1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * 12 * Transmit and frame generation functions. 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/skbuff.h> 18 #include <linux/etherdevice.h> 19 #include <linux/bitmap.h> 20 #include <linux/rcupdate.h> 21 #include <linux/export.h> 22 #include <net/net_namespace.h> 23 #include <net/ieee80211_radiotap.h> 24 #include <net/cfg80211.h> 25 #include <net/mac80211.h> 26 #include <asm/unaligned.h> 27 28 #include "ieee80211_i.h" 29 #include "driver-ops.h" 30 #include "led.h" 31 #include "mesh.h" 32 #include "wep.h" 33 #include "wpa.h" 34 #include "wme.h" 35 #include "rate.h" 36 37 /* misc utils */ 38 39 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, 40 struct sk_buff *skb, int group_addr, 41 int next_frag_len) 42 { 43 int rate, mrate, erp, dur, i; 44 struct ieee80211_rate *txrate; 45 struct ieee80211_local *local = tx->local; 46 struct ieee80211_supported_band *sband; 47 struct ieee80211_hdr *hdr; 48 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 49 50 /* assume HW handles this */ 51 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS) 52 return 0; 53 54 /* uh huh? */ 55 if (WARN_ON_ONCE(info->control.rates[0].idx < 0)) 56 return 0; 57 58 sband = local->hw.wiphy->bands[tx->channel->band]; 59 txrate = &sband->bitrates[info->control.rates[0].idx]; 60 61 erp = txrate->flags & IEEE80211_RATE_ERP_G; 62 63 /* 64 * data and mgmt (except PS Poll): 65 * - during CFP: 32768 66 * - during contention period: 67 * if addr1 is group address: 0 68 * if more fragments = 0 and addr1 is individual address: time to 69 * transmit one ACK plus SIFS 70 * if more fragments = 1 and addr1 is individual address: time to 71 * transmit next fragment plus 2 x ACK plus 3 x SIFS 72 * 73 * IEEE 802.11, 9.6: 74 * - control response frame (CTS or ACK) shall be transmitted using the 75 * same rate as the immediately previous frame in the frame exchange 76 * sequence, if this rate belongs to the PHY mandatory rates, or else 77 * at the highest possible rate belonging to the PHY rates in the 78 * BSSBasicRateSet 79 */ 80 hdr = (struct ieee80211_hdr *)skb->data; 81 if (ieee80211_is_ctl(hdr->frame_control)) { 82 /* TODO: These control frames are not currently sent by 83 * mac80211, but should they be implemented, this function 84 * needs to be updated to support duration field calculation. 85 * 86 * RTS: time needed to transmit pending data/mgmt frame plus 87 * one CTS frame plus one ACK frame plus 3 x SIFS 88 * CTS: duration of immediately previous RTS minus time 89 * required to transmit CTS and its SIFS 90 * ACK: 0 if immediately previous directed data/mgmt had 91 * more=0, with more=1 duration in ACK frame is duration 92 * from previous frame minus time needed to transmit ACK 93 * and its SIFS 94 * PS Poll: BIT(15) | BIT(14) | aid 95 */ 96 return 0; 97 } 98 99 /* data/mgmt */ 100 if (0 /* FIX: data/mgmt during CFP */) 101 return cpu_to_le16(32768); 102 103 if (group_addr) /* Group address as the destination - no ACK */ 104 return 0; 105 106 /* Individual destination address: 107 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) 108 * CTS and ACK frames shall be transmitted using the highest rate in 109 * basic rate set that is less than or equal to the rate of the 110 * immediately previous frame and that is using the same modulation 111 * (CCK or OFDM). If no basic rate set matches with these requirements, 112 * the highest mandatory rate of the PHY that is less than or equal to 113 * the rate of the previous frame is used. 114 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps 115 */ 116 rate = -1; 117 /* use lowest available if everything fails */ 118 mrate = sband->bitrates[0].bitrate; 119 for (i = 0; i < sband->n_bitrates; i++) { 120 struct ieee80211_rate *r = &sband->bitrates[i]; 121 122 if (r->bitrate > txrate->bitrate) 123 break; 124 125 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i)) 126 rate = r->bitrate; 127 128 switch (sband->band) { 129 case IEEE80211_BAND_2GHZ: { 130 u32 flag; 131 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) 132 flag = IEEE80211_RATE_MANDATORY_G; 133 else 134 flag = IEEE80211_RATE_MANDATORY_B; 135 if (r->flags & flag) 136 mrate = r->bitrate; 137 break; 138 } 139 case IEEE80211_BAND_5GHZ: 140 if (r->flags & IEEE80211_RATE_MANDATORY_A) 141 mrate = r->bitrate; 142 break; 143 case IEEE80211_NUM_BANDS: 144 WARN_ON(1); 145 break; 146 } 147 } 148 if (rate == -1) { 149 /* No matching basic rate found; use highest suitable mandatory 150 * PHY rate */ 151 rate = mrate; 152 } 153 154 /* Don't calculate ACKs for QoS Frames with NoAck Policy set */ 155 if (ieee80211_is_data_qos(hdr->frame_control) && 156 *(ieee80211_get_qos_ctl(hdr)) | IEEE80211_QOS_CTL_ACK_POLICY_NOACK) 157 dur = 0; 158 else 159 /* Time needed to transmit ACK 160 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up 161 * to closest integer */ 162 dur = ieee80211_frame_duration(local, 10, rate, erp, 163 tx->sdata->vif.bss_conf.use_short_preamble); 164 165 if (next_frag_len) { 166 /* Frame is fragmented: duration increases with time needed to 167 * transmit next fragment plus ACK and 2 x SIFS. */ 168 dur *= 2; /* ACK + SIFS */ 169 /* next fragment */ 170 dur += ieee80211_frame_duration(local, next_frag_len, 171 txrate->bitrate, erp, 172 tx->sdata->vif.bss_conf.use_short_preamble); 173 } 174 175 return cpu_to_le16(dur); 176 } 177 178 static inline int is_ieee80211_device(struct ieee80211_local *local, 179 struct net_device *dev) 180 { 181 return local == wdev_priv(dev->ieee80211_ptr); 182 } 183 184 /* tx handlers */ 185 static ieee80211_tx_result debug_noinline 186 ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx) 187 { 188 struct ieee80211_local *local = tx->local; 189 struct ieee80211_if_managed *ifmgd; 190 191 /* driver doesn't support power save */ 192 if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS)) 193 return TX_CONTINUE; 194 195 /* hardware does dynamic power save */ 196 if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS) 197 return TX_CONTINUE; 198 199 /* dynamic power save disabled */ 200 if (local->hw.conf.dynamic_ps_timeout <= 0) 201 return TX_CONTINUE; 202 203 /* we are scanning, don't enable power save */ 204 if (local->scanning) 205 return TX_CONTINUE; 206 207 if (!local->ps_sdata) 208 return TX_CONTINUE; 209 210 /* No point if we're going to suspend */ 211 if (local->quiescing) 212 return TX_CONTINUE; 213 214 /* dynamic ps is supported only in managed mode */ 215 if (tx->sdata->vif.type != NL80211_IFTYPE_STATION) 216 return TX_CONTINUE; 217 218 ifmgd = &tx->sdata->u.mgd; 219 220 /* 221 * Don't wakeup from power save if u-apsd is enabled, voip ac has 222 * u-apsd enabled and the frame is in voip class. This effectively 223 * means that even if all access categories have u-apsd enabled, in 224 * practise u-apsd is only used with the voip ac. This is a 225 * workaround for the case when received voip class packets do not 226 * have correct qos tag for some reason, due the network or the 227 * peer application. 228 * 229 * Note: local->uapsd_queues access is racy here. If the value is 230 * changed via debugfs, user needs to reassociate manually to have 231 * everything in sync. 232 */ 233 if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED) 234 && (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) 235 && skb_get_queue_mapping(tx->skb) == 0) 236 return TX_CONTINUE; 237 238 if (local->hw.conf.flags & IEEE80211_CONF_PS) { 239 ieee80211_stop_queues_by_reason(&local->hw, 240 IEEE80211_QUEUE_STOP_REASON_PS); 241 ifmgd->flags &= ~IEEE80211_STA_NULLFUNC_ACKED; 242 ieee80211_queue_work(&local->hw, 243 &local->dynamic_ps_disable_work); 244 } 245 246 /* Don't restart the timer if we're not disassociated */ 247 if (!ifmgd->associated) 248 return TX_CONTINUE; 249 250 mod_timer(&local->dynamic_ps_timer, jiffies + 251 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 252 253 return TX_CONTINUE; 254 } 255 256 static ieee80211_tx_result debug_noinline 257 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx) 258 { 259 260 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 261 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 262 bool assoc = false; 263 264 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) 265 return TX_CONTINUE; 266 267 if (unlikely(test_bit(SCAN_SW_SCANNING, &tx->local->scanning)) && 268 test_bit(SDATA_STATE_OFFCHANNEL, &tx->sdata->state) && 269 !ieee80211_is_probe_req(hdr->frame_control) && 270 !ieee80211_is_nullfunc(hdr->frame_control)) 271 /* 272 * When software scanning only nullfunc frames (to notify 273 * the sleep state to the AP) and probe requests (for the 274 * active scan) are allowed, all other frames should not be 275 * sent and we should not get here, but if we do 276 * nonetheless, drop them to avoid sending them 277 * off-channel. See the link below and 278 * ieee80211_start_scan() for more. 279 * 280 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089 281 */ 282 return TX_DROP; 283 284 if (tx->sdata->vif.type == NL80211_IFTYPE_WDS) 285 return TX_CONTINUE; 286 287 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 288 return TX_CONTINUE; 289 290 if (tx->flags & IEEE80211_TX_PS_BUFFERED) 291 return TX_CONTINUE; 292 293 if (tx->sta) 294 assoc = test_sta_flag(tx->sta, WLAN_STA_ASSOC); 295 296 if (likely(tx->flags & IEEE80211_TX_UNICAST)) { 297 if (unlikely(!assoc && 298 ieee80211_is_data(hdr->frame_control))) { 299 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 300 printk(KERN_DEBUG "%s: dropped data frame to not " 301 "associated station %pM\n", 302 tx->sdata->name, hdr->addr1); 303 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ 304 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); 305 return TX_DROP; 306 } 307 } else if (unlikely(tx->sdata->vif.type == NL80211_IFTYPE_AP && 308 ieee80211_is_data(hdr->frame_control) && 309 !atomic_read(&tx->sdata->u.ap.num_sta_authorized))) { 310 /* 311 * No associated STAs - no need to send multicast 312 * frames. 313 */ 314 return TX_DROP; 315 } 316 317 return TX_CONTINUE; 318 } 319 320 /* This function is called whenever the AP is about to exceed the maximum limit 321 * of buffered frames for power saving STAs. This situation should not really 322 * happen often during normal operation, so dropping the oldest buffered packet 323 * from each queue should be OK to make some room for new frames. */ 324 static void purge_old_ps_buffers(struct ieee80211_local *local) 325 { 326 int total = 0, purged = 0; 327 struct sk_buff *skb; 328 struct ieee80211_sub_if_data *sdata; 329 struct sta_info *sta; 330 331 /* 332 * virtual interfaces are protected by RCU 333 */ 334 rcu_read_lock(); 335 336 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 337 struct ieee80211_if_ap *ap; 338 if (sdata->vif.type != NL80211_IFTYPE_AP) 339 continue; 340 ap = &sdata->u.ap; 341 skb = skb_dequeue(&ap->ps_bc_buf); 342 if (skb) { 343 purged++; 344 dev_kfree_skb(skb); 345 } 346 total += skb_queue_len(&ap->ps_bc_buf); 347 } 348 349 /* 350 * Drop one frame from each station from the lowest-priority 351 * AC that has frames at all. 352 */ 353 list_for_each_entry_rcu(sta, &local->sta_list, list) { 354 int ac; 355 356 for (ac = IEEE80211_AC_BK; ac >= IEEE80211_AC_VO; ac--) { 357 skb = skb_dequeue(&sta->ps_tx_buf[ac]); 358 total += skb_queue_len(&sta->ps_tx_buf[ac]); 359 if (skb) { 360 purged++; 361 dev_kfree_skb(skb); 362 break; 363 } 364 } 365 } 366 367 rcu_read_unlock(); 368 369 local->total_ps_buffered = total; 370 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 371 wiphy_debug(local->hw.wiphy, "PS buffers full - purged %d frames\n", 372 purged); 373 #endif 374 } 375 376 static ieee80211_tx_result 377 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx) 378 { 379 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 380 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 381 382 /* 383 * broadcast/multicast frame 384 * 385 * If any of the associated stations is in power save mode, 386 * the frame is buffered to be sent after DTIM beacon frame. 387 * This is done either by the hardware or us. 388 */ 389 390 /* powersaving STAs only in AP/VLAN mode */ 391 if (!tx->sdata->bss) 392 return TX_CONTINUE; 393 394 /* no buffering for ordered frames */ 395 if (ieee80211_has_order(hdr->frame_control)) 396 return TX_CONTINUE; 397 398 /* no stations in PS mode */ 399 if (!atomic_read(&tx->sdata->bss->num_sta_ps)) 400 return TX_CONTINUE; 401 402 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM; 403 404 /* device releases frame after DTIM beacon */ 405 if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING)) 406 return TX_CONTINUE; 407 408 /* buffered in mac80211 */ 409 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 410 purge_old_ps_buffers(tx->local); 411 412 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) { 413 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 414 if (net_ratelimit()) 415 printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n", 416 tx->sdata->name); 417 #endif 418 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); 419 } else 420 tx->local->total_ps_buffered++; 421 422 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); 423 424 return TX_QUEUED; 425 } 426 427 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta, 428 struct sk_buff *skb) 429 { 430 if (!ieee80211_is_mgmt(fc)) 431 return 0; 432 433 if (sta == NULL || !test_sta_flag(sta, WLAN_STA_MFP)) 434 return 0; 435 436 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) 437 skb->data)) 438 return 0; 439 440 return 1; 441 } 442 443 static ieee80211_tx_result 444 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx) 445 { 446 struct sta_info *sta = tx->sta; 447 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 448 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 449 struct ieee80211_local *local = tx->local; 450 451 if (unlikely(!sta || 452 ieee80211_is_probe_resp(hdr->frame_control) || 453 ieee80211_is_auth(hdr->frame_control) || 454 ieee80211_is_assoc_resp(hdr->frame_control) || 455 ieee80211_is_reassoc_resp(hdr->frame_control))) 456 return TX_CONTINUE; 457 458 if (unlikely((test_sta_flag(sta, WLAN_STA_PS_STA) || 459 test_sta_flag(sta, WLAN_STA_PS_DRIVER)) && 460 !(info->flags & IEEE80211_TX_CTL_POLL_RESPONSE))) { 461 int ac = skb_get_queue_mapping(tx->skb); 462 463 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 464 printk(KERN_DEBUG "STA %pM aid %d: PS buffer for AC %d\n", 465 sta->sta.addr, sta->sta.aid, ac); 466 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 467 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) 468 purge_old_ps_buffers(tx->local); 469 if (skb_queue_len(&sta->ps_tx_buf[ac]) >= STA_MAX_TX_BUFFER) { 470 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf[ac]); 471 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 472 if (net_ratelimit()) 473 printk(KERN_DEBUG "%s: STA %pM TX buffer for " 474 "AC %d full - dropping oldest frame\n", 475 tx->sdata->name, sta->sta.addr, ac); 476 #endif 477 dev_kfree_skb(old); 478 } else 479 tx->local->total_ps_buffered++; 480 481 info->control.jiffies = jiffies; 482 info->control.vif = &tx->sdata->vif; 483 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 484 skb_queue_tail(&sta->ps_tx_buf[ac], tx->skb); 485 486 if (!timer_pending(&local->sta_cleanup)) 487 mod_timer(&local->sta_cleanup, 488 round_jiffies(jiffies + 489 STA_INFO_CLEANUP_INTERVAL)); 490 491 /* 492 * We queued up some frames, so the TIM bit might 493 * need to be set, recalculate it. 494 */ 495 sta_info_recalc_tim(sta); 496 497 return TX_QUEUED; 498 } 499 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG 500 else if (unlikely(test_sta_flag(sta, WLAN_STA_PS_STA))) { 501 printk(KERN_DEBUG 502 "%s: STA %pM in PS mode, but polling/in SP -> send frame\n", 503 tx->sdata->name, sta->sta.addr); 504 } 505 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ 506 507 return TX_CONTINUE; 508 } 509 510 static ieee80211_tx_result debug_noinline 511 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx) 512 { 513 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED)) 514 return TX_CONTINUE; 515 516 if (tx->flags & IEEE80211_TX_UNICAST) 517 return ieee80211_tx_h_unicast_ps_buf(tx); 518 else 519 return ieee80211_tx_h_multicast_ps_buf(tx); 520 } 521 522 static ieee80211_tx_result debug_noinline 523 ieee80211_tx_h_check_control_port_protocol(struct ieee80211_tx_data *tx) 524 { 525 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 526 527 if (unlikely(tx->sdata->control_port_protocol == tx->skb->protocol && 528 tx->sdata->control_port_no_encrypt)) 529 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 530 531 return TX_CONTINUE; 532 } 533 534 static ieee80211_tx_result debug_noinline 535 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx) 536 { 537 struct ieee80211_key *key = NULL; 538 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 539 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 540 541 if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT)) 542 tx->key = NULL; 543 else if (tx->sta && (key = rcu_dereference(tx->sta->ptk))) 544 tx->key = key; 545 else if (ieee80211_is_mgmt(hdr->frame_control) && 546 is_multicast_ether_addr(hdr->addr1) && 547 ieee80211_is_robust_mgmt_frame(hdr) && 548 (key = rcu_dereference(tx->sdata->default_mgmt_key))) 549 tx->key = key; 550 else if (is_multicast_ether_addr(hdr->addr1) && 551 (key = rcu_dereference(tx->sdata->default_multicast_key))) 552 tx->key = key; 553 else if (!is_multicast_ether_addr(hdr->addr1) && 554 (key = rcu_dereference(tx->sdata->default_unicast_key))) 555 tx->key = key; 556 else if (tx->sdata->drop_unencrypted && 557 (tx->skb->protocol != tx->sdata->control_port_protocol) && 558 !(info->flags & IEEE80211_TX_CTL_INJECTED) && 559 (!ieee80211_is_robust_mgmt_frame(hdr) || 560 (ieee80211_is_action(hdr->frame_control) && 561 tx->sta && test_sta_flag(tx->sta, WLAN_STA_MFP)))) { 562 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); 563 return TX_DROP; 564 } else 565 tx->key = NULL; 566 567 if (tx->key) { 568 bool skip_hw = false; 569 570 tx->key->tx_rx_count++; 571 /* TODO: add threshold stuff again */ 572 573 switch (tx->key->conf.cipher) { 574 case WLAN_CIPHER_SUITE_WEP40: 575 case WLAN_CIPHER_SUITE_WEP104: 576 case WLAN_CIPHER_SUITE_TKIP: 577 if (!ieee80211_is_data_present(hdr->frame_control)) 578 tx->key = NULL; 579 break; 580 case WLAN_CIPHER_SUITE_CCMP: 581 if (!ieee80211_is_data_present(hdr->frame_control) && 582 !ieee80211_use_mfp(hdr->frame_control, tx->sta, 583 tx->skb)) 584 tx->key = NULL; 585 else 586 skip_hw = (tx->key->conf.flags & 587 IEEE80211_KEY_FLAG_SW_MGMT) && 588 ieee80211_is_mgmt(hdr->frame_control); 589 break; 590 case WLAN_CIPHER_SUITE_AES_CMAC: 591 if (!ieee80211_is_mgmt(hdr->frame_control)) 592 tx->key = NULL; 593 break; 594 } 595 596 if (unlikely(tx->key && tx->key->flags & KEY_FLAG_TAINTED)) 597 return TX_DROP; 598 599 if (!skip_hw && tx->key && 600 tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) 601 info->control.hw_key = &tx->key->conf; 602 } 603 604 return TX_CONTINUE; 605 } 606 607 static ieee80211_tx_result debug_noinline 608 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx) 609 { 610 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 611 struct ieee80211_hdr *hdr = (void *)tx->skb->data; 612 struct ieee80211_supported_band *sband; 613 struct ieee80211_rate *rate; 614 int i; 615 u32 len; 616 bool inval = false, rts = false, short_preamble = false; 617 struct ieee80211_tx_rate_control txrc; 618 bool assoc = false; 619 620 memset(&txrc, 0, sizeof(txrc)); 621 622 sband = tx->local->hw.wiphy->bands[tx->channel->band]; 623 624 len = min_t(u32, tx->skb->len + FCS_LEN, 625 tx->local->hw.wiphy->frag_threshold); 626 627 /* set up the tx rate control struct we give the RC algo */ 628 txrc.hw = local_to_hw(tx->local); 629 txrc.sband = sband; 630 txrc.bss_conf = &tx->sdata->vif.bss_conf; 631 txrc.skb = tx->skb; 632 txrc.reported_rate.idx = -1; 633 txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band]; 634 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1) 635 txrc.max_rate_idx = -1; 636 else 637 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1; 638 txrc.bss = (tx->sdata->vif.type == NL80211_IFTYPE_AP || 639 tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT || 640 tx->sdata->vif.type == NL80211_IFTYPE_ADHOC); 641 642 /* set up RTS protection if desired */ 643 if (len > tx->local->hw.wiphy->rts_threshold) { 644 txrc.rts = rts = true; 645 } 646 647 /* 648 * Use short preamble if the BSS can handle it, but not for 649 * management frames unless we know the receiver can handle 650 * that -- the management frame might be to a station that 651 * just wants a probe response. 652 */ 653 if (tx->sdata->vif.bss_conf.use_short_preamble && 654 (ieee80211_is_data(hdr->frame_control) || 655 (tx->sta && test_sta_flag(tx->sta, WLAN_STA_SHORT_PREAMBLE)))) 656 txrc.short_preamble = short_preamble = true; 657 658 if (tx->sta) 659 assoc = test_sta_flag(tx->sta, WLAN_STA_ASSOC); 660 661 /* 662 * Lets not bother rate control if we're associated and cannot 663 * talk to the sta. This should not happen. 664 */ 665 if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) && assoc && 666 !rate_usable_index_exists(sband, &tx->sta->sta), 667 "%s: Dropped data frame as no usable bitrate found while " 668 "scanning and associated. Target station: " 669 "%pM on %d GHz band\n", 670 tx->sdata->name, hdr->addr1, 671 tx->channel->band ? 5 : 2)) 672 return TX_DROP; 673 674 /* 675 * If we're associated with the sta at this point we know we can at 676 * least send the frame at the lowest bit rate. 677 */ 678 rate_control_get_rate(tx->sdata, tx->sta, &txrc); 679 680 if (unlikely(info->control.rates[0].idx < 0)) 681 return TX_DROP; 682 683 if (txrc.reported_rate.idx < 0) { 684 txrc.reported_rate = info->control.rates[0]; 685 if (tx->sta && ieee80211_is_data(hdr->frame_control)) 686 tx->sta->last_tx_rate = txrc.reported_rate; 687 } else if (tx->sta) 688 tx->sta->last_tx_rate = txrc.reported_rate; 689 690 if (unlikely(!info->control.rates[0].count)) 691 info->control.rates[0].count = 1; 692 693 if (WARN_ON_ONCE((info->control.rates[0].count > 1) && 694 (info->flags & IEEE80211_TX_CTL_NO_ACK))) 695 info->control.rates[0].count = 1; 696 697 if (is_multicast_ether_addr(hdr->addr1)) { 698 /* 699 * XXX: verify the rate is in the basic rateset 700 */ 701 return TX_CONTINUE; 702 } 703 704 /* 705 * set up the RTS/CTS rate as the fastest basic rate 706 * that is not faster than the data rate 707 * 708 * XXX: Should this check all retry rates? 709 */ 710 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) { 711 s8 baserate = 0; 712 713 rate = &sband->bitrates[info->control.rates[0].idx]; 714 715 for (i = 0; i < sband->n_bitrates; i++) { 716 /* must be a basic rate */ 717 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i))) 718 continue; 719 /* must not be faster than the data rate */ 720 if (sband->bitrates[i].bitrate > rate->bitrate) 721 continue; 722 /* maximum */ 723 if (sband->bitrates[baserate].bitrate < 724 sband->bitrates[i].bitrate) 725 baserate = i; 726 } 727 728 info->control.rts_cts_rate_idx = baserate; 729 } 730 731 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { 732 /* 733 * make sure there's no valid rate following 734 * an invalid one, just in case drivers don't 735 * take the API seriously to stop at -1. 736 */ 737 if (inval) { 738 info->control.rates[i].idx = -1; 739 continue; 740 } 741 if (info->control.rates[i].idx < 0) { 742 inval = true; 743 continue; 744 } 745 746 /* 747 * For now assume MCS is already set up correctly, this 748 * needs to be fixed. 749 */ 750 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) { 751 WARN_ON(info->control.rates[i].idx > 76); 752 continue; 753 } 754 755 /* set up RTS protection if desired */ 756 if (rts) 757 info->control.rates[i].flags |= 758 IEEE80211_TX_RC_USE_RTS_CTS; 759 760 /* RC is busted */ 761 if (WARN_ON_ONCE(info->control.rates[i].idx >= 762 sband->n_bitrates)) { 763 info->control.rates[i].idx = -1; 764 continue; 765 } 766 767 rate = &sband->bitrates[info->control.rates[i].idx]; 768 769 /* set up short preamble */ 770 if (short_preamble && 771 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE) 772 info->control.rates[i].flags |= 773 IEEE80211_TX_RC_USE_SHORT_PREAMBLE; 774 775 /* set up G protection */ 776 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot && 777 rate->flags & IEEE80211_RATE_ERP_G) 778 info->control.rates[i].flags |= 779 IEEE80211_TX_RC_USE_CTS_PROTECT; 780 } 781 782 return TX_CONTINUE; 783 } 784 785 static ieee80211_tx_result debug_noinline 786 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx) 787 { 788 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 789 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; 790 u16 *seq; 791 u8 *qc; 792 int tid; 793 794 /* 795 * Packet injection may want to control the sequence 796 * number, if we have no matching interface then we 797 * neither assign one ourselves nor ask the driver to. 798 */ 799 if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR)) 800 return TX_CONTINUE; 801 802 if (unlikely(ieee80211_is_ctl(hdr->frame_control))) 803 return TX_CONTINUE; 804 805 if (ieee80211_hdrlen(hdr->frame_control) < 24) 806 return TX_CONTINUE; 807 808 if (ieee80211_is_qos_nullfunc(hdr->frame_control)) 809 return TX_CONTINUE; 810 811 /* 812 * Anything but QoS data that has a sequence number field 813 * (is long enough) gets a sequence number from the global 814 * counter. 815 */ 816 if (!ieee80211_is_data_qos(hdr->frame_control)) { 817 /* driver should assign sequence number */ 818 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; 819 /* for pure STA mode without beacons, we can do it */ 820 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number); 821 tx->sdata->sequence_number += 0x10; 822 return TX_CONTINUE; 823 } 824 825 /* 826 * This should be true for injected/management frames only, for 827 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ 828 * above since they are not QoS-data frames. 829 */ 830 if (!tx->sta) 831 return TX_CONTINUE; 832 833 /* include per-STA, per-TID sequence counter */ 834 835 qc = ieee80211_get_qos_ctl(hdr); 836 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 837 seq = &tx->sta->tid_seq[tid]; 838 839 hdr->seq_ctrl = cpu_to_le16(*seq); 840 841 /* Increase the sequence number. */ 842 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ; 843 844 return TX_CONTINUE; 845 } 846 847 static int ieee80211_fragment(struct ieee80211_tx_data *tx, 848 struct sk_buff *skb, int hdrlen, 849 int frag_threshold) 850 { 851 struct ieee80211_local *local = tx->local; 852 struct ieee80211_tx_info *info; 853 struct sk_buff *tmp; 854 int per_fragm = frag_threshold - hdrlen - FCS_LEN; 855 int pos = hdrlen + per_fragm; 856 int rem = skb->len - hdrlen - per_fragm; 857 858 if (WARN_ON(rem < 0)) 859 return -EINVAL; 860 861 /* first fragment was already added to queue by caller */ 862 863 while (rem) { 864 int fraglen = per_fragm; 865 866 if (fraglen > rem) 867 fraglen = rem; 868 rem -= fraglen; 869 tmp = dev_alloc_skb(local->tx_headroom + 870 frag_threshold + 871 IEEE80211_ENCRYPT_HEADROOM + 872 IEEE80211_ENCRYPT_TAILROOM); 873 if (!tmp) 874 return -ENOMEM; 875 876 __skb_queue_tail(&tx->skbs, tmp); 877 878 skb_reserve(tmp, local->tx_headroom + 879 IEEE80211_ENCRYPT_HEADROOM); 880 /* copy control information */ 881 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb)); 882 883 info = IEEE80211_SKB_CB(tmp); 884 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | 885 IEEE80211_TX_CTL_FIRST_FRAGMENT); 886 887 if (rem) 888 info->flags |= IEEE80211_TX_CTL_MORE_FRAMES; 889 890 skb_copy_queue_mapping(tmp, skb); 891 tmp->priority = skb->priority; 892 tmp->dev = skb->dev; 893 894 /* copy header and data */ 895 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen); 896 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen); 897 898 pos += fraglen; 899 } 900 901 /* adjust first fragment's length */ 902 skb->len = hdrlen + per_fragm; 903 return 0; 904 } 905 906 static ieee80211_tx_result debug_noinline 907 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx) 908 { 909 struct sk_buff *skb = tx->skb; 910 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 911 struct ieee80211_hdr *hdr = (void *)skb->data; 912 int frag_threshold = tx->local->hw.wiphy->frag_threshold; 913 int hdrlen; 914 int fragnum; 915 916 /* no matter what happens, tx->skb moves to tx->skbs */ 917 __skb_queue_tail(&tx->skbs, skb); 918 tx->skb = NULL; 919 920 if (info->flags & IEEE80211_TX_CTL_DONTFRAG) 921 return TX_CONTINUE; 922 923 if (tx->local->ops->set_frag_threshold) 924 return TX_CONTINUE; 925 926 /* 927 * Warn when submitting a fragmented A-MPDU frame and drop it. 928 * This scenario is handled in ieee80211_tx_prepare but extra 929 * caution taken here as fragmented ampdu may cause Tx stop. 930 */ 931 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) 932 return TX_DROP; 933 934 hdrlen = ieee80211_hdrlen(hdr->frame_control); 935 936 /* internal error, why isn't DONTFRAG set? */ 937 if (WARN_ON(skb->len + FCS_LEN <= frag_threshold)) 938 return TX_DROP; 939 940 /* 941 * Now fragment the frame. This will allocate all the fragments and 942 * chain them (using skb as the first fragment) to skb->next. 943 * During transmission, we will remove the successfully transmitted 944 * fragments from this list. When the low-level driver rejects one 945 * of the fragments then we will simply pretend to accept the skb 946 * but store it away as pending. 947 */ 948 if (ieee80211_fragment(tx, skb, hdrlen, frag_threshold)) 949 return TX_DROP; 950 951 /* update duration/seq/flags of fragments */ 952 fragnum = 0; 953 954 skb_queue_walk(&tx->skbs, skb) { 955 int next_len; 956 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); 957 958 hdr = (void *)skb->data; 959 info = IEEE80211_SKB_CB(skb); 960 961 if (!skb_queue_is_last(&tx->skbs, skb)) { 962 hdr->frame_control |= morefrags; 963 /* 964 * No multi-rate retries for fragmented frames, that 965 * would completely throw off the NAV at other STAs. 966 */ 967 info->control.rates[1].idx = -1; 968 info->control.rates[2].idx = -1; 969 info->control.rates[3].idx = -1; 970 info->control.rates[4].idx = -1; 971 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5); 972 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; 973 } else { 974 hdr->frame_control &= ~morefrags; 975 next_len = 0; 976 } 977 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG); 978 fragnum++; 979 } 980 981 return TX_CONTINUE; 982 } 983 984 static ieee80211_tx_result debug_noinline 985 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx) 986 { 987 struct sk_buff *skb; 988 989 if (!tx->sta) 990 return TX_CONTINUE; 991 992 tx->sta->tx_packets++; 993 skb_queue_walk(&tx->skbs, skb) { 994 tx->sta->tx_fragments++; 995 tx->sta->tx_bytes += skb->len; 996 } 997 998 return TX_CONTINUE; 999 } 1000 1001 static ieee80211_tx_result debug_noinline 1002 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx) 1003 { 1004 if (!tx->key) 1005 return TX_CONTINUE; 1006 1007 switch (tx->key->conf.cipher) { 1008 case WLAN_CIPHER_SUITE_WEP40: 1009 case WLAN_CIPHER_SUITE_WEP104: 1010 return ieee80211_crypto_wep_encrypt(tx); 1011 case WLAN_CIPHER_SUITE_TKIP: 1012 return ieee80211_crypto_tkip_encrypt(tx); 1013 case WLAN_CIPHER_SUITE_CCMP: 1014 return ieee80211_crypto_ccmp_encrypt(tx); 1015 case WLAN_CIPHER_SUITE_AES_CMAC: 1016 return ieee80211_crypto_aes_cmac_encrypt(tx); 1017 default: 1018 return ieee80211_crypto_hw_encrypt(tx); 1019 } 1020 1021 return TX_DROP; 1022 } 1023 1024 static ieee80211_tx_result debug_noinline 1025 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx) 1026 { 1027 struct sk_buff *skb; 1028 struct ieee80211_hdr *hdr; 1029 int next_len; 1030 bool group_addr; 1031 1032 skb_queue_walk(&tx->skbs, skb) { 1033 hdr = (void *) skb->data; 1034 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) 1035 break; /* must not overwrite AID */ 1036 if (!skb_queue_is_last(&tx->skbs, skb)) { 1037 struct sk_buff *next = skb_queue_next(&tx->skbs, skb); 1038 next_len = next->len; 1039 } else 1040 next_len = 0; 1041 group_addr = is_multicast_ether_addr(hdr->addr1); 1042 1043 hdr->duration_id = 1044 ieee80211_duration(tx, skb, group_addr, next_len); 1045 } 1046 1047 return TX_CONTINUE; 1048 } 1049 1050 /* actual transmit path */ 1051 1052 static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx, 1053 struct sk_buff *skb, 1054 struct ieee80211_tx_info *info, 1055 struct tid_ampdu_tx *tid_tx, 1056 int tid) 1057 { 1058 bool queued = false; 1059 bool reset_agg_timer = false; 1060 1061 if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { 1062 info->flags |= IEEE80211_TX_CTL_AMPDU; 1063 reset_agg_timer = true; 1064 } else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) { 1065 /* 1066 * nothing -- this aggregation session is being started 1067 * but that might still fail with the driver 1068 */ 1069 } else { 1070 spin_lock(&tx->sta->lock); 1071 /* 1072 * Need to re-check now, because we may get here 1073 * 1074 * 1) in the window during which the setup is actually 1075 * already done, but not marked yet because not all 1076 * packets are spliced over to the driver pending 1077 * queue yet -- if this happened we acquire the lock 1078 * either before or after the splice happens, but 1079 * need to recheck which of these cases happened. 1080 * 1081 * 2) during session teardown, if the OPERATIONAL bit 1082 * was cleared due to the teardown but the pointer 1083 * hasn't been assigned NULL yet (or we loaded it 1084 * before it was assigned) -- in this case it may 1085 * now be NULL which means we should just let the 1086 * packet pass through because splicing the frames 1087 * back is already done. 1088 */ 1089 tid_tx = rcu_dereference_protected_tid_tx(tx->sta, tid); 1090 1091 if (!tid_tx) { 1092 /* do nothing, let packet pass through */ 1093 } else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { 1094 info->flags |= IEEE80211_TX_CTL_AMPDU; 1095 reset_agg_timer = true; 1096 } else { 1097 queued = true; 1098 info->control.vif = &tx->sdata->vif; 1099 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1100 __skb_queue_tail(&tid_tx->pending, skb); 1101 } 1102 spin_unlock(&tx->sta->lock); 1103 } 1104 1105 /* reset session timer */ 1106 if (reset_agg_timer && tid_tx->timeout) 1107 mod_timer(&tid_tx->session_timer, 1108 TU_TO_EXP_TIME(tid_tx->timeout)); 1109 1110 return queued; 1111 } 1112 1113 /* 1114 * initialises @tx 1115 */ 1116 static ieee80211_tx_result 1117 ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata, 1118 struct ieee80211_tx_data *tx, 1119 struct sk_buff *skb) 1120 { 1121 struct ieee80211_local *local = sdata->local; 1122 struct ieee80211_hdr *hdr; 1123 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1124 int tid; 1125 u8 *qc; 1126 1127 memset(tx, 0, sizeof(*tx)); 1128 tx->skb = skb; 1129 tx->local = local; 1130 tx->sdata = sdata; 1131 tx->channel = local->hw.conf.channel; 1132 __skb_queue_head_init(&tx->skbs); 1133 1134 /* 1135 * If this flag is set to true anywhere, and we get here, 1136 * we are doing the needed processing, so remove the flag 1137 * now. 1138 */ 1139 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING; 1140 1141 hdr = (struct ieee80211_hdr *) skb->data; 1142 1143 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { 1144 tx->sta = rcu_dereference(sdata->u.vlan.sta); 1145 if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr) 1146 return TX_DROP; 1147 } else if (info->flags & IEEE80211_TX_CTL_INJECTED) { 1148 tx->sta = sta_info_get_bss(sdata, hdr->addr1); 1149 } 1150 if (!tx->sta) 1151 tx->sta = sta_info_get(sdata, hdr->addr1); 1152 1153 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) && 1154 !ieee80211_is_qos_nullfunc(hdr->frame_control) && 1155 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION) && 1156 !(local->hw.flags & IEEE80211_HW_TX_AMPDU_SETUP_IN_HW)) { 1157 struct tid_ampdu_tx *tid_tx; 1158 1159 qc = ieee80211_get_qos_ctl(hdr); 1160 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 1161 1162 tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]); 1163 if (tid_tx) { 1164 bool queued; 1165 1166 queued = ieee80211_tx_prep_agg(tx, skb, info, 1167 tid_tx, tid); 1168 1169 if (unlikely(queued)) 1170 return TX_QUEUED; 1171 } 1172 } 1173 1174 if (is_multicast_ether_addr(hdr->addr1)) { 1175 tx->flags &= ~IEEE80211_TX_UNICAST; 1176 info->flags |= IEEE80211_TX_CTL_NO_ACK; 1177 } else 1178 tx->flags |= IEEE80211_TX_UNICAST; 1179 1180 if (!(info->flags & IEEE80211_TX_CTL_DONTFRAG)) { 1181 if (!(tx->flags & IEEE80211_TX_UNICAST) || 1182 skb->len + FCS_LEN <= local->hw.wiphy->frag_threshold || 1183 info->flags & IEEE80211_TX_CTL_AMPDU) 1184 info->flags |= IEEE80211_TX_CTL_DONTFRAG; 1185 } 1186 1187 if (!tx->sta) 1188 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1189 else if (test_and_clear_sta_flag(tx->sta, WLAN_STA_CLEAR_PS_FILT)) 1190 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1191 1192 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT; 1193 1194 return TX_CONTINUE; 1195 } 1196 1197 static bool ieee80211_tx_frags(struct ieee80211_local *local, 1198 struct ieee80211_vif *vif, 1199 struct ieee80211_sta *sta, 1200 struct sk_buff_head *skbs, 1201 bool txpending) 1202 { 1203 struct sk_buff *skb, *tmp; 1204 struct ieee80211_tx_info *info; 1205 unsigned long flags; 1206 1207 skb_queue_walk_safe(skbs, skb, tmp) { 1208 int q = skb_get_queue_mapping(skb); 1209 1210 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 1211 if (local->queue_stop_reasons[q] || 1212 (!txpending && !skb_queue_empty(&local->pending[q]))) { 1213 /* 1214 * Since queue is stopped, queue up frames for later 1215 * transmission from the tx-pending tasklet when the 1216 * queue is woken again. 1217 */ 1218 if (txpending) 1219 skb_queue_splice_init(skbs, &local->pending[q]); 1220 else 1221 skb_queue_splice_tail_init(skbs, 1222 &local->pending[q]); 1223 1224 spin_unlock_irqrestore(&local->queue_stop_reason_lock, 1225 flags); 1226 return false; 1227 } 1228 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 1229 1230 info = IEEE80211_SKB_CB(skb); 1231 info->control.vif = vif; 1232 info->control.sta = sta; 1233 1234 __skb_unlink(skb, skbs); 1235 drv_tx(local, skb); 1236 } 1237 1238 return true; 1239 } 1240 1241 /* 1242 * Returns false if the frame couldn't be transmitted but was queued instead. 1243 */ 1244 static bool __ieee80211_tx(struct ieee80211_local *local, 1245 struct sk_buff_head *skbs, int led_len, 1246 struct sta_info *sta, bool txpending) 1247 { 1248 struct ieee80211_tx_info *info; 1249 struct ieee80211_sub_if_data *sdata; 1250 struct ieee80211_vif *vif; 1251 struct ieee80211_sta *pubsta; 1252 struct sk_buff *skb; 1253 bool result = true; 1254 __le16 fc; 1255 1256 if (WARN_ON(skb_queue_empty(skbs))) 1257 return true; 1258 1259 skb = skb_peek(skbs); 1260 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 1261 info = IEEE80211_SKB_CB(skb); 1262 sdata = vif_to_sdata(info->control.vif); 1263 if (sta && !sta->uploaded) 1264 sta = NULL; 1265 1266 if (sta) 1267 pubsta = &sta->sta; 1268 else 1269 pubsta = NULL; 1270 1271 switch (sdata->vif.type) { 1272 case NL80211_IFTYPE_MONITOR: 1273 sdata = NULL; 1274 vif = NULL; 1275 break; 1276 case NL80211_IFTYPE_AP_VLAN: 1277 sdata = container_of(sdata->bss, 1278 struct ieee80211_sub_if_data, u.ap); 1279 /* fall through */ 1280 default: 1281 vif = &sdata->vif; 1282 break; 1283 } 1284 1285 if (local->ops->tx_frags) 1286 drv_tx_frags(local, vif, pubsta, skbs); 1287 else 1288 result = ieee80211_tx_frags(local, vif, pubsta, skbs, 1289 txpending); 1290 1291 ieee80211_tpt_led_trig_tx(local, fc, led_len); 1292 ieee80211_led_tx(local, 1); 1293 1294 WARN_ON_ONCE(!skb_queue_empty(skbs)); 1295 1296 return result; 1297 } 1298 1299 /* 1300 * Invoke TX handlers, return 0 on success and non-zero if the 1301 * frame was dropped or queued. 1302 */ 1303 static int invoke_tx_handlers(struct ieee80211_tx_data *tx) 1304 { 1305 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); 1306 ieee80211_tx_result res = TX_DROP; 1307 1308 #define CALL_TXH(txh) \ 1309 do { \ 1310 res = txh(tx); \ 1311 if (res != TX_CONTINUE) \ 1312 goto txh_done; \ 1313 } while (0) 1314 1315 CALL_TXH(ieee80211_tx_h_dynamic_ps); 1316 CALL_TXH(ieee80211_tx_h_check_assoc); 1317 CALL_TXH(ieee80211_tx_h_ps_buf); 1318 CALL_TXH(ieee80211_tx_h_check_control_port_protocol); 1319 CALL_TXH(ieee80211_tx_h_select_key); 1320 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)) 1321 CALL_TXH(ieee80211_tx_h_rate_ctrl); 1322 1323 if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION)) { 1324 __skb_queue_tail(&tx->skbs, tx->skb); 1325 tx->skb = NULL; 1326 goto txh_done; 1327 } 1328 1329 CALL_TXH(ieee80211_tx_h_michael_mic_add); 1330 CALL_TXH(ieee80211_tx_h_sequence); 1331 CALL_TXH(ieee80211_tx_h_fragment); 1332 /* handlers after fragment must be aware of tx info fragmentation! */ 1333 CALL_TXH(ieee80211_tx_h_stats); 1334 CALL_TXH(ieee80211_tx_h_encrypt); 1335 if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)) 1336 CALL_TXH(ieee80211_tx_h_calculate_duration); 1337 #undef CALL_TXH 1338 1339 txh_done: 1340 if (unlikely(res == TX_DROP)) { 1341 I802_DEBUG_INC(tx->local->tx_handlers_drop); 1342 if (tx->skb) 1343 dev_kfree_skb(tx->skb); 1344 else 1345 __skb_queue_purge(&tx->skbs); 1346 return -1; 1347 } else if (unlikely(res == TX_QUEUED)) { 1348 I802_DEBUG_INC(tx->local->tx_handlers_queued); 1349 return -1; 1350 } 1351 1352 return 0; 1353 } 1354 1355 /* 1356 * Returns false if the frame couldn't be transmitted but was queued instead. 1357 */ 1358 static bool ieee80211_tx(struct ieee80211_sub_if_data *sdata, 1359 struct sk_buff *skb, bool txpending) 1360 { 1361 struct ieee80211_local *local = sdata->local; 1362 struct ieee80211_tx_data tx; 1363 ieee80211_tx_result res_prepare; 1364 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1365 bool result = true; 1366 int led_len; 1367 1368 if (unlikely(skb->len < 10)) { 1369 dev_kfree_skb(skb); 1370 return true; 1371 } 1372 1373 rcu_read_lock(); 1374 1375 /* initialises tx */ 1376 led_len = skb->len; 1377 res_prepare = ieee80211_tx_prepare(sdata, &tx, skb); 1378 1379 if (unlikely(res_prepare == TX_DROP)) { 1380 dev_kfree_skb(skb); 1381 goto out; 1382 } else if (unlikely(res_prepare == TX_QUEUED)) { 1383 goto out; 1384 } 1385 1386 tx.channel = local->hw.conf.channel; 1387 info->band = tx.channel->band; 1388 1389 if (!invoke_tx_handlers(&tx)) 1390 result = __ieee80211_tx(local, &tx.skbs, led_len, 1391 tx.sta, txpending); 1392 out: 1393 rcu_read_unlock(); 1394 return result; 1395 } 1396 1397 /* device xmit handlers */ 1398 1399 static int ieee80211_skb_resize(struct ieee80211_sub_if_data *sdata, 1400 struct sk_buff *skb, 1401 int head_need, bool may_encrypt) 1402 { 1403 struct ieee80211_local *local = sdata->local; 1404 int tail_need = 0; 1405 1406 if (may_encrypt && sdata->crypto_tx_tailroom_needed_cnt) { 1407 tail_need = IEEE80211_ENCRYPT_TAILROOM; 1408 tail_need -= skb_tailroom(skb); 1409 tail_need = max_t(int, tail_need, 0); 1410 } 1411 1412 if (skb_cloned(skb)) 1413 I802_DEBUG_INC(local->tx_expand_skb_head_cloned); 1414 else if (head_need || tail_need) 1415 I802_DEBUG_INC(local->tx_expand_skb_head); 1416 else 1417 return 0; 1418 1419 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) { 1420 wiphy_debug(local->hw.wiphy, 1421 "failed to reallocate TX buffer\n"); 1422 return -ENOMEM; 1423 } 1424 1425 return 0; 1426 } 1427 1428 void ieee80211_xmit(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) 1429 { 1430 struct ieee80211_local *local = sdata->local; 1431 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1432 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1433 int headroom; 1434 bool may_encrypt; 1435 1436 rcu_read_lock(); 1437 1438 may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT); 1439 1440 headroom = local->tx_headroom; 1441 if (may_encrypt) 1442 headroom += IEEE80211_ENCRYPT_HEADROOM; 1443 headroom -= skb_headroom(skb); 1444 headroom = max_t(int, 0, headroom); 1445 1446 if (ieee80211_skb_resize(sdata, skb, headroom, may_encrypt)) { 1447 dev_kfree_skb(skb); 1448 rcu_read_unlock(); 1449 return; 1450 } 1451 1452 hdr = (struct ieee80211_hdr *) skb->data; 1453 info->control.vif = &sdata->vif; 1454 1455 if (ieee80211_vif_is_mesh(&sdata->vif) && 1456 ieee80211_is_data(hdr->frame_control) && 1457 !is_multicast_ether_addr(hdr->addr1)) 1458 if (mesh_nexthop_resolve(skb, sdata)) { 1459 /* skb queued: don't free */ 1460 rcu_read_unlock(); 1461 return; 1462 } 1463 1464 ieee80211_set_qos_hdr(sdata, skb); 1465 ieee80211_tx(sdata, skb, false); 1466 rcu_read_unlock(); 1467 } 1468 1469 static bool ieee80211_parse_tx_radiotap(struct sk_buff *skb) 1470 { 1471 struct ieee80211_radiotap_iterator iterator; 1472 struct ieee80211_radiotap_header *rthdr = 1473 (struct ieee80211_radiotap_header *) skb->data; 1474 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1475 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len, 1476 NULL); 1477 u16 txflags; 1478 1479 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | 1480 IEEE80211_TX_CTL_DONTFRAG; 1481 1482 /* 1483 * for every radiotap entry that is present 1484 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more 1485 * entries present, or -EINVAL on error) 1486 */ 1487 1488 while (!ret) { 1489 ret = ieee80211_radiotap_iterator_next(&iterator); 1490 1491 if (ret) 1492 continue; 1493 1494 /* see if this argument is something we can use */ 1495 switch (iterator.this_arg_index) { 1496 /* 1497 * You must take care when dereferencing iterator.this_arg 1498 * for multibyte types... the pointer is not aligned. Use 1499 * get_unaligned((type *)iterator.this_arg) to dereference 1500 * iterator.this_arg for type "type" safely on all arches. 1501 */ 1502 case IEEE80211_RADIOTAP_FLAGS: 1503 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { 1504 /* 1505 * this indicates that the skb we have been 1506 * handed has the 32-bit FCS CRC at the end... 1507 * we should react to that by snipping it off 1508 * because it will be recomputed and added 1509 * on transmission 1510 */ 1511 if (skb->len < (iterator._max_length + FCS_LEN)) 1512 return false; 1513 1514 skb_trim(skb, skb->len - FCS_LEN); 1515 } 1516 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) 1517 info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT; 1518 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) 1519 info->flags &= ~IEEE80211_TX_CTL_DONTFRAG; 1520 break; 1521 1522 case IEEE80211_RADIOTAP_TX_FLAGS: 1523 txflags = get_unaligned_le16(iterator.this_arg); 1524 if (txflags & IEEE80211_RADIOTAP_F_TX_NOACK) 1525 info->flags |= IEEE80211_TX_CTL_NO_ACK; 1526 break; 1527 1528 /* 1529 * Please update the file 1530 * Documentation/networking/mac80211-injection.txt 1531 * when parsing new fields here. 1532 */ 1533 1534 default: 1535 break; 1536 } 1537 } 1538 1539 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ 1540 return false; 1541 1542 /* 1543 * remove the radiotap header 1544 * iterator->_max_length was sanity-checked against 1545 * skb->len by iterator init 1546 */ 1547 skb_pull(skb, iterator._max_length); 1548 1549 return true; 1550 } 1551 1552 netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb, 1553 struct net_device *dev) 1554 { 1555 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); 1556 struct ieee80211_channel *chan = local->hw.conf.channel; 1557 struct ieee80211_radiotap_header *prthdr = 1558 (struct ieee80211_radiotap_header *)skb->data; 1559 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1560 struct ieee80211_hdr *hdr; 1561 struct ieee80211_sub_if_data *tmp_sdata, *sdata; 1562 u16 len_rthdr; 1563 int hdrlen; 1564 1565 /* 1566 * Frame injection is not allowed if beaconing is not allowed 1567 * or if we need radar detection. Beaconing is usually not allowed when 1568 * the mode or operation (Adhoc, AP, Mesh) does not support DFS. 1569 * Passive scan is also used in world regulatory domains where 1570 * your country is not known and as such it should be treated as 1571 * NO TX unless the channel is explicitly allowed in which case 1572 * your current regulatory domain would not have the passive scan 1573 * flag. 1574 * 1575 * Since AP mode uses monitor interfaces to inject/TX management 1576 * frames we can make AP mode the exception to this rule once it 1577 * supports radar detection as its implementation can deal with 1578 * radar detection by itself. We can do that later by adding a 1579 * monitor flag interfaces used for AP support. 1580 */ 1581 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR | 1582 IEEE80211_CHAN_PASSIVE_SCAN))) 1583 goto fail; 1584 1585 /* check for not even having the fixed radiotap header part */ 1586 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) 1587 goto fail; /* too short to be possibly valid */ 1588 1589 /* is it a header version we can trust to find length from? */ 1590 if (unlikely(prthdr->it_version)) 1591 goto fail; /* only version 0 is supported */ 1592 1593 /* then there must be a radiotap header with a length we can use */ 1594 len_rthdr = ieee80211_get_radiotap_len(skb->data); 1595 1596 /* does the skb contain enough to deliver on the alleged length? */ 1597 if (unlikely(skb->len < len_rthdr)) 1598 goto fail; /* skb too short for claimed rt header extent */ 1599 1600 /* 1601 * fix up the pointers accounting for the radiotap 1602 * header still being in there. We are being given 1603 * a precooked IEEE80211 header so no need for 1604 * normal processing 1605 */ 1606 skb_set_mac_header(skb, len_rthdr); 1607 /* 1608 * these are just fixed to the end of the rt area since we 1609 * don't have any better information and at this point, nobody cares 1610 */ 1611 skb_set_network_header(skb, len_rthdr); 1612 skb_set_transport_header(skb, len_rthdr); 1613 1614 if (skb->len < len_rthdr + 2) 1615 goto fail; 1616 1617 hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr); 1618 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1619 1620 if (skb->len < len_rthdr + hdrlen) 1621 goto fail; 1622 1623 /* 1624 * Initialize skb->protocol if the injected frame is a data frame 1625 * carrying a rfc1042 header 1626 */ 1627 if (ieee80211_is_data(hdr->frame_control) && 1628 skb->len >= len_rthdr + hdrlen + sizeof(rfc1042_header) + 2) { 1629 u8 *payload = (u8 *)hdr + hdrlen; 1630 1631 if (compare_ether_addr(payload, rfc1042_header) == 0) 1632 skb->protocol = cpu_to_be16((payload[6] << 8) | 1633 payload[7]); 1634 } 1635 1636 memset(info, 0, sizeof(*info)); 1637 1638 info->flags = IEEE80211_TX_CTL_REQ_TX_STATUS | 1639 IEEE80211_TX_CTL_INJECTED; 1640 1641 /* process and remove the injection radiotap header */ 1642 if (!ieee80211_parse_tx_radiotap(skb)) 1643 goto fail; 1644 1645 rcu_read_lock(); 1646 1647 /* 1648 * We process outgoing injected frames that have a local address 1649 * we handle as though they are non-injected frames. 1650 * This code here isn't entirely correct, the local MAC address 1651 * isn't always enough to find the interface to use; for proper 1652 * VLAN/WDS support we will need a different mechanism (which 1653 * likely isn't going to be monitor interfaces). 1654 */ 1655 sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1656 1657 list_for_each_entry_rcu(tmp_sdata, &local->interfaces, list) { 1658 if (!ieee80211_sdata_running(tmp_sdata)) 1659 continue; 1660 if (tmp_sdata->vif.type == NL80211_IFTYPE_MONITOR || 1661 tmp_sdata->vif.type == NL80211_IFTYPE_AP_VLAN || 1662 tmp_sdata->vif.type == NL80211_IFTYPE_WDS) 1663 continue; 1664 if (compare_ether_addr(tmp_sdata->vif.addr, hdr->addr2) == 0) { 1665 sdata = tmp_sdata; 1666 break; 1667 } 1668 } 1669 1670 ieee80211_xmit(sdata, skb); 1671 rcu_read_unlock(); 1672 1673 return NETDEV_TX_OK; 1674 1675 fail: 1676 dev_kfree_skb(skb); 1677 return NETDEV_TX_OK; /* meaning, we dealt with the skb */ 1678 } 1679 1680 /** 1681 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type 1682 * subinterfaces (wlan#, WDS, and VLAN interfaces) 1683 * @skb: packet to be sent 1684 * @dev: incoming interface 1685 * 1686 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will 1687 * not be freed, and caller is responsible for either retrying later or freeing 1688 * skb). 1689 * 1690 * This function takes in an Ethernet header and encapsulates it with suitable 1691 * IEEE 802.11 header based on which interface the packet is coming in. The 1692 * encapsulated packet will then be passed to master interface, wlan#.11, for 1693 * transmission (through low-level driver). 1694 */ 1695 netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb, 1696 struct net_device *dev) 1697 { 1698 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); 1699 struct ieee80211_local *local = sdata->local; 1700 struct ieee80211_tx_info *info; 1701 int ret = NETDEV_TX_BUSY, head_need; 1702 u16 ethertype, hdrlen, meshhdrlen = 0; 1703 __le16 fc; 1704 struct ieee80211_hdr hdr; 1705 struct ieee80211s_hdr mesh_hdr __maybe_unused; 1706 struct mesh_path __maybe_unused *mppath = NULL; 1707 const u8 *encaps_data; 1708 int encaps_len, skip_header_bytes; 1709 int nh_pos, h_pos; 1710 struct sta_info *sta = NULL; 1711 bool wme_sta = false, authorized = false, tdls_auth = false; 1712 bool tdls_direct = false; 1713 bool multicast; 1714 u32 info_flags = 0; 1715 u16 info_id = 0; 1716 1717 if (unlikely(skb->len < ETH_HLEN)) { 1718 ret = NETDEV_TX_OK; 1719 goto fail; 1720 } 1721 1722 /* convert Ethernet header to proper 802.11 header (based on 1723 * operation mode) */ 1724 ethertype = (skb->data[12] << 8) | skb->data[13]; 1725 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); 1726 1727 switch (sdata->vif.type) { 1728 case NL80211_IFTYPE_AP_VLAN: 1729 rcu_read_lock(); 1730 sta = rcu_dereference(sdata->u.vlan.sta); 1731 if (sta) { 1732 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1733 /* RA TA DA SA */ 1734 memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN); 1735 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1736 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1737 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1738 hdrlen = 30; 1739 authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED); 1740 wme_sta = test_sta_flag(sta, WLAN_STA_WME); 1741 } 1742 rcu_read_unlock(); 1743 if (sta) 1744 break; 1745 /* fall through */ 1746 case NL80211_IFTYPE_AP: 1747 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); 1748 /* DA BSSID SA */ 1749 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1750 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1751 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); 1752 hdrlen = 24; 1753 break; 1754 case NL80211_IFTYPE_WDS: 1755 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); 1756 /* RA TA DA SA */ 1757 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); 1758 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1759 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1760 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1761 hdrlen = 30; 1762 break; 1763 #ifdef CONFIG_MAC80211_MESH 1764 case NL80211_IFTYPE_MESH_POINT: 1765 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) { 1766 /* Do not send frames with mesh_ttl == 0 */ 1767 sdata->u.mesh.mshstats.dropped_frames_ttl++; 1768 ret = NETDEV_TX_OK; 1769 goto fail; 1770 } 1771 rcu_read_lock(); 1772 if (!is_multicast_ether_addr(skb->data)) 1773 mppath = mpp_path_lookup(skb->data, sdata); 1774 1775 /* 1776 * Use address extension if it is a packet from 1777 * another interface or if we know the destination 1778 * is being proxied by a portal (i.e. portal address 1779 * differs from proxied address) 1780 */ 1781 if (compare_ether_addr(sdata->vif.addr, 1782 skb->data + ETH_ALEN) == 0 && 1783 !(mppath && compare_ether_addr(mppath->mpp, skb->data))) { 1784 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, 1785 skb->data, skb->data + ETH_ALEN); 1786 rcu_read_unlock(); 1787 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, 1788 sdata, NULL, NULL); 1789 } else { 1790 int is_mesh_mcast = 1; 1791 const u8 *mesh_da; 1792 1793 if (is_multicast_ether_addr(skb->data)) 1794 /* DA TA mSA AE:SA */ 1795 mesh_da = skb->data; 1796 else { 1797 static const u8 bcast[ETH_ALEN] = 1798 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 1799 if (mppath) { 1800 /* RA TA mDA mSA AE:DA SA */ 1801 mesh_da = mppath->mpp; 1802 is_mesh_mcast = 0; 1803 } else { 1804 /* DA TA mSA AE:SA */ 1805 mesh_da = bcast; 1806 } 1807 } 1808 hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, 1809 mesh_da, sdata->vif.addr); 1810 rcu_read_unlock(); 1811 if (is_mesh_mcast) 1812 meshhdrlen = 1813 ieee80211_new_mesh_header(&mesh_hdr, 1814 sdata, 1815 skb->data + ETH_ALEN, 1816 NULL); 1817 else 1818 meshhdrlen = 1819 ieee80211_new_mesh_header(&mesh_hdr, 1820 sdata, 1821 skb->data, 1822 skb->data + ETH_ALEN); 1823 1824 } 1825 break; 1826 #endif 1827 case NL80211_IFTYPE_STATION: 1828 if (sdata->wdev.wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS) { 1829 bool tdls_peer = false; 1830 1831 rcu_read_lock(); 1832 sta = sta_info_get(sdata, skb->data); 1833 if (sta) { 1834 authorized = test_sta_flag(sta, 1835 WLAN_STA_AUTHORIZED); 1836 wme_sta = test_sta_flag(sta, WLAN_STA_WME); 1837 tdls_peer = test_sta_flag(sta, 1838 WLAN_STA_TDLS_PEER); 1839 tdls_auth = test_sta_flag(sta, 1840 WLAN_STA_TDLS_PEER_AUTH); 1841 } 1842 rcu_read_unlock(); 1843 1844 /* 1845 * If the TDLS link is enabled, send everything 1846 * directly. Otherwise, allow TDLS setup frames 1847 * to be transmitted indirectly. 1848 */ 1849 tdls_direct = tdls_peer && (tdls_auth || 1850 !(ethertype == ETH_P_TDLS && skb->len > 14 && 1851 skb->data[14] == WLAN_TDLS_SNAP_RFTYPE)); 1852 } 1853 1854 if (tdls_direct) { 1855 /* link during setup - throw out frames to peer */ 1856 if (!tdls_auth) { 1857 ret = NETDEV_TX_OK; 1858 goto fail; 1859 } 1860 1861 /* DA SA BSSID */ 1862 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1863 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1864 memcpy(hdr.addr3, sdata->u.mgd.bssid, ETH_ALEN); 1865 hdrlen = 24; 1866 } else if (sdata->u.mgd.use_4addr && 1867 cpu_to_be16(ethertype) != sdata->control_port_protocol) { 1868 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | 1869 IEEE80211_FCTL_TODS); 1870 /* RA TA DA SA */ 1871 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN); 1872 memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); 1873 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1874 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); 1875 hdrlen = 30; 1876 } else { 1877 fc |= cpu_to_le16(IEEE80211_FCTL_TODS); 1878 /* BSSID SA DA */ 1879 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN); 1880 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1881 memcpy(hdr.addr3, skb->data, ETH_ALEN); 1882 hdrlen = 24; 1883 } 1884 break; 1885 case NL80211_IFTYPE_ADHOC: 1886 /* DA SA BSSID */ 1887 memcpy(hdr.addr1, skb->data, ETH_ALEN); 1888 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); 1889 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN); 1890 hdrlen = 24; 1891 break; 1892 default: 1893 ret = NETDEV_TX_OK; 1894 goto fail; 1895 } 1896 1897 /* 1898 * There's no need to try to look up the destination 1899 * if it is a multicast address (which can only happen 1900 * in AP mode) 1901 */ 1902 multicast = is_multicast_ether_addr(hdr.addr1); 1903 if (!multicast) { 1904 rcu_read_lock(); 1905 sta = sta_info_get(sdata, hdr.addr1); 1906 if (sta) { 1907 authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED); 1908 wme_sta = test_sta_flag(sta, WLAN_STA_WME); 1909 } 1910 rcu_read_unlock(); 1911 } 1912 1913 /* For mesh, the use of the QoS header is mandatory */ 1914 if (ieee80211_vif_is_mesh(&sdata->vif)) 1915 wme_sta = true; 1916 1917 /* receiver and we are QoS enabled, use a QoS type frame */ 1918 if (wme_sta && local->hw.queues >= 4) { 1919 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 1920 hdrlen += 2; 1921 } 1922 1923 /* 1924 * Drop unicast frames to unauthorised stations unless they are 1925 * EAPOL frames from the local station. 1926 */ 1927 if (unlikely(!ieee80211_vif_is_mesh(&sdata->vif) && 1928 !is_multicast_ether_addr(hdr.addr1) && !authorized && 1929 (cpu_to_be16(ethertype) != sdata->control_port_protocol || 1930 compare_ether_addr(sdata->vif.addr, skb->data + ETH_ALEN)))) { 1931 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 1932 if (net_ratelimit()) 1933 printk(KERN_DEBUG "%s: dropped frame to %pM" 1934 " (unauthorized port)\n", dev->name, 1935 hdr.addr1); 1936 #endif 1937 1938 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); 1939 1940 ret = NETDEV_TX_OK; 1941 goto fail; 1942 } 1943 1944 if (unlikely(!multicast && skb->sk && 1945 skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS)) { 1946 struct sk_buff *orig_skb = skb; 1947 1948 skb = skb_clone(skb, GFP_ATOMIC); 1949 if (skb) { 1950 unsigned long flags; 1951 int id, r; 1952 1953 spin_lock_irqsave(&local->ack_status_lock, flags); 1954 r = idr_get_new_above(&local->ack_status_frames, 1955 orig_skb, 1, &id); 1956 if (r == -EAGAIN) { 1957 idr_pre_get(&local->ack_status_frames, 1958 GFP_ATOMIC); 1959 r = idr_get_new_above(&local->ack_status_frames, 1960 orig_skb, 1, &id); 1961 } 1962 if (WARN_ON(!id) || id > 0xffff) { 1963 idr_remove(&local->ack_status_frames, id); 1964 r = -ERANGE; 1965 } 1966 spin_unlock_irqrestore(&local->ack_status_lock, flags); 1967 1968 if (!r) { 1969 info_id = id; 1970 info_flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; 1971 } else if (skb_shared(skb)) { 1972 kfree_skb(orig_skb); 1973 } else { 1974 kfree_skb(skb); 1975 skb = orig_skb; 1976 } 1977 } else { 1978 /* couldn't clone -- lose tx status ... */ 1979 skb = orig_skb; 1980 } 1981 } 1982 1983 /* 1984 * If the skb is shared we need to obtain our own copy. 1985 */ 1986 if (skb_shared(skb)) { 1987 struct sk_buff *tmp_skb = skb; 1988 1989 /* can't happen -- skb is a clone if info_id != 0 */ 1990 WARN_ON(info_id); 1991 1992 skb = skb_clone(skb, GFP_ATOMIC); 1993 kfree_skb(tmp_skb); 1994 1995 if (!skb) { 1996 ret = NETDEV_TX_OK; 1997 goto fail; 1998 } 1999 } 2000 2001 hdr.frame_control = fc; 2002 hdr.duration_id = 0; 2003 hdr.seq_ctrl = 0; 2004 2005 skip_header_bytes = ETH_HLEN; 2006 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { 2007 encaps_data = bridge_tunnel_header; 2008 encaps_len = sizeof(bridge_tunnel_header); 2009 skip_header_bytes -= 2; 2010 } else if (ethertype >= 0x600) { 2011 encaps_data = rfc1042_header; 2012 encaps_len = sizeof(rfc1042_header); 2013 skip_header_bytes -= 2; 2014 } else { 2015 encaps_data = NULL; 2016 encaps_len = 0; 2017 } 2018 2019 nh_pos = skb_network_header(skb) - skb->data; 2020 h_pos = skb_transport_header(skb) - skb->data; 2021 2022 skb_pull(skb, skip_header_bytes); 2023 nh_pos -= skip_header_bytes; 2024 h_pos -= skip_header_bytes; 2025 2026 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb); 2027 2028 /* 2029 * So we need to modify the skb header and hence need a copy of 2030 * that. The head_need variable above doesn't, so far, include 2031 * the needed header space that we don't need right away. If we 2032 * can, then we don't reallocate right now but only after the 2033 * frame arrives at the master device (if it does...) 2034 * 2035 * If we cannot, however, then we will reallocate to include all 2036 * the ever needed space. Also, if we need to reallocate it anyway, 2037 * make it big enough for everything we may ever need. 2038 */ 2039 2040 if (head_need > 0 || skb_cloned(skb)) { 2041 head_need += IEEE80211_ENCRYPT_HEADROOM; 2042 head_need += local->tx_headroom; 2043 head_need = max_t(int, 0, head_need); 2044 if (ieee80211_skb_resize(sdata, skb, head_need, true)) 2045 goto fail; 2046 } 2047 2048 if (encaps_data) { 2049 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); 2050 nh_pos += encaps_len; 2051 h_pos += encaps_len; 2052 } 2053 2054 #ifdef CONFIG_MAC80211_MESH 2055 if (meshhdrlen > 0) { 2056 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen); 2057 nh_pos += meshhdrlen; 2058 h_pos += meshhdrlen; 2059 } 2060 #endif 2061 2062 if (ieee80211_is_data_qos(fc)) { 2063 __le16 *qos_control; 2064 2065 qos_control = (__le16*) skb_push(skb, 2); 2066 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); 2067 /* 2068 * Maybe we could actually set some fields here, for now just 2069 * initialise to zero to indicate no special operation. 2070 */ 2071 *qos_control = 0; 2072 } else 2073 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); 2074 2075 nh_pos += hdrlen; 2076 h_pos += hdrlen; 2077 2078 dev->stats.tx_packets++; 2079 dev->stats.tx_bytes += skb->len; 2080 2081 /* Update skb pointers to various headers since this modified frame 2082 * is going to go through Linux networking code that may potentially 2083 * need things like pointer to IP header. */ 2084 skb_set_mac_header(skb, 0); 2085 skb_set_network_header(skb, nh_pos); 2086 skb_set_transport_header(skb, h_pos); 2087 2088 info = IEEE80211_SKB_CB(skb); 2089 memset(info, 0, sizeof(*info)); 2090 2091 dev->trans_start = jiffies; 2092 2093 info->flags = info_flags; 2094 info->ack_frame_id = info_id; 2095 2096 ieee80211_xmit(sdata, skb); 2097 2098 return NETDEV_TX_OK; 2099 2100 fail: 2101 if (ret == NETDEV_TX_OK) 2102 dev_kfree_skb(skb); 2103 2104 return ret; 2105 } 2106 2107 2108 /* 2109 * ieee80211_clear_tx_pending may not be called in a context where 2110 * it is possible that it packets could come in again. 2111 */ 2112 void ieee80211_clear_tx_pending(struct ieee80211_local *local) 2113 { 2114 int i; 2115 2116 for (i = 0; i < local->hw.queues; i++) 2117 skb_queue_purge(&local->pending[i]); 2118 } 2119 2120 /* 2121 * Returns false if the frame couldn't be transmitted but was queued instead, 2122 * which in this case means re-queued -- take as an indication to stop sending 2123 * more pending frames. 2124 */ 2125 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local, 2126 struct sk_buff *skb) 2127 { 2128 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2129 struct ieee80211_sub_if_data *sdata; 2130 struct sta_info *sta; 2131 struct ieee80211_hdr *hdr; 2132 bool result; 2133 2134 sdata = vif_to_sdata(info->control.vif); 2135 2136 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) { 2137 result = ieee80211_tx(sdata, skb, true); 2138 } else { 2139 struct sk_buff_head skbs; 2140 2141 __skb_queue_head_init(&skbs); 2142 __skb_queue_tail(&skbs, skb); 2143 2144 hdr = (struct ieee80211_hdr *)skb->data; 2145 sta = sta_info_get(sdata, hdr->addr1); 2146 2147 result = __ieee80211_tx(local, &skbs, skb->len, sta, true); 2148 } 2149 2150 return result; 2151 } 2152 2153 /* 2154 * Transmit all pending packets. Called from tasklet. 2155 */ 2156 void ieee80211_tx_pending(unsigned long data) 2157 { 2158 struct ieee80211_local *local = (struct ieee80211_local *)data; 2159 struct ieee80211_sub_if_data *sdata; 2160 unsigned long flags; 2161 int i; 2162 bool txok; 2163 2164 rcu_read_lock(); 2165 2166 spin_lock_irqsave(&local->queue_stop_reason_lock, flags); 2167 for (i = 0; i < local->hw.queues; i++) { 2168 /* 2169 * If queue is stopped by something other than due to pending 2170 * frames, or we have no pending frames, proceed to next queue. 2171 */ 2172 if (local->queue_stop_reasons[i] || 2173 skb_queue_empty(&local->pending[i])) 2174 continue; 2175 2176 while (!skb_queue_empty(&local->pending[i])) { 2177 struct sk_buff *skb = __skb_dequeue(&local->pending[i]); 2178 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2179 2180 if (WARN_ON(!info->control.vif)) { 2181 kfree_skb(skb); 2182 continue; 2183 } 2184 2185 spin_unlock_irqrestore(&local->queue_stop_reason_lock, 2186 flags); 2187 2188 txok = ieee80211_tx_pending_skb(local, skb); 2189 spin_lock_irqsave(&local->queue_stop_reason_lock, 2190 flags); 2191 if (!txok) 2192 break; 2193 } 2194 2195 if (skb_queue_empty(&local->pending[i])) 2196 list_for_each_entry_rcu(sdata, &local->interfaces, list) 2197 netif_wake_subqueue(sdata->dev, i); 2198 } 2199 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); 2200 2201 rcu_read_unlock(); 2202 } 2203 2204 /* functions for drivers to get certain frames */ 2205 2206 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss, 2207 struct sk_buff *skb, 2208 struct beacon_data *beacon) 2209 { 2210 u8 *pos, *tim; 2211 int aid0 = 0; 2212 int i, have_bits = 0, n1, n2; 2213 2214 /* Generate bitmap for TIM only if there are any STAs in power save 2215 * mode. */ 2216 if (atomic_read(&bss->num_sta_ps) > 0) 2217 /* in the hope that this is faster than 2218 * checking byte-for-byte */ 2219 have_bits = !bitmap_empty((unsigned long*)bss->tim, 2220 IEEE80211_MAX_AID+1); 2221 2222 if (bss->dtim_count == 0) 2223 bss->dtim_count = beacon->dtim_period - 1; 2224 else 2225 bss->dtim_count--; 2226 2227 tim = pos = (u8 *) skb_put(skb, 6); 2228 *pos++ = WLAN_EID_TIM; 2229 *pos++ = 4; 2230 *pos++ = bss->dtim_count; 2231 *pos++ = beacon->dtim_period; 2232 2233 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) 2234 aid0 = 1; 2235 2236 bss->dtim_bc_mc = aid0 == 1; 2237 2238 if (have_bits) { 2239 /* Find largest even number N1 so that bits numbered 1 through 2240 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits 2241 * (N2 + 1) x 8 through 2007 are 0. */ 2242 n1 = 0; 2243 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { 2244 if (bss->tim[i]) { 2245 n1 = i & 0xfe; 2246 break; 2247 } 2248 } 2249 n2 = n1; 2250 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { 2251 if (bss->tim[i]) { 2252 n2 = i; 2253 break; 2254 } 2255 } 2256 2257 /* Bitmap control */ 2258 *pos++ = n1 | aid0; 2259 /* Part Virt Bitmap */ 2260 skb_put(skb, n2 - n1); 2261 memcpy(pos, bss->tim + n1, n2 - n1 + 1); 2262 2263 tim[1] = n2 - n1 + 4; 2264 } else { 2265 *pos++ = aid0; /* Bitmap control */ 2266 *pos++ = 0; /* Part Virt Bitmap */ 2267 } 2268 } 2269 2270 struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, 2271 struct ieee80211_vif *vif, 2272 u16 *tim_offset, u16 *tim_length) 2273 { 2274 struct ieee80211_local *local = hw_to_local(hw); 2275 struct sk_buff *skb = NULL; 2276 struct ieee80211_tx_info *info; 2277 struct ieee80211_sub_if_data *sdata = NULL; 2278 struct ieee80211_if_ap *ap = NULL; 2279 struct beacon_data *beacon; 2280 struct ieee80211_supported_band *sband; 2281 enum ieee80211_band band = local->hw.conf.channel->band; 2282 struct ieee80211_tx_rate_control txrc; 2283 2284 sband = local->hw.wiphy->bands[band]; 2285 2286 rcu_read_lock(); 2287 2288 sdata = vif_to_sdata(vif); 2289 2290 if (!ieee80211_sdata_running(sdata)) 2291 goto out; 2292 2293 if (tim_offset) 2294 *tim_offset = 0; 2295 if (tim_length) 2296 *tim_length = 0; 2297 2298 if (sdata->vif.type == NL80211_IFTYPE_AP) { 2299 ap = &sdata->u.ap; 2300 beacon = rcu_dereference(ap->beacon); 2301 if (beacon) { 2302 /* 2303 * headroom, head length, 2304 * tail length and maximum TIM length 2305 */ 2306 skb = dev_alloc_skb(local->tx_headroom + 2307 beacon->head_len + 2308 beacon->tail_len + 256); 2309 if (!skb) 2310 goto out; 2311 2312 skb_reserve(skb, local->tx_headroom); 2313 memcpy(skb_put(skb, beacon->head_len), beacon->head, 2314 beacon->head_len); 2315 2316 /* 2317 * Not very nice, but we want to allow the driver to call 2318 * ieee80211_beacon_get() as a response to the set_tim() 2319 * callback. That, however, is already invoked under the 2320 * sta_lock to guarantee consistent and race-free update 2321 * of the tim bitmap in mac80211 and the driver. 2322 */ 2323 if (local->tim_in_locked_section) { 2324 ieee80211_beacon_add_tim(ap, skb, beacon); 2325 } else { 2326 unsigned long flags; 2327 2328 spin_lock_irqsave(&local->tim_lock, flags); 2329 ieee80211_beacon_add_tim(ap, skb, beacon); 2330 spin_unlock_irqrestore(&local->tim_lock, flags); 2331 } 2332 2333 if (tim_offset) 2334 *tim_offset = beacon->head_len; 2335 if (tim_length) 2336 *tim_length = skb->len - beacon->head_len; 2337 2338 if (beacon->tail) 2339 memcpy(skb_put(skb, beacon->tail_len), 2340 beacon->tail, beacon->tail_len); 2341 } else 2342 goto out; 2343 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { 2344 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; 2345 struct ieee80211_hdr *hdr; 2346 struct sk_buff *presp = rcu_dereference(ifibss->presp); 2347 2348 if (!presp) 2349 goto out; 2350 2351 skb = skb_copy(presp, GFP_ATOMIC); 2352 if (!skb) 2353 goto out; 2354 2355 hdr = (struct ieee80211_hdr *) skb->data; 2356 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2357 IEEE80211_STYPE_BEACON); 2358 } else if (ieee80211_vif_is_mesh(&sdata->vif)) { 2359 struct ieee80211_mgmt *mgmt; 2360 u8 *pos; 2361 int hdr_len = offsetof(struct ieee80211_mgmt, u.beacon) + 2362 sizeof(mgmt->u.beacon); 2363 2364 #ifdef CONFIG_MAC80211_MESH 2365 if (!sdata->u.mesh.mesh_id_len) 2366 goto out; 2367 #endif 2368 2369 skb = dev_alloc_skb(local->tx_headroom + 2370 hdr_len + 2371 2 + /* NULL SSID */ 2372 2 + 8 + /* supported rates */ 2373 2 + 3 + /* DS params */ 2374 2 + (IEEE80211_MAX_SUPP_RATES - 8) + 2375 2 + sizeof(struct ieee80211_ht_cap) + 2376 2 + sizeof(struct ieee80211_ht_info) + 2377 2 + sdata->u.mesh.mesh_id_len + 2378 2 + sizeof(struct ieee80211_meshconf_ie) + 2379 sdata->u.mesh.ie_len); 2380 if (!skb) 2381 goto out; 2382 2383 skb_reserve(skb, local->hw.extra_tx_headroom); 2384 mgmt = (struct ieee80211_mgmt *) skb_put(skb, hdr_len); 2385 memset(mgmt, 0, hdr_len); 2386 mgmt->frame_control = 2387 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); 2388 memset(mgmt->da, 0xff, ETH_ALEN); 2389 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); 2390 memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); 2391 mgmt->u.beacon.beacon_int = 2392 cpu_to_le16(sdata->vif.bss_conf.beacon_int); 2393 mgmt->u.beacon.capab_info |= cpu_to_le16( 2394 sdata->u.mesh.security ? WLAN_CAPABILITY_PRIVACY : 0); 2395 2396 pos = skb_put(skb, 2); 2397 *pos++ = WLAN_EID_SSID; 2398 *pos++ = 0x0; 2399 2400 if (ieee80211_add_srates_ie(&sdata->vif, skb) || 2401 mesh_add_ds_params_ie(skb, sdata) || 2402 ieee80211_add_ext_srates_ie(&sdata->vif, skb) || 2403 mesh_add_rsn_ie(skb, sdata) || 2404 mesh_add_ht_cap_ie(skb, sdata) || 2405 mesh_add_ht_info_ie(skb, sdata) || 2406 mesh_add_meshid_ie(skb, sdata) || 2407 mesh_add_meshconf_ie(skb, sdata) || 2408 mesh_add_vendor_ies(skb, sdata)) { 2409 pr_err("o11s: couldn't add ies!\n"); 2410 goto out; 2411 } 2412 } else { 2413 WARN_ON(1); 2414 goto out; 2415 } 2416 2417 info = IEEE80211_SKB_CB(skb); 2418 2419 info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; 2420 info->flags |= IEEE80211_TX_CTL_NO_ACK; 2421 info->band = band; 2422 2423 memset(&txrc, 0, sizeof(txrc)); 2424 txrc.hw = hw; 2425 txrc.sband = sband; 2426 txrc.bss_conf = &sdata->vif.bss_conf; 2427 txrc.skb = skb; 2428 txrc.reported_rate.idx = -1; 2429 txrc.rate_idx_mask = sdata->rc_rateidx_mask[band]; 2430 if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1) 2431 txrc.max_rate_idx = -1; 2432 else 2433 txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1; 2434 txrc.bss = true; 2435 rate_control_get_rate(sdata, NULL, &txrc); 2436 2437 info->control.vif = vif; 2438 2439 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT | 2440 IEEE80211_TX_CTL_ASSIGN_SEQ | 2441 IEEE80211_TX_CTL_FIRST_FRAGMENT; 2442 out: 2443 rcu_read_unlock(); 2444 return skb; 2445 } 2446 EXPORT_SYMBOL(ieee80211_beacon_get_tim); 2447 2448 struct sk_buff *ieee80211_proberesp_get(struct ieee80211_hw *hw, 2449 struct ieee80211_vif *vif) 2450 { 2451 struct ieee80211_if_ap *ap = NULL; 2452 struct sk_buff *presp = NULL, *skb = NULL; 2453 struct ieee80211_hdr *hdr; 2454 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); 2455 2456 if (sdata->vif.type != NL80211_IFTYPE_AP) 2457 return NULL; 2458 2459 rcu_read_lock(); 2460 2461 ap = &sdata->u.ap; 2462 presp = rcu_dereference(ap->probe_resp); 2463 if (!presp) 2464 goto out; 2465 2466 skb = skb_copy(presp, GFP_ATOMIC); 2467 if (!skb) 2468 goto out; 2469 2470 hdr = (struct ieee80211_hdr *) skb->data; 2471 memset(hdr->addr1, 0, sizeof(hdr->addr1)); 2472 2473 out: 2474 rcu_read_unlock(); 2475 return skb; 2476 } 2477 EXPORT_SYMBOL(ieee80211_proberesp_get); 2478 2479 struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw, 2480 struct ieee80211_vif *vif) 2481 { 2482 struct ieee80211_sub_if_data *sdata; 2483 struct ieee80211_if_managed *ifmgd; 2484 struct ieee80211_pspoll *pspoll; 2485 struct ieee80211_local *local; 2486 struct sk_buff *skb; 2487 2488 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2489 return NULL; 2490 2491 sdata = vif_to_sdata(vif); 2492 ifmgd = &sdata->u.mgd; 2493 local = sdata->local; 2494 2495 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll)); 2496 if (!skb) 2497 return NULL; 2498 2499 skb_reserve(skb, local->hw.extra_tx_headroom); 2500 2501 pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll)); 2502 memset(pspoll, 0, sizeof(*pspoll)); 2503 pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | 2504 IEEE80211_STYPE_PSPOLL); 2505 pspoll->aid = cpu_to_le16(ifmgd->aid); 2506 2507 /* aid in PS-Poll has its two MSBs each set to 1 */ 2508 pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14); 2509 2510 memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN); 2511 memcpy(pspoll->ta, vif->addr, ETH_ALEN); 2512 2513 return skb; 2514 } 2515 EXPORT_SYMBOL(ieee80211_pspoll_get); 2516 2517 struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw, 2518 struct ieee80211_vif *vif) 2519 { 2520 struct ieee80211_hdr_3addr *nullfunc; 2521 struct ieee80211_sub_if_data *sdata; 2522 struct ieee80211_if_managed *ifmgd; 2523 struct ieee80211_local *local; 2524 struct sk_buff *skb; 2525 2526 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) 2527 return NULL; 2528 2529 sdata = vif_to_sdata(vif); 2530 ifmgd = &sdata->u.mgd; 2531 local = sdata->local; 2532 2533 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc)); 2534 if (!skb) 2535 return NULL; 2536 2537 skb_reserve(skb, local->hw.extra_tx_headroom); 2538 2539 nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb, 2540 sizeof(*nullfunc)); 2541 memset(nullfunc, 0, sizeof(*nullfunc)); 2542 nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA | 2543 IEEE80211_STYPE_NULLFUNC | 2544 IEEE80211_FCTL_TODS); 2545 memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN); 2546 memcpy(nullfunc->addr2, vif->addr, ETH_ALEN); 2547 memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN); 2548 2549 return skb; 2550 } 2551 EXPORT_SYMBOL(ieee80211_nullfunc_get); 2552 2553 struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw, 2554 struct ieee80211_vif *vif, 2555 const u8 *ssid, size_t ssid_len, 2556 const u8 *ie, size_t ie_len) 2557 { 2558 struct ieee80211_sub_if_data *sdata; 2559 struct ieee80211_local *local; 2560 struct ieee80211_hdr_3addr *hdr; 2561 struct sk_buff *skb; 2562 size_t ie_ssid_len; 2563 u8 *pos; 2564 2565 sdata = vif_to_sdata(vif); 2566 local = sdata->local; 2567 ie_ssid_len = 2 + ssid_len; 2568 2569 skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) + 2570 ie_ssid_len + ie_len); 2571 if (!skb) 2572 return NULL; 2573 2574 skb_reserve(skb, local->hw.extra_tx_headroom); 2575 2576 hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr)); 2577 memset(hdr, 0, sizeof(*hdr)); 2578 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2579 IEEE80211_STYPE_PROBE_REQ); 2580 memset(hdr->addr1, 0xff, ETH_ALEN); 2581 memcpy(hdr->addr2, vif->addr, ETH_ALEN); 2582 memset(hdr->addr3, 0xff, ETH_ALEN); 2583 2584 pos = skb_put(skb, ie_ssid_len); 2585 *pos++ = WLAN_EID_SSID; 2586 *pos++ = ssid_len; 2587 if (ssid) 2588 memcpy(pos, ssid, ssid_len); 2589 pos += ssid_len; 2590 2591 if (ie) { 2592 pos = skb_put(skb, ie_len); 2593 memcpy(pos, ie, ie_len); 2594 } 2595 2596 return skb; 2597 } 2598 EXPORT_SYMBOL(ieee80211_probereq_get); 2599 2600 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2601 const void *frame, size_t frame_len, 2602 const struct ieee80211_tx_info *frame_txctl, 2603 struct ieee80211_rts *rts) 2604 { 2605 const struct ieee80211_hdr *hdr = frame; 2606 2607 rts->frame_control = 2608 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); 2609 rts->duration = ieee80211_rts_duration(hw, vif, frame_len, 2610 frame_txctl); 2611 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); 2612 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); 2613 } 2614 EXPORT_SYMBOL(ieee80211_rts_get); 2615 2616 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2617 const void *frame, size_t frame_len, 2618 const struct ieee80211_tx_info *frame_txctl, 2619 struct ieee80211_cts *cts) 2620 { 2621 const struct ieee80211_hdr *hdr = frame; 2622 2623 cts->frame_control = 2624 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); 2625 cts->duration = ieee80211_ctstoself_duration(hw, vif, 2626 frame_len, frame_txctl); 2627 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); 2628 } 2629 EXPORT_SYMBOL(ieee80211_ctstoself_get); 2630 2631 struct sk_buff * 2632 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, 2633 struct ieee80211_vif *vif) 2634 { 2635 struct ieee80211_local *local = hw_to_local(hw); 2636 struct sk_buff *skb = NULL; 2637 struct ieee80211_tx_data tx; 2638 struct ieee80211_sub_if_data *sdata; 2639 struct ieee80211_if_ap *bss = NULL; 2640 struct beacon_data *beacon; 2641 struct ieee80211_tx_info *info; 2642 2643 sdata = vif_to_sdata(vif); 2644 bss = &sdata->u.ap; 2645 2646 rcu_read_lock(); 2647 beacon = rcu_dereference(bss->beacon); 2648 2649 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head) 2650 goto out; 2651 2652 if (bss->dtim_count != 0 || !bss->dtim_bc_mc) 2653 goto out; /* send buffered bc/mc only after DTIM beacon */ 2654 2655 while (1) { 2656 skb = skb_dequeue(&bss->ps_bc_buf); 2657 if (!skb) 2658 goto out; 2659 local->total_ps_buffered--; 2660 2661 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { 2662 struct ieee80211_hdr *hdr = 2663 (struct ieee80211_hdr *) skb->data; 2664 /* more buffered multicast/broadcast frames ==> set 2665 * MoreData flag in IEEE 802.11 header to inform PS 2666 * STAs */ 2667 hdr->frame_control |= 2668 cpu_to_le16(IEEE80211_FCTL_MOREDATA); 2669 } 2670 2671 if (!ieee80211_tx_prepare(sdata, &tx, skb)) 2672 break; 2673 dev_kfree_skb_any(skb); 2674 } 2675 2676 info = IEEE80211_SKB_CB(skb); 2677 2678 tx.flags |= IEEE80211_TX_PS_BUFFERED; 2679 tx.channel = local->hw.conf.channel; 2680 info->band = tx.channel->band; 2681 2682 if (invoke_tx_handlers(&tx)) 2683 skb = NULL; 2684 out: 2685 rcu_read_unlock(); 2686 2687 return skb; 2688 } 2689 EXPORT_SYMBOL(ieee80211_get_buffered_bc); 2690 2691 void ieee80211_tx_skb_tid(struct ieee80211_sub_if_data *sdata, 2692 struct sk_buff *skb, int tid) 2693 { 2694 skb_set_mac_header(skb, 0); 2695 skb_set_network_header(skb, 0); 2696 skb_set_transport_header(skb, 0); 2697 2698 skb_set_queue_mapping(skb, ieee802_1d_to_ac[tid]); 2699 skb->priority = tid; 2700 2701 /* 2702 * The other path calling ieee80211_xmit is from the tasklet, 2703 * and while we can handle concurrent transmissions locking 2704 * requirements are that we do not come into tx with bhs on. 2705 */ 2706 local_bh_disable(); 2707 ieee80211_xmit(sdata, skb); 2708 local_bh_enable(); 2709 } 2710