1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Version: $Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $ 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * Corey Minyard <wf-rch!minyard@relay.EU.net> 14 * Florian La Roche, <flla@stud.uni-sb.de> 15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 16 * Linus Torvalds, <torvalds@cs.helsinki.fi> 17 * Alan Cox, <gw4pts@gw4pts.ampr.org> 18 * Matthew Dillon, <dillon@apollo.west.oic.com> 19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 20 * Jorge Cwik, <jorge@laser.satlink.net> 21 */ 22 23 /* 24 * Changes: Pedro Roque : Retransmit queue handled by TCP. 25 * : Fragmentation on mtu decrease 26 * : Segment collapse on retransmit 27 * : AF independence 28 * 29 * Linus Torvalds : send_delayed_ack 30 * David S. Miller : Charge memory using the right skb 31 * during syn/ack processing. 32 * David S. Miller : Output engine completely rewritten. 33 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr. 34 * Cacophonix Gaul : draft-minshall-nagle-01 35 * J Hadi Salim : ECN support 36 * 37 */ 38 39 #include <net/tcp.h> 40 41 #include <linux/compiler.h> 42 #include <linux/module.h> 43 #include <linux/smp_lock.h> 44 45 /* People can turn this off for buggy TCP's found in printers etc. */ 46 int sysctl_tcp_retrans_collapse = 1; 47 48 /* This limits the percentage of the congestion window which we 49 * will allow a single TSO frame to consume. Building TSO frames 50 * which are too large can cause TCP streams to be bursty. 51 */ 52 int sysctl_tcp_tso_win_divisor = 3; 53 54 static inline void update_send_head(struct sock *sk, struct tcp_sock *tp, 55 struct sk_buff *skb) 56 { 57 sk->sk_send_head = skb->next; 58 if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue) 59 sk->sk_send_head = NULL; 60 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; 61 tcp_packets_out_inc(sk, tp, skb); 62 } 63 64 /* SND.NXT, if window was not shrunk. 65 * If window has been shrunk, what should we make? It is not clear at all. 66 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( 67 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already 68 * invalid. OK, let's make this for now: 69 */ 70 static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp) 71 { 72 if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt)) 73 return tp->snd_nxt; 74 else 75 return tp->snd_una+tp->snd_wnd; 76 } 77 78 /* Calculate mss to advertise in SYN segment. 79 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: 80 * 81 * 1. It is independent of path mtu. 82 * 2. Ideally, it is maximal possible segment size i.e. 65535-40. 83 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of 84 * attached devices, because some buggy hosts are confused by 85 * large MSS. 86 * 4. We do not make 3, we advertise MSS, calculated from first 87 * hop device mtu, but allow to raise it to ip_rt_min_advmss. 88 * This may be overridden via information stored in routing table. 89 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, 90 * probably even Jumbo". 91 */ 92 static __u16 tcp_advertise_mss(struct sock *sk) 93 { 94 struct tcp_sock *tp = tcp_sk(sk); 95 struct dst_entry *dst = __sk_dst_get(sk); 96 int mss = tp->advmss; 97 98 if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) { 99 mss = dst_metric(dst, RTAX_ADVMSS); 100 tp->advmss = mss; 101 } 102 103 return (__u16)mss; 104 } 105 106 /* RFC2861. Reset CWND after idle period longer RTO to "restart window". 107 * This is the first part of cwnd validation mechanism. */ 108 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst) 109 { 110 struct tcp_sock *tp = tcp_sk(sk); 111 s32 delta = tcp_time_stamp - tp->lsndtime; 112 u32 restart_cwnd = tcp_init_cwnd(tp, dst); 113 u32 cwnd = tp->snd_cwnd; 114 115 tcp_ca_event(sk, CA_EVENT_CWND_RESTART); 116 117 tp->snd_ssthresh = tcp_current_ssthresh(sk); 118 restart_cwnd = min(restart_cwnd, cwnd); 119 120 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) 121 cwnd >>= 1; 122 tp->snd_cwnd = max(cwnd, restart_cwnd); 123 tp->snd_cwnd_stamp = tcp_time_stamp; 124 tp->snd_cwnd_used = 0; 125 } 126 127 static inline void tcp_event_data_sent(struct tcp_sock *tp, 128 struct sk_buff *skb, struct sock *sk) 129 { 130 struct inet_connection_sock *icsk = inet_csk(sk); 131 const u32 now = tcp_time_stamp; 132 133 if (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto) 134 tcp_cwnd_restart(sk, __sk_dst_get(sk)); 135 136 tp->lsndtime = now; 137 138 /* If it is a reply for ato after last received 139 * packet, enter pingpong mode. 140 */ 141 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) 142 icsk->icsk_ack.pingpong = 1; 143 } 144 145 static __inline__ void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) 146 { 147 tcp_dec_quickack_mode(sk, pkts); 148 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); 149 } 150 151 /* Determine a window scaling and initial window to offer. 152 * Based on the assumption that the given amount of space 153 * will be offered. Store the results in the tp structure. 154 * NOTE: for smooth operation initial space offering should 155 * be a multiple of mss if possible. We assume here that mss >= 1. 156 * This MUST be enforced by all callers. 157 */ 158 void tcp_select_initial_window(int __space, __u32 mss, 159 __u32 *rcv_wnd, __u32 *window_clamp, 160 int wscale_ok, __u8 *rcv_wscale) 161 { 162 unsigned int space = (__space < 0 ? 0 : __space); 163 164 /* If no clamp set the clamp to the max possible scaled window */ 165 if (*window_clamp == 0) 166 (*window_clamp) = (65535 << 14); 167 space = min(*window_clamp, space); 168 169 /* Quantize space offering to a multiple of mss if possible. */ 170 if (space > mss) 171 space = (space / mss) * mss; 172 173 /* NOTE: offering an initial window larger than 32767 174 * will break some buggy TCP stacks. We try to be nice. 175 * If we are not window scaling, then this truncates 176 * our initial window offering to 32k. There should also 177 * be a sysctl option to stop being nice. 178 */ 179 (*rcv_wnd) = min(space, MAX_TCP_WINDOW); 180 (*rcv_wscale) = 0; 181 if (wscale_ok) { 182 /* Set window scaling on max possible window 183 * See RFC1323 for an explanation of the limit to 14 184 */ 185 space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); 186 while (space > 65535 && (*rcv_wscale) < 14) { 187 space >>= 1; 188 (*rcv_wscale)++; 189 } 190 } 191 192 /* Set initial window to value enough for senders, 193 * following RFC1414. Senders, not following this RFC, 194 * will be satisfied with 2. 195 */ 196 if (mss > (1<<*rcv_wscale)) { 197 int init_cwnd = 4; 198 if (mss > 1460*3) 199 init_cwnd = 2; 200 else if (mss > 1460) 201 init_cwnd = 3; 202 if (*rcv_wnd > init_cwnd*mss) 203 *rcv_wnd = init_cwnd*mss; 204 } 205 206 /* Set the clamp no higher than max representable value */ 207 (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); 208 } 209 210 /* Chose a new window to advertise, update state in tcp_sock for the 211 * socket, and return result with RFC1323 scaling applied. The return 212 * value can be stuffed directly into th->window for an outgoing 213 * frame. 214 */ 215 static __inline__ u16 tcp_select_window(struct sock *sk) 216 { 217 struct tcp_sock *tp = tcp_sk(sk); 218 u32 cur_win = tcp_receive_window(tp); 219 u32 new_win = __tcp_select_window(sk); 220 221 /* Never shrink the offered window */ 222 if(new_win < cur_win) { 223 /* Danger Will Robinson! 224 * Don't update rcv_wup/rcv_wnd here or else 225 * we will not be able to advertise a zero 226 * window in time. --DaveM 227 * 228 * Relax Will Robinson. 229 */ 230 new_win = cur_win; 231 } 232 tp->rcv_wnd = new_win; 233 tp->rcv_wup = tp->rcv_nxt; 234 235 /* Make sure we do not exceed the maximum possible 236 * scaled window. 237 */ 238 if (!tp->rx_opt.rcv_wscale) 239 new_win = min(new_win, MAX_TCP_WINDOW); 240 else 241 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); 242 243 /* RFC1323 scaling applied */ 244 new_win >>= tp->rx_opt.rcv_wscale; 245 246 /* If we advertise zero window, disable fast path. */ 247 if (new_win == 0) 248 tp->pred_flags = 0; 249 250 return new_win; 251 } 252 253 254 /* This routine actually transmits TCP packets queued in by 255 * tcp_do_sendmsg(). This is used by both the initial 256 * transmission and possible later retransmissions. 257 * All SKB's seen here are completely headerless. It is our 258 * job to build the TCP header, and pass the packet down to 259 * IP so it can do the same plus pass the packet off to the 260 * device. 261 * 262 * We are working here with either a clone of the original 263 * SKB, or a fresh unique copy made by the retransmit engine. 264 */ 265 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb) 266 { 267 if (skb != NULL) { 268 const struct inet_connection_sock *icsk = inet_csk(sk); 269 struct inet_sock *inet = inet_sk(sk); 270 struct tcp_sock *tp = tcp_sk(sk); 271 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 272 int tcp_header_size = tp->tcp_header_len; 273 struct tcphdr *th; 274 int sysctl_flags; 275 int err; 276 277 BUG_ON(!tcp_skb_pcount(skb)); 278 279 #define SYSCTL_FLAG_TSTAMPS 0x1 280 #define SYSCTL_FLAG_WSCALE 0x2 281 #define SYSCTL_FLAG_SACK 0x4 282 283 /* If congestion control is doing timestamping */ 284 if (icsk->icsk_ca_ops->rtt_sample) 285 __net_timestamp(skb); 286 287 sysctl_flags = 0; 288 if (tcb->flags & TCPCB_FLAG_SYN) { 289 tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS; 290 if(sysctl_tcp_timestamps) { 291 tcp_header_size += TCPOLEN_TSTAMP_ALIGNED; 292 sysctl_flags |= SYSCTL_FLAG_TSTAMPS; 293 } 294 if(sysctl_tcp_window_scaling) { 295 tcp_header_size += TCPOLEN_WSCALE_ALIGNED; 296 sysctl_flags |= SYSCTL_FLAG_WSCALE; 297 } 298 if(sysctl_tcp_sack) { 299 sysctl_flags |= SYSCTL_FLAG_SACK; 300 if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS)) 301 tcp_header_size += TCPOLEN_SACKPERM_ALIGNED; 302 } 303 } else if (tp->rx_opt.eff_sacks) { 304 /* A SACK is 2 pad bytes, a 2 byte header, plus 305 * 2 32-bit sequence numbers for each SACK block. 306 */ 307 tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED + 308 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); 309 } 310 311 if (tcp_packets_in_flight(tp) == 0) 312 tcp_ca_event(sk, CA_EVENT_TX_START); 313 314 th = (struct tcphdr *) skb_push(skb, tcp_header_size); 315 skb->h.th = th; 316 skb_set_owner_w(skb, sk); 317 318 /* Build TCP header and checksum it. */ 319 th->source = inet->sport; 320 th->dest = inet->dport; 321 th->seq = htonl(tcb->seq); 322 th->ack_seq = htonl(tp->rcv_nxt); 323 *(((__u16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) | tcb->flags); 324 if (tcb->flags & TCPCB_FLAG_SYN) { 325 /* RFC1323: The window in SYN & SYN/ACK segments 326 * is never scaled. 327 */ 328 th->window = htons(tp->rcv_wnd); 329 } else { 330 th->window = htons(tcp_select_window(sk)); 331 } 332 th->check = 0; 333 th->urg_ptr = 0; 334 335 if (tp->urg_mode && 336 between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) { 337 th->urg_ptr = htons(tp->snd_up-tcb->seq); 338 th->urg = 1; 339 } 340 341 if (tcb->flags & TCPCB_FLAG_SYN) { 342 tcp_syn_build_options((__u32 *)(th + 1), 343 tcp_advertise_mss(sk), 344 (sysctl_flags & SYSCTL_FLAG_TSTAMPS), 345 (sysctl_flags & SYSCTL_FLAG_SACK), 346 (sysctl_flags & SYSCTL_FLAG_WSCALE), 347 tp->rx_opt.rcv_wscale, 348 tcb->when, 349 tp->rx_opt.ts_recent); 350 } else { 351 tcp_build_and_update_options((__u32 *)(th + 1), 352 tp, tcb->when); 353 354 TCP_ECN_send(sk, tp, skb, tcp_header_size); 355 } 356 tp->af_specific->send_check(sk, th, skb->len, skb); 357 358 if (tcb->flags & TCPCB_FLAG_ACK) 359 tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); 360 361 if (skb->len != tcp_header_size) 362 tcp_event_data_sent(tp, skb, sk); 363 364 TCP_INC_STATS(TCP_MIB_OUTSEGS); 365 366 err = tp->af_specific->queue_xmit(skb, 0); 367 if (err <= 0) 368 return err; 369 370 tcp_enter_cwr(sk); 371 372 /* NET_XMIT_CN is special. It does not guarantee, 373 * that this packet is lost. It tells that device 374 * is about to start to drop packets or already 375 * drops some packets of the same priority and 376 * invokes us to send less aggressively. 377 */ 378 return err == NET_XMIT_CN ? 0 : err; 379 } 380 return -ENOBUFS; 381 #undef SYSCTL_FLAG_TSTAMPS 382 #undef SYSCTL_FLAG_WSCALE 383 #undef SYSCTL_FLAG_SACK 384 } 385 386 387 /* This routine just queue's the buffer 388 * 389 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, 390 * otherwise socket can stall. 391 */ 392 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) 393 { 394 struct tcp_sock *tp = tcp_sk(sk); 395 396 /* Advance write_seq and place onto the write_queue. */ 397 tp->write_seq = TCP_SKB_CB(skb)->end_seq; 398 skb_header_release(skb); 399 __skb_queue_tail(&sk->sk_write_queue, skb); 400 sk_charge_skb(sk, skb); 401 402 /* Queue it, remembering where we must start sending. */ 403 if (sk->sk_send_head == NULL) 404 sk->sk_send_head = skb; 405 } 406 407 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now) 408 { 409 if (skb->len <= mss_now || 410 !(sk->sk_route_caps & NETIF_F_TSO)) { 411 /* Avoid the costly divide in the normal 412 * non-TSO case. 413 */ 414 skb_shinfo(skb)->tso_segs = 1; 415 skb_shinfo(skb)->tso_size = 0; 416 } else { 417 unsigned int factor; 418 419 factor = skb->len + (mss_now - 1); 420 factor /= mss_now; 421 skb_shinfo(skb)->tso_segs = factor; 422 skb_shinfo(skb)->tso_size = mss_now; 423 } 424 } 425 426 /* Function to create two new TCP segments. Shrinks the given segment 427 * to the specified size and appends a new segment with the rest of the 428 * packet to the list. This won't be called frequently, I hope. 429 * Remember, these are still headerless SKBs at this point. 430 */ 431 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, unsigned int mss_now) 432 { 433 struct tcp_sock *tp = tcp_sk(sk); 434 struct sk_buff *buff; 435 int nsize, old_factor; 436 u16 flags; 437 438 nsize = skb_headlen(skb) - len; 439 if (nsize < 0) 440 nsize = 0; 441 442 if (skb_cloned(skb) && 443 skb_is_nonlinear(skb) && 444 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 445 return -ENOMEM; 446 447 /* Get a new skb... force flag on. */ 448 buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); 449 if (buff == NULL) 450 return -ENOMEM; /* We'll just try again later. */ 451 sk_charge_skb(sk, buff); 452 453 /* Correct the sequence numbers. */ 454 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 455 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 456 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 457 458 /* PSH and FIN should only be set in the second packet. */ 459 flags = TCP_SKB_CB(skb)->flags; 460 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); 461 TCP_SKB_CB(buff)->flags = flags; 462 TCP_SKB_CB(buff)->sacked = 463 (TCP_SKB_CB(skb)->sacked & 464 (TCPCB_LOST | TCPCB_EVER_RETRANS | TCPCB_AT_TAIL)); 465 TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL; 466 467 if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) { 468 /* Copy and checksum data tail into the new buffer. */ 469 buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize), 470 nsize, 0); 471 472 skb_trim(skb, len); 473 474 skb->csum = csum_block_sub(skb->csum, buff->csum, len); 475 } else { 476 skb->ip_summed = CHECKSUM_HW; 477 skb_split(skb, buff, len); 478 } 479 480 buff->ip_summed = skb->ip_summed; 481 482 /* Looks stupid, but our code really uses when of 483 * skbs, which it never sent before. --ANK 484 */ 485 TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; 486 buff->tstamp = skb->tstamp; 487 488 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { 489 tp->lost_out -= tcp_skb_pcount(skb); 490 tp->left_out -= tcp_skb_pcount(skb); 491 } 492 493 old_factor = tcp_skb_pcount(skb); 494 495 /* Fix up tso_factor for both original and new SKB. */ 496 tcp_set_skb_tso_segs(sk, skb, mss_now); 497 tcp_set_skb_tso_segs(sk, buff, mss_now); 498 499 /* If this packet has been sent out already, we must 500 * adjust the various packet counters. 501 */ 502 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { 503 int diff = old_factor - tcp_skb_pcount(skb) - 504 tcp_skb_pcount(buff); 505 506 tp->packets_out -= diff; 507 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { 508 tp->lost_out -= diff; 509 tp->left_out -= diff; 510 } 511 if (diff > 0) { 512 tp->fackets_out -= diff; 513 if ((int)tp->fackets_out < 0) 514 tp->fackets_out = 0; 515 } 516 } 517 518 /* Link BUFF into the send queue. */ 519 skb_header_release(buff); 520 __skb_append(skb, buff, &sk->sk_write_queue); 521 522 return 0; 523 } 524 525 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c 526 * eventually). The difference is that pulled data not copied, but 527 * immediately discarded. 528 */ 529 static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len) 530 { 531 int i, k, eat; 532 533 eat = len; 534 k = 0; 535 for (i=0; i<skb_shinfo(skb)->nr_frags; i++) { 536 if (skb_shinfo(skb)->frags[i].size <= eat) { 537 put_page(skb_shinfo(skb)->frags[i].page); 538 eat -= skb_shinfo(skb)->frags[i].size; 539 } else { 540 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 541 if (eat) { 542 skb_shinfo(skb)->frags[k].page_offset += eat; 543 skb_shinfo(skb)->frags[k].size -= eat; 544 eat = 0; 545 } 546 k++; 547 } 548 } 549 skb_shinfo(skb)->nr_frags = k; 550 551 skb->tail = skb->data; 552 skb->data_len -= len; 553 skb->len = skb->data_len; 554 return skb->tail; 555 } 556 557 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) 558 { 559 if (skb_cloned(skb) && 560 pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) 561 return -ENOMEM; 562 563 if (len <= skb_headlen(skb)) { 564 __skb_pull(skb, len); 565 } else { 566 if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL) 567 return -ENOMEM; 568 } 569 570 TCP_SKB_CB(skb)->seq += len; 571 skb->ip_summed = CHECKSUM_HW; 572 573 skb->truesize -= len; 574 sk->sk_wmem_queued -= len; 575 sk->sk_forward_alloc += len; 576 sock_set_flag(sk, SOCK_QUEUE_SHRUNK); 577 578 /* Any change of skb->len requires recalculation of tso 579 * factor and mss. 580 */ 581 if (tcp_skb_pcount(skb) > 1) 582 tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1)); 583 584 return 0; 585 } 586 587 /* This function synchronize snd mss to current pmtu/exthdr set. 588 589 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts 590 for TCP options, but includes only bare TCP header. 591 592 tp->rx_opt.mss_clamp is mss negotiated at connection setup. 593 It is minumum of user_mss and mss received with SYN. 594 It also does not include TCP options. 595 596 tp->pmtu_cookie is last pmtu, seen by this function. 597 598 tp->mss_cache is current effective sending mss, including 599 all tcp options except for SACKs. It is evaluated, 600 taking into account current pmtu, but never exceeds 601 tp->rx_opt.mss_clamp. 602 603 NOTE1. rfc1122 clearly states that advertised MSS 604 DOES NOT include either tcp or ip options. 605 606 NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside 607 this function. --ANK (980731) 608 */ 609 610 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) 611 { 612 struct tcp_sock *tp = tcp_sk(sk); 613 int mss_now; 614 615 /* Calculate base mss without TCP options: 616 It is MMS_S - sizeof(tcphdr) of rfc1122 617 */ 618 mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr); 619 620 /* Clamp it (mss_clamp does not include tcp options) */ 621 if (mss_now > tp->rx_opt.mss_clamp) 622 mss_now = tp->rx_opt.mss_clamp; 623 624 /* Now subtract optional transport overhead */ 625 mss_now -= tp->ext_header_len; 626 627 /* Then reserve room for full set of TCP options and 8 bytes of data */ 628 if (mss_now < 48) 629 mss_now = 48; 630 631 /* Now subtract TCP options size, not including SACKs */ 632 mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); 633 634 /* Bound mss with half of window */ 635 if (tp->max_window && mss_now > (tp->max_window>>1)) 636 mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len); 637 638 /* And store cached results */ 639 tp->pmtu_cookie = pmtu; 640 tp->mss_cache = mss_now; 641 642 return mss_now; 643 } 644 645 /* Compute the current effective MSS, taking SACKs and IP options, 646 * and even PMTU discovery events into account. 647 * 648 * LARGESEND note: !urg_mode is overkill, only frames up to snd_up 649 * cannot be large. However, taking into account rare use of URG, this 650 * is not a big flaw. 651 */ 652 unsigned int tcp_current_mss(struct sock *sk, int large_allowed) 653 { 654 struct tcp_sock *tp = tcp_sk(sk); 655 struct dst_entry *dst = __sk_dst_get(sk); 656 u32 mss_now; 657 u16 xmit_size_goal; 658 int doing_tso = 0; 659 660 mss_now = tp->mss_cache; 661 662 if (large_allowed && 663 (sk->sk_route_caps & NETIF_F_TSO) && 664 !tp->urg_mode) 665 doing_tso = 1; 666 667 if (dst) { 668 u32 mtu = dst_mtu(dst); 669 if (mtu != tp->pmtu_cookie) 670 mss_now = tcp_sync_mss(sk, mtu); 671 } 672 673 if (tp->rx_opt.eff_sacks) 674 mss_now -= (TCPOLEN_SACK_BASE_ALIGNED + 675 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); 676 677 xmit_size_goal = mss_now; 678 679 if (doing_tso) { 680 xmit_size_goal = 65535 - 681 tp->af_specific->net_header_len - 682 tp->ext_header_len - tp->tcp_header_len; 683 684 if (tp->max_window && 685 (xmit_size_goal > (tp->max_window >> 1))) 686 xmit_size_goal = max((tp->max_window >> 1), 687 68U - tp->tcp_header_len); 688 689 xmit_size_goal -= (xmit_size_goal % mss_now); 690 } 691 tp->xmit_size_goal = xmit_size_goal; 692 693 return mss_now; 694 } 695 696 /* Congestion window validation. (RFC2861) */ 697 698 static inline void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp) 699 { 700 __u32 packets_out = tp->packets_out; 701 702 if (packets_out >= tp->snd_cwnd) { 703 /* Network is feed fully. */ 704 tp->snd_cwnd_used = 0; 705 tp->snd_cwnd_stamp = tcp_time_stamp; 706 } else { 707 /* Network starves. */ 708 if (tp->packets_out > tp->snd_cwnd_used) 709 tp->snd_cwnd_used = tp->packets_out; 710 711 if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) 712 tcp_cwnd_application_limited(sk); 713 } 714 } 715 716 static unsigned int tcp_window_allows(struct tcp_sock *tp, struct sk_buff *skb, unsigned int mss_now, unsigned int cwnd) 717 { 718 u32 window, cwnd_len; 719 720 window = (tp->snd_una + tp->snd_wnd - TCP_SKB_CB(skb)->seq); 721 cwnd_len = mss_now * cwnd; 722 return min(window, cwnd_len); 723 } 724 725 /* Can at least one segment of SKB be sent right now, according to the 726 * congestion window rules? If so, return how many segments are allowed. 727 */ 728 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb) 729 { 730 u32 in_flight, cwnd; 731 732 /* Don't be strict about the congestion window for the final FIN. */ 733 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) 734 return 1; 735 736 in_flight = tcp_packets_in_flight(tp); 737 cwnd = tp->snd_cwnd; 738 if (in_flight < cwnd) 739 return (cwnd - in_flight); 740 741 return 0; 742 } 743 744 /* This must be invoked the first time we consider transmitting 745 * SKB onto the wire. 746 */ 747 static inline int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now) 748 { 749 int tso_segs = tcp_skb_pcount(skb); 750 751 if (!tso_segs || 752 (tso_segs > 1 && 753 skb_shinfo(skb)->tso_size != mss_now)) { 754 tcp_set_skb_tso_segs(sk, skb, mss_now); 755 tso_segs = tcp_skb_pcount(skb); 756 } 757 return tso_segs; 758 } 759 760 static inline int tcp_minshall_check(const struct tcp_sock *tp) 761 { 762 return after(tp->snd_sml,tp->snd_una) && 763 !after(tp->snd_sml, tp->snd_nxt); 764 } 765 766 /* Return 0, if packet can be sent now without violation Nagle's rules: 767 * 1. It is full sized. 768 * 2. Or it contains FIN. (already checked by caller) 769 * 3. Or TCP_NODELAY was set. 770 * 4. Or TCP_CORK is not set, and all sent packets are ACKed. 771 * With Minshall's modification: all sent small packets are ACKed. 772 */ 773 774 static inline int tcp_nagle_check(const struct tcp_sock *tp, 775 const struct sk_buff *skb, 776 unsigned mss_now, int nonagle) 777 { 778 return (skb->len < mss_now && 779 ((nonagle&TCP_NAGLE_CORK) || 780 (!nonagle && 781 tp->packets_out && 782 tcp_minshall_check(tp)))); 783 } 784 785 /* Return non-zero if the Nagle test allows this packet to be 786 * sent now. 787 */ 788 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb, 789 unsigned int cur_mss, int nonagle) 790 { 791 /* Nagle rule does not apply to frames, which sit in the middle of the 792 * write_queue (they have no chances to get new data). 793 * 794 * This is implemented in the callers, where they modify the 'nonagle' 795 * argument based upon the location of SKB in the send queue. 796 */ 797 if (nonagle & TCP_NAGLE_PUSH) 798 return 1; 799 800 /* Don't use the nagle rule for urgent data (or for the final FIN). */ 801 if (tp->urg_mode || 802 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)) 803 return 1; 804 805 if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) 806 return 1; 807 808 return 0; 809 } 810 811 /* Does at least the first segment of SKB fit into the send window? */ 812 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss) 813 { 814 u32 end_seq = TCP_SKB_CB(skb)->end_seq; 815 816 if (skb->len > cur_mss) 817 end_seq = TCP_SKB_CB(skb)->seq + cur_mss; 818 819 return !after(end_seq, tp->snd_una + tp->snd_wnd); 820 } 821 822 /* This checks if the data bearing packet SKB (usually sk->sk_send_head) 823 * should be put on the wire right now. If so, it returns the number of 824 * packets allowed by the congestion window. 825 */ 826 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb, 827 unsigned int cur_mss, int nonagle) 828 { 829 struct tcp_sock *tp = tcp_sk(sk); 830 unsigned int cwnd_quota; 831 832 tcp_init_tso_segs(sk, skb, cur_mss); 833 834 if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) 835 return 0; 836 837 cwnd_quota = tcp_cwnd_test(tp, skb); 838 if (cwnd_quota && 839 !tcp_snd_wnd_test(tp, skb, cur_mss)) 840 cwnd_quota = 0; 841 842 return cwnd_quota; 843 } 844 845 static inline int tcp_skb_is_last(const struct sock *sk, 846 const struct sk_buff *skb) 847 { 848 return skb->next == (struct sk_buff *)&sk->sk_write_queue; 849 } 850 851 int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp) 852 { 853 struct sk_buff *skb = sk->sk_send_head; 854 855 return (skb && 856 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1), 857 (tcp_skb_is_last(sk, skb) ? 858 TCP_NAGLE_PUSH : 859 tp->nonagle))); 860 } 861 862 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet 863 * which is put after SKB on the list. It is very much like 864 * tcp_fragment() except that it may make several kinds of assumptions 865 * in order to speed up the splitting operation. In particular, we 866 * know that all the data is in scatter-gather pages, and that the 867 * packet has never been sent out before (and thus is not cloned). 868 */ 869 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, unsigned int mss_now) 870 { 871 struct sk_buff *buff; 872 int nlen = skb->len - len; 873 u16 flags; 874 875 /* All of a TSO frame must be composed of paged data. */ 876 if (skb->len != skb->data_len) 877 return tcp_fragment(sk, skb, len, mss_now); 878 879 buff = sk_stream_alloc_pskb(sk, 0, 0, GFP_ATOMIC); 880 if (unlikely(buff == NULL)) 881 return -ENOMEM; 882 883 buff->truesize = nlen; 884 skb->truesize -= nlen; 885 886 /* Correct the sequence numbers. */ 887 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; 888 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; 889 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; 890 891 /* PSH and FIN should only be set in the second packet. */ 892 flags = TCP_SKB_CB(skb)->flags; 893 TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); 894 TCP_SKB_CB(buff)->flags = flags; 895 896 /* This packet was never sent out yet, so no SACK bits. */ 897 TCP_SKB_CB(buff)->sacked = 0; 898 899 buff->ip_summed = skb->ip_summed = CHECKSUM_HW; 900 skb_split(skb, buff, len); 901 902 /* Fix up tso_factor for both original and new SKB. */ 903 tcp_set_skb_tso_segs(sk, skb, mss_now); 904 tcp_set_skb_tso_segs(sk, buff, mss_now); 905 906 /* Link BUFF into the send queue. */ 907 skb_header_release(buff); 908 __skb_append(skb, buff, &sk->sk_write_queue); 909 910 return 0; 911 } 912 913 /* Try to defer sending, if possible, in order to minimize the amount 914 * of TSO splitting we do. View it as a kind of TSO Nagle test. 915 * 916 * This algorithm is from John Heffner. 917 */ 918 static int tcp_tso_should_defer(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb) 919 { 920 const struct inet_connection_sock *icsk = inet_csk(sk); 921 u32 send_win, cong_win, limit, in_flight; 922 923 if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) 924 return 0; 925 926 if (icsk->icsk_ca_state != TCP_CA_Open) 927 return 0; 928 929 in_flight = tcp_packets_in_flight(tp); 930 931 BUG_ON(tcp_skb_pcount(skb) <= 1 || 932 (tp->snd_cwnd <= in_flight)); 933 934 send_win = (tp->snd_una + tp->snd_wnd) - TCP_SKB_CB(skb)->seq; 935 936 /* From in_flight test above, we know that cwnd > in_flight. */ 937 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; 938 939 limit = min(send_win, cong_win); 940 941 if (sysctl_tcp_tso_win_divisor) { 942 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); 943 944 /* If at least some fraction of a window is available, 945 * just use it. 946 */ 947 chunk /= sysctl_tcp_tso_win_divisor; 948 if (limit >= chunk) 949 return 0; 950 } else { 951 /* Different approach, try not to defer past a single 952 * ACK. Receiver should ACK every other full sized 953 * frame, so if we have space for more than 3 frames 954 * then send now. 955 */ 956 if (limit > tcp_max_burst(tp) * tp->mss_cache) 957 return 0; 958 } 959 960 /* Ok, it looks like it is advisable to defer. */ 961 return 1; 962 } 963 964 /* This routine writes packets to the network. It advances the 965 * send_head. This happens as incoming acks open up the remote 966 * window for us. 967 * 968 * Returns 1, if no segments are in flight and we have queued segments, but 969 * cannot send anything now because of SWS or another problem. 970 */ 971 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle) 972 { 973 struct tcp_sock *tp = tcp_sk(sk); 974 struct sk_buff *skb; 975 unsigned int tso_segs, sent_pkts; 976 int cwnd_quota; 977 978 /* If we are closed, the bytes will have to remain here. 979 * In time closedown will finish, we empty the write queue and all 980 * will be happy. 981 */ 982 if (unlikely(sk->sk_state == TCP_CLOSE)) 983 return 0; 984 985 sent_pkts = 0; 986 while ((skb = sk->sk_send_head)) { 987 unsigned int limit; 988 989 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 990 BUG_ON(!tso_segs); 991 992 cwnd_quota = tcp_cwnd_test(tp, skb); 993 if (!cwnd_quota) 994 break; 995 996 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) 997 break; 998 999 if (tso_segs == 1) { 1000 if (unlikely(!tcp_nagle_test(tp, skb, mss_now, 1001 (tcp_skb_is_last(sk, skb) ? 1002 nonagle : TCP_NAGLE_PUSH)))) 1003 break; 1004 } else { 1005 if (tcp_tso_should_defer(sk, tp, skb)) 1006 break; 1007 } 1008 1009 limit = mss_now; 1010 if (tso_segs > 1) { 1011 limit = tcp_window_allows(tp, skb, 1012 mss_now, cwnd_quota); 1013 1014 if (skb->len < limit) { 1015 unsigned int trim = skb->len % mss_now; 1016 1017 if (trim) 1018 limit = skb->len - trim; 1019 } 1020 } 1021 1022 if (skb->len > limit && 1023 unlikely(tso_fragment(sk, skb, limit, mss_now))) 1024 break; 1025 1026 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1027 1028 if (unlikely(tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)))) 1029 break; 1030 1031 /* Advance the send_head. This one is sent out. 1032 * This call will increment packets_out. 1033 */ 1034 update_send_head(sk, tp, skb); 1035 1036 tcp_minshall_update(tp, mss_now, skb); 1037 sent_pkts++; 1038 } 1039 1040 if (likely(sent_pkts)) { 1041 tcp_cwnd_validate(sk, tp); 1042 return 0; 1043 } 1044 return !tp->packets_out && sk->sk_send_head; 1045 } 1046 1047 /* Push out any pending frames which were held back due to 1048 * TCP_CORK or attempt at coalescing tiny packets. 1049 * The socket must be locked by the caller. 1050 */ 1051 void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp, 1052 unsigned int cur_mss, int nonagle) 1053 { 1054 struct sk_buff *skb = sk->sk_send_head; 1055 1056 if (skb) { 1057 if (tcp_write_xmit(sk, cur_mss, nonagle)) 1058 tcp_check_probe_timer(sk, tp); 1059 } 1060 } 1061 1062 /* Send _single_ skb sitting at the send head. This function requires 1063 * true push pending frames to setup probe timer etc. 1064 */ 1065 void tcp_push_one(struct sock *sk, unsigned int mss_now) 1066 { 1067 struct tcp_sock *tp = tcp_sk(sk); 1068 struct sk_buff *skb = sk->sk_send_head; 1069 unsigned int tso_segs, cwnd_quota; 1070 1071 BUG_ON(!skb || skb->len < mss_now); 1072 1073 tso_segs = tcp_init_tso_segs(sk, skb, mss_now); 1074 cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH); 1075 1076 if (likely(cwnd_quota)) { 1077 unsigned int limit; 1078 1079 BUG_ON(!tso_segs); 1080 1081 limit = mss_now; 1082 if (tso_segs > 1) { 1083 limit = tcp_window_allows(tp, skb, 1084 mss_now, cwnd_quota); 1085 1086 if (skb->len < limit) { 1087 unsigned int trim = skb->len % mss_now; 1088 1089 if (trim) 1090 limit = skb->len - trim; 1091 } 1092 } 1093 1094 if (skb->len > limit && 1095 unlikely(tso_fragment(sk, skb, limit, mss_now))) 1096 return; 1097 1098 /* Send it out now. */ 1099 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1100 1101 if (likely(!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation)))) { 1102 update_send_head(sk, tp, skb); 1103 tcp_cwnd_validate(sk, tp); 1104 return; 1105 } 1106 } 1107 } 1108 1109 /* This function returns the amount that we can raise the 1110 * usable window based on the following constraints 1111 * 1112 * 1. The window can never be shrunk once it is offered (RFC 793) 1113 * 2. We limit memory per socket 1114 * 1115 * RFC 1122: 1116 * "the suggested [SWS] avoidance algorithm for the receiver is to keep 1117 * RECV.NEXT + RCV.WIN fixed until: 1118 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" 1119 * 1120 * i.e. don't raise the right edge of the window until you can raise 1121 * it at least MSS bytes. 1122 * 1123 * Unfortunately, the recommended algorithm breaks header prediction, 1124 * since header prediction assumes th->window stays fixed. 1125 * 1126 * Strictly speaking, keeping th->window fixed violates the receiver 1127 * side SWS prevention criteria. The problem is that under this rule 1128 * a stream of single byte packets will cause the right side of the 1129 * window to always advance by a single byte. 1130 * 1131 * Of course, if the sender implements sender side SWS prevention 1132 * then this will not be a problem. 1133 * 1134 * BSD seems to make the following compromise: 1135 * 1136 * If the free space is less than the 1/4 of the maximum 1137 * space available and the free space is less than 1/2 mss, 1138 * then set the window to 0. 1139 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ] 1140 * Otherwise, just prevent the window from shrinking 1141 * and from being larger than the largest representable value. 1142 * 1143 * This prevents incremental opening of the window in the regime 1144 * where TCP is limited by the speed of the reader side taking 1145 * data out of the TCP receive queue. It does nothing about 1146 * those cases where the window is constrained on the sender side 1147 * because the pipeline is full. 1148 * 1149 * BSD also seems to "accidentally" limit itself to windows that are a 1150 * multiple of MSS, at least until the free space gets quite small. 1151 * This would appear to be a side effect of the mbuf implementation. 1152 * Combining these two algorithms results in the observed behavior 1153 * of having a fixed window size at almost all times. 1154 * 1155 * Below we obtain similar behavior by forcing the offered window to 1156 * a multiple of the mss when it is feasible to do so. 1157 * 1158 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. 1159 * Regular options like TIMESTAMP are taken into account. 1160 */ 1161 u32 __tcp_select_window(struct sock *sk) 1162 { 1163 struct inet_connection_sock *icsk = inet_csk(sk); 1164 struct tcp_sock *tp = tcp_sk(sk); 1165 /* MSS for the peer's data. Previous verions used mss_clamp 1166 * here. I don't know if the value based on our guesses 1167 * of peer's MSS is better for the performance. It's more correct 1168 * but may be worse for the performance because of rcv_mss 1169 * fluctuations. --SAW 1998/11/1 1170 */ 1171 int mss = icsk->icsk_ack.rcv_mss; 1172 int free_space = tcp_space(sk); 1173 int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); 1174 int window; 1175 1176 if (mss > full_space) 1177 mss = full_space; 1178 1179 if (free_space < full_space/2) { 1180 icsk->icsk_ack.quick = 0; 1181 1182 if (tcp_memory_pressure) 1183 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss); 1184 1185 if (free_space < mss) 1186 return 0; 1187 } 1188 1189 if (free_space > tp->rcv_ssthresh) 1190 free_space = tp->rcv_ssthresh; 1191 1192 /* Don't do rounding if we are using window scaling, since the 1193 * scaled window will not line up with the MSS boundary anyway. 1194 */ 1195 window = tp->rcv_wnd; 1196 if (tp->rx_opt.rcv_wscale) { 1197 window = free_space; 1198 1199 /* Advertise enough space so that it won't get scaled away. 1200 * Import case: prevent zero window announcement if 1201 * 1<<rcv_wscale > mss. 1202 */ 1203 if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) 1204 window = (((window >> tp->rx_opt.rcv_wscale) + 1) 1205 << tp->rx_opt.rcv_wscale); 1206 } else { 1207 /* Get the largest window that is a nice multiple of mss. 1208 * Window clamp already applied above. 1209 * If our current window offering is within 1 mss of the 1210 * free space we just keep it. This prevents the divide 1211 * and multiply from happening most of the time. 1212 * We also don't do any window rounding when the free space 1213 * is too small. 1214 */ 1215 if (window <= free_space - mss || window > free_space) 1216 window = (free_space/mss)*mss; 1217 } 1218 1219 return window; 1220 } 1221 1222 /* Attempt to collapse two adjacent SKB's during retransmission. */ 1223 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now) 1224 { 1225 struct tcp_sock *tp = tcp_sk(sk); 1226 struct sk_buff *next_skb = skb->next; 1227 1228 /* The first test we must make is that neither of these two 1229 * SKB's are still referenced by someone else. 1230 */ 1231 if (!skb_cloned(skb) && !skb_cloned(next_skb)) { 1232 int skb_size = skb->len, next_skb_size = next_skb->len; 1233 u16 flags = TCP_SKB_CB(skb)->flags; 1234 1235 /* Also punt if next skb has been SACK'd. */ 1236 if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED) 1237 return; 1238 1239 /* Next skb is out of window. */ 1240 if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd)) 1241 return; 1242 1243 /* Punt if not enough space exists in the first SKB for 1244 * the data in the second, or the total combined payload 1245 * would exceed the MSS. 1246 */ 1247 if ((next_skb_size > skb_tailroom(skb)) || 1248 ((skb_size + next_skb_size) > mss_now)) 1249 return; 1250 1251 BUG_ON(tcp_skb_pcount(skb) != 1 || 1252 tcp_skb_pcount(next_skb) != 1); 1253 1254 /* Ok. We will be able to collapse the packet. */ 1255 __skb_unlink(next_skb, &sk->sk_write_queue); 1256 1257 memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size); 1258 1259 if (next_skb->ip_summed == CHECKSUM_HW) 1260 skb->ip_summed = CHECKSUM_HW; 1261 1262 if (skb->ip_summed != CHECKSUM_HW) 1263 skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); 1264 1265 /* Update sequence range on original skb. */ 1266 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; 1267 1268 /* Merge over control information. */ 1269 flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */ 1270 TCP_SKB_CB(skb)->flags = flags; 1271 1272 /* All done, get rid of second SKB and account for it so 1273 * packet counting does not break. 1274 */ 1275 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL); 1276 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS) 1277 tp->retrans_out -= tcp_skb_pcount(next_skb); 1278 if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) { 1279 tp->lost_out -= tcp_skb_pcount(next_skb); 1280 tp->left_out -= tcp_skb_pcount(next_skb); 1281 } 1282 /* Reno case is special. Sigh... */ 1283 if (!tp->rx_opt.sack_ok && tp->sacked_out) { 1284 tcp_dec_pcount_approx(&tp->sacked_out, next_skb); 1285 tp->left_out -= tcp_skb_pcount(next_skb); 1286 } 1287 1288 /* Not quite right: it can be > snd.fack, but 1289 * it is better to underestimate fackets. 1290 */ 1291 tcp_dec_pcount_approx(&tp->fackets_out, next_skb); 1292 tcp_packets_out_dec(tp, next_skb); 1293 sk_stream_free_skb(sk, next_skb); 1294 } 1295 } 1296 1297 /* Do a simple retransmit without using the backoff mechanisms in 1298 * tcp_timer. This is used for path mtu discovery. 1299 * The socket is already locked here. 1300 */ 1301 void tcp_simple_retransmit(struct sock *sk) 1302 { 1303 const struct inet_connection_sock *icsk = inet_csk(sk); 1304 struct tcp_sock *tp = tcp_sk(sk); 1305 struct sk_buff *skb; 1306 unsigned int mss = tcp_current_mss(sk, 0); 1307 int lost = 0; 1308 1309 sk_stream_for_retrans_queue(skb, sk) { 1310 if (skb->len > mss && 1311 !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { 1312 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { 1313 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; 1314 tp->retrans_out -= tcp_skb_pcount(skb); 1315 } 1316 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) { 1317 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; 1318 tp->lost_out += tcp_skb_pcount(skb); 1319 lost = 1; 1320 } 1321 } 1322 } 1323 1324 if (!lost) 1325 return; 1326 1327 tcp_sync_left_out(tp); 1328 1329 /* Don't muck with the congestion window here. 1330 * Reason is that we do not increase amount of _data_ 1331 * in network, but units changed and effective 1332 * cwnd/ssthresh really reduced now. 1333 */ 1334 if (icsk->icsk_ca_state != TCP_CA_Loss) { 1335 tp->high_seq = tp->snd_nxt; 1336 tp->snd_ssthresh = tcp_current_ssthresh(sk); 1337 tp->prior_ssthresh = 0; 1338 tp->undo_marker = 0; 1339 tcp_set_ca_state(sk, TCP_CA_Loss); 1340 } 1341 tcp_xmit_retransmit_queue(sk); 1342 } 1343 1344 /* This retransmits one SKB. Policy decisions and retransmit queue 1345 * state updates are done by the caller. Returns non-zero if an 1346 * error occurred which prevented the send. 1347 */ 1348 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) 1349 { 1350 struct tcp_sock *tp = tcp_sk(sk); 1351 unsigned int cur_mss = tcp_current_mss(sk, 0); 1352 int err; 1353 1354 /* Do not sent more than we queued. 1/4 is reserved for possible 1355 * copying overhead: frgagmentation, tunneling, mangling etc. 1356 */ 1357 if (atomic_read(&sk->sk_wmem_alloc) > 1358 min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) 1359 return -EAGAIN; 1360 1361 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { 1362 if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) 1363 BUG(); 1364 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) 1365 return -ENOMEM; 1366 } 1367 1368 /* If receiver has shrunk his window, and skb is out of 1369 * new window, do not retransmit it. The exception is the 1370 * case, when window is shrunk to zero. In this case 1371 * our retransmit serves as a zero window probe. 1372 */ 1373 if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd) 1374 && TCP_SKB_CB(skb)->seq != tp->snd_una) 1375 return -EAGAIN; 1376 1377 if (skb->len > cur_mss) { 1378 if (tcp_fragment(sk, skb, cur_mss, cur_mss)) 1379 return -ENOMEM; /* We'll try again later. */ 1380 } 1381 1382 /* Collapse two adjacent packets if worthwhile and we can. */ 1383 if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) && 1384 (skb->len < (cur_mss >> 1)) && 1385 (skb->next != sk->sk_send_head) && 1386 (skb->next != (struct sk_buff *)&sk->sk_write_queue) && 1387 (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) && 1388 (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) && 1389 (sysctl_tcp_retrans_collapse != 0)) 1390 tcp_retrans_try_collapse(sk, skb, cur_mss); 1391 1392 if(tp->af_specific->rebuild_header(sk)) 1393 return -EHOSTUNREACH; /* Routing failure or similar. */ 1394 1395 /* Some Solaris stacks overoptimize and ignore the FIN on a 1396 * retransmit when old data is attached. So strip it off 1397 * since it is cheap to do so and saves bytes on the network. 1398 */ 1399 if(skb->len > 0 && 1400 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && 1401 tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { 1402 if (!pskb_trim(skb, 0)) { 1403 TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1; 1404 skb_shinfo(skb)->tso_segs = 1; 1405 skb_shinfo(skb)->tso_size = 0; 1406 skb->ip_summed = CHECKSUM_NONE; 1407 skb->csum = 0; 1408 } 1409 } 1410 1411 /* Make a copy, if the first transmission SKB clone we made 1412 * is still in somebody's hands, else make a clone. 1413 */ 1414 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1415 1416 err = tcp_transmit_skb(sk, (skb_cloned(skb) ? 1417 pskb_copy(skb, GFP_ATOMIC): 1418 skb_clone(skb, GFP_ATOMIC))); 1419 1420 if (err == 0) { 1421 /* Update global TCP statistics. */ 1422 TCP_INC_STATS(TCP_MIB_RETRANSSEGS); 1423 1424 tp->total_retrans++; 1425 1426 #if FASTRETRANS_DEBUG > 0 1427 if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { 1428 if (net_ratelimit()) 1429 printk(KERN_DEBUG "retrans_out leaked.\n"); 1430 } 1431 #endif 1432 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; 1433 tp->retrans_out += tcp_skb_pcount(skb); 1434 1435 /* Save stamp of the first retransmit. */ 1436 if (!tp->retrans_stamp) 1437 tp->retrans_stamp = TCP_SKB_CB(skb)->when; 1438 1439 tp->undo_retrans++; 1440 1441 /* snd_nxt is stored to detect loss of retransmitted segment, 1442 * see tcp_input.c tcp_sacktag_write_queue(). 1443 */ 1444 TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; 1445 } 1446 return err; 1447 } 1448 1449 /* This gets called after a retransmit timeout, and the initially 1450 * retransmitted data is acknowledged. It tries to continue 1451 * resending the rest of the retransmit queue, until either 1452 * we've sent it all or the congestion window limit is reached. 1453 * If doing SACK, the first ACK which comes back for a timeout 1454 * based retransmit packet might feed us FACK information again. 1455 * If so, we use it to avoid unnecessarily retransmissions. 1456 */ 1457 void tcp_xmit_retransmit_queue(struct sock *sk) 1458 { 1459 const struct inet_connection_sock *icsk = inet_csk(sk); 1460 struct tcp_sock *tp = tcp_sk(sk); 1461 struct sk_buff *skb; 1462 int packet_cnt = tp->lost_out; 1463 1464 /* First pass: retransmit lost packets. */ 1465 if (packet_cnt) { 1466 sk_stream_for_retrans_queue(skb, sk) { 1467 __u8 sacked = TCP_SKB_CB(skb)->sacked; 1468 1469 /* Assume this retransmit will generate 1470 * only one packet for congestion window 1471 * calculation purposes. This works because 1472 * tcp_retransmit_skb() will chop up the 1473 * packet to be MSS sized and all the 1474 * packet counting works out. 1475 */ 1476 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 1477 return; 1478 1479 if (sacked&TCPCB_LOST) { 1480 if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) { 1481 if (tcp_retransmit_skb(sk, skb)) 1482 return; 1483 if (icsk->icsk_ca_state != TCP_CA_Loss) 1484 NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS); 1485 else 1486 NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS); 1487 1488 if (skb == 1489 skb_peek(&sk->sk_write_queue)) 1490 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1491 inet_csk(sk)->icsk_rto, 1492 TCP_RTO_MAX); 1493 } 1494 1495 packet_cnt -= tcp_skb_pcount(skb); 1496 if (packet_cnt <= 0) 1497 break; 1498 } 1499 } 1500 } 1501 1502 /* OK, demanded retransmission is finished. */ 1503 1504 /* Forward retransmissions are possible only during Recovery. */ 1505 if (icsk->icsk_ca_state != TCP_CA_Recovery) 1506 return; 1507 1508 /* No forward retransmissions in Reno are possible. */ 1509 if (!tp->rx_opt.sack_ok) 1510 return; 1511 1512 /* Yeah, we have to make difficult choice between forward transmission 1513 * and retransmission... Both ways have their merits... 1514 * 1515 * For now we do not retransmit anything, while we have some new 1516 * segments to send. 1517 */ 1518 1519 if (tcp_may_send_now(sk, tp)) 1520 return; 1521 1522 packet_cnt = 0; 1523 1524 sk_stream_for_retrans_queue(skb, sk) { 1525 /* Similar to the retransmit loop above we 1526 * can pretend that the retransmitted SKB 1527 * we send out here will be composed of one 1528 * real MSS sized packet because tcp_retransmit_skb() 1529 * will fragment it if necessary. 1530 */ 1531 if (++packet_cnt > tp->fackets_out) 1532 break; 1533 1534 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) 1535 break; 1536 1537 if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) 1538 continue; 1539 1540 /* Ok, retransmit it. */ 1541 if (tcp_retransmit_skb(sk, skb)) 1542 break; 1543 1544 if (skb == skb_peek(&sk->sk_write_queue)) 1545 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1546 inet_csk(sk)->icsk_rto, 1547 TCP_RTO_MAX); 1548 1549 NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS); 1550 } 1551 } 1552 1553 1554 /* Send a fin. The caller locks the socket for us. This cannot be 1555 * allowed to fail queueing a FIN frame under any circumstances. 1556 */ 1557 void tcp_send_fin(struct sock *sk) 1558 { 1559 struct tcp_sock *tp = tcp_sk(sk); 1560 struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue); 1561 int mss_now; 1562 1563 /* Optimization, tack on the FIN if we have a queue of 1564 * unsent frames. But be careful about outgoing SACKS 1565 * and IP options. 1566 */ 1567 mss_now = tcp_current_mss(sk, 1); 1568 1569 if (sk->sk_send_head != NULL) { 1570 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN; 1571 TCP_SKB_CB(skb)->end_seq++; 1572 tp->write_seq++; 1573 } else { 1574 /* Socket is locked, keep trying until memory is available. */ 1575 for (;;) { 1576 skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL); 1577 if (skb) 1578 break; 1579 yield(); 1580 } 1581 1582 /* Reserve space for headers and prepare control bits. */ 1583 skb_reserve(skb, MAX_TCP_HEADER); 1584 skb->csum = 0; 1585 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN); 1586 TCP_SKB_CB(skb)->sacked = 0; 1587 skb_shinfo(skb)->tso_segs = 1; 1588 skb_shinfo(skb)->tso_size = 0; 1589 1590 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ 1591 TCP_SKB_CB(skb)->seq = tp->write_seq; 1592 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; 1593 tcp_queue_skb(sk, skb); 1594 } 1595 __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF); 1596 } 1597 1598 /* We get here when a process closes a file descriptor (either due to 1599 * an explicit close() or as a byproduct of exit()'ing) and there 1600 * was unread data in the receive queue. This behavior is recommended 1601 * by draft-ietf-tcpimpl-prob-03.txt section 3.10. -DaveM 1602 */ 1603 void tcp_send_active_reset(struct sock *sk, unsigned int __nocast priority) 1604 { 1605 struct tcp_sock *tp = tcp_sk(sk); 1606 struct sk_buff *skb; 1607 1608 /* NOTE: No TCP options attached and we never retransmit this. */ 1609 skb = alloc_skb(MAX_TCP_HEADER, priority); 1610 if (!skb) { 1611 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); 1612 return; 1613 } 1614 1615 /* Reserve space for headers and prepare control bits. */ 1616 skb_reserve(skb, MAX_TCP_HEADER); 1617 skb->csum = 0; 1618 TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST); 1619 TCP_SKB_CB(skb)->sacked = 0; 1620 skb_shinfo(skb)->tso_segs = 1; 1621 skb_shinfo(skb)->tso_size = 0; 1622 1623 /* Send it off. */ 1624 TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp); 1625 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; 1626 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1627 if (tcp_transmit_skb(sk, skb)) 1628 NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); 1629 } 1630 1631 /* WARNING: This routine must only be called when we have already sent 1632 * a SYN packet that crossed the incoming SYN that caused this routine 1633 * to get called. If this assumption fails then the initial rcv_wnd 1634 * and rcv_wscale values will not be correct. 1635 */ 1636 int tcp_send_synack(struct sock *sk) 1637 { 1638 struct sk_buff* skb; 1639 1640 skb = skb_peek(&sk->sk_write_queue); 1641 if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) { 1642 printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n"); 1643 return -EFAULT; 1644 } 1645 if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) { 1646 if (skb_cloned(skb)) { 1647 struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); 1648 if (nskb == NULL) 1649 return -ENOMEM; 1650 __skb_unlink(skb, &sk->sk_write_queue); 1651 skb_header_release(nskb); 1652 __skb_queue_head(&sk->sk_write_queue, nskb); 1653 sk_stream_free_skb(sk, skb); 1654 sk_charge_skb(sk, nskb); 1655 skb = nskb; 1656 } 1657 1658 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK; 1659 TCP_ECN_send_synack(tcp_sk(sk), skb); 1660 } 1661 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1662 return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); 1663 } 1664 1665 /* 1666 * Prepare a SYN-ACK. 1667 */ 1668 struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst, 1669 struct request_sock *req) 1670 { 1671 struct inet_request_sock *ireq = inet_rsk(req); 1672 struct tcp_sock *tp = tcp_sk(sk); 1673 struct tcphdr *th; 1674 int tcp_header_size; 1675 struct sk_buff *skb; 1676 1677 skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); 1678 if (skb == NULL) 1679 return NULL; 1680 1681 /* Reserve space for headers. */ 1682 skb_reserve(skb, MAX_TCP_HEADER); 1683 1684 skb->dst = dst_clone(dst); 1685 1686 tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS + 1687 (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) + 1688 (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) + 1689 /* SACK_PERM is in the place of NOP NOP of TS */ 1690 ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0)); 1691 skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size); 1692 1693 memset(th, 0, sizeof(struct tcphdr)); 1694 th->syn = 1; 1695 th->ack = 1; 1696 if (dst->dev->features&NETIF_F_TSO) 1697 ireq->ecn_ok = 0; 1698 TCP_ECN_make_synack(req, th); 1699 th->source = inet_sk(sk)->sport; 1700 th->dest = ireq->rmt_port; 1701 TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn; 1702 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; 1703 TCP_SKB_CB(skb)->sacked = 0; 1704 skb_shinfo(skb)->tso_segs = 1; 1705 skb_shinfo(skb)->tso_size = 0; 1706 th->seq = htonl(TCP_SKB_CB(skb)->seq); 1707 th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1); 1708 if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ 1709 __u8 rcv_wscale; 1710 /* Set this up on the first call only */ 1711 req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); 1712 /* tcp_full_space because it is guaranteed to be the first packet */ 1713 tcp_select_initial_window(tcp_full_space(sk), 1714 dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), 1715 &req->rcv_wnd, 1716 &req->window_clamp, 1717 ireq->wscale_ok, 1718 &rcv_wscale); 1719 ireq->rcv_wscale = rcv_wscale; 1720 } 1721 1722 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ 1723 th->window = htons(req->rcv_wnd); 1724 1725 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1726 tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok, 1727 ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale, 1728 TCP_SKB_CB(skb)->when, 1729 req->ts_recent); 1730 1731 skb->csum = 0; 1732 th->doff = (tcp_header_size >> 2); 1733 TCP_INC_STATS(TCP_MIB_OUTSEGS); 1734 return skb; 1735 } 1736 1737 /* 1738 * Do all connect socket setups that can be done AF independent. 1739 */ 1740 static inline void tcp_connect_init(struct sock *sk) 1741 { 1742 struct dst_entry *dst = __sk_dst_get(sk); 1743 struct tcp_sock *tp = tcp_sk(sk); 1744 __u8 rcv_wscale; 1745 1746 /* We'll fix this up when we get a response from the other end. 1747 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. 1748 */ 1749 tp->tcp_header_len = sizeof(struct tcphdr) + 1750 (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); 1751 1752 /* If user gave his TCP_MAXSEG, record it to clamp */ 1753 if (tp->rx_opt.user_mss) 1754 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; 1755 tp->max_window = 0; 1756 tcp_sync_mss(sk, dst_mtu(dst)); 1757 1758 if (!tp->window_clamp) 1759 tp->window_clamp = dst_metric(dst, RTAX_WINDOW); 1760 tp->advmss = dst_metric(dst, RTAX_ADVMSS); 1761 tcp_initialize_rcv_mss(sk); 1762 1763 tcp_select_initial_window(tcp_full_space(sk), 1764 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), 1765 &tp->rcv_wnd, 1766 &tp->window_clamp, 1767 sysctl_tcp_window_scaling, 1768 &rcv_wscale); 1769 1770 tp->rx_opt.rcv_wscale = rcv_wscale; 1771 tp->rcv_ssthresh = tp->rcv_wnd; 1772 1773 sk->sk_err = 0; 1774 sock_reset_flag(sk, SOCK_DONE); 1775 tp->snd_wnd = 0; 1776 tcp_init_wl(tp, tp->write_seq, 0); 1777 tp->snd_una = tp->write_seq; 1778 tp->snd_sml = tp->write_seq; 1779 tp->rcv_nxt = 0; 1780 tp->rcv_wup = 0; 1781 tp->copied_seq = 0; 1782 1783 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; 1784 inet_csk(sk)->icsk_retransmits = 0; 1785 tcp_clear_retrans(tp); 1786 } 1787 1788 /* 1789 * Build a SYN and send it off. 1790 */ 1791 int tcp_connect(struct sock *sk) 1792 { 1793 struct tcp_sock *tp = tcp_sk(sk); 1794 struct sk_buff *buff; 1795 1796 tcp_connect_init(sk); 1797 1798 buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); 1799 if (unlikely(buff == NULL)) 1800 return -ENOBUFS; 1801 1802 /* Reserve space for headers. */ 1803 skb_reserve(buff, MAX_TCP_HEADER); 1804 1805 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN; 1806 TCP_ECN_send_syn(sk, tp, buff); 1807 TCP_SKB_CB(buff)->sacked = 0; 1808 skb_shinfo(buff)->tso_segs = 1; 1809 skb_shinfo(buff)->tso_size = 0; 1810 buff->csum = 0; 1811 TCP_SKB_CB(buff)->seq = tp->write_seq++; 1812 TCP_SKB_CB(buff)->end_seq = tp->write_seq; 1813 tp->snd_nxt = tp->write_seq; 1814 tp->pushed_seq = tp->write_seq; 1815 1816 /* Send it off. */ 1817 TCP_SKB_CB(buff)->when = tcp_time_stamp; 1818 tp->retrans_stamp = TCP_SKB_CB(buff)->when; 1819 skb_header_release(buff); 1820 __skb_queue_tail(&sk->sk_write_queue, buff); 1821 sk_charge_skb(sk, buff); 1822 tp->packets_out += tcp_skb_pcount(buff); 1823 tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL)); 1824 TCP_INC_STATS(TCP_MIB_ACTIVEOPENS); 1825 1826 /* Timer for repeating the SYN until an answer. */ 1827 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, 1828 inet_csk(sk)->icsk_rto, TCP_RTO_MAX); 1829 return 0; 1830 } 1831 1832 /* Send out a delayed ack, the caller does the policy checking 1833 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check() 1834 * for details. 1835 */ 1836 void tcp_send_delayed_ack(struct sock *sk) 1837 { 1838 struct inet_connection_sock *icsk = inet_csk(sk); 1839 int ato = icsk->icsk_ack.ato; 1840 unsigned long timeout; 1841 1842 if (ato > TCP_DELACK_MIN) { 1843 const struct tcp_sock *tp = tcp_sk(sk); 1844 int max_ato = HZ/2; 1845 1846 if (icsk->icsk_ack.pingpong || (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) 1847 max_ato = TCP_DELACK_MAX; 1848 1849 /* Slow path, intersegment interval is "high". */ 1850 1851 /* If some rtt estimate is known, use it to bound delayed ack. 1852 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements 1853 * directly. 1854 */ 1855 if (tp->srtt) { 1856 int rtt = max(tp->srtt>>3, TCP_DELACK_MIN); 1857 1858 if (rtt < max_ato) 1859 max_ato = rtt; 1860 } 1861 1862 ato = min(ato, max_ato); 1863 } 1864 1865 /* Stay within the limit we were given */ 1866 timeout = jiffies + ato; 1867 1868 /* Use new timeout only if there wasn't a older one earlier. */ 1869 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { 1870 /* If delack timer was blocked or is about to expire, 1871 * send ACK now. 1872 */ 1873 if (icsk->icsk_ack.blocked || 1874 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { 1875 tcp_send_ack(sk); 1876 return; 1877 } 1878 1879 if (!time_before(timeout, icsk->icsk_ack.timeout)) 1880 timeout = icsk->icsk_ack.timeout; 1881 } 1882 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; 1883 icsk->icsk_ack.timeout = timeout; 1884 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); 1885 } 1886 1887 /* This routine sends an ack and also updates the window. */ 1888 void tcp_send_ack(struct sock *sk) 1889 { 1890 /* If we have been reset, we may not send again. */ 1891 if (sk->sk_state != TCP_CLOSE) { 1892 struct tcp_sock *tp = tcp_sk(sk); 1893 struct sk_buff *buff; 1894 1895 /* We are not putting this on the write queue, so 1896 * tcp_transmit_skb() will set the ownership to this 1897 * sock. 1898 */ 1899 buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 1900 if (buff == NULL) { 1901 inet_csk_schedule_ack(sk); 1902 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; 1903 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, 1904 TCP_DELACK_MAX, TCP_RTO_MAX); 1905 return; 1906 } 1907 1908 /* Reserve space for headers and prepare control bits. */ 1909 skb_reserve(buff, MAX_TCP_HEADER); 1910 buff->csum = 0; 1911 TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK; 1912 TCP_SKB_CB(buff)->sacked = 0; 1913 skb_shinfo(buff)->tso_segs = 1; 1914 skb_shinfo(buff)->tso_size = 0; 1915 1916 /* Send it off, this clears delayed acks for us. */ 1917 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp); 1918 TCP_SKB_CB(buff)->when = tcp_time_stamp; 1919 tcp_transmit_skb(sk, buff); 1920 } 1921 } 1922 1923 /* This routine sends a packet with an out of date sequence 1924 * number. It assumes the other end will try to ack it. 1925 * 1926 * Question: what should we make while urgent mode? 1927 * 4.4BSD forces sending single byte of data. We cannot send 1928 * out of window data, because we have SND.NXT==SND.MAX... 1929 * 1930 * Current solution: to send TWO zero-length segments in urgent mode: 1931 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is 1932 * out-of-date with SND.UNA-1 to probe window. 1933 */ 1934 static int tcp_xmit_probe_skb(struct sock *sk, int urgent) 1935 { 1936 struct tcp_sock *tp = tcp_sk(sk); 1937 struct sk_buff *skb; 1938 1939 /* We don't queue it, tcp_transmit_skb() sets ownership. */ 1940 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); 1941 if (skb == NULL) 1942 return -1; 1943 1944 /* Reserve space for headers and set control bits. */ 1945 skb_reserve(skb, MAX_TCP_HEADER); 1946 skb->csum = 0; 1947 TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK; 1948 TCP_SKB_CB(skb)->sacked = urgent; 1949 skb_shinfo(skb)->tso_segs = 1; 1950 skb_shinfo(skb)->tso_size = 0; 1951 1952 /* Use a previous sequence. This should cause the other 1953 * end to send an ack. Don't queue or clone SKB, just 1954 * send it. 1955 */ 1956 TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1; 1957 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; 1958 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1959 return tcp_transmit_skb(sk, skb); 1960 } 1961 1962 int tcp_write_wakeup(struct sock *sk) 1963 { 1964 if (sk->sk_state != TCP_CLOSE) { 1965 struct tcp_sock *tp = tcp_sk(sk); 1966 struct sk_buff *skb; 1967 1968 if ((skb = sk->sk_send_head) != NULL && 1969 before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) { 1970 int err; 1971 unsigned int mss = tcp_current_mss(sk, 0); 1972 unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq; 1973 1974 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) 1975 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; 1976 1977 /* We are probing the opening of a window 1978 * but the window size is != 0 1979 * must have been a result SWS avoidance ( sender ) 1980 */ 1981 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || 1982 skb->len > mss) { 1983 seg_size = min(seg_size, mss); 1984 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 1985 if (tcp_fragment(sk, skb, seg_size, mss)) 1986 return -1; 1987 } else if (!tcp_skb_pcount(skb)) 1988 tcp_set_skb_tso_segs(sk, skb, mss); 1989 1990 TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; 1991 TCP_SKB_CB(skb)->when = tcp_time_stamp; 1992 err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC)); 1993 if (!err) { 1994 update_send_head(sk, tp, skb); 1995 } 1996 return err; 1997 } else { 1998 if (tp->urg_mode && 1999 between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF)) 2000 tcp_xmit_probe_skb(sk, TCPCB_URG); 2001 return tcp_xmit_probe_skb(sk, 0); 2002 } 2003 } 2004 return -1; 2005 } 2006 2007 /* A window probe timeout has occurred. If window is not closed send 2008 * a partial packet else a zero probe. 2009 */ 2010 void tcp_send_probe0(struct sock *sk) 2011 { 2012 struct inet_connection_sock *icsk = inet_csk(sk); 2013 struct tcp_sock *tp = tcp_sk(sk); 2014 int err; 2015 2016 err = tcp_write_wakeup(sk); 2017 2018 if (tp->packets_out || !sk->sk_send_head) { 2019 /* Cancel probe timer, if it is not required. */ 2020 icsk->icsk_probes_out = 0; 2021 icsk->icsk_backoff = 0; 2022 return; 2023 } 2024 2025 if (err <= 0) { 2026 if (icsk->icsk_backoff < sysctl_tcp_retries2) 2027 icsk->icsk_backoff++; 2028 icsk->icsk_probes_out++; 2029 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2030 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), 2031 TCP_RTO_MAX); 2032 } else { 2033 /* If packet was not sent due to local congestion, 2034 * do not backoff and do not remember icsk_probes_out. 2035 * Let local senders to fight for local resources. 2036 * 2037 * Use accumulated backoff yet. 2038 */ 2039 if (!icsk->icsk_probes_out) 2040 icsk->icsk_probes_out = 1; 2041 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, 2042 min(icsk->icsk_rto << icsk->icsk_backoff, 2043 TCP_RESOURCE_PROBE_INTERVAL), 2044 TCP_RTO_MAX); 2045 } 2046 } 2047 2048 EXPORT_SYMBOL(tcp_connect); 2049 EXPORT_SYMBOL(tcp_make_synack); 2050 EXPORT_SYMBOL(tcp_simple_retransmit); 2051 EXPORT_SYMBOL(tcp_sync_mss); 2052