struct page *p_start, *p_end; 532 533 /* First page is flushed through netlink_{get,set}_status */ 534 p_start = pgvec_to_page(hdr + PAGE_SIZE); 535 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + hdr->nm_len - 1); 536 while (p_start <= p_end) { 537 flush_dcache_page(p_start); 538 p_start++; 539 } 540 #endif 541 } 542 543 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr) 544 { 545 smp_rmb(); 546 flush_dcache_page(pgvec_to_page(hdr)); 547 return hdr->nm_status; 548 } 549 550 static void netlink_set_status(struct nl_mmap_hdr *hdr, 551 enum nl_mmap_status status) 552 { 553 hdr->nm_status = status; 554 flush_dcache_page(pgvec_to_page(hdr)); 555 smp_wmb(); 556 } 557 558 static struct nl_mmap_hdr * 559 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos) 560 { 561 unsigned int pg_vec_pos, frame_off; 562 563 pg_vec_pos = pos / ring->frames_per_block; 564 frame_off = pos % ring->frames_per_block; 565 566 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size); 567 } 568 569 static struct nl_mmap_hdr * 570 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos, 571 enum nl_mmap_status status) 572 { 573 struct nl_mmap_hdr *hdr; 574 575 hdr = __netlink_lookup_frame(ring, pos); 576 if (netlink_get_status(hdr) != status) 577 return NULL; 578 579 return hdr; 580 } 581 582 static struct nl_mmap_hdr * 583 netlink_current_frame(const struct netlink_ring *ring, 584 enum nl_mmap_status status) 585 { 586 return netlink_lookup_frame(ring, ring->head, status); 587 } 588 589 static struct nl_mmap_hdr * 590 netlink_previous_frame(const struct netlink_ring *ring, 591 enum nl_mmap_status status) 592 { 593 unsigned int prev; 594 595 prev = ring->head ? ring->head - 1 : ring->frame_max; 596 return netlink_lookup_frame(ring, prev, status); 597 } 598 599 static void netlink_increment_head(struct netlink_ring *ring) 600 { 601 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0; 602 } 603 604 static void netlink_forward_ring(struct netlink_ring *ring) 605 { 606 unsigned int head = ring->head, pos = head; 607 const struct nl_mmap_hdr *hdr; 608 609 do { 610 hdr = __netlink_lookup_frame(ring, pos); 611 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED) 612 break; 613 if (hdr->nm_status != NL_MMAP_STATUS_SKIP) 614 break; 615 netlink_increment_head(ring); 616 } while (ring->head != head); 617 } 618 619 static bool netlink_dump_space(struct netlink_sock *nlk) 620 { 621 struct netlink_ring *ring = &nlk->rx_ring; 622 struct nl_mmap_hdr *hdr; 623 unsigned int n; 624 625 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 626 if (hdr == NULL) 627 return false; 628 629 n = ring->head + ring->frame_max / 2; 630 if (n > ring->frame_max) 631 n -= ring->frame_max; 632 633 hdr = __netlink_lookup_frame(ring, n); 634 635 return hdr->nm_status == NL_MMAP_STATUS_UNUSED; 636 } 637 638 static unsigned int netlink_poll(struct file *file, struct socket *sock, 639 poll_table *wait) 640 { 641 struct sock *sk = sock->sk; 642 struct netlink_sock *nlk = nlk_sk(sk); 643 unsigned int mask; 644 int err; 645 646 if (nlk->rx_ring.pg_vec != NULL) { 647 /* Memory mapped sockets don't call recvmsg(), so flow control 648 * for dumps is performed here. A dump is allowed to continue 649 * if at least half the ring is unused. 650 */ 651 while (nlk->cb_running && netlink_dump_space(nlk)) { 652 err = netlink_dump(sk); 653 if (err < 0) { 654 sk->sk_err = -err; 655 sk->sk_error_report(sk); 656 break; 657 } 658 } 659 netlink_rcv_wake(sk); 660 } 661 662 mask = datagram_poll(file, sock, wait); 663 664 spin_lock_bh(&sk->sk_receive_queue.lock); 665 if (nlk->rx_ring.pg_vec) { 666 netlink_forward_ring(&nlk->rx_ring); 667 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED)) 668 mask |= POLLIN | POLLRDNORM; 669 } 670 spin_unlock_bh(&sk->sk_receive_queue.lock); 671 672 spin_lock_bh(&sk->sk_write_queue.lock); 673 if (nlk->tx_ring.pg_vec) { 674 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED)) 675 mask |= POLLOUT | POLLWRNORM; 676 } 677 spin_unlock_bh(&sk->sk_write_queue.lock); 678 679 return mask; 680 } 681 682 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb) 683 { 684 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN); 685 } 686 687 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk, 688 struct netlink_ring *ring, 689 struct nl_mmap_hdr *hdr) 690 { 691 unsigned int size; 692 void *data; 693 694 size = ring->frame_size - NL_MMAP_HDRLEN; 695 data = (void *)hdr + NL_MMAP_HDRLEN; 696 697 skb->head = data; 698 skb->data = data; 699 skb_reset_tail_pointer(skb); 700 skb->end = skb->tail + size; 701 skb->len = 0; 702 703 skb->destructor = netlink_skb_destructor; 704 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED; 705 NETLINK_CB(skb).sk = sk; 706 } 707 708 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg, 709 u32 dst_portid, u32 dst_group, 710 struct sock_iocb *siocb) 711 { 712 struct netlink_sock *nlk = nlk_sk(sk); 713 struct netlink_ring *ring; 714 struct nl_mmap_hdr *hdr; 715 struct sk_buff *skb; 716 unsigned int maxlen; 717 bool excl = true; 718 int err = 0, len = 0; 719 720 /* Netlink messages are validated by the receiver before processing. 721 * In order to avoid userspace changing the contents of the message 722 * after validation, the socket and the ring may only be used by a 723 * single process, otherwise we fall back to copying. 724 */ 725 if (atomic_long_read(&sk->sk_socket->file->f_count) > 1 || 726 atomic_read(&nlk->mapped) > 1) 727 excl = false; 728 729 mutex_lock(&nlk->pg_vec_lock); 730 731 ring = &nlk->tx_ring; 732 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 733 734 do { 735 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID); 736 if (hdr == NULL) { 737 if (!(msg->msg_flags & MSG_DONTWAIT) && 738 atomic_read(&nlk->tx_ring.pending)) 739 schedule(); 740 continue; 741 } 742 if (hdr->nm_len > maxlen) { 743 err = -EINVAL; 744 goto out; 745 } 746 747 netlink_frame_flush_dcache(hdr); 748 749 if (likely(dst_portid == 0 && dst_group == 0 && excl)) { 750 skb = alloc_skb_head(GFP_KERNEL); 751 if (skb == NULL) { 752 err = -ENOBUFS; 753 goto out; 754 } 755 sock_hold(sk); 756 netlink_ring_setup_skb(skb, sk, ring, hdr); 757 NETLINK_CB(skb).flags |= NETLINK_SKB_TX; 758 __skb_put(skb, hdr->nm_len); 759 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED); 760 atomic_inc(&ring->pending); 761 } else { 762 skb = alloc_skb(hdr->nm_len, GFP_KERNEL); 763 if (skb == NULL) { 764 err = -ENOBUFS; 765 goto out; 766 } 767 __skb_put(skb, hdr->nm_len); 768 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, hdr->nm_len); 769 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 770 } 771 772 netlink_increment_head(ring); 773 774 NETLINK_CB(skb).portid = nlk->portid; 775 NETLINK_CB(skb).dst_group = dst_group; 776 NETLINK_CB(skb).creds = siocb->scm->creds; 777 778 err = security_netlink_send(sk, skb); 779 if (err) { 780 kfree_skb(skb); 781 goto out; 782 } 783 784 if (unlikely(dst_group)) { 785 atomic_inc(&skb->users); 786 netlink_broadcast(sk, skb, dst_portid, dst_group, 787 GFP_KERNEL); 788 } 789 err = netlink_unicast(sk, skb, dst_portid, 790 msg->msg_flags & MSG_DONTWAIT); 791 if (err < 0) 792 goto out; 793 len += err; 794 795 } while (hdr != NULL || 796 (!(msg->msg_flags & MSG_DONTWAIT) && 797 atomic_read(&nlk->tx_ring.pending))); 798 799 if (len > 0) 800 err = len; 801 out: 802 mutex_unlock(&nlk->pg_vec_lock); 803 return err; 804 } 805 806 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb) 807 { 808 struct nl_mmap_hdr *hdr; 809 810 hdr = netlink_mmap_hdr(skb); 811 hdr->nm_len = skb->len; 812 hdr->nm_group = NETLINK_CB(skb).dst_group; 813 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 814 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 815 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 816 netlink_frame_flush_dcache(hdr); 817 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 818 819 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED; 820 kfree_skb(skb); 821 } 822 823 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb) 824 { 825 struct netlink_sock *nlk = nlk_sk(sk); 826 struct netlink_ring *ring = &nlk->rx_ring; 827 struct nl_mmap_hdr *hdr; 828 829 spin_lock_bh(&sk->sk_receive_queue.lock); 830 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 831 if (hdr == NULL) { 832 spin_unlock_bh(&sk->sk_receive_queue.lock); 833 kfree_skb(skb); 834 netlink_overrun(sk); 835 return; 836 } 837 netlink_increment_head(ring); 838 __skb_queue_tail(&sk->sk_receive_queue, skb); 839 spin_unlock_bh(&sk->sk_receive_queue.lock); 840 841 hdr->nm_len = skb->len; 842 hdr->nm_group = NETLINK_CB(skb).dst_group; 843 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 844 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 845 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 846 netlink_set_status(hdr, NL_MMAP_STATUS_COPY); 847 } 848 849 #else /* CONFIG_NETLINK_MMAP */ 850 #define netlink_skb_is_mmaped(skb) false 851 #define netlink_rx_is_mmaped(sk) false 852 #define netlink_tx_is_mmaped(sk) false 853 #define netlink_mmap sock_no_mmap 854 #define netlink_poll datagram_poll 855 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, siocb) 0 856 #endif /* CONFIG_NETLINK_MMAP */ 857 858 static void netlink_skb_destructor(struct sk_buff *skb) 859 { 860 #ifdef CONFIG_NETLINK_MMAP 861 struct nl_mmap_hdr *hdr; 862 struct netlink_ring *ring; 863 struct sock *sk; 864 865 /* If a packet from the kernel to userspace was freed because of an 866 * error without being delivered to userspace, the kernel must reset 867 * the status. In the direction userspace to kernel, the status is 868 * always reset here after the packet was processed and freed. 869 */ 870 if (netlink_skb_is_mmaped(skb)) { 871 hdr = netlink_mmap_hdr(skb); 872 sk = NETLINK_CB(skb).sk; 873 874 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) { 875 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 876 ring = &nlk_sk(sk)->tx_ring; 877 } else { 878 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) { 879 hdr->nm_len = 0; 880 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 881 } 882 ring = &nlk_sk(sk)->rx_ring; 883 } 884 885 WARN_ON(atomic_read(&ring->pending) == 0); 886 atomic_dec(&ring->pending); 887 sock_put(sk); 888 889 skb->head = NULL; 890 } 891 #endif 892 if (is_vmalloc_addr(skb->head)) { 893 if (!skb->cloned || 894 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 895 vfree(skb->head); 896 897 skb->head = NULL; 898 } 899 if (skb->sk != NULL) 900 sock_rfree(skb); 901 } 902 903 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 904 { 905 WARN_ON(skb->sk != NULL); 906 skb->sk = sk; 907 skb->destructor = netlink_skb_destructor; 908 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 909 sk_mem_charge(sk, skb->truesize); 910 } 911 912 static void netlink_sock_destruct(struct sock *sk) 913 { 914 struct netlink_sock *nlk = nlk_sk(sk); 915 916 if (nlk->cb_running) { 917 if (nlk->cb.done) 918 nlk->cb.done(&nlk->cb); 919 920 module_put(nlk->cb.module); 921 kfree_skb(nlk->cb.skb); 922 } 923 924 skb_queue_purge(&sk->sk_receive_queue); 925 #ifdef CONFIG_NETLINK_MMAP 926 if (1) { 927 struct nl_mmap_req req; 928 929 memset(&req, 0, sizeof(req)); 930 if (nlk->rx_ring.pg_vec) 931 netlink_set_ring(sk, &req, true, false); 932 memset(&req, 0, sizeof(req)); 933 if (nlk->tx_ring.pg_vec) 934 netlink_set_ring(sk, &req, true, true); 935 } 936 #endif /* CONFIG_NETLINK_MMAP */ 937 938 if (!sock_flag(sk, SOCK_DEAD)) { 939 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 940 return; 941 } 942 943 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 944 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 945 WARN_ON(nlk_sk(sk)->groups); 946 } 947 948 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 949 * SMP. Look, when several writers sleep and reader wakes them up, all but one 950 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 951 * this, _but_ remember, it adds useless work on UP machines. 952 */ 953 954 void netlink_table_grab(void) 955 __acquires(nl_table_lock) 956 { 957 might_sleep(); 958 959 write_lock_irq(&nl_table_lock); 960 961 if (atomic_read(&nl_table_users)) { 962 DECLARE_WAITQUEUE(wait, current); 963 964 add_wait_queue_exclusive(&nl_table_wait, &wait); 965 for (;;) { 966 set_current_state(TASK_UNINTERRUPTIBLE); 967 if (atomic_read(&nl_table_users) == 0) 968 break; 969 write_unlock_irq(&nl_table_lock); 970 schedule(); 971 write_lock_irq(&nl_table_lock); 972 } 973 974 __set_current_state(TASK_RUNNING); 975 remove_wait_queue(&nl_table_wait, &wait); 976 } 977 } 978 979 void netlink_table_ungrab(void) 980 __releases(nl_table_lock) 981 { 982 write_unlock_irq(&nl_table_lock); 983 wake_up(&nl_table_wait); 984 } 985 986 static inline void 987 netlink_lock_table(void) 988 { 989 /* read_lock() synchronizes us to netlink_table_grab */ 990 991 read_lock(&nl_table_lock); 992 atomic_inc(&nl_table_users); 993 read_unlock(&nl_table_lock); 994 } 995 996 static inline void 997 netlink_unlock_table(void) 998 { 999 if (atomic_dec_and_test(&nl_table_users)) 1000 wake_up(&nl_table_wait); 1001 } 1002 1003 struct netlink_compare_arg 1004 { 1005 struct net *net; 1006 u32 portid; 1007 }; 1008 1009 static bool netlink_compare(void *ptr, void *arg) 1010 { 1011 struct netlink_compare_arg *x = arg; 1012 struct sock *sk = ptr; 1013 1014 return nlk_sk(sk)->portid == x->portid && 1015 net_eq(sock_net(sk), x->net); 1016 } 1017 1018 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 1019 struct net *net) 1020 { 1021 struct netlink_compare_arg arg = { 1022 .net = net, 1023 .portid = portid, 1024 }; 1025 u32 hash; 1026 1027 hash = rhashtable_hashfn(&table->hash, &portid, sizeof(portid)); 1028 1029 return rhashtable_lookup_compare(&table->hash, hash, 1030 &netlink_compare, &arg); 1031 } 1032 1033 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 1034 { 1035 struct netlink_table *table = &nl_table[protocol]; 1036 struct sock *sk; 1037 1038 read_lock(&nl_table_lock); 1039 rcu_read_lock(); 1040 sk = __netlink_lookup(table, portid, net); 1041 if (sk) 1042 sock_hold(sk); 1043 rcu_read_unlock(); 1044 read_unlock(&nl_table_lock); 1045 1046 return sk; 1047 } 1048 1049 static const struct proto_ops netlink_ops; 1050 1051 static void 1052 netlink_update_listeners(struct sock *sk) 1053 { 1054 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 1055 unsigned long mask; 1056 unsigned int i; 1057 struct listeners *listeners; 1058 1059 listeners = nl_deref_protected(tbl->listeners); 1060 if (!listeners) 1061 return; 1062 1063 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 1064 mask = 0; 1065 sk_for_each_bound(sk, &tbl->mc_list) { 1066 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 1067 mask |= nlk_sk(sk)->groups[i]; 1068 } 1069 listeners->masks[i] = mask; 1070 } 1071 /* this function is only called with the netlink table "grabbed", which 1072 * makes sure updates are visible before bind or setsockopt return. */ 1073 } 1074 1075 static int netlink_insert(struct sock *sk, struct net *net, u32 portid) 1076 { 1077 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1078 int err = -EADDRINUSE; 1079 1080 mutex_lock(&nl_sk_hash_lock); 1081 if (__netlink_lookup(table, portid, net)) 1082 goto err; 1083 1084 err = -EBUSY; 1085 if (nlk_sk(sk)->portid) 1086 goto err; 1087 1088 err = -ENOMEM; 1089 if (BITS_PER_LONG > 32 && unlikely(table->hash.nelems >= UINT_MAX)) 1090 goto err; 1091 1092 nlk_sk(sk)->portid = portid; 1093 sock_hold(sk); 1094 rhashtable_insert(&table->hash, &nlk_sk(sk)->node); 1095 err = 0; 1096 err: 1097 mutex_unlock(&nl_sk_hash_lock); 1098 return err; 1099 } 1100 1101 static void netlink_remove(struct sock *sk) 1102 { 1103 struct netlink_table *table; 1104 1105 mutex_lock(&nl_sk_hash_lock); 1106 table = &nl_table[sk->sk_protocol]; 1107 if (rhashtable_remove(&table->hash, &nlk_sk(sk)->node)) { 1108 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 1109 __sock_put(sk); 1110 } 1111 mutex_unlock(&nl_sk_hash_lock); 1112 1113 netlink_table_grab(); 1114 if (nlk_sk(sk)->subscriptions) 1115 __sk_del_bind_node(sk); 1116 netlink_table_ungrab(); 1117 } 1118 1119 static struct proto netlink_proto = { 1120 .name = "NETLINK", 1121 .owner = THIS_MODULE, 1122 .obj_size = sizeof(struct netlink_sock), 1123 }; 1124 1125 static int __netlink_create(struct net *net, struct socket *sock, 1126 struct mutex *cb_mutex, int protocol) 1127 { 1128 struct sock *sk; 1129 struct netlink_sock *nlk; 1130 1131 sock->ops = &netlink_ops; 1132 1133 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto); 1134 if (!sk) 1135 return -ENOMEM; 1136 1137 sock_init_data(sock, sk); 1138 1139 nlk = nlk_sk(sk); 1140 if (cb_mutex) { 1141 nlk->cb_mutex = cb_mutex; 1142 } else { 1143 nlk->cb_mutex = &nlk->cb_def_mutex; 1144 mutex_init(nlk->cb_mutex); 1145 } 1146 init_waitqueue_head(&nlk->wait); 1147 #ifdef CONFIG_NETLINK_MMAP 1148 mutex_init(&nlk->pg_vec_lock); 1149 #endif 1150 1151 sk->sk_destruct = netlink_sock_destruct; 1152 sk->sk_protocol = protocol; 1153 return 0; 1154 } 1155 1156 static int netlink_create(struct net *net, struct socket *sock, int protocol, 1157 int kern) 1158 { 1159 struct module *module = NULL; 1160 struct mutex *cb_mutex; 1161 struct netlink_sock *nlk; 1162 int (*bind)(int group); 1163 void (*unbind)(int group); 1164 int err = 0; 1165 1166 sock->state = SS_UNCONNECTED; 1167 1168 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 1169 return -ESOCKTNOSUPPORT; 1170 1171 if (protocol < 0 || protocol >= MAX_LINKS) 1172 return -EPROTONOSUPPORT; 1173 1174 netlink_lock_table(); 1175 #ifdef CONFIG_MODULES 1176 if (!nl_table[protocol].registered) { 1177 netlink_unlock_table(); 1178 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 1179 netlink_lock_table(); 1180 } 1181 #endif 1182 if (nl_table[protocol].registered && 1183 try_module_get(nl_table[protocol].module)) 1184 module = nl_table[protocol].module; 1185 else 1186 err = -EPROTONOSUPPORT; 1187 cb_mutex = nl_table[protocol].cb_mutex; 1188 bind = nl_table[protocol].bind; 1189 unbind = nl_table[protocol].unbind; 1190 netlink_unlock_table(); 1191 1192 if (err < 0) 1193 goto out; 1194 1195 err = __netlink_create(net, sock, cb_mutex, protocol); 1196 if (err < 0) 1197 goto out_module; 1198 1199 local_bh_disable(); 1200 sock_prot_inuse_add(net, &netlink_proto, 1); 1201 local_bh_enable(); 1202 1203 nlk = nlk_sk(sock->sk); 1204 nlk->module = module; 1205 nlk->netlink_bind = bind; 1206 nlk->netlink_unbind = unbind; 1207 out: 1208 return err; 1209 1210 out_module: 1211 module_put(module); 1212 goto out; 1213 } 1214 1215 static int netlink_release(struct socket *sock) 1216 { 1217 struct sock *sk = sock->sk; 1218 struct netlink_sock *nlk; 1219 1220 if (!sk) 1221 return 0; 1222 1223 netlink_remove(sk); 1224 sock_orphan(sk); 1225 nlk = nlk_sk(sk); 1226 1227 /* 1228 * OK. Socket is unlinked, any packets that arrive now 1229 * will be purged. 1230 */ 1231 1232 sock->sk = NULL; 1233 wake_up_interruptible_all(&nlk->wait); 1234 1235 skb_queue_purge(&sk->sk_write_queue); 1236 1237 if (nlk->portid) { 1238 struct netlink_notify n = { 1239 .net = sock_net(sk), 1240 .protocol = sk->sk_protocol, 1241 .portid = nlk->portid, 1242 }; 1243 atomic_notifier_call_chain(&netlink_chain, 1244 NETLINK_URELEASE, &n); 1245 } 1246 1247 module_put(nlk->module); 1248 1249 netlink_table_grab(); 1250 if (netlink_is_kernel(sk)) { 1251 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 1252 if (--nl_table[sk->sk_protocol].registered == 0) { 1253 struct listeners *old; 1254 1255 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 1256 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 1257 kfree_rcu(old, rcu); 1258 nl_table[sk->sk_protocol].module = NULL; 1259 nl_table[sk->sk_protocol].bind = NULL; 1260 nl_table[sk->sk_protocol].unbind = NULL; 1261 nl_table[sk->sk_protocol].flags = 0; 1262 nl_table[sk->sk_protocol].registered = 0; 1263 } 1264 } else if (nlk->subscriptions) { 1265 netlink_update_listeners(sk); 1266 } 1267 netlink_table_ungrab(); 1268 1269 kfree(nlk->groups); 1270 nlk->groups = NULL; 1271 1272 local_bh_disable(); 1273 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 1274 local_bh_enable(); 1275 sock_put(sk); 1276 return 0; 1277 } 1278 1279 static int netlink_autobind(struct socket *sock) 1280 { 1281 struct sock *sk = sock->sk; 1282 struct net *net = sock_net(sk); 1283 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1284 s32 portid = task_tgid_vnr(current); 1285 int err; 1286 static s32 rover = -4097; 1287 1288 retry: 1289 cond_resched(); 1290 netlink_table_grab(); 1291 rcu_read_lock(); 1292 if (__netlink_lookup(table, portid, net)) { 1293 /* Bind collision, search negative portid values. */ 1294 portid = rover--; 1295 if (rover > -4097) 1296 rover = -4097; 1297 rcu_read_unlock(); 1298 netlink_table_ungrab(); 1299 goto retry; 1300 } 1301 rcu_read_unlock(); 1302 netlink_table_ungrab(); 1303 1304 err = netlink_insert(sk, net, portid); 1305 if (err == -EADDRINUSE) 1306 goto retry; 1307 1308 /* If 2 threads race to autobind, that is fine. */ 1309 if (err == -EBUSY) 1310 err = 0; 1311 1312 return err; 1313 } 1314 1315 /** 1316 * __netlink_ns_capable - General netlink message capability test 1317 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 1318 * @user_ns: The user namespace of the capability to use 1319 * @cap: The capability to use 1320 * 1321 * Test to see if the opener of the socket we received the message 1322 * from had when the netlink socket was created and the sender of the 1323 * message has has the capability @cap in the user namespace @user_ns. 1324 */ 1325 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 1326 struct user_namespace *user_ns, int cap) 1327 { 1328 return ((nsp->flags & NETLINK_SKB_DST) || 1329 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 1330 ns_capable(user_ns, cap); 1331 } 1332 EXPORT_SYMBOL(__netlink_ns_capable); 1333 1334 /** 1335 * netlink_ns_capable - General netlink message capability test 1336 * @skb: socket buffer holding a netlink command from userspace 1337 * @user_ns: The user namespace of the capability to use 1338 * @cap: The capability to use 1339 * 1340 * Test to see if the opener of the socket we received the message 1341 * from had when the netlink socket was created and the sender of the 1342 * message has has the capability @cap in the user namespace @user_ns. 1343 */ 1344 bool netlink_ns_capable(const struct sk_buff *skb, 1345 struct user_namespace *user_ns, int cap) 1346 { 1347 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 1348 } 1349 EXPORT_SYMBOL(netlink_ns_capable); 1350 1351 /** 1352 * netlink_capable - Netlink global message capability test 1353 * @skb: socket buffer holding a netlink command from userspace 1354 * @cap: The capability to use 1355 * 1356 * Test to see if the opener of the socket we received the message 1357 * from had when the netlink socket was created and the sender of the 1358 * message has has the capability @cap in all user namespaces. 1359 */ 1360 bool netlink_capable(const struct sk_buff *skb, int cap) 1361 { 1362 return netlink_ns_capable(skb, &init_user_ns, cap); 1363 } 1364 EXPORT_SYMBOL(netlink_capable); 1365 1366 /** 1367 * netlink_net_capable - Netlink network namespace message capability test 1368 * @skb: socket buffer holding a netlink command from userspace 1369 * @cap: The capability to use 1370 * 1371 * Test to see if the opener of the socket we received the message 1372 * from had when the netlink socket was created and the sender of the 1373 * message has has the capability @cap over the network namespace of 1374 * the socket we received the message from. 1375 */ 1376 bool netlink_net_capable(const struct sk_buff *skb, int cap) 1377 { 1378 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 1379 } 1380 EXPORT_SYMBOL(netlink_net_capable); 1381 1382 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 1383 { 1384 return (nl_table[sock->sk->sk_protocol].flags & flag) || 1385 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 1386 } 1387 1388 static void 1389 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 1390 { 1391 struct netlink_sock *nlk = nlk_sk(sk); 1392 1393 if (nlk->subscriptions && !subscriptions) 1394 __sk_del_bind_node(sk); 1395 else if (!nlk->subscriptions && subscriptions) 1396 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 1397 nlk->subscriptions = subscriptions; 1398 } 1399 1400 static int netlink_realloc_groups(struct sock *sk) 1401 { 1402 struct netlink_sock *nlk = nlk_sk(sk); 1403 unsigned int groups; 1404 unsigned long *new_groups; 1405 int err = 0; 1406 1407 netlink_table_grab(); 1408 1409 groups = nl_table[sk->sk_protocol].groups; 1410 if (!nl_table[sk->sk_protocol].registered) { 1411 err = -ENOENT; 1412 goto out_unlock; 1413 } 1414 1415 if (nlk->ngroups >= groups) 1416 goto out_unlock; 1417 1418 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 1419 if (new_groups == NULL) { 1420 err = -ENOMEM; 1421 goto out_unlock; 1422 } 1423 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 1424 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 1425 1426 nlk->groups = new_groups; 1427 nlk->ngroups = groups; 1428 out_unlock: 1429 netlink_table_ungrab(); 1430 return err; 1431 } 1432 1433 static void netlink_unbind(int group, long unsigned int groups, 1434 struct netlink_sock *nlk) 1435 { 1436 int undo; 1437 1438 if (!nlk->netlink_unbind) 1439 return; 1440 1441 for (undo = 0; undo < group; undo++) 1442 if (test_bit(undo, &groups)) 1443 nlk->netlink_unbind(undo); 1444 } 1445 1446 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 1447 int addr_len) 1448 { 1449 struct sock *sk = sock->sk; 1450 struct net *net = sock_net(sk); 1451 struct netlink_sock *nlk = nlk_sk(sk); 1452 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1453 int err; 1454 long unsigned int groups = nladdr->nl_groups; 1455 1456 if (addr_len < sizeof(struct sockaddr_nl)) 1457 return -EINVAL; 1458 1459 if (nladdr->nl_family != AF_NETLINK) 1460 return -EINVAL; 1461 1462 /* Only superuser is allowed to listen multicasts */ 1463 if (groups) { 1464 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1465 return -EPERM; 1466 err = netlink_realloc_groups(sk); 1467 if (err) 1468 return err; 1469 } 1470 1471 if (nlk->portid) 1472 if (nladdr->nl_pid != nlk->portid) 1473 return -EINVAL; 1474 1475 if (nlk->netlink_bind && groups) { 1476 int group; 1477 1478 for (group = 0; group < nlk->ngroups; group++) { 1479 if (!test_bit(group, &groups)) 1480 continue; 1481 err = nlk->netlink_bind(group); 1482 if (!err) 1483 continue; 1484 netlink_unbind(group, groups, nlk); 1485 return err; 1486 } 1487 } 1488 1489 if (!nlk->portid) { 1490 err = nladdr->nl_pid ? 1491 netlink_insert(sk, net, nladdr->nl_pid) : 1492 netlink_autobind(sock); 1493 if (err) { 1494 netlink_unbind(nlk->ngroups, groups, nlk); 1495 return err; 1496 } 1497 } 1498 1499 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1500 return 0; 1501 1502 netlink_table_grab(); 1503 netlink_update_subscriptions(sk, nlk->subscriptions + 1504 hweight32(groups) - 1505 hweight32(nlk->groups[0])); 1506 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1507 netlink_update_listeners(sk); 1508 netlink_table_ungrab(); 1509 1510 return 0; 1511 } 1512 1513 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1514 int alen, int flags) 1515 { 1516 int err = 0; 1517 struct sock *sk = sock->sk; 1518 struct netlink_sock *nlk = nlk_sk(sk); 1519 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1520 1521 if (alen < sizeof(addr->sa_family)) 1522 return -EINVAL; 1523 1524 if (addr->sa_family == AF_UNSPEC) { 1525 sk->sk_state = NETLINK_UNCONNECTED; 1526 nlk->dst_portid = 0; 1527 nlk->dst_group = 0; 1528 return 0; 1529 } 1530 if (addr->sa_family != AF_NETLINK) 1531 return -EINVAL; 1532 1533 if ((nladdr->nl_groups || nladdr->nl_pid) && 1534 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1535 return -EPERM; 1536 1537 if (!nlk->portid) 1538 err = netlink_autobind(sock); 1539 1540 if (err == 0) { 1541 sk->sk_state = NETLINK_CONNECTED; 1542 nlk->dst_portid = nladdr->nl_pid; 1543 nlk->dst_group = ffs(nladdr->nl_groups); 1544 } 1545 1546 return err; 1547 } 1548 1549 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1550 int *addr_len, int peer) 1551 { 1552 struct sock *sk = sock->sk; 1553 struct netlink_sock *nlk = nlk_sk(sk); 1554 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1555 1556 nladdr->nl_family = AF_NETLINK; 1557 nladdr->nl_pad = 0; 1558 *addr_len = sizeof(*nladdr); 1559 1560 if (peer) { 1561 nladdr->nl_pid = nlk->dst_portid; 1562 nladdr->nl_groups = netlink_group_mask(nlk->dst_group); 1563 } else { 1564 nladdr->nl_pid = nlk->portid; 1565 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1566 } 1567 return 0; 1568 } 1569 1570 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1571 { 1572 struct sock *sock; 1573 struct netlink_sock *nlk; 1574 1575 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1576 if (!sock) 1577 return ERR_PTR(-ECONNREFUSED); 1578 1579 /* Don't bother queuing skb if kernel socket has no input function */ 1580 nlk = nlk_sk(sock); 1581 if (sock->sk_state == NETLINK_CONNECTED && 1582 nlk->dst_portid != nlk_sk(ssk)->portid) { 1583 sock_put(sock); 1584 return ERR_PTR(-ECONNREFUSED); 1585 } 1586 return sock; 1587 } 1588 1589 struct sock *netlink_getsockbyfilp(struct file *filp) 1590 { 1591 struct inode *inode = file_inode(filp); 1592 struct sock *sock; 1593 1594 if (!S_ISSOCK(inode->i_mode)) 1595 return ERR_PTR(-ENOTSOCK); 1596 1597 sock = SOCKET_I(inode)->sk; 1598 if (sock->sk_family != AF_NETLINK) 1599 return ERR_PTR(-EINVAL); 1600 1601 sock_hold(sock); 1602 return sock; 1603 } 1604 1605 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1606 int broadcast) 1607 { 1608 struct sk_buff *skb; 1609 void *data; 1610 1611 if (size <= NLMSG_GOODSIZE || broadcast) 1612 return alloc_skb(size, GFP_KERNEL); 1613 1614 size = SKB_DATA_ALIGN(size) + 1615 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1616 1617 data = vmalloc(size); 1618 if (data == NULL) 1619 return NULL; 1620 1621 skb = build_skb(data, size); 1622 if (skb == NULL) 1623 vfree(data); 1624 else { 1625 skb->head_frag = 0; 1626 skb->destructor = netlink_skb_destructor; 1627 } 1628 1629 return skb; 1630 } 1631 1632 /* 1633 * Attach a skb to a netlink socket. 1634 * The caller must hold a reference to the destination socket. On error, the 1635 * reference is dropped. The skb is not send to the destination, just all 1636 * all error checks are performed and memory in the queue is reserved. 1637 * Return values: 1638 * < 0: error. skb freed, reference to sock dropped. 1639 * 0: continue 1640 * 1: repeat lookup - reference dropped while waiting for socket memory. 1641 */ 1642 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1643 long *timeo, struct sock *ssk) 1644 { 1645 struct netlink_sock *nlk; 1646 1647 nlk = nlk_sk(sk); 1648 1649 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1650 test_bit(NETLINK_CONGESTED, &nlk->state)) && 1651 !netlink_skb_is_mmaped(skb)) { 1652 DECLARE_WAITQUEUE(wait, current); 1653 if (!*timeo) { 1654 if (!ssk || netlink_is_kernel(ssk)) 1655 netlink_overrun(sk); 1656 sock_put(sk); 1657 kfree_skb(skb); 1658 return -EAGAIN; 1659 } 1660 1661 __set_current_state(TASK_INTERRUPTIBLE); 1662 add_wait_queue(&nlk->wait, &wait); 1663 1664 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1665 test_bit(NETLINK_CONGESTED, &nlk->state)) && 1666 !sock_flag(sk, SOCK_DEAD)) 1667 *timeo = schedule_timeout(*timeo); 1668 1669 __set_current_state(TASK_RUNNING); 1670 remove_wait_queue(&nlk->wait, &wait); 1671 sock_put(sk); 1672 1673 if (signal_pending(current)) { 1674 kfree_skb(skb); 1675 return sock_intr_errno(*timeo); 1676 } 1677 return 1; 1678 } 1679 netlink_skb_set_owner_r(skb, sk); 1680 return 0; 1681 } 1682 1683 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1684 { 1685 int len = skb->len; 1686 1687 netlink_deliver_tap(skb); 1688 1689 #ifdef CONFIG_NETLINK_MMAP 1690 if (netlink_skb_is_mmaped(skb)) 1691 netlink_queue_mmaped_skb(sk, skb); 1692 else if (netlink_rx_is_mmaped(sk)) 1693 netlink_ring_set_copied(sk, skb); 1694 else 1695 #endif /* CONFIG_NETLINK_MMAP */ 1696 skb_queue_tail(&sk->sk_receive_queue, skb); 1697 sk->sk_data_ready(sk); 1698 return len; 1699 } 1700 1701 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1702 { 1703 int len = __netlink_sendskb(sk, skb); 1704 1705 sock_put(sk); 1706 return len; 1707 } 1708 1709 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1710 { 1711 kfree_skb(skb); 1712 sock_put(sk); 1713 } 1714 1715 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1716 { 1717 int delta; 1718 1719 WARN_ON(skb->sk != NULL); 1720 if (netlink_skb_is_mmaped(skb)) 1721 return skb; 1722 1723 delta = skb->end - skb->tail; 1724 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1725 return skb; 1726 1727 if (skb_shared(skb)) { 1728 struct sk_buff *nskb = skb_clone(skb, allocation); 1729 if (!nskb) 1730 return skb; 1731 consume_skb(skb); 1732 skb = nskb; 1733 } 1734 1735 if (!pskb_expand_head(skb, 0, -delta, allocation)) 1736 skb->truesize -= delta; 1737 1738 return skb; 1739 } 1740 1741 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1742 struct sock *ssk) 1743 { 1744 int ret; 1745 struct netlink_sock *nlk = nlk_sk(sk); 1746 1747 ret = -ECONNREFUSED; 1748 if (nlk->netlink_rcv != NULL) { 1749 ret = skb->len; 1750 netlink_skb_set_owner_r(skb, sk); 1751 NETLINK_CB(skb).sk = ssk; 1752 netlink_deliver_tap_kernel(sk, ssk, skb); 1753 nlk->netlink_rcv(skb); 1754 consume_skb(skb); 1755 } else { 1756 kfree_skb(skb); 1757 } 1758 sock_put(sk); 1759 return ret; 1760 } 1761 1762 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1763 u32 portid, int nonblock) 1764 { 1765 struct sock *sk; 1766 int err; 1767 long timeo; 1768 1769 skb = netlink_trim(skb, gfp_any()); 1770 1771 timeo = sock_sndtimeo(ssk, nonblock); 1772 retry: 1773 sk = netlink_getsockbyportid(ssk, portid); 1774 if (IS_ERR(sk)) { 1775 kfree_skb(skb); 1776 return PTR_ERR(sk); 1777 } 1778 if (netlink_is_kernel(sk)) 1779 return netlink_unicast_kernel(sk, skb, ssk); 1780 1781 if (sk_filter(sk, skb)) { 1782 err = skb->len; 1783 kfree_skb(skb); 1784 sock_put(sk); 1785 return err; 1786 } 1787 1788 err = netlink_attachskb(sk, skb, &timeo, ssk); 1789 if (err == 1) 1790 goto retry; 1791 if (err) 1792 return err; 1793 1794 return netlink_sendskb(sk, skb); 1795 } 1796 EXPORT_SYMBOL(netlink_unicast); 1797 1798 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size, 1799 u32 dst_portid, gfp_t gfp_mask) 1800 { 1801 #ifdef CONFIG_NETLINK_MMAP 1802 struct sock *sk = NULL; 1803 struct sk_buff *skb; 1804 struct netlink_ring *ring; 1805 struct nl_mmap_hdr *hdr; 1806 unsigned int maxlen; 1807 1808 sk = netlink_getsockbyportid(ssk, dst_portid); 1809 if (IS_ERR(sk)) 1810 goto out; 1811 1812 ring = &nlk_sk(sk)->rx_ring; 1813 /* fast-path without atomic ops for common case: non-mmaped receiver */ 1814 if (ring->pg_vec == NULL) 1815 goto out_put; 1816 1817 if (ring->frame_size - NL_MMAP_HDRLEN < size) 1818 goto out_put; 1819 1820 skb = alloc_skb_head(gfp_mask); 1821 if (skb == NULL) 1822 goto err1; 1823 1824 spin_lock_bh(&sk->sk_receive_queue.lock); 1825 /* check again under lock */ 1826 if (ring->pg_vec == NULL) 1827 goto out_free; 1828 1829 /* check again under lock */ 1830 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 1831 if (maxlen < size) 1832 goto out_free; 1833 1834 netlink_forward_ring(ring); 1835 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 1836 if (hdr == NULL) 1837 goto err2; 1838 netlink_ring_setup_skb(skb, sk, ring, hdr); 1839 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED); 1840 atomic_inc(&ring->pending); 1841 netlink_increment_head(ring); 1842 1843 spin_unlock_bh(&sk->sk_receive_queue.lock); 1844 return skb; 1845 1846 err2: 1847 kfree_skb(skb); 1848 spin_unlock_bh(&sk->sk_receive_queue.lock); 1849 netlink_overrun(sk); 1850 err1: 1851 sock_put(sk); 1852 return NULL; 1853 1854 out_free: 1855 kfree_skb(skb); 1856 spin_unlock_bh(&sk->sk_receive_queue.lock); 1857 out_put: 1858 sock_put(sk); 1859 out: 1860 #endif 1861 return alloc_skb(size, gfp_mask); 1862 } 1863 EXPORT_SYMBOL_GPL(netlink_alloc_skb); 1864 1865 int netlink_has_listeners(struct sock *sk, unsigned int group) 1866 { 1867 int res = 0; 1868 struct listeners *listeners; 1869 1870 BUG_ON(!netlink_is_kernel(sk)); 1871 1872 rcu_read_lock(); 1873 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1874 1875 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1876 res = test_bit(group - 1, listeners->masks); 1877 1878 rcu_read_unlock(); 1879 1880 return res; 1881 } 1882 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1883 1884 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1885 { 1886 struct netlink_sock *nlk = nlk_sk(sk); 1887 1888 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1889 !test_bit(NETLINK_CONGESTED, &nlk->state)) { 1890 netlink_skb_set_owner_r(skb, sk); 1891 __netlink_sendskb(sk, skb); 1892 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1893 } 1894 return -1; 1895 } 1896 1897 struct netlink_broadcast_data { 1898 struct sock *exclude_sk; 1899 struct net *net; 1900 u32 portid; 1901 u32 group; 1902 int failure; 1903 int delivery_failure; 1904 int congested; 1905 int delivered; 1906 gfp_t allocation; 1907 struct sk_buff *skb, *skb2; 1908 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1909 void *tx_data; 1910 }; 1911 1912 static void do_one_broadcast(struct sock *sk, 1913 struct netlink_broadcast_data *p) 1914 { 1915 struct netlink_sock *nlk = nlk_sk(sk); 1916 int val; 1917 1918 if (p->exclude_sk == sk) 1919 return; 1920 1921 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1922 !test_bit(p->group - 1, nlk->groups)) 1923 return; 1924 1925 if (!net_eq(sock_net(sk), p->net)) 1926 return; 1927 1928 if (p->failure) { 1929 netlink_overrun(sk); 1930 return; 1931 } 1932 1933 sock_hold(sk); 1934 if (p->skb2 == NULL) { 1935 if (skb_shared(p->skb)) { 1936 p->skb2 = skb_clone(p->skb, p->allocation); 1937 } else { 1938 p->skb2 = skb_get(p->skb); 1939 /* 1940 * skb ownership may have been set when 1941 * delivered to a previous socket. 1942 */ 1943 skb_orphan(p->skb2); 1944 } 1945 } 1946 if (p->skb2 == NULL) { 1947 netlink_overrun(sk); 1948 /* Clone failed. Notify ALL listeners. */ 1949 p->failure = 1; 1950 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR) 1951 p->delivery_failure = 1; 1952 } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 1953 kfree_skb(p->skb2); 1954 p->skb2 = NULL; 1955 } else if (sk_filter(sk, p->skb2)) { 1956 kfree_skb(p->skb2); 1957 p->skb2 = NULL; 1958 } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) { 1959 netlink_overrun(sk); 1960 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR) 1961 p->delivery_failure = 1; 1962 } else { 1963 p->congested |= val; 1964 p->delivered = 1; 1965 p->skb2 = NULL; 1966 } 1967 sock_put(sk); 1968 } 1969 1970 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid, 1971 u32 group, gfp_t allocation, 1972 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), 1973 void *filter_data) 1974 { 1975 struct net *net = sock_net(ssk); 1976 struct netlink_broadcast_data info; 1977 struct sock *sk; 1978 1979 skb = netlink_trim(skb, allocation); 1980 1981 info.exclude_sk = ssk; 1982 info.net = net; 1983 info.portid = portid; 1984 info.group = group; 1985 info.failure = 0; 1986 info.delivery_failure = 0; 1987 info.congested = 0; 1988 info.delivered = 0; 1989 info.allocation = allocation; 1990 info.skb = skb; 1991 info.skb2 = NULL; 1992 info.tx_filter = filter; 1993 info.tx_data = filter_data; 1994 1995 /* While we sleep in clone, do not allow to change socket list */ 1996 1997 netlink_lock_table(); 1998 1999 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2000 do_one_broadcast(sk, &info); 2001 2002 consume_skb(skb); 2003 2004 netlink_unlock_table(); 2005 2006 if (info.delivery_failure) { 2007 kfree_skb(info.skb2); 2008 return -ENOBUFS; 2009 } 2010 consume_skb(info.skb2); 2011 2012 if (info.delivered) { 2013 if (info.congested && (allocation & __GFP_WAIT)) 2014 yield(); 2015 return 0; 2016 } 2017 return -ESRCH; 2018 } 2019 EXPORT_SYMBOL(netlink_broadcast_filtered); 2020 2021 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 2022 u32 group, gfp_t allocation) 2023 { 2024 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 2025 NULL, NULL); 2026 } 2027 EXPORT_SYMBOL(netlink_broadcast); 2028 2029 struct netlink_set_err_data { 2030 struct sock *exclude_sk; 2031 u32 portid; 2032 u32 group; 2033 int code; 2034 }; 2035 2036 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 2037 { 2038 struct netlink_sock *nlk = nlk_sk(sk); 2039 int ret = 0; 2040 2041 if (sk == p->exclude_sk) 2042 goto out; 2043 2044 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 2045 goto out; 2046 2047 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 2048 !test_bit(p->group - 1, nlk->groups)) 2049 goto out; 2050 2051 if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) { 2052 ret = 1; 2053 goto out; 2054 } 2055 2056 sk->sk_err = p->code; 2057 sk->sk_error_report(sk); 2058 out: 2059 return ret; 2060 } 2061 2062 /** 2063 * netlink_set_err - report error to broadcast listeners 2064 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 2065 * @portid: the PORTID of a process that we want to skip (if any) 2066 * @group: the broadcast group that will notice the error 2067 * @code: error code, must be negative (as usual in kernelspace) 2068 * 2069 * This function returns the number of broadcast listeners that have set the 2070 * NETLINK_RECV_NO_ENOBUFS socket option. 2071 */ 2072 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 2073 { 2074 struct netlink_set_err_data info; 2075 struct sock *sk; 2076 int ret = 0; 2077 2078 info.exclude_sk = ssk; 2079 info.portid = portid; 2080 info.group = group; 2081 /* sk->sk_err wants a positive error value */ 2082 info.code = -code; 2083 2084 read_lock(&nl_table_lock); 2085 2086 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2087 ret += do_one_set_err(sk, &info); 2088 2089 read_unlock(&nl_table_lock); 2090 return ret; 2091 } 2092 EXPORT_SYMBOL(netlink_set_err); 2093 2094 /* must be called with netlink table grabbed */ 2095 static void netlink_update_socket_mc(struct netlink_sock *nlk, 2096 unsigned int group, 2097 int is_new) 2098 { 2099 int old, new = !!is_new, subscriptions; 2100 2101 old = test_bit(group - 1, nlk->groups); 2102 subscriptions = nlk->subscriptions - old + new; 2103 if (new) 2104 __set_bit(group - 1, nlk->groups); 2105 else 2106 __clear_bit(group - 1, nlk->groups); 2107 netlink_update_subscriptions(&nlk->sk, subscriptions); 2108 netlink_update_listeners(&nlk->sk); 2109 } 2110 2111 static int netlink_setsockopt(struct socket *sock, int level, int optname, 2112 char __user *optval, unsigned int optlen) 2113 { 2114 struct sock *sk = sock->sk; 2115 struct netlink_sock *nlk = nlk_sk(sk); 2116 unsigned int val = 0; 2117 int err; 2118 2119 if (level != SOL_NETLINK) 2120 return -ENOPROTOOPT; 2121 2122 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING && 2123 optlen >= sizeof(int) && 2124 get_user(val, (unsigned int __user *)optval)) 2125 return -EFAULT; 2126 2127 switch (optname) { 2128 case NETLINK_PKTINFO: 2129 if (val) 2130 nlk->flags |= NETLINK_RECV_PKTINFO; 2131 else 2132 nlk->flags &= ~NETLINK_RECV_PKTINFO; 2133 err = 0; 2134 break; 2135 case NETLINK_ADD_MEMBERSHIP: 2136 case NETLINK_DROP_MEMBERSHIP: { 2137 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 2138 return -EPERM; 2139 err = netlink_realloc_groups(sk); 2140 if (err) 2141 return err; 2142 if (!val || val - 1 >= nlk->ngroups) 2143 return -EINVAL; 2144 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 2145 err = nlk->netlink_bind(val); 2146 if (err) 2147 return err; 2148 } 2149 netlink_table_grab(); 2150 netlink_update_socket_mc(nlk, val, 2151 optname == NETLINK_ADD_MEMBERSHIP); 2152 netlink_table_ungrab(); 2153 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 2154 nlk->netlink_unbind(val); 2155 2156 err = 0; 2157 break; 2158 } 2159 case NETLINK_BROADCAST_ERROR: 2160 if (val) 2161 nlk->flags |= NETLINK_BROADCAST_SEND_ERROR; 2162 else 2163 nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR; 2164 err = 0; 2165 break; 2166 case NETLINK_NO_ENOBUFS: 2167 if (val) { 2168 nlk->flags |= NETLINK_RECV_NO_ENOBUFS; 2169 clear_bit(NETLINK_CONGESTED, &nlk->state); 2170 wake_up_interruptible(&nlk->wait); 2171 } else { 2172 nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS; 2173 } 2174 err = 0; 2175 break; 2176 #ifdef CONFIG_NETLINK_MMAP 2177 case NETLINK_RX_RING: 2178 case NETLINK_TX_RING: { 2179 struct nl_mmap_req req; 2180 2181 /* Rings might consume more memory than queue limits, require 2182 * CAP_NET_ADMIN. 2183 */ 2184 if (!capable(CAP_NET_ADMIN)) 2185 return -EPERM; 2186 if (optlen < sizeof(req)) 2187 return -EINVAL; 2188 if (copy_from_user(&req, optval, sizeof(req))) 2189 return -EFAULT; 2190 err = netlink_set_ring(sk, &req, false, 2191 optname == NETLINK_TX_RING); 2192 break; 2193 } 2194 #endif /* CONFIG_NETLINK_MMAP */ 2195 default: 2196 err = -ENOPROTOOPT; 2197 } 2198 return err; 2199 } 2200 2201 static int netlink_getsockopt(struct socket *sock, int level, int optname, 2202 char __user *optval, int __user *optlen) 2203 { 2204 struct sock *sk = sock->sk; 2205 struct netlink_sock *nlk = nlk_sk(sk); 2206 int len, val, err; 2207 2208 if (level != SOL_NETLINK) 2209 return -ENOPROTOOPT; 2210 2211 if (get_user(len, optlen)) 2212 return -EFAULT; 2213 if (len < 0) 2214 return -EINVAL; 2215 2216 switch (optname) { 2217 case NETLINK_PKTINFO: 2218 if (len < sizeof(int)) 2219 return -EINVAL; 2220 len = sizeof(int); 2221 val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0; 2222 if (put_user(len, optlen) || 2223 put_user(val, optval)) 2224 return -EFAULT; 2225 err = 0; 2226 break; 2227 case NETLINK_BROADCAST_ERROR: 2228 if (len < sizeof(int)) 2229 return -EINVAL; 2230 len = sizeof(int); 2231 val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0; 2232 if (put_user(len, optlen) || 2233 put_user(val, optval)) 2234 return -EFAULT; 2235 err = 0; 2236 break; 2237 case NETLINK_NO_ENOBUFS: 2238 if (len < sizeof(int)) 2239 return -EINVAL; 2240 len = sizeof(int); 2241 val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0; 2242 if (put_user(len, optlen) || 2243 put_user(val, optval)) 2244 return -EFAULT; 2245 err = 0; 2246 break; 2247 default: 2248 err = -ENOPROTOOPT; 2249 } 2250 return err; 2251 } 2252 2253 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 2254 { 2255 struct nl_pktinfo info; 2256 2257 info.group = NETLINK_CB(skb).dst_group; 2258 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 2259 } 2260 2261 static int netlink_sendmsg(struct kiocb *kiocb, struct socket *sock, 2262 struct msghdr *msg, size_t len) 2263 { 2264 struct sock_iocb *siocb = kiocb_to_siocb(kiocb); 2265 struct sock *sk = sock->sk; 2266 struct netlink_sock *nlk = nlk_sk(sk); 2267 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2268 u32 dst_portid; 2269 u32 dst_group; 2270 struct sk_buff *skb; 2271 int err; 2272 struct scm_cookie scm; 2273 u32 netlink_skb_flags = 0; 2274 2275 if (msg->msg_flags&MSG_OOB) 2276 return -EOPNOTSUPP; 2277 2278 if (NULL == siocb->scm) 2279 siocb->scm = &scm; 2280 2281 err = scm_send(sock, msg, siocb->scm, true); 2282 if (err < 0) 2283 return err; 2284 2285 if (msg->msg_namelen) { 2286 err = -EINVAL; 2287 if (addr->nl_family != AF_NETLINK) 2288 goto out; 2289 dst_portid = addr->nl_pid; 2290 dst_group = ffs(addr->nl_groups); 2291 err = -EPERM; 2292 if ((dst_group || dst_portid) && 2293 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 2294 goto out; 2295 netlink_skb_flags |= NETLINK_SKB_DST; 2296 } else { 2297 dst_portid = nlk->dst_portid; 2298 dst_group = nlk->dst_group; 2299 } 2300 2301 if (!nlk->portid) { 2302 err = netlink_autobind(sock); 2303 if (err) 2304 goto out; 2305 } 2306 2307 if (netlink_tx_is_mmaped(sk) && 2308 msg->msg_iter.iov->iov_base == NULL) { 2309 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, 2310 siocb); 2311 goto out; 2312 } 2313 2314 err = -EMSGSIZE; 2315 if (len > sk->sk_sndbuf - 32) 2316 goto out; 2317 err = -ENOBUFS; 2318 skb = netlink_alloc_large_skb(len, dst_group); 2319 if (skb == NULL) 2320 goto out; 2321 2322 NETLINK_CB(skb).portid = nlk->portid; 2323 NETLINK_CB(skb).dst_group = dst_group; 2324 NETLINK_CB(skb).creds = siocb->scm->creds; 2325 NETLINK_CB(skb).flags = netlink_skb_flags; 2326 2327 err = -EFAULT; 2328 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 2329 kfree_skb(skb); 2330 goto out; 2331 } 2332 2333 err = security_netlink_send(sk, skb); 2334 if (err) { 2335 kfree_skb(skb); 2336 goto out; 2337 } 2338 2339 if (dst_group) { 2340 atomic_inc(&skb->users); 2341 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 2342 } 2343 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT); 2344 2345 out: 2346 scm_destroy(siocb->scm); 2347 return err; 2348 } 2349 2350 static int netlink_recvmsg(struct kiocb *kiocb, struct socket *sock, 2351 struct msghdr *msg, size_t len, 2352 int flags) 2353 { 2354 struct sock_iocb *siocb = kiocb_to_siocb(kiocb); 2355 struct scm_cookie scm; 2356 struct sock *sk = sock->sk; 2357 struct netlink_sock *nlk = nlk_sk(sk); 2358 int noblock = flags&MSG_DONTWAIT; 2359 size_t copied; 2360 struct sk_buff *skb, *data_skb; 2361 int err, ret; 2362 2363 if (flags&MSG_OOB) 2364 return -EOPNOTSUPP; 2365 2366 copied = 0; 2367 2368 skb = skb_recv_datagram(sk, flags, noblock, &err); 2369 if (skb == NULL) 2370 goto out; 2371 2372 data_skb = skb; 2373 2374 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2375 if (unlikely(skb_shinfo(skb)->frag_list)) { 2376 /* 2377 * If this skb has a frag_list, then here that means that we 2378 * will have to use the frag_list skb's data for compat tasks 2379 * and the regular skb's data for normal (non-compat) tasks. 2380 * 2381 * If we need to send the compat skb, assign it to the 2382 * 'data_skb' variable so that it will be used below for data 2383 * copying. We keep 'skb' for everything else, including 2384 * freeing both later. 2385 */ 2386 if (flags & MSG_CMSG_COMPAT) 2387 data_skb = skb_shinfo(skb)->frag_list; 2388 } 2389 #endif 2390 2391 /* Record the max length of recvmsg() calls for future allocations */ 2392 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len); 2393 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len, 2394 16384); 2395 2396 copied = data_skb->len; 2397 if (len < copied) { 2398 msg->msg_flags |= MSG_TRUNC; 2399 copied = len; 2400 } 2401 2402 skb_reset_transport_header(data_skb); 2403 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 2404 2405 if (msg->msg_name) { 2406 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2407 addr->nl_family = AF_NETLINK; 2408 addr->nl_pad = 0; 2409 addr->nl_pid = NETLINK_CB(skb).portid; 2410 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 2411 msg->msg_namelen = sizeof(*addr); 2412 } 2413 2414 if (nlk->flags & NETLINK_RECV_PKTINFO) 2415 netlink_cmsg_recv_pktinfo(msg, skb); 2416 2417 if (NULL == siocb->scm) { 2418 memset(&scm, 0, sizeof(scm)); 2419 siocb->scm = &scm; 2420 } 2421 siocb->scm->creds = *NETLINK_CREDS(skb); 2422 if (flags & MSG_TRUNC) 2423 copied = data_skb->len; 2424 2425 skb_free_datagram(sk, skb); 2426 2427 if (nlk->cb_running && 2428 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 2429 ret = netlink_dump(sk); 2430 if (ret) { 2431 sk->sk_err = -ret; 2432 sk->sk_error_report(sk); 2433 } 2434 } 2435 2436 scm_recv(sock, msg, siocb->scm, flags); 2437 out: 2438 netlink_rcv_wake(sk); 2439 return err ? : copied; 2440 } 2441 2442 static void netlink_data_ready(struct sock *sk) 2443 { 2444 BUG(); 2445 } 2446 2447 /* 2448 * We export these functions to other modules. They provide a 2449 * complete set of kernel non-blocking support for message 2450 * queueing. 2451 */ 2452 2453 struct sock * 2454 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2455 struct netlink_kernel_cfg *cfg) 2456 { 2457 struct socket *sock; 2458 struct sock *sk; 2459 struct netlink_sock *nlk; 2460 struct listeners *listeners = NULL; 2461 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2462 unsigned int groups; 2463 2464 BUG_ON(!nl_table); 2465 2466 if (unit < 0 || unit >= MAX_LINKS) 2467 return NULL; 2468 2469 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2470 return NULL; 2471 2472 /* 2473 * We have to just have a reference on the net from sk, but don't 2474 * get_net it. Besides, we cannot get and then put the net here. 2475 * So we create one inside init_net and the move it to net. 2476 */ 2477 2478 if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0) 2479 goto out_sock_release_nosk; 2480 2481 sk = sock->sk; 2482 sk_change_net(sk, net); 2483 2484 if (!cfg || cfg->groups < 32) 2485 groups = 32; 2486 else 2487 groups = cfg->groups; 2488 2489 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2490 if (!listeners) 2491 goto out_sock_release; 2492 2493 sk->sk_data_ready = netlink_data_ready; 2494 if (cfg && cfg->input) 2495 nlk_sk(sk)->netlink_rcv = cfg->input; 2496 2497 if (netlink_insert(sk, net, 0)) 2498 goto out_sock_release; 2499 2500 nlk = nlk_sk(sk); 2501 nlk->flags |= NETLINK_KERNEL_SOCKET; 2502 2503 netlink_table_grab(); 2504 if (!nl_table[unit].registered) { 2505 nl_table[unit].groups = groups; 2506 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2507 nl_table[unit].cb_mutex = cb_mutex; 2508 nl_table[unit].module = module; 2509 if (cfg) { 2510 nl_table[unit].bind = cfg->bind; 2511 nl_table[unit].unbind = cfg->unbind; 2512 nl_table[unit].flags = cfg->flags; 2513 if (cfg->compare) 2514 nl_table[unit].compare = cfg->compare; 2515 } 2516 nl_table[unit].registered = 1; 2517 } else { 2518 kfree(listeners); 2519 nl_table[unit].registered++; 2520 } 2521 netlink_table_ungrab(); 2522 return sk; 2523 2524 out_sock_release: 2525 kfree(listeners); 2526 netlink_kernel_release(sk); 2527 return NULL; 2528 2529 out_sock_release_nosk: 2530 sock_release(sock); 2531 return NULL; 2532 } 2533 EXPORT_SYMBOL(__netlink_kernel_create); 2534 2535 void 2536 netlink_kernel_release(struct sock *sk) 2537 { 2538 sk_release_kernel(sk); 2539 } 2540 EXPORT_SYMBOL(netlink_kernel_release); 2541 2542 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2543 { 2544 struct listeners *new, *old; 2545 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2546 2547 if (groups < 32) 2548 groups = 32; 2549 2550 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2551 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2552 if (!new) 2553 return -ENOMEM; 2554 old = nl_deref_protected(tbl->listeners); 2555 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2556 rcu_assign_pointer(tbl->listeners, new); 2557 2558 kfree_rcu(old, rcu); 2559 } 2560 tbl->groups = groups; 2561 2562 return 0; 2563 } 2564 2565 /** 2566 * netlink_change_ngroups - change number of multicast groups 2567 * 2568 * This changes the number of multicast groups that are available 2569 * on a certain netlink family. Note that it is not possible to 2570 * change the number of groups to below 32. Also note that it does 2571 * not implicitly call netlink_clear_multicast_users() when the 2572 * number of groups is reduced. 2573 * 2574 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2575 * @groups: The new number of groups. 2576 */ 2577 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2578 { 2579 int err; 2580 2581 netlink_table_grab(); 2582 err = __netlink_change_ngroups(sk, groups); 2583 netlink_table_ungrab(); 2584 2585 return err; 2586 } 2587 2588 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2589 { 2590 struct sock *sk; 2591 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2592 2593 sk_for_each_bound(sk, &tbl->mc_list) 2594 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2595 } 2596 2597 struct nlmsghdr * 2598 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2599 { 2600 struct nlmsghdr *nlh; 2601 int size = nlmsg_msg_size(len); 2602 2603 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size)); 2604 nlh->nlmsg_type = type; 2605 nlh->nlmsg_len = size; 2606 nlh->nlmsg_flags = flags; 2607 nlh->nlmsg_pid = portid; 2608 nlh->nlmsg_seq = seq; 2609 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2610 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2611 return nlh; 2612 } 2613 EXPORT_SYMBOL(__nlmsg_put); 2614 2615 /* 2616 * It looks a bit ugly. 2617 * It would be better to create kernel thread. 2618 */ 2619 2620 static int netlink_dump(struct sock *sk) 2621 { 2622 struct netlink_sock *nlk = nlk_sk(sk); 2623 struct netlink_callback *cb; 2624 struct sk_buff *skb = NULL; 2625 struct nlmsghdr *nlh; 2626 int len, err = -ENOBUFS; 2627 int alloc_size; 2628 2629 mutex_lock(nlk->cb_mutex); 2630 if (!nlk->cb_running) { 2631 err = -EINVAL; 2632 goto errout_skb; 2633 } 2634 2635 cb = &nlk->cb; 2636 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2637 2638 if (!netlink_rx_is_mmaped(sk) && 2639 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2640 goto errout_skb; 2641 2642 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2643 * required, but it makes sense to _attempt_ a 16K bytes allocation 2644 * to reduce number of system calls on dump operations, if user 2645 * ever provided a big enough buffer. 2646 */ 2647 if (alloc_size < nlk->max_recvmsg_len) { 2648 skb = netlink_alloc_skb(sk, 2649 nlk->max_recvmsg_len, 2650 nlk->portid, 2651 GFP_KERNEL | 2652 __GFP_NOWARN | 2653 __GFP_NORETRY); 2654 /* available room should be exact amount to avoid MSG_TRUNC */ 2655 if (skb) 2656 skb_reserve(skb, skb_tailroom(skb) - 2657 nlk->max_recvmsg_len); 2658 } 2659 if (!skb) 2660 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid, 2661 GFP_KERNEL); 2662 if (!skb) 2663 goto errout_skb; 2664 netlink_skb_set_owner_r(skb, sk); 2665 2666 len = cb->dump(skb, cb); 2667 2668 if (len > 0) { 2669 mutex_unlock(nlk->cb_mutex); 2670 2671 if (sk_filter(sk, skb)) 2672 kfree_skb(skb); 2673 else 2674 __netlink_sendskb(sk, skb); 2675 return 0; 2676 } 2677 2678 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI); 2679 if (!nlh) 2680 goto errout_skb; 2681 2682 nl_dump_check_consistent(cb, nlh); 2683 2684 memcpy(nlmsg_data(nlh), &len, sizeof(len)); 2685 2686 if (sk_filter(sk, skb)) 2687 kfree_skb(skb); 2688 else 2689 __netlink_sendskb(sk, skb); 2690 2691 if (cb->done) 2692 cb->done(cb); 2693 2694 nlk->cb_running = false; 2695 mutex_unlock(nlk->cb_mutex); 2696 module_put(cb->module); 2697 consume_skb(cb->skb); 2698 return 0; 2699 2700 errout_skb: 2701 mutex_unlock(nlk->cb_mutex); 2702 kfree_skb(skb); 2703 return err; 2704 } 2705 2706 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2707 const struct nlmsghdr *nlh, 2708 struct netlink_dump_control *control) 2709 { 2710 struct netlink_callback *cb; 2711 struct sock *sk; 2712 struct netlink_sock *nlk; 2713 int ret; 2714 2715 /* Memory mapped dump requests need to be copied to avoid looping 2716 * on the pending state in netlink_mmap_sendmsg() while the CB hold 2717 * a reference to the skb. 2718 */ 2719 if (netlink_skb_is_mmaped(skb)) { 2720 skb = skb_copy(skb, GFP_KERNEL); 2721 if (skb == NULL) 2722 return -ENOBUFS; 2723 } else 2724 atomic_inc(&skb->users); 2725 2726 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2727 if (sk == NULL) { 2728 ret = -ECONNREFUSED; 2729 goto error_free; 2730 } 2731 2732 nlk = nlk_sk(sk); 2733 mutex_lock(nlk->cb_mutex); 2734 /* A dump is in progress... */ 2735 if (nlk->cb_running) { 2736 ret = -EBUSY; 2737 goto error_unlock; 2738 } 2739 /* add reference of module which cb->dump belongs to */ 2740 if (!try_module_get(control->module)) { 2741 ret = -EPROTONOSUPPORT; 2742 goto error_unlock; 2743 } 2744 2745 cb = &nlk->cb; 2746 memset(cb, 0, sizeof(*cb)); 2747 cb->dump = control->dump; 2748 cb->done = control->done; 2749 cb->nlh = nlh; 2750 cb->data = control->data; 2751 cb->module = control->module; 2752 cb->min_dump_alloc = control->min_dump_alloc; 2753 cb->skb = skb; 2754 2755 nlk->cb_running = true; 2756 2757 mutex_unlock(nlk->cb_mutex); 2758 2759 ret = netlink_dump(sk); 2760 sock_put(sk); 2761 2762 if (ret) 2763 return ret; 2764 2765 /* We successfully started a dump, by returning -EINTR we 2766 * signal not to send ACK even if it was requested. 2767 */ 2768 return -EINTR; 2769 2770 error_unlock: 2771 sock_put(sk); 2772 mutex_unlock(nlk->cb_mutex); 2773 error_free: 2774 kfree_skb(skb); 2775 return ret; 2776 } 2777 EXPORT_SYMBOL(__netlink_dump_start); 2778 2779 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err) 2780 { 2781 struct sk_buff *skb; 2782 struct nlmsghdr *rep; 2783 struct nlmsgerr *errmsg; 2784 size_t payload = sizeof(*errmsg); 2785 2786 /* error messages get the original request appened */ 2787 if (err) 2788 payload += nlmsg_len(nlh); 2789 2790 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload), 2791 NETLINK_CB(in_skb).portid, GFP_KERNEL); 2792 if (!skb) { 2793 struct sock *sk; 2794 2795 sk = netlink_lookup(sock_net(in_skb->sk), 2796 in_skb->sk->sk_protocol, 2797 NETLINK_CB(in_skb).portid); 2798 if (sk) { 2799 sk->sk_err = ENOBUFS; 2800 sk->sk_error_report(sk); 2801 sock_put(sk); 2802 } 2803 return; 2804 } 2805 2806 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2807 NLMSG_ERROR, payload, 0); 2808 errmsg = nlmsg_data(rep); 2809 errmsg->error = err; 2810 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh)); 2811 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT); 2812 } 2813 EXPORT_SYMBOL(netlink_ack); 2814 2815 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2816 struct nlmsghdr *)) 2817 { 2818 struct nlmsghdr *nlh; 2819 int err; 2820 2821 while (skb->len >= nlmsg_total_size(0)) { 2822 int msglen; 2823 2824 nlh = nlmsg_hdr(skb); 2825 err = 0; 2826 2827 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2828 return 0; 2829 2830 /* Only requests are handled by the kernel */ 2831 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2832 goto ack; 2833 2834 /* Skip control messages */ 2835 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2836 goto ack; 2837 2838 err = cb(skb, nlh); 2839 if (err == -EINTR) 2840 goto skip; 2841 2842 ack: 2843 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2844 netlink_ack(skb, nlh, err); 2845 2846 skip: 2847 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2848 if (msglen > skb->len) 2849 msglen = skb->len; 2850 skb_pull(skb, msglen); 2851 } 2852 2853 return 0; 2854 } 2855 EXPORT_SYMBOL(netlink_rcv_skb); 2856 2857 /** 2858 * nlmsg_notify - send a notification netlink message 2859 * @sk: netlink socket to use 2860 * @skb: notification message 2861 * @portid: destination netlink portid for reports or 0 2862 * @group: destination multicast group or 0 2863 * @report: 1 to report back, 0 to disable 2864 * @flags: allocation flags 2865 */ 2866 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2867 unsigned int group, int report, gfp_t flags) 2868 { 2869 int err = 0; 2870 2871 if (group) { 2872 int exclude_portid = 0; 2873 2874 if (report) { 2875 atomic_inc(&skb->users); 2876 exclude_portid = portid; 2877 } 2878 2879 /* errors reported via destination sk->sk_err, but propagate 2880 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 2881 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 2882 } 2883 2884 if (report) { 2885 int err2; 2886 2887 err2 = nlmsg_unicast(sk, skb, portid); 2888 if (!err || err == -ESRCH) 2889 err = err2; 2890 } 2891 2892 return err; 2893 } 2894 EXPORT_SYMBOL(nlmsg_notify); 2895 2896 #ifdef CONFIG_PROC_FS 2897 struct nl_seq_iter { 2898 struct seq_net_private p; 2899 int link; 2900 int hash_idx; 2901 }; 2902 2903 static struct sock *netlink_seq_socket_idx(struct seq_file *seq, loff_t pos) 2904 { 2905 struct nl_seq_iter *iter = seq->private; 2906 int i, j; 2907 struct netlink_sock *nlk; 2908 struct sock *s; 2909 loff_t off = 0; 2910 2911 for (i = 0; i < MAX_LINKS; i++) { 2912 struct rhashtable *ht = &nl_table[i].hash; 2913 const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht); 2914 2915 for (j = 0; j < tbl->size; j++) { 2916 rht_for_each_entry_rcu(nlk, tbl->buckets[j], node) { 2917 s = (struct sock *)nlk; 2918 2919 if (sock_net(s) != seq_file_net(seq)) 2920 continue; 2921 if (off == pos) { 2922 iter->link = i; 2923 iter->hash_idx = j; 2924 return s; 2925 } 2926 ++off; 2927 } 2928 } 2929 } 2930 return NULL; 2931 } 2932 2933 static void *netlink_seq_start(struct seq_file *seq, loff_t *pos) 2934 __acquires(nl_table_lock) __acquires(RCU) 2935 { 2936 read_lock(&nl_table_lock); 2937 rcu_read_lock(); 2938 return *pos ? netlink_seq_socket_idx(seq, *pos - 1) : SEQ_START_TOKEN; 2939 } 2940 2941 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2942 { 2943 struct rhashtable *ht; 2944 struct netlink_sock *nlk; 2945 struct nl_seq_iter *iter; 2946 struct net *net; 2947 int i, j; 2948 2949 ++*pos; 2950 2951 if (v == SEQ_START_TOKEN) 2952 return netlink_seq_socket_idx(seq, 0); 2953 2954 net = seq_file_net(seq); 2955 iter = seq->private; 2956 nlk = v; 2957 2958 i = iter->link; 2959 ht = &nl_table[i].hash; 2960 rht_for_each_entry(nlk, nlk->node.next, ht, node) 2961 if (net_eq(sock_net((struct sock *)nlk), net)) 2962 return nlk; 2963 2964 j = iter->hash_idx + 1; 2965 2966 do { 2967 const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht); 2968 2969 for (; j < tbl->size; j++) { 2970 rht_for_each_entry(nlk, tbl->buckets[j], ht, node) { 2971 if (net_eq(sock_net((struct sock *)nlk), net)) { 2972 iter->link = i; 2973 iter->hash_idx = j; 2974 return nlk; 2975 } 2976 } 2977 } 2978 2979 j = 0; 2980 } while (++i < MAX_LINKS); 2981 2982 return NULL; 2983 } 2984 2985 static void netlink_seq_stop(struct seq_file *seq, void *v) 2986 __releases(RCU) __releases(nl_table_lock) 2987 { 2988 rcu_read_unlock(); 2989 read_unlock(&nl_table_lock); 2990 } 2991 2992 2993 static int netlink_seq_show(struct seq_file *seq, void *v) 2994 { 2995 if (v == SEQ_START_TOKEN) { 2996 seq_puts(seq, 2997 "sk Eth Pid Groups " 2998 "Rmem Wmem Dump Locks Drops Inode\n"); 2999 } else { 3000 struct sock *s = v; 3001 struct netlink_sock *nlk = nlk_sk(s); 3002 3003 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n", 3004 s, 3005 s->sk_protocol, 3006 nlk->portid, 3007 nlk->groups ? (u32)nlk->groups[0] : 0, 3008 sk_rmem_alloc_get(s), 3009 sk_wmem_alloc_get(s), 3010 nlk->cb_running, 3011 atomic_read(&s->sk_refcnt), 3012 atomic_read(&s->sk_drops), 3013 sock_i_ino(s) 3014 ); 3015 3016 } 3017 return 0; 3018 } 3019 3020 static const struct seq_operations netlink_seq_ops = { 3021 .start = netlink_seq_start, 3022 .next = netlink_seq_next, 3023 .stop = netlink_seq_stop, 3024 .show = netlink_seq_show, 3025 }; 3026 3027 3028 static int netlink_seq_open(struct inode *inode, struct file *file) 3029 { 3030 return seq_open_net(inode, file, &netlink_seq_ops, 3031 sizeof(struct nl_seq_iter)); 3032 } 3033 3034 static const struct file_operations netlink_seq_fops = { 3035 .owner = THIS_MODULE, 3036 .open = netlink_seq_open, 3037 .read = seq_read, 3038 .llseek = seq_lseek, 3039 .release = seq_release_net, 3040 }; 3041 3042 #endif 3043 3044 int netlink_register_notifier(struct notifier_block *nb) 3045 { 3046 return atomic_notifier_chain_register(&netlink_chain, nb); 3047 } 3048 EXPORT_SYMBOL(netlink_register_notifier); 3049 3050 int netlink_unregister_notifier(struct notifier_block *nb) 3051 { 3052 return atomic_notifier_chain_unregister(&netlink_chain, nb); 3053 } 3054 EXPORT_SYMBOL(netlink_unregister_notifier); 3055 3056 static const struct proto_ops netlink_ops = { 3057 .family = PF_NETLINK, 3058 .owner = THIS_MODULE, 3059 .release = netlink_release, 3060 .bind = netlink_bind, 3061 .connect = netlink_connect, 3062 .socketpair = sock_no_socketpair, 3063 .accept = sock_no_accept, 3064 .getname = netlink_getname, 3065 .poll = netlink_poll, 3066 .ioctl = sock_no_ioctl, 3067 .listen = sock_no_listen, 3068 .shutdown = sock_no_shutdown, 3069 .setsockopt = netlink_setsockopt, 3070 .getsockopt = netlink_getsockopt, 3071 .sendmsg = netlink_sendmsg, 3072 .recvmsg = netlink_recvmsg, 3073 .mmap = netlink_mmap, 3074 .sendpage = sock_no_sendpage, 3075 }; 3076 3077 static const struct net_proto_family netlink_family_ops = { 3078 .family = PF_NETLINK, 3079 .create = netlink_create, 3080 .owner = THIS_MODULE, /* for consistency 8) */ 3081 }; 3082 3083 static int __net_init netlink_net_init(struct net *net) 3084 { 3085 #ifdef CONFIG_PROC_FS 3086 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops)) 3087 return -ENOMEM; 3088 #endif 3089 return 0; 3090 } 3091 3092 static void __net_exit netlink_net_exit(struct net *net) 3093 { 3094 #ifdef CONFIG_PROC_FS 3095 remove_proc_entry("netlink", net->proc_net); 3096 #endif 3097 } 3098 3099 static void __init netlink_add_usersock_entry(void) 3100 { 3101 struct listeners *listeners; 3102 int groups = 32; 3103 3104 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 3105 if (!listeners) 3106 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 3107 3108 netlink_table_grab(); 3109 3110 nl_table[NETLINK_USERSOCK].groups = groups; 3111 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 3112 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 3113 nl_table[NETLINK_USERSOCK].registered = 1; 3114 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 3115 3116 netlink_table_ungrab(); 3117 } 3118 3119 static struct pernet_operations __net_initdata netlink_net_ops = { 3120 .init = netlink_net_init, 3121 .exit = netlink_net_exit, 3122 }; 3123 3124 static int __init netlink_proto_init(void) 3125 { 3126 int i; 3127 int err = proto_register(&netlink_proto, 0); 3128 struct rhashtable_params ht_params = { 3129 .head_offset = offsetof(struct netlink_sock, node), 3130 .key_offset = offsetof(struct netlink_sock, portid), 3131 .key_len = sizeof(u32), /* portid */ 3132 .hashfn = jhash, 3133 .max_shift = 16, /* 64K */ 3134 .grow_decision = rht_grow_above_75, 3135 .shrink_decision = rht_shrink_below_30, 3136 #ifdef CONFIG_PROVE_LOCKING 3137 .mutex_is_held = lockdep_nl_sk_hash_is_held, 3138 #endif 3139 }; 3140 3141 if (err != 0) 3142 goto out; 3143 3144 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb)); 3145 3146 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 3147 if (!nl_table) 3148 goto panic; 3149 3150 for (i = 0; i < MAX_LINKS; i++) { 3151 if (rhashtable_init(&nl_table[i].hash, &ht_params) < 0) { 3152 while (--i > 0) 3153 rhashtable_destroy(&nl_table[i].hash); 3154 kfree(nl_table); 3155 goto panic; 3156 } 3157 } 3158 3159 INIT_LIST_HEAD(&netlink_tap_all); 3160 3161 netlink_add_usersock_entry(); 3162 3163 sock_register(&netlink_family_ops); 3164 register_pernet_subsys(&netlink_net_ops); 3165 /* The netlink device handler may be needed early. */ 3166 rtnetlink_init(); 3167 out: 3168 return err; 3169 panic: 3170 panic("netlink_init: Cannot allocate nl_table\n"); 3171 } 3172 3173 core_initcall(netlink_proto_init); 3174