xref: /linux/net/mac80211/rx.c (revision 5e4e38446a62a4f50d77b0dd11d4b379dee08988)
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007	Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2010	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
24 
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
34 
35 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
36 {
37 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
38 
39 	u64_stats_update_begin(&tstats->syncp);
40 	tstats->rx_packets++;
41 	tstats->rx_bytes += len;
42 	u64_stats_update_end(&tstats->syncp);
43 }
44 
45 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
46 			       enum nl80211_iftype type)
47 {
48 	__le16 fc = hdr->frame_control;
49 
50 	if (ieee80211_is_data(fc)) {
51 		if (len < 24) /* drop incorrect hdr len (data) */
52 			return NULL;
53 
54 		if (ieee80211_has_a4(fc))
55 			return NULL;
56 		if (ieee80211_has_tods(fc))
57 			return hdr->addr1;
58 		if (ieee80211_has_fromds(fc))
59 			return hdr->addr2;
60 
61 		return hdr->addr3;
62 	}
63 
64 	if (ieee80211_is_mgmt(fc)) {
65 		if (len < 24) /* drop incorrect hdr len (mgmt) */
66 			return NULL;
67 		return hdr->addr3;
68 	}
69 
70 	if (ieee80211_is_ctl(fc)) {
71 		if (ieee80211_is_pspoll(fc))
72 			return hdr->addr1;
73 
74 		if (ieee80211_is_back_req(fc)) {
75 			switch (type) {
76 			case NL80211_IFTYPE_STATION:
77 				return hdr->addr2;
78 			case NL80211_IFTYPE_AP:
79 			case NL80211_IFTYPE_AP_VLAN:
80 				return hdr->addr1;
81 			default:
82 				break; /* fall through to the return */
83 			}
84 		}
85 	}
86 
87 	return NULL;
88 }
89 
90 /*
91  * monitor mode reception
92  *
93  * This function cleans up the SKB, i.e. it removes all the stuff
94  * only useful for monitoring.
95  */
96 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
97 					   struct sk_buff *skb,
98 					   unsigned int rtap_vendor_space)
99 {
100 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
101 		if (likely(skb->len > FCS_LEN))
102 			__pskb_trim(skb, skb->len - FCS_LEN);
103 		else {
104 			/* driver bug */
105 			WARN_ON(1);
106 			dev_kfree_skb(skb);
107 			return NULL;
108 		}
109 	}
110 
111 	__pskb_pull(skb, rtap_vendor_space);
112 
113 	return skb;
114 }
115 
116 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
117 				     unsigned int rtap_vendor_space)
118 {
119 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
120 	struct ieee80211_hdr *hdr;
121 
122 	hdr = (void *)(skb->data + rtap_vendor_space);
123 
124 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
125 			    RX_FLAG_FAILED_PLCP_CRC))
126 		return true;
127 
128 	if (unlikely(skb->len < 16 + present_fcs_len + rtap_vendor_space))
129 		return true;
130 
131 	if (ieee80211_is_ctl(hdr->frame_control) &&
132 	    !ieee80211_is_pspoll(hdr->frame_control) &&
133 	    !ieee80211_is_back_req(hdr->frame_control))
134 		return true;
135 
136 	return false;
137 }
138 
139 static int
140 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
141 			     struct ieee80211_rx_status *status,
142 			     struct sk_buff *skb)
143 {
144 	int len;
145 
146 	/* always present fields */
147 	len = sizeof(struct ieee80211_radiotap_header) + 8;
148 
149 	/* allocate extra bitmaps */
150 	if (status->chains)
151 		len += 4 * hweight8(status->chains);
152 
153 	if (ieee80211_have_rx_timestamp(status)) {
154 		len = ALIGN(len, 8);
155 		len += 8;
156 	}
157 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
158 		len += 1;
159 
160 	/* antenna field, if we don't have per-chain info */
161 	if (!status->chains)
162 		len += 1;
163 
164 	/* padding for RX_FLAGS if necessary */
165 	len = ALIGN(len, 2);
166 
167 	if (status->flag & RX_FLAG_HT) /* HT info */
168 		len += 3;
169 
170 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
171 		len = ALIGN(len, 4);
172 		len += 8;
173 	}
174 
175 	if (status->flag & RX_FLAG_VHT) {
176 		len = ALIGN(len, 2);
177 		len += 12;
178 	}
179 
180 	if (status->chains) {
181 		/* antenna and antenna signal fields */
182 		len += 2 * hweight8(status->chains);
183 	}
184 
185 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
186 		struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
187 
188 		/* vendor presence bitmap */
189 		len += 4;
190 		/* alignment for fixed 6-byte vendor data header */
191 		len = ALIGN(len, 2);
192 		/* vendor data header */
193 		len += 6;
194 		if (WARN_ON(rtap->align == 0))
195 			rtap->align = 1;
196 		len = ALIGN(len, rtap->align);
197 		len += rtap->len + rtap->pad;
198 	}
199 
200 	return len;
201 }
202 
203 /*
204  * ieee80211_add_rx_radiotap_header - add radiotap header
205  *
206  * add a radiotap header containing all the fields which the hardware provided.
207  */
208 static void
209 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
210 				 struct sk_buff *skb,
211 				 struct ieee80211_rate *rate,
212 				 int rtap_len, bool has_fcs)
213 {
214 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
215 	struct ieee80211_radiotap_header *rthdr;
216 	unsigned char *pos;
217 	__le32 *it_present;
218 	u32 it_present_val;
219 	u16 rx_flags = 0;
220 	u16 channel_flags = 0;
221 	int mpdulen, chain;
222 	unsigned long chains = status->chains;
223 	struct ieee80211_vendor_radiotap rtap = {};
224 
225 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
226 		rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
227 		/* rtap.len and rtap.pad are undone immediately */
228 		skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
229 	}
230 
231 	mpdulen = skb->len;
232 	if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
233 		mpdulen += FCS_LEN;
234 
235 	rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
236 	memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
237 	it_present = &rthdr->it_present;
238 
239 	/* radiotap header, set always present flags */
240 	rthdr->it_len = cpu_to_le16(rtap_len);
241 	it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
242 			 BIT(IEEE80211_RADIOTAP_CHANNEL) |
243 			 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
244 
245 	if (!status->chains)
246 		it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
247 
248 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
249 		it_present_val |=
250 			BIT(IEEE80211_RADIOTAP_EXT) |
251 			BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
252 		put_unaligned_le32(it_present_val, it_present);
253 		it_present++;
254 		it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
255 				 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
256 	}
257 
258 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
259 		it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
260 				  BIT(IEEE80211_RADIOTAP_EXT);
261 		put_unaligned_le32(it_present_val, it_present);
262 		it_present++;
263 		it_present_val = rtap.present;
264 	}
265 
266 	put_unaligned_le32(it_present_val, it_present);
267 
268 	pos = (void *)(it_present + 1);
269 
270 	/* the order of the following fields is important */
271 
272 	/* IEEE80211_RADIOTAP_TSFT */
273 	if (ieee80211_have_rx_timestamp(status)) {
274 		/* padding */
275 		while ((pos - (u8 *)rthdr) & 7)
276 			*pos++ = 0;
277 		put_unaligned_le64(
278 			ieee80211_calculate_rx_timestamp(local, status,
279 							 mpdulen, 0),
280 			pos);
281 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
282 		pos += 8;
283 	}
284 
285 	/* IEEE80211_RADIOTAP_FLAGS */
286 	if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
287 		*pos |= IEEE80211_RADIOTAP_F_FCS;
288 	if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
289 		*pos |= IEEE80211_RADIOTAP_F_BADFCS;
290 	if (status->flag & RX_FLAG_SHORTPRE)
291 		*pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
292 	pos++;
293 
294 	/* IEEE80211_RADIOTAP_RATE */
295 	if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
296 		/*
297 		 * Without rate information don't add it. If we have,
298 		 * MCS information is a separate field in radiotap,
299 		 * added below. The byte here is needed as padding
300 		 * for the channel though, so initialise it to 0.
301 		 */
302 		*pos = 0;
303 	} else {
304 		int shift = 0;
305 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
306 		if (status->flag & RX_FLAG_10MHZ)
307 			shift = 1;
308 		else if (status->flag & RX_FLAG_5MHZ)
309 			shift = 2;
310 		*pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
311 	}
312 	pos++;
313 
314 	/* IEEE80211_RADIOTAP_CHANNEL */
315 	put_unaligned_le16(status->freq, pos);
316 	pos += 2;
317 	if (status->flag & RX_FLAG_10MHZ)
318 		channel_flags |= IEEE80211_CHAN_HALF;
319 	else if (status->flag & RX_FLAG_5MHZ)
320 		channel_flags |= IEEE80211_CHAN_QUARTER;
321 
322 	if (status->band == IEEE80211_BAND_5GHZ)
323 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
324 	else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
325 		channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
326 	else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
327 		channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
328 	else if (rate)
329 		channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
330 	else
331 		channel_flags |= IEEE80211_CHAN_2GHZ;
332 	put_unaligned_le16(channel_flags, pos);
333 	pos += 2;
334 
335 	/* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
336 	if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
337 	    !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
338 		*pos = status->signal;
339 		rthdr->it_present |=
340 			cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
341 		pos++;
342 	}
343 
344 	/* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
345 
346 	if (!status->chains) {
347 		/* IEEE80211_RADIOTAP_ANTENNA */
348 		*pos = status->antenna;
349 		pos++;
350 	}
351 
352 	/* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
353 
354 	/* IEEE80211_RADIOTAP_RX_FLAGS */
355 	/* ensure 2 byte alignment for the 2 byte field as required */
356 	if ((pos - (u8 *)rthdr) & 1)
357 		*pos++ = 0;
358 	if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
359 		rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
360 	put_unaligned_le16(rx_flags, pos);
361 	pos += 2;
362 
363 	if (status->flag & RX_FLAG_HT) {
364 		unsigned int stbc;
365 
366 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
367 		*pos++ = local->hw.radiotap_mcs_details;
368 		*pos = 0;
369 		if (status->flag & RX_FLAG_SHORT_GI)
370 			*pos |= IEEE80211_RADIOTAP_MCS_SGI;
371 		if (status->flag & RX_FLAG_40MHZ)
372 			*pos |= IEEE80211_RADIOTAP_MCS_BW_40;
373 		if (status->flag & RX_FLAG_HT_GF)
374 			*pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
375 		if (status->flag & RX_FLAG_LDPC)
376 			*pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
377 		stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
378 		*pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
379 		pos++;
380 		*pos++ = status->rate_idx;
381 	}
382 
383 	if (status->flag & RX_FLAG_AMPDU_DETAILS) {
384 		u16 flags = 0;
385 
386 		/* ensure 4 byte alignment */
387 		while ((pos - (u8 *)rthdr) & 3)
388 			pos++;
389 		rthdr->it_present |=
390 			cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
391 		put_unaligned_le32(status->ampdu_reference, pos);
392 		pos += 4;
393 		if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
394 			flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
395 		if (status->flag & RX_FLAG_AMPDU_IS_LAST)
396 			flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
397 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
398 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
399 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
400 			flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
401 		put_unaligned_le16(flags, pos);
402 		pos += 2;
403 		if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
404 			*pos++ = status->ampdu_delimiter_crc;
405 		else
406 			*pos++ = 0;
407 		*pos++ = 0;
408 	}
409 
410 	if (status->flag & RX_FLAG_VHT) {
411 		u16 known = local->hw.radiotap_vht_details;
412 
413 		rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
414 		put_unaligned_le16(known, pos);
415 		pos += 2;
416 		/* flags */
417 		if (status->flag & RX_FLAG_SHORT_GI)
418 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
419 		/* in VHT, STBC is binary */
420 		if (status->flag & RX_FLAG_STBC_MASK)
421 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
422 		if (status->vht_flag & RX_VHT_FLAG_BF)
423 			*pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
424 		pos++;
425 		/* bandwidth */
426 		if (status->vht_flag & RX_VHT_FLAG_80MHZ)
427 			*pos++ = 4;
428 		else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
429 			*pos++ = 11;
430 		else if (status->flag & RX_FLAG_40MHZ)
431 			*pos++ = 1;
432 		else /* 20 MHz */
433 			*pos++ = 0;
434 		/* MCS/NSS */
435 		*pos = (status->rate_idx << 4) | status->vht_nss;
436 		pos += 4;
437 		/* coding field */
438 		if (status->flag & RX_FLAG_LDPC)
439 			*pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
440 		pos++;
441 		/* group ID */
442 		pos++;
443 		/* partial_aid */
444 		pos += 2;
445 	}
446 
447 	for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
448 		*pos++ = status->chain_signal[chain];
449 		*pos++ = chain;
450 	}
451 
452 	if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
453 		/* ensure 2 byte alignment for the vendor field as required */
454 		if ((pos - (u8 *)rthdr) & 1)
455 			*pos++ = 0;
456 		*pos++ = rtap.oui[0];
457 		*pos++ = rtap.oui[1];
458 		*pos++ = rtap.oui[2];
459 		*pos++ = rtap.subns;
460 		put_unaligned_le16(rtap.len, pos);
461 		pos += 2;
462 		/* align the actual payload as requested */
463 		while ((pos - (u8 *)rthdr) & (rtap.align - 1))
464 			*pos++ = 0;
465 		/* data (and possible padding) already follows */
466 	}
467 }
468 
469 /*
470  * This function copies a received frame to all monitor interfaces and
471  * returns a cleaned-up SKB that no longer includes the FCS nor the
472  * radiotap header the driver might have added.
473  */
474 static struct sk_buff *
475 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
476 		     struct ieee80211_rate *rate)
477 {
478 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
479 	struct ieee80211_sub_if_data *sdata;
480 	int rt_hdrlen, needed_headroom;
481 	struct sk_buff *skb, *skb2;
482 	struct net_device *prev_dev = NULL;
483 	int present_fcs_len = 0;
484 	unsigned int rtap_vendor_space = 0;
485 
486 	if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
487 		struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
488 
489 		rtap_vendor_space = sizeof(*rtap) + rtap->len + rtap->pad;
490 	}
491 
492 	/*
493 	 * First, we may need to make a copy of the skb because
494 	 *  (1) we need to modify it for radiotap (if not present), and
495 	 *  (2) the other RX handlers will modify the skb we got.
496 	 *
497 	 * We don't need to, of course, if we aren't going to return
498 	 * the SKB because it has a bad FCS/PLCP checksum.
499 	 */
500 
501 	if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
502 		present_fcs_len = FCS_LEN;
503 
504 	/* ensure hdr->frame_control and vendor radiotap data are in skb head */
505 	if (!pskb_may_pull(origskb, 2 + rtap_vendor_space)) {
506 		dev_kfree_skb(origskb);
507 		return NULL;
508 	}
509 
510 	if (!local->monitors) {
511 		if (should_drop_frame(origskb, present_fcs_len,
512 				      rtap_vendor_space)) {
513 			dev_kfree_skb(origskb);
514 			return NULL;
515 		}
516 
517 		return remove_monitor_info(local, origskb, rtap_vendor_space);
518 	}
519 
520 	/* room for the radiotap header based on driver features */
521 	rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, origskb);
522 	needed_headroom = rt_hdrlen - rtap_vendor_space;
523 
524 	if (should_drop_frame(origskb, present_fcs_len, rtap_vendor_space)) {
525 		/* only need to expand headroom if necessary */
526 		skb = origskb;
527 		origskb = NULL;
528 
529 		/*
530 		 * This shouldn't trigger often because most devices have an
531 		 * RX header they pull before we get here, and that should
532 		 * be big enough for our radiotap information. We should
533 		 * probably export the length to drivers so that we can have
534 		 * them allocate enough headroom to start with.
535 		 */
536 		if (skb_headroom(skb) < needed_headroom &&
537 		    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
538 			dev_kfree_skb(skb);
539 			return NULL;
540 		}
541 	} else {
542 		/*
543 		 * Need to make a copy and possibly remove radiotap header
544 		 * and FCS from the original.
545 		 */
546 		skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
547 
548 		origskb = remove_monitor_info(local, origskb,
549 					      rtap_vendor_space);
550 
551 		if (!skb)
552 			return origskb;
553 	}
554 
555 	/* prepend radiotap information */
556 	ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
557 
558 	skb_reset_mac_header(skb);
559 	skb->ip_summed = CHECKSUM_UNNECESSARY;
560 	skb->pkt_type = PACKET_OTHERHOST;
561 	skb->protocol = htons(ETH_P_802_2);
562 
563 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
564 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
565 			continue;
566 
567 		if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
568 			continue;
569 
570 		if (!ieee80211_sdata_running(sdata))
571 			continue;
572 
573 		if (prev_dev) {
574 			skb2 = skb_clone(skb, GFP_ATOMIC);
575 			if (skb2) {
576 				skb2->dev = prev_dev;
577 				netif_receive_skb(skb2);
578 			}
579 		}
580 
581 		prev_dev = sdata->dev;
582 		ieee80211_rx_stats(sdata->dev, skb->len);
583 	}
584 
585 	if (prev_dev) {
586 		skb->dev = prev_dev;
587 		netif_receive_skb(skb);
588 	} else
589 		dev_kfree_skb(skb);
590 
591 	return origskb;
592 }
593 
594 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
595 {
596 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
597 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
598 	int tid, seqno_idx, security_idx;
599 
600 	/* does the frame have a qos control field? */
601 	if (ieee80211_is_data_qos(hdr->frame_control)) {
602 		u8 *qc = ieee80211_get_qos_ctl(hdr);
603 		/* frame has qos control */
604 		tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
605 		if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
606 			status->rx_flags |= IEEE80211_RX_AMSDU;
607 
608 		seqno_idx = tid;
609 		security_idx = tid;
610 	} else {
611 		/*
612 		 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
613 		 *
614 		 *	Sequence numbers for management frames, QoS data
615 		 *	frames with a broadcast/multicast address in the
616 		 *	Address 1 field, and all non-QoS data frames sent
617 		 *	by QoS STAs are assigned using an additional single
618 		 *	modulo-4096 counter, [...]
619 		 *
620 		 * We also use that counter for non-QoS STAs.
621 		 */
622 		seqno_idx = IEEE80211_NUM_TIDS;
623 		security_idx = 0;
624 		if (ieee80211_is_mgmt(hdr->frame_control))
625 			security_idx = IEEE80211_NUM_TIDS;
626 		tid = 0;
627 	}
628 
629 	rx->seqno_idx = seqno_idx;
630 	rx->security_idx = security_idx;
631 	/* Set skb->priority to 1d tag if highest order bit of TID is not set.
632 	 * For now, set skb->priority to 0 for other cases. */
633 	rx->skb->priority = (tid > 7) ? 0 : tid;
634 }
635 
636 /**
637  * DOC: Packet alignment
638  *
639  * Drivers always need to pass packets that are aligned to two-byte boundaries
640  * to the stack.
641  *
642  * Additionally, should, if possible, align the payload data in a way that
643  * guarantees that the contained IP header is aligned to a four-byte
644  * boundary. In the case of regular frames, this simply means aligning the
645  * payload to a four-byte boundary (because either the IP header is directly
646  * contained, or IV/RFC1042 headers that have a length divisible by four are
647  * in front of it).  If the payload data is not properly aligned and the
648  * architecture doesn't support efficient unaligned operations, mac80211
649  * will align the data.
650  *
651  * With A-MSDU frames, however, the payload data address must yield two modulo
652  * four because there are 14-byte 802.3 headers within the A-MSDU frames that
653  * push the IP header further back to a multiple of four again. Thankfully, the
654  * specs were sane enough this time around to require padding each A-MSDU
655  * subframe to a length that is a multiple of four.
656  *
657  * Padding like Atheros hardware adds which is between the 802.11 header and
658  * the payload is not supported, the driver is required to move the 802.11
659  * header to be directly in front of the payload in that case.
660  */
661 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
662 {
663 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
664 	WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
665 #endif
666 }
667 
668 
669 /* rx handlers */
670 
671 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
672 {
673 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
674 
675 	if (is_multicast_ether_addr(hdr->addr1))
676 		return 0;
677 
678 	return ieee80211_is_robust_mgmt_frame(skb);
679 }
680 
681 
682 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
683 {
684 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
685 
686 	if (!is_multicast_ether_addr(hdr->addr1))
687 		return 0;
688 
689 	return ieee80211_is_robust_mgmt_frame(skb);
690 }
691 
692 
693 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
694 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
695 {
696 	struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
697 	struct ieee80211_mmie *mmie;
698 	struct ieee80211_mmie_16 *mmie16;
699 
700 	if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
701 		return -1;
702 
703 	if (!ieee80211_is_robust_mgmt_frame(skb))
704 		return -1; /* not a robust management frame */
705 
706 	mmie = (struct ieee80211_mmie *)
707 		(skb->data + skb->len - sizeof(*mmie));
708 	if (mmie->element_id == WLAN_EID_MMIE &&
709 	    mmie->length == sizeof(*mmie) - 2)
710 		return le16_to_cpu(mmie->key_id);
711 
712 	mmie16 = (struct ieee80211_mmie_16 *)
713 		(skb->data + skb->len - sizeof(*mmie16));
714 	if (skb->len >= 24 + sizeof(*mmie16) &&
715 	    mmie16->element_id == WLAN_EID_MMIE &&
716 	    mmie16->length == sizeof(*mmie16) - 2)
717 		return le16_to_cpu(mmie16->key_id);
718 
719 	return -1;
720 }
721 
722 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
723 				 struct sk_buff *skb)
724 {
725 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
726 	__le16 fc;
727 	int hdrlen;
728 	u8 keyid;
729 
730 	fc = hdr->frame_control;
731 	hdrlen = ieee80211_hdrlen(fc);
732 
733 	if (skb->len < hdrlen + cs->hdr_len)
734 		return -EINVAL;
735 
736 	skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
737 	keyid &= cs->key_idx_mask;
738 	keyid >>= cs->key_idx_shift;
739 
740 	return keyid;
741 }
742 
743 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
744 {
745 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
746 	char *dev_addr = rx->sdata->vif.addr;
747 
748 	if (ieee80211_is_data(hdr->frame_control)) {
749 		if (is_multicast_ether_addr(hdr->addr1)) {
750 			if (ieee80211_has_tods(hdr->frame_control) ||
751 			    !ieee80211_has_fromds(hdr->frame_control))
752 				return RX_DROP_MONITOR;
753 			if (ether_addr_equal(hdr->addr3, dev_addr))
754 				return RX_DROP_MONITOR;
755 		} else {
756 			if (!ieee80211_has_a4(hdr->frame_control))
757 				return RX_DROP_MONITOR;
758 			if (ether_addr_equal(hdr->addr4, dev_addr))
759 				return RX_DROP_MONITOR;
760 		}
761 	}
762 
763 	/* If there is not an established peer link and this is not a peer link
764 	 * establisment frame, beacon or probe, drop the frame.
765 	 */
766 
767 	if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
768 		struct ieee80211_mgmt *mgmt;
769 
770 		if (!ieee80211_is_mgmt(hdr->frame_control))
771 			return RX_DROP_MONITOR;
772 
773 		if (ieee80211_is_action(hdr->frame_control)) {
774 			u8 category;
775 
776 			/* make sure category field is present */
777 			if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
778 				return RX_DROP_MONITOR;
779 
780 			mgmt = (struct ieee80211_mgmt *)hdr;
781 			category = mgmt->u.action.category;
782 			if (category != WLAN_CATEGORY_MESH_ACTION &&
783 			    category != WLAN_CATEGORY_SELF_PROTECTED)
784 				return RX_DROP_MONITOR;
785 			return RX_CONTINUE;
786 		}
787 
788 		if (ieee80211_is_probe_req(hdr->frame_control) ||
789 		    ieee80211_is_probe_resp(hdr->frame_control) ||
790 		    ieee80211_is_beacon(hdr->frame_control) ||
791 		    ieee80211_is_auth(hdr->frame_control))
792 			return RX_CONTINUE;
793 
794 		return RX_DROP_MONITOR;
795 	}
796 
797 	return RX_CONTINUE;
798 }
799 
800 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
801 					    struct tid_ampdu_rx *tid_agg_rx,
802 					    int index,
803 					    struct sk_buff_head *frames)
804 {
805 	struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
806 	struct sk_buff *skb;
807 	struct ieee80211_rx_status *status;
808 
809 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
810 
811 	if (skb_queue_empty(skb_list))
812 		goto no_frame;
813 
814 	if (!ieee80211_rx_reorder_ready(skb_list)) {
815 		__skb_queue_purge(skb_list);
816 		goto no_frame;
817 	}
818 
819 	/* release frames from the reorder ring buffer */
820 	tid_agg_rx->stored_mpdu_num--;
821 	while ((skb = __skb_dequeue(skb_list))) {
822 		status = IEEE80211_SKB_RXCB(skb);
823 		status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
824 		__skb_queue_tail(frames, skb);
825 	}
826 
827 no_frame:
828 	tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
829 }
830 
831 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
832 					     struct tid_ampdu_rx *tid_agg_rx,
833 					     u16 head_seq_num,
834 					     struct sk_buff_head *frames)
835 {
836 	int index;
837 
838 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
839 
840 	while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
841 		index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
842 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
843 						frames);
844 	}
845 }
846 
847 /*
848  * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
849  * the skb was added to the buffer longer than this time ago, the earlier
850  * frames that have not yet been received are assumed to be lost and the skb
851  * can be released for processing. This may also release other skb's from the
852  * reorder buffer if there are no additional gaps between the frames.
853  *
854  * Callers must hold tid_agg_rx->reorder_lock.
855  */
856 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
857 
858 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
859 					  struct tid_ampdu_rx *tid_agg_rx,
860 					  struct sk_buff_head *frames)
861 {
862 	int index, i, j;
863 
864 	lockdep_assert_held(&tid_agg_rx->reorder_lock);
865 
866 	/* release the buffer until next missing frame */
867 	index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
868 	if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
869 	    tid_agg_rx->stored_mpdu_num) {
870 		/*
871 		 * No buffers ready to be released, but check whether any
872 		 * frames in the reorder buffer have timed out.
873 		 */
874 		int skipped = 1;
875 		for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
876 		     j = (j + 1) % tid_agg_rx->buf_size) {
877 			if (!ieee80211_rx_reorder_ready(
878 					&tid_agg_rx->reorder_buf[j])) {
879 				skipped++;
880 				continue;
881 			}
882 			if (skipped &&
883 			    !time_after(jiffies, tid_agg_rx->reorder_time[j] +
884 					HT_RX_REORDER_BUF_TIMEOUT))
885 				goto set_release_timer;
886 
887 			/* don't leave incomplete A-MSDUs around */
888 			for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
889 			     i = (i + 1) % tid_agg_rx->buf_size)
890 				__skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
891 
892 			ht_dbg_ratelimited(sdata,
893 					   "release an RX reorder frame due to timeout on earlier frames\n");
894 			ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
895 							frames);
896 
897 			/*
898 			 * Increment the head seq# also for the skipped slots.
899 			 */
900 			tid_agg_rx->head_seq_num =
901 				(tid_agg_rx->head_seq_num +
902 				 skipped) & IEEE80211_SN_MASK;
903 			skipped = 0;
904 		}
905 	} else while (ieee80211_rx_reorder_ready(
906 				&tid_agg_rx->reorder_buf[index])) {
907 		ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
908 						frames);
909 		index =	tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
910 	}
911 
912 	if (tid_agg_rx->stored_mpdu_num) {
913 		j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
914 
915 		for (; j != (index - 1) % tid_agg_rx->buf_size;
916 		     j = (j + 1) % tid_agg_rx->buf_size) {
917 			if (ieee80211_rx_reorder_ready(
918 					&tid_agg_rx->reorder_buf[j]))
919 				break;
920 		}
921 
922  set_release_timer:
923 
924 		if (!tid_agg_rx->removed)
925 			mod_timer(&tid_agg_rx->reorder_timer,
926 				  tid_agg_rx->reorder_time[j] + 1 +
927 				  HT_RX_REORDER_BUF_TIMEOUT);
928 	} else {
929 		del_timer(&tid_agg_rx->reorder_timer);
930 	}
931 }
932 
933 /*
934  * As this function belongs to the RX path it must be under
935  * rcu_read_lock protection. It returns false if the frame
936  * can be processed immediately, true if it was consumed.
937  */
938 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
939 					     struct tid_ampdu_rx *tid_agg_rx,
940 					     struct sk_buff *skb,
941 					     struct sk_buff_head *frames)
942 {
943 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
944 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
945 	u16 sc = le16_to_cpu(hdr->seq_ctrl);
946 	u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
947 	u16 head_seq_num, buf_size;
948 	int index;
949 	bool ret = true;
950 
951 	spin_lock(&tid_agg_rx->reorder_lock);
952 
953 	/*
954 	 * Offloaded BA sessions have no known starting sequence number so pick
955 	 * one from first Rxed frame for this tid after BA was started.
956 	 */
957 	if (unlikely(tid_agg_rx->auto_seq)) {
958 		tid_agg_rx->auto_seq = false;
959 		tid_agg_rx->ssn = mpdu_seq_num;
960 		tid_agg_rx->head_seq_num = mpdu_seq_num;
961 	}
962 
963 	buf_size = tid_agg_rx->buf_size;
964 	head_seq_num = tid_agg_rx->head_seq_num;
965 
966 	/* frame with out of date sequence number */
967 	if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
968 		dev_kfree_skb(skb);
969 		goto out;
970 	}
971 
972 	/*
973 	 * If frame the sequence number exceeds our buffering window
974 	 * size release some previous frames to make room for this one.
975 	 */
976 	if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
977 		head_seq_num = ieee80211_sn_inc(
978 				ieee80211_sn_sub(mpdu_seq_num, buf_size));
979 		/* release stored frames up to new head to stack */
980 		ieee80211_release_reorder_frames(sdata, tid_agg_rx,
981 						 head_seq_num, frames);
982 	}
983 
984 	/* Now the new frame is always in the range of the reordering buffer */
985 
986 	index = mpdu_seq_num % tid_agg_rx->buf_size;
987 
988 	/* check if we already stored this frame */
989 	if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
990 		dev_kfree_skb(skb);
991 		goto out;
992 	}
993 
994 	/*
995 	 * If the current MPDU is in the right order and nothing else
996 	 * is stored we can process it directly, no need to buffer it.
997 	 * If it is first but there's something stored, we may be able
998 	 * to release frames after this one.
999 	 */
1000 	if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1001 	    tid_agg_rx->stored_mpdu_num == 0) {
1002 		if (!(status->flag & RX_FLAG_AMSDU_MORE))
1003 			tid_agg_rx->head_seq_num =
1004 				ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1005 		ret = false;
1006 		goto out;
1007 	}
1008 
1009 	/* put the frame in the reordering buffer */
1010 	__skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1011 	if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1012 		tid_agg_rx->reorder_time[index] = jiffies;
1013 		tid_agg_rx->stored_mpdu_num++;
1014 		ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1015 	}
1016 
1017  out:
1018 	spin_unlock(&tid_agg_rx->reorder_lock);
1019 	return ret;
1020 }
1021 
1022 /*
1023  * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1024  * true if the MPDU was buffered, false if it should be processed.
1025  */
1026 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1027 				       struct sk_buff_head *frames)
1028 {
1029 	struct sk_buff *skb = rx->skb;
1030 	struct ieee80211_local *local = rx->local;
1031 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1032 	struct sta_info *sta = rx->sta;
1033 	struct tid_ampdu_rx *tid_agg_rx;
1034 	u16 sc;
1035 	u8 tid, ack_policy;
1036 
1037 	if (!ieee80211_is_data_qos(hdr->frame_control) ||
1038 	    is_multicast_ether_addr(hdr->addr1))
1039 		goto dont_reorder;
1040 
1041 	/*
1042 	 * filter the QoS data rx stream according to
1043 	 * STA/TID and check if this STA/TID is on aggregation
1044 	 */
1045 
1046 	if (!sta)
1047 		goto dont_reorder;
1048 
1049 	ack_policy = *ieee80211_get_qos_ctl(hdr) &
1050 		     IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1051 	tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1052 
1053 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1054 	if (!tid_agg_rx)
1055 		goto dont_reorder;
1056 
1057 	/* qos null data frames are excluded */
1058 	if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1059 		goto dont_reorder;
1060 
1061 	/* not part of a BA session */
1062 	if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1063 	    ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1064 		goto dont_reorder;
1065 
1066 	/* new, potentially un-ordered, ampdu frame - process it */
1067 
1068 	/* reset session timer */
1069 	if (tid_agg_rx->timeout)
1070 		tid_agg_rx->last_rx = jiffies;
1071 
1072 	/* if this mpdu is fragmented - terminate rx aggregation session */
1073 	sc = le16_to_cpu(hdr->seq_ctrl);
1074 	if (sc & IEEE80211_SCTL_FRAG) {
1075 		skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
1076 		skb_queue_tail(&rx->sdata->skb_queue, skb);
1077 		ieee80211_queue_work(&local->hw, &rx->sdata->work);
1078 		return;
1079 	}
1080 
1081 	/*
1082 	 * No locking needed -- we will only ever process one
1083 	 * RX packet at a time, and thus own tid_agg_rx. All
1084 	 * other code manipulating it needs to (and does) make
1085 	 * sure that we cannot get to it any more before doing
1086 	 * anything with it.
1087 	 */
1088 	if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1089 					     frames))
1090 		return;
1091 
1092  dont_reorder:
1093 	__skb_queue_tail(frames, skb);
1094 }
1095 
1096 static ieee80211_rx_result debug_noinline
1097 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1098 {
1099 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1100 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1101 
1102 	/*
1103 	 * Drop duplicate 802.11 retransmissions
1104 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1105 	 */
1106 
1107 	if (rx->skb->len < 24)
1108 		return RX_CONTINUE;
1109 
1110 	if (ieee80211_is_ctl(hdr->frame_control) ||
1111 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1112 	    is_multicast_ether_addr(hdr->addr1))
1113 		return RX_CONTINUE;
1114 
1115 	if (!rx->sta)
1116 		return RX_CONTINUE;
1117 
1118 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1119 		     rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1120 		I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1121 		rx->sta->rx_stats.num_duplicates++;
1122 		return RX_DROP_UNUSABLE;
1123 	} else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1124 		rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1125 	}
1126 
1127 	return RX_CONTINUE;
1128 }
1129 
1130 static ieee80211_rx_result debug_noinline
1131 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1132 {
1133 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1134 
1135 	/* Drop disallowed frame classes based on STA auth/assoc state;
1136 	 * IEEE 802.11, Chap 5.5.
1137 	 *
1138 	 * mac80211 filters only based on association state, i.e. it drops
1139 	 * Class 3 frames from not associated stations. hostapd sends
1140 	 * deauth/disassoc frames when needed. In addition, hostapd is
1141 	 * responsible for filtering on both auth and assoc states.
1142 	 */
1143 
1144 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1145 		return ieee80211_rx_mesh_check(rx);
1146 
1147 	if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1148 		      ieee80211_is_pspoll(hdr->frame_control)) &&
1149 		     rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1150 		     rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1151 		     rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1152 		     (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1153 		/*
1154 		 * accept port control frames from the AP even when it's not
1155 		 * yet marked ASSOC to prevent a race where we don't set the
1156 		 * assoc bit quickly enough before it sends the first frame
1157 		 */
1158 		if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1159 		    ieee80211_is_data_present(hdr->frame_control)) {
1160 			unsigned int hdrlen;
1161 			__be16 ethertype;
1162 
1163 			hdrlen = ieee80211_hdrlen(hdr->frame_control);
1164 
1165 			if (rx->skb->len < hdrlen + 8)
1166 				return RX_DROP_MONITOR;
1167 
1168 			skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1169 			if (ethertype == rx->sdata->control_port_protocol)
1170 				return RX_CONTINUE;
1171 		}
1172 
1173 		if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1174 		    cfg80211_rx_spurious_frame(rx->sdata->dev,
1175 					       hdr->addr2,
1176 					       GFP_ATOMIC))
1177 			return RX_DROP_UNUSABLE;
1178 
1179 		return RX_DROP_MONITOR;
1180 	}
1181 
1182 	return RX_CONTINUE;
1183 }
1184 
1185 
1186 static ieee80211_rx_result debug_noinline
1187 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1188 {
1189 	struct ieee80211_local *local;
1190 	struct ieee80211_hdr *hdr;
1191 	struct sk_buff *skb;
1192 
1193 	local = rx->local;
1194 	skb = rx->skb;
1195 	hdr = (struct ieee80211_hdr *) skb->data;
1196 
1197 	if (!local->pspolling)
1198 		return RX_CONTINUE;
1199 
1200 	if (!ieee80211_has_fromds(hdr->frame_control))
1201 		/* this is not from AP */
1202 		return RX_CONTINUE;
1203 
1204 	if (!ieee80211_is_data(hdr->frame_control))
1205 		return RX_CONTINUE;
1206 
1207 	if (!ieee80211_has_moredata(hdr->frame_control)) {
1208 		/* AP has no more frames buffered for us */
1209 		local->pspolling = false;
1210 		return RX_CONTINUE;
1211 	}
1212 
1213 	/* more data bit is set, let's request a new frame from the AP */
1214 	ieee80211_send_pspoll(local, rx->sdata);
1215 
1216 	return RX_CONTINUE;
1217 }
1218 
1219 static void sta_ps_start(struct sta_info *sta)
1220 {
1221 	struct ieee80211_sub_if_data *sdata = sta->sdata;
1222 	struct ieee80211_local *local = sdata->local;
1223 	struct ps_data *ps;
1224 	int tid;
1225 
1226 	if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1227 	    sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1228 		ps = &sdata->bss->ps;
1229 	else
1230 		return;
1231 
1232 	atomic_inc(&ps->num_sta_ps);
1233 	set_sta_flag(sta, WLAN_STA_PS_STA);
1234 	if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1235 		drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1236 	ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1237 	       sta->sta.addr, sta->sta.aid);
1238 
1239 	ieee80211_clear_fast_xmit(sta);
1240 
1241 	if (!sta->sta.txq[0])
1242 		return;
1243 
1244 	for (tid = 0; tid < ARRAY_SIZE(sta->sta.txq); tid++) {
1245 		struct txq_info *txqi = to_txq_info(sta->sta.txq[tid]);
1246 
1247 		if (!skb_queue_len(&txqi->queue))
1248 			set_bit(tid, &sta->txq_buffered_tids);
1249 		else
1250 			clear_bit(tid, &sta->txq_buffered_tids);
1251 	}
1252 }
1253 
1254 static void sta_ps_end(struct sta_info *sta)
1255 {
1256 	ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1257 	       sta->sta.addr, sta->sta.aid);
1258 
1259 	if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1260 		/*
1261 		 * Clear the flag only if the other one is still set
1262 		 * so that the TX path won't start TX'ing new frames
1263 		 * directly ... In the case that the driver flag isn't
1264 		 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1265 		 */
1266 		clear_sta_flag(sta, WLAN_STA_PS_STA);
1267 		ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1268 		       sta->sta.addr, sta->sta.aid);
1269 		return;
1270 	}
1271 
1272 	set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1273 	clear_sta_flag(sta, WLAN_STA_PS_STA);
1274 	ieee80211_sta_ps_deliver_wakeup(sta);
1275 }
1276 
1277 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1278 {
1279 	struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1280 	bool in_ps;
1281 
1282 	WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1283 
1284 	/* Don't let the same PS state be set twice */
1285 	in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1286 	if ((start && in_ps) || (!start && !in_ps))
1287 		return -EINVAL;
1288 
1289 	if (start)
1290 		sta_ps_start(sta);
1291 	else
1292 		sta_ps_end(sta);
1293 
1294 	return 0;
1295 }
1296 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1297 
1298 static ieee80211_rx_result debug_noinline
1299 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1300 {
1301 	struct ieee80211_sub_if_data *sdata = rx->sdata;
1302 	struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1303 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1304 	int tid, ac;
1305 
1306 	if (!rx->sta)
1307 		return RX_CONTINUE;
1308 
1309 	if (sdata->vif.type != NL80211_IFTYPE_AP &&
1310 	    sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1311 		return RX_CONTINUE;
1312 
1313 	/*
1314 	 * The device handles station powersave, so don't do anything about
1315 	 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1316 	 * it to mac80211 since they're handled.)
1317 	 */
1318 	if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1319 		return RX_CONTINUE;
1320 
1321 	/*
1322 	 * Don't do anything if the station isn't already asleep. In
1323 	 * the uAPSD case, the station will probably be marked asleep,
1324 	 * in the PS-Poll case the station must be confused ...
1325 	 */
1326 	if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1327 		return RX_CONTINUE;
1328 
1329 	if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1330 		if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1331 			if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1332 				ieee80211_sta_ps_deliver_poll_response(rx->sta);
1333 			else
1334 				set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1335 		}
1336 
1337 		/* Free PS Poll skb here instead of returning RX_DROP that would
1338 		 * count as an dropped frame. */
1339 		dev_kfree_skb(rx->skb);
1340 
1341 		return RX_QUEUED;
1342 	} else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1343 		   !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1344 		   ieee80211_has_pm(hdr->frame_control) &&
1345 		   (ieee80211_is_data_qos(hdr->frame_control) ||
1346 		    ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1347 		tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1348 		ac = ieee802_1d_to_ac[tid & 7];
1349 
1350 		/*
1351 		 * If this AC is not trigger-enabled do nothing.
1352 		 *
1353 		 * NB: This could/should check a separate bitmap of trigger-
1354 		 * enabled queues, but for now we only implement uAPSD w/o
1355 		 * TSPEC changes to the ACs, so they're always the same.
1356 		 */
1357 		if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1358 			return RX_CONTINUE;
1359 
1360 		/* if we are in a service period, do nothing */
1361 		if (test_sta_flag(rx->sta, WLAN_STA_SP))
1362 			return RX_CONTINUE;
1363 
1364 		if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1365 			ieee80211_sta_ps_deliver_uapsd(rx->sta);
1366 		else
1367 			set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1368 	}
1369 
1370 	return RX_CONTINUE;
1371 }
1372 
1373 static ieee80211_rx_result debug_noinline
1374 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1375 {
1376 	struct sta_info *sta = rx->sta;
1377 	struct sk_buff *skb = rx->skb;
1378 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1379 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1380 	int i;
1381 
1382 	if (!sta)
1383 		return RX_CONTINUE;
1384 
1385 	/*
1386 	 * Update last_rx only for IBSS packets which are for the current
1387 	 * BSSID and for station already AUTHORIZED to avoid keeping the
1388 	 * current IBSS network alive in cases where other STAs start
1389 	 * using different BSSID. This will also give the station another
1390 	 * chance to restart the authentication/authorization in case
1391 	 * something went wrong the first time.
1392 	 */
1393 	if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1394 		u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1395 						NL80211_IFTYPE_ADHOC);
1396 		if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1397 		    test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1398 			sta->rx_stats.last_rx = jiffies;
1399 			if (ieee80211_is_data(hdr->frame_control) &&
1400 			    !is_multicast_ether_addr(hdr->addr1)) {
1401 				sta->rx_stats.last_rate_idx =
1402 					status->rate_idx;
1403 				sta->rx_stats.last_rate_flag =
1404 					status->flag;
1405 				sta->rx_stats.last_rate_vht_flag =
1406 					status->vht_flag;
1407 				sta->rx_stats.last_rate_vht_nss =
1408 					status->vht_nss;
1409 			}
1410 		}
1411 	} else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1412 		sta->rx_stats.last_rx = jiffies;
1413 	} else if (!is_multicast_ether_addr(hdr->addr1)) {
1414 		/*
1415 		 * Mesh beacons will update last_rx when if they are found to
1416 		 * match the current local configuration when processed.
1417 		 */
1418 		sta->rx_stats.last_rx = jiffies;
1419 		if (ieee80211_is_data(hdr->frame_control)) {
1420 			sta->rx_stats.last_rate_idx = status->rate_idx;
1421 			sta->rx_stats.last_rate_flag = status->flag;
1422 			sta->rx_stats.last_rate_vht_flag = status->vht_flag;
1423 			sta->rx_stats.last_rate_vht_nss = status->vht_nss;
1424 		}
1425 	}
1426 
1427 	if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1428 		ieee80211_sta_rx_notify(rx->sdata, hdr);
1429 
1430 	sta->rx_stats.fragments++;
1431 	sta->rx_stats.bytes += rx->skb->len;
1432 	if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1433 		sta->rx_stats.last_signal = status->signal;
1434 		ewma_signal_add(&sta->rx_stats.avg_signal, -status->signal);
1435 	}
1436 
1437 	if (status->chains) {
1438 		sta->rx_stats.chains = status->chains;
1439 		for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1440 			int signal = status->chain_signal[i];
1441 
1442 			if (!(status->chains & BIT(i)))
1443 				continue;
1444 
1445 			sta->rx_stats.chain_signal_last[i] = signal;
1446 			ewma_signal_add(&sta->rx_stats.chain_signal_avg[i],
1447 					-signal);
1448 		}
1449 	}
1450 
1451 	/*
1452 	 * Change STA power saving mode only at the end of a frame
1453 	 * exchange sequence.
1454 	 */
1455 	if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1456 	    !ieee80211_has_morefrags(hdr->frame_control) &&
1457 	    !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1458 	    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1459 	     rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1460 	    /* PM bit is only checked in frames where it isn't reserved,
1461 	     * in AP mode it's reserved in non-bufferable management frames
1462 	     * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1463 	     */
1464 	    (!ieee80211_is_mgmt(hdr->frame_control) ||
1465 	     ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1466 		if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1467 			if (!ieee80211_has_pm(hdr->frame_control))
1468 				sta_ps_end(sta);
1469 		} else {
1470 			if (ieee80211_has_pm(hdr->frame_control))
1471 				sta_ps_start(sta);
1472 		}
1473 	}
1474 
1475 	/* mesh power save support */
1476 	if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1477 		ieee80211_mps_rx_h_sta_process(sta, hdr);
1478 
1479 	/*
1480 	 * Drop (qos-)data::nullfunc frames silently, since they
1481 	 * are used only to control station power saving mode.
1482 	 */
1483 	if (ieee80211_is_nullfunc(hdr->frame_control) ||
1484 	    ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1485 		I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1486 
1487 		/*
1488 		 * If we receive a 4-addr nullfunc frame from a STA
1489 		 * that was not moved to a 4-addr STA vlan yet send
1490 		 * the event to userspace and for older hostapd drop
1491 		 * the frame to the monitor interface.
1492 		 */
1493 		if (ieee80211_has_a4(hdr->frame_control) &&
1494 		    (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1495 		     (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1496 		      !rx->sdata->u.vlan.sta))) {
1497 			if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1498 				cfg80211_rx_unexpected_4addr_frame(
1499 					rx->sdata->dev, sta->sta.addr,
1500 					GFP_ATOMIC);
1501 			return RX_DROP_MONITOR;
1502 		}
1503 		/*
1504 		 * Update counter and free packet here to avoid
1505 		 * counting this as a dropped packed.
1506 		 */
1507 		sta->rx_stats.packets++;
1508 		dev_kfree_skb(rx->skb);
1509 		return RX_QUEUED;
1510 	}
1511 
1512 	return RX_CONTINUE;
1513 } /* ieee80211_rx_h_sta_process */
1514 
1515 static ieee80211_rx_result debug_noinline
1516 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1517 {
1518 	struct sk_buff *skb = rx->skb;
1519 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1520 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1521 	int keyidx;
1522 	int hdrlen;
1523 	ieee80211_rx_result result = RX_DROP_UNUSABLE;
1524 	struct ieee80211_key *sta_ptk = NULL;
1525 	int mmie_keyidx = -1;
1526 	__le16 fc;
1527 	const struct ieee80211_cipher_scheme *cs = NULL;
1528 
1529 	/*
1530 	 * Key selection 101
1531 	 *
1532 	 * There are four types of keys:
1533 	 *  - GTK (group keys)
1534 	 *  - IGTK (group keys for management frames)
1535 	 *  - PTK (pairwise keys)
1536 	 *  - STK (station-to-station pairwise keys)
1537 	 *
1538 	 * When selecting a key, we have to distinguish between multicast
1539 	 * (including broadcast) and unicast frames, the latter can only
1540 	 * use PTKs and STKs while the former always use GTKs and IGTKs.
1541 	 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1542 	 * unicast frames can also use key indices like GTKs. Hence, if we
1543 	 * don't have a PTK/STK we check the key index for a WEP key.
1544 	 *
1545 	 * Note that in a regular BSS, multicast frames are sent by the
1546 	 * AP only, associated stations unicast the frame to the AP first
1547 	 * which then multicasts it on their behalf.
1548 	 *
1549 	 * There is also a slight problem in IBSS mode: GTKs are negotiated
1550 	 * with each station, that is something we don't currently handle.
1551 	 * The spec seems to expect that one negotiates the same key with
1552 	 * every station but there's no such requirement; VLANs could be
1553 	 * possible.
1554 	 */
1555 
1556 	/* start without a key */
1557 	rx->key = NULL;
1558 	fc = hdr->frame_control;
1559 
1560 	if (rx->sta) {
1561 		int keyid = rx->sta->ptk_idx;
1562 
1563 		if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1564 			cs = rx->sta->cipher_scheme;
1565 			keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1566 			if (unlikely(keyid < 0))
1567 				return RX_DROP_UNUSABLE;
1568 		}
1569 		sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1570 	}
1571 
1572 	if (!ieee80211_has_protected(fc))
1573 		mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1574 
1575 	if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1576 		rx->key = sta_ptk;
1577 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1578 		    (status->flag & RX_FLAG_IV_STRIPPED))
1579 			return RX_CONTINUE;
1580 		/* Skip decryption if the frame is not protected. */
1581 		if (!ieee80211_has_protected(fc))
1582 			return RX_CONTINUE;
1583 	} else if (mmie_keyidx >= 0) {
1584 		/* Broadcast/multicast robust management frame / BIP */
1585 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1586 		    (status->flag & RX_FLAG_IV_STRIPPED))
1587 			return RX_CONTINUE;
1588 
1589 		if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1590 		    mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1591 			return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1592 		if (rx->sta)
1593 			rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1594 		if (!rx->key)
1595 			rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1596 	} else if (!ieee80211_has_protected(fc)) {
1597 		/*
1598 		 * The frame was not protected, so skip decryption. However, we
1599 		 * need to set rx->key if there is a key that could have been
1600 		 * used so that the frame may be dropped if encryption would
1601 		 * have been expected.
1602 		 */
1603 		struct ieee80211_key *key = NULL;
1604 		struct ieee80211_sub_if_data *sdata = rx->sdata;
1605 		int i;
1606 
1607 		if (ieee80211_is_mgmt(fc) &&
1608 		    is_multicast_ether_addr(hdr->addr1) &&
1609 		    (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1610 			rx->key = key;
1611 		else {
1612 			if (rx->sta) {
1613 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1614 					key = rcu_dereference(rx->sta->gtk[i]);
1615 					if (key)
1616 						break;
1617 				}
1618 			}
1619 			if (!key) {
1620 				for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1621 					key = rcu_dereference(sdata->keys[i]);
1622 					if (key)
1623 						break;
1624 				}
1625 			}
1626 			if (key)
1627 				rx->key = key;
1628 		}
1629 		return RX_CONTINUE;
1630 	} else {
1631 		u8 keyid;
1632 
1633 		/*
1634 		 * The device doesn't give us the IV so we won't be
1635 		 * able to look up the key. That's ok though, we
1636 		 * don't need to decrypt the frame, we just won't
1637 		 * be able to keep statistics accurate.
1638 		 * Except for key threshold notifications, should
1639 		 * we somehow allow the driver to tell us which key
1640 		 * the hardware used if this flag is set?
1641 		 */
1642 		if ((status->flag & RX_FLAG_DECRYPTED) &&
1643 		    (status->flag & RX_FLAG_IV_STRIPPED))
1644 			return RX_CONTINUE;
1645 
1646 		hdrlen = ieee80211_hdrlen(fc);
1647 
1648 		if (cs) {
1649 			keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1650 
1651 			if (unlikely(keyidx < 0))
1652 				return RX_DROP_UNUSABLE;
1653 		} else {
1654 			if (rx->skb->len < 8 + hdrlen)
1655 				return RX_DROP_UNUSABLE; /* TODO: count this? */
1656 			/*
1657 			 * no need to call ieee80211_wep_get_keyidx,
1658 			 * it verifies a bunch of things we've done already
1659 			 */
1660 			skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1661 			keyidx = keyid >> 6;
1662 		}
1663 
1664 		/* check per-station GTK first, if multicast packet */
1665 		if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1666 			rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1667 
1668 		/* if not found, try default key */
1669 		if (!rx->key) {
1670 			rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1671 
1672 			/*
1673 			 * RSNA-protected unicast frames should always be
1674 			 * sent with pairwise or station-to-station keys,
1675 			 * but for WEP we allow using a key index as well.
1676 			 */
1677 			if (rx->key &&
1678 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1679 			    rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1680 			    !is_multicast_ether_addr(hdr->addr1))
1681 				rx->key = NULL;
1682 		}
1683 	}
1684 
1685 	if (rx->key) {
1686 		if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1687 			return RX_DROP_MONITOR;
1688 
1689 		/* TODO: add threshold stuff again */
1690 	} else {
1691 		return RX_DROP_MONITOR;
1692 	}
1693 
1694 	switch (rx->key->conf.cipher) {
1695 	case WLAN_CIPHER_SUITE_WEP40:
1696 	case WLAN_CIPHER_SUITE_WEP104:
1697 		result = ieee80211_crypto_wep_decrypt(rx);
1698 		break;
1699 	case WLAN_CIPHER_SUITE_TKIP:
1700 		result = ieee80211_crypto_tkip_decrypt(rx);
1701 		break;
1702 	case WLAN_CIPHER_SUITE_CCMP:
1703 		result = ieee80211_crypto_ccmp_decrypt(
1704 			rx, IEEE80211_CCMP_MIC_LEN);
1705 		break;
1706 	case WLAN_CIPHER_SUITE_CCMP_256:
1707 		result = ieee80211_crypto_ccmp_decrypt(
1708 			rx, IEEE80211_CCMP_256_MIC_LEN);
1709 		break;
1710 	case WLAN_CIPHER_SUITE_AES_CMAC:
1711 		result = ieee80211_crypto_aes_cmac_decrypt(rx);
1712 		break;
1713 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
1714 		result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
1715 		break;
1716 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
1717 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
1718 		result = ieee80211_crypto_aes_gmac_decrypt(rx);
1719 		break;
1720 	case WLAN_CIPHER_SUITE_GCMP:
1721 	case WLAN_CIPHER_SUITE_GCMP_256:
1722 		result = ieee80211_crypto_gcmp_decrypt(rx);
1723 		break;
1724 	default:
1725 		result = ieee80211_crypto_hw_decrypt(rx);
1726 	}
1727 
1728 	/* the hdr variable is invalid after the decrypt handlers */
1729 
1730 	/* either the frame has been decrypted or will be dropped */
1731 	status->flag |= RX_FLAG_DECRYPTED;
1732 
1733 	return result;
1734 }
1735 
1736 static inline struct ieee80211_fragment_entry *
1737 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1738 			 unsigned int frag, unsigned int seq, int rx_queue,
1739 			 struct sk_buff **skb)
1740 {
1741 	struct ieee80211_fragment_entry *entry;
1742 
1743 	entry = &sdata->fragments[sdata->fragment_next++];
1744 	if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1745 		sdata->fragment_next = 0;
1746 
1747 	if (!skb_queue_empty(&entry->skb_list))
1748 		__skb_queue_purge(&entry->skb_list);
1749 
1750 	__skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1751 	*skb = NULL;
1752 	entry->first_frag_time = jiffies;
1753 	entry->seq = seq;
1754 	entry->rx_queue = rx_queue;
1755 	entry->last_frag = frag;
1756 	entry->check_sequential_pn = false;
1757 	entry->extra_len = 0;
1758 
1759 	return entry;
1760 }
1761 
1762 static inline struct ieee80211_fragment_entry *
1763 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1764 			  unsigned int frag, unsigned int seq,
1765 			  int rx_queue, struct ieee80211_hdr *hdr)
1766 {
1767 	struct ieee80211_fragment_entry *entry;
1768 	int i, idx;
1769 
1770 	idx = sdata->fragment_next;
1771 	for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1772 		struct ieee80211_hdr *f_hdr;
1773 
1774 		idx--;
1775 		if (idx < 0)
1776 			idx = IEEE80211_FRAGMENT_MAX - 1;
1777 
1778 		entry = &sdata->fragments[idx];
1779 		if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1780 		    entry->rx_queue != rx_queue ||
1781 		    entry->last_frag + 1 != frag)
1782 			continue;
1783 
1784 		f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1785 
1786 		/*
1787 		 * Check ftype and addresses are equal, else check next fragment
1788 		 */
1789 		if (((hdr->frame_control ^ f_hdr->frame_control) &
1790 		     cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1791 		    !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1792 		    !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1793 			continue;
1794 
1795 		if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1796 			__skb_queue_purge(&entry->skb_list);
1797 			continue;
1798 		}
1799 		return entry;
1800 	}
1801 
1802 	return NULL;
1803 }
1804 
1805 static ieee80211_rx_result debug_noinline
1806 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1807 {
1808 	struct ieee80211_hdr *hdr;
1809 	u16 sc;
1810 	__le16 fc;
1811 	unsigned int frag, seq;
1812 	struct ieee80211_fragment_entry *entry;
1813 	struct sk_buff *skb;
1814 	struct ieee80211_rx_status *status;
1815 
1816 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1817 	fc = hdr->frame_control;
1818 
1819 	if (ieee80211_is_ctl(fc))
1820 		return RX_CONTINUE;
1821 
1822 	sc = le16_to_cpu(hdr->seq_ctrl);
1823 	frag = sc & IEEE80211_SCTL_FRAG;
1824 
1825 	if (is_multicast_ether_addr(hdr->addr1)) {
1826 		I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
1827 		goto out_no_led;
1828 	}
1829 
1830 	if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1831 		goto out;
1832 
1833 	I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1834 
1835 	if (skb_linearize(rx->skb))
1836 		return RX_DROP_UNUSABLE;
1837 
1838 	/*
1839 	 *  skb_linearize() might change the skb->data and
1840 	 *  previously cached variables (in this case, hdr) need to
1841 	 *  be refreshed with the new data.
1842 	 */
1843 	hdr = (struct ieee80211_hdr *)rx->skb->data;
1844 	seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1845 
1846 	if (frag == 0) {
1847 		/* This is the first fragment of a new frame. */
1848 		entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1849 						 rx->seqno_idx, &(rx->skb));
1850 		if (rx->key &&
1851 		    (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
1852 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
1853 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
1854 		     rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
1855 		    ieee80211_has_protected(fc)) {
1856 			int queue = rx->security_idx;
1857 
1858 			/* Store CCMP/GCMP PN so that we can verify that the
1859 			 * next fragment has a sequential PN value.
1860 			 */
1861 			entry->check_sequential_pn = true;
1862 			memcpy(entry->last_pn,
1863 			       rx->key->u.ccmp.rx_pn[queue],
1864 			       IEEE80211_CCMP_PN_LEN);
1865 			BUILD_BUG_ON(offsetof(struct ieee80211_key,
1866 					      u.ccmp.rx_pn) !=
1867 				     offsetof(struct ieee80211_key,
1868 					      u.gcmp.rx_pn));
1869 			BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
1870 				     sizeof(rx->key->u.gcmp.rx_pn[queue]));
1871 			BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
1872 				     IEEE80211_GCMP_PN_LEN);
1873 		}
1874 		return RX_QUEUED;
1875 	}
1876 
1877 	/* This is a fragment for a frame that should already be pending in
1878 	 * fragment cache. Add this fragment to the end of the pending entry.
1879 	 */
1880 	entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1881 					  rx->seqno_idx, hdr);
1882 	if (!entry) {
1883 		I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1884 		return RX_DROP_MONITOR;
1885 	}
1886 
1887 	/* "The receiver shall discard MSDUs and MMPDUs whose constituent
1888 	 *  MPDU PN values are not incrementing in steps of 1."
1889 	 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
1890 	 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
1891 	 */
1892 	if (entry->check_sequential_pn) {
1893 		int i;
1894 		u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1895 		int queue;
1896 
1897 		if (!rx->key ||
1898 		    (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
1899 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
1900 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
1901 		     rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
1902 			return RX_DROP_UNUSABLE;
1903 		memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1904 		for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1905 			pn[i]++;
1906 			if (pn[i])
1907 				break;
1908 		}
1909 		queue = rx->security_idx;
1910 		rpn = rx->key->u.ccmp.rx_pn[queue];
1911 		if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1912 			return RX_DROP_UNUSABLE;
1913 		memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1914 	}
1915 
1916 	skb_pull(rx->skb, ieee80211_hdrlen(fc));
1917 	__skb_queue_tail(&entry->skb_list, rx->skb);
1918 	entry->last_frag = frag;
1919 	entry->extra_len += rx->skb->len;
1920 	if (ieee80211_has_morefrags(fc)) {
1921 		rx->skb = NULL;
1922 		return RX_QUEUED;
1923 	}
1924 
1925 	rx->skb = __skb_dequeue(&entry->skb_list);
1926 	if (skb_tailroom(rx->skb) < entry->extra_len) {
1927 		I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
1928 		if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1929 					      GFP_ATOMIC))) {
1930 			I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1931 			__skb_queue_purge(&entry->skb_list);
1932 			return RX_DROP_UNUSABLE;
1933 		}
1934 	}
1935 	while ((skb = __skb_dequeue(&entry->skb_list))) {
1936 		memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1937 		dev_kfree_skb(skb);
1938 	}
1939 
1940 	/* Complete frame has been reassembled - process it now */
1941 	status = IEEE80211_SKB_RXCB(rx->skb);
1942 
1943  out:
1944 	ieee80211_led_rx(rx->local);
1945  out_no_led:
1946 	if (rx->sta)
1947 		rx->sta->rx_stats.packets++;
1948 	return RX_CONTINUE;
1949 }
1950 
1951 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1952 {
1953 	if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1954 		return -EACCES;
1955 
1956 	return 0;
1957 }
1958 
1959 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1960 {
1961 	struct sk_buff *skb = rx->skb;
1962 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1963 
1964 	/*
1965 	 * Pass through unencrypted frames if the hardware has
1966 	 * decrypted them already.
1967 	 */
1968 	if (status->flag & RX_FLAG_DECRYPTED)
1969 		return 0;
1970 
1971 	/* Drop unencrypted frames if key is set. */
1972 	if (unlikely(!ieee80211_has_protected(fc) &&
1973 		     !ieee80211_is_nullfunc(fc) &&
1974 		     ieee80211_is_data(fc) && rx->key))
1975 		return -EACCES;
1976 
1977 	return 0;
1978 }
1979 
1980 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1981 {
1982 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1983 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1984 	__le16 fc = hdr->frame_control;
1985 
1986 	/*
1987 	 * Pass through unencrypted frames if the hardware has
1988 	 * decrypted them already.
1989 	 */
1990 	if (status->flag & RX_FLAG_DECRYPTED)
1991 		return 0;
1992 
1993 	if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1994 		if (unlikely(!ieee80211_has_protected(fc) &&
1995 			     ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1996 			     rx->key)) {
1997 			if (ieee80211_is_deauth(fc) ||
1998 			    ieee80211_is_disassoc(fc))
1999 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2000 							     rx->skb->data,
2001 							     rx->skb->len);
2002 			return -EACCES;
2003 		}
2004 		/* BIP does not use Protected field, so need to check MMIE */
2005 		if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2006 			     ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2007 			if (ieee80211_is_deauth(fc) ||
2008 			    ieee80211_is_disassoc(fc))
2009 				cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2010 							     rx->skb->data,
2011 							     rx->skb->len);
2012 			return -EACCES;
2013 		}
2014 		/*
2015 		 * When using MFP, Action frames are not allowed prior to
2016 		 * having configured keys.
2017 		 */
2018 		if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2019 			     ieee80211_is_robust_mgmt_frame(rx->skb)))
2020 			return -EACCES;
2021 	}
2022 
2023 	return 0;
2024 }
2025 
2026 static int
2027 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2028 {
2029 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2030 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2031 	bool check_port_control = false;
2032 	struct ethhdr *ehdr;
2033 	int ret;
2034 
2035 	*port_control = false;
2036 	if (ieee80211_has_a4(hdr->frame_control) &&
2037 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2038 		return -1;
2039 
2040 	if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2041 	    !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2042 
2043 		if (!sdata->u.mgd.use_4addr)
2044 			return -1;
2045 		else
2046 			check_port_control = true;
2047 	}
2048 
2049 	if (is_multicast_ether_addr(hdr->addr1) &&
2050 	    sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2051 		return -1;
2052 
2053 	ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2054 	if (ret < 0)
2055 		return ret;
2056 
2057 	ehdr = (struct ethhdr *) rx->skb->data;
2058 	if (ehdr->h_proto == rx->sdata->control_port_protocol)
2059 		*port_control = true;
2060 	else if (check_port_control)
2061 		return -1;
2062 
2063 	return 0;
2064 }
2065 
2066 /*
2067  * requires that rx->skb is a frame with ethernet header
2068  */
2069 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2070 {
2071 	static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2072 		= { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2073 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2074 
2075 	/*
2076 	 * Allow EAPOL frames to us/the PAE group address regardless
2077 	 * of whether the frame was encrypted or not.
2078 	 */
2079 	if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2080 	    (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2081 	     ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2082 		return true;
2083 
2084 	if (ieee80211_802_1x_port_control(rx) ||
2085 	    ieee80211_drop_unencrypted(rx, fc))
2086 		return false;
2087 
2088 	return true;
2089 }
2090 
2091 /*
2092  * requires that rx->skb is a frame with ethernet header
2093  */
2094 static void
2095 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2096 {
2097 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2098 	struct net_device *dev = sdata->dev;
2099 	struct sk_buff *skb, *xmit_skb;
2100 	struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2101 	struct sta_info *dsta;
2102 
2103 	skb = rx->skb;
2104 	xmit_skb = NULL;
2105 
2106 	ieee80211_rx_stats(dev, skb->len);
2107 
2108 	if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2109 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2110 	    !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2111 	    (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2112 		if (is_multicast_ether_addr(ehdr->h_dest)) {
2113 			/*
2114 			 * send multicast frames both to higher layers in
2115 			 * local net stack and back to the wireless medium
2116 			 */
2117 			xmit_skb = skb_copy(skb, GFP_ATOMIC);
2118 			if (!xmit_skb)
2119 				net_info_ratelimited("%s: failed to clone multicast frame\n",
2120 						    dev->name);
2121 		} else {
2122 			dsta = sta_info_get(sdata, skb->data);
2123 			if (dsta) {
2124 				/*
2125 				 * The destination station is associated to
2126 				 * this AP (in this VLAN), so send the frame
2127 				 * directly to it and do not pass it to local
2128 				 * net stack.
2129 				 */
2130 				xmit_skb = skb;
2131 				skb = NULL;
2132 			}
2133 		}
2134 	}
2135 
2136 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2137 	if (skb) {
2138 		/* 'align' will only take the values 0 or 2 here since all
2139 		 * frames are required to be aligned to 2-byte boundaries
2140 		 * when being passed to mac80211; the code here works just
2141 		 * as well if that isn't true, but mac80211 assumes it can
2142 		 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2143 		 */
2144 		int align;
2145 
2146 		align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2147 		if (align) {
2148 			if (WARN_ON(skb_headroom(skb) < 3)) {
2149 				dev_kfree_skb(skb);
2150 				skb = NULL;
2151 			} else {
2152 				u8 *data = skb->data;
2153 				size_t len = skb_headlen(skb);
2154 				skb->data -= align;
2155 				memmove(skb->data, data, len);
2156 				skb_set_tail_pointer(skb, len);
2157 			}
2158 		}
2159 	}
2160 #endif
2161 
2162 	if (skb) {
2163 		/* deliver to local stack */
2164 		skb->protocol = eth_type_trans(skb, dev);
2165 		memset(skb->cb, 0, sizeof(skb->cb));
2166 		if (rx->napi)
2167 			napi_gro_receive(rx->napi, skb);
2168 		else
2169 			netif_receive_skb(skb);
2170 	}
2171 
2172 	if (xmit_skb) {
2173 		/*
2174 		 * Send to wireless media and increase priority by 256 to
2175 		 * keep the received priority instead of reclassifying
2176 		 * the frame (see cfg80211_classify8021d).
2177 		 */
2178 		xmit_skb->priority += 256;
2179 		xmit_skb->protocol = htons(ETH_P_802_3);
2180 		skb_reset_network_header(xmit_skb);
2181 		skb_reset_mac_header(xmit_skb);
2182 		dev_queue_xmit(xmit_skb);
2183 	}
2184 }
2185 
2186 static ieee80211_rx_result debug_noinline
2187 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2188 {
2189 	struct net_device *dev = rx->sdata->dev;
2190 	struct sk_buff *skb = rx->skb;
2191 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2192 	__le16 fc = hdr->frame_control;
2193 	struct sk_buff_head frame_list;
2194 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2195 
2196 	if (unlikely(!ieee80211_is_data(fc)))
2197 		return RX_CONTINUE;
2198 
2199 	if (unlikely(!ieee80211_is_data_present(fc)))
2200 		return RX_DROP_MONITOR;
2201 
2202 	if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2203 		return RX_CONTINUE;
2204 
2205 	if (ieee80211_has_a4(hdr->frame_control) &&
2206 	    rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2207 	    !rx->sdata->u.vlan.sta)
2208 		return RX_DROP_UNUSABLE;
2209 
2210 	if (is_multicast_ether_addr(hdr->addr1) &&
2211 	    ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2212 	      rx->sdata->u.vlan.sta) ||
2213 	     (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2214 	      rx->sdata->u.mgd.use_4addr)))
2215 		return RX_DROP_UNUSABLE;
2216 
2217 	skb->dev = dev;
2218 	__skb_queue_head_init(&frame_list);
2219 
2220 	if (skb_linearize(skb))
2221 		return RX_DROP_UNUSABLE;
2222 
2223 	ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2224 				 rx->sdata->vif.type,
2225 				 rx->local->hw.extra_tx_headroom, true);
2226 
2227 	while (!skb_queue_empty(&frame_list)) {
2228 		rx->skb = __skb_dequeue(&frame_list);
2229 
2230 		if (!ieee80211_frame_allowed(rx, fc)) {
2231 			dev_kfree_skb(rx->skb);
2232 			continue;
2233 		}
2234 
2235 		ieee80211_deliver_skb(rx);
2236 	}
2237 
2238 	return RX_QUEUED;
2239 }
2240 
2241 #ifdef CONFIG_MAC80211_MESH
2242 static ieee80211_rx_result
2243 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2244 {
2245 	struct ieee80211_hdr *fwd_hdr, *hdr;
2246 	struct ieee80211_tx_info *info;
2247 	struct ieee80211s_hdr *mesh_hdr;
2248 	struct sk_buff *skb = rx->skb, *fwd_skb;
2249 	struct ieee80211_local *local = rx->local;
2250 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2251 	struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2252 	u16 q, hdrlen;
2253 
2254 	hdr = (struct ieee80211_hdr *) skb->data;
2255 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
2256 
2257 	/* make sure fixed part of mesh header is there, also checks skb len */
2258 	if (!pskb_may_pull(rx->skb, hdrlen + 6))
2259 		return RX_DROP_MONITOR;
2260 
2261 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2262 
2263 	/* make sure full mesh header is there, also checks skb len */
2264 	if (!pskb_may_pull(rx->skb,
2265 			   hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2266 		return RX_DROP_MONITOR;
2267 
2268 	/* reload pointers */
2269 	hdr = (struct ieee80211_hdr *) skb->data;
2270 	mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2271 
2272 	if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2273 		return RX_DROP_MONITOR;
2274 
2275 	/* frame is in RMC, don't forward */
2276 	if (ieee80211_is_data(hdr->frame_control) &&
2277 	    is_multicast_ether_addr(hdr->addr1) &&
2278 	    mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2279 		return RX_DROP_MONITOR;
2280 
2281 	if (!ieee80211_is_data(hdr->frame_control))
2282 		return RX_CONTINUE;
2283 
2284 	if (!mesh_hdr->ttl)
2285 		return RX_DROP_MONITOR;
2286 
2287 	if (mesh_hdr->flags & MESH_FLAGS_AE) {
2288 		struct mesh_path *mppath;
2289 		char *proxied_addr;
2290 		char *mpp_addr;
2291 
2292 		if (is_multicast_ether_addr(hdr->addr1)) {
2293 			mpp_addr = hdr->addr3;
2294 			proxied_addr = mesh_hdr->eaddr1;
2295 		} else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2296 			/* has_a4 already checked in ieee80211_rx_mesh_check */
2297 			mpp_addr = hdr->addr4;
2298 			proxied_addr = mesh_hdr->eaddr2;
2299 		} else {
2300 			return RX_DROP_MONITOR;
2301 		}
2302 
2303 		rcu_read_lock();
2304 		mppath = mpp_path_lookup(sdata, proxied_addr);
2305 		if (!mppath) {
2306 			mpp_path_add(sdata, proxied_addr, mpp_addr);
2307 		} else {
2308 			spin_lock_bh(&mppath->state_lock);
2309 			if (!ether_addr_equal(mppath->mpp, mpp_addr))
2310 				memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2311 			spin_unlock_bh(&mppath->state_lock);
2312 		}
2313 		rcu_read_unlock();
2314 	}
2315 
2316 	/* Frame has reached destination.  Don't forward */
2317 	if (!is_multicast_ether_addr(hdr->addr1) &&
2318 	    ether_addr_equal(sdata->vif.addr, hdr->addr3))
2319 		return RX_CONTINUE;
2320 
2321 	q = ieee80211_select_queue_80211(sdata, skb, hdr);
2322 	if (ieee80211_queue_stopped(&local->hw, q)) {
2323 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2324 		return RX_DROP_MONITOR;
2325 	}
2326 	skb_set_queue_mapping(skb, q);
2327 
2328 	if (!--mesh_hdr->ttl) {
2329 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2330 		goto out;
2331 	}
2332 
2333 	if (!ifmsh->mshcfg.dot11MeshForwarding)
2334 		goto out;
2335 
2336 	fwd_skb = skb_copy(skb, GFP_ATOMIC);
2337 	if (!fwd_skb) {
2338 		net_info_ratelimited("%s: failed to clone mesh frame\n",
2339 				    sdata->name);
2340 		goto out;
2341 	}
2342 
2343 	fwd_hdr =  (struct ieee80211_hdr *) fwd_skb->data;
2344 	fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2345 	info = IEEE80211_SKB_CB(fwd_skb);
2346 	memset(info, 0, sizeof(*info));
2347 	info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2348 	info->control.vif = &rx->sdata->vif;
2349 	info->control.jiffies = jiffies;
2350 	if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2351 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2352 		memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2353 		/* update power mode indication when forwarding */
2354 		ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2355 	} else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2356 		/* mesh power mode flags updated in mesh_nexthop_lookup */
2357 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2358 	} else {
2359 		/* unable to resolve next hop */
2360 		mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2361 				   fwd_hdr->addr3, 0,
2362 				   WLAN_REASON_MESH_PATH_NOFORWARD,
2363 				   fwd_hdr->addr2);
2364 		IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2365 		kfree_skb(fwd_skb);
2366 		return RX_DROP_MONITOR;
2367 	}
2368 
2369 	IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2370 	ieee80211_add_pending_skb(local, fwd_skb);
2371  out:
2372 	if (is_multicast_ether_addr(hdr->addr1))
2373 		return RX_CONTINUE;
2374 	return RX_DROP_MONITOR;
2375 }
2376 #endif
2377 
2378 static ieee80211_rx_result debug_noinline
2379 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2380 {
2381 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2382 	struct ieee80211_local *local = rx->local;
2383 	struct net_device *dev = sdata->dev;
2384 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2385 	__le16 fc = hdr->frame_control;
2386 	bool port_control;
2387 	int err;
2388 
2389 	if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2390 		return RX_CONTINUE;
2391 
2392 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2393 		return RX_DROP_MONITOR;
2394 
2395 	if (rx->sta) {
2396 		/* The seqno index has the same property as needed
2397 		 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2398 		 * for non-QoS-data frames. Here we know it's a data
2399 		 * frame, so count MSDUs.
2400 		 */
2401 		rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2402 	}
2403 
2404 	/*
2405 	 * Send unexpected-4addr-frame event to hostapd. For older versions,
2406 	 * also drop the frame to cooked monitor interfaces.
2407 	 */
2408 	if (ieee80211_has_a4(hdr->frame_control) &&
2409 	    sdata->vif.type == NL80211_IFTYPE_AP) {
2410 		if (rx->sta &&
2411 		    !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2412 			cfg80211_rx_unexpected_4addr_frame(
2413 				rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2414 		return RX_DROP_MONITOR;
2415 	}
2416 
2417 	err = __ieee80211_data_to_8023(rx, &port_control);
2418 	if (unlikely(err))
2419 		return RX_DROP_UNUSABLE;
2420 
2421 	if (!ieee80211_frame_allowed(rx, fc))
2422 		return RX_DROP_MONITOR;
2423 
2424 	/* directly handle TDLS channel switch requests/responses */
2425 	if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2426 						cpu_to_be16(ETH_P_TDLS))) {
2427 		struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2428 
2429 		if (pskb_may_pull(rx->skb,
2430 				  offsetof(struct ieee80211_tdls_data, u)) &&
2431 		    tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2432 		    tf->category == WLAN_CATEGORY_TDLS &&
2433 		    (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2434 		     tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2435 			skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2436 			schedule_work(&local->tdls_chsw_work);
2437 			if (rx->sta)
2438 				rx->sta->rx_stats.packets++;
2439 
2440 			return RX_QUEUED;
2441 		}
2442 	}
2443 
2444 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2445 	    unlikely(port_control) && sdata->bss) {
2446 		sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2447 				     u.ap);
2448 		dev = sdata->dev;
2449 		rx->sdata = sdata;
2450 	}
2451 
2452 	rx->skb->dev = dev;
2453 
2454 	if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2455 	    !is_multicast_ether_addr(
2456 		    ((struct ethhdr *)rx->skb->data)->h_dest) &&
2457 	    (!local->scanning &&
2458 	     !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2459 			mod_timer(&local->dynamic_ps_timer, jiffies +
2460 			 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2461 	}
2462 
2463 	ieee80211_deliver_skb(rx);
2464 
2465 	return RX_QUEUED;
2466 }
2467 
2468 static ieee80211_rx_result debug_noinline
2469 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2470 {
2471 	struct sk_buff *skb = rx->skb;
2472 	struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2473 	struct tid_ampdu_rx *tid_agg_rx;
2474 	u16 start_seq_num;
2475 	u16 tid;
2476 
2477 	if (likely(!ieee80211_is_ctl(bar->frame_control)))
2478 		return RX_CONTINUE;
2479 
2480 	if (ieee80211_is_back_req(bar->frame_control)) {
2481 		struct {
2482 			__le16 control, start_seq_num;
2483 		} __packed bar_data;
2484 		struct ieee80211_event event = {
2485 			.type = BAR_RX_EVENT,
2486 		};
2487 
2488 		if (!rx->sta)
2489 			return RX_DROP_MONITOR;
2490 
2491 		if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2492 				  &bar_data, sizeof(bar_data)))
2493 			return RX_DROP_MONITOR;
2494 
2495 		tid = le16_to_cpu(bar_data.control) >> 12;
2496 
2497 		tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2498 		if (!tid_agg_rx)
2499 			return RX_DROP_MONITOR;
2500 
2501 		start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2502 		event.u.ba.tid = tid;
2503 		event.u.ba.ssn = start_seq_num;
2504 		event.u.ba.sta = &rx->sta->sta;
2505 
2506 		/* reset session timer */
2507 		if (tid_agg_rx->timeout)
2508 			mod_timer(&tid_agg_rx->session_timer,
2509 				  TU_TO_EXP_TIME(tid_agg_rx->timeout));
2510 
2511 		spin_lock(&tid_agg_rx->reorder_lock);
2512 		/* release stored frames up to start of BAR */
2513 		ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2514 						 start_seq_num, frames);
2515 		spin_unlock(&tid_agg_rx->reorder_lock);
2516 
2517 		drv_event_callback(rx->local, rx->sdata, &event);
2518 
2519 		kfree_skb(skb);
2520 		return RX_QUEUED;
2521 	}
2522 
2523 	/*
2524 	 * After this point, we only want management frames,
2525 	 * so we can drop all remaining control frames to
2526 	 * cooked monitor interfaces.
2527 	 */
2528 	return RX_DROP_MONITOR;
2529 }
2530 
2531 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2532 					   struct ieee80211_mgmt *mgmt,
2533 					   size_t len)
2534 {
2535 	struct ieee80211_local *local = sdata->local;
2536 	struct sk_buff *skb;
2537 	struct ieee80211_mgmt *resp;
2538 
2539 	if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2540 		/* Not to own unicast address */
2541 		return;
2542 	}
2543 
2544 	if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2545 	    !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2546 		/* Not from the current AP or not associated yet. */
2547 		return;
2548 	}
2549 
2550 	if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2551 		/* Too short SA Query request frame */
2552 		return;
2553 	}
2554 
2555 	skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2556 	if (skb == NULL)
2557 		return;
2558 
2559 	skb_reserve(skb, local->hw.extra_tx_headroom);
2560 	resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2561 	memset(resp, 0, 24);
2562 	memcpy(resp->da, mgmt->sa, ETH_ALEN);
2563 	memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2564 	memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2565 	resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2566 					  IEEE80211_STYPE_ACTION);
2567 	skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2568 	resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2569 	resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2570 	memcpy(resp->u.action.u.sa_query.trans_id,
2571 	       mgmt->u.action.u.sa_query.trans_id,
2572 	       WLAN_SA_QUERY_TR_ID_LEN);
2573 
2574 	ieee80211_tx_skb(sdata, skb);
2575 }
2576 
2577 static ieee80211_rx_result debug_noinline
2578 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2579 {
2580 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2581 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2582 
2583 	/*
2584 	 * From here on, look only at management frames.
2585 	 * Data and control frames are already handled,
2586 	 * and unknown (reserved) frames are useless.
2587 	 */
2588 	if (rx->skb->len < 24)
2589 		return RX_DROP_MONITOR;
2590 
2591 	if (!ieee80211_is_mgmt(mgmt->frame_control))
2592 		return RX_DROP_MONITOR;
2593 
2594 	if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2595 	    ieee80211_is_beacon(mgmt->frame_control) &&
2596 	    !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2597 		int sig = 0;
2598 
2599 		if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2600 			sig = status->signal;
2601 
2602 		cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2603 					    rx->skb->data, rx->skb->len,
2604 					    status->freq, sig);
2605 		rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2606 	}
2607 
2608 	if (ieee80211_drop_unencrypted_mgmt(rx))
2609 		return RX_DROP_UNUSABLE;
2610 
2611 	return RX_CONTINUE;
2612 }
2613 
2614 static ieee80211_rx_result debug_noinline
2615 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2616 {
2617 	struct ieee80211_local *local = rx->local;
2618 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2619 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2620 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2621 	int len = rx->skb->len;
2622 
2623 	if (!ieee80211_is_action(mgmt->frame_control))
2624 		return RX_CONTINUE;
2625 
2626 	/* drop too small frames */
2627 	if (len < IEEE80211_MIN_ACTION_SIZE)
2628 		return RX_DROP_UNUSABLE;
2629 
2630 	if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2631 	    mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2632 	    mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2633 		return RX_DROP_UNUSABLE;
2634 
2635 	switch (mgmt->u.action.category) {
2636 	case WLAN_CATEGORY_HT:
2637 		/* reject HT action frames from stations not supporting HT */
2638 		if (!rx->sta->sta.ht_cap.ht_supported)
2639 			goto invalid;
2640 
2641 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2642 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2643 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2644 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2645 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2646 			break;
2647 
2648 		/* verify action & smps_control/chanwidth are present */
2649 		if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2650 			goto invalid;
2651 
2652 		switch (mgmt->u.action.u.ht_smps.action) {
2653 		case WLAN_HT_ACTION_SMPS: {
2654 			struct ieee80211_supported_band *sband;
2655 			enum ieee80211_smps_mode smps_mode;
2656 
2657 			/* convert to HT capability */
2658 			switch (mgmt->u.action.u.ht_smps.smps_control) {
2659 			case WLAN_HT_SMPS_CONTROL_DISABLED:
2660 				smps_mode = IEEE80211_SMPS_OFF;
2661 				break;
2662 			case WLAN_HT_SMPS_CONTROL_STATIC:
2663 				smps_mode = IEEE80211_SMPS_STATIC;
2664 				break;
2665 			case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2666 				smps_mode = IEEE80211_SMPS_DYNAMIC;
2667 				break;
2668 			default:
2669 				goto invalid;
2670 			}
2671 
2672 			/* if no change do nothing */
2673 			if (rx->sta->sta.smps_mode == smps_mode)
2674 				goto handled;
2675 			rx->sta->sta.smps_mode = smps_mode;
2676 
2677 			sband = rx->local->hw.wiphy->bands[status->band];
2678 
2679 			rate_control_rate_update(local, sband, rx->sta,
2680 						 IEEE80211_RC_SMPS_CHANGED);
2681 			goto handled;
2682 		}
2683 		case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2684 			struct ieee80211_supported_band *sband;
2685 			u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2686 			enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
2687 
2688 			/* If it doesn't support 40 MHz it can't change ... */
2689 			if (!(rx->sta->sta.ht_cap.cap &
2690 					IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2691 				goto handled;
2692 
2693 			if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2694 				max_bw = IEEE80211_STA_RX_BW_20;
2695 			else
2696 				max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
2697 
2698 			/* set cur_max_bandwidth and recalc sta bw */
2699 			rx->sta->cur_max_bandwidth = max_bw;
2700 			new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2701 
2702 			if (rx->sta->sta.bandwidth == new_bw)
2703 				goto handled;
2704 
2705 			rx->sta->sta.bandwidth = new_bw;
2706 			sband = rx->local->hw.wiphy->bands[status->band];
2707 
2708 			rate_control_rate_update(local, sband, rx->sta,
2709 						 IEEE80211_RC_BW_CHANGED);
2710 			goto handled;
2711 		}
2712 		default:
2713 			goto invalid;
2714 		}
2715 
2716 		break;
2717 	case WLAN_CATEGORY_PUBLIC:
2718 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2719 			goto invalid;
2720 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
2721 			break;
2722 		if (!rx->sta)
2723 			break;
2724 		if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2725 			break;
2726 		if (mgmt->u.action.u.ext_chan_switch.action_code !=
2727 				WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2728 			break;
2729 		if (len < offsetof(struct ieee80211_mgmt,
2730 				   u.action.u.ext_chan_switch.variable))
2731 			goto invalid;
2732 		goto queue;
2733 	case WLAN_CATEGORY_VHT:
2734 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2735 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2736 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2737 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2738 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2739 			break;
2740 
2741 		/* verify action code is present */
2742 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2743 			goto invalid;
2744 
2745 		switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2746 		case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2747 			u8 opmode;
2748 
2749 			/* verify opmode is present */
2750 			if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2751 				goto invalid;
2752 
2753 			opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2754 
2755 			ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2756 						    opmode, status->band);
2757 			goto handled;
2758 		}
2759 		default:
2760 			break;
2761 		}
2762 		break;
2763 	case WLAN_CATEGORY_BACK:
2764 		if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2765 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2766 		    sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2767 		    sdata->vif.type != NL80211_IFTYPE_AP &&
2768 		    sdata->vif.type != NL80211_IFTYPE_ADHOC)
2769 			break;
2770 
2771 		/* verify action_code is present */
2772 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2773 			break;
2774 
2775 		switch (mgmt->u.action.u.addba_req.action_code) {
2776 		case WLAN_ACTION_ADDBA_REQ:
2777 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2778 				   sizeof(mgmt->u.action.u.addba_req)))
2779 				goto invalid;
2780 			break;
2781 		case WLAN_ACTION_ADDBA_RESP:
2782 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2783 				   sizeof(mgmt->u.action.u.addba_resp)))
2784 				goto invalid;
2785 			break;
2786 		case WLAN_ACTION_DELBA:
2787 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2788 				   sizeof(mgmt->u.action.u.delba)))
2789 				goto invalid;
2790 			break;
2791 		default:
2792 			goto invalid;
2793 		}
2794 
2795 		goto queue;
2796 	case WLAN_CATEGORY_SPECTRUM_MGMT:
2797 		/* verify action_code is present */
2798 		if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2799 			break;
2800 
2801 		switch (mgmt->u.action.u.measurement.action_code) {
2802 		case WLAN_ACTION_SPCT_MSR_REQ:
2803 			if (status->band != IEEE80211_BAND_5GHZ)
2804 				break;
2805 
2806 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2807 				   sizeof(mgmt->u.action.u.measurement)))
2808 				break;
2809 
2810 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2811 				break;
2812 
2813 			ieee80211_process_measurement_req(sdata, mgmt, len);
2814 			goto handled;
2815 		case WLAN_ACTION_SPCT_CHL_SWITCH: {
2816 			u8 *bssid;
2817 			if (len < (IEEE80211_MIN_ACTION_SIZE +
2818 				   sizeof(mgmt->u.action.u.chan_switch)))
2819 				break;
2820 
2821 			if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2822 			    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2823 			    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2824 				break;
2825 
2826 			if (sdata->vif.type == NL80211_IFTYPE_STATION)
2827 				bssid = sdata->u.mgd.bssid;
2828 			else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2829 				bssid = sdata->u.ibss.bssid;
2830 			else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2831 				bssid = mgmt->sa;
2832 			else
2833 				break;
2834 
2835 			if (!ether_addr_equal(mgmt->bssid, bssid))
2836 				break;
2837 
2838 			goto queue;
2839 			}
2840 		}
2841 		break;
2842 	case WLAN_CATEGORY_SA_QUERY:
2843 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2844 			   sizeof(mgmt->u.action.u.sa_query)))
2845 			break;
2846 
2847 		switch (mgmt->u.action.u.sa_query.action) {
2848 		case WLAN_ACTION_SA_QUERY_REQUEST:
2849 			if (sdata->vif.type != NL80211_IFTYPE_STATION)
2850 				break;
2851 			ieee80211_process_sa_query_req(sdata, mgmt, len);
2852 			goto handled;
2853 		}
2854 		break;
2855 	case WLAN_CATEGORY_SELF_PROTECTED:
2856 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2857 			   sizeof(mgmt->u.action.u.self_prot.action_code)))
2858 			break;
2859 
2860 		switch (mgmt->u.action.u.self_prot.action_code) {
2861 		case WLAN_SP_MESH_PEERING_OPEN:
2862 		case WLAN_SP_MESH_PEERING_CLOSE:
2863 		case WLAN_SP_MESH_PEERING_CONFIRM:
2864 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2865 				goto invalid;
2866 			if (sdata->u.mesh.user_mpm)
2867 				/* userspace handles this frame */
2868 				break;
2869 			goto queue;
2870 		case WLAN_SP_MGK_INFORM:
2871 		case WLAN_SP_MGK_ACK:
2872 			if (!ieee80211_vif_is_mesh(&sdata->vif))
2873 				goto invalid;
2874 			break;
2875 		}
2876 		break;
2877 	case WLAN_CATEGORY_MESH_ACTION:
2878 		if (len < (IEEE80211_MIN_ACTION_SIZE +
2879 			   sizeof(mgmt->u.action.u.mesh_action.action_code)))
2880 			break;
2881 
2882 		if (!ieee80211_vif_is_mesh(&sdata->vif))
2883 			break;
2884 		if (mesh_action_is_path_sel(mgmt) &&
2885 		    !mesh_path_sel_is_hwmp(sdata))
2886 			break;
2887 		goto queue;
2888 	}
2889 
2890 	return RX_CONTINUE;
2891 
2892  invalid:
2893 	status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2894 	/* will return in the next handlers */
2895 	return RX_CONTINUE;
2896 
2897  handled:
2898 	if (rx->sta)
2899 		rx->sta->rx_stats.packets++;
2900 	dev_kfree_skb(rx->skb);
2901 	return RX_QUEUED;
2902 
2903  queue:
2904 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2905 	skb_queue_tail(&sdata->skb_queue, rx->skb);
2906 	ieee80211_queue_work(&local->hw, &sdata->work);
2907 	if (rx->sta)
2908 		rx->sta->rx_stats.packets++;
2909 	return RX_QUEUED;
2910 }
2911 
2912 static ieee80211_rx_result debug_noinline
2913 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2914 {
2915 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2916 	int sig = 0;
2917 
2918 	/* skip known-bad action frames and return them in the next handler */
2919 	if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2920 		return RX_CONTINUE;
2921 
2922 	/*
2923 	 * Getting here means the kernel doesn't know how to handle
2924 	 * it, but maybe userspace does ... include returned frames
2925 	 * so userspace can register for those to know whether ones
2926 	 * it transmitted were processed or returned.
2927 	 */
2928 
2929 	if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM))
2930 		sig = status->signal;
2931 
2932 	if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2933 			     rx->skb->data, rx->skb->len, 0)) {
2934 		if (rx->sta)
2935 			rx->sta->rx_stats.packets++;
2936 		dev_kfree_skb(rx->skb);
2937 		return RX_QUEUED;
2938 	}
2939 
2940 	return RX_CONTINUE;
2941 }
2942 
2943 static ieee80211_rx_result debug_noinline
2944 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2945 {
2946 	struct ieee80211_local *local = rx->local;
2947 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2948 	struct sk_buff *nskb;
2949 	struct ieee80211_sub_if_data *sdata = rx->sdata;
2950 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2951 
2952 	if (!ieee80211_is_action(mgmt->frame_control))
2953 		return RX_CONTINUE;
2954 
2955 	/*
2956 	 * For AP mode, hostapd is responsible for handling any action
2957 	 * frames that we didn't handle, including returning unknown
2958 	 * ones. For all other modes we will return them to the sender,
2959 	 * setting the 0x80 bit in the action category, as required by
2960 	 * 802.11-2012 9.24.4.
2961 	 * Newer versions of hostapd shall also use the management frame
2962 	 * registration mechanisms, but older ones still use cooked
2963 	 * monitor interfaces so push all frames there.
2964 	 */
2965 	if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2966 	    (sdata->vif.type == NL80211_IFTYPE_AP ||
2967 	     sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2968 		return RX_DROP_MONITOR;
2969 
2970 	if (is_multicast_ether_addr(mgmt->da))
2971 		return RX_DROP_MONITOR;
2972 
2973 	/* do not return rejected action frames */
2974 	if (mgmt->u.action.category & 0x80)
2975 		return RX_DROP_UNUSABLE;
2976 
2977 	nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2978 			       GFP_ATOMIC);
2979 	if (nskb) {
2980 		struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2981 
2982 		nmgmt->u.action.category |= 0x80;
2983 		memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2984 		memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2985 
2986 		memset(nskb->cb, 0, sizeof(nskb->cb));
2987 
2988 		if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2989 			struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2990 
2991 			info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2992 				      IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2993 				      IEEE80211_TX_CTL_NO_CCK_RATE;
2994 			if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
2995 				info->hw_queue =
2996 					local->hw.offchannel_tx_hw_queue;
2997 		}
2998 
2999 		__ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3000 					    status->band);
3001 	}
3002 	dev_kfree_skb(rx->skb);
3003 	return RX_QUEUED;
3004 }
3005 
3006 static ieee80211_rx_result debug_noinline
3007 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3008 {
3009 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3010 	struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3011 	__le16 stype;
3012 
3013 	stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3014 
3015 	if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3016 	    sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3017 	    sdata->vif.type != NL80211_IFTYPE_OCB &&
3018 	    sdata->vif.type != NL80211_IFTYPE_STATION)
3019 		return RX_DROP_MONITOR;
3020 
3021 	switch (stype) {
3022 	case cpu_to_le16(IEEE80211_STYPE_AUTH):
3023 	case cpu_to_le16(IEEE80211_STYPE_BEACON):
3024 	case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3025 		/* process for all: mesh, mlme, ibss */
3026 		break;
3027 	case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3028 	case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3029 	case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3030 	case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3031 		if (is_multicast_ether_addr(mgmt->da) &&
3032 		    !is_broadcast_ether_addr(mgmt->da))
3033 			return RX_DROP_MONITOR;
3034 
3035 		/* process only for station */
3036 		if (sdata->vif.type != NL80211_IFTYPE_STATION)
3037 			return RX_DROP_MONITOR;
3038 		break;
3039 	case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3040 		/* process only for ibss and mesh */
3041 		if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3042 		    sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3043 			return RX_DROP_MONITOR;
3044 		break;
3045 	default:
3046 		return RX_DROP_MONITOR;
3047 	}
3048 
3049 	/* queue up frame and kick off work to process it */
3050 	rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
3051 	skb_queue_tail(&sdata->skb_queue, rx->skb);
3052 	ieee80211_queue_work(&rx->local->hw, &sdata->work);
3053 	if (rx->sta)
3054 		rx->sta->rx_stats.packets++;
3055 
3056 	return RX_QUEUED;
3057 }
3058 
3059 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3060 					struct ieee80211_rate *rate)
3061 {
3062 	struct ieee80211_sub_if_data *sdata;
3063 	struct ieee80211_local *local = rx->local;
3064 	struct sk_buff *skb = rx->skb, *skb2;
3065 	struct net_device *prev_dev = NULL;
3066 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3067 	int needed_headroom;
3068 
3069 	/*
3070 	 * If cooked monitor has been processed already, then
3071 	 * don't do it again. If not, set the flag.
3072 	 */
3073 	if (rx->flags & IEEE80211_RX_CMNTR)
3074 		goto out_free_skb;
3075 	rx->flags |= IEEE80211_RX_CMNTR;
3076 
3077 	/* If there are no cooked monitor interfaces, just free the SKB */
3078 	if (!local->cooked_mntrs)
3079 		goto out_free_skb;
3080 
3081 	/* vendor data is long removed here */
3082 	status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3083 	/* room for the radiotap header based on driver features */
3084 	needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3085 
3086 	if (skb_headroom(skb) < needed_headroom &&
3087 	    pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3088 		goto out_free_skb;
3089 
3090 	/* prepend radiotap information */
3091 	ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3092 					 false);
3093 
3094 	skb_set_mac_header(skb, 0);
3095 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3096 	skb->pkt_type = PACKET_OTHERHOST;
3097 	skb->protocol = htons(ETH_P_802_2);
3098 
3099 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3100 		if (!ieee80211_sdata_running(sdata))
3101 			continue;
3102 
3103 		if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3104 		    !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
3105 			continue;
3106 
3107 		if (prev_dev) {
3108 			skb2 = skb_clone(skb, GFP_ATOMIC);
3109 			if (skb2) {
3110 				skb2->dev = prev_dev;
3111 				netif_receive_skb(skb2);
3112 			}
3113 		}
3114 
3115 		prev_dev = sdata->dev;
3116 		ieee80211_rx_stats(sdata->dev, skb->len);
3117 	}
3118 
3119 	if (prev_dev) {
3120 		skb->dev = prev_dev;
3121 		netif_receive_skb(skb);
3122 		return;
3123 	}
3124 
3125  out_free_skb:
3126 	dev_kfree_skb(skb);
3127 }
3128 
3129 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3130 					 ieee80211_rx_result res)
3131 {
3132 	switch (res) {
3133 	case RX_DROP_MONITOR:
3134 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3135 		if (rx->sta)
3136 			rx->sta->rx_stats.dropped++;
3137 		/* fall through */
3138 	case RX_CONTINUE: {
3139 		struct ieee80211_rate *rate = NULL;
3140 		struct ieee80211_supported_band *sband;
3141 		struct ieee80211_rx_status *status;
3142 
3143 		status = IEEE80211_SKB_RXCB((rx->skb));
3144 
3145 		sband = rx->local->hw.wiphy->bands[status->band];
3146 		if (!(status->flag & RX_FLAG_HT) &&
3147 		    !(status->flag & RX_FLAG_VHT))
3148 			rate = &sband->bitrates[status->rate_idx];
3149 
3150 		ieee80211_rx_cooked_monitor(rx, rate);
3151 		break;
3152 		}
3153 	case RX_DROP_UNUSABLE:
3154 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3155 		if (rx->sta)
3156 			rx->sta->rx_stats.dropped++;
3157 		dev_kfree_skb(rx->skb);
3158 		break;
3159 	case RX_QUEUED:
3160 		I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3161 		break;
3162 	}
3163 }
3164 
3165 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3166 				  struct sk_buff_head *frames)
3167 {
3168 	ieee80211_rx_result res = RX_DROP_MONITOR;
3169 	struct sk_buff *skb;
3170 
3171 #define CALL_RXH(rxh)			\
3172 	do {				\
3173 		res = rxh(rx);		\
3174 		if (res != RX_CONTINUE)	\
3175 			goto rxh_next;  \
3176 	} while (0);
3177 
3178 	/* Lock here to avoid hitting all of the data used in the RX
3179 	 * path (e.g. key data, station data, ...) concurrently when
3180 	 * a frame is released from the reorder buffer due to timeout
3181 	 * from the timer, potentially concurrently with RX from the
3182 	 * driver.
3183 	 */
3184 	spin_lock_bh(&rx->local->rx_path_lock);
3185 
3186 	while ((skb = __skb_dequeue(frames))) {
3187 		/*
3188 		 * all the other fields are valid across frames
3189 		 * that belong to an aMPDU since they are on the
3190 		 * same TID from the same station
3191 		 */
3192 		rx->skb = skb;
3193 
3194 		CALL_RXH(ieee80211_rx_h_check_more_data)
3195 		CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
3196 		CALL_RXH(ieee80211_rx_h_sta_process)
3197 		CALL_RXH(ieee80211_rx_h_decrypt)
3198 		CALL_RXH(ieee80211_rx_h_defragment)
3199 		CALL_RXH(ieee80211_rx_h_michael_mic_verify)
3200 		/* must be after MMIC verify so header is counted in MPDU mic */
3201 #ifdef CONFIG_MAC80211_MESH
3202 		if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3203 			CALL_RXH(ieee80211_rx_h_mesh_fwding);
3204 #endif
3205 		CALL_RXH(ieee80211_rx_h_amsdu)
3206 		CALL_RXH(ieee80211_rx_h_data)
3207 
3208 		/* special treatment -- needs the queue */
3209 		res = ieee80211_rx_h_ctrl(rx, frames);
3210 		if (res != RX_CONTINUE)
3211 			goto rxh_next;
3212 
3213 		CALL_RXH(ieee80211_rx_h_mgmt_check)
3214 		CALL_RXH(ieee80211_rx_h_action)
3215 		CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3216 		CALL_RXH(ieee80211_rx_h_action_return)
3217 		CALL_RXH(ieee80211_rx_h_mgmt)
3218 
3219  rxh_next:
3220 		ieee80211_rx_handlers_result(rx, res);
3221 
3222 #undef CALL_RXH
3223 	}
3224 
3225 	spin_unlock_bh(&rx->local->rx_path_lock);
3226 }
3227 
3228 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3229 {
3230 	struct sk_buff_head reorder_release;
3231 	ieee80211_rx_result res = RX_DROP_MONITOR;
3232 
3233 	__skb_queue_head_init(&reorder_release);
3234 
3235 #define CALL_RXH(rxh)			\
3236 	do {				\
3237 		res = rxh(rx);		\
3238 		if (res != RX_CONTINUE)	\
3239 			goto rxh_next;  \
3240 	} while (0);
3241 
3242 	CALL_RXH(ieee80211_rx_h_check_dup)
3243 	CALL_RXH(ieee80211_rx_h_check)
3244 
3245 	ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3246 
3247 	ieee80211_rx_handlers(rx, &reorder_release);
3248 	return;
3249 
3250  rxh_next:
3251 	ieee80211_rx_handlers_result(rx, res);
3252 
3253 #undef CALL_RXH
3254 }
3255 
3256 /*
3257  * This function makes calls into the RX path, therefore
3258  * it has to be invoked under RCU read lock.
3259  */
3260 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3261 {
3262 	struct sk_buff_head frames;
3263 	struct ieee80211_rx_data rx = {
3264 		.sta = sta,
3265 		.sdata = sta->sdata,
3266 		.local = sta->local,
3267 		/* This is OK -- must be QoS data frame */
3268 		.security_idx = tid,
3269 		.seqno_idx = tid,
3270 		.napi = NULL, /* must be NULL to not have races */
3271 	};
3272 	struct tid_ampdu_rx *tid_agg_rx;
3273 
3274 	tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3275 	if (!tid_agg_rx)
3276 		return;
3277 
3278 	__skb_queue_head_init(&frames);
3279 
3280 	spin_lock(&tid_agg_rx->reorder_lock);
3281 	ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3282 	spin_unlock(&tid_agg_rx->reorder_lock);
3283 
3284 	if (!skb_queue_empty(&frames)) {
3285 		struct ieee80211_event event = {
3286 			.type = BA_FRAME_TIMEOUT,
3287 			.u.ba.tid = tid,
3288 			.u.ba.sta = &sta->sta,
3289 		};
3290 		drv_event_callback(rx.local, rx.sdata, &event);
3291 	}
3292 
3293 	ieee80211_rx_handlers(&rx, &frames);
3294 }
3295 
3296 /* main receive path */
3297 
3298 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3299 {
3300 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3301 	struct sk_buff *skb = rx->skb;
3302 	struct ieee80211_hdr *hdr = (void *)skb->data;
3303 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3304 	u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3305 	int multicast = is_multicast_ether_addr(hdr->addr1);
3306 
3307 	switch (sdata->vif.type) {
3308 	case NL80211_IFTYPE_STATION:
3309 		if (!bssid && !sdata->u.mgd.use_4addr)
3310 			return false;
3311 		if (multicast)
3312 			return true;
3313 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3314 	case NL80211_IFTYPE_ADHOC:
3315 		if (!bssid)
3316 			return false;
3317 		if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3318 		    ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3319 			return false;
3320 		if (ieee80211_is_beacon(hdr->frame_control))
3321 			return true;
3322 		if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3323 			return false;
3324 		if (!multicast &&
3325 		    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3326 			return false;
3327 		if (!rx->sta) {
3328 			int rate_idx;
3329 			if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3330 				rate_idx = 0; /* TODO: HT/VHT rates */
3331 			else
3332 				rate_idx = status->rate_idx;
3333 			ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3334 						 BIT(rate_idx));
3335 		}
3336 		return true;
3337 	case NL80211_IFTYPE_OCB:
3338 		if (!bssid)
3339 			return false;
3340 		if (!ieee80211_is_data_present(hdr->frame_control))
3341 			return false;
3342 		if (!is_broadcast_ether_addr(bssid))
3343 			return false;
3344 		if (!multicast &&
3345 		    !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3346 			return false;
3347 		if (!rx->sta) {
3348 			int rate_idx;
3349 			if (status->flag & RX_FLAG_HT)
3350 				rate_idx = 0; /* TODO: HT rates */
3351 			else
3352 				rate_idx = status->rate_idx;
3353 			ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3354 						BIT(rate_idx));
3355 		}
3356 		return true;
3357 	case NL80211_IFTYPE_MESH_POINT:
3358 		if (multicast)
3359 			return true;
3360 		return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3361 	case NL80211_IFTYPE_AP_VLAN:
3362 	case NL80211_IFTYPE_AP:
3363 		if (!bssid)
3364 			return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3365 
3366 		if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3367 			/*
3368 			 * Accept public action frames even when the
3369 			 * BSSID doesn't match, this is used for P2P
3370 			 * and location updates. Note that mac80211
3371 			 * itself never looks at these frames.
3372 			 */
3373 			if (!multicast &&
3374 			    !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3375 				return false;
3376 			if (ieee80211_is_public_action(hdr, skb->len))
3377 				return true;
3378 			return ieee80211_is_beacon(hdr->frame_control);
3379 		}
3380 
3381 		if (!ieee80211_has_tods(hdr->frame_control)) {
3382 			/* ignore data frames to TDLS-peers */
3383 			if (ieee80211_is_data(hdr->frame_control))
3384 				return false;
3385 			/* ignore action frames to TDLS-peers */
3386 			if (ieee80211_is_action(hdr->frame_control) &&
3387 			    !is_broadcast_ether_addr(bssid) &&
3388 			    !ether_addr_equal(bssid, hdr->addr1))
3389 				return false;
3390 		}
3391 		return true;
3392 	case NL80211_IFTYPE_WDS:
3393 		if (bssid || !ieee80211_is_data(hdr->frame_control))
3394 			return false;
3395 		return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3396 	case NL80211_IFTYPE_P2P_DEVICE:
3397 		return ieee80211_is_public_action(hdr, skb->len) ||
3398 		       ieee80211_is_probe_req(hdr->frame_control) ||
3399 		       ieee80211_is_probe_resp(hdr->frame_control) ||
3400 		       ieee80211_is_beacon(hdr->frame_control);
3401 	default:
3402 		break;
3403 	}
3404 
3405 	WARN_ON_ONCE(1);
3406 	return false;
3407 }
3408 
3409 /*
3410  * This function returns whether or not the SKB
3411  * was destined for RX processing or not, which,
3412  * if consume is true, is equivalent to whether
3413  * or not the skb was consumed.
3414  */
3415 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3416 					    struct sk_buff *skb, bool consume)
3417 {
3418 	struct ieee80211_local *local = rx->local;
3419 	struct ieee80211_sub_if_data *sdata = rx->sdata;
3420 
3421 	rx->skb = skb;
3422 
3423 	if (!ieee80211_accept_frame(rx))
3424 		return false;
3425 
3426 	if (!consume) {
3427 		skb = skb_copy(skb, GFP_ATOMIC);
3428 		if (!skb) {
3429 			if (net_ratelimit())
3430 				wiphy_debug(local->hw.wiphy,
3431 					"failed to copy skb for %s\n",
3432 					sdata->name);
3433 			return true;
3434 		}
3435 
3436 		rx->skb = skb;
3437 	}
3438 
3439 	ieee80211_invoke_rx_handlers(rx);
3440 	return true;
3441 }
3442 
3443 /*
3444  * This is the actual Rx frames handler. as it belongs to Rx path it must
3445  * be called with rcu_read_lock protection.
3446  */
3447 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3448 					 struct sk_buff *skb,
3449 					 struct napi_struct *napi)
3450 {
3451 	struct ieee80211_local *local = hw_to_local(hw);
3452 	struct ieee80211_sub_if_data *sdata;
3453 	struct ieee80211_hdr *hdr;
3454 	__le16 fc;
3455 	struct ieee80211_rx_data rx;
3456 	struct ieee80211_sub_if_data *prev;
3457 	struct sta_info *sta, *prev_sta;
3458 	struct rhash_head *tmp;
3459 	int err = 0;
3460 
3461 	fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3462 	memset(&rx, 0, sizeof(rx));
3463 	rx.skb = skb;
3464 	rx.local = local;
3465 	rx.napi = napi;
3466 
3467 	if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3468 		I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
3469 
3470 	if (ieee80211_is_mgmt(fc)) {
3471 		/* drop frame if too short for header */
3472 		if (skb->len < ieee80211_hdrlen(fc))
3473 			err = -ENOBUFS;
3474 		else
3475 			err = skb_linearize(skb);
3476 	} else {
3477 		err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3478 	}
3479 
3480 	if (err) {
3481 		dev_kfree_skb(skb);
3482 		return;
3483 	}
3484 
3485 	hdr = (struct ieee80211_hdr *)skb->data;
3486 	ieee80211_parse_qos(&rx);
3487 	ieee80211_verify_alignment(&rx);
3488 
3489 	if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3490 		     ieee80211_is_beacon(hdr->frame_control)))
3491 		ieee80211_scan_rx(local, skb);
3492 
3493 	if (ieee80211_is_data(fc)) {
3494 		const struct bucket_table *tbl;
3495 
3496 		prev_sta = NULL;
3497 
3498 		tbl = rht_dereference_rcu(local->sta_hash.tbl, &local->sta_hash);
3499 
3500 		for_each_sta_info(local, tbl, hdr->addr2, sta, tmp) {
3501 			if (!prev_sta) {
3502 				prev_sta = sta;
3503 				continue;
3504 			}
3505 
3506 			rx.sta = prev_sta;
3507 			rx.sdata = prev_sta->sdata;
3508 			ieee80211_prepare_and_rx_handle(&rx, skb, false);
3509 
3510 			prev_sta = sta;
3511 		}
3512 
3513 		if (prev_sta) {
3514 			rx.sta = prev_sta;
3515 			rx.sdata = prev_sta->sdata;
3516 
3517 			if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3518 				return;
3519 			goto out;
3520 		}
3521 	}
3522 
3523 	prev = NULL;
3524 
3525 	list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3526 		if (!ieee80211_sdata_running(sdata))
3527 			continue;
3528 
3529 		if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3530 		    sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3531 			continue;
3532 
3533 		/*
3534 		 * frame is destined for this interface, but if it's
3535 		 * not also for the previous one we handle that after
3536 		 * the loop to avoid copying the SKB once too much
3537 		 */
3538 
3539 		if (!prev) {
3540 			prev = sdata;
3541 			continue;
3542 		}
3543 
3544 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3545 		rx.sdata = prev;
3546 		ieee80211_prepare_and_rx_handle(&rx, skb, false);
3547 
3548 		prev = sdata;
3549 	}
3550 
3551 	if (prev) {
3552 		rx.sta = sta_info_get_bss(prev, hdr->addr2);
3553 		rx.sdata = prev;
3554 
3555 		if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3556 			return;
3557 	}
3558 
3559  out:
3560 	dev_kfree_skb(skb);
3561 }
3562 
3563 /*
3564  * This is the receive path handler. It is called by a low level driver when an
3565  * 802.11 MPDU is received from the hardware.
3566  */
3567 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct sk_buff *skb,
3568 		       struct napi_struct *napi)
3569 {
3570 	struct ieee80211_local *local = hw_to_local(hw);
3571 	struct ieee80211_rate *rate = NULL;
3572 	struct ieee80211_supported_band *sband;
3573 	struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3574 
3575 	WARN_ON_ONCE(softirq_count() == 0);
3576 
3577 	if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3578 		goto drop;
3579 
3580 	sband = local->hw.wiphy->bands[status->band];
3581 	if (WARN_ON(!sband))
3582 		goto drop;
3583 
3584 	/*
3585 	 * If we're suspending, it is possible although not too likely
3586 	 * that we'd be receiving frames after having already partially
3587 	 * quiesced the stack. We can't process such frames then since
3588 	 * that might, for example, cause stations to be added or other
3589 	 * driver callbacks be invoked.
3590 	 */
3591 	if (unlikely(local->quiescing || local->suspended))
3592 		goto drop;
3593 
3594 	/* We might be during a HW reconfig, prevent Rx for the same reason */
3595 	if (unlikely(local->in_reconfig))
3596 		goto drop;
3597 
3598 	/*
3599 	 * The same happens when we're not even started,
3600 	 * but that's worth a warning.
3601 	 */
3602 	if (WARN_ON(!local->started))
3603 		goto drop;
3604 
3605 	if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3606 		/*
3607 		 * Validate the rate, unless a PLCP error means that
3608 		 * we probably can't have a valid rate here anyway.
3609 		 */
3610 
3611 		if (status->flag & RX_FLAG_HT) {
3612 			/*
3613 			 * rate_idx is MCS index, which can be [0-76]
3614 			 * as documented on:
3615 			 *
3616 			 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3617 			 *
3618 			 * Anything else would be some sort of driver or
3619 			 * hardware error. The driver should catch hardware
3620 			 * errors.
3621 			 */
3622 			if (WARN(status->rate_idx > 76,
3623 				 "Rate marked as an HT rate but passed "
3624 				 "status->rate_idx is not "
3625 				 "an MCS index [0-76]: %d (0x%02x)\n",
3626 				 status->rate_idx,
3627 				 status->rate_idx))
3628 				goto drop;
3629 		} else if (status->flag & RX_FLAG_VHT) {
3630 			if (WARN_ONCE(status->rate_idx > 9 ||
3631 				      !status->vht_nss ||
3632 				      status->vht_nss > 8,
3633 				      "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3634 				      status->rate_idx, status->vht_nss))
3635 				goto drop;
3636 		} else {
3637 			if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3638 				goto drop;
3639 			rate = &sband->bitrates[status->rate_idx];
3640 		}
3641 	}
3642 
3643 	status->rx_flags = 0;
3644 
3645 	/*
3646 	 * key references and virtual interfaces are protected using RCU
3647 	 * and this requires that we are in a read-side RCU section during
3648 	 * receive processing
3649 	 */
3650 	rcu_read_lock();
3651 
3652 	/*
3653 	 * Frames with failed FCS/PLCP checksum are not returned,
3654 	 * all other frames are returned without radiotap header
3655 	 * if it was previously present.
3656 	 * Also, frames with less than 16 bytes are dropped.
3657 	 */
3658 	skb = ieee80211_rx_monitor(local, skb, rate);
3659 	if (!skb) {
3660 		rcu_read_unlock();
3661 		return;
3662 	}
3663 
3664 	ieee80211_tpt_led_trig_rx(local,
3665 			((struct ieee80211_hdr *)skb->data)->frame_control,
3666 			skb->len);
3667 	__ieee80211_rx_handle_packet(hw, skb, napi);
3668 
3669 	rcu_read_unlock();
3670 
3671 	return;
3672  drop:
3673 	kfree_skb(skb);
3674 }
3675 EXPORT_SYMBOL(ieee80211_rx_napi);
3676 
3677 /* This is a version of the rx handler that can be called from hard irq
3678  * context. Post the skb on the queue and schedule the tasklet */
3679 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3680 {
3681 	struct ieee80211_local *local = hw_to_local(hw);
3682 
3683 	BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3684 
3685 	skb->pkt_type = IEEE80211_RX_MSG;
3686 	skb_queue_tail(&local->skb_queue, skb);
3687 	tasklet_schedule(&local->tasklet);
3688 }
3689 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
3690