xref: /linux/net/netlink/af_netlink.c (revision 3aed61d1eb06b8b19b7bb09d49b222ebc3f83347)
1 /*
2  * NETLINK      Kernel-user communication protocol.
3  *
4  * 		Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
5  * 				Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6  * 				Patrick McHardy <kaber@trash.net>
7  *
8  *		This program is free software; you can redistribute it and/or
9  *		modify it under the terms of the GNU General Public License
10  *		as published by the Free Software Foundation; either version
11  *		2 of the License, or (at your option) any later version.
12  *
13  * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14  *                               added netlink_proto_exit
15  * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16  * 				 use nlk_sk, as sk->protinfo is on a diet 8)
17  * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18  * 				 - inc module use count of module that owns
19  * 				   the kernel socket in case userspace opens
20  * 				   socket of same protocol
21  * 				 - remove all module support, since netlink is
22  * 				   mandatory if CONFIG_NET=y these days
23  */
24 
25 #include <linux/module.h>
26 
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64 #include <linux/genetlink.h>
65 
66 #include <net/net_namespace.h>
67 #include <net/sock.h>
68 #include <net/scm.h>
69 #include <net/netlink.h>
70 
71 #include "af_netlink.h"
72 
73 struct listeners {
74 	struct rcu_head		rcu;
75 	unsigned long		masks[0];
76 };
77 
78 /* state bits */
79 #define NETLINK_S_CONGESTED		0x0
80 
81 /* flags */
82 #define NETLINK_F_KERNEL_SOCKET		0x1
83 #define NETLINK_F_RECV_PKTINFO		0x2
84 #define NETLINK_F_BROADCAST_SEND_ERROR	0x4
85 #define NETLINK_F_RECV_NO_ENOBUFS	0x8
86 #define NETLINK_F_LISTEN_ALL_NSID	0x10
87 #define NETLINK_F_CAP_ACK		0x20
88 
89 static inline int netlink_is_kernel(struct sock *sk)
90 {
91 	return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET;
92 }
93 
94 struct netlink_table *nl_table __read_mostly;
95 EXPORT_SYMBOL_GPL(nl_table);
96 
97 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
98 
99 static int netlink_dump(struct sock *sk);
100 static void netlink_skb_destructor(struct sk_buff *skb);
101 
102 /* nl_table locking explained:
103  * Lookup and traversal are protected with an RCU read-side lock. Insertion
104  * and removal are protected with per bucket lock while using RCU list
105  * modification primitives and may run in parallel to RCU protected lookups.
106  * Destruction of the Netlink socket may only occur *after* nl_table_lock has
107  * been acquired * either during or after the socket has been removed from
108  * the list and after an RCU grace period.
109  */
110 DEFINE_RWLOCK(nl_table_lock);
111 EXPORT_SYMBOL_GPL(nl_table_lock);
112 static atomic_t nl_table_users = ATOMIC_INIT(0);
113 
114 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
115 
116 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
117 
118 static DEFINE_SPINLOCK(netlink_tap_lock);
119 static struct list_head netlink_tap_all __read_mostly;
120 
121 static const struct rhashtable_params netlink_rhashtable_params;
122 
123 static inline u32 netlink_group_mask(u32 group)
124 {
125 	return group ? 1 << (group - 1) : 0;
126 }
127 
128 int netlink_add_tap(struct netlink_tap *nt)
129 {
130 	if (unlikely(nt->dev->type != ARPHRD_NETLINK))
131 		return -EINVAL;
132 
133 	spin_lock(&netlink_tap_lock);
134 	list_add_rcu(&nt->list, &netlink_tap_all);
135 	spin_unlock(&netlink_tap_lock);
136 
137 	__module_get(nt->module);
138 
139 	return 0;
140 }
141 EXPORT_SYMBOL_GPL(netlink_add_tap);
142 
143 static int __netlink_remove_tap(struct netlink_tap *nt)
144 {
145 	bool found = false;
146 	struct netlink_tap *tmp;
147 
148 	spin_lock(&netlink_tap_lock);
149 
150 	list_for_each_entry(tmp, &netlink_tap_all, list) {
151 		if (nt == tmp) {
152 			list_del_rcu(&nt->list);
153 			found = true;
154 			goto out;
155 		}
156 	}
157 
158 	pr_warn("__netlink_remove_tap: %p not found\n", nt);
159 out:
160 	spin_unlock(&netlink_tap_lock);
161 
162 	if (found)
163 		module_put(nt->module);
164 
165 	return found ? 0 : -ENODEV;
166 }
167 
168 int netlink_remove_tap(struct netlink_tap *nt)
169 {
170 	int ret;
171 
172 	ret = __netlink_remove_tap(nt);
173 	synchronize_net();
174 
175 	return ret;
176 }
177 EXPORT_SYMBOL_GPL(netlink_remove_tap);
178 
179 static bool netlink_filter_tap(const struct sk_buff *skb)
180 {
181 	struct sock *sk = skb->sk;
182 
183 	/* We take the more conservative approach and
184 	 * whitelist socket protocols that may pass.
185 	 */
186 	switch (sk->sk_protocol) {
187 	case NETLINK_ROUTE:
188 	case NETLINK_USERSOCK:
189 	case NETLINK_SOCK_DIAG:
190 	case NETLINK_NFLOG:
191 	case NETLINK_XFRM:
192 	case NETLINK_FIB_LOOKUP:
193 	case NETLINK_NETFILTER:
194 	case NETLINK_GENERIC:
195 		return true;
196 	}
197 
198 	return false;
199 }
200 
201 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
202 				     struct net_device *dev)
203 {
204 	struct sk_buff *nskb;
205 	struct sock *sk = skb->sk;
206 	int ret = -ENOMEM;
207 
208 	dev_hold(dev);
209 	nskb = skb_clone(skb, GFP_ATOMIC);
210 	if (nskb) {
211 		nskb->dev = dev;
212 		nskb->protocol = htons((u16) sk->sk_protocol);
213 		nskb->pkt_type = netlink_is_kernel(sk) ?
214 				 PACKET_KERNEL : PACKET_USER;
215 		skb_reset_network_header(nskb);
216 		ret = dev_queue_xmit(nskb);
217 		if (unlikely(ret > 0))
218 			ret = net_xmit_errno(ret);
219 	}
220 
221 	dev_put(dev);
222 	return ret;
223 }
224 
225 static void __netlink_deliver_tap(struct sk_buff *skb)
226 {
227 	int ret;
228 	struct netlink_tap *tmp;
229 
230 	if (!netlink_filter_tap(skb))
231 		return;
232 
233 	list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
234 		ret = __netlink_deliver_tap_skb(skb, tmp->dev);
235 		if (unlikely(ret))
236 			break;
237 	}
238 }
239 
240 static void netlink_deliver_tap(struct sk_buff *skb)
241 {
242 	rcu_read_lock();
243 
244 	if (unlikely(!list_empty(&netlink_tap_all)))
245 		__netlink_deliver_tap(skb);
246 
247 	rcu_read_unlock();
248 }
249 
250 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
251 				       struct sk_buff *skb)
252 {
253 	if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
254 		netlink_deliver_tap(skb);
255 }
256 
257 static void netlink_overrun(struct sock *sk)
258 {
259 	struct netlink_sock *nlk = nlk_sk(sk);
260 
261 	if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) {
262 		if (!test_and_set_bit(NETLINK_S_CONGESTED,
263 				      &nlk_sk(sk)->state)) {
264 			sk->sk_err = ENOBUFS;
265 			sk->sk_error_report(sk);
266 		}
267 	}
268 	atomic_inc(&sk->sk_drops);
269 }
270 
271 static void netlink_rcv_wake(struct sock *sk)
272 {
273 	struct netlink_sock *nlk = nlk_sk(sk);
274 
275 	if (skb_queue_empty(&sk->sk_receive_queue))
276 		clear_bit(NETLINK_S_CONGESTED, &nlk->state);
277 	if (!test_bit(NETLINK_S_CONGESTED, &nlk->state))
278 		wake_up_interruptible(&nlk->wait);
279 }
280 
281 #ifdef CONFIG_NETLINK_MMAP
282 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
283 {
284 	return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
285 }
286 
287 static bool netlink_rx_is_mmaped(struct sock *sk)
288 {
289 	return nlk_sk(sk)->rx_ring.pg_vec != NULL;
290 }
291 
292 static bool netlink_tx_is_mmaped(struct sock *sk)
293 {
294 	return nlk_sk(sk)->tx_ring.pg_vec != NULL;
295 }
296 
297 static __pure struct page *pgvec_to_page(const void *addr)
298 {
299 	if (is_vmalloc_addr(addr))
300 		return vmalloc_to_page(addr);
301 	else
302 		return virt_to_page(addr);
303 }
304 
305 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
306 {
307 	unsigned int i;
308 
309 	for (i = 0; i < len; i++) {
310 		if (pg_vec[i] != NULL) {
311 			if (is_vmalloc_addr(pg_vec[i]))
312 				vfree(pg_vec[i]);
313 			else
314 				free_pages((unsigned long)pg_vec[i], order);
315 		}
316 	}
317 	kfree(pg_vec);
318 }
319 
320 static void *alloc_one_pg_vec_page(unsigned long order)
321 {
322 	void *buffer;
323 	gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
324 			  __GFP_NOWARN | __GFP_NORETRY;
325 
326 	buffer = (void *)__get_free_pages(gfp_flags, order);
327 	if (buffer != NULL)
328 		return buffer;
329 
330 	buffer = vzalloc((1 << order) * PAGE_SIZE);
331 	if (buffer != NULL)
332 		return buffer;
333 
334 	gfp_flags &= ~__GFP_NORETRY;
335 	return (void *)__get_free_pages(gfp_flags, order);
336 }
337 
338 static void **alloc_pg_vec(struct netlink_sock *nlk,
339 			   struct nl_mmap_req *req, unsigned int order)
340 {
341 	unsigned int block_nr = req->nm_block_nr;
342 	unsigned int i;
343 	void **pg_vec;
344 
345 	pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
346 	if (pg_vec == NULL)
347 		return NULL;
348 
349 	for (i = 0; i < block_nr; i++) {
350 		pg_vec[i] = alloc_one_pg_vec_page(order);
351 		if (pg_vec[i] == NULL)
352 			goto err1;
353 	}
354 
355 	return pg_vec;
356 err1:
357 	free_pg_vec(pg_vec, order, block_nr);
358 	return NULL;
359 }
360 
361 
362 static void
363 __netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, bool tx_ring, void **pg_vec,
364 		   unsigned int order)
365 {
366 	struct netlink_sock *nlk = nlk_sk(sk);
367 	struct sk_buff_head *queue;
368 	struct netlink_ring *ring;
369 
370 	queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
371 	ring  = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
372 
373 	spin_lock_bh(&queue->lock);
374 
375 	ring->frame_max		= req->nm_frame_nr - 1;
376 	ring->head		= 0;
377 	ring->frame_size	= req->nm_frame_size;
378 	ring->pg_vec_pages	= req->nm_block_size / PAGE_SIZE;
379 
380 	swap(ring->pg_vec_len, req->nm_block_nr);
381 	swap(ring->pg_vec_order, order);
382 	swap(ring->pg_vec, pg_vec);
383 
384 	__skb_queue_purge(queue);
385 	spin_unlock_bh(&queue->lock);
386 
387 	WARN_ON(atomic_read(&nlk->mapped));
388 
389 	if (pg_vec)
390 		free_pg_vec(pg_vec, order, req->nm_block_nr);
391 }
392 
393 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
394 			    bool tx_ring)
395 {
396 	struct netlink_sock *nlk = nlk_sk(sk);
397 	struct netlink_ring *ring;
398 	void **pg_vec = NULL;
399 	unsigned int order = 0;
400 
401 	ring  = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
402 
403 	if (atomic_read(&nlk->mapped))
404 		return -EBUSY;
405 	if (atomic_read(&ring->pending))
406 		return -EBUSY;
407 
408 	if (req->nm_block_nr) {
409 		if (ring->pg_vec != NULL)
410 			return -EBUSY;
411 
412 		if ((int)req->nm_block_size <= 0)
413 			return -EINVAL;
414 		if (!PAGE_ALIGNED(req->nm_block_size))
415 			return -EINVAL;
416 		if (req->nm_frame_size < NL_MMAP_HDRLEN)
417 			return -EINVAL;
418 		if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
419 			return -EINVAL;
420 
421 		ring->frames_per_block = req->nm_block_size /
422 					 req->nm_frame_size;
423 		if (ring->frames_per_block == 0)
424 			return -EINVAL;
425 		if (ring->frames_per_block * req->nm_block_nr !=
426 		    req->nm_frame_nr)
427 			return -EINVAL;
428 
429 		order = get_order(req->nm_block_size);
430 		pg_vec = alloc_pg_vec(nlk, req, order);
431 		if (pg_vec == NULL)
432 			return -ENOMEM;
433 	} else {
434 		if (req->nm_frame_nr)
435 			return -EINVAL;
436 	}
437 
438 	mutex_lock(&nlk->pg_vec_lock);
439 	if (atomic_read(&nlk->mapped) == 0) {
440 		__netlink_set_ring(sk, req, tx_ring, pg_vec, order);
441 		mutex_unlock(&nlk->pg_vec_lock);
442 		return 0;
443 	}
444 
445 	mutex_unlock(&nlk->pg_vec_lock);
446 
447 	if (pg_vec)
448 		free_pg_vec(pg_vec, order, req->nm_block_nr);
449 
450 	return -EBUSY;
451 }
452 
453 static void netlink_mm_open(struct vm_area_struct *vma)
454 {
455 	struct file *file = vma->vm_file;
456 	struct socket *sock = file->private_data;
457 	struct sock *sk = sock->sk;
458 
459 	if (sk)
460 		atomic_inc(&nlk_sk(sk)->mapped);
461 }
462 
463 static void netlink_mm_close(struct vm_area_struct *vma)
464 {
465 	struct file *file = vma->vm_file;
466 	struct socket *sock = file->private_data;
467 	struct sock *sk = sock->sk;
468 
469 	if (sk)
470 		atomic_dec(&nlk_sk(sk)->mapped);
471 }
472 
473 static const struct vm_operations_struct netlink_mmap_ops = {
474 	.open	= netlink_mm_open,
475 	.close	= netlink_mm_close,
476 };
477 
478 static int netlink_mmap(struct file *file, struct socket *sock,
479 			struct vm_area_struct *vma)
480 {
481 	struct sock *sk = sock->sk;
482 	struct netlink_sock *nlk = nlk_sk(sk);
483 	struct netlink_ring *ring;
484 	unsigned long start, size, expected;
485 	unsigned int i;
486 	int err = -EINVAL;
487 
488 	if (vma->vm_pgoff)
489 		return -EINVAL;
490 
491 	mutex_lock(&nlk->pg_vec_lock);
492 
493 	expected = 0;
494 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
495 		if (ring->pg_vec == NULL)
496 			continue;
497 		expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
498 	}
499 
500 	if (expected == 0)
501 		goto out;
502 
503 	size = vma->vm_end - vma->vm_start;
504 	if (size != expected)
505 		goto out;
506 
507 	start = vma->vm_start;
508 	for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
509 		if (ring->pg_vec == NULL)
510 			continue;
511 
512 		for (i = 0; i < ring->pg_vec_len; i++) {
513 			struct page *page;
514 			void *kaddr = ring->pg_vec[i];
515 			unsigned int pg_num;
516 
517 			for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
518 				page = pgvec_to_page(kaddr);
519 				err = vm_insert_page(vma, start, page);
520 				if (err < 0)
521 					goto out;
522 				start += PAGE_SIZE;
523 				kaddr += PAGE_SIZE;
524 			}
525 		}
526 	}
527 
528 	atomic_inc(&nlk->mapped);
529 	vma->vm_ops = &netlink_mmap_ops;
530 	err = 0;
531 out:
532 	mutex_unlock(&nlk->pg_vec_lock);
533 	return err;
534 }
535 
536 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len)
537 {
538 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
539 	struct page *p_start, *p_end;
540 
541 	/* First page is flushed through netlink_{get,set}_status */
542 	p_start = pgvec_to_page(hdr + PAGE_SIZE);
543 	p_end   = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1);
544 	while (p_start <= p_end) {
545 		flush_dcache_page(p_start);
546 		p_start++;
547 	}
548 #endif
549 }
550 
551 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
552 {
553 	smp_rmb();
554 	flush_dcache_page(pgvec_to_page(hdr));
555 	return hdr->nm_status;
556 }
557 
558 static void netlink_set_status(struct nl_mmap_hdr *hdr,
559 			       enum nl_mmap_status status)
560 {
561 	smp_mb();
562 	hdr->nm_status = status;
563 	flush_dcache_page(pgvec_to_page(hdr));
564 }
565 
566 static struct nl_mmap_hdr *
567 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
568 {
569 	unsigned int pg_vec_pos, frame_off;
570 
571 	pg_vec_pos = pos / ring->frames_per_block;
572 	frame_off  = pos % ring->frames_per_block;
573 
574 	return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
575 }
576 
577 static struct nl_mmap_hdr *
578 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
579 		     enum nl_mmap_status status)
580 {
581 	struct nl_mmap_hdr *hdr;
582 
583 	hdr = __netlink_lookup_frame(ring, pos);
584 	if (netlink_get_status(hdr) != status)
585 		return NULL;
586 
587 	return hdr;
588 }
589 
590 static struct nl_mmap_hdr *
591 netlink_current_frame(const struct netlink_ring *ring,
592 		      enum nl_mmap_status status)
593 {
594 	return netlink_lookup_frame(ring, ring->head, status);
595 }
596 
597 static void netlink_increment_head(struct netlink_ring *ring)
598 {
599 	ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
600 }
601 
602 static void netlink_forward_ring(struct netlink_ring *ring)
603 {
604 	unsigned int head = ring->head;
605 	const struct nl_mmap_hdr *hdr;
606 
607 	do {
608 		hdr = __netlink_lookup_frame(ring, ring->head);
609 		if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
610 			break;
611 		if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
612 			break;
613 		netlink_increment_head(ring);
614 	} while (ring->head != head);
615 }
616 
617 static bool netlink_has_valid_frame(struct netlink_ring *ring)
618 {
619 	unsigned int head = ring->head, pos = head;
620 	const struct nl_mmap_hdr *hdr;
621 
622 	do {
623 		hdr = __netlink_lookup_frame(ring, pos);
624 		if (hdr->nm_status == NL_MMAP_STATUS_VALID)
625 			return true;
626 		pos = pos != 0 ? pos - 1 : ring->frame_max;
627 	} while (pos != head);
628 
629 	return false;
630 }
631 
632 static bool netlink_dump_space(struct netlink_sock *nlk)
633 {
634 	struct netlink_ring *ring = &nlk->rx_ring;
635 	struct nl_mmap_hdr *hdr;
636 	unsigned int n;
637 
638 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
639 	if (hdr == NULL)
640 		return false;
641 
642 	n = ring->head + ring->frame_max / 2;
643 	if (n > ring->frame_max)
644 		n -= ring->frame_max;
645 
646 	hdr = __netlink_lookup_frame(ring, n);
647 
648 	return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
649 }
650 
651 static unsigned int netlink_poll(struct file *file, struct socket *sock,
652 				 poll_table *wait)
653 {
654 	struct sock *sk = sock->sk;
655 	struct netlink_sock *nlk = nlk_sk(sk);
656 	unsigned int mask;
657 	int err;
658 
659 	if (nlk->rx_ring.pg_vec != NULL) {
660 		/* Memory mapped sockets don't call recvmsg(), so flow control
661 		 * for dumps is performed here. A dump is allowed to continue
662 		 * if at least half the ring is unused.
663 		 */
664 		while (nlk->cb_running && netlink_dump_space(nlk)) {
665 			err = netlink_dump(sk);
666 			if (err < 0) {
667 				sk->sk_err = -err;
668 				sk->sk_error_report(sk);
669 				break;
670 			}
671 		}
672 		netlink_rcv_wake(sk);
673 	}
674 
675 	mask = datagram_poll(file, sock, wait);
676 
677 	/* We could already have received frames in the normal receive
678 	 * queue, that will show up as NL_MMAP_STATUS_COPY in the ring,
679 	 * so if mask contains pollin/etc already, there's no point
680 	 * walking the ring.
681 	 */
682 	if ((mask & (POLLIN | POLLRDNORM)) != (POLLIN | POLLRDNORM)) {
683 		spin_lock_bh(&sk->sk_receive_queue.lock);
684 		if (nlk->rx_ring.pg_vec) {
685 			if (netlink_has_valid_frame(&nlk->rx_ring))
686 				mask |= POLLIN | POLLRDNORM;
687 		}
688 		spin_unlock_bh(&sk->sk_receive_queue.lock);
689 	}
690 
691 	spin_lock_bh(&sk->sk_write_queue.lock);
692 	if (nlk->tx_ring.pg_vec) {
693 		if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
694 			mask |= POLLOUT | POLLWRNORM;
695 	}
696 	spin_unlock_bh(&sk->sk_write_queue.lock);
697 
698 	return mask;
699 }
700 
701 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
702 {
703 	return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
704 }
705 
706 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
707 				   struct netlink_ring *ring,
708 				   struct nl_mmap_hdr *hdr)
709 {
710 	unsigned int size;
711 	void *data;
712 
713 	size = ring->frame_size - NL_MMAP_HDRLEN;
714 	data = (void *)hdr + NL_MMAP_HDRLEN;
715 
716 	skb->head	= data;
717 	skb->data	= data;
718 	skb_reset_tail_pointer(skb);
719 	skb->end	= skb->tail + size;
720 	skb->len	= 0;
721 
722 	skb->destructor	= netlink_skb_destructor;
723 	NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
724 	NETLINK_CB(skb).sk = sk;
725 }
726 
727 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
728 				u32 dst_portid, u32 dst_group,
729 				struct scm_cookie *scm)
730 {
731 	struct netlink_sock *nlk = nlk_sk(sk);
732 	struct netlink_ring *ring;
733 	struct nl_mmap_hdr *hdr;
734 	struct sk_buff *skb;
735 	unsigned int maxlen;
736 	int err = 0, len = 0;
737 
738 	mutex_lock(&nlk->pg_vec_lock);
739 
740 	ring   = &nlk->tx_ring;
741 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
742 
743 	do {
744 		unsigned int nm_len;
745 
746 		hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
747 		if (hdr == NULL) {
748 			if (!(msg->msg_flags & MSG_DONTWAIT) &&
749 			    atomic_read(&nlk->tx_ring.pending))
750 				schedule();
751 			continue;
752 		}
753 
754 		nm_len = ACCESS_ONCE(hdr->nm_len);
755 		if (nm_len > maxlen) {
756 			err = -EINVAL;
757 			goto out;
758 		}
759 
760 		netlink_frame_flush_dcache(hdr, nm_len);
761 
762 		skb = alloc_skb(nm_len, GFP_KERNEL);
763 		if (skb == NULL) {
764 			err = -ENOBUFS;
765 			goto out;
766 		}
767 		__skb_put(skb, nm_len);
768 		memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len);
769 		netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
770 
771 		netlink_increment_head(ring);
772 
773 		NETLINK_CB(skb).portid	  = nlk->portid;
774 		NETLINK_CB(skb).dst_group = dst_group;
775 		NETLINK_CB(skb).creds	  = scm->creds;
776 
777 		err = security_netlink_send(sk, skb);
778 		if (err) {
779 			kfree_skb(skb);
780 			goto out;
781 		}
782 
783 		if (unlikely(dst_group)) {
784 			atomic_inc(&skb->users);
785 			netlink_broadcast(sk, skb, dst_portid, dst_group,
786 					  GFP_KERNEL);
787 		}
788 		err = netlink_unicast(sk, skb, dst_portid,
789 				      msg->msg_flags & MSG_DONTWAIT);
790 		if (err < 0)
791 			goto out;
792 		len += err;
793 
794 	} while (hdr != NULL ||
795 		 (!(msg->msg_flags & MSG_DONTWAIT) &&
796 		  atomic_read(&nlk->tx_ring.pending)));
797 
798 	if (len > 0)
799 		err = len;
800 out:
801 	mutex_unlock(&nlk->pg_vec_lock);
802 	return err;
803 }
804 
805 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
806 {
807 	struct nl_mmap_hdr *hdr;
808 
809 	hdr = netlink_mmap_hdr(skb);
810 	hdr->nm_len	= skb->len;
811 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
812 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
813 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
814 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
815 	netlink_frame_flush_dcache(hdr, hdr->nm_len);
816 	netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
817 
818 	NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
819 	kfree_skb(skb);
820 }
821 
822 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
823 {
824 	struct netlink_sock *nlk = nlk_sk(sk);
825 	struct netlink_ring *ring = &nlk->rx_ring;
826 	struct nl_mmap_hdr *hdr;
827 
828 	spin_lock_bh(&sk->sk_receive_queue.lock);
829 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
830 	if (hdr == NULL) {
831 		spin_unlock_bh(&sk->sk_receive_queue.lock);
832 		kfree_skb(skb);
833 		netlink_overrun(sk);
834 		return;
835 	}
836 	netlink_increment_head(ring);
837 	__skb_queue_tail(&sk->sk_receive_queue, skb);
838 	spin_unlock_bh(&sk->sk_receive_queue.lock);
839 
840 	hdr->nm_len	= skb->len;
841 	hdr->nm_group	= NETLINK_CB(skb).dst_group;
842 	hdr->nm_pid	= NETLINK_CB(skb).creds.pid;
843 	hdr->nm_uid	= from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
844 	hdr->nm_gid	= from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
845 	netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
846 }
847 
848 #else /* CONFIG_NETLINK_MMAP */
849 #define netlink_skb_is_mmaped(skb)	false
850 #define netlink_rx_is_mmaped(sk)	false
851 #define netlink_tx_is_mmaped(sk)	false
852 #define netlink_mmap			sock_no_mmap
853 #define netlink_poll			datagram_poll
854 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm)	0
855 #endif /* CONFIG_NETLINK_MMAP */
856 
857 static void netlink_skb_destructor(struct sk_buff *skb)
858 {
859 #ifdef CONFIG_NETLINK_MMAP
860 	struct nl_mmap_hdr *hdr;
861 	struct netlink_ring *ring;
862 	struct sock *sk;
863 
864 	/* If a packet from the kernel to userspace was freed because of an
865 	 * error without being delivered to userspace, the kernel must reset
866 	 * the status. In the direction userspace to kernel, the status is
867 	 * always reset here after the packet was processed and freed.
868 	 */
869 	if (netlink_skb_is_mmaped(skb)) {
870 		hdr = netlink_mmap_hdr(skb);
871 		sk = NETLINK_CB(skb).sk;
872 
873 		if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
874 			netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
875 			ring = &nlk_sk(sk)->tx_ring;
876 		} else {
877 			if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
878 				hdr->nm_len = 0;
879 				netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
880 			}
881 			ring = &nlk_sk(sk)->rx_ring;
882 		}
883 
884 		WARN_ON(atomic_read(&ring->pending) == 0);
885 		atomic_dec(&ring->pending);
886 		sock_put(sk);
887 
888 		skb->head = NULL;
889 	}
890 #endif
891 	if (is_vmalloc_addr(skb->head)) {
892 		if (!skb->cloned ||
893 		    !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
894 			vfree(skb->head);
895 
896 		skb->head = NULL;
897 	}
898 	if (skb->sk != NULL)
899 		sock_rfree(skb);
900 }
901 
902 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
903 {
904 	WARN_ON(skb->sk != NULL);
905 	skb->sk = sk;
906 	skb->destructor = netlink_skb_destructor;
907 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
908 	sk_mem_charge(sk, skb->truesize);
909 }
910 
911 static void netlink_sock_destruct(struct sock *sk)
912 {
913 	struct netlink_sock *nlk = nlk_sk(sk);
914 
915 	if (nlk->cb_running) {
916 		if (nlk->cb.done)
917 			nlk->cb.done(&nlk->cb);
918 
919 		module_put(nlk->cb.module);
920 		kfree_skb(nlk->cb.skb);
921 	}
922 
923 	skb_queue_purge(&sk->sk_receive_queue);
924 #ifdef CONFIG_NETLINK_MMAP
925 	if (1) {
926 		struct nl_mmap_req req;
927 
928 		memset(&req, 0, sizeof(req));
929 		if (nlk->rx_ring.pg_vec)
930 			__netlink_set_ring(sk, &req, false, NULL, 0);
931 		memset(&req, 0, sizeof(req));
932 		if (nlk->tx_ring.pg_vec)
933 			__netlink_set_ring(sk, &req, true, NULL, 0);
934 	}
935 #endif /* CONFIG_NETLINK_MMAP */
936 
937 	if (!sock_flag(sk, SOCK_DEAD)) {
938 		printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
939 		return;
940 	}
941 
942 	WARN_ON(atomic_read(&sk->sk_rmem_alloc));
943 	WARN_ON(atomic_read(&sk->sk_wmem_alloc));
944 	WARN_ON(nlk_sk(sk)->groups);
945 }
946 
947 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
948  * SMP. Look, when several writers sleep and reader wakes them up, all but one
949  * immediately hit write lock and grab all the cpus. Exclusive sleep solves
950  * this, _but_ remember, it adds useless work on UP machines.
951  */
952 
953 void netlink_table_grab(void)
954 	__acquires(nl_table_lock)
955 {
956 	might_sleep();
957 
958 	write_lock_irq(&nl_table_lock);
959 
960 	if (atomic_read(&nl_table_users)) {
961 		DECLARE_WAITQUEUE(wait, current);
962 
963 		add_wait_queue_exclusive(&nl_table_wait, &wait);
964 		for (;;) {
965 			set_current_state(TASK_UNINTERRUPTIBLE);
966 			if (atomic_read(&nl_table_users) == 0)
967 				break;
968 			write_unlock_irq(&nl_table_lock);
969 			schedule();
970 			write_lock_irq(&nl_table_lock);
971 		}
972 
973 		__set_current_state(TASK_RUNNING);
974 		remove_wait_queue(&nl_table_wait, &wait);
975 	}
976 }
977 
978 void netlink_table_ungrab(void)
979 	__releases(nl_table_lock)
980 {
981 	write_unlock_irq(&nl_table_lock);
982 	wake_up(&nl_table_wait);
983 }
984 
985 static inline void
986 netlink_lock_table(void)
987 {
988 	/* read_lock() synchronizes us to netlink_table_grab */
989 
990 	read_lock(&nl_table_lock);
991 	atomic_inc(&nl_table_users);
992 	read_unlock(&nl_table_lock);
993 }
994 
995 static inline void
996 netlink_unlock_table(void)
997 {
998 	if (atomic_dec_and_test(&nl_table_users))
999 		wake_up(&nl_table_wait);
1000 }
1001 
1002 struct netlink_compare_arg
1003 {
1004 	possible_net_t pnet;
1005 	u32 portid;
1006 };
1007 
1008 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */
1009 #define netlink_compare_arg_len \
1010 	(offsetof(struct netlink_compare_arg, portid) + sizeof(u32))
1011 
1012 static inline int netlink_compare(struct rhashtable_compare_arg *arg,
1013 				  const void *ptr)
1014 {
1015 	const struct netlink_compare_arg *x = arg->key;
1016 	const struct netlink_sock *nlk = ptr;
1017 
1018 	return nlk->portid != x->portid ||
1019 	       !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet));
1020 }
1021 
1022 static void netlink_compare_arg_init(struct netlink_compare_arg *arg,
1023 				     struct net *net, u32 portid)
1024 {
1025 	memset(arg, 0, sizeof(*arg));
1026 	write_pnet(&arg->pnet, net);
1027 	arg->portid = portid;
1028 }
1029 
1030 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
1031 				     struct net *net)
1032 {
1033 	struct netlink_compare_arg arg;
1034 
1035 	netlink_compare_arg_init(&arg, net, portid);
1036 	return rhashtable_lookup_fast(&table->hash, &arg,
1037 				      netlink_rhashtable_params);
1038 }
1039 
1040 static int __netlink_insert(struct netlink_table *table, struct sock *sk)
1041 {
1042 	struct netlink_compare_arg arg;
1043 
1044 	netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid);
1045 	return rhashtable_lookup_insert_key(&table->hash, &arg,
1046 					    &nlk_sk(sk)->node,
1047 					    netlink_rhashtable_params);
1048 }
1049 
1050 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1051 {
1052 	struct netlink_table *table = &nl_table[protocol];
1053 	struct sock *sk;
1054 
1055 	rcu_read_lock();
1056 	sk = __netlink_lookup(table, portid, net);
1057 	if (sk)
1058 		sock_hold(sk);
1059 	rcu_read_unlock();
1060 
1061 	return sk;
1062 }
1063 
1064 static const struct proto_ops netlink_ops;
1065 
1066 static void
1067 netlink_update_listeners(struct sock *sk)
1068 {
1069 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1070 	unsigned long mask;
1071 	unsigned int i;
1072 	struct listeners *listeners;
1073 
1074 	listeners = nl_deref_protected(tbl->listeners);
1075 	if (!listeners)
1076 		return;
1077 
1078 	for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1079 		mask = 0;
1080 		sk_for_each_bound(sk, &tbl->mc_list) {
1081 			if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1082 				mask |= nlk_sk(sk)->groups[i];
1083 		}
1084 		listeners->masks[i] = mask;
1085 	}
1086 	/* this function is only called with the netlink table "grabbed", which
1087 	 * makes sure updates are visible before bind or setsockopt return. */
1088 }
1089 
1090 static int netlink_insert(struct sock *sk, u32 portid)
1091 {
1092 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1093 	int err;
1094 
1095 	lock_sock(sk);
1096 
1097 	err = -EBUSY;
1098 	if (nlk_sk(sk)->portid)
1099 		goto err;
1100 
1101 	err = -ENOMEM;
1102 	if (BITS_PER_LONG > 32 &&
1103 	    unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX))
1104 		goto err;
1105 
1106 	nlk_sk(sk)->portid = portid;
1107 	sock_hold(sk);
1108 
1109 	err = __netlink_insert(table, sk);
1110 	if (err) {
1111 		/* In case the hashtable backend returns with -EBUSY
1112 		 * from here, it must not escape to the caller.
1113 		 */
1114 		if (unlikely(err == -EBUSY))
1115 			err = -EOVERFLOW;
1116 		if (err == -EEXIST)
1117 			err = -EADDRINUSE;
1118 		nlk_sk(sk)->portid = 0;
1119 		sock_put(sk);
1120 	}
1121 
1122 err:
1123 	release_sock(sk);
1124 	return err;
1125 }
1126 
1127 static void netlink_remove(struct sock *sk)
1128 {
1129 	struct netlink_table *table;
1130 
1131 	table = &nl_table[sk->sk_protocol];
1132 	if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node,
1133 				    netlink_rhashtable_params)) {
1134 		WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1135 		__sock_put(sk);
1136 	}
1137 
1138 	netlink_table_grab();
1139 	if (nlk_sk(sk)->subscriptions) {
1140 		__sk_del_bind_node(sk);
1141 		netlink_update_listeners(sk);
1142 	}
1143 	if (sk->sk_protocol == NETLINK_GENERIC)
1144 		atomic_inc(&genl_sk_destructing_cnt);
1145 	netlink_table_ungrab();
1146 }
1147 
1148 static struct proto netlink_proto = {
1149 	.name	  = "NETLINK",
1150 	.owner	  = THIS_MODULE,
1151 	.obj_size = sizeof(struct netlink_sock),
1152 };
1153 
1154 static int __netlink_create(struct net *net, struct socket *sock,
1155 			    struct mutex *cb_mutex, int protocol,
1156 			    int kern)
1157 {
1158 	struct sock *sk;
1159 	struct netlink_sock *nlk;
1160 
1161 	sock->ops = &netlink_ops;
1162 
1163 	sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern);
1164 	if (!sk)
1165 		return -ENOMEM;
1166 
1167 	sock_init_data(sock, sk);
1168 
1169 	nlk = nlk_sk(sk);
1170 	if (cb_mutex) {
1171 		nlk->cb_mutex = cb_mutex;
1172 	} else {
1173 		nlk->cb_mutex = &nlk->cb_def_mutex;
1174 		mutex_init(nlk->cb_mutex);
1175 	}
1176 	init_waitqueue_head(&nlk->wait);
1177 #ifdef CONFIG_NETLINK_MMAP
1178 	mutex_init(&nlk->pg_vec_lock);
1179 #endif
1180 
1181 	sk->sk_destruct = netlink_sock_destruct;
1182 	sk->sk_protocol = protocol;
1183 	return 0;
1184 }
1185 
1186 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1187 			  int kern)
1188 {
1189 	struct module *module = NULL;
1190 	struct mutex *cb_mutex;
1191 	struct netlink_sock *nlk;
1192 	int (*bind)(struct net *net, int group);
1193 	void (*unbind)(struct net *net, int group);
1194 	int err = 0;
1195 
1196 	sock->state = SS_UNCONNECTED;
1197 
1198 	if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1199 		return -ESOCKTNOSUPPORT;
1200 
1201 	if (protocol < 0 || protocol >= MAX_LINKS)
1202 		return -EPROTONOSUPPORT;
1203 
1204 	netlink_lock_table();
1205 #ifdef CONFIG_MODULES
1206 	if (!nl_table[protocol].registered) {
1207 		netlink_unlock_table();
1208 		request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1209 		netlink_lock_table();
1210 	}
1211 #endif
1212 	if (nl_table[protocol].registered &&
1213 	    try_module_get(nl_table[protocol].module))
1214 		module = nl_table[protocol].module;
1215 	else
1216 		err = -EPROTONOSUPPORT;
1217 	cb_mutex = nl_table[protocol].cb_mutex;
1218 	bind = nl_table[protocol].bind;
1219 	unbind = nl_table[protocol].unbind;
1220 	netlink_unlock_table();
1221 
1222 	if (err < 0)
1223 		goto out;
1224 
1225 	err = __netlink_create(net, sock, cb_mutex, protocol, kern);
1226 	if (err < 0)
1227 		goto out_module;
1228 
1229 	local_bh_disable();
1230 	sock_prot_inuse_add(net, &netlink_proto, 1);
1231 	local_bh_enable();
1232 
1233 	nlk = nlk_sk(sock->sk);
1234 	nlk->module = module;
1235 	nlk->netlink_bind = bind;
1236 	nlk->netlink_unbind = unbind;
1237 out:
1238 	return err;
1239 
1240 out_module:
1241 	module_put(module);
1242 	goto out;
1243 }
1244 
1245 static void deferred_put_nlk_sk(struct rcu_head *head)
1246 {
1247 	struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu);
1248 
1249 	sock_put(&nlk->sk);
1250 }
1251 
1252 static int netlink_release(struct socket *sock)
1253 {
1254 	struct sock *sk = sock->sk;
1255 	struct netlink_sock *nlk;
1256 
1257 	if (!sk)
1258 		return 0;
1259 
1260 	netlink_remove(sk);
1261 	sock_orphan(sk);
1262 	nlk = nlk_sk(sk);
1263 
1264 	/*
1265 	 * OK. Socket is unlinked, any packets that arrive now
1266 	 * will be purged.
1267 	 */
1268 
1269 	/* must not acquire netlink_table_lock in any way again before unbind
1270 	 * and notifying genetlink is done as otherwise it might deadlock
1271 	 */
1272 	if (nlk->netlink_unbind) {
1273 		int i;
1274 
1275 		for (i = 0; i < nlk->ngroups; i++)
1276 			if (test_bit(i, nlk->groups))
1277 				nlk->netlink_unbind(sock_net(sk), i + 1);
1278 	}
1279 	if (sk->sk_protocol == NETLINK_GENERIC &&
1280 	    atomic_dec_return(&genl_sk_destructing_cnt) == 0)
1281 		wake_up(&genl_sk_destructing_waitq);
1282 
1283 	sock->sk = NULL;
1284 	wake_up_interruptible_all(&nlk->wait);
1285 
1286 	skb_queue_purge(&sk->sk_write_queue);
1287 
1288 	if (nlk->portid) {
1289 		struct netlink_notify n = {
1290 						.net = sock_net(sk),
1291 						.protocol = sk->sk_protocol,
1292 						.portid = nlk->portid,
1293 					  };
1294 		atomic_notifier_call_chain(&netlink_chain,
1295 				NETLINK_URELEASE, &n);
1296 	}
1297 
1298 	module_put(nlk->module);
1299 
1300 	if (netlink_is_kernel(sk)) {
1301 		netlink_table_grab();
1302 		BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1303 		if (--nl_table[sk->sk_protocol].registered == 0) {
1304 			struct listeners *old;
1305 
1306 			old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1307 			RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1308 			kfree_rcu(old, rcu);
1309 			nl_table[sk->sk_protocol].module = NULL;
1310 			nl_table[sk->sk_protocol].bind = NULL;
1311 			nl_table[sk->sk_protocol].unbind = NULL;
1312 			nl_table[sk->sk_protocol].flags = 0;
1313 			nl_table[sk->sk_protocol].registered = 0;
1314 		}
1315 		netlink_table_ungrab();
1316 	}
1317 
1318 	kfree(nlk->groups);
1319 	nlk->groups = NULL;
1320 
1321 	local_bh_disable();
1322 	sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1323 	local_bh_enable();
1324 	call_rcu(&nlk->rcu, deferred_put_nlk_sk);
1325 	return 0;
1326 }
1327 
1328 static int netlink_autobind(struct socket *sock)
1329 {
1330 	struct sock *sk = sock->sk;
1331 	struct net *net = sock_net(sk);
1332 	struct netlink_table *table = &nl_table[sk->sk_protocol];
1333 	s32 portid = task_tgid_vnr(current);
1334 	int err;
1335 	s32 rover = -4096;
1336 	bool ok;
1337 
1338 retry:
1339 	cond_resched();
1340 	rcu_read_lock();
1341 	ok = !__netlink_lookup(table, portid, net);
1342 	rcu_read_unlock();
1343 	if (!ok) {
1344 		/* Bind collision, search negative portid values. */
1345 		if (rover == -4096)
1346 			/* rover will be in range [S32_MIN, -4097] */
1347 			rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN);
1348 		else if (rover >= -4096)
1349 			rover = -4097;
1350 		portid = rover--;
1351 		goto retry;
1352 	}
1353 
1354 	err = netlink_insert(sk, portid);
1355 	if (err == -EADDRINUSE)
1356 		goto retry;
1357 
1358 	/* If 2 threads race to autobind, that is fine.  */
1359 	if (err == -EBUSY)
1360 		err = 0;
1361 
1362 	return err;
1363 }
1364 
1365 /**
1366  * __netlink_ns_capable - General netlink message capability test
1367  * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1368  * @user_ns: The user namespace of the capability to use
1369  * @cap: The capability to use
1370  *
1371  * Test to see if the opener of the socket we received the message
1372  * from had when the netlink socket was created and the sender of the
1373  * message has has the capability @cap in the user namespace @user_ns.
1374  */
1375 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1376 			struct user_namespace *user_ns, int cap)
1377 {
1378 	return ((nsp->flags & NETLINK_SKB_DST) ||
1379 		file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1380 		ns_capable(user_ns, cap);
1381 }
1382 EXPORT_SYMBOL(__netlink_ns_capable);
1383 
1384 /**
1385  * netlink_ns_capable - General netlink message capability test
1386  * @skb: socket buffer holding a netlink command from userspace
1387  * @user_ns: The user namespace of the capability to use
1388  * @cap: The capability to use
1389  *
1390  * Test to see if the opener of the socket we received the message
1391  * from had when the netlink socket was created and the sender of the
1392  * message has has the capability @cap in the user namespace @user_ns.
1393  */
1394 bool netlink_ns_capable(const struct sk_buff *skb,
1395 			struct user_namespace *user_ns, int cap)
1396 {
1397 	return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1398 }
1399 EXPORT_SYMBOL(netlink_ns_capable);
1400 
1401 /**
1402  * netlink_capable - Netlink global message capability test
1403  * @skb: socket buffer holding a netlink command from userspace
1404  * @cap: The capability to use
1405  *
1406  * Test to see if the opener of the socket we received the message
1407  * from had when the netlink socket was created and the sender of the
1408  * message has has the capability @cap in all user namespaces.
1409  */
1410 bool netlink_capable(const struct sk_buff *skb, int cap)
1411 {
1412 	return netlink_ns_capable(skb, &init_user_ns, cap);
1413 }
1414 EXPORT_SYMBOL(netlink_capable);
1415 
1416 /**
1417  * netlink_net_capable - Netlink network namespace message capability test
1418  * @skb: socket buffer holding a netlink command from userspace
1419  * @cap: The capability to use
1420  *
1421  * Test to see if the opener of the socket we received the message
1422  * from had when the netlink socket was created and the sender of the
1423  * message has has the capability @cap over the network namespace of
1424  * the socket we received the message from.
1425  */
1426 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1427 {
1428 	return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1429 }
1430 EXPORT_SYMBOL(netlink_net_capable);
1431 
1432 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1433 {
1434 	return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1435 		ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1436 }
1437 
1438 static void
1439 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1440 {
1441 	struct netlink_sock *nlk = nlk_sk(sk);
1442 
1443 	if (nlk->subscriptions && !subscriptions)
1444 		__sk_del_bind_node(sk);
1445 	else if (!nlk->subscriptions && subscriptions)
1446 		sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1447 	nlk->subscriptions = subscriptions;
1448 }
1449 
1450 static int netlink_realloc_groups(struct sock *sk)
1451 {
1452 	struct netlink_sock *nlk = nlk_sk(sk);
1453 	unsigned int groups;
1454 	unsigned long *new_groups;
1455 	int err = 0;
1456 
1457 	netlink_table_grab();
1458 
1459 	groups = nl_table[sk->sk_protocol].groups;
1460 	if (!nl_table[sk->sk_protocol].registered) {
1461 		err = -ENOENT;
1462 		goto out_unlock;
1463 	}
1464 
1465 	if (nlk->ngroups >= groups)
1466 		goto out_unlock;
1467 
1468 	new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1469 	if (new_groups == NULL) {
1470 		err = -ENOMEM;
1471 		goto out_unlock;
1472 	}
1473 	memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1474 	       NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1475 
1476 	nlk->groups = new_groups;
1477 	nlk->ngroups = groups;
1478  out_unlock:
1479 	netlink_table_ungrab();
1480 	return err;
1481 }
1482 
1483 static void netlink_undo_bind(int group, long unsigned int groups,
1484 			      struct sock *sk)
1485 {
1486 	struct netlink_sock *nlk = nlk_sk(sk);
1487 	int undo;
1488 
1489 	if (!nlk->netlink_unbind)
1490 		return;
1491 
1492 	for (undo = 0; undo < group; undo++)
1493 		if (test_bit(undo, &groups))
1494 			nlk->netlink_unbind(sock_net(sk), undo + 1);
1495 }
1496 
1497 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1498 			int addr_len)
1499 {
1500 	struct sock *sk = sock->sk;
1501 	struct net *net = sock_net(sk);
1502 	struct netlink_sock *nlk = nlk_sk(sk);
1503 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1504 	int err;
1505 	long unsigned int groups = nladdr->nl_groups;
1506 
1507 	if (addr_len < sizeof(struct sockaddr_nl))
1508 		return -EINVAL;
1509 
1510 	if (nladdr->nl_family != AF_NETLINK)
1511 		return -EINVAL;
1512 
1513 	/* Only superuser is allowed to listen multicasts */
1514 	if (groups) {
1515 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1516 			return -EPERM;
1517 		err = netlink_realloc_groups(sk);
1518 		if (err)
1519 			return err;
1520 	}
1521 
1522 	if (nlk->portid)
1523 		if (nladdr->nl_pid != nlk->portid)
1524 			return -EINVAL;
1525 
1526 	if (nlk->netlink_bind && groups) {
1527 		int group;
1528 
1529 		for (group = 0; group < nlk->ngroups; group++) {
1530 			if (!test_bit(group, &groups))
1531 				continue;
1532 			err = nlk->netlink_bind(net, group + 1);
1533 			if (!err)
1534 				continue;
1535 			netlink_undo_bind(group, groups, sk);
1536 			return err;
1537 		}
1538 	}
1539 
1540 	if (!nlk->portid) {
1541 		err = nladdr->nl_pid ?
1542 			netlink_insert(sk, nladdr->nl_pid) :
1543 			netlink_autobind(sock);
1544 		if (err) {
1545 			netlink_undo_bind(nlk->ngroups, groups, sk);
1546 			return err;
1547 		}
1548 	}
1549 
1550 	if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1551 		return 0;
1552 
1553 	netlink_table_grab();
1554 	netlink_update_subscriptions(sk, nlk->subscriptions +
1555 					 hweight32(groups) -
1556 					 hweight32(nlk->groups[0]));
1557 	nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1558 	netlink_update_listeners(sk);
1559 	netlink_table_ungrab();
1560 
1561 	return 0;
1562 }
1563 
1564 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1565 			   int alen, int flags)
1566 {
1567 	int err = 0;
1568 	struct sock *sk = sock->sk;
1569 	struct netlink_sock *nlk = nlk_sk(sk);
1570 	struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1571 
1572 	if (alen < sizeof(addr->sa_family))
1573 		return -EINVAL;
1574 
1575 	if (addr->sa_family == AF_UNSPEC) {
1576 		sk->sk_state	= NETLINK_UNCONNECTED;
1577 		nlk->dst_portid	= 0;
1578 		nlk->dst_group  = 0;
1579 		return 0;
1580 	}
1581 	if (addr->sa_family != AF_NETLINK)
1582 		return -EINVAL;
1583 
1584 	if ((nladdr->nl_groups || nladdr->nl_pid) &&
1585 	    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1586 		return -EPERM;
1587 
1588 	if (!nlk->portid)
1589 		err = netlink_autobind(sock);
1590 
1591 	if (err == 0) {
1592 		sk->sk_state	= NETLINK_CONNECTED;
1593 		nlk->dst_portid = nladdr->nl_pid;
1594 		nlk->dst_group  = ffs(nladdr->nl_groups);
1595 	}
1596 
1597 	return err;
1598 }
1599 
1600 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1601 			   int *addr_len, int peer)
1602 {
1603 	struct sock *sk = sock->sk;
1604 	struct netlink_sock *nlk = nlk_sk(sk);
1605 	DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1606 
1607 	nladdr->nl_family = AF_NETLINK;
1608 	nladdr->nl_pad = 0;
1609 	*addr_len = sizeof(*nladdr);
1610 
1611 	if (peer) {
1612 		nladdr->nl_pid = nlk->dst_portid;
1613 		nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1614 	} else {
1615 		nladdr->nl_pid = nlk->portid;
1616 		nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1617 	}
1618 	return 0;
1619 }
1620 
1621 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1622 {
1623 	struct sock *sock;
1624 	struct netlink_sock *nlk;
1625 
1626 	sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1627 	if (!sock)
1628 		return ERR_PTR(-ECONNREFUSED);
1629 
1630 	/* Don't bother queuing skb if kernel socket has no input function */
1631 	nlk = nlk_sk(sock);
1632 	if (sock->sk_state == NETLINK_CONNECTED &&
1633 	    nlk->dst_portid != nlk_sk(ssk)->portid) {
1634 		sock_put(sock);
1635 		return ERR_PTR(-ECONNREFUSED);
1636 	}
1637 	return sock;
1638 }
1639 
1640 struct sock *netlink_getsockbyfilp(struct file *filp)
1641 {
1642 	struct inode *inode = file_inode(filp);
1643 	struct sock *sock;
1644 
1645 	if (!S_ISSOCK(inode->i_mode))
1646 		return ERR_PTR(-ENOTSOCK);
1647 
1648 	sock = SOCKET_I(inode)->sk;
1649 	if (sock->sk_family != AF_NETLINK)
1650 		return ERR_PTR(-EINVAL);
1651 
1652 	sock_hold(sock);
1653 	return sock;
1654 }
1655 
1656 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1657 					       int broadcast)
1658 {
1659 	struct sk_buff *skb;
1660 	void *data;
1661 
1662 	if (size <= NLMSG_GOODSIZE || broadcast)
1663 		return alloc_skb(size, GFP_KERNEL);
1664 
1665 	size = SKB_DATA_ALIGN(size) +
1666 	       SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1667 
1668 	data = vmalloc(size);
1669 	if (data == NULL)
1670 		return NULL;
1671 
1672 	skb = __build_skb(data, size);
1673 	if (skb == NULL)
1674 		vfree(data);
1675 	else
1676 		skb->destructor = netlink_skb_destructor;
1677 
1678 	return skb;
1679 }
1680 
1681 /*
1682  * Attach a skb to a netlink socket.
1683  * The caller must hold a reference to the destination socket. On error, the
1684  * reference is dropped. The skb is not send to the destination, just all
1685  * all error checks are performed and memory in the queue is reserved.
1686  * Return values:
1687  * < 0: error. skb freed, reference to sock dropped.
1688  * 0: continue
1689  * 1: repeat lookup - reference dropped while waiting for socket memory.
1690  */
1691 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1692 		      long *timeo, struct sock *ssk)
1693 {
1694 	struct netlink_sock *nlk;
1695 
1696 	nlk = nlk_sk(sk);
1697 
1698 	if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1699 	     test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1700 	    !netlink_skb_is_mmaped(skb)) {
1701 		DECLARE_WAITQUEUE(wait, current);
1702 		if (!*timeo) {
1703 			if (!ssk || netlink_is_kernel(ssk))
1704 				netlink_overrun(sk);
1705 			sock_put(sk);
1706 			kfree_skb(skb);
1707 			return -EAGAIN;
1708 		}
1709 
1710 		__set_current_state(TASK_INTERRUPTIBLE);
1711 		add_wait_queue(&nlk->wait, &wait);
1712 
1713 		if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1714 		     test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1715 		    !sock_flag(sk, SOCK_DEAD))
1716 			*timeo = schedule_timeout(*timeo);
1717 
1718 		__set_current_state(TASK_RUNNING);
1719 		remove_wait_queue(&nlk->wait, &wait);
1720 		sock_put(sk);
1721 
1722 		if (signal_pending(current)) {
1723 			kfree_skb(skb);
1724 			return sock_intr_errno(*timeo);
1725 		}
1726 		return 1;
1727 	}
1728 	netlink_skb_set_owner_r(skb, sk);
1729 	return 0;
1730 }
1731 
1732 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1733 {
1734 	int len = skb->len;
1735 
1736 	netlink_deliver_tap(skb);
1737 
1738 #ifdef CONFIG_NETLINK_MMAP
1739 	if (netlink_skb_is_mmaped(skb))
1740 		netlink_queue_mmaped_skb(sk, skb);
1741 	else if (netlink_rx_is_mmaped(sk))
1742 		netlink_ring_set_copied(sk, skb);
1743 	else
1744 #endif /* CONFIG_NETLINK_MMAP */
1745 		skb_queue_tail(&sk->sk_receive_queue, skb);
1746 	sk->sk_data_ready(sk);
1747 	return len;
1748 }
1749 
1750 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1751 {
1752 	int len = __netlink_sendskb(sk, skb);
1753 
1754 	sock_put(sk);
1755 	return len;
1756 }
1757 
1758 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1759 {
1760 	kfree_skb(skb);
1761 	sock_put(sk);
1762 }
1763 
1764 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1765 {
1766 	int delta;
1767 
1768 	WARN_ON(skb->sk != NULL);
1769 	if (netlink_skb_is_mmaped(skb))
1770 		return skb;
1771 
1772 	delta = skb->end - skb->tail;
1773 	if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1774 		return skb;
1775 
1776 	if (skb_shared(skb)) {
1777 		struct sk_buff *nskb = skb_clone(skb, allocation);
1778 		if (!nskb)
1779 			return skb;
1780 		consume_skb(skb);
1781 		skb = nskb;
1782 	}
1783 
1784 	if (!pskb_expand_head(skb, 0, -delta, allocation))
1785 		skb->truesize -= delta;
1786 
1787 	return skb;
1788 }
1789 
1790 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1791 				  struct sock *ssk)
1792 {
1793 	int ret;
1794 	struct netlink_sock *nlk = nlk_sk(sk);
1795 
1796 	ret = -ECONNREFUSED;
1797 	if (nlk->netlink_rcv != NULL) {
1798 		ret = skb->len;
1799 		netlink_skb_set_owner_r(skb, sk);
1800 		NETLINK_CB(skb).sk = ssk;
1801 		netlink_deliver_tap_kernel(sk, ssk, skb);
1802 		nlk->netlink_rcv(skb);
1803 		consume_skb(skb);
1804 	} else {
1805 		kfree_skb(skb);
1806 	}
1807 	sock_put(sk);
1808 	return ret;
1809 }
1810 
1811 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1812 		    u32 portid, int nonblock)
1813 {
1814 	struct sock *sk;
1815 	int err;
1816 	long timeo;
1817 
1818 	skb = netlink_trim(skb, gfp_any());
1819 
1820 	timeo = sock_sndtimeo(ssk, nonblock);
1821 retry:
1822 	sk = netlink_getsockbyportid(ssk, portid);
1823 	if (IS_ERR(sk)) {
1824 		kfree_skb(skb);
1825 		return PTR_ERR(sk);
1826 	}
1827 	if (netlink_is_kernel(sk))
1828 		return netlink_unicast_kernel(sk, skb, ssk);
1829 
1830 	if (sk_filter(sk, skb)) {
1831 		err = skb->len;
1832 		kfree_skb(skb);
1833 		sock_put(sk);
1834 		return err;
1835 	}
1836 
1837 	err = netlink_attachskb(sk, skb, &timeo, ssk);
1838 	if (err == 1)
1839 		goto retry;
1840 	if (err)
1841 		return err;
1842 
1843 	return netlink_sendskb(sk, skb);
1844 }
1845 EXPORT_SYMBOL(netlink_unicast);
1846 
1847 struct sk_buff *__netlink_alloc_skb(struct sock *ssk, unsigned int size,
1848 				    unsigned int ldiff, u32 dst_portid,
1849 				    gfp_t gfp_mask)
1850 {
1851 #ifdef CONFIG_NETLINK_MMAP
1852 	unsigned int maxlen, linear_size;
1853 	struct sock *sk = NULL;
1854 	struct sk_buff *skb;
1855 	struct netlink_ring *ring;
1856 	struct nl_mmap_hdr *hdr;
1857 
1858 	sk = netlink_getsockbyportid(ssk, dst_portid);
1859 	if (IS_ERR(sk))
1860 		goto out;
1861 
1862 	ring = &nlk_sk(sk)->rx_ring;
1863 	/* fast-path without atomic ops for common case: non-mmaped receiver */
1864 	if (ring->pg_vec == NULL)
1865 		goto out_put;
1866 
1867 	/* We need to account the full linear size needed as a ring
1868 	 * slot cannot have non-linear parts.
1869 	 */
1870 	linear_size = size + ldiff;
1871 	if (ring->frame_size - NL_MMAP_HDRLEN < linear_size)
1872 		goto out_put;
1873 
1874 	skb = alloc_skb_head(gfp_mask);
1875 	if (skb == NULL)
1876 		goto err1;
1877 
1878 	spin_lock_bh(&sk->sk_receive_queue.lock);
1879 	/* check again under lock */
1880 	if (ring->pg_vec == NULL)
1881 		goto out_free;
1882 
1883 	/* check again under lock */
1884 	maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1885 	if (maxlen < linear_size)
1886 		goto out_free;
1887 
1888 	netlink_forward_ring(ring);
1889 	hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1890 	if (hdr == NULL)
1891 		goto err2;
1892 
1893 	netlink_ring_setup_skb(skb, sk, ring, hdr);
1894 	netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1895 	atomic_inc(&ring->pending);
1896 	netlink_increment_head(ring);
1897 
1898 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1899 	return skb;
1900 
1901 err2:
1902 	kfree_skb(skb);
1903 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1904 	netlink_overrun(sk);
1905 err1:
1906 	sock_put(sk);
1907 	return NULL;
1908 
1909 out_free:
1910 	kfree_skb(skb);
1911 	spin_unlock_bh(&sk->sk_receive_queue.lock);
1912 out_put:
1913 	sock_put(sk);
1914 out:
1915 #endif
1916 	return alloc_skb(size, gfp_mask);
1917 }
1918 EXPORT_SYMBOL_GPL(__netlink_alloc_skb);
1919 
1920 int netlink_has_listeners(struct sock *sk, unsigned int group)
1921 {
1922 	int res = 0;
1923 	struct listeners *listeners;
1924 
1925 	BUG_ON(!netlink_is_kernel(sk));
1926 
1927 	rcu_read_lock();
1928 	listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1929 
1930 	if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1931 		res = test_bit(group - 1, listeners->masks);
1932 
1933 	rcu_read_unlock();
1934 
1935 	return res;
1936 }
1937 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1938 
1939 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1940 {
1941 	struct netlink_sock *nlk = nlk_sk(sk);
1942 
1943 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1944 	    !test_bit(NETLINK_S_CONGESTED, &nlk->state)) {
1945 		netlink_skb_set_owner_r(skb, sk);
1946 		__netlink_sendskb(sk, skb);
1947 		return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1948 	}
1949 	return -1;
1950 }
1951 
1952 struct netlink_broadcast_data {
1953 	struct sock *exclude_sk;
1954 	struct net *net;
1955 	u32 portid;
1956 	u32 group;
1957 	int failure;
1958 	int delivery_failure;
1959 	int congested;
1960 	int delivered;
1961 	gfp_t allocation;
1962 	struct sk_buff *skb, *skb2;
1963 	int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1964 	void *tx_data;
1965 };
1966 
1967 static void do_one_broadcast(struct sock *sk,
1968 				    struct netlink_broadcast_data *p)
1969 {
1970 	struct netlink_sock *nlk = nlk_sk(sk);
1971 	int val;
1972 
1973 	if (p->exclude_sk == sk)
1974 		return;
1975 
1976 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1977 	    !test_bit(p->group - 1, nlk->groups))
1978 		return;
1979 
1980 	if (!net_eq(sock_net(sk), p->net)) {
1981 		if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID))
1982 			return;
1983 
1984 		if (!peernet_has_id(sock_net(sk), p->net))
1985 			return;
1986 
1987 		if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns,
1988 				     CAP_NET_BROADCAST))
1989 			return;
1990 	}
1991 
1992 	if (p->failure) {
1993 		netlink_overrun(sk);
1994 		return;
1995 	}
1996 
1997 	sock_hold(sk);
1998 	if (p->skb2 == NULL) {
1999 		if (skb_shared(p->skb)) {
2000 			p->skb2 = skb_clone(p->skb, p->allocation);
2001 		} else {
2002 			p->skb2 = skb_get(p->skb);
2003 			/*
2004 			 * skb ownership may have been set when
2005 			 * delivered to a previous socket.
2006 			 */
2007 			skb_orphan(p->skb2);
2008 		}
2009 	}
2010 	if (p->skb2 == NULL) {
2011 		netlink_overrun(sk);
2012 		/* Clone failed. Notify ALL listeners. */
2013 		p->failure = 1;
2014 		if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
2015 			p->delivery_failure = 1;
2016 		goto out;
2017 	}
2018 	if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
2019 		kfree_skb(p->skb2);
2020 		p->skb2 = NULL;
2021 		goto out;
2022 	}
2023 	if (sk_filter(sk, p->skb2)) {
2024 		kfree_skb(p->skb2);
2025 		p->skb2 = NULL;
2026 		goto out;
2027 	}
2028 	NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net);
2029 	NETLINK_CB(p->skb2).nsid_is_set = true;
2030 	val = netlink_broadcast_deliver(sk, p->skb2);
2031 	if (val < 0) {
2032 		netlink_overrun(sk);
2033 		if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
2034 			p->delivery_failure = 1;
2035 	} else {
2036 		p->congested |= val;
2037 		p->delivered = 1;
2038 		p->skb2 = NULL;
2039 	}
2040 out:
2041 	sock_put(sk);
2042 }
2043 
2044 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
2045 	u32 group, gfp_t allocation,
2046 	int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
2047 	void *filter_data)
2048 {
2049 	struct net *net = sock_net(ssk);
2050 	struct netlink_broadcast_data info;
2051 	struct sock *sk;
2052 
2053 	skb = netlink_trim(skb, allocation);
2054 
2055 	info.exclude_sk = ssk;
2056 	info.net = net;
2057 	info.portid = portid;
2058 	info.group = group;
2059 	info.failure = 0;
2060 	info.delivery_failure = 0;
2061 	info.congested = 0;
2062 	info.delivered = 0;
2063 	info.allocation = allocation;
2064 	info.skb = skb;
2065 	info.skb2 = NULL;
2066 	info.tx_filter = filter;
2067 	info.tx_data = filter_data;
2068 
2069 	/* While we sleep in clone, do not allow to change socket list */
2070 
2071 	netlink_lock_table();
2072 
2073 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2074 		do_one_broadcast(sk, &info);
2075 
2076 	consume_skb(skb);
2077 
2078 	netlink_unlock_table();
2079 
2080 	if (info.delivery_failure) {
2081 		kfree_skb(info.skb2);
2082 		return -ENOBUFS;
2083 	}
2084 	consume_skb(info.skb2);
2085 
2086 	if (info.delivered) {
2087 		if (info.congested && (allocation & __GFP_WAIT))
2088 			yield();
2089 		return 0;
2090 	}
2091 	return -ESRCH;
2092 }
2093 EXPORT_SYMBOL(netlink_broadcast_filtered);
2094 
2095 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2096 		      u32 group, gfp_t allocation)
2097 {
2098 	return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2099 		NULL, NULL);
2100 }
2101 EXPORT_SYMBOL(netlink_broadcast);
2102 
2103 struct netlink_set_err_data {
2104 	struct sock *exclude_sk;
2105 	u32 portid;
2106 	u32 group;
2107 	int code;
2108 };
2109 
2110 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2111 {
2112 	struct netlink_sock *nlk = nlk_sk(sk);
2113 	int ret = 0;
2114 
2115 	if (sk == p->exclude_sk)
2116 		goto out;
2117 
2118 	if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2119 		goto out;
2120 
2121 	if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2122 	    !test_bit(p->group - 1, nlk->groups))
2123 		goto out;
2124 
2125 	if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) {
2126 		ret = 1;
2127 		goto out;
2128 	}
2129 
2130 	sk->sk_err = p->code;
2131 	sk->sk_error_report(sk);
2132 out:
2133 	return ret;
2134 }
2135 
2136 /**
2137  * netlink_set_err - report error to broadcast listeners
2138  * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2139  * @portid: the PORTID of a process that we want to skip (if any)
2140  * @group: the broadcast group that will notice the error
2141  * @code: error code, must be negative (as usual in kernelspace)
2142  *
2143  * This function returns the number of broadcast listeners that have set the
2144  * NETLINK_NO_ENOBUFS socket option.
2145  */
2146 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2147 {
2148 	struct netlink_set_err_data info;
2149 	struct sock *sk;
2150 	int ret = 0;
2151 
2152 	info.exclude_sk = ssk;
2153 	info.portid = portid;
2154 	info.group = group;
2155 	/* sk->sk_err wants a positive error value */
2156 	info.code = -code;
2157 
2158 	read_lock(&nl_table_lock);
2159 
2160 	sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2161 		ret += do_one_set_err(sk, &info);
2162 
2163 	read_unlock(&nl_table_lock);
2164 	return ret;
2165 }
2166 EXPORT_SYMBOL(netlink_set_err);
2167 
2168 /* must be called with netlink table grabbed */
2169 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2170 				     unsigned int group,
2171 				     int is_new)
2172 {
2173 	int old, new = !!is_new, subscriptions;
2174 
2175 	old = test_bit(group - 1, nlk->groups);
2176 	subscriptions = nlk->subscriptions - old + new;
2177 	if (new)
2178 		__set_bit(group - 1, nlk->groups);
2179 	else
2180 		__clear_bit(group - 1, nlk->groups);
2181 	netlink_update_subscriptions(&nlk->sk, subscriptions);
2182 	netlink_update_listeners(&nlk->sk);
2183 }
2184 
2185 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2186 			      char __user *optval, unsigned int optlen)
2187 {
2188 	struct sock *sk = sock->sk;
2189 	struct netlink_sock *nlk = nlk_sk(sk);
2190 	unsigned int val = 0;
2191 	int err;
2192 
2193 	if (level != SOL_NETLINK)
2194 		return -ENOPROTOOPT;
2195 
2196 	if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2197 	    optlen >= sizeof(int) &&
2198 	    get_user(val, (unsigned int __user *)optval))
2199 		return -EFAULT;
2200 
2201 	switch (optname) {
2202 	case NETLINK_PKTINFO:
2203 		if (val)
2204 			nlk->flags |= NETLINK_F_RECV_PKTINFO;
2205 		else
2206 			nlk->flags &= ~NETLINK_F_RECV_PKTINFO;
2207 		err = 0;
2208 		break;
2209 	case NETLINK_ADD_MEMBERSHIP:
2210 	case NETLINK_DROP_MEMBERSHIP: {
2211 		if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2212 			return -EPERM;
2213 		err = netlink_realloc_groups(sk);
2214 		if (err)
2215 			return err;
2216 		if (!val || val - 1 >= nlk->ngroups)
2217 			return -EINVAL;
2218 		if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2219 			err = nlk->netlink_bind(sock_net(sk), val);
2220 			if (err)
2221 				return err;
2222 		}
2223 		netlink_table_grab();
2224 		netlink_update_socket_mc(nlk, val,
2225 					 optname == NETLINK_ADD_MEMBERSHIP);
2226 		netlink_table_ungrab();
2227 		if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2228 			nlk->netlink_unbind(sock_net(sk), val);
2229 
2230 		err = 0;
2231 		break;
2232 	}
2233 	case NETLINK_BROADCAST_ERROR:
2234 		if (val)
2235 			nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR;
2236 		else
2237 			nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR;
2238 		err = 0;
2239 		break;
2240 	case NETLINK_NO_ENOBUFS:
2241 		if (val) {
2242 			nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS;
2243 			clear_bit(NETLINK_S_CONGESTED, &nlk->state);
2244 			wake_up_interruptible(&nlk->wait);
2245 		} else {
2246 			nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS;
2247 		}
2248 		err = 0;
2249 		break;
2250 #ifdef CONFIG_NETLINK_MMAP
2251 	case NETLINK_RX_RING:
2252 	case NETLINK_TX_RING: {
2253 		struct nl_mmap_req req;
2254 
2255 		/* Rings might consume more memory than queue limits, require
2256 		 * CAP_NET_ADMIN.
2257 		 */
2258 		if (!capable(CAP_NET_ADMIN))
2259 			return -EPERM;
2260 		if (optlen < sizeof(req))
2261 			return -EINVAL;
2262 		if (copy_from_user(&req, optval, sizeof(req)))
2263 			return -EFAULT;
2264 		err = netlink_set_ring(sk, &req,
2265 				       optname == NETLINK_TX_RING);
2266 		break;
2267 	}
2268 #endif /* CONFIG_NETLINK_MMAP */
2269 	case NETLINK_LISTEN_ALL_NSID:
2270 		if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST))
2271 			return -EPERM;
2272 
2273 		if (val)
2274 			nlk->flags |= NETLINK_F_LISTEN_ALL_NSID;
2275 		else
2276 			nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID;
2277 		err = 0;
2278 		break;
2279 	case NETLINK_CAP_ACK:
2280 		if (val)
2281 			nlk->flags |= NETLINK_F_CAP_ACK;
2282 		else
2283 			nlk->flags &= ~NETLINK_F_CAP_ACK;
2284 		err = 0;
2285 		break;
2286 	default:
2287 		err = -ENOPROTOOPT;
2288 	}
2289 	return err;
2290 }
2291 
2292 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2293 			      char __user *optval, int __user *optlen)
2294 {
2295 	struct sock *sk = sock->sk;
2296 	struct netlink_sock *nlk = nlk_sk(sk);
2297 	int len, val, err;
2298 
2299 	if (level != SOL_NETLINK)
2300 		return -ENOPROTOOPT;
2301 
2302 	if (get_user(len, optlen))
2303 		return -EFAULT;
2304 	if (len < 0)
2305 		return -EINVAL;
2306 
2307 	switch (optname) {
2308 	case NETLINK_PKTINFO:
2309 		if (len < sizeof(int))
2310 			return -EINVAL;
2311 		len = sizeof(int);
2312 		val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0;
2313 		if (put_user(len, optlen) ||
2314 		    put_user(val, optval))
2315 			return -EFAULT;
2316 		err = 0;
2317 		break;
2318 	case NETLINK_BROADCAST_ERROR:
2319 		if (len < sizeof(int))
2320 			return -EINVAL;
2321 		len = sizeof(int);
2322 		val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0;
2323 		if (put_user(len, optlen) ||
2324 		    put_user(val, optval))
2325 			return -EFAULT;
2326 		err = 0;
2327 		break;
2328 	case NETLINK_NO_ENOBUFS:
2329 		if (len < sizeof(int))
2330 			return -EINVAL;
2331 		len = sizeof(int);
2332 		val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0;
2333 		if (put_user(len, optlen) ||
2334 		    put_user(val, optval))
2335 			return -EFAULT;
2336 		err = 0;
2337 		break;
2338 	case NETLINK_LIST_MEMBERSHIPS: {
2339 		int pos, idx, shift;
2340 
2341 		err = 0;
2342 		netlink_table_grab();
2343 		for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) {
2344 			if (len - pos < sizeof(u32))
2345 				break;
2346 
2347 			idx = pos / sizeof(unsigned long);
2348 			shift = (pos % sizeof(unsigned long)) * 8;
2349 			if (put_user((u32)(nlk->groups[idx] >> shift),
2350 				     (u32 __user *)(optval + pos))) {
2351 				err = -EFAULT;
2352 				break;
2353 			}
2354 		}
2355 		if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen))
2356 			err = -EFAULT;
2357 		netlink_table_ungrab();
2358 		break;
2359 	}
2360 	case NETLINK_CAP_ACK:
2361 		if (len < sizeof(int))
2362 			return -EINVAL;
2363 		len = sizeof(int);
2364 		val = nlk->flags & NETLINK_F_CAP_ACK ? 1 : 0;
2365 		if (put_user(len, optlen) ||
2366 		    put_user(val, optval))
2367 			return -EFAULT;
2368 		err = 0;
2369 		break;
2370 	default:
2371 		err = -ENOPROTOOPT;
2372 	}
2373 	return err;
2374 }
2375 
2376 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2377 {
2378 	struct nl_pktinfo info;
2379 
2380 	info.group = NETLINK_CB(skb).dst_group;
2381 	put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2382 }
2383 
2384 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg,
2385 					 struct sk_buff *skb)
2386 {
2387 	if (!NETLINK_CB(skb).nsid_is_set)
2388 		return;
2389 
2390 	put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int),
2391 		 &NETLINK_CB(skb).nsid);
2392 }
2393 
2394 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2395 {
2396 	struct sock *sk = sock->sk;
2397 	struct netlink_sock *nlk = nlk_sk(sk);
2398 	DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2399 	u32 dst_portid;
2400 	u32 dst_group;
2401 	struct sk_buff *skb;
2402 	int err;
2403 	struct scm_cookie scm;
2404 	u32 netlink_skb_flags = 0;
2405 
2406 	if (msg->msg_flags&MSG_OOB)
2407 		return -EOPNOTSUPP;
2408 
2409 	err = scm_send(sock, msg, &scm, true);
2410 	if (err < 0)
2411 		return err;
2412 
2413 	if (msg->msg_namelen) {
2414 		err = -EINVAL;
2415 		if (addr->nl_family != AF_NETLINK)
2416 			goto out;
2417 		dst_portid = addr->nl_pid;
2418 		dst_group = ffs(addr->nl_groups);
2419 		err =  -EPERM;
2420 		if ((dst_group || dst_portid) &&
2421 		    !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2422 			goto out;
2423 		netlink_skb_flags |= NETLINK_SKB_DST;
2424 	} else {
2425 		dst_portid = nlk->dst_portid;
2426 		dst_group = nlk->dst_group;
2427 	}
2428 
2429 	if (!nlk->portid) {
2430 		err = netlink_autobind(sock);
2431 		if (err)
2432 			goto out;
2433 	}
2434 
2435 	/* It's a really convoluted way for userland to ask for mmaped
2436 	 * sendmsg(), but that's what we've got...
2437 	 */
2438 	if (netlink_tx_is_mmaped(sk) &&
2439 	    iter_is_iovec(&msg->msg_iter) &&
2440 	    msg->msg_iter.nr_segs == 1 &&
2441 	    msg->msg_iter.iov->iov_base == NULL) {
2442 		err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2443 					   &scm);
2444 		goto out;
2445 	}
2446 
2447 	err = -EMSGSIZE;
2448 	if (len > sk->sk_sndbuf - 32)
2449 		goto out;
2450 	err = -ENOBUFS;
2451 	skb = netlink_alloc_large_skb(len, dst_group);
2452 	if (skb == NULL)
2453 		goto out;
2454 
2455 	NETLINK_CB(skb).portid	= nlk->portid;
2456 	NETLINK_CB(skb).dst_group = dst_group;
2457 	NETLINK_CB(skb).creds	= scm.creds;
2458 	NETLINK_CB(skb).flags	= netlink_skb_flags;
2459 
2460 	err = -EFAULT;
2461 	if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
2462 		kfree_skb(skb);
2463 		goto out;
2464 	}
2465 
2466 	err = security_netlink_send(sk, skb);
2467 	if (err) {
2468 		kfree_skb(skb);
2469 		goto out;
2470 	}
2471 
2472 	if (dst_group) {
2473 		atomic_inc(&skb->users);
2474 		netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2475 	}
2476 	err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2477 
2478 out:
2479 	scm_destroy(&scm);
2480 	return err;
2481 }
2482 
2483 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2484 			   int flags)
2485 {
2486 	struct scm_cookie scm;
2487 	struct sock *sk = sock->sk;
2488 	struct netlink_sock *nlk = nlk_sk(sk);
2489 	int noblock = flags&MSG_DONTWAIT;
2490 	size_t copied;
2491 	struct sk_buff *skb, *data_skb;
2492 	int err, ret;
2493 
2494 	if (flags&MSG_OOB)
2495 		return -EOPNOTSUPP;
2496 
2497 	copied = 0;
2498 
2499 	skb = skb_recv_datagram(sk, flags, noblock, &err);
2500 	if (skb == NULL)
2501 		goto out;
2502 
2503 	data_skb = skb;
2504 
2505 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2506 	if (unlikely(skb_shinfo(skb)->frag_list)) {
2507 		/*
2508 		 * If this skb has a frag_list, then here that means that we
2509 		 * will have to use the frag_list skb's data for compat tasks
2510 		 * and the regular skb's data for normal (non-compat) tasks.
2511 		 *
2512 		 * If we need to send the compat skb, assign it to the
2513 		 * 'data_skb' variable so that it will be used below for data
2514 		 * copying. We keep 'skb' for everything else, including
2515 		 * freeing both later.
2516 		 */
2517 		if (flags & MSG_CMSG_COMPAT)
2518 			data_skb = skb_shinfo(skb)->frag_list;
2519 	}
2520 #endif
2521 
2522 	/* Record the max length of recvmsg() calls for future allocations */
2523 	nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2524 	nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2525 				     16384);
2526 
2527 	copied = data_skb->len;
2528 	if (len < copied) {
2529 		msg->msg_flags |= MSG_TRUNC;
2530 		copied = len;
2531 	}
2532 
2533 	skb_reset_transport_header(data_skb);
2534 	err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
2535 
2536 	if (msg->msg_name) {
2537 		DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2538 		addr->nl_family = AF_NETLINK;
2539 		addr->nl_pad    = 0;
2540 		addr->nl_pid	= NETLINK_CB(skb).portid;
2541 		addr->nl_groups	= netlink_group_mask(NETLINK_CB(skb).dst_group);
2542 		msg->msg_namelen = sizeof(*addr);
2543 	}
2544 
2545 	if (nlk->flags & NETLINK_F_RECV_PKTINFO)
2546 		netlink_cmsg_recv_pktinfo(msg, skb);
2547 	if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID)
2548 		netlink_cmsg_listen_all_nsid(sk, msg, skb);
2549 
2550 	memset(&scm, 0, sizeof(scm));
2551 	scm.creds = *NETLINK_CREDS(skb);
2552 	if (flags & MSG_TRUNC)
2553 		copied = data_skb->len;
2554 
2555 	skb_free_datagram(sk, skb);
2556 
2557 	if (nlk->cb_running &&
2558 	    atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2559 		ret = netlink_dump(sk);
2560 		if (ret) {
2561 			sk->sk_err = -ret;
2562 			sk->sk_error_report(sk);
2563 		}
2564 	}
2565 
2566 	scm_recv(sock, msg, &scm, flags);
2567 out:
2568 	netlink_rcv_wake(sk);
2569 	return err ? : copied;
2570 }
2571 
2572 static void netlink_data_ready(struct sock *sk)
2573 {
2574 	BUG();
2575 }
2576 
2577 /*
2578  *	We export these functions to other modules. They provide a
2579  *	complete set of kernel non-blocking support for message
2580  *	queueing.
2581  */
2582 
2583 struct sock *
2584 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2585 			struct netlink_kernel_cfg *cfg)
2586 {
2587 	struct socket *sock;
2588 	struct sock *sk;
2589 	struct netlink_sock *nlk;
2590 	struct listeners *listeners = NULL;
2591 	struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2592 	unsigned int groups;
2593 
2594 	BUG_ON(!nl_table);
2595 
2596 	if (unit < 0 || unit >= MAX_LINKS)
2597 		return NULL;
2598 
2599 	if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2600 		return NULL;
2601 
2602 	if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0)
2603 		goto out_sock_release_nosk;
2604 
2605 	sk = sock->sk;
2606 
2607 	if (!cfg || cfg->groups < 32)
2608 		groups = 32;
2609 	else
2610 		groups = cfg->groups;
2611 
2612 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2613 	if (!listeners)
2614 		goto out_sock_release;
2615 
2616 	sk->sk_data_ready = netlink_data_ready;
2617 	if (cfg && cfg->input)
2618 		nlk_sk(sk)->netlink_rcv = cfg->input;
2619 
2620 	if (netlink_insert(sk, 0))
2621 		goto out_sock_release;
2622 
2623 	nlk = nlk_sk(sk);
2624 	nlk->flags |= NETLINK_F_KERNEL_SOCKET;
2625 
2626 	netlink_table_grab();
2627 	if (!nl_table[unit].registered) {
2628 		nl_table[unit].groups = groups;
2629 		rcu_assign_pointer(nl_table[unit].listeners, listeners);
2630 		nl_table[unit].cb_mutex = cb_mutex;
2631 		nl_table[unit].module = module;
2632 		if (cfg) {
2633 			nl_table[unit].bind = cfg->bind;
2634 			nl_table[unit].unbind = cfg->unbind;
2635 			nl_table[unit].flags = cfg->flags;
2636 			if (cfg->compare)
2637 				nl_table[unit].compare = cfg->compare;
2638 		}
2639 		nl_table[unit].registered = 1;
2640 	} else {
2641 		kfree(listeners);
2642 		nl_table[unit].registered++;
2643 	}
2644 	netlink_table_ungrab();
2645 	return sk;
2646 
2647 out_sock_release:
2648 	kfree(listeners);
2649 	netlink_kernel_release(sk);
2650 	return NULL;
2651 
2652 out_sock_release_nosk:
2653 	sock_release(sock);
2654 	return NULL;
2655 }
2656 EXPORT_SYMBOL(__netlink_kernel_create);
2657 
2658 void
2659 netlink_kernel_release(struct sock *sk)
2660 {
2661 	if (sk == NULL || sk->sk_socket == NULL)
2662 		return;
2663 
2664 	sock_release(sk->sk_socket);
2665 }
2666 EXPORT_SYMBOL(netlink_kernel_release);
2667 
2668 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2669 {
2670 	struct listeners *new, *old;
2671 	struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2672 
2673 	if (groups < 32)
2674 		groups = 32;
2675 
2676 	if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2677 		new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2678 		if (!new)
2679 			return -ENOMEM;
2680 		old = nl_deref_protected(tbl->listeners);
2681 		memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2682 		rcu_assign_pointer(tbl->listeners, new);
2683 
2684 		kfree_rcu(old, rcu);
2685 	}
2686 	tbl->groups = groups;
2687 
2688 	return 0;
2689 }
2690 
2691 /**
2692  * netlink_change_ngroups - change number of multicast groups
2693  *
2694  * This changes the number of multicast groups that are available
2695  * on a certain netlink family. Note that it is not possible to
2696  * change the number of groups to below 32. Also note that it does
2697  * not implicitly call netlink_clear_multicast_users() when the
2698  * number of groups is reduced.
2699  *
2700  * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2701  * @groups: The new number of groups.
2702  */
2703 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2704 {
2705 	int err;
2706 
2707 	netlink_table_grab();
2708 	err = __netlink_change_ngroups(sk, groups);
2709 	netlink_table_ungrab();
2710 
2711 	return err;
2712 }
2713 
2714 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2715 {
2716 	struct sock *sk;
2717 	struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2718 
2719 	sk_for_each_bound(sk, &tbl->mc_list)
2720 		netlink_update_socket_mc(nlk_sk(sk), group, 0);
2721 }
2722 
2723 struct nlmsghdr *
2724 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2725 {
2726 	struct nlmsghdr *nlh;
2727 	int size = nlmsg_msg_size(len);
2728 
2729 	nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2730 	nlh->nlmsg_type = type;
2731 	nlh->nlmsg_len = size;
2732 	nlh->nlmsg_flags = flags;
2733 	nlh->nlmsg_pid = portid;
2734 	nlh->nlmsg_seq = seq;
2735 	if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2736 		memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2737 	return nlh;
2738 }
2739 EXPORT_SYMBOL(__nlmsg_put);
2740 
2741 /*
2742  * It looks a bit ugly.
2743  * It would be better to create kernel thread.
2744  */
2745 
2746 static int netlink_dump(struct sock *sk)
2747 {
2748 	struct netlink_sock *nlk = nlk_sk(sk);
2749 	struct netlink_callback *cb;
2750 	struct sk_buff *skb = NULL;
2751 	struct nlmsghdr *nlh;
2752 	int len, err = -ENOBUFS;
2753 	int alloc_size;
2754 
2755 	mutex_lock(nlk->cb_mutex);
2756 	if (!nlk->cb_running) {
2757 		err = -EINVAL;
2758 		goto errout_skb;
2759 	}
2760 
2761 	cb = &nlk->cb;
2762 	alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2763 
2764 	if (!netlink_rx_is_mmaped(sk) &&
2765 	    atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2766 		goto errout_skb;
2767 
2768 	/* NLMSG_GOODSIZE is small to avoid high order allocations being
2769 	 * required, but it makes sense to _attempt_ a 16K bytes allocation
2770 	 * to reduce number of system calls on dump operations, if user
2771 	 * ever provided a big enough buffer.
2772 	 */
2773 	if (alloc_size < nlk->max_recvmsg_len) {
2774 		skb = netlink_alloc_skb(sk,
2775 					nlk->max_recvmsg_len,
2776 					nlk->portid,
2777 					GFP_KERNEL |
2778 					__GFP_NOWARN |
2779 					__GFP_NORETRY);
2780 		/* available room should be exact amount to avoid MSG_TRUNC */
2781 		if (skb)
2782 			skb_reserve(skb, skb_tailroom(skb) -
2783 					 nlk->max_recvmsg_len);
2784 	}
2785 	if (!skb)
2786 		skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2787 					GFP_KERNEL);
2788 	if (!skb)
2789 		goto errout_skb;
2790 	netlink_skb_set_owner_r(skb, sk);
2791 
2792 	len = cb->dump(skb, cb);
2793 
2794 	if (len > 0) {
2795 		mutex_unlock(nlk->cb_mutex);
2796 
2797 		if (sk_filter(sk, skb))
2798 			kfree_skb(skb);
2799 		else
2800 			__netlink_sendskb(sk, skb);
2801 		return 0;
2802 	}
2803 
2804 	nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2805 	if (!nlh)
2806 		goto errout_skb;
2807 
2808 	nl_dump_check_consistent(cb, nlh);
2809 
2810 	memcpy(nlmsg_data(nlh), &len, sizeof(len));
2811 
2812 	if (sk_filter(sk, skb))
2813 		kfree_skb(skb);
2814 	else
2815 		__netlink_sendskb(sk, skb);
2816 
2817 	if (cb->done)
2818 		cb->done(cb);
2819 
2820 	nlk->cb_running = false;
2821 	mutex_unlock(nlk->cb_mutex);
2822 	module_put(cb->module);
2823 	consume_skb(cb->skb);
2824 	return 0;
2825 
2826 errout_skb:
2827 	mutex_unlock(nlk->cb_mutex);
2828 	kfree_skb(skb);
2829 	return err;
2830 }
2831 
2832 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2833 			 const struct nlmsghdr *nlh,
2834 			 struct netlink_dump_control *control)
2835 {
2836 	struct netlink_callback *cb;
2837 	struct sock *sk;
2838 	struct netlink_sock *nlk;
2839 	int ret;
2840 
2841 	/* Memory mapped dump requests need to be copied to avoid looping
2842 	 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2843 	 * a reference to the skb.
2844 	 */
2845 	if (netlink_skb_is_mmaped(skb)) {
2846 		skb = skb_copy(skb, GFP_KERNEL);
2847 		if (skb == NULL)
2848 			return -ENOBUFS;
2849 	} else
2850 		atomic_inc(&skb->users);
2851 
2852 	sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2853 	if (sk == NULL) {
2854 		ret = -ECONNREFUSED;
2855 		goto error_free;
2856 	}
2857 
2858 	nlk = nlk_sk(sk);
2859 	mutex_lock(nlk->cb_mutex);
2860 	/* A dump is in progress... */
2861 	if (nlk->cb_running) {
2862 		ret = -EBUSY;
2863 		goto error_unlock;
2864 	}
2865 	/* add reference of module which cb->dump belongs to */
2866 	if (!try_module_get(control->module)) {
2867 		ret = -EPROTONOSUPPORT;
2868 		goto error_unlock;
2869 	}
2870 
2871 	cb = &nlk->cb;
2872 	memset(cb, 0, sizeof(*cb));
2873 	cb->dump = control->dump;
2874 	cb->done = control->done;
2875 	cb->nlh = nlh;
2876 	cb->data = control->data;
2877 	cb->module = control->module;
2878 	cb->min_dump_alloc = control->min_dump_alloc;
2879 	cb->skb = skb;
2880 
2881 	nlk->cb_running = true;
2882 
2883 	mutex_unlock(nlk->cb_mutex);
2884 
2885 	ret = netlink_dump(sk);
2886 	sock_put(sk);
2887 
2888 	if (ret)
2889 		return ret;
2890 
2891 	/* We successfully started a dump, by returning -EINTR we
2892 	 * signal not to send ACK even if it was requested.
2893 	 */
2894 	return -EINTR;
2895 
2896 error_unlock:
2897 	sock_put(sk);
2898 	mutex_unlock(nlk->cb_mutex);
2899 error_free:
2900 	kfree_skb(skb);
2901 	return ret;
2902 }
2903 EXPORT_SYMBOL(__netlink_dump_start);
2904 
2905 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2906 {
2907 	struct sk_buff *skb;
2908 	struct nlmsghdr *rep;
2909 	struct nlmsgerr *errmsg;
2910 	size_t payload = sizeof(*errmsg);
2911 	struct netlink_sock *nlk = nlk_sk(NETLINK_CB(in_skb).sk);
2912 
2913 	/* Error messages get the original request appened, unless the user
2914 	 * requests to cap the error message.
2915 	 */
2916 	if (!(nlk->flags & NETLINK_F_CAP_ACK) && err)
2917 		payload += nlmsg_len(nlh);
2918 
2919 	skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2920 				NETLINK_CB(in_skb).portid, GFP_KERNEL);
2921 	if (!skb) {
2922 		struct sock *sk;
2923 
2924 		sk = netlink_lookup(sock_net(in_skb->sk),
2925 				    in_skb->sk->sk_protocol,
2926 				    NETLINK_CB(in_skb).portid);
2927 		if (sk) {
2928 			sk->sk_err = ENOBUFS;
2929 			sk->sk_error_report(sk);
2930 			sock_put(sk);
2931 		}
2932 		return;
2933 	}
2934 
2935 	rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2936 			  NLMSG_ERROR, payload, 0);
2937 	errmsg = nlmsg_data(rep);
2938 	errmsg->error = err;
2939 	memcpy(&errmsg->msg, nlh, payload > sizeof(*errmsg) ? nlh->nlmsg_len : sizeof(*nlh));
2940 	netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2941 }
2942 EXPORT_SYMBOL(netlink_ack);
2943 
2944 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2945 						     struct nlmsghdr *))
2946 {
2947 	struct nlmsghdr *nlh;
2948 	int err;
2949 
2950 	while (skb->len >= nlmsg_total_size(0)) {
2951 		int msglen;
2952 
2953 		nlh = nlmsg_hdr(skb);
2954 		err = 0;
2955 
2956 		if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2957 			return 0;
2958 
2959 		/* Only requests are handled by the kernel */
2960 		if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2961 			goto ack;
2962 
2963 		/* Skip control messages */
2964 		if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2965 			goto ack;
2966 
2967 		err = cb(skb, nlh);
2968 		if (err == -EINTR)
2969 			goto skip;
2970 
2971 ack:
2972 		if (nlh->nlmsg_flags & NLM_F_ACK || err)
2973 			netlink_ack(skb, nlh, err);
2974 
2975 skip:
2976 		msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2977 		if (msglen > skb->len)
2978 			msglen = skb->len;
2979 		skb_pull(skb, msglen);
2980 	}
2981 
2982 	return 0;
2983 }
2984 EXPORT_SYMBOL(netlink_rcv_skb);
2985 
2986 /**
2987  * nlmsg_notify - send a notification netlink message
2988  * @sk: netlink socket to use
2989  * @skb: notification message
2990  * @portid: destination netlink portid for reports or 0
2991  * @group: destination multicast group or 0
2992  * @report: 1 to report back, 0 to disable
2993  * @flags: allocation flags
2994  */
2995 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2996 		 unsigned int group, int report, gfp_t flags)
2997 {
2998 	int err = 0;
2999 
3000 	if (group) {
3001 		int exclude_portid = 0;
3002 
3003 		if (report) {
3004 			atomic_inc(&skb->users);
3005 			exclude_portid = portid;
3006 		}
3007 
3008 		/* errors reported via destination sk->sk_err, but propagate
3009 		 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
3010 		err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
3011 	}
3012 
3013 	if (report) {
3014 		int err2;
3015 
3016 		err2 = nlmsg_unicast(sk, skb, portid);
3017 		if (!err || err == -ESRCH)
3018 			err = err2;
3019 	}
3020 
3021 	return err;
3022 }
3023 EXPORT_SYMBOL(nlmsg_notify);
3024 
3025 #ifdef CONFIG_PROC_FS
3026 struct nl_seq_iter {
3027 	struct seq_net_private p;
3028 	struct rhashtable_iter hti;
3029 	int link;
3030 };
3031 
3032 static int netlink_walk_start(struct nl_seq_iter *iter)
3033 {
3034 	int err;
3035 
3036 	err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti);
3037 	if (err) {
3038 		iter->link = MAX_LINKS;
3039 		return err;
3040 	}
3041 
3042 	err = rhashtable_walk_start(&iter->hti);
3043 	return err == -EAGAIN ? 0 : err;
3044 }
3045 
3046 static void netlink_walk_stop(struct nl_seq_iter *iter)
3047 {
3048 	rhashtable_walk_stop(&iter->hti);
3049 	rhashtable_walk_exit(&iter->hti);
3050 }
3051 
3052 static void *__netlink_seq_next(struct seq_file *seq)
3053 {
3054 	struct nl_seq_iter *iter = seq->private;
3055 	struct netlink_sock *nlk;
3056 
3057 	do {
3058 		for (;;) {
3059 			int err;
3060 
3061 			nlk = rhashtable_walk_next(&iter->hti);
3062 
3063 			if (IS_ERR(nlk)) {
3064 				if (PTR_ERR(nlk) == -EAGAIN)
3065 					continue;
3066 
3067 				return nlk;
3068 			}
3069 
3070 			if (nlk)
3071 				break;
3072 
3073 			netlink_walk_stop(iter);
3074 			if (++iter->link >= MAX_LINKS)
3075 				return NULL;
3076 
3077 			err = netlink_walk_start(iter);
3078 			if (err)
3079 				return ERR_PTR(err);
3080 		}
3081 	} while (sock_net(&nlk->sk) != seq_file_net(seq));
3082 
3083 	return nlk;
3084 }
3085 
3086 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp)
3087 {
3088 	struct nl_seq_iter *iter = seq->private;
3089 	void *obj = SEQ_START_TOKEN;
3090 	loff_t pos;
3091 	int err;
3092 
3093 	iter->link = 0;
3094 
3095 	err = netlink_walk_start(iter);
3096 	if (err)
3097 		return ERR_PTR(err);
3098 
3099 	for (pos = *posp; pos && obj && !IS_ERR(obj); pos--)
3100 		obj = __netlink_seq_next(seq);
3101 
3102 	return obj;
3103 }
3104 
3105 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3106 {
3107 	++*pos;
3108 	return __netlink_seq_next(seq);
3109 }
3110 
3111 static void netlink_seq_stop(struct seq_file *seq, void *v)
3112 {
3113 	struct nl_seq_iter *iter = seq->private;
3114 
3115 	if (iter->link >= MAX_LINKS)
3116 		return;
3117 
3118 	netlink_walk_stop(iter);
3119 }
3120 
3121 
3122 static int netlink_seq_show(struct seq_file *seq, void *v)
3123 {
3124 	if (v == SEQ_START_TOKEN) {
3125 		seq_puts(seq,
3126 			 "sk       Eth Pid    Groups   "
3127 			 "Rmem     Wmem     Dump     Locks     Drops     Inode\n");
3128 	} else {
3129 		struct sock *s = v;
3130 		struct netlink_sock *nlk = nlk_sk(s);
3131 
3132 		seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
3133 			   s,
3134 			   s->sk_protocol,
3135 			   nlk->portid,
3136 			   nlk->groups ? (u32)nlk->groups[0] : 0,
3137 			   sk_rmem_alloc_get(s),
3138 			   sk_wmem_alloc_get(s),
3139 			   nlk->cb_running,
3140 			   atomic_read(&s->sk_refcnt),
3141 			   atomic_read(&s->sk_drops),
3142 			   sock_i_ino(s)
3143 			);
3144 
3145 	}
3146 	return 0;
3147 }
3148 
3149 static const struct seq_operations netlink_seq_ops = {
3150 	.start  = netlink_seq_start,
3151 	.next   = netlink_seq_next,
3152 	.stop   = netlink_seq_stop,
3153 	.show   = netlink_seq_show,
3154 };
3155 
3156 
3157 static int netlink_seq_open(struct inode *inode, struct file *file)
3158 {
3159 	return seq_open_net(inode, file, &netlink_seq_ops,
3160 				sizeof(struct nl_seq_iter));
3161 }
3162 
3163 static const struct file_operations netlink_seq_fops = {
3164 	.owner		= THIS_MODULE,
3165 	.open		= netlink_seq_open,
3166 	.read		= seq_read,
3167 	.llseek		= seq_lseek,
3168 	.release	= seq_release_net,
3169 };
3170 
3171 #endif
3172 
3173 int netlink_register_notifier(struct notifier_block *nb)
3174 {
3175 	return atomic_notifier_chain_register(&netlink_chain, nb);
3176 }
3177 EXPORT_SYMBOL(netlink_register_notifier);
3178 
3179 int netlink_unregister_notifier(struct notifier_block *nb)
3180 {
3181 	return atomic_notifier_chain_unregister(&netlink_chain, nb);
3182 }
3183 EXPORT_SYMBOL(netlink_unregister_notifier);
3184 
3185 static const struct proto_ops netlink_ops = {
3186 	.family =	PF_NETLINK,
3187 	.owner =	THIS_MODULE,
3188 	.release =	netlink_release,
3189 	.bind =		netlink_bind,
3190 	.connect =	netlink_connect,
3191 	.socketpair =	sock_no_socketpair,
3192 	.accept =	sock_no_accept,
3193 	.getname =	netlink_getname,
3194 	.poll =		netlink_poll,
3195 	.ioctl =	sock_no_ioctl,
3196 	.listen =	sock_no_listen,
3197 	.shutdown =	sock_no_shutdown,
3198 	.setsockopt =	netlink_setsockopt,
3199 	.getsockopt =	netlink_getsockopt,
3200 	.sendmsg =	netlink_sendmsg,
3201 	.recvmsg =	netlink_recvmsg,
3202 	.mmap =		netlink_mmap,
3203 	.sendpage =	sock_no_sendpage,
3204 };
3205 
3206 static const struct net_proto_family netlink_family_ops = {
3207 	.family = PF_NETLINK,
3208 	.create = netlink_create,
3209 	.owner	= THIS_MODULE,	/* for consistency 8) */
3210 };
3211 
3212 static int __net_init netlink_net_init(struct net *net)
3213 {
3214 #ifdef CONFIG_PROC_FS
3215 	if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3216 		return -ENOMEM;
3217 #endif
3218 	return 0;
3219 }
3220 
3221 static void __net_exit netlink_net_exit(struct net *net)
3222 {
3223 #ifdef CONFIG_PROC_FS
3224 	remove_proc_entry("netlink", net->proc_net);
3225 #endif
3226 }
3227 
3228 static void __init netlink_add_usersock_entry(void)
3229 {
3230 	struct listeners *listeners;
3231 	int groups = 32;
3232 
3233 	listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3234 	if (!listeners)
3235 		panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3236 
3237 	netlink_table_grab();
3238 
3239 	nl_table[NETLINK_USERSOCK].groups = groups;
3240 	rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3241 	nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3242 	nl_table[NETLINK_USERSOCK].registered = 1;
3243 	nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3244 
3245 	netlink_table_ungrab();
3246 }
3247 
3248 static struct pernet_operations __net_initdata netlink_net_ops = {
3249 	.init = netlink_net_init,
3250 	.exit = netlink_net_exit,
3251 };
3252 
3253 static inline u32 netlink_hash(const void *data, u32 len, u32 seed)
3254 {
3255 	const struct netlink_sock *nlk = data;
3256 	struct netlink_compare_arg arg;
3257 
3258 	netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid);
3259 	return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed);
3260 }
3261 
3262 static const struct rhashtable_params netlink_rhashtable_params = {
3263 	.head_offset = offsetof(struct netlink_sock, node),
3264 	.key_len = netlink_compare_arg_len,
3265 	.obj_hashfn = netlink_hash,
3266 	.obj_cmpfn = netlink_compare,
3267 	.automatic_shrinking = true,
3268 };
3269 
3270 static int __init netlink_proto_init(void)
3271 {
3272 	int i;
3273 	int err = proto_register(&netlink_proto, 0);
3274 
3275 	if (err != 0)
3276 		goto out;
3277 
3278 	BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3279 
3280 	nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3281 	if (!nl_table)
3282 		goto panic;
3283 
3284 	for (i = 0; i < MAX_LINKS; i++) {
3285 		if (rhashtable_init(&nl_table[i].hash,
3286 				    &netlink_rhashtable_params) < 0) {
3287 			while (--i > 0)
3288 				rhashtable_destroy(&nl_table[i].hash);
3289 			kfree(nl_table);
3290 			goto panic;
3291 		}
3292 	}
3293 
3294 	INIT_LIST_HEAD(&netlink_tap_all);
3295 
3296 	netlink_add_usersock_entry();
3297 
3298 	sock_register(&netlink_family_ops);
3299 	register_pernet_subsys(&netlink_net_ops);
3300 	/* The netlink device handler may be needed early. */
3301 	rtnetlink_init();
3302 out:
3303 	return err;
3304 panic:
3305 	panic("netlink_init: Cannot allocate nl_table\n");
3306 }
3307 
3308 core_initcall(netlink_proto_init);
3309