1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * The User Datagram Protocol (UDP). 7 * 8 * Version: $Id: udp.c,v 1.102 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 13 * Alan Cox, <Alan.Cox@linux.org> 14 * Hirokazu Takahashi, <taka@valinux.co.jp> 15 * 16 * Fixes: 17 * Alan Cox : verify_area() calls 18 * Alan Cox : stopped close while in use off icmp 19 * messages. Not a fix but a botch that 20 * for udp at least is 'valid'. 21 * Alan Cox : Fixed icmp handling properly 22 * Alan Cox : Correct error for oversized datagrams 23 * Alan Cox : Tidied select() semantics. 24 * Alan Cox : udp_err() fixed properly, also now 25 * select and read wake correctly on errors 26 * Alan Cox : udp_send verify_area moved to avoid mem leak 27 * Alan Cox : UDP can count its memory 28 * Alan Cox : send to an unknown connection causes 29 * an ECONNREFUSED off the icmp, but 30 * does NOT close. 31 * Alan Cox : Switched to new sk_buff handlers. No more backlog! 32 * Alan Cox : Using generic datagram code. Even smaller and the PEEK 33 * bug no longer crashes it. 34 * Fred Van Kempen : Net2e support for sk->broadcast. 35 * Alan Cox : Uses skb_free_datagram 36 * Alan Cox : Added get/set sockopt support. 37 * Alan Cox : Broadcasting without option set returns EACCES. 38 * Alan Cox : No wakeup calls. Instead we now use the callbacks. 39 * Alan Cox : Use ip_tos and ip_ttl 40 * Alan Cox : SNMP Mibs 41 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. 42 * Matt Dillon : UDP length checks. 43 * Alan Cox : Smarter af_inet used properly. 44 * Alan Cox : Use new kernel side addressing. 45 * Alan Cox : Incorrect return on truncated datagram receive. 46 * Arnt Gulbrandsen : New udp_send and stuff 47 * Alan Cox : Cache last socket 48 * Alan Cox : Route cache 49 * Jon Peatfield : Minor efficiency fix to sendto(). 50 * Mike Shaver : RFC1122 checks. 51 * Alan Cox : Nonblocking error fix. 52 * Willy Konynenberg : Transparent proxying support. 53 * Mike McLagan : Routing by source 54 * David S. Miller : New socket lookup architecture. 55 * Last socket cache retained as it 56 * does have a high hit rate. 57 * Olaf Kirch : Don't linearise iovec on sendmsg. 58 * Andi Kleen : Some cleanups, cache destination entry 59 * for connect. 60 * Vitaly E. Lavrov : Transparent proxy revived after year coma. 61 * Melvin Smith : Check msg_name not msg_namelen in sendto(), 62 * return ENOTCONN for unconnected sockets (POSIX) 63 * Janos Farkas : don't deliver multi/broadcasts to a different 64 * bound-to-device socket 65 * Hirokazu Takahashi : HW checksumming for outgoing UDP 66 * datagrams. 67 * Hirokazu Takahashi : sendfile() on UDP works now. 68 * Arnaldo C. Melo : convert /proc/net/udp to seq_file 69 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which 70 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind 71 * a single port at the same time. 72 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support 73 * 74 * 75 * This program is free software; you can redistribute it and/or 76 * modify it under the terms of the GNU General Public License 77 * as published by the Free Software Foundation; either version 78 * 2 of the License, or (at your option) any later version. 79 */ 80 81 #include <asm/system.h> 82 #include <asm/uaccess.h> 83 #include <asm/ioctls.h> 84 #include <linux/types.h> 85 #include <linux/fcntl.h> 86 #include <linux/module.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/in.h> 90 #include <linux/errno.h> 91 #include <linux/timer.h> 92 #include <linux/mm.h> 93 #include <linux/config.h> 94 #include <linux/inet.h> 95 #include <linux/ipv6.h> 96 #include <linux/netdevice.h> 97 #include <net/snmp.h> 98 #include <net/tcp.h> 99 #include <net/protocol.h> 100 #include <linux/skbuff.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <net/sock.h> 104 #include <net/udp.h> 105 #include <net/icmp.h> 106 #include <net/route.h> 107 #include <net/inet_common.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 111 /* 112 * Snmp MIB for the UDP layer 113 */ 114 115 DEFINE_SNMP_STAT(struct udp_mib, udp_statistics); 116 117 struct hlist_head udp_hash[UDP_HTABLE_SIZE]; 118 DEFINE_RWLOCK(udp_hash_lock); 119 120 /* Shared by v4/v6 udp. */ 121 int udp_port_rover; 122 123 static int udp_v4_get_port(struct sock *sk, unsigned short snum) 124 { 125 struct hlist_node *node; 126 struct sock *sk2; 127 struct inet_sock *inet = inet_sk(sk); 128 129 write_lock_bh(&udp_hash_lock); 130 if (snum == 0) { 131 int best_size_so_far, best, result, i; 132 133 if (udp_port_rover > sysctl_local_port_range[1] || 134 udp_port_rover < sysctl_local_port_range[0]) 135 udp_port_rover = sysctl_local_port_range[0]; 136 best_size_so_far = 32767; 137 best = result = udp_port_rover; 138 for (i = 0; i < UDP_HTABLE_SIZE; i++, result++) { 139 struct hlist_head *list; 140 int size; 141 142 list = &udp_hash[result & (UDP_HTABLE_SIZE - 1)]; 143 if (hlist_empty(list)) { 144 if (result > sysctl_local_port_range[1]) 145 result = sysctl_local_port_range[0] + 146 ((result - sysctl_local_port_range[0]) & 147 (UDP_HTABLE_SIZE - 1)); 148 goto gotit; 149 } 150 size = 0; 151 sk_for_each(sk2, node, list) 152 if (++size >= best_size_so_far) 153 goto next; 154 best_size_so_far = size; 155 best = result; 156 next:; 157 } 158 result = best; 159 for(i = 0; i < (1 << 16) / UDP_HTABLE_SIZE; i++, result += UDP_HTABLE_SIZE) { 160 if (result > sysctl_local_port_range[1]) 161 result = sysctl_local_port_range[0] 162 + ((result - sysctl_local_port_range[0]) & 163 (UDP_HTABLE_SIZE - 1)); 164 if (!udp_lport_inuse(result)) 165 break; 166 } 167 if (i >= (1 << 16) / UDP_HTABLE_SIZE) 168 goto fail; 169 gotit: 170 udp_port_rover = snum = result; 171 } else { 172 sk_for_each(sk2, node, 173 &udp_hash[snum & (UDP_HTABLE_SIZE - 1)]) { 174 struct inet_sock *inet2 = inet_sk(sk2); 175 176 if (inet2->num == snum && 177 sk2 != sk && 178 !ipv6_only_sock(sk2) && 179 (!sk2->sk_bound_dev_if || 180 !sk->sk_bound_dev_if || 181 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && 182 (!inet2->rcv_saddr || 183 !inet->rcv_saddr || 184 inet2->rcv_saddr == inet->rcv_saddr) && 185 (!sk2->sk_reuse || !sk->sk_reuse)) 186 goto fail; 187 } 188 } 189 inet->num = snum; 190 if (sk_unhashed(sk)) { 191 struct hlist_head *h = &udp_hash[snum & (UDP_HTABLE_SIZE - 1)]; 192 193 sk_add_node(sk, h); 194 sock_prot_inc_use(sk->sk_prot); 195 } 196 write_unlock_bh(&udp_hash_lock); 197 return 0; 198 199 fail: 200 write_unlock_bh(&udp_hash_lock); 201 return 1; 202 } 203 204 static void udp_v4_hash(struct sock *sk) 205 { 206 BUG(); 207 } 208 209 static void udp_v4_unhash(struct sock *sk) 210 { 211 write_lock_bh(&udp_hash_lock); 212 if (sk_del_node_init(sk)) { 213 inet_sk(sk)->num = 0; 214 sock_prot_dec_use(sk->sk_prot); 215 } 216 write_unlock_bh(&udp_hash_lock); 217 } 218 219 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try 220 * harder than this. -DaveM 221 */ 222 static struct sock *udp_v4_lookup_longway(u32 saddr, u16 sport, 223 u32 daddr, u16 dport, int dif) 224 { 225 struct sock *sk, *result = NULL; 226 struct hlist_node *node; 227 unsigned short hnum = ntohs(dport); 228 int badness = -1; 229 230 sk_for_each(sk, node, &udp_hash[hnum & (UDP_HTABLE_SIZE - 1)]) { 231 struct inet_sock *inet = inet_sk(sk); 232 233 if (inet->num == hnum && !ipv6_only_sock(sk)) { 234 int score = (sk->sk_family == PF_INET ? 1 : 0); 235 if (inet->rcv_saddr) { 236 if (inet->rcv_saddr != daddr) 237 continue; 238 score+=2; 239 } 240 if (inet->daddr) { 241 if (inet->daddr != saddr) 242 continue; 243 score+=2; 244 } 245 if (inet->dport) { 246 if (inet->dport != sport) 247 continue; 248 score+=2; 249 } 250 if (sk->sk_bound_dev_if) { 251 if (sk->sk_bound_dev_if != dif) 252 continue; 253 score+=2; 254 } 255 if(score == 9) { 256 result = sk; 257 break; 258 } else if(score > badness) { 259 result = sk; 260 badness = score; 261 } 262 } 263 } 264 return result; 265 } 266 267 static __inline__ struct sock *udp_v4_lookup(u32 saddr, u16 sport, 268 u32 daddr, u16 dport, int dif) 269 { 270 struct sock *sk; 271 272 read_lock(&udp_hash_lock); 273 sk = udp_v4_lookup_longway(saddr, sport, daddr, dport, dif); 274 if (sk) 275 sock_hold(sk); 276 read_unlock(&udp_hash_lock); 277 return sk; 278 } 279 280 static inline struct sock *udp_v4_mcast_next(struct sock *sk, 281 u16 loc_port, u32 loc_addr, 282 u16 rmt_port, u32 rmt_addr, 283 int dif) 284 { 285 struct hlist_node *node; 286 struct sock *s = sk; 287 unsigned short hnum = ntohs(loc_port); 288 289 sk_for_each_from(s, node) { 290 struct inet_sock *inet = inet_sk(s); 291 292 if (inet->num != hnum || 293 (inet->daddr && inet->daddr != rmt_addr) || 294 (inet->dport != rmt_port && inet->dport) || 295 (inet->rcv_saddr && inet->rcv_saddr != loc_addr) || 296 ipv6_only_sock(s) || 297 (s->sk_bound_dev_if && s->sk_bound_dev_if != dif)) 298 continue; 299 if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif)) 300 continue; 301 goto found; 302 } 303 s = NULL; 304 found: 305 return s; 306 } 307 308 /* 309 * This routine is called by the ICMP module when it gets some 310 * sort of error condition. If err < 0 then the socket should 311 * be closed and the error returned to the user. If err > 0 312 * it's just the icmp type << 8 | icmp code. 313 * Header points to the ip header of the error packet. We move 314 * on past this. Then (as it used to claim before adjustment) 315 * header points to the first 8 bytes of the udp header. We need 316 * to find the appropriate port. 317 */ 318 319 void udp_err(struct sk_buff *skb, u32 info) 320 { 321 struct inet_sock *inet; 322 struct iphdr *iph = (struct iphdr*)skb->data; 323 struct udphdr *uh = (struct udphdr*)(skb->data+(iph->ihl<<2)); 324 int type = skb->h.icmph->type; 325 int code = skb->h.icmph->code; 326 struct sock *sk; 327 int harderr; 328 int err; 329 330 sk = udp_v4_lookup(iph->daddr, uh->dest, iph->saddr, uh->source, skb->dev->ifindex); 331 if (sk == NULL) { 332 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS); 333 return; /* No socket for error */ 334 } 335 336 err = 0; 337 harderr = 0; 338 inet = inet_sk(sk); 339 340 switch (type) { 341 default: 342 case ICMP_TIME_EXCEEDED: 343 err = EHOSTUNREACH; 344 break; 345 case ICMP_SOURCE_QUENCH: 346 goto out; 347 case ICMP_PARAMETERPROB: 348 err = EPROTO; 349 harderr = 1; 350 break; 351 case ICMP_DEST_UNREACH: 352 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ 353 if (inet->pmtudisc != IP_PMTUDISC_DONT) { 354 err = EMSGSIZE; 355 harderr = 1; 356 break; 357 } 358 goto out; 359 } 360 err = EHOSTUNREACH; 361 if (code <= NR_ICMP_UNREACH) { 362 harderr = icmp_err_convert[code].fatal; 363 err = icmp_err_convert[code].errno; 364 } 365 break; 366 } 367 368 /* 369 * RFC1122: OK. Passes ICMP errors back to application, as per 370 * 4.1.3.3. 371 */ 372 if (!inet->recverr) { 373 if (!harderr || sk->sk_state != TCP_ESTABLISHED) 374 goto out; 375 } else { 376 ip_icmp_error(sk, skb, err, uh->dest, info, (u8*)(uh+1)); 377 } 378 sk->sk_err = err; 379 sk->sk_error_report(sk); 380 out: 381 sock_put(sk); 382 } 383 384 /* 385 * Throw away all pending data and cancel the corking. Socket is locked. 386 */ 387 static void udp_flush_pending_frames(struct sock *sk) 388 { 389 struct udp_sock *up = udp_sk(sk); 390 391 if (up->pending) { 392 up->len = 0; 393 up->pending = 0; 394 ip_flush_pending_frames(sk); 395 } 396 } 397 398 /* 399 * Push out all pending data as one UDP datagram. Socket is locked. 400 */ 401 static int udp_push_pending_frames(struct sock *sk, struct udp_sock *up) 402 { 403 struct inet_sock *inet = inet_sk(sk); 404 struct flowi *fl = &inet->cork.fl; 405 struct sk_buff *skb; 406 struct udphdr *uh; 407 int err = 0; 408 409 /* Grab the skbuff where UDP header space exists. */ 410 if ((skb = skb_peek(&sk->sk_write_queue)) == NULL) 411 goto out; 412 413 /* 414 * Create a UDP header 415 */ 416 uh = skb->h.uh; 417 uh->source = fl->fl_ip_sport; 418 uh->dest = fl->fl_ip_dport; 419 uh->len = htons(up->len); 420 uh->check = 0; 421 422 if (sk->sk_no_check == UDP_CSUM_NOXMIT) { 423 skb->ip_summed = CHECKSUM_NONE; 424 goto send; 425 } 426 427 if (skb_queue_len(&sk->sk_write_queue) == 1) { 428 /* 429 * Only one fragment on the socket. 430 */ 431 if (skb->ip_summed == CHECKSUM_HW) { 432 skb->csum = offsetof(struct udphdr, check); 433 uh->check = ~csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, 434 up->len, IPPROTO_UDP, 0); 435 } else { 436 skb->csum = csum_partial((char *)uh, 437 sizeof(struct udphdr), skb->csum); 438 uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, 439 up->len, IPPROTO_UDP, skb->csum); 440 if (uh->check == 0) 441 uh->check = -1; 442 } 443 } else { 444 unsigned int csum = 0; 445 /* 446 * HW-checksum won't work as there are two or more 447 * fragments on the socket so that all csums of sk_buffs 448 * should be together. 449 */ 450 if (skb->ip_summed == CHECKSUM_HW) { 451 int offset = (unsigned char *)uh - skb->data; 452 skb->csum = skb_checksum(skb, offset, skb->len - offset, 0); 453 454 skb->ip_summed = CHECKSUM_NONE; 455 } else { 456 skb->csum = csum_partial((char *)uh, 457 sizeof(struct udphdr), skb->csum); 458 } 459 460 skb_queue_walk(&sk->sk_write_queue, skb) { 461 csum = csum_add(csum, skb->csum); 462 } 463 uh->check = csum_tcpudp_magic(fl->fl4_src, fl->fl4_dst, 464 up->len, IPPROTO_UDP, csum); 465 if (uh->check == 0) 466 uh->check = -1; 467 } 468 send: 469 err = ip_push_pending_frames(sk); 470 out: 471 up->len = 0; 472 up->pending = 0; 473 return err; 474 } 475 476 477 static unsigned short udp_check(struct udphdr *uh, int len, unsigned long saddr, unsigned long daddr, unsigned long base) 478 { 479 return(csum_tcpudp_magic(saddr, daddr, len, IPPROTO_UDP, base)); 480 } 481 482 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 483 size_t len) 484 { 485 struct inet_sock *inet = inet_sk(sk); 486 struct udp_sock *up = udp_sk(sk); 487 int ulen = len; 488 struct ipcm_cookie ipc; 489 struct rtable *rt = NULL; 490 int free = 0; 491 int connected = 0; 492 u32 daddr, faddr, saddr; 493 u16 dport; 494 u8 tos; 495 int err; 496 int corkreq = up->corkflag || msg->msg_flags&MSG_MORE; 497 498 if (len > 0xFFFF) 499 return -EMSGSIZE; 500 501 /* 502 * Check the flags. 503 */ 504 505 if (msg->msg_flags&MSG_OOB) /* Mirror BSD error message compatibility */ 506 return -EOPNOTSUPP; 507 508 ipc.opt = NULL; 509 510 if (up->pending) { 511 /* 512 * There are pending frames. 513 * The socket lock must be held while it's corked. 514 */ 515 lock_sock(sk); 516 if (likely(up->pending)) { 517 if (unlikely(up->pending != AF_INET)) { 518 release_sock(sk); 519 return -EINVAL; 520 } 521 goto do_append_data; 522 } 523 release_sock(sk); 524 } 525 ulen += sizeof(struct udphdr); 526 527 /* 528 * Get and verify the address. 529 */ 530 if (msg->msg_name) { 531 struct sockaddr_in * usin = (struct sockaddr_in*)msg->msg_name; 532 if (msg->msg_namelen < sizeof(*usin)) 533 return -EINVAL; 534 if (usin->sin_family != AF_INET) { 535 if (usin->sin_family != AF_UNSPEC) 536 return -EAFNOSUPPORT; 537 } 538 539 daddr = usin->sin_addr.s_addr; 540 dport = usin->sin_port; 541 if (dport == 0) 542 return -EINVAL; 543 } else { 544 if (sk->sk_state != TCP_ESTABLISHED) 545 return -EDESTADDRREQ; 546 daddr = inet->daddr; 547 dport = inet->dport; 548 /* Open fast path for connected socket. 549 Route will not be used, if at least one option is set. 550 */ 551 connected = 1; 552 } 553 ipc.addr = inet->saddr; 554 555 ipc.oif = sk->sk_bound_dev_if; 556 if (msg->msg_controllen) { 557 err = ip_cmsg_send(msg, &ipc); 558 if (err) 559 return err; 560 if (ipc.opt) 561 free = 1; 562 connected = 0; 563 } 564 if (!ipc.opt) 565 ipc.opt = inet->opt; 566 567 saddr = ipc.addr; 568 ipc.addr = faddr = daddr; 569 570 if (ipc.opt && ipc.opt->srr) { 571 if (!daddr) 572 return -EINVAL; 573 faddr = ipc.opt->faddr; 574 connected = 0; 575 } 576 tos = RT_TOS(inet->tos); 577 if (sock_flag(sk, SOCK_LOCALROUTE) || 578 (msg->msg_flags & MSG_DONTROUTE) || 579 (ipc.opt && ipc.opt->is_strictroute)) { 580 tos |= RTO_ONLINK; 581 connected = 0; 582 } 583 584 if (MULTICAST(daddr)) { 585 if (!ipc.oif) 586 ipc.oif = inet->mc_index; 587 if (!saddr) 588 saddr = inet->mc_addr; 589 connected = 0; 590 } 591 592 if (connected) 593 rt = (struct rtable*)sk_dst_check(sk, 0); 594 595 if (rt == NULL) { 596 struct flowi fl = { .oif = ipc.oif, 597 .nl_u = { .ip4_u = 598 { .daddr = faddr, 599 .saddr = saddr, 600 .tos = tos } }, 601 .proto = IPPROTO_UDP, 602 .uli_u = { .ports = 603 { .sport = inet->sport, 604 .dport = dport } } }; 605 err = ip_route_output_flow(&rt, &fl, sk, !(msg->msg_flags&MSG_DONTWAIT)); 606 if (err) 607 goto out; 608 609 err = -EACCES; 610 if ((rt->rt_flags & RTCF_BROADCAST) && 611 !sock_flag(sk, SOCK_BROADCAST)) 612 goto out; 613 if (connected) 614 sk_dst_set(sk, dst_clone(&rt->u.dst)); 615 } 616 617 if (msg->msg_flags&MSG_CONFIRM) 618 goto do_confirm; 619 back_from_confirm: 620 621 saddr = rt->rt_src; 622 if (!ipc.addr) 623 daddr = ipc.addr = rt->rt_dst; 624 625 lock_sock(sk); 626 if (unlikely(up->pending)) { 627 /* The socket is already corked while preparing it. */ 628 /* ... which is an evident application bug. --ANK */ 629 release_sock(sk); 630 631 NETDEBUG(if (net_ratelimit()) printk(KERN_DEBUG "udp cork app bug 2\n")); 632 err = -EINVAL; 633 goto out; 634 } 635 /* 636 * Now cork the socket to pend data. 637 */ 638 inet->cork.fl.fl4_dst = daddr; 639 inet->cork.fl.fl_ip_dport = dport; 640 inet->cork.fl.fl4_src = saddr; 641 inet->cork.fl.fl_ip_sport = inet->sport; 642 up->pending = AF_INET; 643 644 do_append_data: 645 up->len += ulen; 646 err = ip_append_data(sk, ip_generic_getfrag, msg->msg_iov, ulen, 647 sizeof(struct udphdr), &ipc, rt, 648 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); 649 if (err) 650 udp_flush_pending_frames(sk); 651 else if (!corkreq) 652 err = udp_push_pending_frames(sk, up); 653 release_sock(sk); 654 655 out: 656 ip_rt_put(rt); 657 if (free) 658 kfree(ipc.opt); 659 if (!err) { 660 UDP_INC_STATS_USER(UDP_MIB_OUTDATAGRAMS); 661 return len; 662 } 663 return err; 664 665 do_confirm: 666 dst_confirm(&rt->u.dst); 667 if (!(msg->msg_flags&MSG_PROBE) || len) 668 goto back_from_confirm; 669 err = 0; 670 goto out; 671 } 672 673 static int udp_sendpage(struct sock *sk, struct page *page, int offset, 674 size_t size, int flags) 675 { 676 struct udp_sock *up = udp_sk(sk); 677 int ret; 678 679 if (!up->pending) { 680 struct msghdr msg = { .msg_flags = flags|MSG_MORE }; 681 682 /* Call udp_sendmsg to specify destination address which 683 * sendpage interface can't pass. 684 * This will succeed only when the socket is connected. 685 */ 686 ret = udp_sendmsg(NULL, sk, &msg, 0); 687 if (ret < 0) 688 return ret; 689 } 690 691 lock_sock(sk); 692 693 if (unlikely(!up->pending)) { 694 release_sock(sk); 695 696 NETDEBUG(if (net_ratelimit()) printk(KERN_DEBUG "udp cork app bug 3\n")); 697 return -EINVAL; 698 } 699 700 ret = ip_append_page(sk, page, offset, size, flags); 701 if (ret == -EOPNOTSUPP) { 702 release_sock(sk); 703 return sock_no_sendpage(sk->sk_socket, page, offset, 704 size, flags); 705 } 706 if (ret < 0) { 707 udp_flush_pending_frames(sk); 708 goto out; 709 } 710 711 up->len += size; 712 if (!(up->corkflag || (flags&MSG_MORE))) 713 ret = udp_push_pending_frames(sk, up); 714 if (!ret) 715 ret = size; 716 out: 717 release_sock(sk); 718 return ret; 719 } 720 721 /* 722 * IOCTL requests applicable to the UDP protocol 723 */ 724 725 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg) 726 { 727 switch(cmd) 728 { 729 case SIOCOUTQ: 730 { 731 int amount = atomic_read(&sk->sk_wmem_alloc); 732 return put_user(amount, (int __user *)arg); 733 } 734 735 case SIOCINQ: 736 { 737 struct sk_buff *skb; 738 unsigned long amount; 739 740 amount = 0; 741 spin_lock_bh(&sk->sk_receive_queue.lock); 742 skb = skb_peek(&sk->sk_receive_queue); 743 if (skb != NULL) { 744 /* 745 * We will only return the amount 746 * of this packet since that is all 747 * that will be read. 748 */ 749 amount = skb->len - sizeof(struct udphdr); 750 } 751 spin_unlock_bh(&sk->sk_receive_queue.lock); 752 return put_user(amount, (int __user *)arg); 753 } 754 755 default: 756 return -ENOIOCTLCMD; 757 } 758 return(0); 759 } 760 761 static __inline__ int __udp_checksum_complete(struct sk_buff *skb) 762 { 763 return (unsigned short)csum_fold(skb_checksum(skb, 0, skb->len, skb->csum)); 764 } 765 766 static __inline__ int udp_checksum_complete(struct sk_buff *skb) 767 { 768 return skb->ip_summed != CHECKSUM_UNNECESSARY && 769 __udp_checksum_complete(skb); 770 } 771 772 /* 773 * This should be easy, if there is something there we 774 * return it, otherwise we block. 775 */ 776 777 static int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, 778 size_t len, int noblock, int flags, int *addr_len) 779 { 780 struct inet_sock *inet = inet_sk(sk); 781 struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name; 782 struct sk_buff *skb; 783 int copied, err; 784 785 /* 786 * Check any passed addresses 787 */ 788 if (addr_len) 789 *addr_len=sizeof(*sin); 790 791 if (flags & MSG_ERRQUEUE) 792 return ip_recv_error(sk, msg, len); 793 794 try_again: 795 skb = skb_recv_datagram(sk, flags, noblock, &err); 796 if (!skb) 797 goto out; 798 799 copied = skb->len - sizeof(struct udphdr); 800 if (copied > len) { 801 copied = len; 802 msg->msg_flags |= MSG_TRUNC; 803 } 804 805 if (skb->ip_summed==CHECKSUM_UNNECESSARY) { 806 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov, 807 copied); 808 } else if (msg->msg_flags&MSG_TRUNC) { 809 if (__udp_checksum_complete(skb)) 810 goto csum_copy_err; 811 err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov, 812 copied); 813 } else { 814 err = skb_copy_and_csum_datagram_iovec(skb, sizeof(struct udphdr), msg->msg_iov); 815 816 if (err == -EINVAL) 817 goto csum_copy_err; 818 } 819 820 if (err) 821 goto out_free; 822 823 sock_recv_timestamp(msg, sk, skb); 824 825 /* Copy the address. */ 826 if (sin) 827 { 828 sin->sin_family = AF_INET; 829 sin->sin_port = skb->h.uh->source; 830 sin->sin_addr.s_addr = skb->nh.iph->saddr; 831 memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); 832 } 833 if (inet->cmsg_flags) 834 ip_cmsg_recv(msg, skb); 835 836 err = copied; 837 if (flags & MSG_TRUNC) 838 err = skb->len - sizeof(struct udphdr); 839 840 out_free: 841 skb_free_datagram(sk, skb); 842 out: 843 return err; 844 845 csum_copy_err: 846 UDP_INC_STATS_BH(UDP_MIB_INERRORS); 847 848 /* Clear queue. */ 849 if (flags&MSG_PEEK) { 850 int clear = 0; 851 spin_lock_bh(&sk->sk_receive_queue.lock); 852 if (skb == skb_peek(&sk->sk_receive_queue)) { 853 __skb_unlink(skb, &sk->sk_receive_queue); 854 clear = 1; 855 } 856 spin_unlock_bh(&sk->sk_receive_queue.lock); 857 if (clear) 858 kfree_skb(skb); 859 } 860 861 skb_free_datagram(sk, skb); 862 863 if (noblock) 864 return -EAGAIN; 865 goto try_again; 866 } 867 868 869 int udp_disconnect(struct sock *sk, int flags) 870 { 871 struct inet_sock *inet = inet_sk(sk); 872 /* 873 * 1003.1g - break association. 874 */ 875 876 sk->sk_state = TCP_CLOSE; 877 inet->daddr = 0; 878 inet->dport = 0; 879 sk->sk_bound_dev_if = 0; 880 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 881 inet_reset_saddr(sk); 882 883 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { 884 sk->sk_prot->unhash(sk); 885 inet->sport = 0; 886 } 887 sk_dst_reset(sk); 888 return 0; 889 } 890 891 static void udp_close(struct sock *sk, long timeout) 892 { 893 sk_common_release(sk); 894 } 895 896 /* return: 897 * 1 if the the UDP system should process it 898 * 0 if we should drop this packet 899 * -1 if it should get processed by xfrm4_rcv_encap 900 */ 901 static int udp_encap_rcv(struct sock * sk, struct sk_buff *skb) 902 { 903 #ifndef CONFIG_XFRM 904 return 1; 905 #else 906 struct udp_sock *up = udp_sk(sk); 907 struct udphdr *uh = skb->h.uh; 908 struct iphdr *iph; 909 int iphlen, len; 910 911 __u8 *udpdata = (__u8 *)uh + sizeof(struct udphdr); 912 __u32 *udpdata32 = (__u32 *)udpdata; 913 __u16 encap_type = up->encap_type; 914 915 /* if we're overly short, let UDP handle it */ 916 if (udpdata > skb->tail) 917 return 1; 918 919 /* if this is not encapsulated socket, then just return now */ 920 if (!encap_type) 921 return 1; 922 923 len = skb->tail - udpdata; 924 925 switch (encap_type) { 926 default: 927 case UDP_ENCAP_ESPINUDP: 928 /* Check if this is a keepalive packet. If so, eat it. */ 929 if (len == 1 && udpdata[0] == 0xff) { 930 return 0; 931 } else if (len > sizeof(struct ip_esp_hdr) && udpdata32[0] != 0 ) { 932 /* ESP Packet without Non-ESP header */ 933 len = sizeof(struct udphdr); 934 } else 935 /* Must be an IKE packet.. pass it through */ 936 return 1; 937 break; 938 case UDP_ENCAP_ESPINUDP_NON_IKE: 939 /* Check if this is a keepalive packet. If so, eat it. */ 940 if (len == 1 && udpdata[0] == 0xff) { 941 return 0; 942 } else if (len > 2 * sizeof(u32) + sizeof(struct ip_esp_hdr) && 943 udpdata32[0] == 0 && udpdata32[1] == 0) { 944 945 /* ESP Packet with Non-IKE marker */ 946 len = sizeof(struct udphdr) + 2 * sizeof(u32); 947 } else 948 /* Must be an IKE packet.. pass it through */ 949 return 1; 950 break; 951 } 952 953 /* At this point we are sure that this is an ESPinUDP packet, 954 * so we need to remove 'len' bytes from the packet (the UDP 955 * header and optional ESP marker bytes) and then modify the 956 * protocol to ESP, and then call into the transform receiver. 957 */ 958 if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 959 return 0; 960 961 /* Now we can update and verify the packet length... */ 962 iph = skb->nh.iph; 963 iphlen = iph->ihl << 2; 964 iph->tot_len = htons(ntohs(iph->tot_len) - len); 965 if (skb->len < iphlen + len) { 966 /* packet is too small!?! */ 967 return 0; 968 } 969 970 /* pull the data buffer up to the ESP header and set the 971 * transport header to point to ESP. Keep UDP on the stack 972 * for later. 973 */ 974 skb->h.raw = skb_pull(skb, len); 975 976 /* modify the protocol (it's ESP!) */ 977 iph->protocol = IPPROTO_ESP; 978 979 /* and let the caller know to send this into the ESP processor... */ 980 return -1; 981 #endif 982 } 983 984 /* returns: 985 * -1: error 986 * 0: success 987 * >0: "udp encap" protocol resubmission 988 * 989 * Note that in the success and error cases, the skb is assumed to 990 * have either been requeued or freed. 991 */ 992 static int udp_queue_rcv_skb(struct sock * sk, struct sk_buff *skb) 993 { 994 struct udp_sock *up = udp_sk(sk); 995 996 /* 997 * Charge it to the socket, dropping if the queue is full. 998 */ 999 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) { 1000 kfree_skb(skb); 1001 return -1; 1002 } 1003 1004 if (up->encap_type) { 1005 /* 1006 * This is an encapsulation socket, so let's see if this is 1007 * an encapsulated packet. 1008 * If it's a keepalive packet, then just eat it. 1009 * If it's an encapsulateed packet, then pass it to the 1010 * IPsec xfrm input and return the response 1011 * appropriately. Otherwise, just fall through and 1012 * pass this up the UDP socket. 1013 */ 1014 int ret; 1015 1016 ret = udp_encap_rcv(sk, skb); 1017 if (ret == 0) { 1018 /* Eat the packet .. */ 1019 kfree_skb(skb); 1020 return 0; 1021 } 1022 if (ret < 0) { 1023 /* process the ESP packet */ 1024 ret = xfrm4_rcv_encap(skb, up->encap_type); 1025 UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS); 1026 return -ret; 1027 } 1028 /* FALLTHROUGH -- it's a UDP Packet */ 1029 } 1030 1031 if (sk->sk_filter && skb->ip_summed != CHECKSUM_UNNECESSARY) { 1032 if (__udp_checksum_complete(skb)) { 1033 UDP_INC_STATS_BH(UDP_MIB_INERRORS); 1034 kfree_skb(skb); 1035 return -1; 1036 } 1037 skb->ip_summed = CHECKSUM_UNNECESSARY; 1038 } 1039 1040 if (sock_queue_rcv_skb(sk,skb)<0) { 1041 UDP_INC_STATS_BH(UDP_MIB_INERRORS); 1042 kfree_skb(skb); 1043 return -1; 1044 } 1045 UDP_INC_STATS_BH(UDP_MIB_INDATAGRAMS); 1046 return 0; 1047 } 1048 1049 /* 1050 * Multicasts and broadcasts go to each listener. 1051 * 1052 * Note: called only from the BH handler context, 1053 * so we don't need to lock the hashes. 1054 */ 1055 static int udp_v4_mcast_deliver(struct sk_buff *skb, struct udphdr *uh, 1056 u32 saddr, u32 daddr) 1057 { 1058 struct sock *sk; 1059 int dif; 1060 1061 read_lock(&udp_hash_lock); 1062 sk = sk_head(&udp_hash[ntohs(uh->dest) & (UDP_HTABLE_SIZE - 1)]); 1063 dif = skb->dev->ifindex; 1064 sk = udp_v4_mcast_next(sk, uh->dest, daddr, uh->source, saddr, dif); 1065 if (sk) { 1066 struct sock *sknext = NULL; 1067 1068 do { 1069 struct sk_buff *skb1 = skb; 1070 1071 sknext = udp_v4_mcast_next(sk_next(sk), uh->dest, daddr, 1072 uh->source, saddr, dif); 1073 if(sknext) 1074 skb1 = skb_clone(skb, GFP_ATOMIC); 1075 1076 if(skb1) { 1077 int ret = udp_queue_rcv_skb(sk, skb1); 1078 if (ret > 0) 1079 /* we should probably re-process instead 1080 * of dropping packets here. */ 1081 kfree_skb(skb1); 1082 } 1083 sk = sknext; 1084 } while(sknext); 1085 } else 1086 kfree_skb(skb); 1087 read_unlock(&udp_hash_lock); 1088 return 0; 1089 } 1090 1091 /* Initialize UDP checksum. If exited with zero value (success), 1092 * CHECKSUM_UNNECESSARY means, that no more checks are required. 1093 * Otherwise, csum completion requires chacksumming packet body, 1094 * including udp header and folding it to skb->csum. 1095 */ 1096 static int udp_checksum_init(struct sk_buff *skb, struct udphdr *uh, 1097 unsigned short ulen, u32 saddr, u32 daddr) 1098 { 1099 if (uh->check == 0) { 1100 skb->ip_summed = CHECKSUM_UNNECESSARY; 1101 } else if (skb->ip_summed == CHECKSUM_HW) { 1102 skb->ip_summed = CHECKSUM_UNNECESSARY; 1103 if (!udp_check(uh, ulen, saddr, daddr, skb->csum)) 1104 return 0; 1105 NETDEBUG(if (net_ratelimit()) printk(KERN_DEBUG "udp v4 hw csum failure.\n")); 1106 skb->ip_summed = CHECKSUM_NONE; 1107 } 1108 if (skb->ip_summed != CHECKSUM_UNNECESSARY) 1109 skb->csum = csum_tcpudp_nofold(saddr, daddr, ulen, IPPROTO_UDP, 0); 1110 /* Probably, we should checksum udp header (it should be in cache 1111 * in any case) and data in tiny packets (< rx copybreak). 1112 */ 1113 return 0; 1114 } 1115 1116 /* 1117 * All we need to do is get the socket, and then do a checksum. 1118 */ 1119 1120 int udp_rcv(struct sk_buff *skb) 1121 { 1122 struct sock *sk; 1123 struct udphdr *uh; 1124 unsigned short ulen; 1125 struct rtable *rt = (struct rtable*)skb->dst; 1126 u32 saddr = skb->nh.iph->saddr; 1127 u32 daddr = skb->nh.iph->daddr; 1128 int len = skb->len; 1129 1130 /* 1131 * Validate the packet and the UDP length. 1132 */ 1133 if (!pskb_may_pull(skb, sizeof(struct udphdr))) 1134 goto no_header; 1135 1136 uh = skb->h.uh; 1137 1138 ulen = ntohs(uh->len); 1139 1140 if (ulen > len || ulen < sizeof(*uh)) 1141 goto short_packet; 1142 1143 if (pskb_trim(skb, ulen)) 1144 goto short_packet; 1145 1146 if (udp_checksum_init(skb, uh, ulen, saddr, daddr) < 0) 1147 goto csum_error; 1148 1149 if(rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) 1150 return udp_v4_mcast_deliver(skb, uh, saddr, daddr); 1151 1152 sk = udp_v4_lookup(saddr, uh->source, daddr, uh->dest, skb->dev->ifindex); 1153 1154 if (sk != NULL) { 1155 int ret = udp_queue_rcv_skb(sk, skb); 1156 sock_put(sk); 1157 1158 /* a return value > 0 means to resubmit the input, but 1159 * it it wants the return to be -protocol, or 0 1160 */ 1161 if (ret > 0) 1162 return -ret; 1163 return 0; 1164 } 1165 1166 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) 1167 goto drop; 1168 1169 /* No socket. Drop packet silently, if checksum is wrong */ 1170 if (udp_checksum_complete(skb)) 1171 goto csum_error; 1172 1173 UDP_INC_STATS_BH(UDP_MIB_NOPORTS); 1174 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0); 1175 1176 /* 1177 * Hmm. We got an UDP packet to a port to which we 1178 * don't wanna listen. Ignore it. 1179 */ 1180 kfree_skb(skb); 1181 return(0); 1182 1183 short_packet: 1184 NETDEBUG(if (net_ratelimit()) 1185 printk(KERN_DEBUG "UDP: short packet: From %u.%u.%u.%u:%u %d/%d to %u.%u.%u.%u:%u\n", 1186 NIPQUAD(saddr), 1187 ntohs(uh->source), 1188 ulen, 1189 len, 1190 NIPQUAD(daddr), 1191 ntohs(uh->dest))); 1192 no_header: 1193 UDP_INC_STATS_BH(UDP_MIB_INERRORS); 1194 kfree_skb(skb); 1195 return(0); 1196 1197 csum_error: 1198 /* 1199 * RFC1122: OK. Discards the bad packet silently (as far as 1200 * the network is concerned, anyway) as per 4.1.3.4 (MUST). 1201 */ 1202 NETDEBUG(if (net_ratelimit()) 1203 printk(KERN_DEBUG "UDP: bad checksum. From %d.%d.%d.%d:%d to %d.%d.%d.%d:%d ulen %d\n", 1204 NIPQUAD(saddr), 1205 ntohs(uh->source), 1206 NIPQUAD(daddr), 1207 ntohs(uh->dest), 1208 ulen)); 1209 drop: 1210 UDP_INC_STATS_BH(UDP_MIB_INERRORS); 1211 kfree_skb(skb); 1212 return(0); 1213 } 1214 1215 static int udp_destroy_sock(struct sock *sk) 1216 { 1217 lock_sock(sk); 1218 udp_flush_pending_frames(sk); 1219 release_sock(sk); 1220 return 0; 1221 } 1222 1223 /* 1224 * Socket option code for UDP 1225 */ 1226 static int udp_setsockopt(struct sock *sk, int level, int optname, 1227 char __user *optval, int optlen) 1228 { 1229 struct udp_sock *up = udp_sk(sk); 1230 int val; 1231 int err = 0; 1232 1233 if (level != SOL_UDP) 1234 return ip_setsockopt(sk, level, optname, optval, optlen); 1235 1236 if(optlen<sizeof(int)) 1237 return -EINVAL; 1238 1239 if (get_user(val, (int __user *)optval)) 1240 return -EFAULT; 1241 1242 switch(optname) { 1243 case UDP_CORK: 1244 if (val != 0) { 1245 up->corkflag = 1; 1246 } else { 1247 up->corkflag = 0; 1248 lock_sock(sk); 1249 udp_push_pending_frames(sk, up); 1250 release_sock(sk); 1251 } 1252 break; 1253 1254 case UDP_ENCAP: 1255 switch (val) { 1256 case 0: 1257 case UDP_ENCAP_ESPINUDP: 1258 case UDP_ENCAP_ESPINUDP_NON_IKE: 1259 up->encap_type = val; 1260 break; 1261 default: 1262 err = -ENOPROTOOPT; 1263 break; 1264 } 1265 break; 1266 1267 default: 1268 err = -ENOPROTOOPT; 1269 break; 1270 }; 1271 1272 return err; 1273 } 1274 1275 static int udp_getsockopt(struct sock *sk, int level, int optname, 1276 char __user *optval, int __user *optlen) 1277 { 1278 struct udp_sock *up = udp_sk(sk); 1279 int val, len; 1280 1281 if (level != SOL_UDP) 1282 return ip_getsockopt(sk, level, optname, optval, optlen); 1283 1284 if(get_user(len,optlen)) 1285 return -EFAULT; 1286 1287 len = min_t(unsigned int, len, sizeof(int)); 1288 1289 if(len < 0) 1290 return -EINVAL; 1291 1292 switch(optname) { 1293 case UDP_CORK: 1294 val = up->corkflag; 1295 break; 1296 1297 case UDP_ENCAP: 1298 val = up->encap_type; 1299 break; 1300 1301 default: 1302 return -ENOPROTOOPT; 1303 }; 1304 1305 if(put_user(len, optlen)) 1306 return -EFAULT; 1307 if(copy_to_user(optval, &val,len)) 1308 return -EFAULT; 1309 return 0; 1310 } 1311 1312 /** 1313 * udp_poll - wait for a UDP event. 1314 * @file - file struct 1315 * @sock - socket 1316 * @wait - poll table 1317 * 1318 * This is same as datagram poll, except for the special case of 1319 * blocking sockets. If application is using a blocking fd 1320 * and a packet with checksum error is in the queue; 1321 * then it could get return from select indicating data available 1322 * but then block when reading it. Add special case code 1323 * to work around these arguably broken applications. 1324 */ 1325 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait) 1326 { 1327 unsigned int mask = datagram_poll(file, sock, wait); 1328 struct sock *sk = sock->sk; 1329 1330 /* Check for false positives due to checksum errors */ 1331 if ( (mask & POLLRDNORM) && 1332 !(file->f_flags & O_NONBLOCK) && 1333 !(sk->sk_shutdown & RCV_SHUTDOWN)){ 1334 struct sk_buff_head *rcvq = &sk->sk_receive_queue; 1335 struct sk_buff *skb; 1336 1337 spin_lock_bh(&rcvq->lock); 1338 while ((skb = skb_peek(rcvq)) != NULL) { 1339 if (udp_checksum_complete(skb)) { 1340 UDP_INC_STATS_BH(UDP_MIB_INERRORS); 1341 __skb_unlink(skb, rcvq); 1342 kfree_skb(skb); 1343 } else { 1344 skb->ip_summed = CHECKSUM_UNNECESSARY; 1345 break; 1346 } 1347 } 1348 spin_unlock_bh(&rcvq->lock); 1349 1350 /* nothing to see, move along */ 1351 if (skb == NULL) 1352 mask &= ~(POLLIN | POLLRDNORM); 1353 } 1354 1355 return mask; 1356 1357 } 1358 1359 struct proto udp_prot = { 1360 .name = "UDP", 1361 .owner = THIS_MODULE, 1362 .close = udp_close, 1363 .connect = ip4_datagram_connect, 1364 .disconnect = udp_disconnect, 1365 .ioctl = udp_ioctl, 1366 .destroy = udp_destroy_sock, 1367 .setsockopt = udp_setsockopt, 1368 .getsockopt = udp_getsockopt, 1369 .sendmsg = udp_sendmsg, 1370 .recvmsg = udp_recvmsg, 1371 .sendpage = udp_sendpage, 1372 .backlog_rcv = udp_queue_rcv_skb, 1373 .hash = udp_v4_hash, 1374 .unhash = udp_v4_unhash, 1375 .get_port = udp_v4_get_port, 1376 .obj_size = sizeof(struct udp_sock), 1377 }; 1378 1379 /* ------------------------------------------------------------------------ */ 1380 #ifdef CONFIG_PROC_FS 1381 1382 static struct sock *udp_get_first(struct seq_file *seq) 1383 { 1384 struct sock *sk; 1385 struct udp_iter_state *state = seq->private; 1386 1387 for (state->bucket = 0; state->bucket < UDP_HTABLE_SIZE; ++state->bucket) { 1388 struct hlist_node *node; 1389 sk_for_each(sk, node, &udp_hash[state->bucket]) { 1390 if (sk->sk_family == state->family) 1391 goto found; 1392 } 1393 } 1394 sk = NULL; 1395 found: 1396 return sk; 1397 } 1398 1399 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) 1400 { 1401 struct udp_iter_state *state = seq->private; 1402 1403 do { 1404 sk = sk_next(sk); 1405 try_again: 1406 ; 1407 } while (sk && sk->sk_family != state->family); 1408 1409 if (!sk && ++state->bucket < UDP_HTABLE_SIZE) { 1410 sk = sk_head(&udp_hash[state->bucket]); 1411 goto try_again; 1412 } 1413 return sk; 1414 } 1415 1416 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) 1417 { 1418 struct sock *sk = udp_get_first(seq); 1419 1420 if (sk) 1421 while(pos && (sk = udp_get_next(seq, sk)) != NULL) 1422 --pos; 1423 return pos ? NULL : sk; 1424 } 1425 1426 static void *udp_seq_start(struct seq_file *seq, loff_t *pos) 1427 { 1428 read_lock(&udp_hash_lock); 1429 return *pos ? udp_get_idx(seq, *pos-1) : (void *)1; 1430 } 1431 1432 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1433 { 1434 struct sock *sk; 1435 1436 if (v == (void *)1) 1437 sk = udp_get_idx(seq, 0); 1438 else 1439 sk = udp_get_next(seq, v); 1440 1441 ++*pos; 1442 return sk; 1443 } 1444 1445 static void udp_seq_stop(struct seq_file *seq, void *v) 1446 { 1447 read_unlock(&udp_hash_lock); 1448 } 1449 1450 static int udp_seq_open(struct inode *inode, struct file *file) 1451 { 1452 struct udp_seq_afinfo *afinfo = PDE(inode)->data; 1453 struct seq_file *seq; 1454 int rc = -ENOMEM; 1455 struct udp_iter_state *s = kmalloc(sizeof(*s), GFP_KERNEL); 1456 1457 if (!s) 1458 goto out; 1459 memset(s, 0, sizeof(*s)); 1460 s->family = afinfo->family; 1461 s->seq_ops.start = udp_seq_start; 1462 s->seq_ops.next = udp_seq_next; 1463 s->seq_ops.show = afinfo->seq_show; 1464 s->seq_ops.stop = udp_seq_stop; 1465 1466 rc = seq_open(file, &s->seq_ops); 1467 if (rc) 1468 goto out_kfree; 1469 1470 seq = file->private_data; 1471 seq->private = s; 1472 out: 1473 return rc; 1474 out_kfree: 1475 kfree(s); 1476 goto out; 1477 } 1478 1479 /* ------------------------------------------------------------------------ */ 1480 int udp_proc_register(struct udp_seq_afinfo *afinfo) 1481 { 1482 struct proc_dir_entry *p; 1483 int rc = 0; 1484 1485 if (!afinfo) 1486 return -EINVAL; 1487 afinfo->seq_fops->owner = afinfo->owner; 1488 afinfo->seq_fops->open = udp_seq_open; 1489 afinfo->seq_fops->read = seq_read; 1490 afinfo->seq_fops->llseek = seq_lseek; 1491 afinfo->seq_fops->release = seq_release_private; 1492 1493 p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops); 1494 if (p) 1495 p->data = afinfo; 1496 else 1497 rc = -ENOMEM; 1498 return rc; 1499 } 1500 1501 void udp_proc_unregister(struct udp_seq_afinfo *afinfo) 1502 { 1503 if (!afinfo) 1504 return; 1505 proc_net_remove(afinfo->name); 1506 memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops)); 1507 } 1508 1509 /* ------------------------------------------------------------------------ */ 1510 static void udp4_format_sock(struct sock *sp, char *tmpbuf, int bucket) 1511 { 1512 struct inet_sock *inet = inet_sk(sp); 1513 unsigned int dest = inet->daddr; 1514 unsigned int src = inet->rcv_saddr; 1515 __u16 destp = ntohs(inet->dport); 1516 __u16 srcp = ntohs(inet->sport); 1517 1518 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X" 1519 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p", 1520 bucket, src, srcp, dest, destp, sp->sk_state, 1521 atomic_read(&sp->sk_wmem_alloc), 1522 atomic_read(&sp->sk_rmem_alloc), 1523 0, 0L, 0, sock_i_uid(sp), 0, sock_i_ino(sp), 1524 atomic_read(&sp->sk_refcnt), sp); 1525 } 1526 1527 static int udp4_seq_show(struct seq_file *seq, void *v) 1528 { 1529 if (v == SEQ_START_TOKEN) 1530 seq_printf(seq, "%-127s\n", 1531 " sl local_address rem_address st tx_queue " 1532 "rx_queue tr tm->when retrnsmt uid timeout " 1533 "inode"); 1534 else { 1535 char tmpbuf[129]; 1536 struct udp_iter_state *state = seq->private; 1537 1538 udp4_format_sock(v, tmpbuf, state->bucket); 1539 seq_printf(seq, "%-127s\n", tmpbuf); 1540 } 1541 return 0; 1542 } 1543 1544 /* ------------------------------------------------------------------------ */ 1545 static struct file_operations udp4_seq_fops; 1546 static struct udp_seq_afinfo udp4_seq_afinfo = { 1547 .owner = THIS_MODULE, 1548 .name = "udp", 1549 .family = AF_INET, 1550 .seq_show = udp4_seq_show, 1551 .seq_fops = &udp4_seq_fops, 1552 }; 1553 1554 int __init udp4_proc_init(void) 1555 { 1556 return udp_proc_register(&udp4_seq_afinfo); 1557 } 1558 1559 void udp4_proc_exit(void) 1560 { 1561 udp_proc_unregister(&udp4_seq_afinfo); 1562 } 1563 #endif /* CONFIG_PROC_FS */ 1564 1565 EXPORT_SYMBOL(udp_disconnect); 1566 EXPORT_SYMBOL(udp_hash); 1567 EXPORT_SYMBOL(udp_hash_lock); 1568 EXPORT_SYMBOL(udp_ioctl); 1569 EXPORT_SYMBOL(udp_port_rover); 1570 EXPORT_SYMBOL(udp_prot); 1571 EXPORT_SYMBOL(udp_sendmsg); 1572 EXPORT_SYMBOL(udp_poll); 1573 1574 #ifdef CONFIG_PROC_FS 1575 EXPORT_SYMBOL(udp_proc_register); 1576 EXPORT_SYMBOL(udp_proc_unregister); 1577 #endif 1578