xref: /linux/net/ipv6/ip6_fib.c (revision b68fc09be48edbc47de1a0f3d42ef8adf6c0ac55)
1 /*
2  *	Linux INET6 implementation
3  *	Forwarding Information Database
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Changes:
14  *	Yuji SEKIYA @USAGI:	Support default route on router node;
15  *				remove ip6_null_entry from the top of
16  *				routing table.
17  *	Ville Nuorvala:		Fixed routing subtrees.
18  */
19 
20 #define pr_fmt(fmt) "IPv6: " fmt
21 
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 
32 #include <net/ip.h>
33 #include <net/ipv6.h>
34 #include <net/ndisc.h>
35 #include <net/addrconf.h>
36 #include <net/lwtunnel.h>
37 #include <net/fib_notifier.h>
38 
39 #include <net/ip6_fib.h>
40 #include <net/ip6_route.h>
41 
42 static struct kmem_cache *fib6_node_kmem __read_mostly;
43 
44 struct fib6_cleaner {
45 	struct fib6_walker w;
46 	struct net *net;
47 	int (*func)(struct fib6_info *, void *arg);
48 	int sernum;
49 	void *arg;
50 };
51 
52 #ifdef CONFIG_IPV6_SUBTREES
53 #define FWS_INIT FWS_S
54 #else
55 #define FWS_INIT FWS_L
56 #endif
57 
58 static struct fib6_info *fib6_find_prefix(struct net *net,
59 					 struct fib6_table *table,
60 					 struct fib6_node *fn);
61 static struct fib6_node *fib6_repair_tree(struct net *net,
62 					  struct fib6_table *table,
63 					  struct fib6_node *fn);
64 static int fib6_walk(struct net *net, struct fib6_walker *w);
65 static int fib6_walk_continue(struct fib6_walker *w);
66 
67 /*
68  *	A routing update causes an increase of the serial number on the
69  *	affected subtree. This allows for cached routes to be asynchronously
70  *	tested when modifications are made to the destination cache as a
71  *	result of redirects, path MTU changes, etc.
72  */
73 
74 static void fib6_gc_timer_cb(struct timer_list *t);
75 
76 #define FOR_WALKERS(net, w) \
77 	list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
78 
79 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
80 {
81 	write_lock_bh(&net->ipv6.fib6_walker_lock);
82 	list_add(&w->lh, &net->ipv6.fib6_walkers);
83 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
84 }
85 
86 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
87 {
88 	write_lock_bh(&net->ipv6.fib6_walker_lock);
89 	list_del(&w->lh);
90 	write_unlock_bh(&net->ipv6.fib6_walker_lock);
91 }
92 
93 static int fib6_new_sernum(struct net *net)
94 {
95 	int new, old;
96 
97 	do {
98 		old = atomic_read(&net->ipv6.fib6_sernum);
99 		new = old < INT_MAX ? old + 1 : 1;
100 	} while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
101 				old, new) != old);
102 	return new;
103 }
104 
105 enum {
106 	FIB6_NO_SERNUM_CHANGE = 0,
107 };
108 
109 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
110 {
111 	struct fib6_node *fn;
112 
113 	fn = rcu_dereference_protected(f6i->fib6_node,
114 			lockdep_is_held(&f6i->fib6_table->tb6_lock));
115 	if (fn)
116 		fn->fn_sernum = fib6_new_sernum(net);
117 }
118 
119 /*
120  *	Auxiliary address test functions for the radix tree.
121  *
122  *	These assume a 32bit processor (although it will work on
123  *	64bit processors)
124  */
125 
126 /*
127  *	test bit
128  */
129 #if defined(__LITTLE_ENDIAN)
130 # define BITOP_BE32_SWIZZLE	(0x1F & ~7)
131 #else
132 # define BITOP_BE32_SWIZZLE	0
133 #endif
134 
135 static __be32 addr_bit_set(const void *token, int fn_bit)
136 {
137 	const __be32 *addr = token;
138 	/*
139 	 * Here,
140 	 *	1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
141 	 * is optimized version of
142 	 *	htonl(1 << ((~fn_bit)&0x1F))
143 	 * See include/asm-generic/bitops/le.h.
144 	 */
145 	return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
146 	       addr[fn_bit >> 5];
147 }
148 
149 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags)
150 {
151 	struct fib6_info *f6i;
152 
153 	f6i = kzalloc(sizeof(*f6i), gfp_flags);
154 	if (!f6i)
155 		return NULL;
156 
157 	f6i->rt6i_pcpu = alloc_percpu_gfp(struct rt6_info *, gfp_flags);
158 	if (!f6i->rt6i_pcpu) {
159 		kfree(f6i);
160 		return NULL;
161 	}
162 
163 	INIT_LIST_HEAD(&f6i->fib6_siblings);
164 	atomic_inc(&f6i->fib6_ref);
165 
166 	return f6i;
167 }
168 
169 void fib6_info_destroy_rcu(struct rcu_head *head)
170 {
171 	struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
172 	struct rt6_exception_bucket *bucket;
173 
174 	WARN_ON(f6i->fib6_node);
175 
176 	bucket = rcu_dereference_protected(f6i->rt6i_exception_bucket, 1);
177 	if (bucket) {
178 		f6i->rt6i_exception_bucket = NULL;
179 		kfree(bucket);
180 	}
181 
182 	if (f6i->rt6i_pcpu) {
183 		int cpu;
184 
185 		for_each_possible_cpu(cpu) {
186 			struct rt6_info **ppcpu_rt;
187 			struct rt6_info *pcpu_rt;
188 
189 			ppcpu_rt = per_cpu_ptr(f6i->rt6i_pcpu, cpu);
190 			pcpu_rt = *ppcpu_rt;
191 			if (pcpu_rt) {
192 				dst_dev_put(&pcpu_rt->dst);
193 				dst_release(&pcpu_rt->dst);
194 				*ppcpu_rt = NULL;
195 			}
196 		}
197 	}
198 
199 	lwtstate_put(f6i->fib6_nh.nh_lwtstate);
200 
201 	if (f6i->fib6_nh.nh_dev)
202 		dev_put(f6i->fib6_nh.nh_dev);
203 
204 	ip_fib_metrics_put(f6i->fib6_metrics);
205 
206 	kfree(f6i);
207 }
208 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
209 
210 static struct fib6_node *node_alloc(struct net *net)
211 {
212 	struct fib6_node *fn;
213 
214 	fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
215 	if (fn)
216 		net->ipv6.rt6_stats->fib_nodes++;
217 
218 	return fn;
219 }
220 
221 static void node_free_immediate(struct net *net, struct fib6_node *fn)
222 {
223 	kmem_cache_free(fib6_node_kmem, fn);
224 	net->ipv6.rt6_stats->fib_nodes--;
225 }
226 
227 static void node_free_rcu(struct rcu_head *head)
228 {
229 	struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
230 
231 	kmem_cache_free(fib6_node_kmem, fn);
232 }
233 
234 static void node_free(struct net *net, struct fib6_node *fn)
235 {
236 	call_rcu(&fn->rcu, node_free_rcu);
237 	net->ipv6.rt6_stats->fib_nodes--;
238 }
239 
240 static void fib6_free_table(struct fib6_table *table)
241 {
242 	inetpeer_invalidate_tree(&table->tb6_peers);
243 	kfree(table);
244 }
245 
246 static void fib6_link_table(struct net *net, struct fib6_table *tb)
247 {
248 	unsigned int h;
249 
250 	/*
251 	 * Initialize table lock at a single place to give lockdep a key,
252 	 * tables aren't visible prior to being linked to the list.
253 	 */
254 	spin_lock_init(&tb->tb6_lock);
255 	h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
256 
257 	/*
258 	 * No protection necessary, this is the only list mutatation
259 	 * operation, tables never disappear once they exist.
260 	 */
261 	hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
262 }
263 
264 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
265 
266 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
267 {
268 	struct fib6_table *table;
269 
270 	table = kzalloc(sizeof(*table), GFP_ATOMIC);
271 	if (table) {
272 		table->tb6_id = id;
273 		rcu_assign_pointer(table->tb6_root.leaf,
274 				   net->ipv6.fib6_null_entry);
275 		table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
276 		inet_peer_base_init(&table->tb6_peers);
277 	}
278 
279 	return table;
280 }
281 
282 struct fib6_table *fib6_new_table(struct net *net, u32 id)
283 {
284 	struct fib6_table *tb;
285 
286 	if (id == 0)
287 		id = RT6_TABLE_MAIN;
288 	tb = fib6_get_table(net, id);
289 	if (tb)
290 		return tb;
291 
292 	tb = fib6_alloc_table(net, id);
293 	if (tb)
294 		fib6_link_table(net, tb);
295 
296 	return tb;
297 }
298 EXPORT_SYMBOL_GPL(fib6_new_table);
299 
300 struct fib6_table *fib6_get_table(struct net *net, u32 id)
301 {
302 	struct fib6_table *tb;
303 	struct hlist_head *head;
304 	unsigned int h;
305 
306 	if (id == 0)
307 		id = RT6_TABLE_MAIN;
308 	h = id & (FIB6_TABLE_HASHSZ - 1);
309 	rcu_read_lock();
310 	head = &net->ipv6.fib_table_hash[h];
311 	hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
312 		if (tb->tb6_id == id) {
313 			rcu_read_unlock();
314 			return tb;
315 		}
316 	}
317 	rcu_read_unlock();
318 
319 	return NULL;
320 }
321 EXPORT_SYMBOL_GPL(fib6_get_table);
322 
323 static void __net_init fib6_tables_init(struct net *net)
324 {
325 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
326 	fib6_link_table(net, net->ipv6.fib6_local_tbl);
327 }
328 #else
329 
330 struct fib6_table *fib6_new_table(struct net *net, u32 id)
331 {
332 	return fib6_get_table(net, id);
333 }
334 
335 struct fib6_table *fib6_get_table(struct net *net, u32 id)
336 {
337 	  return net->ipv6.fib6_main_tbl;
338 }
339 
340 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
341 				   const struct sk_buff *skb,
342 				   int flags, pol_lookup_t lookup)
343 {
344 	struct rt6_info *rt;
345 
346 	rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
347 	if (rt->dst.error == -EAGAIN) {
348 		ip6_rt_put(rt);
349 		rt = net->ipv6.ip6_null_entry;
350 		dst_hold(&rt->dst);
351 	}
352 
353 	return &rt->dst;
354 }
355 
356 /* called with rcu lock held; no reference taken on fib6_info */
357 struct fib6_info *fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
358 			      int flags)
359 {
360 	return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6, flags);
361 }
362 
363 static void __net_init fib6_tables_init(struct net *net)
364 {
365 	fib6_link_table(net, net->ipv6.fib6_main_tbl);
366 }
367 
368 #endif
369 
370 unsigned int fib6_tables_seq_read(struct net *net)
371 {
372 	unsigned int h, fib_seq = 0;
373 
374 	rcu_read_lock();
375 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
376 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
377 		struct fib6_table *tb;
378 
379 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
380 			fib_seq += tb->fib_seq;
381 	}
382 	rcu_read_unlock();
383 
384 	return fib_seq;
385 }
386 
387 static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net,
388 				    enum fib_event_type event_type,
389 				    struct fib6_info *rt)
390 {
391 	struct fib6_entry_notifier_info info = {
392 		.rt = rt,
393 	};
394 
395 	return call_fib6_notifier(nb, net, event_type, &info.info);
396 }
397 
398 static int call_fib6_entry_notifiers(struct net *net,
399 				     enum fib_event_type event_type,
400 				     struct fib6_info *rt,
401 				     struct netlink_ext_ack *extack)
402 {
403 	struct fib6_entry_notifier_info info = {
404 		.info.extack = extack,
405 		.rt = rt,
406 	};
407 
408 	rt->fib6_table->fib_seq++;
409 	return call_fib6_notifiers(net, event_type, &info.info);
410 }
411 
412 struct fib6_dump_arg {
413 	struct net *net;
414 	struct notifier_block *nb;
415 };
416 
417 static void fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
418 {
419 	if (rt == arg->net->ipv6.fib6_null_entry)
420 		return;
421 	call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt);
422 }
423 
424 static int fib6_node_dump(struct fib6_walker *w)
425 {
426 	struct fib6_info *rt;
427 
428 	for_each_fib6_walker_rt(w)
429 		fib6_rt_dump(rt, w->args);
430 	w->leaf = NULL;
431 	return 0;
432 }
433 
434 static void fib6_table_dump(struct net *net, struct fib6_table *tb,
435 			    struct fib6_walker *w)
436 {
437 	w->root = &tb->tb6_root;
438 	spin_lock_bh(&tb->tb6_lock);
439 	fib6_walk(net, w);
440 	spin_unlock_bh(&tb->tb6_lock);
441 }
442 
443 /* Called with rcu_read_lock() */
444 int fib6_tables_dump(struct net *net, struct notifier_block *nb)
445 {
446 	struct fib6_dump_arg arg;
447 	struct fib6_walker *w;
448 	unsigned int h;
449 
450 	w = kzalloc(sizeof(*w), GFP_ATOMIC);
451 	if (!w)
452 		return -ENOMEM;
453 
454 	w->func = fib6_node_dump;
455 	arg.net = net;
456 	arg.nb = nb;
457 	w->args = &arg;
458 
459 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
460 		struct hlist_head *head = &net->ipv6.fib_table_hash[h];
461 		struct fib6_table *tb;
462 
463 		hlist_for_each_entry_rcu(tb, head, tb6_hlist)
464 			fib6_table_dump(net, tb, w);
465 	}
466 
467 	kfree(w);
468 
469 	return 0;
470 }
471 
472 static int fib6_dump_node(struct fib6_walker *w)
473 {
474 	int res;
475 	struct fib6_info *rt;
476 
477 	for_each_fib6_walker_rt(w) {
478 		res = rt6_dump_route(rt, w->args);
479 		if (res < 0) {
480 			/* Frame is full, suspend walking */
481 			w->leaf = rt;
482 			return 1;
483 		}
484 
485 		/* Multipath routes are dumped in one route with the
486 		 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
487 		 * last sibling of this route (no need to dump the
488 		 * sibling routes again)
489 		 */
490 		if (rt->fib6_nsiblings)
491 			rt = list_last_entry(&rt->fib6_siblings,
492 					     struct fib6_info,
493 					     fib6_siblings);
494 	}
495 	w->leaf = NULL;
496 	return 0;
497 }
498 
499 static void fib6_dump_end(struct netlink_callback *cb)
500 {
501 	struct net *net = sock_net(cb->skb->sk);
502 	struct fib6_walker *w = (void *)cb->args[2];
503 
504 	if (w) {
505 		if (cb->args[4]) {
506 			cb->args[4] = 0;
507 			fib6_walker_unlink(net, w);
508 		}
509 		cb->args[2] = 0;
510 		kfree(w);
511 	}
512 	cb->done = (void *)cb->args[3];
513 	cb->args[1] = 3;
514 }
515 
516 static int fib6_dump_done(struct netlink_callback *cb)
517 {
518 	fib6_dump_end(cb);
519 	return cb->done ? cb->done(cb) : 0;
520 }
521 
522 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
523 			   struct netlink_callback *cb)
524 {
525 	struct net *net = sock_net(skb->sk);
526 	struct fib6_walker *w;
527 	int res;
528 
529 	w = (void *)cb->args[2];
530 	w->root = &table->tb6_root;
531 
532 	if (cb->args[4] == 0) {
533 		w->count = 0;
534 		w->skip = 0;
535 
536 		spin_lock_bh(&table->tb6_lock);
537 		res = fib6_walk(net, w);
538 		spin_unlock_bh(&table->tb6_lock);
539 		if (res > 0) {
540 			cb->args[4] = 1;
541 			cb->args[5] = w->root->fn_sernum;
542 		}
543 	} else {
544 		if (cb->args[5] != w->root->fn_sernum) {
545 			/* Begin at the root if the tree changed */
546 			cb->args[5] = w->root->fn_sernum;
547 			w->state = FWS_INIT;
548 			w->node = w->root;
549 			w->skip = w->count;
550 		} else
551 			w->skip = 0;
552 
553 		spin_lock_bh(&table->tb6_lock);
554 		res = fib6_walk_continue(w);
555 		spin_unlock_bh(&table->tb6_lock);
556 		if (res <= 0) {
557 			fib6_walker_unlink(net, w);
558 			cb->args[4] = 0;
559 		}
560 	}
561 
562 	return res;
563 }
564 
565 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
566 {
567 	struct net *net = sock_net(skb->sk);
568 	unsigned int h, s_h;
569 	unsigned int e = 0, s_e;
570 	struct rt6_rtnl_dump_arg arg;
571 	struct fib6_walker *w;
572 	struct fib6_table *tb;
573 	struct hlist_head *head;
574 	int res = 0;
575 
576 	s_h = cb->args[0];
577 	s_e = cb->args[1];
578 
579 	w = (void *)cb->args[2];
580 	if (!w) {
581 		/* New dump:
582 		 *
583 		 * 1. hook callback destructor.
584 		 */
585 		cb->args[3] = (long)cb->done;
586 		cb->done = fib6_dump_done;
587 
588 		/*
589 		 * 2. allocate and initialize walker.
590 		 */
591 		w = kzalloc(sizeof(*w), GFP_ATOMIC);
592 		if (!w)
593 			return -ENOMEM;
594 		w->func = fib6_dump_node;
595 		cb->args[2] = (long)w;
596 	}
597 
598 	arg.skb = skb;
599 	arg.cb = cb;
600 	arg.net = net;
601 	w->args = &arg;
602 
603 	rcu_read_lock();
604 	for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
605 		e = 0;
606 		head = &net->ipv6.fib_table_hash[h];
607 		hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
608 			if (e < s_e)
609 				goto next;
610 			res = fib6_dump_table(tb, skb, cb);
611 			if (res != 0)
612 				goto out;
613 next:
614 			e++;
615 		}
616 	}
617 out:
618 	rcu_read_unlock();
619 	cb->args[1] = e;
620 	cb->args[0] = h;
621 
622 	res = res < 0 ? res : skb->len;
623 	if (res <= 0)
624 		fib6_dump_end(cb);
625 	return res;
626 }
627 
628 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
629 {
630 	if (!f6i)
631 		return;
632 
633 	if (f6i->fib6_metrics == &dst_default_metrics) {
634 		struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
635 
636 		if (!p)
637 			return;
638 
639 		refcount_set(&p->refcnt, 1);
640 		f6i->fib6_metrics = p;
641 	}
642 
643 	f6i->fib6_metrics->metrics[metric - 1] = val;
644 }
645 
646 /*
647  *	Routing Table
648  *
649  *	return the appropriate node for a routing tree "add" operation
650  *	by either creating and inserting or by returning an existing
651  *	node.
652  */
653 
654 static struct fib6_node *fib6_add_1(struct net *net,
655 				    struct fib6_table *table,
656 				    struct fib6_node *root,
657 				    struct in6_addr *addr, int plen,
658 				    int offset, int allow_create,
659 				    int replace_required,
660 				    struct netlink_ext_ack *extack)
661 {
662 	struct fib6_node *fn, *in, *ln;
663 	struct fib6_node *pn = NULL;
664 	struct rt6key *key;
665 	int	bit;
666 	__be32	dir = 0;
667 
668 	RT6_TRACE("fib6_add_1\n");
669 
670 	/* insert node in tree */
671 
672 	fn = root;
673 
674 	do {
675 		struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
676 					    lockdep_is_held(&table->tb6_lock));
677 		key = (struct rt6key *)((u8 *)leaf + offset);
678 
679 		/*
680 		 *	Prefix match
681 		 */
682 		if (plen < fn->fn_bit ||
683 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
684 			if (!allow_create) {
685 				if (replace_required) {
686 					NL_SET_ERR_MSG(extack,
687 						       "Can not replace route - no match found");
688 					pr_warn("Can't replace route, no match found\n");
689 					return ERR_PTR(-ENOENT);
690 				}
691 				pr_warn("NLM_F_CREATE should be set when creating new route\n");
692 			}
693 			goto insert_above;
694 		}
695 
696 		/*
697 		 *	Exact match ?
698 		 */
699 
700 		if (plen == fn->fn_bit) {
701 			/* clean up an intermediate node */
702 			if (!(fn->fn_flags & RTN_RTINFO)) {
703 				RCU_INIT_POINTER(fn->leaf, NULL);
704 				fib6_info_release(leaf);
705 			/* remove null_entry in the root node */
706 			} else if (fn->fn_flags & RTN_TL_ROOT &&
707 				   rcu_access_pointer(fn->leaf) ==
708 				   net->ipv6.fib6_null_entry) {
709 				RCU_INIT_POINTER(fn->leaf, NULL);
710 			}
711 
712 			return fn;
713 		}
714 
715 		/*
716 		 *	We have more bits to go
717 		 */
718 
719 		/* Try to walk down on tree. */
720 		dir = addr_bit_set(addr, fn->fn_bit);
721 		pn = fn;
722 		fn = dir ?
723 		     rcu_dereference_protected(fn->right,
724 					lockdep_is_held(&table->tb6_lock)) :
725 		     rcu_dereference_protected(fn->left,
726 					lockdep_is_held(&table->tb6_lock));
727 	} while (fn);
728 
729 	if (!allow_create) {
730 		/* We should not create new node because
731 		 * NLM_F_REPLACE was specified without NLM_F_CREATE
732 		 * I assume it is safe to require NLM_F_CREATE when
733 		 * REPLACE flag is used! Later we may want to remove the
734 		 * check for replace_required, because according
735 		 * to netlink specification, NLM_F_CREATE
736 		 * MUST be specified if new route is created.
737 		 * That would keep IPv6 consistent with IPv4
738 		 */
739 		if (replace_required) {
740 			NL_SET_ERR_MSG(extack,
741 				       "Can not replace route - no match found");
742 			pr_warn("Can't replace route, no match found\n");
743 			return ERR_PTR(-ENOENT);
744 		}
745 		pr_warn("NLM_F_CREATE should be set when creating new route\n");
746 	}
747 	/*
748 	 *	We walked to the bottom of tree.
749 	 *	Create new leaf node without children.
750 	 */
751 
752 	ln = node_alloc(net);
753 
754 	if (!ln)
755 		return ERR_PTR(-ENOMEM);
756 	ln->fn_bit = plen;
757 	RCU_INIT_POINTER(ln->parent, pn);
758 
759 	if (dir)
760 		rcu_assign_pointer(pn->right, ln);
761 	else
762 		rcu_assign_pointer(pn->left, ln);
763 
764 	return ln;
765 
766 
767 insert_above:
768 	/*
769 	 * split since we don't have a common prefix anymore or
770 	 * we have a less significant route.
771 	 * we've to insert an intermediate node on the list
772 	 * this new node will point to the one we need to create
773 	 * and the current
774 	 */
775 
776 	pn = rcu_dereference_protected(fn->parent,
777 				       lockdep_is_held(&table->tb6_lock));
778 
779 	/* find 1st bit in difference between the 2 addrs.
780 
781 	   See comment in __ipv6_addr_diff: bit may be an invalid value,
782 	   but if it is >= plen, the value is ignored in any case.
783 	 */
784 
785 	bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
786 
787 	/*
788 	 *		(intermediate)[in]
789 	 *	          /	   \
790 	 *	(new leaf node)[ln] (old node)[fn]
791 	 */
792 	if (plen > bit) {
793 		in = node_alloc(net);
794 		ln = node_alloc(net);
795 
796 		if (!in || !ln) {
797 			if (in)
798 				node_free_immediate(net, in);
799 			if (ln)
800 				node_free_immediate(net, ln);
801 			return ERR_PTR(-ENOMEM);
802 		}
803 
804 		/*
805 		 * new intermediate node.
806 		 * RTN_RTINFO will
807 		 * be off since that an address that chooses one of
808 		 * the branches would not match less specific routes
809 		 * in the other branch
810 		 */
811 
812 		in->fn_bit = bit;
813 
814 		RCU_INIT_POINTER(in->parent, pn);
815 		in->leaf = fn->leaf;
816 		atomic_inc(&rcu_dereference_protected(in->leaf,
817 				lockdep_is_held(&table->tb6_lock))->fib6_ref);
818 
819 		/* update parent pointer */
820 		if (dir)
821 			rcu_assign_pointer(pn->right, in);
822 		else
823 			rcu_assign_pointer(pn->left, in);
824 
825 		ln->fn_bit = plen;
826 
827 		RCU_INIT_POINTER(ln->parent, in);
828 		rcu_assign_pointer(fn->parent, in);
829 
830 		if (addr_bit_set(addr, bit)) {
831 			rcu_assign_pointer(in->right, ln);
832 			rcu_assign_pointer(in->left, fn);
833 		} else {
834 			rcu_assign_pointer(in->left, ln);
835 			rcu_assign_pointer(in->right, fn);
836 		}
837 	} else { /* plen <= bit */
838 
839 		/*
840 		 *		(new leaf node)[ln]
841 		 *	          /	   \
842 		 *	     (old node)[fn] NULL
843 		 */
844 
845 		ln = node_alloc(net);
846 
847 		if (!ln)
848 			return ERR_PTR(-ENOMEM);
849 
850 		ln->fn_bit = plen;
851 
852 		RCU_INIT_POINTER(ln->parent, pn);
853 
854 		if (addr_bit_set(&key->addr, plen))
855 			RCU_INIT_POINTER(ln->right, fn);
856 		else
857 			RCU_INIT_POINTER(ln->left, fn);
858 
859 		rcu_assign_pointer(fn->parent, ln);
860 
861 		if (dir)
862 			rcu_assign_pointer(pn->right, ln);
863 		else
864 			rcu_assign_pointer(pn->left, ln);
865 	}
866 	return ln;
867 }
868 
869 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
870 				const struct fib6_table *table)
871 {
872 	int cpu;
873 
874 	/* release the reference to this fib entry from
875 	 * all of its cached pcpu routes
876 	 */
877 	for_each_possible_cpu(cpu) {
878 		struct rt6_info **ppcpu_rt;
879 		struct rt6_info *pcpu_rt;
880 
881 		ppcpu_rt = per_cpu_ptr(f6i->rt6i_pcpu, cpu);
882 		pcpu_rt = *ppcpu_rt;
883 		if (pcpu_rt) {
884 			struct fib6_info *from;
885 
886 			from = rcu_dereference_protected(pcpu_rt->from,
887 					     lockdep_is_held(&table->tb6_lock));
888 			rcu_assign_pointer(pcpu_rt->from, NULL);
889 			fib6_info_release(from);
890 		}
891 	}
892 }
893 
894 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
895 			  struct net *net)
896 {
897 	struct fib6_table *table = rt->fib6_table;
898 
899 	if (atomic_read(&rt->fib6_ref) != 1) {
900 		/* This route is used as dummy address holder in some split
901 		 * nodes. It is not leaked, but it still holds other resources,
902 		 * which must be released in time. So, scan ascendant nodes
903 		 * and replace dummy references to this route with references
904 		 * to still alive ones.
905 		 */
906 		while (fn) {
907 			struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
908 					    lockdep_is_held(&table->tb6_lock));
909 			struct fib6_info *new_leaf;
910 			if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
911 				new_leaf = fib6_find_prefix(net, table, fn);
912 				atomic_inc(&new_leaf->fib6_ref);
913 
914 				rcu_assign_pointer(fn->leaf, new_leaf);
915 				fib6_info_release(rt);
916 			}
917 			fn = rcu_dereference_protected(fn->parent,
918 				    lockdep_is_held(&table->tb6_lock));
919 		}
920 
921 		if (rt->rt6i_pcpu)
922 			fib6_drop_pcpu_from(rt, table);
923 	}
924 }
925 
926 /*
927  *	Insert routing information in a node.
928  */
929 
930 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
931 			    struct nl_info *info,
932 			    struct netlink_ext_ack *extack)
933 {
934 	struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
935 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
936 	struct fib6_info *iter = NULL;
937 	struct fib6_info __rcu **ins;
938 	struct fib6_info __rcu **fallback_ins = NULL;
939 	int replace = (info->nlh &&
940 		       (info->nlh->nlmsg_flags & NLM_F_REPLACE));
941 	int add = (!info->nlh ||
942 		   (info->nlh->nlmsg_flags & NLM_F_CREATE));
943 	int found = 0;
944 	bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
945 	u16 nlflags = NLM_F_EXCL;
946 	int err;
947 
948 	if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
949 		nlflags |= NLM_F_APPEND;
950 
951 	ins = &fn->leaf;
952 
953 	for (iter = leaf; iter;
954 	     iter = rcu_dereference_protected(iter->fib6_next,
955 				lockdep_is_held(&rt->fib6_table->tb6_lock))) {
956 		/*
957 		 *	Search for duplicates
958 		 */
959 
960 		if (iter->fib6_metric == rt->fib6_metric) {
961 			/*
962 			 *	Same priority level
963 			 */
964 			if (info->nlh &&
965 			    (info->nlh->nlmsg_flags & NLM_F_EXCL))
966 				return -EEXIST;
967 
968 			nlflags &= ~NLM_F_EXCL;
969 			if (replace) {
970 				if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
971 					found++;
972 					break;
973 				}
974 				if (rt_can_ecmp)
975 					fallback_ins = fallback_ins ?: ins;
976 				goto next_iter;
977 			}
978 
979 			if (rt6_duplicate_nexthop(iter, rt)) {
980 				if (rt->fib6_nsiblings)
981 					rt->fib6_nsiblings = 0;
982 				if (!(iter->fib6_flags & RTF_EXPIRES))
983 					return -EEXIST;
984 				if (!(rt->fib6_flags & RTF_EXPIRES))
985 					fib6_clean_expires(iter);
986 				else
987 					fib6_set_expires(iter, rt->expires);
988 
989 				if (rt->fib6_pmtu)
990 					fib6_metric_set(iter, RTAX_MTU,
991 							rt->fib6_pmtu);
992 				return -EEXIST;
993 			}
994 			/* If we have the same destination and the same metric,
995 			 * but not the same gateway, then the route we try to
996 			 * add is sibling to this route, increment our counter
997 			 * of siblings, and later we will add our route to the
998 			 * list.
999 			 * Only static routes (which don't have flag
1000 			 * RTF_EXPIRES) are used for ECMPv6.
1001 			 *
1002 			 * To avoid long list, we only had siblings if the
1003 			 * route have a gateway.
1004 			 */
1005 			if (rt_can_ecmp &&
1006 			    rt6_qualify_for_ecmp(iter))
1007 				rt->fib6_nsiblings++;
1008 		}
1009 
1010 		if (iter->fib6_metric > rt->fib6_metric)
1011 			break;
1012 
1013 next_iter:
1014 		ins = &iter->fib6_next;
1015 	}
1016 
1017 	if (fallback_ins && !found) {
1018 		/* No ECMP-able route found, replace first non-ECMP one */
1019 		ins = fallback_ins;
1020 		iter = rcu_dereference_protected(*ins,
1021 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1022 		found++;
1023 	}
1024 
1025 	/* Reset round-robin state, if necessary */
1026 	if (ins == &fn->leaf)
1027 		fn->rr_ptr = NULL;
1028 
1029 	/* Link this route to others same route. */
1030 	if (rt->fib6_nsiblings) {
1031 		unsigned int fib6_nsiblings;
1032 		struct fib6_info *sibling, *temp_sibling;
1033 
1034 		/* Find the first route that have the same metric */
1035 		sibling = leaf;
1036 		while (sibling) {
1037 			if (sibling->fib6_metric == rt->fib6_metric &&
1038 			    rt6_qualify_for_ecmp(sibling)) {
1039 				list_add_tail(&rt->fib6_siblings,
1040 					      &sibling->fib6_siblings);
1041 				break;
1042 			}
1043 			sibling = rcu_dereference_protected(sibling->fib6_next,
1044 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1045 		}
1046 		/* For each sibling in the list, increment the counter of
1047 		 * siblings. BUG() if counters does not match, list of siblings
1048 		 * is broken!
1049 		 */
1050 		fib6_nsiblings = 0;
1051 		list_for_each_entry_safe(sibling, temp_sibling,
1052 					 &rt->fib6_siblings, fib6_siblings) {
1053 			sibling->fib6_nsiblings++;
1054 			BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1055 			fib6_nsiblings++;
1056 		}
1057 		BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1058 		rt6_multipath_rebalance(temp_sibling);
1059 	}
1060 
1061 	/*
1062 	 *	insert node
1063 	 */
1064 	if (!replace) {
1065 		if (!add)
1066 			pr_warn("NLM_F_CREATE should be set when creating new route\n");
1067 
1068 add:
1069 		nlflags |= NLM_F_CREATE;
1070 
1071 		err = call_fib6_entry_notifiers(info->nl_net,
1072 						FIB_EVENT_ENTRY_ADD,
1073 						rt, extack);
1074 		if (err)
1075 			return err;
1076 
1077 		rcu_assign_pointer(rt->fib6_next, iter);
1078 		atomic_inc(&rt->fib6_ref);
1079 		rcu_assign_pointer(rt->fib6_node, fn);
1080 		rcu_assign_pointer(*ins, rt);
1081 		if (!info->skip_notify)
1082 			inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1083 		info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1084 
1085 		if (!(fn->fn_flags & RTN_RTINFO)) {
1086 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1087 			fn->fn_flags |= RTN_RTINFO;
1088 		}
1089 
1090 	} else {
1091 		int nsiblings;
1092 
1093 		if (!found) {
1094 			if (add)
1095 				goto add;
1096 			pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1097 			return -ENOENT;
1098 		}
1099 
1100 		err = call_fib6_entry_notifiers(info->nl_net,
1101 						FIB_EVENT_ENTRY_REPLACE,
1102 						rt, extack);
1103 		if (err)
1104 			return err;
1105 
1106 		atomic_inc(&rt->fib6_ref);
1107 		rcu_assign_pointer(rt->fib6_node, fn);
1108 		rt->fib6_next = iter->fib6_next;
1109 		rcu_assign_pointer(*ins, rt);
1110 		if (!info->skip_notify)
1111 			inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1112 		if (!(fn->fn_flags & RTN_RTINFO)) {
1113 			info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1114 			fn->fn_flags |= RTN_RTINFO;
1115 		}
1116 		nsiblings = iter->fib6_nsiblings;
1117 		iter->fib6_node = NULL;
1118 		fib6_purge_rt(iter, fn, info->nl_net);
1119 		if (rcu_access_pointer(fn->rr_ptr) == iter)
1120 			fn->rr_ptr = NULL;
1121 		fib6_info_release(iter);
1122 
1123 		if (nsiblings) {
1124 			/* Replacing an ECMP route, remove all siblings */
1125 			ins = &rt->fib6_next;
1126 			iter = rcu_dereference_protected(*ins,
1127 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1128 			while (iter) {
1129 				if (iter->fib6_metric > rt->fib6_metric)
1130 					break;
1131 				if (rt6_qualify_for_ecmp(iter)) {
1132 					*ins = iter->fib6_next;
1133 					iter->fib6_node = NULL;
1134 					fib6_purge_rt(iter, fn, info->nl_net);
1135 					if (rcu_access_pointer(fn->rr_ptr) == iter)
1136 						fn->rr_ptr = NULL;
1137 					fib6_info_release(iter);
1138 					nsiblings--;
1139 					info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1140 				} else {
1141 					ins = &iter->fib6_next;
1142 				}
1143 				iter = rcu_dereference_protected(*ins,
1144 					lockdep_is_held(&rt->fib6_table->tb6_lock));
1145 			}
1146 			WARN_ON(nsiblings != 0);
1147 		}
1148 	}
1149 
1150 	return 0;
1151 }
1152 
1153 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1154 {
1155 	if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1156 	    (rt->fib6_flags & RTF_EXPIRES))
1157 		mod_timer(&net->ipv6.ip6_fib_timer,
1158 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1159 }
1160 
1161 void fib6_force_start_gc(struct net *net)
1162 {
1163 	if (!timer_pending(&net->ipv6.ip6_fib_timer))
1164 		mod_timer(&net->ipv6.ip6_fib_timer,
1165 			  jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1166 }
1167 
1168 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1169 					   int sernum)
1170 {
1171 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1172 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1173 
1174 	/* paired with smp_rmb() in rt6_get_cookie_safe() */
1175 	smp_wmb();
1176 	while (fn) {
1177 		fn->fn_sernum = sernum;
1178 		fn = rcu_dereference_protected(fn->parent,
1179 				lockdep_is_held(&rt->fib6_table->tb6_lock));
1180 	}
1181 }
1182 
1183 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1184 {
1185 	__fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1186 }
1187 
1188 /*
1189  *	Add routing information to the routing tree.
1190  *	<destination addr>/<source addr>
1191  *	with source addr info in sub-trees
1192  *	Need to own table->tb6_lock
1193  */
1194 
1195 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1196 	     struct nl_info *info, struct netlink_ext_ack *extack)
1197 {
1198 	struct fib6_table *table = rt->fib6_table;
1199 	struct fib6_node *fn, *pn = NULL;
1200 	int err = -ENOMEM;
1201 	int allow_create = 1;
1202 	int replace_required = 0;
1203 	int sernum = fib6_new_sernum(info->nl_net);
1204 
1205 	if (info->nlh) {
1206 		if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1207 			allow_create = 0;
1208 		if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1209 			replace_required = 1;
1210 	}
1211 	if (!allow_create && !replace_required)
1212 		pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1213 
1214 	fn = fib6_add_1(info->nl_net, table, root,
1215 			&rt->fib6_dst.addr, rt->fib6_dst.plen,
1216 			offsetof(struct fib6_info, fib6_dst), allow_create,
1217 			replace_required, extack);
1218 	if (IS_ERR(fn)) {
1219 		err = PTR_ERR(fn);
1220 		fn = NULL;
1221 		goto out;
1222 	}
1223 
1224 	pn = fn;
1225 
1226 #ifdef CONFIG_IPV6_SUBTREES
1227 	if (rt->fib6_src.plen) {
1228 		struct fib6_node *sn;
1229 
1230 		if (!rcu_access_pointer(fn->subtree)) {
1231 			struct fib6_node *sfn;
1232 
1233 			/*
1234 			 * Create subtree.
1235 			 *
1236 			 *		fn[main tree]
1237 			 *		|
1238 			 *		sfn[subtree root]
1239 			 *		   \
1240 			 *		    sn[new leaf node]
1241 			 */
1242 
1243 			/* Create subtree root node */
1244 			sfn = node_alloc(info->nl_net);
1245 			if (!sfn)
1246 				goto failure;
1247 
1248 			atomic_inc(&info->nl_net->ipv6.fib6_null_entry->fib6_ref);
1249 			rcu_assign_pointer(sfn->leaf,
1250 					   info->nl_net->ipv6.fib6_null_entry);
1251 			sfn->fn_flags = RTN_ROOT;
1252 
1253 			/* Now add the first leaf node to new subtree */
1254 
1255 			sn = fib6_add_1(info->nl_net, table, sfn,
1256 					&rt->fib6_src.addr, rt->fib6_src.plen,
1257 					offsetof(struct fib6_info, fib6_src),
1258 					allow_create, replace_required, extack);
1259 
1260 			if (IS_ERR(sn)) {
1261 				/* If it is failed, discard just allocated
1262 				   root, and then (in failure) stale node
1263 				   in main tree.
1264 				 */
1265 				node_free_immediate(info->nl_net, sfn);
1266 				err = PTR_ERR(sn);
1267 				goto failure;
1268 			}
1269 
1270 			/* Now link new subtree to main tree */
1271 			rcu_assign_pointer(sfn->parent, fn);
1272 			rcu_assign_pointer(fn->subtree, sfn);
1273 		} else {
1274 			sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1275 					&rt->fib6_src.addr, rt->fib6_src.plen,
1276 					offsetof(struct fib6_info, fib6_src),
1277 					allow_create, replace_required, extack);
1278 
1279 			if (IS_ERR(sn)) {
1280 				err = PTR_ERR(sn);
1281 				goto failure;
1282 			}
1283 		}
1284 
1285 		if (!rcu_access_pointer(fn->leaf)) {
1286 			if (fn->fn_flags & RTN_TL_ROOT) {
1287 				/* put back null_entry for root node */
1288 				rcu_assign_pointer(fn->leaf,
1289 					    info->nl_net->ipv6.fib6_null_entry);
1290 			} else {
1291 				atomic_inc(&rt->fib6_ref);
1292 				rcu_assign_pointer(fn->leaf, rt);
1293 			}
1294 		}
1295 		fn = sn;
1296 	}
1297 #endif
1298 
1299 	err = fib6_add_rt2node(fn, rt, info, extack);
1300 	if (!err) {
1301 		__fib6_update_sernum_upto_root(rt, sernum);
1302 		fib6_start_gc(info->nl_net, rt);
1303 	}
1304 
1305 out:
1306 	if (err) {
1307 #ifdef CONFIG_IPV6_SUBTREES
1308 		/*
1309 		 * If fib6_add_1 has cleared the old leaf pointer in the
1310 		 * super-tree leaf node we have to find a new one for it.
1311 		 */
1312 		if (pn != fn) {
1313 			struct fib6_info *pn_leaf =
1314 				rcu_dereference_protected(pn->leaf,
1315 				    lockdep_is_held(&table->tb6_lock));
1316 			if (pn_leaf == rt) {
1317 				pn_leaf = NULL;
1318 				RCU_INIT_POINTER(pn->leaf, NULL);
1319 				fib6_info_release(rt);
1320 			}
1321 			if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1322 				pn_leaf = fib6_find_prefix(info->nl_net, table,
1323 							   pn);
1324 #if RT6_DEBUG >= 2
1325 				if (!pn_leaf) {
1326 					WARN_ON(!pn_leaf);
1327 					pn_leaf =
1328 					    info->nl_net->ipv6.fib6_null_entry;
1329 				}
1330 #endif
1331 				fib6_info_hold(pn_leaf);
1332 				rcu_assign_pointer(pn->leaf, pn_leaf);
1333 			}
1334 		}
1335 #endif
1336 		goto failure;
1337 	}
1338 	return err;
1339 
1340 failure:
1341 	/* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1342 	 * 1. fn is an intermediate node and we failed to add the new
1343 	 * route to it in both subtree creation failure and fib6_add_rt2node()
1344 	 * failure case.
1345 	 * 2. fn is the root node in the table and we fail to add the first
1346 	 * default route to it.
1347 	 */
1348 	if (fn &&
1349 	    (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1350 	     (fn->fn_flags & RTN_TL_ROOT &&
1351 	      !rcu_access_pointer(fn->leaf))))
1352 		fib6_repair_tree(info->nl_net, table, fn);
1353 	return err;
1354 }
1355 
1356 /*
1357  *	Routing tree lookup
1358  *
1359  */
1360 
1361 struct lookup_args {
1362 	int			offset;		/* key offset on fib6_info */
1363 	const struct in6_addr	*addr;		/* search key			*/
1364 };
1365 
1366 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1367 					    struct lookup_args *args)
1368 {
1369 	struct fib6_node *fn;
1370 	__be32 dir;
1371 
1372 	if (unlikely(args->offset == 0))
1373 		return NULL;
1374 
1375 	/*
1376 	 *	Descend on a tree
1377 	 */
1378 
1379 	fn = root;
1380 
1381 	for (;;) {
1382 		struct fib6_node *next;
1383 
1384 		dir = addr_bit_set(args->addr, fn->fn_bit);
1385 
1386 		next = dir ? rcu_dereference(fn->right) :
1387 			     rcu_dereference(fn->left);
1388 
1389 		if (next) {
1390 			fn = next;
1391 			continue;
1392 		}
1393 		break;
1394 	}
1395 
1396 	while (fn) {
1397 		struct fib6_node *subtree = FIB6_SUBTREE(fn);
1398 
1399 		if (subtree || fn->fn_flags & RTN_RTINFO) {
1400 			struct fib6_info *leaf = rcu_dereference(fn->leaf);
1401 			struct rt6key *key;
1402 
1403 			if (!leaf)
1404 				goto backtrack;
1405 
1406 			key = (struct rt6key *) ((u8 *)leaf + args->offset);
1407 
1408 			if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1409 #ifdef CONFIG_IPV6_SUBTREES
1410 				if (subtree) {
1411 					struct fib6_node *sfn;
1412 					sfn = fib6_node_lookup_1(subtree,
1413 								 args + 1);
1414 					if (!sfn)
1415 						goto backtrack;
1416 					fn = sfn;
1417 				}
1418 #endif
1419 				if (fn->fn_flags & RTN_RTINFO)
1420 					return fn;
1421 			}
1422 		}
1423 backtrack:
1424 		if (fn->fn_flags & RTN_ROOT)
1425 			break;
1426 
1427 		fn = rcu_dereference(fn->parent);
1428 	}
1429 
1430 	return NULL;
1431 }
1432 
1433 /* called with rcu_read_lock() held
1434  */
1435 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1436 				   const struct in6_addr *daddr,
1437 				   const struct in6_addr *saddr)
1438 {
1439 	struct fib6_node *fn;
1440 	struct lookup_args args[] = {
1441 		{
1442 			.offset = offsetof(struct fib6_info, fib6_dst),
1443 			.addr = daddr,
1444 		},
1445 #ifdef CONFIG_IPV6_SUBTREES
1446 		{
1447 			.offset = offsetof(struct fib6_info, fib6_src),
1448 			.addr = saddr,
1449 		},
1450 #endif
1451 		{
1452 			.offset = 0,	/* sentinel */
1453 		}
1454 	};
1455 
1456 	fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1457 	if (!fn || fn->fn_flags & RTN_TL_ROOT)
1458 		fn = root;
1459 
1460 	return fn;
1461 }
1462 
1463 /*
1464  *	Get node with specified destination prefix (and source prefix,
1465  *	if subtrees are used)
1466  *	exact_match == true means we try to find fn with exact match of
1467  *	the passed in prefix addr
1468  *	exact_match == false means we try to find fn with longest prefix
1469  *	match of the passed in prefix addr. This is useful for finding fn
1470  *	for cached route as it will be stored in the exception table under
1471  *	the node with longest prefix length.
1472  */
1473 
1474 
1475 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1476 				       const struct in6_addr *addr,
1477 				       int plen, int offset,
1478 				       bool exact_match)
1479 {
1480 	struct fib6_node *fn, *prev = NULL;
1481 
1482 	for (fn = root; fn ; ) {
1483 		struct fib6_info *leaf = rcu_dereference(fn->leaf);
1484 		struct rt6key *key;
1485 
1486 		/* This node is being deleted */
1487 		if (!leaf) {
1488 			if (plen <= fn->fn_bit)
1489 				goto out;
1490 			else
1491 				goto next;
1492 		}
1493 
1494 		key = (struct rt6key *)((u8 *)leaf + offset);
1495 
1496 		/*
1497 		 *	Prefix match
1498 		 */
1499 		if (plen < fn->fn_bit ||
1500 		    !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1501 			goto out;
1502 
1503 		if (plen == fn->fn_bit)
1504 			return fn;
1505 
1506 		prev = fn;
1507 
1508 next:
1509 		/*
1510 		 *	We have more bits to go
1511 		 */
1512 		if (addr_bit_set(addr, fn->fn_bit))
1513 			fn = rcu_dereference(fn->right);
1514 		else
1515 			fn = rcu_dereference(fn->left);
1516 	}
1517 out:
1518 	if (exact_match)
1519 		return NULL;
1520 	else
1521 		return prev;
1522 }
1523 
1524 struct fib6_node *fib6_locate(struct fib6_node *root,
1525 			      const struct in6_addr *daddr, int dst_len,
1526 			      const struct in6_addr *saddr, int src_len,
1527 			      bool exact_match)
1528 {
1529 	struct fib6_node *fn;
1530 
1531 	fn = fib6_locate_1(root, daddr, dst_len,
1532 			   offsetof(struct fib6_info, fib6_dst),
1533 			   exact_match);
1534 
1535 #ifdef CONFIG_IPV6_SUBTREES
1536 	if (src_len) {
1537 		WARN_ON(saddr == NULL);
1538 		if (fn) {
1539 			struct fib6_node *subtree = FIB6_SUBTREE(fn);
1540 
1541 			if (subtree) {
1542 				fn = fib6_locate_1(subtree, saddr, src_len,
1543 					   offsetof(struct fib6_info, fib6_src),
1544 					   exact_match);
1545 			}
1546 		}
1547 	}
1548 #endif
1549 
1550 	if (fn && fn->fn_flags & RTN_RTINFO)
1551 		return fn;
1552 
1553 	return NULL;
1554 }
1555 
1556 
1557 /*
1558  *	Deletion
1559  *
1560  */
1561 
1562 static struct fib6_info *fib6_find_prefix(struct net *net,
1563 					 struct fib6_table *table,
1564 					 struct fib6_node *fn)
1565 {
1566 	struct fib6_node *child_left, *child_right;
1567 
1568 	if (fn->fn_flags & RTN_ROOT)
1569 		return net->ipv6.fib6_null_entry;
1570 
1571 	while (fn) {
1572 		child_left = rcu_dereference_protected(fn->left,
1573 				    lockdep_is_held(&table->tb6_lock));
1574 		child_right = rcu_dereference_protected(fn->right,
1575 				    lockdep_is_held(&table->tb6_lock));
1576 		if (child_left)
1577 			return rcu_dereference_protected(child_left->leaf,
1578 					lockdep_is_held(&table->tb6_lock));
1579 		if (child_right)
1580 			return rcu_dereference_protected(child_right->leaf,
1581 					lockdep_is_held(&table->tb6_lock));
1582 
1583 		fn = FIB6_SUBTREE(fn);
1584 	}
1585 	return NULL;
1586 }
1587 
1588 /*
1589  *	Called to trim the tree of intermediate nodes when possible. "fn"
1590  *	is the node we want to try and remove.
1591  *	Need to own table->tb6_lock
1592  */
1593 
1594 static struct fib6_node *fib6_repair_tree(struct net *net,
1595 					  struct fib6_table *table,
1596 					  struct fib6_node *fn)
1597 {
1598 	int children;
1599 	int nstate;
1600 	struct fib6_node *child;
1601 	struct fib6_walker *w;
1602 	int iter = 0;
1603 
1604 	/* Set fn->leaf to null_entry for root node. */
1605 	if (fn->fn_flags & RTN_TL_ROOT) {
1606 		rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1607 		return fn;
1608 	}
1609 
1610 	for (;;) {
1611 		struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1612 					    lockdep_is_held(&table->tb6_lock));
1613 		struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1614 					    lockdep_is_held(&table->tb6_lock));
1615 		struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1616 					    lockdep_is_held(&table->tb6_lock));
1617 		struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1618 					    lockdep_is_held(&table->tb6_lock));
1619 		struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1620 					    lockdep_is_held(&table->tb6_lock));
1621 		struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1622 					    lockdep_is_held(&table->tb6_lock));
1623 		struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1624 					    lockdep_is_held(&table->tb6_lock));
1625 		struct fib6_info *new_fn_leaf;
1626 
1627 		RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1628 		iter++;
1629 
1630 		WARN_ON(fn->fn_flags & RTN_RTINFO);
1631 		WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1632 		WARN_ON(fn_leaf);
1633 
1634 		children = 0;
1635 		child = NULL;
1636 		if (fn_r)
1637 			child = fn_r, children |= 1;
1638 		if (fn_l)
1639 			child = fn_l, children |= 2;
1640 
1641 		if (children == 3 || FIB6_SUBTREE(fn)
1642 #ifdef CONFIG_IPV6_SUBTREES
1643 		    /* Subtree root (i.e. fn) may have one child */
1644 		    || (children && fn->fn_flags & RTN_ROOT)
1645 #endif
1646 		    ) {
1647 			new_fn_leaf = fib6_find_prefix(net, table, fn);
1648 #if RT6_DEBUG >= 2
1649 			if (!new_fn_leaf) {
1650 				WARN_ON(!new_fn_leaf);
1651 				new_fn_leaf = net->ipv6.fib6_null_entry;
1652 			}
1653 #endif
1654 			fib6_info_hold(new_fn_leaf);
1655 			rcu_assign_pointer(fn->leaf, new_fn_leaf);
1656 			return pn;
1657 		}
1658 
1659 #ifdef CONFIG_IPV6_SUBTREES
1660 		if (FIB6_SUBTREE(pn) == fn) {
1661 			WARN_ON(!(fn->fn_flags & RTN_ROOT));
1662 			RCU_INIT_POINTER(pn->subtree, NULL);
1663 			nstate = FWS_L;
1664 		} else {
1665 			WARN_ON(fn->fn_flags & RTN_ROOT);
1666 #endif
1667 			if (pn_r == fn)
1668 				rcu_assign_pointer(pn->right, child);
1669 			else if (pn_l == fn)
1670 				rcu_assign_pointer(pn->left, child);
1671 #if RT6_DEBUG >= 2
1672 			else
1673 				WARN_ON(1);
1674 #endif
1675 			if (child)
1676 				rcu_assign_pointer(child->parent, pn);
1677 			nstate = FWS_R;
1678 #ifdef CONFIG_IPV6_SUBTREES
1679 		}
1680 #endif
1681 
1682 		read_lock(&net->ipv6.fib6_walker_lock);
1683 		FOR_WALKERS(net, w) {
1684 			if (!child) {
1685 				if (w->node == fn) {
1686 					RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1687 					w->node = pn;
1688 					w->state = nstate;
1689 				}
1690 			} else {
1691 				if (w->node == fn) {
1692 					w->node = child;
1693 					if (children&2) {
1694 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1695 						w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1696 					} else {
1697 						RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1698 						w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1699 					}
1700 				}
1701 			}
1702 		}
1703 		read_unlock(&net->ipv6.fib6_walker_lock);
1704 
1705 		node_free(net, fn);
1706 		if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1707 			return pn;
1708 
1709 		RCU_INIT_POINTER(pn->leaf, NULL);
1710 		fib6_info_release(pn_leaf);
1711 		fn = pn;
1712 	}
1713 }
1714 
1715 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1716 			   struct fib6_info __rcu **rtp, struct nl_info *info)
1717 {
1718 	struct fib6_walker *w;
1719 	struct fib6_info *rt = rcu_dereference_protected(*rtp,
1720 				    lockdep_is_held(&table->tb6_lock));
1721 	struct net *net = info->nl_net;
1722 
1723 	RT6_TRACE("fib6_del_route\n");
1724 
1725 	/* Unlink it */
1726 	*rtp = rt->fib6_next;
1727 	rt->fib6_node = NULL;
1728 	net->ipv6.rt6_stats->fib_rt_entries--;
1729 	net->ipv6.rt6_stats->fib_discarded_routes++;
1730 
1731 	/* Flush all cached dst in exception table */
1732 	rt6_flush_exceptions(rt);
1733 
1734 	/* Reset round-robin state, if necessary */
1735 	if (rcu_access_pointer(fn->rr_ptr) == rt)
1736 		fn->rr_ptr = NULL;
1737 
1738 	/* Remove this entry from other siblings */
1739 	if (rt->fib6_nsiblings) {
1740 		struct fib6_info *sibling, *next_sibling;
1741 
1742 		list_for_each_entry_safe(sibling, next_sibling,
1743 					 &rt->fib6_siblings, fib6_siblings)
1744 			sibling->fib6_nsiblings--;
1745 		rt->fib6_nsiblings = 0;
1746 		list_del_init(&rt->fib6_siblings);
1747 		rt6_multipath_rebalance(next_sibling);
1748 	}
1749 
1750 	/* Adjust walkers */
1751 	read_lock(&net->ipv6.fib6_walker_lock);
1752 	FOR_WALKERS(net, w) {
1753 		if (w->state == FWS_C && w->leaf == rt) {
1754 			RT6_TRACE("walker %p adjusted by delroute\n", w);
1755 			w->leaf = rcu_dereference_protected(rt->fib6_next,
1756 					    lockdep_is_held(&table->tb6_lock));
1757 			if (!w->leaf)
1758 				w->state = FWS_U;
1759 		}
1760 	}
1761 	read_unlock(&net->ipv6.fib6_walker_lock);
1762 
1763 	/* If it was last route, call fib6_repair_tree() to:
1764 	 * 1. For root node, put back null_entry as how the table was created.
1765 	 * 2. For other nodes, expunge its radix tree node.
1766 	 */
1767 	if (!rcu_access_pointer(fn->leaf)) {
1768 		if (!(fn->fn_flags & RTN_TL_ROOT)) {
1769 			fn->fn_flags &= ~RTN_RTINFO;
1770 			net->ipv6.rt6_stats->fib_route_nodes--;
1771 		}
1772 		fn = fib6_repair_tree(net, table, fn);
1773 	}
1774 
1775 	fib6_purge_rt(rt, fn, net);
1776 
1777 	call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt, NULL);
1778 	if (!info->skip_notify)
1779 		inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1780 	fib6_info_release(rt);
1781 }
1782 
1783 /* Need to own table->tb6_lock */
1784 int fib6_del(struct fib6_info *rt, struct nl_info *info)
1785 {
1786 	struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1787 				    lockdep_is_held(&rt->fib6_table->tb6_lock));
1788 	struct fib6_table *table = rt->fib6_table;
1789 	struct net *net = info->nl_net;
1790 	struct fib6_info __rcu **rtp;
1791 	struct fib6_info __rcu **rtp_next;
1792 
1793 	if (!fn || rt == net->ipv6.fib6_null_entry)
1794 		return -ENOENT;
1795 
1796 	WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1797 
1798 	/*
1799 	 *	Walk the leaf entries looking for ourself
1800 	 */
1801 
1802 	for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
1803 		struct fib6_info *cur = rcu_dereference_protected(*rtp,
1804 					lockdep_is_held(&table->tb6_lock));
1805 		if (rt == cur) {
1806 			fib6_del_route(table, fn, rtp, info);
1807 			return 0;
1808 		}
1809 		rtp_next = &cur->fib6_next;
1810 	}
1811 	return -ENOENT;
1812 }
1813 
1814 /*
1815  *	Tree traversal function.
1816  *
1817  *	Certainly, it is not interrupt safe.
1818  *	However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1819  *	It means, that we can modify tree during walking
1820  *	and use this function for garbage collection, clone pruning,
1821  *	cleaning tree when a device goes down etc. etc.
1822  *
1823  *	It guarantees that every node will be traversed,
1824  *	and that it will be traversed only once.
1825  *
1826  *	Callback function w->func may return:
1827  *	0 -> continue walking.
1828  *	positive value -> walking is suspended (used by tree dumps,
1829  *	and probably by gc, if it will be split to several slices)
1830  *	negative value -> terminate walking.
1831  *
1832  *	The function itself returns:
1833  *	0   -> walk is complete.
1834  *	>0  -> walk is incomplete (i.e. suspended)
1835  *	<0  -> walk is terminated by an error.
1836  *
1837  *	This function is called with tb6_lock held.
1838  */
1839 
1840 static int fib6_walk_continue(struct fib6_walker *w)
1841 {
1842 	struct fib6_node *fn, *pn, *left, *right;
1843 
1844 	/* w->root should always be table->tb6_root */
1845 	WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
1846 
1847 	for (;;) {
1848 		fn = w->node;
1849 		if (!fn)
1850 			return 0;
1851 
1852 		switch (w->state) {
1853 #ifdef CONFIG_IPV6_SUBTREES
1854 		case FWS_S:
1855 			if (FIB6_SUBTREE(fn)) {
1856 				w->node = FIB6_SUBTREE(fn);
1857 				continue;
1858 			}
1859 			w->state = FWS_L;
1860 #endif
1861 			/* fall through */
1862 		case FWS_L:
1863 			left = rcu_dereference_protected(fn->left, 1);
1864 			if (left) {
1865 				w->node = left;
1866 				w->state = FWS_INIT;
1867 				continue;
1868 			}
1869 			w->state = FWS_R;
1870 			/* fall through */
1871 		case FWS_R:
1872 			right = rcu_dereference_protected(fn->right, 1);
1873 			if (right) {
1874 				w->node = right;
1875 				w->state = FWS_INIT;
1876 				continue;
1877 			}
1878 			w->state = FWS_C;
1879 			w->leaf = rcu_dereference_protected(fn->leaf, 1);
1880 			/* fall through */
1881 		case FWS_C:
1882 			if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1883 				int err;
1884 
1885 				if (w->skip) {
1886 					w->skip--;
1887 					goto skip;
1888 				}
1889 
1890 				err = w->func(w);
1891 				if (err)
1892 					return err;
1893 
1894 				w->count++;
1895 				continue;
1896 			}
1897 skip:
1898 			w->state = FWS_U;
1899 			/* fall through */
1900 		case FWS_U:
1901 			if (fn == w->root)
1902 				return 0;
1903 			pn = rcu_dereference_protected(fn->parent, 1);
1904 			left = rcu_dereference_protected(pn->left, 1);
1905 			right = rcu_dereference_protected(pn->right, 1);
1906 			w->node = pn;
1907 #ifdef CONFIG_IPV6_SUBTREES
1908 			if (FIB6_SUBTREE(pn) == fn) {
1909 				WARN_ON(!(fn->fn_flags & RTN_ROOT));
1910 				w->state = FWS_L;
1911 				continue;
1912 			}
1913 #endif
1914 			if (left == fn) {
1915 				w->state = FWS_R;
1916 				continue;
1917 			}
1918 			if (right == fn) {
1919 				w->state = FWS_C;
1920 				w->leaf = rcu_dereference_protected(w->node->leaf, 1);
1921 				continue;
1922 			}
1923 #if RT6_DEBUG >= 2
1924 			WARN_ON(1);
1925 #endif
1926 		}
1927 	}
1928 }
1929 
1930 static int fib6_walk(struct net *net, struct fib6_walker *w)
1931 {
1932 	int res;
1933 
1934 	w->state = FWS_INIT;
1935 	w->node = w->root;
1936 
1937 	fib6_walker_link(net, w);
1938 	res = fib6_walk_continue(w);
1939 	if (res <= 0)
1940 		fib6_walker_unlink(net, w);
1941 	return res;
1942 }
1943 
1944 static int fib6_clean_node(struct fib6_walker *w)
1945 {
1946 	int res;
1947 	struct fib6_info *rt;
1948 	struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1949 	struct nl_info info = {
1950 		.nl_net = c->net,
1951 	};
1952 
1953 	if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1954 	    w->node->fn_sernum != c->sernum)
1955 		w->node->fn_sernum = c->sernum;
1956 
1957 	if (!c->func) {
1958 		WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1959 		w->leaf = NULL;
1960 		return 0;
1961 	}
1962 
1963 	for_each_fib6_walker_rt(w) {
1964 		res = c->func(rt, c->arg);
1965 		if (res == -1) {
1966 			w->leaf = rt;
1967 			res = fib6_del(rt, &info);
1968 			if (res) {
1969 #if RT6_DEBUG >= 2
1970 				pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1971 					 __func__, rt,
1972 					 rcu_access_pointer(rt->fib6_node),
1973 					 res);
1974 #endif
1975 				continue;
1976 			}
1977 			return 0;
1978 		} else if (res == -2) {
1979 			if (WARN_ON(!rt->fib6_nsiblings))
1980 				continue;
1981 			rt = list_last_entry(&rt->fib6_siblings,
1982 					     struct fib6_info, fib6_siblings);
1983 			continue;
1984 		}
1985 		WARN_ON(res != 0);
1986 	}
1987 	w->leaf = rt;
1988 	return 0;
1989 }
1990 
1991 /*
1992  *	Convenient frontend to tree walker.
1993  *
1994  *	func is called on each route.
1995  *		It may return -2 -> skip multipath route.
1996  *			      -1 -> delete this route.
1997  *		              0  -> continue walking
1998  */
1999 
2000 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2001 			    int (*func)(struct fib6_info *, void *arg),
2002 			    int sernum, void *arg)
2003 {
2004 	struct fib6_cleaner c;
2005 
2006 	c.w.root = root;
2007 	c.w.func = fib6_clean_node;
2008 	c.w.count = 0;
2009 	c.w.skip = 0;
2010 	c.func = func;
2011 	c.sernum = sernum;
2012 	c.arg = arg;
2013 	c.net = net;
2014 
2015 	fib6_walk(net, &c.w);
2016 }
2017 
2018 static void __fib6_clean_all(struct net *net,
2019 			     int (*func)(struct fib6_info *, void *),
2020 			     int sernum, void *arg)
2021 {
2022 	struct fib6_table *table;
2023 	struct hlist_head *head;
2024 	unsigned int h;
2025 
2026 	rcu_read_lock();
2027 	for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2028 		head = &net->ipv6.fib_table_hash[h];
2029 		hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2030 			spin_lock_bh(&table->tb6_lock);
2031 			fib6_clean_tree(net, &table->tb6_root,
2032 					func, sernum, arg);
2033 			spin_unlock_bh(&table->tb6_lock);
2034 		}
2035 	}
2036 	rcu_read_unlock();
2037 }
2038 
2039 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2040 		    void *arg)
2041 {
2042 	__fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
2043 }
2044 
2045 static void fib6_flush_trees(struct net *net)
2046 {
2047 	int new_sernum = fib6_new_sernum(net);
2048 
2049 	__fib6_clean_all(net, NULL, new_sernum, NULL);
2050 }
2051 
2052 /*
2053  *	Garbage collection
2054  */
2055 
2056 static int fib6_age(struct fib6_info *rt, void *arg)
2057 {
2058 	struct fib6_gc_args *gc_args = arg;
2059 	unsigned long now = jiffies;
2060 
2061 	/*
2062 	 *	check addrconf expiration here.
2063 	 *	Routes are expired even if they are in use.
2064 	 */
2065 
2066 	if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2067 		if (time_after(now, rt->expires)) {
2068 			RT6_TRACE("expiring %p\n", rt);
2069 			return -1;
2070 		}
2071 		gc_args->more++;
2072 	}
2073 
2074 	/*	Also age clones in the exception table.
2075 	 *	Note, that clones are aged out
2076 	 *	only if they are not in use now.
2077 	 */
2078 	rt6_age_exceptions(rt, gc_args, now);
2079 
2080 	return 0;
2081 }
2082 
2083 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2084 {
2085 	struct fib6_gc_args gc_args;
2086 	unsigned long now;
2087 
2088 	if (force) {
2089 		spin_lock_bh(&net->ipv6.fib6_gc_lock);
2090 	} else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2091 		mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2092 		return;
2093 	}
2094 	gc_args.timeout = expires ? (int)expires :
2095 			  net->ipv6.sysctl.ip6_rt_gc_interval;
2096 	gc_args.more = 0;
2097 
2098 	fib6_clean_all(net, fib6_age, &gc_args);
2099 	now = jiffies;
2100 	net->ipv6.ip6_rt_last_gc = now;
2101 
2102 	if (gc_args.more)
2103 		mod_timer(&net->ipv6.ip6_fib_timer,
2104 			  round_jiffies(now
2105 					+ net->ipv6.sysctl.ip6_rt_gc_interval));
2106 	else
2107 		del_timer(&net->ipv6.ip6_fib_timer);
2108 	spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2109 }
2110 
2111 static void fib6_gc_timer_cb(struct timer_list *t)
2112 {
2113 	struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2114 
2115 	fib6_run_gc(0, arg, true);
2116 }
2117 
2118 static int __net_init fib6_net_init(struct net *net)
2119 {
2120 	size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2121 	int err;
2122 
2123 	err = fib6_notifier_init(net);
2124 	if (err)
2125 		return err;
2126 
2127 	spin_lock_init(&net->ipv6.fib6_gc_lock);
2128 	rwlock_init(&net->ipv6.fib6_walker_lock);
2129 	INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2130 	timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2131 
2132 	net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2133 	if (!net->ipv6.rt6_stats)
2134 		goto out_timer;
2135 
2136 	/* Avoid false sharing : Use at least a full cache line */
2137 	size = max_t(size_t, size, L1_CACHE_BYTES);
2138 
2139 	net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2140 	if (!net->ipv6.fib_table_hash)
2141 		goto out_rt6_stats;
2142 
2143 	net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2144 					  GFP_KERNEL);
2145 	if (!net->ipv6.fib6_main_tbl)
2146 		goto out_fib_table_hash;
2147 
2148 	net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2149 	rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2150 			   net->ipv6.fib6_null_entry);
2151 	net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2152 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2153 	inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2154 
2155 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2156 	net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2157 					   GFP_KERNEL);
2158 	if (!net->ipv6.fib6_local_tbl)
2159 		goto out_fib6_main_tbl;
2160 	net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2161 	rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2162 			   net->ipv6.fib6_null_entry);
2163 	net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2164 		RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2165 	inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2166 #endif
2167 	fib6_tables_init(net);
2168 
2169 	return 0;
2170 
2171 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2172 out_fib6_main_tbl:
2173 	kfree(net->ipv6.fib6_main_tbl);
2174 #endif
2175 out_fib_table_hash:
2176 	kfree(net->ipv6.fib_table_hash);
2177 out_rt6_stats:
2178 	kfree(net->ipv6.rt6_stats);
2179 out_timer:
2180 	fib6_notifier_exit(net);
2181 	return -ENOMEM;
2182 }
2183 
2184 static void fib6_net_exit(struct net *net)
2185 {
2186 	unsigned int i;
2187 
2188 	del_timer_sync(&net->ipv6.ip6_fib_timer);
2189 
2190 	for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2191 		struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2192 		struct hlist_node *tmp;
2193 		struct fib6_table *tb;
2194 
2195 		hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2196 			hlist_del(&tb->tb6_hlist);
2197 			fib6_free_table(tb);
2198 		}
2199 	}
2200 
2201 	kfree(net->ipv6.fib_table_hash);
2202 	kfree(net->ipv6.rt6_stats);
2203 	fib6_notifier_exit(net);
2204 }
2205 
2206 static struct pernet_operations fib6_net_ops = {
2207 	.init = fib6_net_init,
2208 	.exit = fib6_net_exit,
2209 };
2210 
2211 int __init fib6_init(void)
2212 {
2213 	int ret = -ENOMEM;
2214 
2215 	fib6_node_kmem = kmem_cache_create("fib6_nodes",
2216 					   sizeof(struct fib6_node),
2217 					   0, SLAB_HWCACHE_ALIGN,
2218 					   NULL);
2219 	if (!fib6_node_kmem)
2220 		goto out;
2221 
2222 	ret = register_pernet_subsys(&fib6_net_ops);
2223 	if (ret)
2224 		goto out_kmem_cache_create;
2225 
2226 	ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2227 				   inet6_dump_fib, 0);
2228 	if (ret)
2229 		goto out_unregister_subsys;
2230 
2231 	__fib6_flush_trees = fib6_flush_trees;
2232 out:
2233 	return ret;
2234 
2235 out_unregister_subsys:
2236 	unregister_pernet_subsys(&fib6_net_ops);
2237 out_kmem_cache_create:
2238 	kmem_cache_destroy(fib6_node_kmem);
2239 	goto out;
2240 }
2241 
2242 void fib6_gc_cleanup(void)
2243 {
2244 	unregister_pernet_subsys(&fib6_net_ops);
2245 	kmem_cache_destroy(fib6_node_kmem);
2246 }
2247 
2248 #ifdef CONFIG_PROC_FS
2249 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2250 {
2251 	struct fib6_info *rt = v;
2252 	struct ipv6_route_iter *iter = seq->private;
2253 	const struct net_device *dev;
2254 
2255 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2256 
2257 #ifdef CONFIG_IPV6_SUBTREES
2258 	seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2259 #else
2260 	seq_puts(seq, "00000000000000000000000000000000 00 ");
2261 #endif
2262 	if (rt->fib6_flags & RTF_GATEWAY)
2263 		seq_printf(seq, "%pi6", &rt->fib6_nh.nh_gw);
2264 	else
2265 		seq_puts(seq, "00000000000000000000000000000000");
2266 
2267 	dev = rt->fib6_nh.nh_dev;
2268 	seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2269 		   rt->fib6_metric, atomic_read(&rt->fib6_ref), 0,
2270 		   rt->fib6_flags, dev ? dev->name : "");
2271 	iter->w.leaf = NULL;
2272 	return 0;
2273 }
2274 
2275 static int ipv6_route_yield(struct fib6_walker *w)
2276 {
2277 	struct ipv6_route_iter *iter = w->args;
2278 
2279 	if (!iter->skip)
2280 		return 1;
2281 
2282 	do {
2283 		iter->w.leaf = rcu_dereference_protected(
2284 				iter->w.leaf->fib6_next,
2285 				lockdep_is_held(&iter->tbl->tb6_lock));
2286 		iter->skip--;
2287 		if (!iter->skip && iter->w.leaf)
2288 			return 1;
2289 	} while (iter->w.leaf);
2290 
2291 	return 0;
2292 }
2293 
2294 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2295 				      struct net *net)
2296 {
2297 	memset(&iter->w, 0, sizeof(iter->w));
2298 	iter->w.func = ipv6_route_yield;
2299 	iter->w.root = &iter->tbl->tb6_root;
2300 	iter->w.state = FWS_INIT;
2301 	iter->w.node = iter->w.root;
2302 	iter->w.args = iter;
2303 	iter->sernum = iter->w.root->fn_sernum;
2304 	INIT_LIST_HEAD(&iter->w.lh);
2305 	fib6_walker_link(net, &iter->w);
2306 }
2307 
2308 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2309 						    struct net *net)
2310 {
2311 	unsigned int h;
2312 	struct hlist_node *node;
2313 
2314 	if (tbl) {
2315 		h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2316 		node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2317 	} else {
2318 		h = 0;
2319 		node = NULL;
2320 	}
2321 
2322 	while (!node && h < FIB6_TABLE_HASHSZ) {
2323 		node = rcu_dereference_bh(
2324 			hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2325 	}
2326 	return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2327 }
2328 
2329 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2330 {
2331 	if (iter->sernum != iter->w.root->fn_sernum) {
2332 		iter->sernum = iter->w.root->fn_sernum;
2333 		iter->w.state = FWS_INIT;
2334 		iter->w.node = iter->w.root;
2335 		WARN_ON(iter->w.skip);
2336 		iter->w.skip = iter->w.count;
2337 	}
2338 }
2339 
2340 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2341 {
2342 	int r;
2343 	struct fib6_info *n;
2344 	struct net *net = seq_file_net(seq);
2345 	struct ipv6_route_iter *iter = seq->private;
2346 
2347 	if (!v)
2348 		goto iter_table;
2349 
2350 	n = rcu_dereference_bh(((struct fib6_info *)v)->fib6_next);
2351 	if (n) {
2352 		++*pos;
2353 		return n;
2354 	}
2355 
2356 iter_table:
2357 	ipv6_route_check_sernum(iter);
2358 	spin_lock_bh(&iter->tbl->tb6_lock);
2359 	r = fib6_walk_continue(&iter->w);
2360 	spin_unlock_bh(&iter->tbl->tb6_lock);
2361 	if (r > 0) {
2362 		if (v)
2363 			++*pos;
2364 		return iter->w.leaf;
2365 	} else if (r < 0) {
2366 		fib6_walker_unlink(net, &iter->w);
2367 		return NULL;
2368 	}
2369 	fib6_walker_unlink(net, &iter->w);
2370 
2371 	iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2372 	if (!iter->tbl)
2373 		return NULL;
2374 
2375 	ipv6_route_seq_setup_walk(iter, net);
2376 	goto iter_table;
2377 }
2378 
2379 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2380 	__acquires(RCU_BH)
2381 {
2382 	struct net *net = seq_file_net(seq);
2383 	struct ipv6_route_iter *iter = seq->private;
2384 
2385 	rcu_read_lock_bh();
2386 	iter->tbl = ipv6_route_seq_next_table(NULL, net);
2387 	iter->skip = *pos;
2388 
2389 	if (iter->tbl) {
2390 		ipv6_route_seq_setup_walk(iter, net);
2391 		return ipv6_route_seq_next(seq, NULL, pos);
2392 	} else {
2393 		return NULL;
2394 	}
2395 }
2396 
2397 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2398 {
2399 	struct fib6_walker *w = &iter->w;
2400 	return w->node && !(w->state == FWS_U && w->node == w->root);
2401 }
2402 
2403 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2404 	__releases(RCU_BH)
2405 {
2406 	struct net *net = seq_file_net(seq);
2407 	struct ipv6_route_iter *iter = seq->private;
2408 
2409 	if (ipv6_route_iter_active(iter))
2410 		fib6_walker_unlink(net, &iter->w);
2411 
2412 	rcu_read_unlock_bh();
2413 }
2414 
2415 const struct seq_operations ipv6_route_seq_ops = {
2416 	.start	= ipv6_route_seq_start,
2417 	.next	= ipv6_route_seq_next,
2418 	.stop	= ipv6_route_seq_stop,
2419 	.show	= ipv6_route_seq_show
2420 };
2421 #endif /* CONFIG_PROC_FS */
2422