1 /* 2 * Copyright 2002-2005, Instant802 Networks, Inc. 3 * Copyright 2005-2006, Devicescape Software, Inc. 4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> 5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net> 6 * Copyright 2013-2014 Intel Mobile Communications GmbH 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 */ 12 13 #include <linux/jiffies.h> 14 #include <linux/slab.h> 15 #include <linux/kernel.h> 16 #include <linux/skbuff.h> 17 #include <linux/netdevice.h> 18 #include <linux/etherdevice.h> 19 #include <linux/rcupdate.h> 20 #include <linux/export.h> 21 #include <net/mac80211.h> 22 #include <net/ieee80211_radiotap.h> 23 #include <asm/unaligned.h> 24 25 #include "ieee80211_i.h" 26 #include "driver-ops.h" 27 #include "led.h" 28 #include "mesh.h" 29 #include "wep.h" 30 #include "wpa.h" 31 #include "tkip.h" 32 #include "wme.h" 33 #include "rate.h" 34 35 /* 36 * monitor mode reception 37 * 38 * This function cleans up the SKB, i.e. it removes all the stuff 39 * only useful for monitoring. 40 */ 41 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local, 42 struct sk_buff *skb, 43 unsigned int rtap_vendor_space) 44 { 45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) { 46 if (likely(skb->len > FCS_LEN)) 47 __pskb_trim(skb, skb->len - FCS_LEN); 48 else { 49 /* driver bug */ 50 WARN_ON(1); 51 dev_kfree_skb(skb); 52 return NULL; 53 } 54 } 55 56 __pskb_pull(skb, rtap_vendor_space); 57 58 return skb; 59 } 60 61 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len, 62 unsigned int rtap_vendor_space) 63 { 64 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 65 struct ieee80211_hdr *hdr; 66 67 hdr = (void *)(skb->data + rtap_vendor_space); 68 69 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | 70 RX_FLAG_FAILED_PLCP_CRC | 71 RX_FLAG_AMPDU_IS_ZEROLEN)) 72 return true; 73 74 if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space)) 75 return true; 76 77 if (ieee80211_is_ctl(hdr->frame_control) && 78 !ieee80211_is_pspoll(hdr->frame_control) && 79 !ieee80211_is_back_req(hdr->frame_control)) 80 return true; 81 82 return false; 83 } 84 85 static int 86 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local, 87 struct ieee80211_rx_status *status, 88 struct sk_buff *skb) 89 { 90 int len; 91 92 /* always present fields */ 93 len = sizeof(struct ieee80211_radiotap_header) + 8; 94 95 /* allocate extra bitmaps */ 96 if (status->chains) 97 len += 4 * hweight8(status->chains); 98 99 if (ieee80211_have_rx_timestamp(status)) { 100 len = ALIGN(len, 8); 101 len += 8; 102 } 103 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 104 len += 1; 105 106 /* antenna field, if we don't have per-chain info */ 107 if (!status->chains) 108 len += 1; 109 110 /* padding for RX_FLAGS if necessary */ 111 len = ALIGN(len, 2); 112 113 if (status->flag & RX_FLAG_HT) /* HT info */ 114 len += 3; 115 116 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 117 len = ALIGN(len, 4); 118 len += 8; 119 } 120 121 if (status->flag & RX_FLAG_VHT) { 122 len = ALIGN(len, 2); 123 len += 12; 124 } 125 126 if (status->chains) { 127 /* antenna and antenna signal fields */ 128 len += 2 * hweight8(status->chains); 129 } 130 131 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 132 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data; 133 134 /* vendor presence bitmap */ 135 len += 4; 136 /* alignment for fixed 6-byte vendor data header */ 137 len = ALIGN(len, 2); 138 /* vendor data header */ 139 len += 6; 140 if (WARN_ON(rtap->align == 0)) 141 rtap->align = 1; 142 len = ALIGN(len, rtap->align); 143 len += rtap->len + rtap->pad; 144 } 145 146 return len; 147 } 148 149 /* 150 * ieee80211_add_rx_radiotap_header - add radiotap header 151 * 152 * add a radiotap header containing all the fields which the hardware provided. 153 */ 154 static void 155 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local, 156 struct sk_buff *skb, 157 struct ieee80211_rate *rate, 158 int rtap_len, bool has_fcs) 159 { 160 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 161 struct ieee80211_radiotap_header *rthdr; 162 unsigned char *pos; 163 __le32 *it_present; 164 u32 it_present_val; 165 u16 rx_flags = 0; 166 u16 channel_flags = 0; 167 int mpdulen, chain; 168 unsigned long chains = status->chains; 169 struct ieee80211_vendor_radiotap rtap = {}; 170 171 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 172 rtap = *(struct ieee80211_vendor_radiotap *)skb->data; 173 /* rtap.len and rtap.pad are undone immediately */ 174 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad); 175 } 176 177 mpdulen = skb->len; 178 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))) 179 mpdulen += FCS_LEN; 180 181 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len); 182 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad); 183 it_present = &rthdr->it_present; 184 185 /* radiotap header, set always present flags */ 186 rthdr->it_len = cpu_to_le16(rtap_len); 187 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) | 188 BIT(IEEE80211_RADIOTAP_CHANNEL) | 189 BIT(IEEE80211_RADIOTAP_RX_FLAGS); 190 191 if (!status->chains) 192 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA); 193 194 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 195 it_present_val |= 196 BIT(IEEE80211_RADIOTAP_EXT) | 197 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE); 198 put_unaligned_le32(it_present_val, it_present); 199 it_present++; 200 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) | 201 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 202 } 203 204 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 205 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) | 206 BIT(IEEE80211_RADIOTAP_EXT); 207 put_unaligned_le32(it_present_val, it_present); 208 it_present++; 209 it_present_val = rtap.present; 210 } 211 212 put_unaligned_le32(it_present_val, it_present); 213 214 pos = (void *)(it_present + 1); 215 216 /* the order of the following fields is important */ 217 218 /* IEEE80211_RADIOTAP_TSFT */ 219 if (ieee80211_have_rx_timestamp(status)) { 220 /* padding */ 221 while ((pos - (u8 *)rthdr) & 7) 222 *pos++ = 0; 223 put_unaligned_le64( 224 ieee80211_calculate_rx_timestamp(local, status, 225 mpdulen, 0), 226 pos); 227 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT); 228 pos += 8; 229 } 230 231 /* IEEE80211_RADIOTAP_FLAGS */ 232 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)) 233 *pos |= IEEE80211_RADIOTAP_F_FCS; 234 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC)) 235 *pos |= IEEE80211_RADIOTAP_F_BADFCS; 236 if (status->flag & RX_FLAG_SHORTPRE) 237 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE; 238 pos++; 239 240 /* IEEE80211_RADIOTAP_RATE */ 241 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) { 242 /* 243 * Without rate information don't add it. If we have, 244 * MCS information is a separate field in radiotap, 245 * added below. The byte here is needed as padding 246 * for the channel though, so initialise it to 0. 247 */ 248 *pos = 0; 249 } else { 250 int shift = 0; 251 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE); 252 if (status->flag & RX_FLAG_10MHZ) 253 shift = 1; 254 else if (status->flag & RX_FLAG_5MHZ) 255 shift = 2; 256 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift)); 257 } 258 pos++; 259 260 /* IEEE80211_RADIOTAP_CHANNEL */ 261 put_unaligned_le16(status->freq, pos); 262 pos += 2; 263 if (status->flag & RX_FLAG_10MHZ) 264 channel_flags |= IEEE80211_CHAN_HALF; 265 else if (status->flag & RX_FLAG_5MHZ) 266 channel_flags |= IEEE80211_CHAN_QUARTER; 267 268 if (status->band == IEEE80211_BAND_5GHZ) 269 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ; 270 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 271 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 272 else if (rate && rate->flags & IEEE80211_RATE_ERP_G) 273 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 274 else if (rate) 275 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ; 276 else 277 channel_flags |= IEEE80211_CHAN_2GHZ; 278 put_unaligned_le16(channel_flags, pos); 279 pos += 2; 280 281 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */ 282 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM && 283 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 284 *pos = status->signal; 285 rthdr->it_present |= 286 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL); 287 pos++; 288 } 289 290 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */ 291 292 if (!status->chains) { 293 /* IEEE80211_RADIOTAP_ANTENNA */ 294 *pos = status->antenna; 295 pos++; 296 } 297 298 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */ 299 300 /* IEEE80211_RADIOTAP_RX_FLAGS */ 301 /* ensure 2 byte alignment for the 2 byte field as required */ 302 if ((pos - (u8 *)rthdr) & 1) 303 *pos++ = 0; 304 if (status->flag & RX_FLAG_FAILED_PLCP_CRC) 305 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP; 306 put_unaligned_le16(rx_flags, pos); 307 pos += 2; 308 309 if (status->flag & RX_FLAG_HT) { 310 unsigned int stbc; 311 312 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS); 313 *pos++ = local->hw.radiotap_mcs_details; 314 *pos = 0; 315 if (status->flag & RX_FLAG_SHORT_GI) 316 *pos |= IEEE80211_RADIOTAP_MCS_SGI; 317 if (status->flag & RX_FLAG_40MHZ) 318 *pos |= IEEE80211_RADIOTAP_MCS_BW_40; 319 if (status->flag & RX_FLAG_HT_GF) 320 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF; 321 if (status->flag & RX_FLAG_LDPC) 322 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC; 323 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT; 324 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT; 325 pos++; 326 *pos++ = status->rate_idx; 327 } 328 329 if (status->flag & RX_FLAG_AMPDU_DETAILS) { 330 u16 flags = 0; 331 332 /* ensure 4 byte alignment */ 333 while ((pos - (u8 *)rthdr) & 3) 334 pos++; 335 rthdr->it_present |= 336 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS); 337 put_unaligned_le32(status->ampdu_reference, pos); 338 pos += 4; 339 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN) 340 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN; 341 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN) 342 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN; 343 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN) 344 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN; 345 if (status->flag & RX_FLAG_AMPDU_IS_LAST) 346 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST; 347 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR) 348 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR; 349 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 350 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN; 351 put_unaligned_le16(flags, pos); 352 pos += 2; 353 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN) 354 *pos++ = status->ampdu_delimiter_crc; 355 else 356 *pos++ = 0; 357 *pos++ = 0; 358 } 359 360 if (status->flag & RX_FLAG_VHT) { 361 u16 known = local->hw.radiotap_vht_details; 362 363 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT); 364 /* known field - how to handle 80+80? */ 365 if (status->vht_flag & RX_VHT_FLAG_80P80MHZ) 366 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH; 367 put_unaligned_le16(known, pos); 368 pos += 2; 369 /* flags */ 370 if (status->flag & RX_FLAG_SHORT_GI) 371 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI; 372 /* in VHT, STBC is binary */ 373 if (status->flag & RX_FLAG_STBC_MASK) 374 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC; 375 if (status->vht_flag & RX_VHT_FLAG_BF) 376 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED; 377 pos++; 378 /* bandwidth */ 379 if (status->vht_flag & RX_VHT_FLAG_80MHZ) 380 *pos++ = 4; 381 else if (status->vht_flag & RX_VHT_FLAG_80P80MHZ) 382 *pos++ = 0; /* marked not known above */ 383 else if (status->vht_flag & RX_VHT_FLAG_160MHZ) 384 *pos++ = 11; 385 else if (status->flag & RX_FLAG_40MHZ) 386 *pos++ = 1; 387 else /* 20 MHz */ 388 *pos++ = 0; 389 /* MCS/NSS */ 390 *pos = (status->rate_idx << 4) | status->vht_nss; 391 pos += 4; 392 /* coding field */ 393 if (status->flag & RX_FLAG_LDPC) 394 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0; 395 pos++; 396 /* group ID */ 397 pos++; 398 /* partial_aid */ 399 pos += 2; 400 } 401 402 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) { 403 *pos++ = status->chain_signal[chain]; 404 *pos++ = chain; 405 } 406 407 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 408 /* ensure 2 byte alignment for the vendor field as required */ 409 if ((pos - (u8 *)rthdr) & 1) 410 *pos++ = 0; 411 *pos++ = rtap.oui[0]; 412 *pos++ = rtap.oui[1]; 413 *pos++ = rtap.oui[2]; 414 *pos++ = rtap.subns; 415 put_unaligned_le16(rtap.len, pos); 416 pos += 2; 417 /* align the actual payload as requested */ 418 while ((pos - (u8 *)rthdr) & (rtap.align - 1)) 419 *pos++ = 0; 420 /* data (and possible padding) already follows */ 421 } 422 } 423 424 /* 425 * This function copies a received frame to all monitor interfaces and 426 * returns a cleaned-up SKB that no longer includes the FCS nor the 427 * radiotap header the driver might have added. 428 */ 429 static struct sk_buff * 430 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb, 431 struct ieee80211_rate *rate) 432 { 433 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb); 434 struct ieee80211_sub_if_data *sdata; 435 int rt_hdrlen, needed_headroom; 436 struct sk_buff *skb, *skb2; 437 struct net_device *prev_dev = NULL; 438 int present_fcs_len = 0; 439 unsigned int rtap_vendor_space = 0; 440 441 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) { 442 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data; 443 444 rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad; 445 } 446 447 /* 448 * First, we may need to make a copy of the skb because 449 * (1) we need to modify it for radiotap (if not present), and 450 * (2) the other RX handlers will modify the skb we got. 451 * 452 * We don't need to, of course, if we aren't going to return 453 * the SKB because it has a bad FCS/PLCP checksum. 454 */ 455 456 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) 457 present_fcs_len = FCS_LEN; 458 459 /* ensure hdr->frame_control and vendor radiotap data are in skb head */ 460 if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) { 461 dev_kfree_skb(origskb); 462 return NULL; 463 } 464 465 if (!local->monitors) { 466 if (should_drop_frame(origskb, present_fcs_len, 467 rtap_vendor_space)) { 468 dev_kfree_skb(origskb); 469 return NULL; 470 } 471 472 return remove_monitor_info(local, origskb, rtap_vendor_space); 473 } 474 475 /* room for the radiotap header based on driver features */ 476 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb); 477 needed_headroom = rt_hdrlen - rtap_vendor_space; 478 479 if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) { 480 /* only need to expand headroom if necessary */ 481 skb = origskb; 482 origskb = NULL; 483 484 /* 485 * This shouldn't trigger often because most devices have an 486 * RX header they pull before we get here, and that should 487 * be big enough for our radiotap information. We should 488 * probably export the length to drivers so that we can have 489 * them allocate enough headroom to start with. 490 */ 491 if (skb_headroom(skb) < needed_headroom && 492 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) { 493 dev_kfree_skb(skb); 494 return NULL; 495 } 496 } else { 497 /* 498 * Need to make a copy and possibly remove radiotap header 499 * and FCS from the original. 500 */ 501 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC); 502 503 origskb = remove_monitor_info(local, origskb, 504 rtap_vendor_space); 505 506 if (!skb) 507 return origskb; 508 } 509 510 /* prepend radiotap information */ 511 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true); 512 513 skb_reset_mac_header(skb); 514 skb->ip_summed = CHECKSUM_UNNECESSARY; 515 skb->pkt_type = PACKET_OTHERHOST; 516 skb->protocol = htons(ETH_P_802_2); 517 518 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 519 if (sdata->vif.type != NL80211_IFTYPE_MONITOR) 520 continue; 521 522 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES) 523 continue; 524 525 if (!ieee80211_sdata_running(sdata)) 526 continue; 527 528 if (prev_dev) { 529 skb2 = skb_clone(skb, GFP_ATOMIC); 530 if (skb2) { 531 skb2->dev = prev_dev; 532 netif_receive_skb(skb2); 533 } 534 } 535 536 prev_dev = sdata->dev; 537 sdata->dev->stats.rx_packets++; 538 sdata->dev->stats.rx_bytes += skb->len; 539 } 540 541 if (prev_dev) { 542 skb->dev = prev_dev; 543 netif_receive_skb(skb); 544 } else 545 dev_kfree_skb(skb); 546 547 return origskb; 548 } 549 550 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx) 551 { 552 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 553 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 554 int tid, seqno_idx, security_idx; 555 556 /* does the frame have a qos control field? */ 557 if (ieee80211_is_data_qos(hdr->frame_control)) { 558 u8 *qc = ieee80211_get_qos_ctl(hdr); 559 /* frame has qos control */ 560 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 561 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT) 562 status->rx_flags |= IEEE80211_RX_AMSDU; 563 564 seqno_idx = tid; 565 security_idx = tid; 566 } else { 567 /* 568 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"): 569 * 570 * Sequence numbers for management frames, QoS data 571 * frames with a broadcast/multicast address in the 572 * Address 1 field, and all non-QoS data frames sent 573 * by QoS STAs are assigned using an additional single 574 * modulo-4096 counter, [...] 575 * 576 * We also use that counter for non-QoS STAs. 577 */ 578 seqno_idx = IEEE80211_NUM_TIDS; 579 security_idx = 0; 580 if (ieee80211_is_mgmt(hdr->frame_control)) 581 security_idx = IEEE80211_NUM_TIDS; 582 tid = 0; 583 } 584 585 rx->seqno_idx = seqno_idx; 586 rx->security_idx = security_idx; 587 /* Set skb->priority to 1d tag if highest order bit of TID is not set. 588 * For now, set skb->priority to 0 for other cases. */ 589 rx->skb->priority = (tid > 7) ? 0 : tid; 590 } 591 592 /** 593 * DOC: Packet alignment 594 * 595 * Drivers always need to pass packets that are aligned to two-byte boundaries 596 * to the stack. 597 * 598 * Additionally, should, if possible, align the payload data in a way that 599 * guarantees that the contained IP header is aligned to a four-byte 600 * boundary. In the case of regular frames, this simply means aligning the 601 * payload to a four-byte boundary (because either the IP header is directly 602 * contained, or IV/RFC1042 headers that have a length divisible by four are 603 * in front of it). If the payload data is not properly aligned and the 604 * architecture doesn't support efficient unaligned operations, mac80211 605 * will align the data. 606 * 607 * With A-MSDU frames, however, the payload data address must yield two modulo 608 * four because there are 14-byte 802.3 headers within the A-MSDU frames that 609 * push the IP header further back to a multiple of four again. Thankfully, the 610 * specs were sane enough this time around to require padding each A-MSDU 611 * subframe to a length that is a multiple of four. 612 * 613 * Padding like Atheros hardware adds which is between the 802.11 header and 614 * the payload is not supported, the driver is required to move the 802.11 615 * header to be directly in front of the payload in that case. 616 */ 617 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx) 618 { 619 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG 620 WARN_ONCE((unsigned long)rx->skb->data & 1, 621 "unaligned packet at 0x%p\n", rx->skb->data); 622 #endif 623 } 624 625 626 /* rx handlers */ 627 628 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb) 629 { 630 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 631 632 if (is_multicast_ether_addr(hdr->addr1)) 633 return 0; 634 635 return ieee80211_is_robust_mgmt_frame(skb); 636 } 637 638 639 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb) 640 { 641 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 642 643 if (!is_multicast_ether_addr(hdr->addr1)) 644 return 0; 645 646 return ieee80211_is_robust_mgmt_frame(skb); 647 } 648 649 650 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */ 651 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb) 652 { 653 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data; 654 struct ieee80211_mmie *mmie; 655 656 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da)) 657 return -1; 658 659 if (!ieee80211_is_robust_mgmt_frame(skb)) 660 return -1; /* not a robust management frame */ 661 662 mmie = (struct ieee80211_mmie *) 663 (skb->data + skb->len - sizeof(*mmie)); 664 if (mmie->element_id != WLAN_EID_MMIE || 665 mmie->length != sizeof(*mmie) - 2) 666 return -1; 667 668 return le16_to_cpu(mmie->key_id); 669 } 670 671 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs, 672 struct sk_buff *skb) 673 { 674 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 675 __le16 fc; 676 int hdrlen; 677 u8 keyid; 678 679 fc = hdr->frame_control; 680 hdrlen = ieee80211_hdrlen(fc); 681 682 if (skb->len < hdrlen + cs->hdr_len) 683 return -EINVAL; 684 685 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1); 686 keyid &= cs->key_idx_mask; 687 keyid >>= cs->key_idx_shift; 688 689 return keyid; 690 } 691 692 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx) 693 { 694 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 695 char *dev_addr = rx->sdata->vif.addr; 696 697 if (ieee80211_is_data(hdr->frame_control)) { 698 if (is_multicast_ether_addr(hdr->addr1)) { 699 if (ieee80211_has_tods(hdr->frame_control) || 700 !ieee80211_has_fromds(hdr->frame_control)) 701 return RX_DROP_MONITOR; 702 if (ether_addr_equal(hdr->addr3, dev_addr)) 703 return RX_DROP_MONITOR; 704 } else { 705 if (!ieee80211_has_a4(hdr->frame_control)) 706 return RX_DROP_MONITOR; 707 if (ether_addr_equal(hdr->addr4, dev_addr)) 708 return RX_DROP_MONITOR; 709 } 710 } 711 712 /* If there is not an established peer link and this is not a peer link 713 * establisment frame, beacon or probe, drop the frame. 714 */ 715 716 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) { 717 struct ieee80211_mgmt *mgmt; 718 719 if (!ieee80211_is_mgmt(hdr->frame_control)) 720 return RX_DROP_MONITOR; 721 722 if (ieee80211_is_action(hdr->frame_control)) { 723 u8 category; 724 725 /* make sure category field is present */ 726 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE) 727 return RX_DROP_MONITOR; 728 729 mgmt = (struct ieee80211_mgmt *)hdr; 730 category = mgmt->u.action.category; 731 if (category != WLAN_CATEGORY_MESH_ACTION && 732 category != WLAN_CATEGORY_SELF_PROTECTED) 733 return RX_DROP_MONITOR; 734 return RX_CONTINUE; 735 } 736 737 if (ieee80211_is_probe_req(hdr->frame_control) || 738 ieee80211_is_probe_resp(hdr->frame_control) || 739 ieee80211_is_beacon(hdr->frame_control) || 740 ieee80211_is_auth(hdr->frame_control)) 741 return RX_CONTINUE; 742 743 return RX_DROP_MONITOR; 744 } 745 746 return RX_CONTINUE; 747 } 748 749 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata, 750 struct tid_ampdu_rx *tid_agg_rx, 751 int index, 752 struct sk_buff_head *frames) 753 { 754 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index]; 755 struct sk_buff *skb; 756 struct ieee80211_rx_status *status; 757 758 lockdep_assert_held(&tid_agg_rx->reorder_lock); 759 760 if (skb_queue_empty(skb_list)) 761 goto no_frame; 762 763 if (!ieee80211_rx_reorder_ready(skb_list)) { 764 __skb_queue_purge(skb_list); 765 goto no_frame; 766 } 767 768 /* release frames from the reorder ring buffer */ 769 tid_agg_rx->stored_mpdu_num--; 770 while ((skb = __skb_dequeue(skb_list))) { 771 status = IEEE80211_SKB_RXCB(skb); 772 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE; 773 __skb_queue_tail(frames, skb); 774 } 775 776 no_frame: 777 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num); 778 } 779 780 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata, 781 struct tid_ampdu_rx *tid_agg_rx, 782 u16 head_seq_num, 783 struct sk_buff_head *frames) 784 { 785 int index; 786 787 lockdep_assert_held(&tid_agg_rx->reorder_lock); 788 789 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) { 790 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 791 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 792 frames); 793 } 794 } 795 796 /* 797 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If 798 * the skb was added to the buffer longer than this time ago, the earlier 799 * frames that have not yet been received are assumed to be lost and the skb 800 * can be released for processing. This may also release other skb's from the 801 * reorder buffer if there are no additional gaps between the frames. 802 * 803 * Callers must hold tid_agg_rx->reorder_lock. 804 */ 805 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10) 806 807 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata, 808 struct tid_ampdu_rx *tid_agg_rx, 809 struct sk_buff_head *frames) 810 { 811 int index, i, j; 812 813 lockdep_assert_held(&tid_agg_rx->reorder_lock); 814 815 /* release the buffer until next missing frame */ 816 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 817 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) && 818 tid_agg_rx->stored_mpdu_num) { 819 /* 820 * No buffers ready to be released, but check whether any 821 * frames in the reorder buffer have timed out. 822 */ 823 int skipped = 1; 824 for (j = (index + 1) % tid_agg_rx->buf_size; j != index; 825 j = (j + 1) % tid_agg_rx->buf_size) { 826 if (!ieee80211_rx_reorder_ready( 827 &tid_agg_rx->reorder_buf[j])) { 828 skipped++; 829 continue; 830 } 831 if (skipped && 832 !time_after(jiffies, tid_agg_rx->reorder_time[j] + 833 HT_RX_REORDER_BUF_TIMEOUT)) 834 goto set_release_timer; 835 836 /* don't leave incomplete A-MSDUs around */ 837 for (i = (index + 1) % tid_agg_rx->buf_size; i != j; 838 i = (i + 1) % tid_agg_rx->buf_size) 839 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]); 840 841 ht_dbg_ratelimited(sdata, 842 "release an RX reorder frame due to timeout on earlier frames\n"); 843 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j, 844 frames); 845 846 /* 847 * Increment the head seq# also for the skipped slots. 848 */ 849 tid_agg_rx->head_seq_num = 850 (tid_agg_rx->head_seq_num + 851 skipped) & IEEE80211_SN_MASK; 852 skipped = 0; 853 } 854 } else while (ieee80211_rx_reorder_ready( 855 &tid_agg_rx->reorder_buf[index])) { 856 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index, 857 frames); 858 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 859 } 860 861 if (tid_agg_rx->stored_mpdu_num) { 862 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size; 863 864 for (; j != (index - 1) % tid_agg_rx->buf_size; 865 j = (j + 1) % tid_agg_rx->buf_size) { 866 if (ieee80211_rx_reorder_ready( 867 &tid_agg_rx->reorder_buf[j])) 868 break; 869 } 870 871 set_release_timer: 872 873 mod_timer(&tid_agg_rx->reorder_timer, 874 tid_agg_rx->reorder_time[j] + 1 + 875 HT_RX_REORDER_BUF_TIMEOUT); 876 } else { 877 del_timer(&tid_agg_rx->reorder_timer); 878 } 879 } 880 881 /* 882 * As this function belongs to the RX path it must be under 883 * rcu_read_lock protection. It returns false if the frame 884 * can be processed immediately, true if it was consumed. 885 */ 886 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata, 887 struct tid_ampdu_rx *tid_agg_rx, 888 struct sk_buff *skb, 889 struct sk_buff_head *frames) 890 { 891 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 892 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 893 u16 sc = le16_to_cpu(hdr->seq_ctrl); 894 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4; 895 u16 head_seq_num, buf_size; 896 int index; 897 bool ret = true; 898 899 spin_lock(&tid_agg_rx->reorder_lock); 900 901 /* 902 * Offloaded BA sessions have no known starting sequence number so pick 903 * one from first Rxed frame for this tid after BA was started. 904 */ 905 if (unlikely(tid_agg_rx->auto_seq)) { 906 tid_agg_rx->auto_seq = false; 907 tid_agg_rx->ssn = mpdu_seq_num; 908 tid_agg_rx->head_seq_num = mpdu_seq_num; 909 } 910 911 buf_size = tid_agg_rx->buf_size; 912 head_seq_num = tid_agg_rx->head_seq_num; 913 914 /* frame with out of date sequence number */ 915 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) { 916 dev_kfree_skb(skb); 917 goto out; 918 } 919 920 /* 921 * If frame the sequence number exceeds our buffering window 922 * size release some previous frames to make room for this one. 923 */ 924 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) { 925 head_seq_num = ieee80211_sn_inc( 926 ieee80211_sn_sub(mpdu_seq_num, buf_size)); 927 /* release stored frames up to new head to stack */ 928 ieee80211_release_reorder_frames(sdata, tid_agg_rx, 929 head_seq_num, frames); 930 } 931 932 /* Now the new frame is always in the range of the reordering buffer */ 933 934 index = mpdu_seq_num % tid_agg_rx->buf_size; 935 936 /* check if we already stored this frame */ 937 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) { 938 dev_kfree_skb(skb); 939 goto out; 940 } 941 942 /* 943 * If the current MPDU is in the right order and nothing else 944 * is stored we can process it directly, no need to buffer it. 945 * If it is first but there's something stored, we may be able 946 * to release frames after this one. 947 */ 948 if (mpdu_seq_num == tid_agg_rx->head_seq_num && 949 tid_agg_rx->stored_mpdu_num == 0) { 950 if (!(status->flag & RX_FLAG_AMSDU_MORE)) 951 tid_agg_rx->head_seq_num = 952 ieee80211_sn_inc(tid_agg_rx->head_seq_num); 953 ret = false; 954 goto out; 955 } 956 957 /* put the frame in the reordering buffer */ 958 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb); 959 if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 960 tid_agg_rx->reorder_time[index] = jiffies; 961 tid_agg_rx->stored_mpdu_num++; 962 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames); 963 } 964 965 out: 966 spin_unlock(&tid_agg_rx->reorder_lock); 967 return ret; 968 } 969 970 /* 971 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns 972 * true if the MPDU was buffered, false if it should be processed. 973 */ 974 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx, 975 struct sk_buff_head *frames) 976 { 977 struct sk_buff *skb = rx->skb; 978 struct ieee80211_local *local = rx->local; 979 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 980 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 981 struct sta_info *sta = rx->sta; 982 struct tid_ampdu_rx *tid_agg_rx; 983 u16 sc; 984 u8 tid, ack_policy; 985 986 if (!ieee80211_is_data_qos(hdr->frame_control) || 987 is_multicast_ether_addr(hdr->addr1)) 988 goto dont_reorder; 989 990 /* 991 * filter the QoS data rx stream according to 992 * STA/TID and check if this STA/TID is on aggregation 993 */ 994 995 if (!sta) 996 goto dont_reorder; 997 998 ack_policy = *ieee80211_get_qos_ctl(hdr) & 999 IEEE80211_QOS_CTL_ACK_POLICY_MASK; 1000 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1001 1002 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 1003 if (!tid_agg_rx) 1004 goto dont_reorder; 1005 1006 /* qos null data frames are excluded */ 1007 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC))) 1008 goto dont_reorder; 1009 1010 /* not part of a BA session */ 1011 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK && 1012 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL) 1013 goto dont_reorder; 1014 1015 /* not actually part of this BA session */ 1016 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1017 goto dont_reorder; 1018 1019 /* new, potentially un-ordered, ampdu frame - process it */ 1020 1021 /* reset session timer */ 1022 if (tid_agg_rx->timeout) 1023 tid_agg_rx->last_rx = jiffies; 1024 1025 /* if this mpdu is fragmented - terminate rx aggregation session */ 1026 sc = le16_to_cpu(hdr->seq_ctrl); 1027 if (sc & IEEE80211_SCTL_FRAG) { 1028 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 1029 skb_queue_tail(&rx->sdata->skb_queue, skb); 1030 ieee80211_queue_work(&local->hw, &rx->sdata->work); 1031 return; 1032 } 1033 1034 /* 1035 * No locking needed -- we will only ever process one 1036 * RX packet at a time, and thus own tid_agg_rx. All 1037 * other code manipulating it needs to (and does) make 1038 * sure that we cannot get to it any more before doing 1039 * anything with it. 1040 */ 1041 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb, 1042 frames)) 1043 return; 1044 1045 dont_reorder: 1046 __skb_queue_tail(frames, skb); 1047 } 1048 1049 static ieee80211_rx_result debug_noinline 1050 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx) 1051 { 1052 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1053 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1054 1055 /* 1056 * Drop duplicate 802.11 retransmissions 1057 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 1058 */ 1059 1060 if (rx->skb->len < 24) 1061 return RX_CONTINUE; 1062 1063 if (ieee80211_is_ctl(hdr->frame_control) || 1064 ieee80211_is_qos_nullfunc(hdr->frame_control) || 1065 is_multicast_ether_addr(hdr->addr1)) 1066 return RX_CONTINUE; 1067 1068 if (rx->sta) { 1069 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 1070 rx->sta->last_seq_ctrl[rx->seqno_idx] == 1071 hdr->seq_ctrl)) { 1072 if (status->rx_flags & IEEE80211_RX_RA_MATCH) { 1073 rx->local->dot11FrameDuplicateCount++; 1074 rx->sta->num_duplicates++; 1075 } 1076 return RX_DROP_UNUSABLE; 1077 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) { 1078 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl; 1079 } 1080 } 1081 1082 return RX_CONTINUE; 1083 } 1084 1085 static ieee80211_rx_result debug_noinline 1086 ieee80211_rx_h_check(struct ieee80211_rx_data *rx) 1087 { 1088 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1089 1090 if (unlikely(rx->skb->len < 16)) { 1091 I802_DEBUG_INC(rx->local->rx_handlers_drop_short); 1092 return RX_DROP_MONITOR; 1093 } 1094 1095 /* Drop disallowed frame classes based on STA auth/assoc state; 1096 * IEEE 802.11, Chap 5.5. 1097 * 1098 * mac80211 filters only based on association state, i.e. it drops 1099 * Class 3 frames from not associated stations. hostapd sends 1100 * deauth/disassoc frames when needed. In addition, hostapd is 1101 * responsible for filtering on both auth and assoc states. 1102 */ 1103 1104 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1105 return ieee80211_rx_mesh_check(rx); 1106 1107 if (unlikely((ieee80211_is_data(hdr->frame_control) || 1108 ieee80211_is_pspoll(hdr->frame_control)) && 1109 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC && 1110 rx->sdata->vif.type != NL80211_IFTYPE_WDS && 1111 rx->sdata->vif.type != NL80211_IFTYPE_OCB && 1112 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) { 1113 /* 1114 * accept port control frames from the AP even when it's not 1115 * yet marked ASSOC to prevent a race where we don't set the 1116 * assoc bit quickly enough before it sends the first frame 1117 */ 1118 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION && 1119 ieee80211_is_data_present(hdr->frame_control)) { 1120 unsigned int hdrlen; 1121 __be16 ethertype; 1122 1123 hdrlen = ieee80211_hdrlen(hdr->frame_control); 1124 1125 if (rx->skb->len < hdrlen + 8) 1126 return RX_DROP_MONITOR; 1127 1128 skb_copy_bits(rx->skb, hdrlen + 6, ðertype, 2); 1129 if (ethertype == rx->sdata->control_port_protocol) 1130 return RX_CONTINUE; 1131 } 1132 1133 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 1134 cfg80211_rx_spurious_frame(rx->sdata->dev, 1135 hdr->addr2, 1136 GFP_ATOMIC)) 1137 return RX_DROP_UNUSABLE; 1138 1139 return RX_DROP_MONITOR; 1140 } 1141 1142 return RX_CONTINUE; 1143 } 1144 1145 1146 static ieee80211_rx_result debug_noinline 1147 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx) 1148 { 1149 struct ieee80211_local *local; 1150 struct ieee80211_hdr *hdr; 1151 struct sk_buff *skb; 1152 1153 local = rx->local; 1154 skb = rx->skb; 1155 hdr = (struct ieee80211_hdr *) skb->data; 1156 1157 if (!local->pspolling) 1158 return RX_CONTINUE; 1159 1160 if (!ieee80211_has_fromds(hdr->frame_control)) 1161 /* this is not from AP */ 1162 return RX_CONTINUE; 1163 1164 if (!ieee80211_is_data(hdr->frame_control)) 1165 return RX_CONTINUE; 1166 1167 if (!ieee80211_has_moredata(hdr->frame_control)) { 1168 /* AP has no more frames buffered for us */ 1169 local->pspolling = false; 1170 return RX_CONTINUE; 1171 } 1172 1173 /* more data bit is set, let's request a new frame from the AP */ 1174 ieee80211_send_pspoll(local, rx->sdata); 1175 1176 return RX_CONTINUE; 1177 } 1178 1179 static void sta_ps_start(struct sta_info *sta) 1180 { 1181 struct ieee80211_sub_if_data *sdata = sta->sdata; 1182 struct ieee80211_local *local = sdata->local; 1183 struct ps_data *ps; 1184 1185 if (sta->sdata->vif.type == NL80211_IFTYPE_AP || 1186 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 1187 ps = &sdata->bss->ps; 1188 else 1189 return; 1190 1191 atomic_inc(&ps->num_sta_ps); 1192 set_sta_flag(sta, WLAN_STA_PS_STA); 1193 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS)) 1194 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta); 1195 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n", 1196 sta->sta.addr, sta->sta.aid); 1197 } 1198 1199 static void sta_ps_end(struct sta_info *sta) 1200 { 1201 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n", 1202 sta->sta.addr, sta->sta.aid); 1203 1204 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) { 1205 /* 1206 * Clear the flag only if the other one is still set 1207 * so that the TX path won't start TX'ing new frames 1208 * directly ... In the case that the driver flag isn't 1209 * set ieee80211_sta_ps_deliver_wakeup() will clear it. 1210 */ 1211 clear_sta_flag(sta, WLAN_STA_PS_STA); 1212 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n", 1213 sta->sta.addr, sta->sta.aid); 1214 return; 1215 } 1216 1217 set_sta_flag(sta, WLAN_STA_PS_DELIVER); 1218 clear_sta_flag(sta, WLAN_STA_PS_STA); 1219 ieee80211_sta_ps_deliver_wakeup(sta); 1220 } 1221 1222 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start) 1223 { 1224 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta); 1225 bool in_ps; 1226 1227 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS)); 1228 1229 /* Don't let the same PS state be set twice */ 1230 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA); 1231 if ((start && in_ps) || (!start && !in_ps)) 1232 return -EINVAL; 1233 1234 if (start) 1235 sta_ps_start(sta_inf); 1236 else 1237 sta_ps_end(sta_inf); 1238 1239 return 0; 1240 } 1241 EXPORT_SYMBOL(ieee80211_sta_ps_transition); 1242 1243 static ieee80211_rx_result debug_noinline 1244 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx) 1245 { 1246 struct ieee80211_sub_if_data *sdata = rx->sdata; 1247 struct ieee80211_hdr *hdr = (void *)rx->skb->data; 1248 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1249 int tid, ac; 1250 1251 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1252 return RX_CONTINUE; 1253 1254 if (sdata->vif.type != NL80211_IFTYPE_AP && 1255 sdata->vif.type != NL80211_IFTYPE_AP_VLAN) 1256 return RX_CONTINUE; 1257 1258 /* 1259 * The device handles station powersave, so don't do anything about 1260 * uAPSD and PS-Poll frames (the latter shouldn't even come up from 1261 * it to mac80211 since they're handled.) 1262 */ 1263 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS) 1264 return RX_CONTINUE; 1265 1266 /* 1267 * Don't do anything if the station isn't already asleep. In 1268 * the uAPSD case, the station will probably be marked asleep, 1269 * in the PS-Poll case the station must be confused ... 1270 */ 1271 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA)) 1272 return RX_CONTINUE; 1273 1274 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) { 1275 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) { 1276 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1277 ieee80211_sta_ps_deliver_poll_response(rx->sta); 1278 else 1279 set_sta_flag(rx->sta, WLAN_STA_PSPOLL); 1280 } 1281 1282 /* Free PS Poll skb here instead of returning RX_DROP that would 1283 * count as an dropped frame. */ 1284 dev_kfree_skb(rx->skb); 1285 1286 return RX_QUEUED; 1287 } else if (!ieee80211_has_morefrags(hdr->frame_control) && 1288 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1289 ieee80211_has_pm(hdr->frame_control) && 1290 (ieee80211_is_data_qos(hdr->frame_control) || 1291 ieee80211_is_qos_nullfunc(hdr->frame_control))) { 1292 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK; 1293 ac = ieee802_1d_to_ac[tid & 7]; 1294 1295 /* 1296 * If this AC is not trigger-enabled do nothing. 1297 * 1298 * NB: This could/should check a separate bitmap of trigger- 1299 * enabled queues, but for now we only implement uAPSD w/o 1300 * TSPEC changes to the ACs, so they're always the same. 1301 */ 1302 if (!(rx->sta->sta.uapsd_queues & BIT(ac))) 1303 return RX_CONTINUE; 1304 1305 /* if we are in a service period, do nothing */ 1306 if (test_sta_flag(rx->sta, WLAN_STA_SP)) 1307 return RX_CONTINUE; 1308 1309 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER)) 1310 ieee80211_sta_ps_deliver_uapsd(rx->sta); 1311 else 1312 set_sta_flag(rx->sta, WLAN_STA_UAPSD); 1313 } 1314 1315 return RX_CONTINUE; 1316 } 1317 1318 static ieee80211_rx_result debug_noinline 1319 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx) 1320 { 1321 struct sta_info *sta = rx->sta; 1322 struct sk_buff *skb = rx->skb; 1323 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1324 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1325 int i; 1326 1327 if (!sta) 1328 return RX_CONTINUE; 1329 1330 /* 1331 * Update last_rx only for IBSS packets which are for the current 1332 * BSSID and for station already AUTHORIZED to avoid keeping the 1333 * current IBSS network alive in cases where other STAs start 1334 * using different BSSID. This will also give the station another 1335 * chance to restart the authentication/authorization in case 1336 * something went wrong the first time. 1337 */ 1338 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) { 1339 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1340 NL80211_IFTYPE_ADHOC); 1341 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) && 1342 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) { 1343 sta->last_rx = jiffies; 1344 if (ieee80211_is_data(hdr->frame_control) && 1345 !is_multicast_ether_addr(hdr->addr1)) { 1346 sta->last_rx_rate_idx = status->rate_idx; 1347 sta->last_rx_rate_flag = status->flag; 1348 sta->last_rx_rate_vht_flag = status->vht_flag; 1349 sta->last_rx_rate_vht_nss = status->vht_nss; 1350 } 1351 } 1352 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) { 1353 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len, 1354 NL80211_IFTYPE_OCB); 1355 /* OCB uses wild-card BSSID */ 1356 if (is_broadcast_ether_addr(bssid)) 1357 sta->last_rx = jiffies; 1358 } else if (!is_multicast_ether_addr(hdr->addr1)) { 1359 /* 1360 * Mesh beacons will update last_rx when if they are found to 1361 * match the current local configuration when processed. 1362 */ 1363 sta->last_rx = jiffies; 1364 if (ieee80211_is_data(hdr->frame_control)) { 1365 sta->last_rx_rate_idx = status->rate_idx; 1366 sta->last_rx_rate_flag = status->flag; 1367 sta->last_rx_rate_vht_flag = status->vht_flag; 1368 sta->last_rx_rate_vht_nss = status->vht_nss; 1369 } 1370 } 1371 1372 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1373 return RX_CONTINUE; 1374 1375 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION) 1376 ieee80211_sta_rx_notify(rx->sdata, hdr); 1377 1378 sta->rx_fragments++; 1379 sta->rx_bytes += rx->skb->len; 1380 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) { 1381 sta->last_signal = status->signal; 1382 ewma_add(&sta->avg_signal, -status->signal); 1383 } 1384 1385 if (status->chains) { 1386 sta->chains = status->chains; 1387 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) { 1388 int signal = status->chain_signal[i]; 1389 1390 if (!(status->chains & BIT(i))) 1391 continue; 1392 1393 sta->chain_signal_last[i] = signal; 1394 ewma_add(&sta->chain_signal_avg[i], -signal); 1395 } 1396 } 1397 1398 /* 1399 * Change STA power saving mode only at the end of a frame 1400 * exchange sequence. 1401 */ 1402 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) && 1403 !ieee80211_has_morefrags(hdr->frame_control) && 1404 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) && 1405 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1406 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 1407 /* PM bit is only checked in frames where it isn't reserved, 1408 * in AP mode it's reserved in non-bufferable management frames 1409 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field) 1410 */ 1411 (!ieee80211_is_mgmt(hdr->frame_control) || 1412 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) { 1413 if (test_sta_flag(sta, WLAN_STA_PS_STA)) { 1414 if (!ieee80211_has_pm(hdr->frame_control)) 1415 sta_ps_end(sta); 1416 } else { 1417 if (ieee80211_has_pm(hdr->frame_control)) 1418 sta_ps_start(sta); 1419 } 1420 } 1421 1422 /* mesh power save support */ 1423 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 1424 ieee80211_mps_rx_h_sta_process(sta, hdr); 1425 1426 /* 1427 * Drop (qos-)data::nullfunc frames silently, since they 1428 * are used only to control station power saving mode. 1429 */ 1430 if (ieee80211_is_nullfunc(hdr->frame_control) || 1431 ieee80211_is_qos_nullfunc(hdr->frame_control)) { 1432 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc); 1433 1434 /* 1435 * If we receive a 4-addr nullfunc frame from a STA 1436 * that was not moved to a 4-addr STA vlan yet send 1437 * the event to userspace and for older hostapd drop 1438 * the frame to the monitor interface. 1439 */ 1440 if (ieee80211_has_a4(hdr->frame_control) && 1441 (rx->sdata->vif.type == NL80211_IFTYPE_AP || 1442 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 1443 !rx->sdata->u.vlan.sta))) { 1444 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT)) 1445 cfg80211_rx_unexpected_4addr_frame( 1446 rx->sdata->dev, sta->sta.addr, 1447 GFP_ATOMIC); 1448 return RX_DROP_MONITOR; 1449 } 1450 /* 1451 * Update counter and free packet here to avoid 1452 * counting this as a dropped packed. 1453 */ 1454 sta->rx_packets++; 1455 dev_kfree_skb(rx->skb); 1456 return RX_QUEUED; 1457 } 1458 1459 return RX_CONTINUE; 1460 } /* ieee80211_rx_h_sta_process */ 1461 1462 static ieee80211_rx_result debug_noinline 1463 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx) 1464 { 1465 struct sk_buff *skb = rx->skb; 1466 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1467 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1468 int keyidx; 1469 int hdrlen; 1470 ieee80211_rx_result result = RX_DROP_UNUSABLE; 1471 struct ieee80211_key *sta_ptk = NULL; 1472 int mmie_keyidx = -1; 1473 __le16 fc; 1474 const struct ieee80211_cipher_scheme *cs = NULL; 1475 1476 /* 1477 * Key selection 101 1478 * 1479 * There are four types of keys: 1480 * - GTK (group keys) 1481 * - IGTK (group keys for management frames) 1482 * - PTK (pairwise keys) 1483 * - STK (station-to-station pairwise keys) 1484 * 1485 * When selecting a key, we have to distinguish between multicast 1486 * (including broadcast) and unicast frames, the latter can only 1487 * use PTKs and STKs while the former always use GTKs and IGTKs. 1488 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then 1489 * unicast frames can also use key indices like GTKs. Hence, if we 1490 * don't have a PTK/STK we check the key index for a WEP key. 1491 * 1492 * Note that in a regular BSS, multicast frames are sent by the 1493 * AP only, associated stations unicast the frame to the AP first 1494 * which then multicasts it on their behalf. 1495 * 1496 * There is also a slight problem in IBSS mode: GTKs are negotiated 1497 * with each station, that is something we don't currently handle. 1498 * The spec seems to expect that one negotiates the same key with 1499 * every station but there's no such requirement; VLANs could be 1500 * possible. 1501 */ 1502 1503 /* 1504 * No point in finding a key and decrypting if the frame is neither 1505 * addressed to us nor a multicast frame. 1506 */ 1507 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 1508 return RX_CONTINUE; 1509 1510 /* start without a key */ 1511 rx->key = NULL; 1512 fc = hdr->frame_control; 1513 1514 if (rx->sta) { 1515 int keyid = rx->sta->ptk_idx; 1516 1517 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) { 1518 cs = rx->sta->cipher_scheme; 1519 keyid = iwl80211_get_cs_keyid(cs, rx->skb); 1520 if (unlikely(keyid < 0)) 1521 return RX_DROP_UNUSABLE; 1522 } 1523 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]); 1524 } 1525 1526 if (!ieee80211_has_protected(fc)) 1527 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb); 1528 1529 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) { 1530 rx->key = sta_ptk; 1531 if ((status->flag & RX_FLAG_DECRYPTED) && 1532 (status->flag & RX_FLAG_IV_STRIPPED)) 1533 return RX_CONTINUE; 1534 /* Skip decryption if the frame is not protected. */ 1535 if (!ieee80211_has_protected(fc)) 1536 return RX_CONTINUE; 1537 } else if (mmie_keyidx >= 0) { 1538 /* Broadcast/multicast robust management frame / BIP */ 1539 if ((status->flag & RX_FLAG_DECRYPTED) && 1540 (status->flag & RX_FLAG_IV_STRIPPED)) 1541 return RX_CONTINUE; 1542 1543 if (mmie_keyidx < NUM_DEFAULT_KEYS || 1544 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS) 1545 return RX_DROP_MONITOR; /* unexpected BIP keyidx */ 1546 if (rx->sta) 1547 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]); 1548 if (!rx->key) 1549 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]); 1550 } else if (!ieee80211_has_protected(fc)) { 1551 /* 1552 * The frame was not protected, so skip decryption. However, we 1553 * need to set rx->key if there is a key that could have been 1554 * used so that the frame may be dropped if encryption would 1555 * have been expected. 1556 */ 1557 struct ieee80211_key *key = NULL; 1558 struct ieee80211_sub_if_data *sdata = rx->sdata; 1559 int i; 1560 1561 if (ieee80211_is_mgmt(fc) && 1562 is_multicast_ether_addr(hdr->addr1) && 1563 (key = rcu_dereference(rx->sdata->default_mgmt_key))) 1564 rx->key = key; 1565 else { 1566 if (rx->sta) { 1567 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1568 key = rcu_dereference(rx->sta->gtk[i]); 1569 if (key) 1570 break; 1571 } 1572 } 1573 if (!key) { 1574 for (i = 0; i < NUM_DEFAULT_KEYS; i++) { 1575 key = rcu_dereference(sdata->keys[i]); 1576 if (key) 1577 break; 1578 } 1579 } 1580 if (key) 1581 rx->key = key; 1582 } 1583 return RX_CONTINUE; 1584 } else { 1585 u8 keyid; 1586 1587 /* 1588 * The device doesn't give us the IV so we won't be 1589 * able to look up the key. That's ok though, we 1590 * don't need to decrypt the frame, we just won't 1591 * be able to keep statistics accurate. 1592 * Except for key threshold notifications, should 1593 * we somehow allow the driver to tell us which key 1594 * the hardware used if this flag is set? 1595 */ 1596 if ((status->flag & RX_FLAG_DECRYPTED) && 1597 (status->flag & RX_FLAG_IV_STRIPPED)) 1598 return RX_CONTINUE; 1599 1600 hdrlen = ieee80211_hdrlen(fc); 1601 1602 if (cs) { 1603 keyidx = iwl80211_get_cs_keyid(cs, rx->skb); 1604 1605 if (unlikely(keyidx < 0)) 1606 return RX_DROP_UNUSABLE; 1607 } else { 1608 if (rx->skb->len < 8 + hdrlen) 1609 return RX_DROP_UNUSABLE; /* TODO: count this? */ 1610 /* 1611 * no need to call ieee80211_wep_get_keyidx, 1612 * it verifies a bunch of things we've done already 1613 */ 1614 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1); 1615 keyidx = keyid >> 6; 1616 } 1617 1618 /* check per-station GTK first, if multicast packet */ 1619 if (is_multicast_ether_addr(hdr->addr1) && rx->sta) 1620 rx->key = rcu_dereference(rx->sta->gtk[keyidx]); 1621 1622 /* if not found, try default key */ 1623 if (!rx->key) { 1624 rx->key = rcu_dereference(rx->sdata->keys[keyidx]); 1625 1626 /* 1627 * RSNA-protected unicast frames should always be 1628 * sent with pairwise or station-to-station keys, 1629 * but for WEP we allow using a key index as well. 1630 */ 1631 if (rx->key && 1632 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 && 1633 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 && 1634 !is_multicast_ether_addr(hdr->addr1)) 1635 rx->key = NULL; 1636 } 1637 } 1638 1639 if (rx->key) { 1640 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED)) 1641 return RX_DROP_MONITOR; 1642 1643 rx->key->tx_rx_count++; 1644 /* TODO: add threshold stuff again */ 1645 } else { 1646 return RX_DROP_MONITOR; 1647 } 1648 1649 switch (rx->key->conf.cipher) { 1650 case WLAN_CIPHER_SUITE_WEP40: 1651 case WLAN_CIPHER_SUITE_WEP104: 1652 result = ieee80211_crypto_wep_decrypt(rx); 1653 break; 1654 case WLAN_CIPHER_SUITE_TKIP: 1655 result = ieee80211_crypto_tkip_decrypt(rx); 1656 break; 1657 case WLAN_CIPHER_SUITE_CCMP: 1658 result = ieee80211_crypto_ccmp_decrypt(rx); 1659 break; 1660 case WLAN_CIPHER_SUITE_AES_CMAC: 1661 result = ieee80211_crypto_aes_cmac_decrypt(rx); 1662 break; 1663 default: 1664 result = ieee80211_crypto_hw_decrypt(rx); 1665 } 1666 1667 /* the hdr variable is invalid after the decrypt handlers */ 1668 1669 /* either the frame has been decrypted or will be dropped */ 1670 status->flag |= RX_FLAG_DECRYPTED; 1671 1672 return result; 1673 } 1674 1675 static inline struct ieee80211_fragment_entry * 1676 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata, 1677 unsigned int frag, unsigned int seq, int rx_queue, 1678 struct sk_buff **skb) 1679 { 1680 struct ieee80211_fragment_entry *entry; 1681 1682 entry = &sdata->fragments[sdata->fragment_next++]; 1683 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX) 1684 sdata->fragment_next = 0; 1685 1686 if (!skb_queue_empty(&entry->skb_list)) 1687 __skb_queue_purge(&entry->skb_list); 1688 1689 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */ 1690 *skb = NULL; 1691 entry->first_frag_time = jiffies; 1692 entry->seq = seq; 1693 entry->rx_queue = rx_queue; 1694 entry->last_frag = frag; 1695 entry->ccmp = 0; 1696 entry->extra_len = 0; 1697 1698 return entry; 1699 } 1700 1701 static inline struct ieee80211_fragment_entry * 1702 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata, 1703 unsigned int frag, unsigned int seq, 1704 int rx_queue, struct ieee80211_hdr *hdr) 1705 { 1706 struct ieee80211_fragment_entry *entry; 1707 int i, idx; 1708 1709 idx = sdata->fragment_next; 1710 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) { 1711 struct ieee80211_hdr *f_hdr; 1712 1713 idx--; 1714 if (idx < 0) 1715 idx = IEEE80211_FRAGMENT_MAX - 1; 1716 1717 entry = &sdata->fragments[idx]; 1718 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq || 1719 entry->rx_queue != rx_queue || 1720 entry->last_frag + 1 != frag) 1721 continue; 1722 1723 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data; 1724 1725 /* 1726 * Check ftype and addresses are equal, else check next fragment 1727 */ 1728 if (((hdr->frame_control ^ f_hdr->frame_control) & 1729 cpu_to_le16(IEEE80211_FCTL_FTYPE)) || 1730 !ether_addr_equal(hdr->addr1, f_hdr->addr1) || 1731 !ether_addr_equal(hdr->addr2, f_hdr->addr2)) 1732 continue; 1733 1734 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) { 1735 __skb_queue_purge(&entry->skb_list); 1736 continue; 1737 } 1738 return entry; 1739 } 1740 1741 return NULL; 1742 } 1743 1744 static ieee80211_rx_result debug_noinline 1745 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx) 1746 { 1747 struct ieee80211_hdr *hdr; 1748 u16 sc; 1749 __le16 fc; 1750 unsigned int frag, seq; 1751 struct ieee80211_fragment_entry *entry; 1752 struct sk_buff *skb; 1753 struct ieee80211_rx_status *status; 1754 1755 hdr = (struct ieee80211_hdr *)rx->skb->data; 1756 fc = hdr->frame_control; 1757 1758 if (ieee80211_is_ctl(fc)) 1759 return RX_CONTINUE; 1760 1761 sc = le16_to_cpu(hdr->seq_ctrl); 1762 frag = sc & IEEE80211_SCTL_FRAG; 1763 1764 if (likely(!ieee80211_has_morefrags(fc) && frag == 0)) 1765 goto out; 1766 1767 if (is_multicast_ether_addr(hdr->addr1)) { 1768 rx->local->dot11MulticastReceivedFrameCount++; 1769 goto out; 1770 } 1771 1772 I802_DEBUG_INC(rx->local->rx_handlers_fragments); 1773 1774 if (skb_linearize(rx->skb)) 1775 return RX_DROP_UNUSABLE; 1776 1777 /* 1778 * skb_linearize() might change the skb->data and 1779 * previously cached variables (in this case, hdr) need to 1780 * be refreshed with the new data. 1781 */ 1782 hdr = (struct ieee80211_hdr *)rx->skb->data; 1783 seq = (sc & IEEE80211_SCTL_SEQ) >> 4; 1784 1785 if (frag == 0) { 1786 /* This is the first fragment of a new frame. */ 1787 entry = ieee80211_reassemble_add(rx->sdata, frag, seq, 1788 rx->seqno_idx, &(rx->skb)); 1789 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP && 1790 ieee80211_has_protected(fc)) { 1791 int queue = rx->security_idx; 1792 /* Store CCMP PN so that we can verify that the next 1793 * fragment has a sequential PN value. */ 1794 entry->ccmp = 1; 1795 memcpy(entry->last_pn, 1796 rx->key->u.ccmp.rx_pn[queue], 1797 IEEE80211_CCMP_PN_LEN); 1798 } 1799 return RX_QUEUED; 1800 } 1801 1802 /* This is a fragment for a frame that should already be pending in 1803 * fragment cache. Add this fragment to the end of the pending entry. 1804 */ 1805 entry = ieee80211_reassemble_find(rx->sdata, frag, seq, 1806 rx->seqno_idx, hdr); 1807 if (!entry) { 1808 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1809 return RX_DROP_MONITOR; 1810 } 1811 1812 /* Verify that MPDUs within one MSDU have sequential PN values. 1813 * (IEEE 802.11i, 8.3.3.4.5) */ 1814 if (entry->ccmp) { 1815 int i; 1816 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn; 1817 int queue; 1818 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP) 1819 return RX_DROP_UNUSABLE; 1820 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN); 1821 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) { 1822 pn[i]++; 1823 if (pn[i]) 1824 break; 1825 } 1826 queue = rx->security_idx; 1827 rpn = rx->key->u.ccmp.rx_pn[queue]; 1828 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN)) 1829 return RX_DROP_UNUSABLE; 1830 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN); 1831 } 1832 1833 skb_pull(rx->skb, ieee80211_hdrlen(fc)); 1834 __skb_queue_tail(&entry->skb_list, rx->skb); 1835 entry->last_frag = frag; 1836 entry->extra_len += rx->skb->len; 1837 if (ieee80211_has_morefrags(fc)) { 1838 rx->skb = NULL; 1839 return RX_QUEUED; 1840 } 1841 1842 rx->skb = __skb_dequeue(&entry->skb_list); 1843 if (skb_tailroom(rx->skb) < entry->extra_len) { 1844 I802_DEBUG_INC(rx->local->rx_expand_skb_head2); 1845 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len, 1846 GFP_ATOMIC))) { 1847 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag); 1848 __skb_queue_purge(&entry->skb_list); 1849 return RX_DROP_UNUSABLE; 1850 } 1851 } 1852 while ((skb = __skb_dequeue(&entry->skb_list))) { 1853 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len); 1854 dev_kfree_skb(skb); 1855 } 1856 1857 /* Complete frame has been reassembled - process it now */ 1858 status = IEEE80211_SKB_RXCB(rx->skb); 1859 status->rx_flags |= IEEE80211_RX_FRAGMENTED; 1860 1861 out: 1862 if (rx->sta) 1863 rx->sta->rx_packets++; 1864 ieee80211_led_rx(rx->local); 1865 return RX_CONTINUE; 1866 } 1867 1868 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx) 1869 { 1870 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED))) 1871 return -EACCES; 1872 1873 return 0; 1874 } 1875 1876 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc) 1877 { 1878 struct sk_buff *skb = rx->skb; 1879 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 1880 1881 /* 1882 * Pass through unencrypted frames if the hardware has 1883 * decrypted them already. 1884 */ 1885 if (status->flag & RX_FLAG_DECRYPTED) 1886 return 0; 1887 1888 /* Drop unencrypted frames if key is set. */ 1889 if (unlikely(!ieee80211_has_protected(fc) && 1890 !ieee80211_is_nullfunc(fc) && 1891 ieee80211_is_data(fc) && 1892 (rx->key || rx->sdata->drop_unencrypted))) 1893 return -EACCES; 1894 1895 return 0; 1896 } 1897 1898 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx) 1899 { 1900 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1901 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 1902 __le16 fc = hdr->frame_control; 1903 1904 /* 1905 * Pass through unencrypted frames if the hardware has 1906 * decrypted them already. 1907 */ 1908 if (status->flag & RX_FLAG_DECRYPTED) 1909 return 0; 1910 1911 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) { 1912 if (unlikely(!ieee80211_has_protected(fc) && 1913 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) && 1914 rx->key)) { 1915 if (ieee80211_is_deauth(fc) || 1916 ieee80211_is_disassoc(fc)) 1917 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1918 rx->skb->data, 1919 rx->skb->len); 1920 return -EACCES; 1921 } 1922 /* BIP does not use Protected field, so need to check MMIE */ 1923 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) && 1924 ieee80211_get_mmie_keyidx(rx->skb) < 0)) { 1925 if (ieee80211_is_deauth(fc) || 1926 ieee80211_is_disassoc(fc)) 1927 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev, 1928 rx->skb->data, 1929 rx->skb->len); 1930 return -EACCES; 1931 } 1932 /* 1933 * When using MFP, Action frames are not allowed prior to 1934 * having configured keys. 1935 */ 1936 if (unlikely(ieee80211_is_action(fc) && !rx->key && 1937 ieee80211_is_robust_mgmt_frame(rx->skb))) 1938 return -EACCES; 1939 } 1940 1941 return 0; 1942 } 1943 1944 static int 1945 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control) 1946 { 1947 struct ieee80211_sub_if_data *sdata = rx->sdata; 1948 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 1949 bool check_port_control = false; 1950 struct ethhdr *ehdr; 1951 int ret; 1952 1953 *port_control = false; 1954 if (ieee80211_has_a4(hdr->frame_control) && 1955 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta) 1956 return -1; 1957 1958 if (sdata->vif.type == NL80211_IFTYPE_STATION && 1959 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) { 1960 1961 if (!sdata->u.mgd.use_4addr) 1962 return -1; 1963 else 1964 check_port_control = true; 1965 } 1966 1967 if (is_multicast_ether_addr(hdr->addr1) && 1968 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta) 1969 return -1; 1970 1971 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type); 1972 if (ret < 0) 1973 return ret; 1974 1975 ehdr = (struct ethhdr *) rx->skb->data; 1976 if (ehdr->h_proto == rx->sdata->control_port_protocol) 1977 *port_control = true; 1978 else if (check_port_control) 1979 return -1; 1980 1981 return 0; 1982 } 1983 1984 /* 1985 * requires that rx->skb is a frame with ethernet header 1986 */ 1987 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc) 1988 { 1989 static const u8 pae_group_addr[ETH_ALEN] __aligned(2) 1990 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 }; 1991 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 1992 1993 /* 1994 * Allow EAPOL frames to us/the PAE group address regardless 1995 * of whether the frame was encrypted or not. 1996 */ 1997 if (ehdr->h_proto == rx->sdata->control_port_protocol && 1998 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) || 1999 ether_addr_equal(ehdr->h_dest, pae_group_addr))) 2000 return true; 2001 2002 if (ieee80211_802_1x_port_control(rx) || 2003 ieee80211_drop_unencrypted(rx, fc)) 2004 return false; 2005 2006 return true; 2007 } 2008 2009 /* 2010 * requires that rx->skb is a frame with ethernet header 2011 */ 2012 static void 2013 ieee80211_deliver_skb(struct ieee80211_rx_data *rx) 2014 { 2015 struct ieee80211_sub_if_data *sdata = rx->sdata; 2016 struct net_device *dev = sdata->dev; 2017 struct sk_buff *skb, *xmit_skb; 2018 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data; 2019 struct sta_info *dsta; 2020 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2021 2022 skb = rx->skb; 2023 xmit_skb = NULL; 2024 2025 if ((sdata->vif.type == NL80211_IFTYPE_AP || 2026 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) && 2027 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) && 2028 (status->rx_flags & IEEE80211_RX_RA_MATCH) && 2029 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) { 2030 if (is_multicast_ether_addr(ehdr->h_dest)) { 2031 /* 2032 * send multicast frames both to higher layers in 2033 * local net stack and back to the wireless medium 2034 */ 2035 xmit_skb = skb_copy(skb, GFP_ATOMIC); 2036 if (!xmit_skb) 2037 net_info_ratelimited("%s: failed to clone multicast frame\n", 2038 dev->name); 2039 } else { 2040 dsta = sta_info_get(sdata, skb->data); 2041 if (dsta) { 2042 /* 2043 * The destination station is associated to 2044 * this AP (in this VLAN), so send the frame 2045 * directly to it and do not pass it to local 2046 * net stack. 2047 */ 2048 xmit_skb = skb; 2049 skb = NULL; 2050 } 2051 } 2052 } 2053 2054 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 2055 if (skb) { 2056 /* 'align' will only take the values 0 or 2 here since all 2057 * frames are required to be aligned to 2-byte boundaries 2058 * when being passed to mac80211; the code here works just 2059 * as well if that isn't true, but mac80211 assumes it can 2060 * access fields as 2-byte aligned (e.g. for ether_addr_equal) 2061 */ 2062 int align; 2063 2064 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3; 2065 if (align) { 2066 if (WARN_ON(skb_headroom(skb) < 3)) { 2067 dev_kfree_skb(skb); 2068 skb = NULL; 2069 } else { 2070 u8 *data = skb->data; 2071 size_t len = skb_headlen(skb); 2072 skb->data -= align; 2073 memmove(skb->data, data, len); 2074 skb_set_tail_pointer(skb, len); 2075 } 2076 } 2077 } 2078 #endif 2079 2080 if (skb) { 2081 /* deliver to local stack */ 2082 skb->protocol = eth_type_trans(skb, dev); 2083 memset(skb->cb, 0, sizeof(skb->cb)); 2084 if (rx->local->napi) 2085 napi_gro_receive(rx->local->napi, skb); 2086 else 2087 netif_receive_skb(skb); 2088 } 2089 2090 if (xmit_skb) { 2091 /* 2092 * Send to wireless media and increase priority by 256 to 2093 * keep the received priority instead of reclassifying 2094 * the frame (see cfg80211_classify8021d). 2095 */ 2096 xmit_skb->priority += 256; 2097 xmit_skb->protocol = htons(ETH_P_802_3); 2098 skb_reset_network_header(xmit_skb); 2099 skb_reset_mac_header(xmit_skb); 2100 dev_queue_xmit(xmit_skb); 2101 } 2102 } 2103 2104 static ieee80211_rx_result debug_noinline 2105 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx) 2106 { 2107 struct net_device *dev = rx->sdata->dev; 2108 struct sk_buff *skb = rx->skb; 2109 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2110 __le16 fc = hdr->frame_control; 2111 struct sk_buff_head frame_list; 2112 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2113 2114 if (unlikely(!ieee80211_is_data(fc))) 2115 return RX_CONTINUE; 2116 2117 if (unlikely(!ieee80211_is_data_present(fc))) 2118 return RX_DROP_MONITOR; 2119 2120 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) 2121 return RX_CONTINUE; 2122 2123 if (ieee80211_has_a4(hdr->frame_control) && 2124 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2125 !rx->sdata->u.vlan.sta) 2126 return RX_DROP_UNUSABLE; 2127 2128 if (is_multicast_ether_addr(hdr->addr1) && 2129 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2130 rx->sdata->u.vlan.sta) || 2131 (rx->sdata->vif.type == NL80211_IFTYPE_STATION && 2132 rx->sdata->u.mgd.use_4addr))) 2133 return RX_DROP_UNUSABLE; 2134 2135 skb->dev = dev; 2136 __skb_queue_head_init(&frame_list); 2137 2138 if (skb_linearize(skb)) 2139 return RX_DROP_UNUSABLE; 2140 2141 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr, 2142 rx->sdata->vif.type, 2143 rx->local->hw.extra_tx_headroom, true); 2144 2145 while (!skb_queue_empty(&frame_list)) { 2146 rx->skb = __skb_dequeue(&frame_list); 2147 2148 if (!ieee80211_frame_allowed(rx, fc)) { 2149 dev_kfree_skb(rx->skb); 2150 continue; 2151 } 2152 dev->stats.rx_packets++; 2153 dev->stats.rx_bytes += rx->skb->len; 2154 2155 ieee80211_deliver_skb(rx); 2156 } 2157 2158 return RX_QUEUED; 2159 } 2160 2161 #ifdef CONFIG_MAC80211_MESH 2162 static ieee80211_rx_result 2163 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx) 2164 { 2165 struct ieee80211_hdr *fwd_hdr, *hdr; 2166 struct ieee80211_tx_info *info; 2167 struct ieee80211s_hdr *mesh_hdr; 2168 struct sk_buff *skb = rx->skb, *fwd_skb; 2169 struct ieee80211_local *local = rx->local; 2170 struct ieee80211_sub_if_data *sdata = rx->sdata; 2171 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2172 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; 2173 u16 q, hdrlen; 2174 2175 hdr = (struct ieee80211_hdr *) skb->data; 2176 hdrlen = ieee80211_hdrlen(hdr->frame_control); 2177 2178 /* make sure fixed part of mesh header is there, also checks skb len */ 2179 if (!pskb_may_pull(rx->skb, hdrlen + 6)) 2180 return RX_DROP_MONITOR; 2181 2182 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2183 2184 /* make sure full mesh header is there, also checks skb len */ 2185 if (!pskb_may_pull(rx->skb, 2186 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr))) 2187 return RX_DROP_MONITOR; 2188 2189 /* reload pointers */ 2190 hdr = (struct ieee80211_hdr *) skb->data; 2191 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen); 2192 2193 /* frame is in RMC, don't forward */ 2194 if (ieee80211_is_data(hdr->frame_control) && 2195 is_multicast_ether_addr(hdr->addr1) && 2196 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr)) 2197 return RX_DROP_MONITOR; 2198 2199 if (!ieee80211_is_data(hdr->frame_control) || 2200 !(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2201 return RX_CONTINUE; 2202 2203 if (!mesh_hdr->ttl) 2204 return RX_DROP_MONITOR; 2205 2206 if (mesh_hdr->flags & MESH_FLAGS_AE) { 2207 struct mesh_path *mppath; 2208 char *proxied_addr; 2209 char *mpp_addr; 2210 2211 if (is_multicast_ether_addr(hdr->addr1)) { 2212 mpp_addr = hdr->addr3; 2213 proxied_addr = mesh_hdr->eaddr1; 2214 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) { 2215 /* has_a4 already checked in ieee80211_rx_mesh_check */ 2216 mpp_addr = hdr->addr4; 2217 proxied_addr = mesh_hdr->eaddr2; 2218 } else { 2219 return RX_DROP_MONITOR; 2220 } 2221 2222 rcu_read_lock(); 2223 mppath = mpp_path_lookup(sdata, proxied_addr); 2224 if (!mppath) { 2225 mpp_path_add(sdata, proxied_addr, mpp_addr); 2226 } else { 2227 spin_lock_bh(&mppath->state_lock); 2228 if (!ether_addr_equal(mppath->mpp, mpp_addr)) 2229 memcpy(mppath->mpp, mpp_addr, ETH_ALEN); 2230 spin_unlock_bh(&mppath->state_lock); 2231 } 2232 rcu_read_unlock(); 2233 } 2234 2235 /* Frame has reached destination. Don't forward */ 2236 if (!is_multicast_ether_addr(hdr->addr1) && 2237 ether_addr_equal(sdata->vif.addr, hdr->addr3)) 2238 return RX_CONTINUE; 2239 2240 q = ieee80211_select_queue_80211(sdata, skb, hdr); 2241 if (ieee80211_queue_stopped(&local->hw, q)) { 2242 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion); 2243 return RX_DROP_MONITOR; 2244 } 2245 skb_set_queue_mapping(skb, q); 2246 2247 if (!--mesh_hdr->ttl) { 2248 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl); 2249 goto out; 2250 } 2251 2252 if (!ifmsh->mshcfg.dot11MeshForwarding) 2253 goto out; 2254 2255 fwd_skb = skb_copy(skb, GFP_ATOMIC); 2256 if (!fwd_skb) { 2257 net_info_ratelimited("%s: failed to clone mesh frame\n", 2258 sdata->name); 2259 goto out; 2260 } 2261 2262 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data; 2263 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY); 2264 info = IEEE80211_SKB_CB(fwd_skb); 2265 memset(info, 0, sizeof(*info)); 2266 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; 2267 info->control.vif = &rx->sdata->vif; 2268 info->control.jiffies = jiffies; 2269 if (is_multicast_ether_addr(fwd_hdr->addr1)) { 2270 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast); 2271 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN); 2272 /* update power mode indication when forwarding */ 2273 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr); 2274 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) { 2275 /* mesh power mode flags updated in mesh_nexthop_lookup */ 2276 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast); 2277 } else { 2278 /* unable to resolve next hop */ 2279 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl, 2280 fwd_hdr->addr3, 0, 2281 WLAN_REASON_MESH_PATH_NOFORWARD, 2282 fwd_hdr->addr2); 2283 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route); 2284 kfree_skb(fwd_skb); 2285 return RX_DROP_MONITOR; 2286 } 2287 2288 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames); 2289 ieee80211_add_pending_skb(local, fwd_skb); 2290 out: 2291 if (is_multicast_ether_addr(hdr->addr1) || 2292 sdata->dev->flags & IFF_PROMISC) 2293 return RX_CONTINUE; 2294 else 2295 return RX_DROP_MONITOR; 2296 } 2297 #endif 2298 2299 static ieee80211_rx_result debug_noinline 2300 ieee80211_rx_h_data(struct ieee80211_rx_data *rx) 2301 { 2302 struct ieee80211_sub_if_data *sdata = rx->sdata; 2303 struct ieee80211_local *local = rx->local; 2304 struct net_device *dev = sdata->dev; 2305 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data; 2306 __le16 fc = hdr->frame_control; 2307 bool port_control; 2308 int err; 2309 2310 if (unlikely(!ieee80211_is_data(hdr->frame_control))) 2311 return RX_CONTINUE; 2312 2313 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 2314 return RX_DROP_MONITOR; 2315 2316 /* 2317 * Send unexpected-4addr-frame event to hostapd. For older versions, 2318 * also drop the frame to cooked monitor interfaces. 2319 */ 2320 if (ieee80211_has_a4(hdr->frame_control) && 2321 sdata->vif.type == NL80211_IFTYPE_AP) { 2322 if (rx->sta && 2323 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT)) 2324 cfg80211_rx_unexpected_4addr_frame( 2325 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC); 2326 return RX_DROP_MONITOR; 2327 } 2328 2329 err = __ieee80211_data_to_8023(rx, &port_control); 2330 if (unlikely(err)) 2331 return RX_DROP_UNUSABLE; 2332 2333 if (!ieee80211_frame_allowed(rx, fc)) 2334 return RX_DROP_MONITOR; 2335 2336 /* directly handle TDLS channel switch requests/responses */ 2337 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto == 2338 cpu_to_be16(ETH_P_TDLS))) { 2339 struct ieee80211_tdls_data *tf = (void *)rx->skb->data; 2340 2341 if (pskb_may_pull(rx->skb, 2342 offsetof(struct ieee80211_tdls_data, u)) && 2343 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE && 2344 tf->category == WLAN_CATEGORY_TDLS && 2345 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST || 2346 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) { 2347 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TDLS_CHSW; 2348 skb_queue_tail(&sdata->skb_queue, rx->skb); 2349 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2350 if (rx->sta) 2351 rx->sta->rx_packets++; 2352 2353 return RX_QUEUED; 2354 } 2355 } 2356 2357 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN && 2358 unlikely(port_control) && sdata->bss) { 2359 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, 2360 u.ap); 2361 dev = sdata->dev; 2362 rx->sdata = sdata; 2363 } 2364 2365 rx->skb->dev = dev; 2366 2367 dev->stats.rx_packets++; 2368 dev->stats.rx_bytes += rx->skb->len; 2369 2370 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 && 2371 !is_multicast_ether_addr( 2372 ((struct ethhdr *)rx->skb->data)->h_dest) && 2373 (!local->scanning && 2374 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) { 2375 mod_timer(&local->dynamic_ps_timer, jiffies + 2376 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); 2377 } 2378 2379 ieee80211_deliver_skb(rx); 2380 2381 return RX_QUEUED; 2382 } 2383 2384 static ieee80211_rx_result debug_noinline 2385 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames) 2386 { 2387 struct sk_buff *skb = rx->skb; 2388 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data; 2389 struct tid_ampdu_rx *tid_agg_rx; 2390 u16 start_seq_num; 2391 u16 tid; 2392 2393 if (likely(!ieee80211_is_ctl(bar->frame_control))) 2394 return RX_CONTINUE; 2395 2396 if (ieee80211_is_back_req(bar->frame_control)) { 2397 struct { 2398 __le16 control, start_seq_num; 2399 } __packed bar_data; 2400 2401 if (!rx->sta) 2402 return RX_DROP_MONITOR; 2403 2404 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control), 2405 &bar_data, sizeof(bar_data))) 2406 return RX_DROP_MONITOR; 2407 2408 tid = le16_to_cpu(bar_data.control) >> 12; 2409 2410 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]); 2411 if (!tid_agg_rx) 2412 return RX_DROP_MONITOR; 2413 2414 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4; 2415 2416 /* reset session timer */ 2417 if (tid_agg_rx->timeout) 2418 mod_timer(&tid_agg_rx->session_timer, 2419 TU_TO_EXP_TIME(tid_agg_rx->timeout)); 2420 2421 spin_lock(&tid_agg_rx->reorder_lock); 2422 /* release stored frames up to start of BAR */ 2423 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx, 2424 start_seq_num, frames); 2425 spin_unlock(&tid_agg_rx->reorder_lock); 2426 2427 kfree_skb(skb); 2428 return RX_QUEUED; 2429 } 2430 2431 /* 2432 * After this point, we only want management frames, 2433 * so we can drop all remaining control frames to 2434 * cooked monitor interfaces. 2435 */ 2436 return RX_DROP_MONITOR; 2437 } 2438 2439 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata, 2440 struct ieee80211_mgmt *mgmt, 2441 size_t len) 2442 { 2443 struct ieee80211_local *local = sdata->local; 2444 struct sk_buff *skb; 2445 struct ieee80211_mgmt *resp; 2446 2447 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) { 2448 /* Not to own unicast address */ 2449 return; 2450 } 2451 2452 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) || 2453 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) { 2454 /* Not from the current AP or not associated yet. */ 2455 return; 2456 } 2457 2458 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) { 2459 /* Too short SA Query request frame */ 2460 return; 2461 } 2462 2463 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom); 2464 if (skb == NULL) 2465 return; 2466 2467 skb_reserve(skb, local->hw.extra_tx_headroom); 2468 resp = (struct ieee80211_mgmt *) skb_put(skb, 24); 2469 memset(resp, 0, 24); 2470 memcpy(resp->da, mgmt->sa, ETH_ALEN); 2471 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN); 2472 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN); 2473 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | 2474 IEEE80211_STYPE_ACTION); 2475 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query)); 2476 resp->u.action.category = WLAN_CATEGORY_SA_QUERY; 2477 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE; 2478 memcpy(resp->u.action.u.sa_query.trans_id, 2479 mgmt->u.action.u.sa_query.trans_id, 2480 WLAN_SA_QUERY_TR_ID_LEN); 2481 2482 ieee80211_tx_skb(sdata, skb); 2483 } 2484 2485 static ieee80211_rx_result debug_noinline 2486 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx) 2487 { 2488 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2489 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2490 2491 /* 2492 * From here on, look only at management frames. 2493 * Data and control frames are already handled, 2494 * and unknown (reserved) frames are useless. 2495 */ 2496 if (rx->skb->len < 24) 2497 return RX_DROP_MONITOR; 2498 2499 if (!ieee80211_is_mgmt(mgmt->frame_control)) 2500 return RX_DROP_MONITOR; 2501 2502 if (rx->sdata->vif.type == NL80211_IFTYPE_AP && 2503 ieee80211_is_beacon(mgmt->frame_control) && 2504 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) { 2505 int sig = 0; 2506 2507 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2508 sig = status->signal; 2509 2510 cfg80211_report_obss_beacon(rx->local->hw.wiphy, 2511 rx->skb->data, rx->skb->len, 2512 status->freq, sig); 2513 rx->flags |= IEEE80211_RX_BEACON_REPORTED; 2514 } 2515 2516 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2517 return RX_DROP_MONITOR; 2518 2519 if (ieee80211_drop_unencrypted_mgmt(rx)) 2520 return RX_DROP_UNUSABLE; 2521 2522 return RX_CONTINUE; 2523 } 2524 2525 static ieee80211_rx_result debug_noinline 2526 ieee80211_rx_h_action(struct ieee80211_rx_data *rx) 2527 { 2528 struct ieee80211_local *local = rx->local; 2529 struct ieee80211_sub_if_data *sdata = rx->sdata; 2530 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2531 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2532 int len = rx->skb->len; 2533 2534 if (!ieee80211_is_action(mgmt->frame_control)) 2535 return RX_CONTINUE; 2536 2537 /* drop too small frames */ 2538 if (len < IEEE80211_MIN_ACTION_SIZE) 2539 return RX_DROP_UNUSABLE; 2540 2541 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && 2542 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED && 2543 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT) 2544 return RX_DROP_UNUSABLE; 2545 2546 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH)) 2547 return RX_DROP_UNUSABLE; 2548 2549 switch (mgmt->u.action.category) { 2550 case WLAN_CATEGORY_HT: 2551 /* reject HT action frames from stations not supporting HT */ 2552 if (!rx->sta->sta.ht_cap.ht_supported) 2553 goto invalid; 2554 2555 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2556 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2557 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2558 sdata->vif.type != NL80211_IFTYPE_AP && 2559 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2560 break; 2561 2562 /* verify action & smps_control/chanwidth are present */ 2563 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2564 goto invalid; 2565 2566 switch (mgmt->u.action.u.ht_smps.action) { 2567 case WLAN_HT_ACTION_SMPS: { 2568 struct ieee80211_supported_band *sband; 2569 enum ieee80211_smps_mode smps_mode; 2570 2571 /* convert to HT capability */ 2572 switch (mgmt->u.action.u.ht_smps.smps_control) { 2573 case WLAN_HT_SMPS_CONTROL_DISABLED: 2574 smps_mode = IEEE80211_SMPS_OFF; 2575 break; 2576 case WLAN_HT_SMPS_CONTROL_STATIC: 2577 smps_mode = IEEE80211_SMPS_STATIC; 2578 break; 2579 case WLAN_HT_SMPS_CONTROL_DYNAMIC: 2580 smps_mode = IEEE80211_SMPS_DYNAMIC; 2581 break; 2582 default: 2583 goto invalid; 2584 } 2585 2586 /* if no change do nothing */ 2587 if (rx->sta->sta.smps_mode == smps_mode) 2588 goto handled; 2589 rx->sta->sta.smps_mode = smps_mode; 2590 2591 sband = rx->local->hw.wiphy->bands[status->band]; 2592 2593 rate_control_rate_update(local, sband, rx->sta, 2594 IEEE80211_RC_SMPS_CHANGED); 2595 goto handled; 2596 } 2597 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: { 2598 struct ieee80211_supported_band *sband; 2599 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth; 2600 enum ieee80211_sta_rx_bandwidth new_bw; 2601 2602 /* If it doesn't support 40 MHz it can't change ... */ 2603 if (!(rx->sta->sta.ht_cap.cap & 2604 IEEE80211_HT_CAP_SUP_WIDTH_20_40)) 2605 goto handled; 2606 2607 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ) 2608 new_bw = IEEE80211_STA_RX_BW_20; 2609 else 2610 new_bw = ieee80211_sta_cur_vht_bw(rx->sta); 2611 2612 if (rx->sta->sta.bandwidth == new_bw) 2613 goto handled; 2614 2615 sband = rx->local->hw.wiphy->bands[status->band]; 2616 2617 rate_control_rate_update(local, sband, rx->sta, 2618 IEEE80211_RC_BW_CHANGED); 2619 goto handled; 2620 } 2621 default: 2622 goto invalid; 2623 } 2624 2625 break; 2626 case WLAN_CATEGORY_PUBLIC: 2627 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2628 goto invalid; 2629 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2630 break; 2631 if (!rx->sta) 2632 break; 2633 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) 2634 break; 2635 if (mgmt->u.action.u.ext_chan_switch.action_code != 2636 WLAN_PUB_ACTION_EXT_CHANSW_ANN) 2637 break; 2638 if (len < offsetof(struct ieee80211_mgmt, 2639 u.action.u.ext_chan_switch.variable)) 2640 goto invalid; 2641 goto queue; 2642 case WLAN_CATEGORY_VHT: 2643 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2644 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2645 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2646 sdata->vif.type != NL80211_IFTYPE_AP && 2647 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2648 break; 2649 2650 /* verify action code is present */ 2651 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2652 goto invalid; 2653 2654 switch (mgmt->u.action.u.vht_opmode_notif.action_code) { 2655 case WLAN_VHT_ACTION_OPMODE_NOTIF: { 2656 u8 opmode; 2657 2658 /* verify opmode is present */ 2659 if (len < IEEE80211_MIN_ACTION_SIZE + 2) 2660 goto invalid; 2661 2662 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode; 2663 2664 ieee80211_vht_handle_opmode(rx->sdata, rx->sta, 2665 opmode, status->band, 2666 false); 2667 goto handled; 2668 } 2669 default: 2670 break; 2671 } 2672 break; 2673 case WLAN_CATEGORY_BACK: 2674 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2675 sdata->vif.type != NL80211_IFTYPE_MESH_POINT && 2676 sdata->vif.type != NL80211_IFTYPE_AP_VLAN && 2677 sdata->vif.type != NL80211_IFTYPE_AP && 2678 sdata->vif.type != NL80211_IFTYPE_ADHOC) 2679 break; 2680 2681 /* verify action_code is present */ 2682 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2683 break; 2684 2685 switch (mgmt->u.action.u.addba_req.action_code) { 2686 case WLAN_ACTION_ADDBA_REQ: 2687 if (len < (IEEE80211_MIN_ACTION_SIZE + 2688 sizeof(mgmt->u.action.u.addba_req))) 2689 goto invalid; 2690 break; 2691 case WLAN_ACTION_ADDBA_RESP: 2692 if (len < (IEEE80211_MIN_ACTION_SIZE + 2693 sizeof(mgmt->u.action.u.addba_resp))) 2694 goto invalid; 2695 break; 2696 case WLAN_ACTION_DELBA: 2697 if (len < (IEEE80211_MIN_ACTION_SIZE + 2698 sizeof(mgmt->u.action.u.delba))) 2699 goto invalid; 2700 break; 2701 default: 2702 goto invalid; 2703 } 2704 2705 goto queue; 2706 case WLAN_CATEGORY_SPECTRUM_MGMT: 2707 /* verify action_code is present */ 2708 if (len < IEEE80211_MIN_ACTION_SIZE + 1) 2709 break; 2710 2711 switch (mgmt->u.action.u.measurement.action_code) { 2712 case WLAN_ACTION_SPCT_MSR_REQ: 2713 if (status->band != IEEE80211_BAND_5GHZ) 2714 break; 2715 2716 if (len < (IEEE80211_MIN_ACTION_SIZE + 2717 sizeof(mgmt->u.action.u.measurement))) 2718 break; 2719 2720 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2721 break; 2722 2723 ieee80211_process_measurement_req(sdata, mgmt, len); 2724 goto handled; 2725 case WLAN_ACTION_SPCT_CHL_SWITCH: { 2726 u8 *bssid; 2727 if (len < (IEEE80211_MIN_ACTION_SIZE + 2728 sizeof(mgmt->u.action.u.chan_switch))) 2729 break; 2730 2731 if (sdata->vif.type != NL80211_IFTYPE_STATION && 2732 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2733 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2734 break; 2735 2736 if (sdata->vif.type == NL80211_IFTYPE_STATION) 2737 bssid = sdata->u.mgd.bssid; 2738 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) 2739 bssid = sdata->u.ibss.bssid; 2740 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT) 2741 bssid = mgmt->sa; 2742 else 2743 break; 2744 2745 if (!ether_addr_equal(mgmt->bssid, bssid)) 2746 break; 2747 2748 goto queue; 2749 } 2750 } 2751 break; 2752 case WLAN_CATEGORY_SA_QUERY: 2753 if (len < (IEEE80211_MIN_ACTION_SIZE + 2754 sizeof(mgmt->u.action.u.sa_query))) 2755 break; 2756 2757 switch (mgmt->u.action.u.sa_query.action) { 2758 case WLAN_ACTION_SA_QUERY_REQUEST: 2759 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2760 break; 2761 ieee80211_process_sa_query_req(sdata, mgmt, len); 2762 goto handled; 2763 } 2764 break; 2765 case WLAN_CATEGORY_SELF_PROTECTED: 2766 if (len < (IEEE80211_MIN_ACTION_SIZE + 2767 sizeof(mgmt->u.action.u.self_prot.action_code))) 2768 break; 2769 2770 switch (mgmt->u.action.u.self_prot.action_code) { 2771 case WLAN_SP_MESH_PEERING_OPEN: 2772 case WLAN_SP_MESH_PEERING_CLOSE: 2773 case WLAN_SP_MESH_PEERING_CONFIRM: 2774 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2775 goto invalid; 2776 if (sdata->u.mesh.user_mpm) 2777 /* userspace handles this frame */ 2778 break; 2779 goto queue; 2780 case WLAN_SP_MGK_INFORM: 2781 case WLAN_SP_MGK_ACK: 2782 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2783 goto invalid; 2784 break; 2785 } 2786 break; 2787 case WLAN_CATEGORY_MESH_ACTION: 2788 if (len < (IEEE80211_MIN_ACTION_SIZE + 2789 sizeof(mgmt->u.action.u.mesh_action.action_code))) 2790 break; 2791 2792 if (!ieee80211_vif_is_mesh(&sdata->vif)) 2793 break; 2794 if (mesh_action_is_path_sel(mgmt) && 2795 !mesh_path_sel_is_hwmp(sdata)) 2796 break; 2797 goto queue; 2798 } 2799 2800 return RX_CONTINUE; 2801 2802 invalid: 2803 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM; 2804 /* will return in the next handlers */ 2805 return RX_CONTINUE; 2806 2807 handled: 2808 if (rx->sta) 2809 rx->sta->rx_packets++; 2810 dev_kfree_skb(rx->skb); 2811 return RX_QUEUED; 2812 2813 queue: 2814 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2815 skb_queue_tail(&sdata->skb_queue, rx->skb); 2816 ieee80211_queue_work(&local->hw, &sdata->work); 2817 if (rx->sta) 2818 rx->sta->rx_packets++; 2819 return RX_QUEUED; 2820 } 2821 2822 static ieee80211_rx_result debug_noinline 2823 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx) 2824 { 2825 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2826 int sig = 0; 2827 2828 /* skip known-bad action frames and return them in the next handler */ 2829 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) 2830 return RX_CONTINUE; 2831 2832 /* 2833 * Getting here means the kernel doesn't know how to handle 2834 * it, but maybe userspace does ... include returned frames 2835 * so userspace can register for those to know whether ones 2836 * it transmitted were processed or returned. 2837 */ 2838 2839 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM) 2840 sig = status->signal; 2841 2842 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig, 2843 rx->skb->data, rx->skb->len, 0)) { 2844 if (rx->sta) 2845 rx->sta->rx_packets++; 2846 dev_kfree_skb(rx->skb); 2847 return RX_QUEUED; 2848 } 2849 2850 return RX_CONTINUE; 2851 } 2852 2853 static ieee80211_rx_result debug_noinline 2854 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx) 2855 { 2856 struct ieee80211_local *local = rx->local; 2857 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data; 2858 struct sk_buff *nskb; 2859 struct ieee80211_sub_if_data *sdata = rx->sdata; 2860 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb); 2861 2862 if (!ieee80211_is_action(mgmt->frame_control)) 2863 return RX_CONTINUE; 2864 2865 /* 2866 * For AP mode, hostapd is responsible for handling any action 2867 * frames that we didn't handle, including returning unknown 2868 * ones. For all other modes we will return them to the sender, 2869 * setting the 0x80 bit in the action category, as required by 2870 * 802.11-2012 9.24.4. 2871 * Newer versions of hostapd shall also use the management frame 2872 * registration mechanisms, but older ones still use cooked 2873 * monitor interfaces so push all frames there. 2874 */ 2875 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) && 2876 (sdata->vif.type == NL80211_IFTYPE_AP || 2877 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) 2878 return RX_DROP_MONITOR; 2879 2880 if (is_multicast_ether_addr(mgmt->da)) 2881 return RX_DROP_MONITOR; 2882 2883 /* do not return rejected action frames */ 2884 if (mgmt->u.action.category & 0x80) 2885 return RX_DROP_UNUSABLE; 2886 2887 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0, 2888 GFP_ATOMIC); 2889 if (nskb) { 2890 struct ieee80211_mgmt *nmgmt = (void *)nskb->data; 2891 2892 nmgmt->u.action.category |= 0x80; 2893 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN); 2894 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN); 2895 2896 memset(nskb->cb, 0, sizeof(nskb->cb)); 2897 2898 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) { 2899 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb); 2900 2901 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN | 2902 IEEE80211_TX_INTFL_OFFCHAN_TX_OK | 2903 IEEE80211_TX_CTL_NO_CCK_RATE; 2904 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL) 2905 info->hw_queue = 2906 local->hw.offchannel_tx_hw_queue; 2907 } 2908 2909 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7, 2910 status->band); 2911 } 2912 dev_kfree_skb(rx->skb); 2913 return RX_QUEUED; 2914 } 2915 2916 static ieee80211_rx_result debug_noinline 2917 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx) 2918 { 2919 struct ieee80211_sub_if_data *sdata = rx->sdata; 2920 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data; 2921 __le16 stype; 2922 2923 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE); 2924 2925 if (!ieee80211_vif_is_mesh(&sdata->vif) && 2926 sdata->vif.type != NL80211_IFTYPE_ADHOC && 2927 sdata->vif.type != NL80211_IFTYPE_OCB && 2928 sdata->vif.type != NL80211_IFTYPE_STATION) 2929 return RX_DROP_MONITOR; 2930 2931 switch (stype) { 2932 case cpu_to_le16(IEEE80211_STYPE_AUTH): 2933 case cpu_to_le16(IEEE80211_STYPE_BEACON): 2934 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP): 2935 /* process for all: mesh, mlme, ibss */ 2936 break; 2937 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP): 2938 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP): 2939 case cpu_to_le16(IEEE80211_STYPE_DEAUTH): 2940 case cpu_to_le16(IEEE80211_STYPE_DISASSOC): 2941 if (is_multicast_ether_addr(mgmt->da) && 2942 !is_broadcast_ether_addr(mgmt->da)) 2943 return RX_DROP_MONITOR; 2944 2945 /* process only for station */ 2946 if (sdata->vif.type != NL80211_IFTYPE_STATION) 2947 return RX_DROP_MONITOR; 2948 break; 2949 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ): 2950 /* process only for ibss and mesh */ 2951 if (sdata->vif.type != NL80211_IFTYPE_ADHOC && 2952 sdata->vif.type != NL80211_IFTYPE_MESH_POINT) 2953 return RX_DROP_MONITOR; 2954 break; 2955 default: 2956 return RX_DROP_MONITOR; 2957 } 2958 2959 /* queue up frame and kick off work to process it */ 2960 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME; 2961 skb_queue_tail(&sdata->skb_queue, rx->skb); 2962 ieee80211_queue_work(&rx->local->hw, &sdata->work); 2963 if (rx->sta) 2964 rx->sta->rx_packets++; 2965 2966 return RX_QUEUED; 2967 } 2968 2969 /* TODO: use IEEE80211_RX_FRAGMENTED */ 2970 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx, 2971 struct ieee80211_rate *rate) 2972 { 2973 struct ieee80211_sub_if_data *sdata; 2974 struct ieee80211_local *local = rx->local; 2975 struct sk_buff *skb = rx->skb, *skb2; 2976 struct net_device *prev_dev = NULL; 2977 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 2978 int needed_headroom; 2979 2980 /* 2981 * If cooked monitor has been processed already, then 2982 * don't do it again. If not, set the flag. 2983 */ 2984 if (rx->flags & IEEE80211_RX_CMNTR) 2985 goto out_free_skb; 2986 rx->flags |= IEEE80211_RX_CMNTR; 2987 2988 /* If there are no cooked monitor interfaces, just free the SKB */ 2989 if (!local->cooked_mntrs) 2990 goto out_free_skb; 2991 2992 /* vendor data is long removed here */ 2993 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA; 2994 /* room for the radiotap header based on driver features */ 2995 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb); 2996 2997 if (skb_headroom(skb) < needed_headroom && 2998 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) 2999 goto out_free_skb; 3000 3001 /* prepend radiotap information */ 3002 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom, 3003 false); 3004 3005 skb_set_mac_header(skb, 0); 3006 skb->ip_summed = CHECKSUM_UNNECESSARY; 3007 skb->pkt_type = PACKET_OTHERHOST; 3008 skb->protocol = htons(ETH_P_802_2); 3009 3010 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3011 if (!ieee80211_sdata_running(sdata)) 3012 continue; 3013 3014 if (sdata->vif.type != NL80211_IFTYPE_MONITOR || 3015 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)) 3016 continue; 3017 3018 if (prev_dev) { 3019 skb2 = skb_clone(skb, GFP_ATOMIC); 3020 if (skb2) { 3021 skb2->dev = prev_dev; 3022 netif_receive_skb(skb2); 3023 } 3024 } 3025 3026 prev_dev = sdata->dev; 3027 sdata->dev->stats.rx_packets++; 3028 sdata->dev->stats.rx_bytes += skb->len; 3029 } 3030 3031 if (prev_dev) { 3032 skb->dev = prev_dev; 3033 netif_receive_skb(skb); 3034 return; 3035 } 3036 3037 out_free_skb: 3038 dev_kfree_skb(skb); 3039 } 3040 3041 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx, 3042 ieee80211_rx_result res) 3043 { 3044 switch (res) { 3045 case RX_DROP_MONITOR: 3046 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3047 if (rx->sta) 3048 rx->sta->rx_dropped++; 3049 /* fall through */ 3050 case RX_CONTINUE: { 3051 struct ieee80211_rate *rate = NULL; 3052 struct ieee80211_supported_band *sband; 3053 struct ieee80211_rx_status *status; 3054 3055 status = IEEE80211_SKB_RXCB((rx->skb)); 3056 3057 sband = rx->local->hw.wiphy->bands[status->band]; 3058 if (!(status->flag & RX_FLAG_HT) && 3059 !(status->flag & RX_FLAG_VHT)) 3060 rate = &sband->bitrates[status->rate_idx]; 3061 3062 ieee80211_rx_cooked_monitor(rx, rate); 3063 break; 3064 } 3065 case RX_DROP_UNUSABLE: 3066 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop); 3067 if (rx->sta) 3068 rx->sta->rx_dropped++; 3069 dev_kfree_skb(rx->skb); 3070 break; 3071 case RX_QUEUED: 3072 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued); 3073 break; 3074 } 3075 } 3076 3077 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx, 3078 struct sk_buff_head *frames) 3079 { 3080 ieee80211_rx_result res = RX_DROP_MONITOR; 3081 struct sk_buff *skb; 3082 3083 #define CALL_RXH(rxh) \ 3084 do { \ 3085 res = rxh(rx); \ 3086 if (res != RX_CONTINUE) \ 3087 goto rxh_next; \ 3088 } while (0); 3089 3090 spin_lock_bh(&rx->local->rx_path_lock); 3091 3092 while ((skb = __skb_dequeue(frames))) { 3093 /* 3094 * all the other fields are valid across frames 3095 * that belong to an aMPDU since they are on the 3096 * same TID from the same station 3097 */ 3098 rx->skb = skb; 3099 3100 CALL_RXH(ieee80211_rx_h_check_more_data) 3101 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll) 3102 CALL_RXH(ieee80211_rx_h_sta_process) 3103 CALL_RXH(ieee80211_rx_h_decrypt) 3104 CALL_RXH(ieee80211_rx_h_defragment) 3105 CALL_RXH(ieee80211_rx_h_michael_mic_verify) 3106 /* must be after MMIC verify so header is counted in MPDU mic */ 3107 #ifdef CONFIG_MAC80211_MESH 3108 if (ieee80211_vif_is_mesh(&rx->sdata->vif)) 3109 CALL_RXH(ieee80211_rx_h_mesh_fwding); 3110 #endif 3111 CALL_RXH(ieee80211_rx_h_amsdu) 3112 CALL_RXH(ieee80211_rx_h_data) 3113 3114 /* special treatment -- needs the queue */ 3115 res = ieee80211_rx_h_ctrl(rx, frames); 3116 if (res != RX_CONTINUE) 3117 goto rxh_next; 3118 3119 CALL_RXH(ieee80211_rx_h_mgmt_check) 3120 CALL_RXH(ieee80211_rx_h_action) 3121 CALL_RXH(ieee80211_rx_h_userspace_mgmt) 3122 CALL_RXH(ieee80211_rx_h_action_return) 3123 CALL_RXH(ieee80211_rx_h_mgmt) 3124 3125 rxh_next: 3126 ieee80211_rx_handlers_result(rx, res); 3127 3128 #undef CALL_RXH 3129 } 3130 3131 spin_unlock_bh(&rx->local->rx_path_lock); 3132 } 3133 3134 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx) 3135 { 3136 struct sk_buff_head reorder_release; 3137 ieee80211_rx_result res = RX_DROP_MONITOR; 3138 3139 __skb_queue_head_init(&reorder_release); 3140 3141 #define CALL_RXH(rxh) \ 3142 do { \ 3143 res = rxh(rx); \ 3144 if (res != RX_CONTINUE) \ 3145 goto rxh_next; \ 3146 } while (0); 3147 3148 CALL_RXH(ieee80211_rx_h_check_dup) 3149 CALL_RXH(ieee80211_rx_h_check) 3150 3151 ieee80211_rx_reorder_ampdu(rx, &reorder_release); 3152 3153 ieee80211_rx_handlers(rx, &reorder_release); 3154 return; 3155 3156 rxh_next: 3157 ieee80211_rx_handlers_result(rx, res); 3158 3159 #undef CALL_RXH 3160 } 3161 3162 /* 3163 * This function makes calls into the RX path, therefore 3164 * it has to be invoked under RCU read lock. 3165 */ 3166 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid) 3167 { 3168 struct sk_buff_head frames; 3169 struct ieee80211_rx_data rx = { 3170 .sta = sta, 3171 .sdata = sta->sdata, 3172 .local = sta->local, 3173 /* This is OK -- must be QoS data frame */ 3174 .security_idx = tid, 3175 .seqno_idx = tid, 3176 .flags = 0, 3177 }; 3178 struct tid_ampdu_rx *tid_agg_rx; 3179 3180 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]); 3181 if (!tid_agg_rx) 3182 return; 3183 3184 __skb_queue_head_init(&frames); 3185 3186 spin_lock(&tid_agg_rx->reorder_lock); 3187 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames); 3188 spin_unlock(&tid_agg_rx->reorder_lock); 3189 3190 ieee80211_rx_handlers(&rx, &frames); 3191 } 3192 3193 /* main receive path */ 3194 3195 static bool prepare_for_handlers(struct ieee80211_rx_data *rx, 3196 struct ieee80211_hdr *hdr) 3197 { 3198 struct ieee80211_sub_if_data *sdata = rx->sdata; 3199 struct sk_buff *skb = rx->skb; 3200 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3201 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type); 3202 int multicast = is_multicast_ether_addr(hdr->addr1); 3203 3204 switch (sdata->vif.type) { 3205 case NL80211_IFTYPE_STATION: 3206 if (!bssid && !sdata->u.mgd.use_4addr) 3207 return false; 3208 if (!multicast && 3209 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3210 if (!(sdata->dev->flags & IFF_PROMISC) || 3211 sdata->u.mgd.use_4addr) 3212 return false; 3213 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3214 } 3215 break; 3216 case NL80211_IFTYPE_ADHOC: 3217 if (!bssid) 3218 return false; 3219 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) || 3220 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2)) 3221 return false; 3222 if (ieee80211_is_beacon(hdr->frame_control)) { 3223 return true; 3224 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) { 3225 return false; 3226 } else if (!multicast && 3227 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3228 if (!(sdata->dev->flags & IFF_PROMISC)) 3229 return false; 3230 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3231 } else if (!rx->sta) { 3232 int rate_idx; 3233 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) 3234 rate_idx = 0; /* TODO: HT/VHT rates */ 3235 else 3236 rate_idx = status->rate_idx; 3237 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2, 3238 BIT(rate_idx)); 3239 } 3240 break; 3241 case NL80211_IFTYPE_OCB: 3242 if (!bssid) 3243 return false; 3244 if (ieee80211_is_beacon(hdr->frame_control)) { 3245 return false; 3246 } else if (!is_broadcast_ether_addr(bssid)) { 3247 ocb_dbg(sdata, "BSSID mismatch in OCB mode!\n"); 3248 return false; 3249 } else if (!multicast && 3250 !ether_addr_equal(sdata->dev->dev_addr, 3251 hdr->addr1)) { 3252 /* if we are in promisc mode we also accept 3253 * packets not destined for us 3254 */ 3255 if (!(sdata->dev->flags & IFF_PROMISC)) 3256 return false; 3257 rx->flags &= ~IEEE80211_RX_RA_MATCH; 3258 } else if (!rx->sta) { 3259 int rate_idx; 3260 if (status->flag & RX_FLAG_HT) 3261 rate_idx = 0; /* TODO: HT rates */ 3262 else 3263 rate_idx = status->rate_idx; 3264 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2, 3265 BIT(rate_idx)); 3266 } 3267 break; 3268 case NL80211_IFTYPE_MESH_POINT: 3269 if (!multicast && 3270 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) { 3271 if (!(sdata->dev->flags & IFF_PROMISC)) 3272 return false; 3273 3274 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3275 } 3276 break; 3277 case NL80211_IFTYPE_AP_VLAN: 3278 case NL80211_IFTYPE_AP: 3279 if (!bssid) { 3280 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3281 return false; 3282 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) { 3283 /* 3284 * Accept public action frames even when the 3285 * BSSID doesn't match, this is used for P2P 3286 * and location updates. Note that mac80211 3287 * itself never looks at these frames. 3288 */ 3289 if (!multicast && 3290 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) 3291 return false; 3292 if (ieee80211_is_public_action(hdr, skb->len)) 3293 return true; 3294 if (!ieee80211_is_beacon(hdr->frame_control)) 3295 return false; 3296 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3297 } else if (!ieee80211_has_tods(hdr->frame_control)) { 3298 /* ignore data frames to TDLS-peers */ 3299 if (ieee80211_is_data(hdr->frame_control)) 3300 return false; 3301 /* ignore action frames to TDLS-peers */ 3302 if (ieee80211_is_action(hdr->frame_control) && 3303 !ether_addr_equal(bssid, hdr->addr1)) 3304 return false; 3305 } 3306 break; 3307 case NL80211_IFTYPE_WDS: 3308 if (bssid || !ieee80211_is_data(hdr->frame_control)) 3309 return false; 3310 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2)) 3311 return false; 3312 break; 3313 case NL80211_IFTYPE_P2P_DEVICE: 3314 if (!ieee80211_is_public_action(hdr, skb->len) && 3315 !ieee80211_is_probe_req(hdr->frame_control) && 3316 !ieee80211_is_probe_resp(hdr->frame_control) && 3317 !ieee80211_is_beacon(hdr->frame_control)) 3318 return false; 3319 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) && 3320 !multicast) 3321 status->rx_flags &= ~IEEE80211_RX_RA_MATCH; 3322 break; 3323 default: 3324 /* should never get here */ 3325 WARN_ON_ONCE(1); 3326 break; 3327 } 3328 3329 return true; 3330 } 3331 3332 /* 3333 * This function returns whether or not the SKB 3334 * was destined for RX processing or not, which, 3335 * if consume is true, is equivalent to whether 3336 * or not the skb was consumed. 3337 */ 3338 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx, 3339 struct sk_buff *skb, bool consume) 3340 { 3341 struct ieee80211_local *local = rx->local; 3342 struct ieee80211_sub_if_data *sdata = rx->sdata; 3343 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3344 struct ieee80211_hdr *hdr = (void *)skb->data; 3345 3346 rx->skb = skb; 3347 status->rx_flags |= IEEE80211_RX_RA_MATCH; 3348 3349 if (!prepare_for_handlers(rx, hdr)) 3350 return false; 3351 3352 if (!consume) { 3353 skb = skb_copy(skb, GFP_ATOMIC); 3354 if (!skb) { 3355 if (net_ratelimit()) 3356 wiphy_debug(local->hw.wiphy, 3357 "failed to copy skb for %s\n", 3358 sdata->name); 3359 return true; 3360 } 3361 3362 rx->skb = skb; 3363 } 3364 3365 ieee80211_invoke_rx_handlers(rx); 3366 return true; 3367 } 3368 3369 /* 3370 * This is the actual Rx frames handler. as it belongs to Rx path it must 3371 * be called with rcu_read_lock protection. 3372 */ 3373 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw, 3374 struct sk_buff *skb) 3375 { 3376 struct ieee80211_local *local = hw_to_local(hw); 3377 struct ieee80211_sub_if_data *sdata; 3378 struct ieee80211_hdr *hdr; 3379 __le16 fc; 3380 struct ieee80211_rx_data rx; 3381 struct ieee80211_sub_if_data *prev; 3382 struct sta_info *sta, *tmp, *prev_sta; 3383 int err = 0; 3384 3385 fc = ((struct ieee80211_hdr *)skb->data)->frame_control; 3386 memset(&rx, 0, sizeof(rx)); 3387 rx.skb = skb; 3388 rx.local = local; 3389 3390 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc)) 3391 local->dot11ReceivedFragmentCount++; 3392 3393 if (ieee80211_is_mgmt(fc)) { 3394 /* drop frame if too short for header */ 3395 if (skb->len < ieee80211_hdrlen(fc)) 3396 err = -ENOBUFS; 3397 else 3398 err = skb_linearize(skb); 3399 } else { 3400 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc)); 3401 } 3402 3403 if (err) { 3404 dev_kfree_skb(skb); 3405 return; 3406 } 3407 3408 hdr = (struct ieee80211_hdr *)skb->data; 3409 ieee80211_parse_qos(&rx); 3410 ieee80211_verify_alignment(&rx); 3411 3412 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) || 3413 ieee80211_is_beacon(hdr->frame_control))) 3414 ieee80211_scan_rx(local, skb); 3415 3416 if (ieee80211_is_data(fc)) { 3417 prev_sta = NULL; 3418 3419 for_each_sta_info(local, hdr->addr2, sta, tmp) { 3420 if (!prev_sta) { 3421 prev_sta = sta; 3422 continue; 3423 } 3424 3425 rx.sta = prev_sta; 3426 rx.sdata = prev_sta->sdata; 3427 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3428 3429 prev_sta = sta; 3430 } 3431 3432 if (prev_sta) { 3433 rx.sta = prev_sta; 3434 rx.sdata = prev_sta->sdata; 3435 3436 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3437 return; 3438 goto out; 3439 } 3440 } 3441 3442 prev = NULL; 3443 3444 list_for_each_entry_rcu(sdata, &local->interfaces, list) { 3445 if (!ieee80211_sdata_running(sdata)) 3446 continue; 3447 3448 if (sdata->vif.type == NL80211_IFTYPE_MONITOR || 3449 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) 3450 continue; 3451 3452 /* 3453 * frame is destined for this interface, but if it's 3454 * not also for the previous one we handle that after 3455 * the loop to avoid copying the SKB once too much 3456 */ 3457 3458 if (!prev) { 3459 prev = sdata; 3460 continue; 3461 } 3462 3463 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3464 rx.sdata = prev; 3465 ieee80211_prepare_and_rx_handle(&rx, skb, false); 3466 3467 prev = sdata; 3468 } 3469 3470 if (prev) { 3471 rx.sta = sta_info_get_bss(prev, hdr->addr2); 3472 rx.sdata = prev; 3473 3474 if (ieee80211_prepare_and_rx_handle(&rx, skb, true)) 3475 return; 3476 } 3477 3478 out: 3479 dev_kfree_skb(skb); 3480 } 3481 3482 /* 3483 * This is the receive path handler. It is called by a low level driver when an 3484 * 802.11 MPDU is received from the hardware. 3485 */ 3486 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb) 3487 { 3488 struct ieee80211_local *local = hw_to_local(hw); 3489 struct ieee80211_rate *rate = NULL; 3490 struct ieee80211_supported_band *sband; 3491 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 3492 3493 WARN_ON_ONCE(softirq_count() == 0); 3494 3495 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS)) 3496 goto drop; 3497 3498 sband = local->hw.wiphy->bands[status->band]; 3499 if (WARN_ON(!sband)) 3500 goto drop; 3501 3502 /* 3503 * If we're suspending, it is possible although not too likely 3504 * that we'd be receiving frames after having already partially 3505 * quiesced the stack. We can't process such frames then since 3506 * that might, for example, cause stations to be added or other 3507 * driver callbacks be invoked. 3508 */ 3509 if (unlikely(local->quiescing || local->suspended)) 3510 goto drop; 3511 3512 /* We might be during a HW reconfig, prevent Rx for the same reason */ 3513 if (unlikely(local->in_reconfig)) 3514 goto drop; 3515 3516 /* 3517 * The same happens when we're not even started, 3518 * but that's worth a warning. 3519 */ 3520 if (WARN_ON(!local->started)) 3521 goto drop; 3522 3523 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) { 3524 /* 3525 * Validate the rate, unless a PLCP error means that 3526 * we probably can't have a valid rate here anyway. 3527 */ 3528 3529 if (status->flag & RX_FLAG_HT) { 3530 /* 3531 * rate_idx is MCS index, which can be [0-76] 3532 * as documented on: 3533 * 3534 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n 3535 * 3536 * Anything else would be some sort of driver or 3537 * hardware error. The driver should catch hardware 3538 * errors. 3539 */ 3540 if (WARN(status->rate_idx > 76, 3541 "Rate marked as an HT rate but passed " 3542 "status->rate_idx is not " 3543 "an MCS index [0-76]: %d (0x%02x)\n", 3544 status->rate_idx, 3545 status->rate_idx)) 3546 goto drop; 3547 } else if (status->flag & RX_FLAG_VHT) { 3548 if (WARN_ONCE(status->rate_idx > 9 || 3549 !status->vht_nss || 3550 status->vht_nss > 8, 3551 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n", 3552 status->rate_idx, status->vht_nss)) 3553 goto drop; 3554 } else { 3555 if (WARN_ON(status->rate_idx >= sband->n_bitrates)) 3556 goto drop; 3557 rate = &sband->bitrates[status->rate_idx]; 3558 } 3559 } 3560 3561 status->rx_flags = 0; 3562 3563 /* 3564 * key references and virtual interfaces are protected using RCU 3565 * and this requires that we are in a read-side RCU section during 3566 * receive processing 3567 */ 3568 rcu_read_lock(); 3569 3570 /* 3571 * Frames with failed FCS/PLCP checksum are not returned, 3572 * all other frames are returned without radiotap header 3573 * if it was previously present. 3574 * Also, frames with less than 16 bytes are dropped. 3575 */ 3576 skb = ieee80211_rx_monitor(local, skb, rate); 3577 if (!skb) { 3578 rcu_read_unlock(); 3579 return; 3580 } 3581 3582 ieee80211_tpt_led_trig_rx(local, 3583 ((struct ieee80211_hdr *)skb->data)->frame_control, 3584 skb->len); 3585 __ieee80211_rx_handle_packet(hw, skb); 3586 3587 rcu_read_unlock(); 3588 3589 return; 3590 drop: 3591 kfree_skb(skb); 3592 } 3593 EXPORT_SYMBOL(ieee80211_rx); 3594 3595 /* This is a version of the rx handler that can be called from hard irq 3596 * context. Post the skb on the queue and schedule the tasklet */ 3597 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb) 3598 { 3599 struct ieee80211_local *local = hw_to_local(hw); 3600 3601 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)); 3602 3603 skb->pkt_type = IEEE80211_RX_MSG; 3604 skb_queue_tail(&local->skb_queue, skb); 3605 tasklet_schedule(&local->tasklet); 3606 } 3607 EXPORT_SYMBOL(ieee80211_rx_irqsafe); 3608