1 /* 2 * NETLINK Kernel-user communication protocol. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 6 * Patrick McHardy <kaber@trash.net> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith 14 * added netlink_proto_exit 15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br> 16 * use nlk_sk, as sk->protinfo is on a diet 8) 17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org> 18 * - inc module use count of module that owns 19 * the kernel socket in case userspace opens 20 * socket of same protocol 21 * - remove all module support, since netlink is 22 * mandatory if CONFIG_NET=y these days 23 */ 24 25 #include <linux/module.h> 26 27 #include <linux/capability.h> 28 #include <linux/kernel.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/sched.h> 32 #include <linux/errno.h> 33 #include <linux/string.h> 34 #include <linux/stat.h> 35 #include <linux/socket.h> 36 #include <linux/un.h> 37 #include <linux/fcntl.h> 38 #include <linux/termios.h> 39 #include <linux/sockios.h> 40 #include <linux/net.h> 41 #include <linux/fs.h> 42 #include <linux/slab.h> 43 #include <asm/uaccess.h> 44 #include <linux/skbuff.h> 45 #include <linux/netdevice.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/proc_fs.h> 48 #include <linux/seq_file.h> 49 #include <linux/notifier.h> 50 #include <linux/security.h> 51 #include <linux/jhash.h> 52 #include <linux/jiffies.h> 53 #include <linux/random.h> 54 #include <linux/bitops.h> 55 #include <linux/mm.h> 56 #include <linux/types.h> 57 #include <linux/audit.h> 58 #include <linux/mutex.h> 59 #include <linux/vmalloc.h> 60 #include <linux/if_arp.h> 61 #include <linux/rhashtable.h> 62 #include <asm/cacheflush.h> 63 #include <linux/hash.h> 64 #include <linux/genetlink.h> 65 66 #include <net/net_namespace.h> 67 #include <net/sock.h> 68 #include <net/scm.h> 69 #include <net/netlink.h> 70 71 #include "af_netlink.h" 72 73 struct listeners { 74 struct rcu_head rcu; 75 unsigned long masks[0]; 76 }; 77 78 /* state bits */ 79 #define NETLINK_S_CONGESTED 0x0 80 81 /* flags */ 82 #define NETLINK_F_KERNEL_SOCKET 0x1 83 #define NETLINK_F_RECV_PKTINFO 0x2 84 #define NETLINK_F_BROADCAST_SEND_ERROR 0x4 85 #define NETLINK_F_RECV_NO_ENOBUFS 0x8 86 #define NETLINK_F_LISTEN_ALL_NSID 0x10 87 #define NETLINK_F_CAP_ACK 0x20 88 89 static inline int netlink_is_kernel(struct sock *sk) 90 { 91 return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET; 92 } 93 94 struct netlink_table *nl_table __read_mostly; 95 EXPORT_SYMBOL_GPL(nl_table); 96 97 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait); 98 99 static int netlink_dump(struct sock *sk); 100 static void netlink_skb_destructor(struct sk_buff *skb); 101 102 /* nl_table locking explained: 103 * Lookup and traversal are protected with an RCU read-side lock. Insertion 104 * and removal are protected with per bucket lock while using RCU list 105 * modification primitives and may run in parallel to RCU protected lookups. 106 * Destruction of the Netlink socket may only occur *after* nl_table_lock has 107 * been acquired * either during or after the socket has been removed from 108 * the list and after an RCU grace period. 109 */ 110 DEFINE_RWLOCK(nl_table_lock); 111 EXPORT_SYMBOL_GPL(nl_table_lock); 112 static atomic_t nl_table_users = ATOMIC_INIT(0); 113 114 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock)); 115 116 static ATOMIC_NOTIFIER_HEAD(netlink_chain); 117 118 static DEFINE_SPINLOCK(netlink_tap_lock); 119 static struct list_head netlink_tap_all __read_mostly; 120 121 static const struct rhashtable_params netlink_rhashtable_params; 122 123 static inline u32 netlink_group_mask(u32 group) 124 { 125 return group ? 1 << (group - 1) : 0; 126 } 127 128 int netlink_add_tap(struct netlink_tap *nt) 129 { 130 if (unlikely(nt->dev->type != ARPHRD_NETLINK)) 131 return -EINVAL; 132 133 spin_lock(&netlink_tap_lock); 134 list_add_rcu(&nt->list, &netlink_tap_all); 135 spin_unlock(&netlink_tap_lock); 136 137 __module_get(nt->module); 138 139 return 0; 140 } 141 EXPORT_SYMBOL_GPL(netlink_add_tap); 142 143 static int __netlink_remove_tap(struct netlink_tap *nt) 144 { 145 bool found = false; 146 struct netlink_tap *tmp; 147 148 spin_lock(&netlink_tap_lock); 149 150 list_for_each_entry(tmp, &netlink_tap_all, list) { 151 if (nt == tmp) { 152 list_del_rcu(&nt->list); 153 found = true; 154 goto out; 155 } 156 } 157 158 pr_warn("__netlink_remove_tap: %p not found\n", nt); 159 out: 160 spin_unlock(&netlink_tap_lock); 161 162 if (found) 163 module_put(nt->module); 164 165 return found ? 0 : -ENODEV; 166 } 167 168 int netlink_remove_tap(struct netlink_tap *nt) 169 { 170 int ret; 171 172 ret = __netlink_remove_tap(nt); 173 synchronize_net(); 174 175 return ret; 176 } 177 EXPORT_SYMBOL_GPL(netlink_remove_tap); 178 179 static bool netlink_filter_tap(const struct sk_buff *skb) 180 { 181 struct sock *sk = skb->sk; 182 183 /* We take the more conservative approach and 184 * whitelist socket protocols that may pass. 185 */ 186 switch (sk->sk_protocol) { 187 case NETLINK_ROUTE: 188 case NETLINK_USERSOCK: 189 case NETLINK_SOCK_DIAG: 190 case NETLINK_NFLOG: 191 case NETLINK_XFRM: 192 case NETLINK_FIB_LOOKUP: 193 case NETLINK_NETFILTER: 194 case NETLINK_GENERIC: 195 return true; 196 } 197 198 return false; 199 } 200 201 static int __netlink_deliver_tap_skb(struct sk_buff *skb, 202 struct net_device *dev) 203 { 204 struct sk_buff *nskb; 205 struct sock *sk = skb->sk; 206 int ret = -ENOMEM; 207 208 dev_hold(dev); 209 nskb = skb_clone(skb, GFP_ATOMIC); 210 if (nskb) { 211 nskb->dev = dev; 212 nskb->protocol = htons((u16) sk->sk_protocol); 213 nskb->pkt_type = netlink_is_kernel(sk) ? 214 PACKET_KERNEL : PACKET_USER; 215 skb_reset_network_header(nskb); 216 ret = dev_queue_xmit(nskb); 217 if (unlikely(ret > 0)) 218 ret = net_xmit_errno(ret); 219 } 220 221 dev_put(dev); 222 return ret; 223 } 224 225 static void __netlink_deliver_tap(struct sk_buff *skb) 226 { 227 int ret; 228 struct netlink_tap *tmp; 229 230 if (!netlink_filter_tap(skb)) 231 return; 232 233 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) { 234 ret = __netlink_deliver_tap_skb(skb, tmp->dev); 235 if (unlikely(ret)) 236 break; 237 } 238 } 239 240 static void netlink_deliver_tap(struct sk_buff *skb) 241 { 242 rcu_read_lock(); 243 244 if (unlikely(!list_empty(&netlink_tap_all))) 245 __netlink_deliver_tap(skb); 246 247 rcu_read_unlock(); 248 } 249 250 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src, 251 struct sk_buff *skb) 252 { 253 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src))) 254 netlink_deliver_tap(skb); 255 } 256 257 static void netlink_overrun(struct sock *sk) 258 { 259 struct netlink_sock *nlk = nlk_sk(sk); 260 261 if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) { 262 if (!test_and_set_bit(NETLINK_S_CONGESTED, 263 &nlk_sk(sk)->state)) { 264 sk->sk_err = ENOBUFS; 265 sk->sk_error_report(sk); 266 } 267 } 268 atomic_inc(&sk->sk_drops); 269 } 270 271 static void netlink_rcv_wake(struct sock *sk) 272 { 273 struct netlink_sock *nlk = nlk_sk(sk); 274 275 if (skb_queue_empty(&sk->sk_receive_queue)) 276 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 277 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state)) 278 wake_up_interruptible(&nlk->wait); 279 } 280 281 #ifdef CONFIG_NETLINK_MMAP 282 static bool netlink_skb_is_mmaped(const struct sk_buff *skb) 283 { 284 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED; 285 } 286 287 static bool netlink_rx_is_mmaped(struct sock *sk) 288 { 289 return nlk_sk(sk)->rx_ring.pg_vec != NULL; 290 } 291 292 static bool netlink_tx_is_mmaped(struct sock *sk) 293 { 294 return nlk_sk(sk)->tx_ring.pg_vec != NULL; 295 } 296 297 static __pure struct page *pgvec_to_page(const void *addr) 298 { 299 if (is_vmalloc_addr(addr)) 300 return vmalloc_to_page(addr); 301 else 302 return virt_to_page(addr); 303 } 304 305 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len) 306 { 307 unsigned int i; 308 309 for (i = 0; i < len; i++) { 310 if (pg_vec[i] != NULL) { 311 if (is_vmalloc_addr(pg_vec[i])) 312 vfree(pg_vec[i]); 313 else 314 free_pages((unsigned long)pg_vec[i], order); 315 } 316 } 317 kfree(pg_vec); 318 } 319 320 static void *alloc_one_pg_vec_page(unsigned long order) 321 { 322 void *buffer; 323 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO | 324 __GFP_NOWARN | __GFP_NORETRY; 325 326 buffer = (void *)__get_free_pages(gfp_flags, order); 327 if (buffer != NULL) 328 return buffer; 329 330 buffer = vzalloc((1 << order) * PAGE_SIZE); 331 if (buffer != NULL) 332 return buffer; 333 334 gfp_flags &= ~__GFP_NORETRY; 335 return (void *)__get_free_pages(gfp_flags, order); 336 } 337 338 static void **alloc_pg_vec(struct netlink_sock *nlk, 339 struct nl_mmap_req *req, unsigned int order) 340 { 341 unsigned int block_nr = req->nm_block_nr; 342 unsigned int i; 343 void **pg_vec; 344 345 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL); 346 if (pg_vec == NULL) 347 return NULL; 348 349 for (i = 0; i < block_nr; i++) { 350 pg_vec[i] = alloc_one_pg_vec_page(order); 351 if (pg_vec[i] == NULL) 352 goto err1; 353 } 354 355 return pg_vec; 356 err1: 357 free_pg_vec(pg_vec, order, block_nr); 358 return NULL; 359 } 360 361 362 static void 363 __netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, bool tx_ring, void **pg_vec, 364 unsigned int order) 365 { 366 struct netlink_sock *nlk = nlk_sk(sk); 367 struct sk_buff_head *queue; 368 struct netlink_ring *ring; 369 370 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue; 371 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring; 372 373 spin_lock_bh(&queue->lock); 374 375 ring->frame_max = req->nm_frame_nr - 1; 376 ring->head = 0; 377 ring->frame_size = req->nm_frame_size; 378 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE; 379 380 swap(ring->pg_vec_len, req->nm_block_nr); 381 swap(ring->pg_vec_order, order); 382 swap(ring->pg_vec, pg_vec); 383 384 __skb_queue_purge(queue); 385 spin_unlock_bh(&queue->lock); 386 387 WARN_ON(atomic_read(&nlk->mapped)); 388 389 if (pg_vec) 390 free_pg_vec(pg_vec, order, req->nm_block_nr); 391 } 392 393 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, 394 bool tx_ring) 395 { 396 struct netlink_sock *nlk = nlk_sk(sk); 397 struct netlink_ring *ring; 398 void **pg_vec = NULL; 399 unsigned int order = 0; 400 401 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring; 402 403 if (atomic_read(&nlk->mapped)) 404 return -EBUSY; 405 if (atomic_read(&ring->pending)) 406 return -EBUSY; 407 408 if (req->nm_block_nr) { 409 if (ring->pg_vec != NULL) 410 return -EBUSY; 411 412 if ((int)req->nm_block_size <= 0) 413 return -EINVAL; 414 if (!PAGE_ALIGNED(req->nm_block_size)) 415 return -EINVAL; 416 if (req->nm_frame_size < NL_MMAP_HDRLEN) 417 return -EINVAL; 418 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT)) 419 return -EINVAL; 420 421 ring->frames_per_block = req->nm_block_size / 422 req->nm_frame_size; 423 if (ring->frames_per_block == 0) 424 return -EINVAL; 425 if (ring->frames_per_block * req->nm_block_nr != 426 req->nm_frame_nr) 427 return -EINVAL; 428 429 order = get_order(req->nm_block_size); 430 pg_vec = alloc_pg_vec(nlk, req, order); 431 if (pg_vec == NULL) 432 return -ENOMEM; 433 } else { 434 if (req->nm_frame_nr) 435 return -EINVAL; 436 } 437 438 mutex_lock(&nlk->pg_vec_lock); 439 if (atomic_read(&nlk->mapped) == 0) { 440 __netlink_set_ring(sk, req, tx_ring, pg_vec, order); 441 mutex_unlock(&nlk->pg_vec_lock); 442 return 0; 443 } 444 445 mutex_unlock(&nlk->pg_vec_lock); 446 447 if (pg_vec) 448 free_pg_vec(pg_vec, order, req->nm_block_nr); 449 450 return -EBUSY; 451 } 452 453 static void netlink_mm_open(struct vm_area_struct *vma) 454 { 455 struct file *file = vma->vm_file; 456 struct socket *sock = file->private_data; 457 struct sock *sk = sock->sk; 458 459 if (sk) 460 atomic_inc(&nlk_sk(sk)->mapped); 461 } 462 463 static void netlink_mm_close(struct vm_area_struct *vma) 464 { 465 struct file *file = vma->vm_file; 466 struct socket *sock = file->private_data; 467 struct sock *sk = sock->sk; 468 469 if (sk) 470 atomic_dec(&nlk_sk(sk)->mapped); 471 } 472 473 static const struct vm_operations_struct netlink_mmap_ops = { 474 .open = netlink_mm_open, 475 .close = netlink_mm_close, 476 }; 477 478 static int netlink_mmap(struct file *file, struct socket *sock, 479 struct vm_area_struct *vma) 480 { 481 struct sock *sk = sock->sk; 482 struct netlink_sock *nlk = nlk_sk(sk); 483 struct netlink_ring *ring; 484 unsigned long start, size, expected; 485 unsigned int i; 486 int err = -EINVAL; 487 488 if (vma->vm_pgoff) 489 return -EINVAL; 490 491 mutex_lock(&nlk->pg_vec_lock); 492 493 expected = 0; 494 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 495 if (ring->pg_vec == NULL) 496 continue; 497 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE; 498 } 499 500 if (expected == 0) 501 goto out; 502 503 size = vma->vm_end - vma->vm_start; 504 if (size != expected) 505 goto out; 506 507 start = vma->vm_start; 508 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) { 509 if (ring->pg_vec == NULL) 510 continue; 511 512 for (i = 0; i < ring->pg_vec_len; i++) { 513 struct page *page; 514 void *kaddr = ring->pg_vec[i]; 515 unsigned int pg_num; 516 517 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) { 518 page = pgvec_to_page(kaddr); 519 err = vm_insert_page(vma, start, page); 520 if (err < 0) 521 goto out; 522 start += PAGE_SIZE; 523 kaddr += PAGE_SIZE; 524 } 525 } 526 } 527 528 atomic_inc(&nlk->mapped); 529 vma->vm_ops = &netlink_mmap_ops; 530 err = 0; 531 out: 532 mutex_unlock(&nlk->pg_vec_lock); 533 return err; 534 } 535 536 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len) 537 { 538 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1 539 struct page *p_start, *p_end; 540 541 /* First page is flushed through netlink_{get,set}_status */ 542 p_start = pgvec_to_page(hdr + PAGE_SIZE); 543 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1); 544 while (p_start <= p_end) { 545 flush_dcache_page(p_start); 546 p_start++; 547 } 548 #endif 549 } 550 551 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr) 552 { 553 smp_rmb(); 554 flush_dcache_page(pgvec_to_page(hdr)); 555 return hdr->nm_status; 556 } 557 558 static void netlink_set_status(struct nl_mmap_hdr *hdr, 559 enum nl_mmap_status status) 560 { 561 smp_mb(); 562 hdr->nm_status = status; 563 flush_dcache_page(pgvec_to_page(hdr)); 564 } 565 566 static struct nl_mmap_hdr * 567 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos) 568 { 569 unsigned int pg_vec_pos, frame_off; 570 571 pg_vec_pos = pos / ring->frames_per_block; 572 frame_off = pos % ring->frames_per_block; 573 574 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size); 575 } 576 577 static struct nl_mmap_hdr * 578 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos, 579 enum nl_mmap_status status) 580 { 581 struct nl_mmap_hdr *hdr; 582 583 hdr = __netlink_lookup_frame(ring, pos); 584 if (netlink_get_status(hdr) != status) 585 return NULL; 586 587 return hdr; 588 } 589 590 static struct nl_mmap_hdr * 591 netlink_current_frame(const struct netlink_ring *ring, 592 enum nl_mmap_status status) 593 { 594 return netlink_lookup_frame(ring, ring->head, status); 595 } 596 597 static void netlink_increment_head(struct netlink_ring *ring) 598 { 599 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0; 600 } 601 602 static void netlink_forward_ring(struct netlink_ring *ring) 603 { 604 unsigned int head = ring->head; 605 const struct nl_mmap_hdr *hdr; 606 607 do { 608 hdr = __netlink_lookup_frame(ring, ring->head); 609 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED) 610 break; 611 if (hdr->nm_status != NL_MMAP_STATUS_SKIP) 612 break; 613 netlink_increment_head(ring); 614 } while (ring->head != head); 615 } 616 617 static bool netlink_has_valid_frame(struct netlink_ring *ring) 618 { 619 unsigned int head = ring->head, pos = head; 620 const struct nl_mmap_hdr *hdr; 621 622 do { 623 hdr = __netlink_lookup_frame(ring, pos); 624 if (hdr->nm_status == NL_MMAP_STATUS_VALID) 625 return true; 626 pos = pos != 0 ? pos - 1 : ring->frame_max; 627 } while (pos != head); 628 629 return false; 630 } 631 632 static bool netlink_dump_space(struct netlink_sock *nlk) 633 { 634 struct netlink_ring *ring = &nlk->rx_ring; 635 struct nl_mmap_hdr *hdr; 636 unsigned int n; 637 638 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 639 if (hdr == NULL) 640 return false; 641 642 n = ring->head + ring->frame_max / 2; 643 if (n > ring->frame_max) 644 n -= ring->frame_max; 645 646 hdr = __netlink_lookup_frame(ring, n); 647 648 return hdr->nm_status == NL_MMAP_STATUS_UNUSED; 649 } 650 651 static unsigned int netlink_poll(struct file *file, struct socket *sock, 652 poll_table *wait) 653 { 654 struct sock *sk = sock->sk; 655 struct netlink_sock *nlk = nlk_sk(sk); 656 unsigned int mask; 657 int err; 658 659 if (nlk->rx_ring.pg_vec != NULL) { 660 /* Memory mapped sockets don't call recvmsg(), so flow control 661 * for dumps is performed here. A dump is allowed to continue 662 * if at least half the ring is unused. 663 */ 664 while (nlk->cb_running && netlink_dump_space(nlk)) { 665 err = netlink_dump(sk); 666 if (err < 0) { 667 sk->sk_err = -err; 668 sk->sk_error_report(sk); 669 break; 670 } 671 } 672 netlink_rcv_wake(sk); 673 } 674 675 mask = datagram_poll(file, sock, wait); 676 677 /* We could already have received frames in the normal receive 678 * queue, that will show up as NL_MMAP_STATUS_COPY in the ring, 679 * so if mask contains pollin/etc already, there's no point 680 * walking the ring. 681 */ 682 if ((mask & (POLLIN | POLLRDNORM)) != (POLLIN | POLLRDNORM)) { 683 spin_lock_bh(&sk->sk_receive_queue.lock); 684 if (nlk->rx_ring.pg_vec) { 685 if (netlink_has_valid_frame(&nlk->rx_ring)) 686 mask |= POLLIN | POLLRDNORM; 687 } 688 spin_unlock_bh(&sk->sk_receive_queue.lock); 689 } 690 691 spin_lock_bh(&sk->sk_write_queue.lock); 692 if (nlk->tx_ring.pg_vec) { 693 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED)) 694 mask |= POLLOUT | POLLWRNORM; 695 } 696 spin_unlock_bh(&sk->sk_write_queue.lock); 697 698 return mask; 699 } 700 701 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb) 702 { 703 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN); 704 } 705 706 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk, 707 struct netlink_ring *ring, 708 struct nl_mmap_hdr *hdr) 709 { 710 unsigned int size; 711 void *data; 712 713 size = ring->frame_size - NL_MMAP_HDRLEN; 714 data = (void *)hdr + NL_MMAP_HDRLEN; 715 716 skb->head = data; 717 skb->data = data; 718 skb_reset_tail_pointer(skb); 719 skb->end = skb->tail + size; 720 skb->len = 0; 721 722 skb->destructor = netlink_skb_destructor; 723 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED; 724 NETLINK_CB(skb).sk = sk; 725 } 726 727 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg, 728 u32 dst_portid, u32 dst_group, 729 struct scm_cookie *scm) 730 { 731 struct netlink_sock *nlk = nlk_sk(sk); 732 struct netlink_ring *ring; 733 struct nl_mmap_hdr *hdr; 734 struct sk_buff *skb; 735 unsigned int maxlen; 736 int err = 0, len = 0; 737 738 mutex_lock(&nlk->pg_vec_lock); 739 740 ring = &nlk->tx_ring; 741 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 742 743 do { 744 unsigned int nm_len; 745 746 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID); 747 if (hdr == NULL) { 748 if (!(msg->msg_flags & MSG_DONTWAIT) && 749 atomic_read(&nlk->tx_ring.pending)) 750 schedule(); 751 continue; 752 } 753 754 nm_len = ACCESS_ONCE(hdr->nm_len); 755 if (nm_len > maxlen) { 756 err = -EINVAL; 757 goto out; 758 } 759 760 netlink_frame_flush_dcache(hdr, nm_len); 761 762 skb = alloc_skb(nm_len, GFP_KERNEL); 763 if (skb == NULL) { 764 err = -ENOBUFS; 765 goto out; 766 } 767 __skb_put(skb, nm_len); 768 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len); 769 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 770 771 netlink_increment_head(ring); 772 773 NETLINK_CB(skb).portid = nlk->portid; 774 NETLINK_CB(skb).dst_group = dst_group; 775 NETLINK_CB(skb).creds = scm->creds; 776 777 err = security_netlink_send(sk, skb); 778 if (err) { 779 kfree_skb(skb); 780 goto out; 781 } 782 783 if (unlikely(dst_group)) { 784 atomic_inc(&skb->users); 785 netlink_broadcast(sk, skb, dst_portid, dst_group, 786 GFP_KERNEL); 787 } 788 err = netlink_unicast(sk, skb, dst_portid, 789 msg->msg_flags & MSG_DONTWAIT); 790 if (err < 0) 791 goto out; 792 len += err; 793 794 } while (hdr != NULL || 795 (!(msg->msg_flags & MSG_DONTWAIT) && 796 atomic_read(&nlk->tx_ring.pending))); 797 798 if (len > 0) 799 err = len; 800 out: 801 mutex_unlock(&nlk->pg_vec_lock); 802 return err; 803 } 804 805 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb) 806 { 807 struct nl_mmap_hdr *hdr; 808 809 hdr = netlink_mmap_hdr(skb); 810 hdr->nm_len = skb->len; 811 hdr->nm_group = NETLINK_CB(skb).dst_group; 812 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 813 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 814 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 815 netlink_frame_flush_dcache(hdr, hdr->nm_len); 816 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 817 818 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED; 819 kfree_skb(skb); 820 } 821 822 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb) 823 { 824 struct netlink_sock *nlk = nlk_sk(sk); 825 struct netlink_ring *ring = &nlk->rx_ring; 826 struct nl_mmap_hdr *hdr; 827 828 spin_lock_bh(&sk->sk_receive_queue.lock); 829 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 830 if (hdr == NULL) { 831 spin_unlock_bh(&sk->sk_receive_queue.lock); 832 kfree_skb(skb); 833 netlink_overrun(sk); 834 return; 835 } 836 netlink_increment_head(ring); 837 __skb_queue_tail(&sk->sk_receive_queue, skb); 838 spin_unlock_bh(&sk->sk_receive_queue.lock); 839 840 hdr->nm_len = skb->len; 841 hdr->nm_group = NETLINK_CB(skb).dst_group; 842 hdr->nm_pid = NETLINK_CB(skb).creds.pid; 843 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid); 844 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid); 845 netlink_set_status(hdr, NL_MMAP_STATUS_COPY); 846 } 847 848 #else /* CONFIG_NETLINK_MMAP */ 849 #define netlink_skb_is_mmaped(skb) false 850 #define netlink_rx_is_mmaped(sk) false 851 #define netlink_tx_is_mmaped(sk) false 852 #define netlink_mmap sock_no_mmap 853 #define netlink_poll datagram_poll 854 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm) 0 855 #endif /* CONFIG_NETLINK_MMAP */ 856 857 static void netlink_skb_destructor(struct sk_buff *skb) 858 { 859 #ifdef CONFIG_NETLINK_MMAP 860 struct nl_mmap_hdr *hdr; 861 struct netlink_ring *ring; 862 struct sock *sk; 863 864 /* If a packet from the kernel to userspace was freed because of an 865 * error without being delivered to userspace, the kernel must reset 866 * the status. In the direction userspace to kernel, the status is 867 * always reset here after the packet was processed and freed. 868 */ 869 if (netlink_skb_is_mmaped(skb)) { 870 hdr = netlink_mmap_hdr(skb); 871 sk = NETLINK_CB(skb).sk; 872 873 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) { 874 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED); 875 ring = &nlk_sk(sk)->tx_ring; 876 } else { 877 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) { 878 hdr->nm_len = 0; 879 netlink_set_status(hdr, NL_MMAP_STATUS_VALID); 880 } 881 ring = &nlk_sk(sk)->rx_ring; 882 } 883 884 WARN_ON(atomic_read(&ring->pending) == 0); 885 atomic_dec(&ring->pending); 886 sock_put(sk); 887 888 skb->head = NULL; 889 } 890 #endif 891 if (is_vmalloc_addr(skb->head)) { 892 if (!skb->cloned || 893 !atomic_dec_return(&(skb_shinfo(skb)->dataref))) 894 vfree(skb->head); 895 896 skb->head = NULL; 897 } 898 if (skb->sk != NULL) 899 sock_rfree(skb); 900 } 901 902 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk) 903 { 904 WARN_ON(skb->sk != NULL); 905 skb->sk = sk; 906 skb->destructor = netlink_skb_destructor; 907 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 908 sk_mem_charge(sk, skb->truesize); 909 } 910 911 static void netlink_sock_destruct(struct sock *sk) 912 { 913 struct netlink_sock *nlk = nlk_sk(sk); 914 915 if (nlk->cb_running) { 916 if (nlk->cb.done) 917 nlk->cb.done(&nlk->cb); 918 919 module_put(nlk->cb.module); 920 kfree_skb(nlk->cb.skb); 921 } 922 923 skb_queue_purge(&sk->sk_receive_queue); 924 #ifdef CONFIG_NETLINK_MMAP 925 if (1) { 926 struct nl_mmap_req req; 927 928 memset(&req, 0, sizeof(req)); 929 if (nlk->rx_ring.pg_vec) 930 __netlink_set_ring(sk, &req, false, NULL, 0); 931 memset(&req, 0, sizeof(req)); 932 if (nlk->tx_ring.pg_vec) 933 __netlink_set_ring(sk, &req, true, NULL, 0); 934 } 935 #endif /* CONFIG_NETLINK_MMAP */ 936 937 if (!sock_flag(sk, SOCK_DEAD)) { 938 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk); 939 return; 940 } 941 942 WARN_ON(atomic_read(&sk->sk_rmem_alloc)); 943 WARN_ON(atomic_read(&sk->sk_wmem_alloc)); 944 WARN_ON(nlk_sk(sk)->groups); 945 } 946 947 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on 948 * SMP. Look, when several writers sleep and reader wakes them up, all but one 949 * immediately hit write lock and grab all the cpus. Exclusive sleep solves 950 * this, _but_ remember, it adds useless work on UP machines. 951 */ 952 953 void netlink_table_grab(void) 954 __acquires(nl_table_lock) 955 { 956 might_sleep(); 957 958 write_lock_irq(&nl_table_lock); 959 960 if (atomic_read(&nl_table_users)) { 961 DECLARE_WAITQUEUE(wait, current); 962 963 add_wait_queue_exclusive(&nl_table_wait, &wait); 964 for (;;) { 965 set_current_state(TASK_UNINTERRUPTIBLE); 966 if (atomic_read(&nl_table_users) == 0) 967 break; 968 write_unlock_irq(&nl_table_lock); 969 schedule(); 970 write_lock_irq(&nl_table_lock); 971 } 972 973 __set_current_state(TASK_RUNNING); 974 remove_wait_queue(&nl_table_wait, &wait); 975 } 976 } 977 978 void netlink_table_ungrab(void) 979 __releases(nl_table_lock) 980 { 981 write_unlock_irq(&nl_table_lock); 982 wake_up(&nl_table_wait); 983 } 984 985 static inline void 986 netlink_lock_table(void) 987 { 988 /* read_lock() synchronizes us to netlink_table_grab */ 989 990 read_lock(&nl_table_lock); 991 atomic_inc(&nl_table_users); 992 read_unlock(&nl_table_lock); 993 } 994 995 static inline void 996 netlink_unlock_table(void) 997 { 998 if (atomic_dec_and_test(&nl_table_users)) 999 wake_up(&nl_table_wait); 1000 } 1001 1002 struct netlink_compare_arg 1003 { 1004 possible_net_t pnet; 1005 u32 portid; 1006 }; 1007 1008 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */ 1009 #define netlink_compare_arg_len \ 1010 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32)) 1011 1012 static inline int netlink_compare(struct rhashtable_compare_arg *arg, 1013 const void *ptr) 1014 { 1015 const struct netlink_compare_arg *x = arg->key; 1016 const struct netlink_sock *nlk = ptr; 1017 1018 return nlk->portid != x->portid || 1019 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet)); 1020 } 1021 1022 static void netlink_compare_arg_init(struct netlink_compare_arg *arg, 1023 struct net *net, u32 portid) 1024 { 1025 memset(arg, 0, sizeof(*arg)); 1026 write_pnet(&arg->pnet, net); 1027 arg->portid = portid; 1028 } 1029 1030 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid, 1031 struct net *net) 1032 { 1033 struct netlink_compare_arg arg; 1034 1035 netlink_compare_arg_init(&arg, net, portid); 1036 return rhashtable_lookup_fast(&table->hash, &arg, 1037 netlink_rhashtable_params); 1038 } 1039 1040 static int __netlink_insert(struct netlink_table *table, struct sock *sk) 1041 { 1042 struct netlink_compare_arg arg; 1043 1044 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid); 1045 return rhashtable_lookup_insert_key(&table->hash, &arg, 1046 &nlk_sk(sk)->node, 1047 netlink_rhashtable_params); 1048 } 1049 1050 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid) 1051 { 1052 struct netlink_table *table = &nl_table[protocol]; 1053 struct sock *sk; 1054 1055 rcu_read_lock(); 1056 sk = __netlink_lookup(table, portid, net); 1057 if (sk) 1058 sock_hold(sk); 1059 rcu_read_unlock(); 1060 1061 return sk; 1062 } 1063 1064 static const struct proto_ops netlink_ops; 1065 1066 static void 1067 netlink_update_listeners(struct sock *sk) 1068 { 1069 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 1070 unsigned long mask; 1071 unsigned int i; 1072 struct listeners *listeners; 1073 1074 listeners = nl_deref_protected(tbl->listeners); 1075 if (!listeners) 1076 return; 1077 1078 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) { 1079 mask = 0; 1080 sk_for_each_bound(sk, &tbl->mc_list) { 1081 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups)) 1082 mask |= nlk_sk(sk)->groups[i]; 1083 } 1084 listeners->masks[i] = mask; 1085 } 1086 /* this function is only called with the netlink table "grabbed", which 1087 * makes sure updates are visible before bind or setsockopt return. */ 1088 } 1089 1090 static int netlink_insert(struct sock *sk, u32 portid) 1091 { 1092 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1093 int err; 1094 1095 lock_sock(sk); 1096 1097 err = -EBUSY; 1098 if (nlk_sk(sk)->portid) 1099 goto err; 1100 1101 err = -ENOMEM; 1102 if (BITS_PER_LONG > 32 && 1103 unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX)) 1104 goto err; 1105 1106 nlk_sk(sk)->portid = portid; 1107 sock_hold(sk); 1108 1109 err = __netlink_insert(table, sk); 1110 if (err) { 1111 /* In case the hashtable backend returns with -EBUSY 1112 * from here, it must not escape to the caller. 1113 */ 1114 if (unlikely(err == -EBUSY)) 1115 err = -EOVERFLOW; 1116 if (err == -EEXIST) 1117 err = -EADDRINUSE; 1118 nlk_sk(sk)->portid = 0; 1119 sock_put(sk); 1120 } 1121 1122 err: 1123 release_sock(sk); 1124 return err; 1125 } 1126 1127 static void netlink_remove(struct sock *sk) 1128 { 1129 struct netlink_table *table; 1130 1131 table = &nl_table[sk->sk_protocol]; 1132 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node, 1133 netlink_rhashtable_params)) { 1134 WARN_ON(atomic_read(&sk->sk_refcnt) == 1); 1135 __sock_put(sk); 1136 } 1137 1138 netlink_table_grab(); 1139 if (nlk_sk(sk)->subscriptions) { 1140 __sk_del_bind_node(sk); 1141 netlink_update_listeners(sk); 1142 } 1143 if (sk->sk_protocol == NETLINK_GENERIC) 1144 atomic_inc(&genl_sk_destructing_cnt); 1145 netlink_table_ungrab(); 1146 } 1147 1148 static struct proto netlink_proto = { 1149 .name = "NETLINK", 1150 .owner = THIS_MODULE, 1151 .obj_size = sizeof(struct netlink_sock), 1152 }; 1153 1154 static int __netlink_create(struct net *net, struct socket *sock, 1155 struct mutex *cb_mutex, int protocol, 1156 int kern) 1157 { 1158 struct sock *sk; 1159 struct netlink_sock *nlk; 1160 1161 sock->ops = &netlink_ops; 1162 1163 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern); 1164 if (!sk) 1165 return -ENOMEM; 1166 1167 sock_init_data(sock, sk); 1168 1169 nlk = nlk_sk(sk); 1170 if (cb_mutex) { 1171 nlk->cb_mutex = cb_mutex; 1172 } else { 1173 nlk->cb_mutex = &nlk->cb_def_mutex; 1174 mutex_init(nlk->cb_mutex); 1175 } 1176 init_waitqueue_head(&nlk->wait); 1177 #ifdef CONFIG_NETLINK_MMAP 1178 mutex_init(&nlk->pg_vec_lock); 1179 #endif 1180 1181 sk->sk_destruct = netlink_sock_destruct; 1182 sk->sk_protocol = protocol; 1183 return 0; 1184 } 1185 1186 static int netlink_create(struct net *net, struct socket *sock, int protocol, 1187 int kern) 1188 { 1189 struct module *module = NULL; 1190 struct mutex *cb_mutex; 1191 struct netlink_sock *nlk; 1192 int (*bind)(struct net *net, int group); 1193 void (*unbind)(struct net *net, int group); 1194 int err = 0; 1195 1196 sock->state = SS_UNCONNECTED; 1197 1198 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM) 1199 return -ESOCKTNOSUPPORT; 1200 1201 if (protocol < 0 || protocol >= MAX_LINKS) 1202 return -EPROTONOSUPPORT; 1203 1204 netlink_lock_table(); 1205 #ifdef CONFIG_MODULES 1206 if (!nl_table[protocol].registered) { 1207 netlink_unlock_table(); 1208 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol); 1209 netlink_lock_table(); 1210 } 1211 #endif 1212 if (nl_table[protocol].registered && 1213 try_module_get(nl_table[protocol].module)) 1214 module = nl_table[protocol].module; 1215 else 1216 err = -EPROTONOSUPPORT; 1217 cb_mutex = nl_table[protocol].cb_mutex; 1218 bind = nl_table[protocol].bind; 1219 unbind = nl_table[protocol].unbind; 1220 netlink_unlock_table(); 1221 1222 if (err < 0) 1223 goto out; 1224 1225 err = __netlink_create(net, sock, cb_mutex, protocol, kern); 1226 if (err < 0) 1227 goto out_module; 1228 1229 local_bh_disable(); 1230 sock_prot_inuse_add(net, &netlink_proto, 1); 1231 local_bh_enable(); 1232 1233 nlk = nlk_sk(sock->sk); 1234 nlk->module = module; 1235 nlk->netlink_bind = bind; 1236 nlk->netlink_unbind = unbind; 1237 out: 1238 return err; 1239 1240 out_module: 1241 module_put(module); 1242 goto out; 1243 } 1244 1245 static void deferred_put_nlk_sk(struct rcu_head *head) 1246 { 1247 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu); 1248 1249 sock_put(&nlk->sk); 1250 } 1251 1252 static int netlink_release(struct socket *sock) 1253 { 1254 struct sock *sk = sock->sk; 1255 struct netlink_sock *nlk; 1256 1257 if (!sk) 1258 return 0; 1259 1260 netlink_remove(sk); 1261 sock_orphan(sk); 1262 nlk = nlk_sk(sk); 1263 1264 /* 1265 * OK. Socket is unlinked, any packets that arrive now 1266 * will be purged. 1267 */ 1268 1269 /* must not acquire netlink_table_lock in any way again before unbind 1270 * and notifying genetlink is done as otherwise it might deadlock 1271 */ 1272 if (nlk->netlink_unbind) { 1273 int i; 1274 1275 for (i = 0; i < nlk->ngroups; i++) 1276 if (test_bit(i, nlk->groups)) 1277 nlk->netlink_unbind(sock_net(sk), i + 1); 1278 } 1279 if (sk->sk_protocol == NETLINK_GENERIC && 1280 atomic_dec_return(&genl_sk_destructing_cnt) == 0) 1281 wake_up(&genl_sk_destructing_waitq); 1282 1283 sock->sk = NULL; 1284 wake_up_interruptible_all(&nlk->wait); 1285 1286 skb_queue_purge(&sk->sk_write_queue); 1287 1288 if (nlk->portid) { 1289 struct netlink_notify n = { 1290 .net = sock_net(sk), 1291 .protocol = sk->sk_protocol, 1292 .portid = nlk->portid, 1293 }; 1294 atomic_notifier_call_chain(&netlink_chain, 1295 NETLINK_URELEASE, &n); 1296 } 1297 1298 module_put(nlk->module); 1299 1300 if (netlink_is_kernel(sk)) { 1301 netlink_table_grab(); 1302 BUG_ON(nl_table[sk->sk_protocol].registered == 0); 1303 if (--nl_table[sk->sk_protocol].registered == 0) { 1304 struct listeners *old; 1305 1306 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners); 1307 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL); 1308 kfree_rcu(old, rcu); 1309 nl_table[sk->sk_protocol].module = NULL; 1310 nl_table[sk->sk_protocol].bind = NULL; 1311 nl_table[sk->sk_protocol].unbind = NULL; 1312 nl_table[sk->sk_protocol].flags = 0; 1313 nl_table[sk->sk_protocol].registered = 0; 1314 } 1315 netlink_table_ungrab(); 1316 } 1317 1318 kfree(nlk->groups); 1319 nlk->groups = NULL; 1320 1321 local_bh_disable(); 1322 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1); 1323 local_bh_enable(); 1324 call_rcu(&nlk->rcu, deferred_put_nlk_sk); 1325 return 0; 1326 } 1327 1328 static int netlink_autobind(struct socket *sock) 1329 { 1330 struct sock *sk = sock->sk; 1331 struct net *net = sock_net(sk); 1332 struct netlink_table *table = &nl_table[sk->sk_protocol]; 1333 s32 portid = task_tgid_vnr(current); 1334 int err; 1335 s32 rover = -4096; 1336 bool ok; 1337 1338 retry: 1339 cond_resched(); 1340 rcu_read_lock(); 1341 ok = !__netlink_lookup(table, portid, net); 1342 rcu_read_unlock(); 1343 if (!ok) { 1344 /* Bind collision, search negative portid values. */ 1345 if (rover == -4096) 1346 /* rover will be in range [S32_MIN, -4097] */ 1347 rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN); 1348 else if (rover >= -4096) 1349 rover = -4097; 1350 portid = rover--; 1351 goto retry; 1352 } 1353 1354 err = netlink_insert(sk, portid); 1355 if (err == -EADDRINUSE) 1356 goto retry; 1357 1358 /* If 2 threads race to autobind, that is fine. */ 1359 if (err == -EBUSY) 1360 err = 0; 1361 1362 return err; 1363 } 1364 1365 /** 1366 * __netlink_ns_capable - General netlink message capability test 1367 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace. 1368 * @user_ns: The user namespace of the capability to use 1369 * @cap: The capability to use 1370 * 1371 * Test to see if the opener of the socket we received the message 1372 * from had when the netlink socket was created and the sender of the 1373 * message has has the capability @cap in the user namespace @user_ns. 1374 */ 1375 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp, 1376 struct user_namespace *user_ns, int cap) 1377 { 1378 return ((nsp->flags & NETLINK_SKB_DST) || 1379 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) && 1380 ns_capable(user_ns, cap); 1381 } 1382 EXPORT_SYMBOL(__netlink_ns_capable); 1383 1384 /** 1385 * netlink_ns_capable - General netlink message capability test 1386 * @skb: socket buffer holding a netlink command from userspace 1387 * @user_ns: The user namespace of the capability to use 1388 * @cap: The capability to use 1389 * 1390 * Test to see if the opener of the socket we received the message 1391 * from had when the netlink socket was created and the sender of the 1392 * message has has the capability @cap in the user namespace @user_ns. 1393 */ 1394 bool netlink_ns_capable(const struct sk_buff *skb, 1395 struct user_namespace *user_ns, int cap) 1396 { 1397 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap); 1398 } 1399 EXPORT_SYMBOL(netlink_ns_capable); 1400 1401 /** 1402 * netlink_capable - Netlink global message capability test 1403 * @skb: socket buffer holding a netlink command from userspace 1404 * @cap: The capability to use 1405 * 1406 * Test to see if the opener of the socket we received the message 1407 * from had when the netlink socket was created and the sender of the 1408 * message has has the capability @cap in all user namespaces. 1409 */ 1410 bool netlink_capable(const struct sk_buff *skb, int cap) 1411 { 1412 return netlink_ns_capable(skb, &init_user_ns, cap); 1413 } 1414 EXPORT_SYMBOL(netlink_capable); 1415 1416 /** 1417 * netlink_net_capable - Netlink network namespace message capability test 1418 * @skb: socket buffer holding a netlink command from userspace 1419 * @cap: The capability to use 1420 * 1421 * Test to see if the opener of the socket we received the message 1422 * from had when the netlink socket was created and the sender of the 1423 * message has has the capability @cap over the network namespace of 1424 * the socket we received the message from. 1425 */ 1426 bool netlink_net_capable(const struct sk_buff *skb, int cap) 1427 { 1428 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap); 1429 } 1430 EXPORT_SYMBOL(netlink_net_capable); 1431 1432 static inline int netlink_allowed(const struct socket *sock, unsigned int flag) 1433 { 1434 return (nl_table[sock->sk->sk_protocol].flags & flag) || 1435 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN); 1436 } 1437 1438 static void 1439 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions) 1440 { 1441 struct netlink_sock *nlk = nlk_sk(sk); 1442 1443 if (nlk->subscriptions && !subscriptions) 1444 __sk_del_bind_node(sk); 1445 else if (!nlk->subscriptions && subscriptions) 1446 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list); 1447 nlk->subscriptions = subscriptions; 1448 } 1449 1450 static int netlink_realloc_groups(struct sock *sk) 1451 { 1452 struct netlink_sock *nlk = nlk_sk(sk); 1453 unsigned int groups; 1454 unsigned long *new_groups; 1455 int err = 0; 1456 1457 netlink_table_grab(); 1458 1459 groups = nl_table[sk->sk_protocol].groups; 1460 if (!nl_table[sk->sk_protocol].registered) { 1461 err = -ENOENT; 1462 goto out_unlock; 1463 } 1464 1465 if (nlk->ngroups >= groups) 1466 goto out_unlock; 1467 1468 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC); 1469 if (new_groups == NULL) { 1470 err = -ENOMEM; 1471 goto out_unlock; 1472 } 1473 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0, 1474 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups)); 1475 1476 nlk->groups = new_groups; 1477 nlk->ngroups = groups; 1478 out_unlock: 1479 netlink_table_ungrab(); 1480 return err; 1481 } 1482 1483 static void netlink_undo_bind(int group, long unsigned int groups, 1484 struct sock *sk) 1485 { 1486 struct netlink_sock *nlk = nlk_sk(sk); 1487 int undo; 1488 1489 if (!nlk->netlink_unbind) 1490 return; 1491 1492 for (undo = 0; undo < group; undo++) 1493 if (test_bit(undo, &groups)) 1494 nlk->netlink_unbind(sock_net(sk), undo + 1); 1495 } 1496 1497 static int netlink_bind(struct socket *sock, struct sockaddr *addr, 1498 int addr_len) 1499 { 1500 struct sock *sk = sock->sk; 1501 struct net *net = sock_net(sk); 1502 struct netlink_sock *nlk = nlk_sk(sk); 1503 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1504 int err; 1505 long unsigned int groups = nladdr->nl_groups; 1506 1507 if (addr_len < sizeof(struct sockaddr_nl)) 1508 return -EINVAL; 1509 1510 if (nladdr->nl_family != AF_NETLINK) 1511 return -EINVAL; 1512 1513 /* Only superuser is allowed to listen multicasts */ 1514 if (groups) { 1515 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 1516 return -EPERM; 1517 err = netlink_realloc_groups(sk); 1518 if (err) 1519 return err; 1520 } 1521 1522 if (nlk->portid) 1523 if (nladdr->nl_pid != nlk->portid) 1524 return -EINVAL; 1525 1526 if (nlk->netlink_bind && groups) { 1527 int group; 1528 1529 for (group = 0; group < nlk->ngroups; group++) { 1530 if (!test_bit(group, &groups)) 1531 continue; 1532 err = nlk->netlink_bind(net, group + 1); 1533 if (!err) 1534 continue; 1535 netlink_undo_bind(group, groups, sk); 1536 return err; 1537 } 1538 } 1539 1540 if (!nlk->portid) { 1541 err = nladdr->nl_pid ? 1542 netlink_insert(sk, nladdr->nl_pid) : 1543 netlink_autobind(sock); 1544 if (err) { 1545 netlink_undo_bind(nlk->ngroups, groups, sk); 1546 return err; 1547 } 1548 } 1549 1550 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0])) 1551 return 0; 1552 1553 netlink_table_grab(); 1554 netlink_update_subscriptions(sk, nlk->subscriptions + 1555 hweight32(groups) - 1556 hweight32(nlk->groups[0])); 1557 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups; 1558 netlink_update_listeners(sk); 1559 netlink_table_ungrab(); 1560 1561 return 0; 1562 } 1563 1564 static int netlink_connect(struct socket *sock, struct sockaddr *addr, 1565 int alen, int flags) 1566 { 1567 int err = 0; 1568 struct sock *sk = sock->sk; 1569 struct netlink_sock *nlk = nlk_sk(sk); 1570 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr; 1571 1572 if (alen < sizeof(addr->sa_family)) 1573 return -EINVAL; 1574 1575 if (addr->sa_family == AF_UNSPEC) { 1576 sk->sk_state = NETLINK_UNCONNECTED; 1577 nlk->dst_portid = 0; 1578 nlk->dst_group = 0; 1579 return 0; 1580 } 1581 if (addr->sa_family != AF_NETLINK) 1582 return -EINVAL; 1583 1584 if ((nladdr->nl_groups || nladdr->nl_pid) && 1585 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 1586 return -EPERM; 1587 1588 if (!nlk->portid) 1589 err = netlink_autobind(sock); 1590 1591 if (err == 0) { 1592 sk->sk_state = NETLINK_CONNECTED; 1593 nlk->dst_portid = nladdr->nl_pid; 1594 nlk->dst_group = ffs(nladdr->nl_groups); 1595 } 1596 1597 return err; 1598 } 1599 1600 static int netlink_getname(struct socket *sock, struct sockaddr *addr, 1601 int *addr_len, int peer) 1602 { 1603 struct sock *sk = sock->sk; 1604 struct netlink_sock *nlk = nlk_sk(sk); 1605 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr); 1606 1607 nladdr->nl_family = AF_NETLINK; 1608 nladdr->nl_pad = 0; 1609 *addr_len = sizeof(*nladdr); 1610 1611 if (peer) { 1612 nladdr->nl_pid = nlk->dst_portid; 1613 nladdr->nl_groups = netlink_group_mask(nlk->dst_group); 1614 } else { 1615 nladdr->nl_pid = nlk->portid; 1616 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0; 1617 } 1618 return 0; 1619 } 1620 1621 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid) 1622 { 1623 struct sock *sock; 1624 struct netlink_sock *nlk; 1625 1626 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid); 1627 if (!sock) 1628 return ERR_PTR(-ECONNREFUSED); 1629 1630 /* Don't bother queuing skb if kernel socket has no input function */ 1631 nlk = nlk_sk(sock); 1632 if (sock->sk_state == NETLINK_CONNECTED && 1633 nlk->dst_portid != nlk_sk(ssk)->portid) { 1634 sock_put(sock); 1635 return ERR_PTR(-ECONNREFUSED); 1636 } 1637 return sock; 1638 } 1639 1640 struct sock *netlink_getsockbyfilp(struct file *filp) 1641 { 1642 struct inode *inode = file_inode(filp); 1643 struct sock *sock; 1644 1645 if (!S_ISSOCK(inode->i_mode)) 1646 return ERR_PTR(-ENOTSOCK); 1647 1648 sock = SOCKET_I(inode)->sk; 1649 if (sock->sk_family != AF_NETLINK) 1650 return ERR_PTR(-EINVAL); 1651 1652 sock_hold(sock); 1653 return sock; 1654 } 1655 1656 static struct sk_buff *netlink_alloc_large_skb(unsigned int size, 1657 int broadcast) 1658 { 1659 struct sk_buff *skb; 1660 void *data; 1661 1662 if (size <= NLMSG_GOODSIZE || broadcast) 1663 return alloc_skb(size, GFP_KERNEL); 1664 1665 size = SKB_DATA_ALIGN(size) + 1666 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1667 1668 data = vmalloc(size); 1669 if (data == NULL) 1670 return NULL; 1671 1672 skb = __build_skb(data, size); 1673 if (skb == NULL) 1674 vfree(data); 1675 else 1676 skb->destructor = netlink_skb_destructor; 1677 1678 return skb; 1679 } 1680 1681 /* 1682 * Attach a skb to a netlink socket. 1683 * The caller must hold a reference to the destination socket. On error, the 1684 * reference is dropped. The skb is not send to the destination, just all 1685 * all error checks are performed and memory in the queue is reserved. 1686 * Return values: 1687 * < 0: error. skb freed, reference to sock dropped. 1688 * 0: continue 1689 * 1: repeat lookup - reference dropped while waiting for socket memory. 1690 */ 1691 int netlink_attachskb(struct sock *sk, struct sk_buff *skb, 1692 long *timeo, struct sock *ssk) 1693 { 1694 struct netlink_sock *nlk; 1695 1696 nlk = nlk_sk(sk); 1697 1698 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1699 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1700 !netlink_skb_is_mmaped(skb)) { 1701 DECLARE_WAITQUEUE(wait, current); 1702 if (!*timeo) { 1703 if (!ssk || netlink_is_kernel(ssk)) 1704 netlink_overrun(sk); 1705 sock_put(sk); 1706 kfree_skb(skb); 1707 return -EAGAIN; 1708 } 1709 1710 __set_current_state(TASK_INTERRUPTIBLE); 1711 add_wait_queue(&nlk->wait, &wait); 1712 1713 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf || 1714 test_bit(NETLINK_S_CONGESTED, &nlk->state)) && 1715 !sock_flag(sk, SOCK_DEAD)) 1716 *timeo = schedule_timeout(*timeo); 1717 1718 __set_current_state(TASK_RUNNING); 1719 remove_wait_queue(&nlk->wait, &wait); 1720 sock_put(sk); 1721 1722 if (signal_pending(current)) { 1723 kfree_skb(skb); 1724 return sock_intr_errno(*timeo); 1725 } 1726 return 1; 1727 } 1728 netlink_skb_set_owner_r(skb, sk); 1729 return 0; 1730 } 1731 1732 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1733 { 1734 int len = skb->len; 1735 1736 netlink_deliver_tap(skb); 1737 1738 #ifdef CONFIG_NETLINK_MMAP 1739 if (netlink_skb_is_mmaped(skb)) 1740 netlink_queue_mmaped_skb(sk, skb); 1741 else if (netlink_rx_is_mmaped(sk)) 1742 netlink_ring_set_copied(sk, skb); 1743 else 1744 #endif /* CONFIG_NETLINK_MMAP */ 1745 skb_queue_tail(&sk->sk_receive_queue, skb); 1746 sk->sk_data_ready(sk); 1747 return len; 1748 } 1749 1750 int netlink_sendskb(struct sock *sk, struct sk_buff *skb) 1751 { 1752 int len = __netlink_sendskb(sk, skb); 1753 1754 sock_put(sk); 1755 return len; 1756 } 1757 1758 void netlink_detachskb(struct sock *sk, struct sk_buff *skb) 1759 { 1760 kfree_skb(skb); 1761 sock_put(sk); 1762 } 1763 1764 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation) 1765 { 1766 int delta; 1767 1768 WARN_ON(skb->sk != NULL); 1769 if (netlink_skb_is_mmaped(skb)) 1770 return skb; 1771 1772 delta = skb->end - skb->tail; 1773 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize) 1774 return skb; 1775 1776 if (skb_shared(skb)) { 1777 struct sk_buff *nskb = skb_clone(skb, allocation); 1778 if (!nskb) 1779 return skb; 1780 consume_skb(skb); 1781 skb = nskb; 1782 } 1783 1784 if (!pskb_expand_head(skb, 0, -delta, allocation)) 1785 skb->truesize -= delta; 1786 1787 return skb; 1788 } 1789 1790 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb, 1791 struct sock *ssk) 1792 { 1793 int ret; 1794 struct netlink_sock *nlk = nlk_sk(sk); 1795 1796 ret = -ECONNREFUSED; 1797 if (nlk->netlink_rcv != NULL) { 1798 ret = skb->len; 1799 netlink_skb_set_owner_r(skb, sk); 1800 NETLINK_CB(skb).sk = ssk; 1801 netlink_deliver_tap_kernel(sk, ssk, skb); 1802 nlk->netlink_rcv(skb); 1803 consume_skb(skb); 1804 } else { 1805 kfree_skb(skb); 1806 } 1807 sock_put(sk); 1808 return ret; 1809 } 1810 1811 int netlink_unicast(struct sock *ssk, struct sk_buff *skb, 1812 u32 portid, int nonblock) 1813 { 1814 struct sock *sk; 1815 int err; 1816 long timeo; 1817 1818 skb = netlink_trim(skb, gfp_any()); 1819 1820 timeo = sock_sndtimeo(ssk, nonblock); 1821 retry: 1822 sk = netlink_getsockbyportid(ssk, portid); 1823 if (IS_ERR(sk)) { 1824 kfree_skb(skb); 1825 return PTR_ERR(sk); 1826 } 1827 if (netlink_is_kernel(sk)) 1828 return netlink_unicast_kernel(sk, skb, ssk); 1829 1830 if (sk_filter(sk, skb)) { 1831 err = skb->len; 1832 kfree_skb(skb); 1833 sock_put(sk); 1834 return err; 1835 } 1836 1837 err = netlink_attachskb(sk, skb, &timeo, ssk); 1838 if (err == 1) 1839 goto retry; 1840 if (err) 1841 return err; 1842 1843 return netlink_sendskb(sk, skb); 1844 } 1845 EXPORT_SYMBOL(netlink_unicast); 1846 1847 struct sk_buff *__netlink_alloc_skb(struct sock *ssk, unsigned int size, 1848 unsigned int ldiff, u32 dst_portid, 1849 gfp_t gfp_mask) 1850 { 1851 #ifdef CONFIG_NETLINK_MMAP 1852 unsigned int maxlen, linear_size; 1853 struct sock *sk = NULL; 1854 struct sk_buff *skb; 1855 struct netlink_ring *ring; 1856 struct nl_mmap_hdr *hdr; 1857 1858 sk = netlink_getsockbyportid(ssk, dst_portid); 1859 if (IS_ERR(sk)) 1860 goto out; 1861 1862 ring = &nlk_sk(sk)->rx_ring; 1863 /* fast-path without atomic ops for common case: non-mmaped receiver */ 1864 if (ring->pg_vec == NULL) 1865 goto out_put; 1866 1867 /* We need to account the full linear size needed as a ring 1868 * slot cannot have non-linear parts. 1869 */ 1870 linear_size = size + ldiff; 1871 if (ring->frame_size - NL_MMAP_HDRLEN < linear_size) 1872 goto out_put; 1873 1874 skb = alloc_skb_head(gfp_mask); 1875 if (skb == NULL) 1876 goto err1; 1877 1878 spin_lock_bh(&sk->sk_receive_queue.lock); 1879 /* check again under lock */ 1880 if (ring->pg_vec == NULL) 1881 goto out_free; 1882 1883 /* check again under lock */ 1884 maxlen = ring->frame_size - NL_MMAP_HDRLEN; 1885 if (maxlen < linear_size) 1886 goto out_free; 1887 1888 netlink_forward_ring(ring); 1889 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED); 1890 if (hdr == NULL) 1891 goto err2; 1892 1893 netlink_ring_setup_skb(skb, sk, ring, hdr); 1894 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED); 1895 atomic_inc(&ring->pending); 1896 netlink_increment_head(ring); 1897 1898 spin_unlock_bh(&sk->sk_receive_queue.lock); 1899 return skb; 1900 1901 err2: 1902 kfree_skb(skb); 1903 spin_unlock_bh(&sk->sk_receive_queue.lock); 1904 netlink_overrun(sk); 1905 err1: 1906 sock_put(sk); 1907 return NULL; 1908 1909 out_free: 1910 kfree_skb(skb); 1911 spin_unlock_bh(&sk->sk_receive_queue.lock); 1912 out_put: 1913 sock_put(sk); 1914 out: 1915 #endif 1916 return alloc_skb(size, gfp_mask); 1917 } 1918 EXPORT_SYMBOL_GPL(__netlink_alloc_skb); 1919 1920 int netlink_has_listeners(struct sock *sk, unsigned int group) 1921 { 1922 int res = 0; 1923 struct listeners *listeners; 1924 1925 BUG_ON(!netlink_is_kernel(sk)); 1926 1927 rcu_read_lock(); 1928 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners); 1929 1930 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups) 1931 res = test_bit(group - 1, listeners->masks); 1932 1933 rcu_read_unlock(); 1934 1935 return res; 1936 } 1937 EXPORT_SYMBOL_GPL(netlink_has_listeners); 1938 1939 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb) 1940 { 1941 struct netlink_sock *nlk = nlk_sk(sk); 1942 1943 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf && 1944 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) { 1945 netlink_skb_set_owner_r(skb, sk); 1946 __netlink_sendskb(sk, skb); 1947 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1); 1948 } 1949 return -1; 1950 } 1951 1952 struct netlink_broadcast_data { 1953 struct sock *exclude_sk; 1954 struct net *net; 1955 u32 portid; 1956 u32 group; 1957 int failure; 1958 int delivery_failure; 1959 int congested; 1960 int delivered; 1961 gfp_t allocation; 1962 struct sk_buff *skb, *skb2; 1963 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data); 1964 void *tx_data; 1965 }; 1966 1967 static void do_one_broadcast(struct sock *sk, 1968 struct netlink_broadcast_data *p) 1969 { 1970 struct netlink_sock *nlk = nlk_sk(sk); 1971 int val; 1972 1973 if (p->exclude_sk == sk) 1974 return; 1975 1976 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 1977 !test_bit(p->group - 1, nlk->groups)) 1978 return; 1979 1980 if (!net_eq(sock_net(sk), p->net)) { 1981 if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID)) 1982 return; 1983 1984 if (!peernet_has_id(sock_net(sk), p->net)) 1985 return; 1986 1987 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns, 1988 CAP_NET_BROADCAST)) 1989 return; 1990 } 1991 1992 if (p->failure) { 1993 netlink_overrun(sk); 1994 return; 1995 } 1996 1997 sock_hold(sk); 1998 if (p->skb2 == NULL) { 1999 if (skb_shared(p->skb)) { 2000 p->skb2 = skb_clone(p->skb, p->allocation); 2001 } else { 2002 p->skb2 = skb_get(p->skb); 2003 /* 2004 * skb ownership may have been set when 2005 * delivered to a previous socket. 2006 */ 2007 skb_orphan(p->skb2); 2008 } 2009 } 2010 if (p->skb2 == NULL) { 2011 netlink_overrun(sk); 2012 /* Clone failed. Notify ALL listeners. */ 2013 p->failure = 1; 2014 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 2015 p->delivery_failure = 1; 2016 goto out; 2017 } 2018 if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) { 2019 kfree_skb(p->skb2); 2020 p->skb2 = NULL; 2021 goto out; 2022 } 2023 if (sk_filter(sk, p->skb2)) { 2024 kfree_skb(p->skb2); 2025 p->skb2 = NULL; 2026 goto out; 2027 } 2028 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net); 2029 NETLINK_CB(p->skb2).nsid_is_set = true; 2030 val = netlink_broadcast_deliver(sk, p->skb2); 2031 if (val < 0) { 2032 netlink_overrun(sk); 2033 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR) 2034 p->delivery_failure = 1; 2035 } else { 2036 p->congested |= val; 2037 p->delivered = 1; 2038 p->skb2 = NULL; 2039 } 2040 out: 2041 sock_put(sk); 2042 } 2043 2044 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid, 2045 u32 group, gfp_t allocation, 2046 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data), 2047 void *filter_data) 2048 { 2049 struct net *net = sock_net(ssk); 2050 struct netlink_broadcast_data info; 2051 struct sock *sk; 2052 2053 skb = netlink_trim(skb, allocation); 2054 2055 info.exclude_sk = ssk; 2056 info.net = net; 2057 info.portid = portid; 2058 info.group = group; 2059 info.failure = 0; 2060 info.delivery_failure = 0; 2061 info.congested = 0; 2062 info.delivered = 0; 2063 info.allocation = allocation; 2064 info.skb = skb; 2065 info.skb2 = NULL; 2066 info.tx_filter = filter; 2067 info.tx_data = filter_data; 2068 2069 /* While we sleep in clone, do not allow to change socket list */ 2070 2071 netlink_lock_table(); 2072 2073 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2074 do_one_broadcast(sk, &info); 2075 2076 consume_skb(skb); 2077 2078 netlink_unlock_table(); 2079 2080 if (info.delivery_failure) { 2081 kfree_skb(info.skb2); 2082 return -ENOBUFS; 2083 } 2084 consume_skb(info.skb2); 2085 2086 if (info.delivered) { 2087 if (info.congested && (allocation & __GFP_WAIT)) 2088 yield(); 2089 return 0; 2090 } 2091 return -ESRCH; 2092 } 2093 EXPORT_SYMBOL(netlink_broadcast_filtered); 2094 2095 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid, 2096 u32 group, gfp_t allocation) 2097 { 2098 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation, 2099 NULL, NULL); 2100 } 2101 EXPORT_SYMBOL(netlink_broadcast); 2102 2103 struct netlink_set_err_data { 2104 struct sock *exclude_sk; 2105 u32 portid; 2106 u32 group; 2107 int code; 2108 }; 2109 2110 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p) 2111 { 2112 struct netlink_sock *nlk = nlk_sk(sk); 2113 int ret = 0; 2114 2115 if (sk == p->exclude_sk) 2116 goto out; 2117 2118 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk))) 2119 goto out; 2120 2121 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups || 2122 !test_bit(p->group - 1, nlk->groups)) 2123 goto out; 2124 2125 if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) { 2126 ret = 1; 2127 goto out; 2128 } 2129 2130 sk->sk_err = p->code; 2131 sk->sk_error_report(sk); 2132 out: 2133 return ret; 2134 } 2135 2136 /** 2137 * netlink_set_err - report error to broadcast listeners 2138 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create() 2139 * @portid: the PORTID of a process that we want to skip (if any) 2140 * @group: the broadcast group that will notice the error 2141 * @code: error code, must be negative (as usual in kernelspace) 2142 * 2143 * This function returns the number of broadcast listeners that have set the 2144 * NETLINK_NO_ENOBUFS socket option. 2145 */ 2146 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code) 2147 { 2148 struct netlink_set_err_data info; 2149 struct sock *sk; 2150 int ret = 0; 2151 2152 info.exclude_sk = ssk; 2153 info.portid = portid; 2154 info.group = group; 2155 /* sk->sk_err wants a positive error value */ 2156 info.code = -code; 2157 2158 read_lock(&nl_table_lock); 2159 2160 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list) 2161 ret += do_one_set_err(sk, &info); 2162 2163 read_unlock(&nl_table_lock); 2164 return ret; 2165 } 2166 EXPORT_SYMBOL(netlink_set_err); 2167 2168 /* must be called with netlink table grabbed */ 2169 static void netlink_update_socket_mc(struct netlink_sock *nlk, 2170 unsigned int group, 2171 int is_new) 2172 { 2173 int old, new = !!is_new, subscriptions; 2174 2175 old = test_bit(group - 1, nlk->groups); 2176 subscriptions = nlk->subscriptions - old + new; 2177 if (new) 2178 __set_bit(group - 1, nlk->groups); 2179 else 2180 __clear_bit(group - 1, nlk->groups); 2181 netlink_update_subscriptions(&nlk->sk, subscriptions); 2182 netlink_update_listeners(&nlk->sk); 2183 } 2184 2185 static int netlink_setsockopt(struct socket *sock, int level, int optname, 2186 char __user *optval, unsigned int optlen) 2187 { 2188 struct sock *sk = sock->sk; 2189 struct netlink_sock *nlk = nlk_sk(sk); 2190 unsigned int val = 0; 2191 int err; 2192 2193 if (level != SOL_NETLINK) 2194 return -ENOPROTOOPT; 2195 2196 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING && 2197 optlen >= sizeof(int) && 2198 get_user(val, (unsigned int __user *)optval)) 2199 return -EFAULT; 2200 2201 switch (optname) { 2202 case NETLINK_PKTINFO: 2203 if (val) 2204 nlk->flags |= NETLINK_F_RECV_PKTINFO; 2205 else 2206 nlk->flags &= ~NETLINK_F_RECV_PKTINFO; 2207 err = 0; 2208 break; 2209 case NETLINK_ADD_MEMBERSHIP: 2210 case NETLINK_DROP_MEMBERSHIP: { 2211 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV)) 2212 return -EPERM; 2213 err = netlink_realloc_groups(sk); 2214 if (err) 2215 return err; 2216 if (!val || val - 1 >= nlk->ngroups) 2217 return -EINVAL; 2218 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) { 2219 err = nlk->netlink_bind(sock_net(sk), val); 2220 if (err) 2221 return err; 2222 } 2223 netlink_table_grab(); 2224 netlink_update_socket_mc(nlk, val, 2225 optname == NETLINK_ADD_MEMBERSHIP); 2226 netlink_table_ungrab(); 2227 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind) 2228 nlk->netlink_unbind(sock_net(sk), val); 2229 2230 err = 0; 2231 break; 2232 } 2233 case NETLINK_BROADCAST_ERROR: 2234 if (val) 2235 nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR; 2236 else 2237 nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR; 2238 err = 0; 2239 break; 2240 case NETLINK_NO_ENOBUFS: 2241 if (val) { 2242 nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS; 2243 clear_bit(NETLINK_S_CONGESTED, &nlk->state); 2244 wake_up_interruptible(&nlk->wait); 2245 } else { 2246 nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS; 2247 } 2248 err = 0; 2249 break; 2250 #ifdef CONFIG_NETLINK_MMAP 2251 case NETLINK_RX_RING: 2252 case NETLINK_TX_RING: { 2253 struct nl_mmap_req req; 2254 2255 /* Rings might consume more memory than queue limits, require 2256 * CAP_NET_ADMIN. 2257 */ 2258 if (!capable(CAP_NET_ADMIN)) 2259 return -EPERM; 2260 if (optlen < sizeof(req)) 2261 return -EINVAL; 2262 if (copy_from_user(&req, optval, sizeof(req))) 2263 return -EFAULT; 2264 err = netlink_set_ring(sk, &req, 2265 optname == NETLINK_TX_RING); 2266 break; 2267 } 2268 #endif /* CONFIG_NETLINK_MMAP */ 2269 case NETLINK_LISTEN_ALL_NSID: 2270 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST)) 2271 return -EPERM; 2272 2273 if (val) 2274 nlk->flags |= NETLINK_F_LISTEN_ALL_NSID; 2275 else 2276 nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID; 2277 err = 0; 2278 break; 2279 case NETLINK_CAP_ACK: 2280 if (val) 2281 nlk->flags |= NETLINK_F_CAP_ACK; 2282 else 2283 nlk->flags &= ~NETLINK_F_CAP_ACK; 2284 err = 0; 2285 break; 2286 default: 2287 err = -ENOPROTOOPT; 2288 } 2289 return err; 2290 } 2291 2292 static int netlink_getsockopt(struct socket *sock, int level, int optname, 2293 char __user *optval, int __user *optlen) 2294 { 2295 struct sock *sk = sock->sk; 2296 struct netlink_sock *nlk = nlk_sk(sk); 2297 int len, val, err; 2298 2299 if (level != SOL_NETLINK) 2300 return -ENOPROTOOPT; 2301 2302 if (get_user(len, optlen)) 2303 return -EFAULT; 2304 if (len < 0) 2305 return -EINVAL; 2306 2307 switch (optname) { 2308 case NETLINK_PKTINFO: 2309 if (len < sizeof(int)) 2310 return -EINVAL; 2311 len = sizeof(int); 2312 val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0; 2313 if (put_user(len, optlen) || 2314 put_user(val, optval)) 2315 return -EFAULT; 2316 err = 0; 2317 break; 2318 case NETLINK_BROADCAST_ERROR: 2319 if (len < sizeof(int)) 2320 return -EINVAL; 2321 len = sizeof(int); 2322 val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0; 2323 if (put_user(len, optlen) || 2324 put_user(val, optval)) 2325 return -EFAULT; 2326 err = 0; 2327 break; 2328 case NETLINK_NO_ENOBUFS: 2329 if (len < sizeof(int)) 2330 return -EINVAL; 2331 len = sizeof(int); 2332 val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0; 2333 if (put_user(len, optlen) || 2334 put_user(val, optval)) 2335 return -EFAULT; 2336 err = 0; 2337 break; 2338 case NETLINK_LIST_MEMBERSHIPS: { 2339 int pos, idx, shift; 2340 2341 err = 0; 2342 netlink_table_grab(); 2343 for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) { 2344 if (len - pos < sizeof(u32)) 2345 break; 2346 2347 idx = pos / sizeof(unsigned long); 2348 shift = (pos % sizeof(unsigned long)) * 8; 2349 if (put_user((u32)(nlk->groups[idx] >> shift), 2350 (u32 __user *)(optval + pos))) { 2351 err = -EFAULT; 2352 break; 2353 } 2354 } 2355 if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen)) 2356 err = -EFAULT; 2357 netlink_table_ungrab(); 2358 break; 2359 } 2360 case NETLINK_CAP_ACK: 2361 if (len < sizeof(int)) 2362 return -EINVAL; 2363 len = sizeof(int); 2364 val = nlk->flags & NETLINK_F_CAP_ACK ? 1 : 0; 2365 if (put_user(len, optlen) || 2366 put_user(val, optval)) 2367 return -EFAULT; 2368 err = 0; 2369 break; 2370 default: 2371 err = -ENOPROTOOPT; 2372 } 2373 return err; 2374 } 2375 2376 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb) 2377 { 2378 struct nl_pktinfo info; 2379 2380 info.group = NETLINK_CB(skb).dst_group; 2381 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info); 2382 } 2383 2384 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg, 2385 struct sk_buff *skb) 2386 { 2387 if (!NETLINK_CB(skb).nsid_is_set) 2388 return; 2389 2390 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int), 2391 &NETLINK_CB(skb).nsid); 2392 } 2393 2394 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len) 2395 { 2396 struct sock *sk = sock->sk; 2397 struct netlink_sock *nlk = nlk_sk(sk); 2398 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2399 u32 dst_portid; 2400 u32 dst_group; 2401 struct sk_buff *skb; 2402 int err; 2403 struct scm_cookie scm; 2404 u32 netlink_skb_flags = 0; 2405 2406 if (msg->msg_flags&MSG_OOB) 2407 return -EOPNOTSUPP; 2408 2409 err = scm_send(sock, msg, &scm, true); 2410 if (err < 0) 2411 return err; 2412 2413 if (msg->msg_namelen) { 2414 err = -EINVAL; 2415 if (addr->nl_family != AF_NETLINK) 2416 goto out; 2417 dst_portid = addr->nl_pid; 2418 dst_group = ffs(addr->nl_groups); 2419 err = -EPERM; 2420 if ((dst_group || dst_portid) && 2421 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND)) 2422 goto out; 2423 netlink_skb_flags |= NETLINK_SKB_DST; 2424 } else { 2425 dst_portid = nlk->dst_portid; 2426 dst_group = nlk->dst_group; 2427 } 2428 2429 if (!nlk->portid) { 2430 err = netlink_autobind(sock); 2431 if (err) 2432 goto out; 2433 } 2434 2435 /* It's a really convoluted way for userland to ask for mmaped 2436 * sendmsg(), but that's what we've got... 2437 */ 2438 if (netlink_tx_is_mmaped(sk) && 2439 iter_is_iovec(&msg->msg_iter) && 2440 msg->msg_iter.nr_segs == 1 && 2441 msg->msg_iter.iov->iov_base == NULL) { 2442 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, 2443 &scm); 2444 goto out; 2445 } 2446 2447 err = -EMSGSIZE; 2448 if (len > sk->sk_sndbuf - 32) 2449 goto out; 2450 err = -ENOBUFS; 2451 skb = netlink_alloc_large_skb(len, dst_group); 2452 if (skb == NULL) 2453 goto out; 2454 2455 NETLINK_CB(skb).portid = nlk->portid; 2456 NETLINK_CB(skb).dst_group = dst_group; 2457 NETLINK_CB(skb).creds = scm.creds; 2458 NETLINK_CB(skb).flags = netlink_skb_flags; 2459 2460 err = -EFAULT; 2461 if (memcpy_from_msg(skb_put(skb, len), msg, len)) { 2462 kfree_skb(skb); 2463 goto out; 2464 } 2465 2466 err = security_netlink_send(sk, skb); 2467 if (err) { 2468 kfree_skb(skb); 2469 goto out; 2470 } 2471 2472 if (dst_group) { 2473 atomic_inc(&skb->users); 2474 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL); 2475 } 2476 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT); 2477 2478 out: 2479 scm_destroy(&scm); 2480 return err; 2481 } 2482 2483 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len, 2484 int flags) 2485 { 2486 struct scm_cookie scm; 2487 struct sock *sk = sock->sk; 2488 struct netlink_sock *nlk = nlk_sk(sk); 2489 int noblock = flags&MSG_DONTWAIT; 2490 size_t copied; 2491 struct sk_buff *skb, *data_skb; 2492 int err, ret; 2493 2494 if (flags&MSG_OOB) 2495 return -EOPNOTSUPP; 2496 2497 copied = 0; 2498 2499 skb = skb_recv_datagram(sk, flags, noblock, &err); 2500 if (skb == NULL) 2501 goto out; 2502 2503 data_skb = skb; 2504 2505 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES 2506 if (unlikely(skb_shinfo(skb)->frag_list)) { 2507 /* 2508 * If this skb has a frag_list, then here that means that we 2509 * will have to use the frag_list skb's data for compat tasks 2510 * and the regular skb's data for normal (non-compat) tasks. 2511 * 2512 * If we need to send the compat skb, assign it to the 2513 * 'data_skb' variable so that it will be used below for data 2514 * copying. We keep 'skb' for everything else, including 2515 * freeing both later. 2516 */ 2517 if (flags & MSG_CMSG_COMPAT) 2518 data_skb = skb_shinfo(skb)->frag_list; 2519 } 2520 #endif 2521 2522 /* Record the max length of recvmsg() calls for future allocations */ 2523 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len); 2524 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len, 2525 16384); 2526 2527 copied = data_skb->len; 2528 if (len < copied) { 2529 msg->msg_flags |= MSG_TRUNC; 2530 copied = len; 2531 } 2532 2533 skb_reset_transport_header(data_skb); 2534 err = skb_copy_datagram_msg(data_skb, 0, msg, copied); 2535 2536 if (msg->msg_name) { 2537 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name); 2538 addr->nl_family = AF_NETLINK; 2539 addr->nl_pad = 0; 2540 addr->nl_pid = NETLINK_CB(skb).portid; 2541 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group); 2542 msg->msg_namelen = sizeof(*addr); 2543 } 2544 2545 if (nlk->flags & NETLINK_F_RECV_PKTINFO) 2546 netlink_cmsg_recv_pktinfo(msg, skb); 2547 if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID) 2548 netlink_cmsg_listen_all_nsid(sk, msg, skb); 2549 2550 memset(&scm, 0, sizeof(scm)); 2551 scm.creds = *NETLINK_CREDS(skb); 2552 if (flags & MSG_TRUNC) 2553 copied = data_skb->len; 2554 2555 skb_free_datagram(sk, skb); 2556 2557 if (nlk->cb_running && 2558 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) { 2559 ret = netlink_dump(sk); 2560 if (ret) { 2561 sk->sk_err = -ret; 2562 sk->sk_error_report(sk); 2563 } 2564 } 2565 2566 scm_recv(sock, msg, &scm, flags); 2567 out: 2568 netlink_rcv_wake(sk); 2569 return err ? : copied; 2570 } 2571 2572 static void netlink_data_ready(struct sock *sk) 2573 { 2574 BUG(); 2575 } 2576 2577 /* 2578 * We export these functions to other modules. They provide a 2579 * complete set of kernel non-blocking support for message 2580 * queueing. 2581 */ 2582 2583 struct sock * 2584 __netlink_kernel_create(struct net *net, int unit, struct module *module, 2585 struct netlink_kernel_cfg *cfg) 2586 { 2587 struct socket *sock; 2588 struct sock *sk; 2589 struct netlink_sock *nlk; 2590 struct listeners *listeners = NULL; 2591 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL; 2592 unsigned int groups; 2593 2594 BUG_ON(!nl_table); 2595 2596 if (unit < 0 || unit >= MAX_LINKS) 2597 return NULL; 2598 2599 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock)) 2600 return NULL; 2601 2602 if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0) 2603 goto out_sock_release_nosk; 2604 2605 sk = sock->sk; 2606 2607 if (!cfg || cfg->groups < 32) 2608 groups = 32; 2609 else 2610 groups = cfg->groups; 2611 2612 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 2613 if (!listeners) 2614 goto out_sock_release; 2615 2616 sk->sk_data_ready = netlink_data_ready; 2617 if (cfg && cfg->input) 2618 nlk_sk(sk)->netlink_rcv = cfg->input; 2619 2620 if (netlink_insert(sk, 0)) 2621 goto out_sock_release; 2622 2623 nlk = nlk_sk(sk); 2624 nlk->flags |= NETLINK_F_KERNEL_SOCKET; 2625 2626 netlink_table_grab(); 2627 if (!nl_table[unit].registered) { 2628 nl_table[unit].groups = groups; 2629 rcu_assign_pointer(nl_table[unit].listeners, listeners); 2630 nl_table[unit].cb_mutex = cb_mutex; 2631 nl_table[unit].module = module; 2632 if (cfg) { 2633 nl_table[unit].bind = cfg->bind; 2634 nl_table[unit].unbind = cfg->unbind; 2635 nl_table[unit].flags = cfg->flags; 2636 if (cfg->compare) 2637 nl_table[unit].compare = cfg->compare; 2638 } 2639 nl_table[unit].registered = 1; 2640 } else { 2641 kfree(listeners); 2642 nl_table[unit].registered++; 2643 } 2644 netlink_table_ungrab(); 2645 return sk; 2646 2647 out_sock_release: 2648 kfree(listeners); 2649 netlink_kernel_release(sk); 2650 return NULL; 2651 2652 out_sock_release_nosk: 2653 sock_release(sock); 2654 return NULL; 2655 } 2656 EXPORT_SYMBOL(__netlink_kernel_create); 2657 2658 void 2659 netlink_kernel_release(struct sock *sk) 2660 { 2661 if (sk == NULL || sk->sk_socket == NULL) 2662 return; 2663 2664 sock_release(sk->sk_socket); 2665 } 2666 EXPORT_SYMBOL(netlink_kernel_release); 2667 2668 int __netlink_change_ngroups(struct sock *sk, unsigned int groups) 2669 { 2670 struct listeners *new, *old; 2671 struct netlink_table *tbl = &nl_table[sk->sk_protocol]; 2672 2673 if (groups < 32) 2674 groups = 32; 2675 2676 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) { 2677 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC); 2678 if (!new) 2679 return -ENOMEM; 2680 old = nl_deref_protected(tbl->listeners); 2681 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups)); 2682 rcu_assign_pointer(tbl->listeners, new); 2683 2684 kfree_rcu(old, rcu); 2685 } 2686 tbl->groups = groups; 2687 2688 return 0; 2689 } 2690 2691 /** 2692 * netlink_change_ngroups - change number of multicast groups 2693 * 2694 * This changes the number of multicast groups that are available 2695 * on a certain netlink family. Note that it is not possible to 2696 * change the number of groups to below 32. Also note that it does 2697 * not implicitly call netlink_clear_multicast_users() when the 2698 * number of groups is reduced. 2699 * 2700 * @sk: The kernel netlink socket, as returned by netlink_kernel_create(). 2701 * @groups: The new number of groups. 2702 */ 2703 int netlink_change_ngroups(struct sock *sk, unsigned int groups) 2704 { 2705 int err; 2706 2707 netlink_table_grab(); 2708 err = __netlink_change_ngroups(sk, groups); 2709 netlink_table_ungrab(); 2710 2711 return err; 2712 } 2713 2714 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group) 2715 { 2716 struct sock *sk; 2717 struct netlink_table *tbl = &nl_table[ksk->sk_protocol]; 2718 2719 sk_for_each_bound(sk, &tbl->mc_list) 2720 netlink_update_socket_mc(nlk_sk(sk), group, 0); 2721 } 2722 2723 struct nlmsghdr * 2724 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags) 2725 { 2726 struct nlmsghdr *nlh; 2727 int size = nlmsg_msg_size(len); 2728 2729 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size)); 2730 nlh->nlmsg_type = type; 2731 nlh->nlmsg_len = size; 2732 nlh->nlmsg_flags = flags; 2733 nlh->nlmsg_pid = portid; 2734 nlh->nlmsg_seq = seq; 2735 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0) 2736 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size); 2737 return nlh; 2738 } 2739 EXPORT_SYMBOL(__nlmsg_put); 2740 2741 /* 2742 * It looks a bit ugly. 2743 * It would be better to create kernel thread. 2744 */ 2745 2746 static int netlink_dump(struct sock *sk) 2747 { 2748 struct netlink_sock *nlk = nlk_sk(sk); 2749 struct netlink_callback *cb; 2750 struct sk_buff *skb = NULL; 2751 struct nlmsghdr *nlh; 2752 int len, err = -ENOBUFS; 2753 int alloc_size; 2754 2755 mutex_lock(nlk->cb_mutex); 2756 if (!nlk->cb_running) { 2757 err = -EINVAL; 2758 goto errout_skb; 2759 } 2760 2761 cb = &nlk->cb; 2762 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE); 2763 2764 if (!netlink_rx_is_mmaped(sk) && 2765 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) 2766 goto errout_skb; 2767 2768 /* NLMSG_GOODSIZE is small to avoid high order allocations being 2769 * required, but it makes sense to _attempt_ a 16K bytes allocation 2770 * to reduce number of system calls on dump operations, if user 2771 * ever provided a big enough buffer. 2772 */ 2773 if (alloc_size < nlk->max_recvmsg_len) { 2774 skb = netlink_alloc_skb(sk, 2775 nlk->max_recvmsg_len, 2776 nlk->portid, 2777 GFP_KERNEL | 2778 __GFP_NOWARN | 2779 __GFP_NORETRY); 2780 /* available room should be exact amount to avoid MSG_TRUNC */ 2781 if (skb) 2782 skb_reserve(skb, skb_tailroom(skb) - 2783 nlk->max_recvmsg_len); 2784 } 2785 if (!skb) 2786 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid, 2787 GFP_KERNEL); 2788 if (!skb) 2789 goto errout_skb; 2790 netlink_skb_set_owner_r(skb, sk); 2791 2792 len = cb->dump(skb, cb); 2793 2794 if (len > 0) { 2795 mutex_unlock(nlk->cb_mutex); 2796 2797 if (sk_filter(sk, skb)) 2798 kfree_skb(skb); 2799 else 2800 __netlink_sendskb(sk, skb); 2801 return 0; 2802 } 2803 2804 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI); 2805 if (!nlh) 2806 goto errout_skb; 2807 2808 nl_dump_check_consistent(cb, nlh); 2809 2810 memcpy(nlmsg_data(nlh), &len, sizeof(len)); 2811 2812 if (sk_filter(sk, skb)) 2813 kfree_skb(skb); 2814 else 2815 __netlink_sendskb(sk, skb); 2816 2817 if (cb->done) 2818 cb->done(cb); 2819 2820 nlk->cb_running = false; 2821 mutex_unlock(nlk->cb_mutex); 2822 module_put(cb->module); 2823 consume_skb(cb->skb); 2824 return 0; 2825 2826 errout_skb: 2827 mutex_unlock(nlk->cb_mutex); 2828 kfree_skb(skb); 2829 return err; 2830 } 2831 2832 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb, 2833 const struct nlmsghdr *nlh, 2834 struct netlink_dump_control *control) 2835 { 2836 struct netlink_callback *cb; 2837 struct sock *sk; 2838 struct netlink_sock *nlk; 2839 int ret; 2840 2841 /* Memory mapped dump requests need to be copied to avoid looping 2842 * on the pending state in netlink_mmap_sendmsg() while the CB hold 2843 * a reference to the skb. 2844 */ 2845 if (netlink_skb_is_mmaped(skb)) { 2846 skb = skb_copy(skb, GFP_KERNEL); 2847 if (skb == NULL) 2848 return -ENOBUFS; 2849 } else 2850 atomic_inc(&skb->users); 2851 2852 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid); 2853 if (sk == NULL) { 2854 ret = -ECONNREFUSED; 2855 goto error_free; 2856 } 2857 2858 nlk = nlk_sk(sk); 2859 mutex_lock(nlk->cb_mutex); 2860 /* A dump is in progress... */ 2861 if (nlk->cb_running) { 2862 ret = -EBUSY; 2863 goto error_unlock; 2864 } 2865 /* add reference of module which cb->dump belongs to */ 2866 if (!try_module_get(control->module)) { 2867 ret = -EPROTONOSUPPORT; 2868 goto error_unlock; 2869 } 2870 2871 cb = &nlk->cb; 2872 memset(cb, 0, sizeof(*cb)); 2873 cb->dump = control->dump; 2874 cb->done = control->done; 2875 cb->nlh = nlh; 2876 cb->data = control->data; 2877 cb->module = control->module; 2878 cb->min_dump_alloc = control->min_dump_alloc; 2879 cb->skb = skb; 2880 2881 nlk->cb_running = true; 2882 2883 mutex_unlock(nlk->cb_mutex); 2884 2885 ret = netlink_dump(sk); 2886 sock_put(sk); 2887 2888 if (ret) 2889 return ret; 2890 2891 /* We successfully started a dump, by returning -EINTR we 2892 * signal not to send ACK even if it was requested. 2893 */ 2894 return -EINTR; 2895 2896 error_unlock: 2897 sock_put(sk); 2898 mutex_unlock(nlk->cb_mutex); 2899 error_free: 2900 kfree_skb(skb); 2901 return ret; 2902 } 2903 EXPORT_SYMBOL(__netlink_dump_start); 2904 2905 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err) 2906 { 2907 struct sk_buff *skb; 2908 struct nlmsghdr *rep; 2909 struct nlmsgerr *errmsg; 2910 size_t payload = sizeof(*errmsg); 2911 struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk); 2912 2913 /* Error messages get the original request appened, unless the user 2914 * requests to cap the error message. 2915 */ 2916 if (!(nlk->flags & NETLINK_F_CAP_ACK) && err) 2917 payload += nlmsg_len(nlh); 2918 2919 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload), 2920 NETLINK_CB(in_skb).portid, GFP_KERNEL); 2921 if (!skb) { 2922 struct sock *sk; 2923 2924 sk = netlink_lookup(sock_net(in_skb->sk), 2925 in_skb->sk->sk_protocol, 2926 NETLINK_CB(in_skb).portid); 2927 if (sk) { 2928 sk->sk_err = ENOBUFS; 2929 sk->sk_error_report(sk); 2930 sock_put(sk); 2931 } 2932 return; 2933 } 2934 2935 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq, 2936 NLMSG_ERROR, payload, 0); 2937 errmsg = nlmsg_data(rep); 2938 errmsg->error = err; 2939 memcpy(&errmsg->msg, nlh, payload > sizeof(*errmsg) ? nlh->nlmsg_len : sizeof(*nlh)); 2940 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT); 2941 } 2942 EXPORT_SYMBOL(netlink_ack); 2943 2944 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *, 2945 struct nlmsghdr *)) 2946 { 2947 struct nlmsghdr *nlh; 2948 int err; 2949 2950 while (skb->len >= nlmsg_total_size(0)) { 2951 int msglen; 2952 2953 nlh = nlmsg_hdr(skb); 2954 err = 0; 2955 2956 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len) 2957 return 0; 2958 2959 /* Only requests are handled by the kernel */ 2960 if (!(nlh->nlmsg_flags & NLM_F_REQUEST)) 2961 goto ack; 2962 2963 /* Skip control messages */ 2964 if (nlh->nlmsg_type < NLMSG_MIN_TYPE) 2965 goto ack; 2966 2967 err = cb(skb, nlh); 2968 if (err == -EINTR) 2969 goto skip; 2970 2971 ack: 2972 if (nlh->nlmsg_flags & NLM_F_ACK || err) 2973 netlink_ack(skb, nlh, err); 2974 2975 skip: 2976 msglen = NLMSG_ALIGN(nlh->nlmsg_len); 2977 if (msglen > skb->len) 2978 msglen = skb->len; 2979 skb_pull(skb, msglen); 2980 } 2981 2982 return 0; 2983 } 2984 EXPORT_SYMBOL(netlink_rcv_skb); 2985 2986 /** 2987 * nlmsg_notify - send a notification netlink message 2988 * @sk: netlink socket to use 2989 * @skb: notification message 2990 * @portid: destination netlink portid for reports or 0 2991 * @group: destination multicast group or 0 2992 * @report: 1 to report back, 0 to disable 2993 * @flags: allocation flags 2994 */ 2995 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid, 2996 unsigned int group, int report, gfp_t flags) 2997 { 2998 int err = 0; 2999 3000 if (group) { 3001 int exclude_portid = 0; 3002 3003 if (report) { 3004 atomic_inc(&skb->users); 3005 exclude_portid = portid; 3006 } 3007 3008 /* errors reported via destination sk->sk_err, but propagate 3009 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */ 3010 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags); 3011 } 3012 3013 if (report) { 3014 int err2; 3015 3016 err2 = nlmsg_unicast(sk, skb, portid); 3017 if (!err || err == -ESRCH) 3018 err = err2; 3019 } 3020 3021 return err; 3022 } 3023 EXPORT_SYMBOL(nlmsg_notify); 3024 3025 #ifdef CONFIG_PROC_FS 3026 struct nl_seq_iter { 3027 struct seq_net_private p; 3028 struct rhashtable_iter hti; 3029 int link; 3030 }; 3031 3032 static int netlink_walk_start(struct nl_seq_iter *iter) 3033 { 3034 int err; 3035 3036 err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti); 3037 if (err) { 3038 iter->link = MAX_LINKS; 3039 return err; 3040 } 3041 3042 err = rhashtable_walk_start(&iter->hti); 3043 return err == -EAGAIN ? 0 : err; 3044 } 3045 3046 static void netlink_walk_stop(struct nl_seq_iter *iter) 3047 { 3048 rhashtable_walk_stop(&iter->hti); 3049 rhashtable_walk_exit(&iter->hti); 3050 } 3051 3052 static void *__netlink_seq_next(struct seq_file *seq) 3053 { 3054 struct nl_seq_iter *iter = seq->private; 3055 struct netlink_sock *nlk; 3056 3057 do { 3058 for (;;) { 3059 int err; 3060 3061 nlk = rhashtable_walk_next(&iter->hti); 3062 3063 if (IS_ERR(nlk)) { 3064 if (PTR_ERR(nlk) == -EAGAIN) 3065 continue; 3066 3067 return nlk; 3068 } 3069 3070 if (nlk) 3071 break; 3072 3073 netlink_walk_stop(iter); 3074 if (++iter->link >= MAX_LINKS) 3075 return NULL; 3076 3077 err = netlink_walk_start(iter); 3078 if (err) 3079 return ERR_PTR(err); 3080 } 3081 } while (sock_net(&nlk->sk) != seq_file_net(seq)); 3082 3083 return nlk; 3084 } 3085 3086 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp) 3087 { 3088 struct nl_seq_iter *iter = seq->private; 3089 void *obj = SEQ_START_TOKEN; 3090 loff_t pos; 3091 int err; 3092 3093 iter->link = 0; 3094 3095 err = netlink_walk_start(iter); 3096 if (err) 3097 return ERR_PTR(err); 3098 3099 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--) 3100 obj = __netlink_seq_next(seq); 3101 3102 return obj; 3103 } 3104 3105 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3106 { 3107 ++*pos; 3108 return __netlink_seq_next(seq); 3109 } 3110 3111 static void netlink_seq_stop(struct seq_file *seq, void *v) 3112 { 3113 struct nl_seq_iter *iter = seq->private; 3114 3115 if (iter->link >= MAX_LINKS) 3116 return; 3117 3118 netlink_walk_stop(iter); 3119 } 3120 3121 3122 static int netlink_seq_show(struct seq_file *seq, void *v) 3123 { 3124 if (v == SEQ_START_TOKEN) { 3125 seq_puts(seq, 3126 "sk Eth Pid Groups " 3127 "Rmem Wmem Dump Locks Drops Inode\n"); 3128 } else { 3129 struct sock *s = v; 3130 struct netlink_sock *nlk = nlk_sk(s); 3131 3132 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n", 3133 s, 3134 s->sk_protocol, 3135 nlk->portid, 3136 nlk->groups ? (u32)nlk->groups[0] : 0, 3137 sk_rmem_alloc_get(s), 3138 sk_wmem_alloc_get(s), 3139 nlk->cb_running, 3140 atomic_read(&s->sk_refcnt), 3141 atomic_read(&s->sk_drops), 3142 sock_i_ino(s) 3143 ); 3144 3145 } 3146 return 0; 3147 } 3148 3149 static const struct seq_operations netlink_seq_ops = { 3150 .start = netlink_seq_start, 3151 .next = netlink_seq_next, 3152 .stop = netlink_seq_stop, 3153 .show = netlink_seq_show, 3154 }; 3155 3156 3157 static int netlink_seq_open(struct inode *inode, struct file *file) 3158 { 3159 return seq_open_net(inode, file, &netlink_seq_ops, 3160 sizeof(struct nl_seq_iter)); 3161 } 3162 3163 static const struct file_operations netlink_seq_fops = { 3164 .owner = THIS_MODULE, 3165 .open = netlink_seq_open, 3166 .read = seq_read, 3167 .llseek = seq_lseek, 3168 .release = seq_release_net, 3169 }; 3170 3171 #endif 3172 3173 int netlink_register_notifier(struct notifier_block *nb) 3174 { 3175 return atomic_notifier_chain_register(&netlink_chain, nb); 3176 } 3177 EXPORT_SYMBOL(netlink_register_notifier); 3178 3179 int netlink_unregister_notifier(struct notifier_block *nb) 3180 { 3181 return atomic_notifier_chain_unregister(&netlink_chain, nb); 3182 } 3183 EXPORT_SYMBOL(netlink_unregister_notifier); 3184 3185 static const struct proto_ops netlink_ops = { 3186 .family = PF_NETLINK, 3187 .owner = THIS_MODULE, 3188 .release = netlink_release, 3189 .bind = netlink_bind, 3190 .connect = netlink_connect, 3191 .socketpair = sock_no_socketpair, 3192 .accept = sock_no_accept, 3193 .getname = netlink_getname, 3194 .poll = netlink_poll, 3195 .ioctl = sock_no_ioctl, 3196 .listen = sock_no_listen, 3197 .shutdown = sock_no_shutdown, 3198 .setsockopt = netlink_setsockopt, 3199 .getsockopt = netlink_getsockopt, 3200 .sendmsg = netlink_sendmsg, 3201 .recvmsg = netlink_recvmsg, 3202 .mmap = netlink_mmap, 3203 .sendpage = sock_no_sendpage, 3204 }; 3205 3206 static const struct net_proto_family netlink_family_ops = { 3207 .family = PF_NETLINK, 3208 .create = netlink_create, 3209 .owner = THIS_MODULE, /* for consistency 8) */ 3210 }; 3211 3212 static int __net_init netlink_net_init(struct net *net) 3213 { 3214 #ifdef CONFIG_PROC_FS 3215 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops)) 3216 return -ENOMEM; 3217 #endif 3218 return 0; 3219 } 3220 3221 static void __net_exit netlink_net_exit(struct net *net) 3222 { 3223 #ifdef CONFIG_PROC_FS 3224 remove_proc_entry("netlink", net->proc_net); 3225 #endif 3226 } 3227 3228 static void __init netlink_add_usersock_entry(void) 3229 { 3230 struct listeners *listeners; 3231 int groups = 32; 3232 3233 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL); 3234 if (!listeners) 3235 panic("netlink_add_usersock_entry: Cannot allocate listeners\n"); 3236 3237 netlink_table_grab(); 3238 3239 nl_table[NETLINK_USERSOCK].groups = groups; 3240 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners); 3241 nl_table[NETLINK_USERSOCK].module = THIS_MODULE; 3242 nl_table[NETLINK_USERSOCK].registered = 1; 3243 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND; 3244 3245 netlink_table_ungrab(); 3246 } 3247 3248 static struct pernet_operations __net_initdata netlink_net_ops = { 3249 .init = netlink_net_init, 3250 .exit = netlink_net_exit, 3251 }; 3252 3253 static inline u32 netlink_hash(const void *data, u32 len, u32 seed) 3254 { 3255 const struct netlink_sock *nlk = data; 3256 struct netlink_compare_arg arg; 3257 3258 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid); 3259 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed); 3260 } 3261 3262 static const struct rhashtable_params netlink_rhashtable_params = { 3263 .head_offset = offsetof(struct netlink_sock, node), 3264 .key_len = netlink_compare_arg_len, 3265 .obj_hashfn = netlink_hash, 3266 .obj_cmpfn = netlink_compare, 3267 .automatic_shrinking = true, 3268 }; 3269 3270 static int __init netlink_proto_init(void) 3271 { 3272 int i; 3273 int err = proto_register(&netlink_proto, 0); 3274 3275 if (err != 0) 3276 goto out; 3277 3278 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb)); 3279 3280 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL); 3281 if (!nl_table) 3282 goto panic; 3283 3284 for (i = 0; i < MAX_LINKS; i++) { 3285 if (rhashtable_init(&nl_table[i].hash, 3286 &netlink_rhashtable_params) < 0) { 3287 while (--i > 0) 3288 rhashtable_destroy(&nl_table[i].hash); 3289 kfree(nl_table); 3290 goto panic; 3291 } 3292 } 3293 3294 INIT_LIST_HEAD(&netlink_tap_all); 3295 3296 netlink_add_usersock_entry(); 3297 3298 sock_register(&netlink_family_ops); 3299 register_pernet_subsys(&netlink_net_ops); 3300 /* The netlink device handler may be needed early. */ 3301 rtnetlink_init(); 3302 out: 3303 return err; 3304 panic: 3305 panic("netlink_init: Cannot allocate nl_table\n"); 3306 } 3307 3308 core_initcall(netlink_proto_init); 3309