xref: /linux/net/ipv4/tcp_output.c (revision 2624f124b3b5d550ab2fbef7ee3bc0e1fed09722)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
25  *				:	Fragmentation on mtu decrease
26  *				:	Segment collapse on retransmit
27  *				:	AF independence
28  *
29  *		Linus Torvalds	:	send_delayed_ack
30  *		David S. Miller	:	Charge memory using the right skb
31  *					during syn/ack processing.
32  *		David S. Miller :	Output engine completely rewritten.
33  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
34  *		Cacophonix Gaul :	draft-minshall-nagle-01
35  *		J Hadi Salim	:	ECN support
36  *
37  */
38 
39 #include <net/tcp.h>
40 
41 #include <linux/compiler.h>
42 #include <linux/module.h>
43 #include <linux/smp_lock.h>
44 
45 /* People can turn this off for buggy TCP's found in printers etc. */
46 int sysctl_tcp_retrans_collapse = 1;
47 
48 /* This limits the percentage of the congestion window which we
49  * will allow a single TSO frame to consume.  Building TSO frames
50  * which are too large can cause TCP streams to be bursty.
51  */
52 int sysctl_tcp_tso_win_divisor = 3;
53 
54 static inline void update_send_head(struct sock *sk, struct tcp_sock *tp,
55 				    struct sk_buff *skb)
56 {
57 	sk->sk_send_head = skb->next;
58 	if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue)
59 		sk->sk_send_head = NULL;
60 	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
61 	tcp_packets_out_inc(sk, tp, skb);
62 }
63 
64 /* SND.NXT, if window was not shrunk.
65  * If window has been shrunk, what should we make? It is not clear at all.
66  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
67  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
68  * invalid. OK, let's make this for now:
69  */
70 static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp)
71 {
72 	if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt))
73 		return tp->snd_nxt;
74 	else
75 		return tp->snd_una+tp->snd_wnd;
76 }
77 
78 /* Calculate mss to advertise in SYN segment.
79  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
80  *
81  * 1. It is independent of path mtu.
82  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
83  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
84  *    attached devices, because some buggy hosts are confused by
85  *    large MSS.
86  * 4. We do not make 3, we advertise MSS, calculated from first
87  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
88  *    This may be overridden via information stored in routing table.
89  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
90  *    probably even Jumbo".
91  */
92 static __u16 tcp_advertise_mss(struct sock *sk)
93 {
94 	struct tcp_sock *tp = tcp_sk(sk);
95 	struct dst_entry *dst = __sk_dst_get(sk);
96 	int mss = tp->advmss;
97 
98 	if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
99 		mss = dst_metric(dst, RTAX_ADVMSS);
100 		tp->advmss = mss;
101 	}
102 
103 	return (__u16)mss;
104 }
105 
106 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
107  * This is the first part of cwnd validation mechanism. */
108 static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst)
109 {
110 	struct tcp_sock *tp = tcp_sk(sk);
111 	s32 delta = tcp_time_stamp - tp->lsndtime;
112 	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
113 	u32 cwnd = tp->snd_cwnd;
114 
115 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
116 
117 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
118 	restart_cwnd = min(restart_cwnd, cwnd);
119 
120 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
121 		cwnd >>= 1;
122 	tp->snd_cwnd = max(cwnd, restart_cwnd);
123 	tp->snd_cwnd_stamp = tcp_time_stamp;
124 	tp->snd_cwnd_used = 0;
125 }
126 
127 static inline void tcp_event_data_sent(struct tcp_sock *tp,
128 				       struct sk_buff *skb, struct sock *sk)
129 {
130 	struct inet_connection_sock *icsk = inet_csk(sk);
131 	const u32 now = tcp_time_stamp;
132 
133 	if (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)
134 		tcp_cwnd_restart(sk, __sk_dst_get(sk));
135 
136 	tp->lsndtime = now;
137 
138 	/* If it is a reply for ato after last received
139 	 * packet, enter pingpong mode.
140 	 */
141 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
142 		icsk->icsk_ack.pingpong = 1;
143 }
144 
145 static __inline__ void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
146 {
147 	tcp_dec_quickack_mode(sk, pkts);
148 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
149 }
150 
151 /* Determine a window scaling and initial window to offer.
152  * Based on the assumption that the given amount of space
153  * will be offered. Store the results in the tp structure.
154  * NOTE: for smooth operation initial space offering should
155  * be a multiple of mss if possible. We assume here that mss >= 1.
156  * This MUST be enforced by all callers.
157  */
158 void tcp_select_initial_window(int __space, __u32 mss,
159 			       __u32 *rcv_wnd, __u32 *window_clamp,
160 			       int wscale_ok, __u8 *rcv_wscale)
161 {
162 	unsigned int space = (__space < 0 ? 0 : __space);
163 
164 	/* If no clamp set the clamp to the max possible scaled window */
165 	if (*window_clamp == 0)
166 		(*window_clamp) = (65535 << 14);
167 	space = min(*window_clamp, space);
168 
169 	/* Quantize space offering to a multiple of mss if possible. */
170 	if (space > mss)
171 		space = (space / mss) * mss;
172 
173 	/* NOTE: offering an initial window larger than 32767
174 	 * will break some buggy TCP stacks. We try to be nice.
175 	 * If we are not window scaling, then this truncates
176 	 * our initial window offering to 32k. There should also
177 	 * be a sysctl option to stop being nice.
178 	 */
179 	(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
180 	(*rcv_wscale) = 0;
181 	if (wscale_ok) {
182 		/* Set window scaling on max possible window
183 		 * See RFC1323 for an explanation of the limit to 14
184 		 */
185 		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
186 		while (space > 65535 && (*rcv_wscale) < 14) {
187 			space >>= 1;
188 			(*rcv_wscale)++;
189 		}
190 	}
191 
192 	/* Set initial window to value enough for senders,
193 	 * following RFC1414. Senders, not following this RFC,
194 	 * will be satisfied with 2.
195 	 */
196 	if (mss > (1<<*rcv_wscale)) {
197 		int init_cwnd = 4;
198 		if (mss > 1460*3)
199 			init_cwnd = 2;
200 		else if (mss > 1460)
201 			init_cwnd = 3;
202 		if (*rcv_wnd > init_cwnd*mss)
203 			*rcv_wnd = init_cwnd*mss;
204 	}
205 
206 	/* Set the clamp no higher than max representable value */
207 	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
208 }
209 
210 /* Chose a new window to advertise, update state in tcp_sock for the
211  * socket, and return result with RFC1323 scaling applied.  The return
212  * value can be stuffed directly into th->window for an outgoing
213  * frame.
214  */
215 static __inline__ u16 tcp_select_window(struct sock *sk)
216 {
217 	struct tcp_sock *tp = tcp_sk(sk);
218 	u32 cur_win = tcp_receive_window(tp);
219 	u32 new_win = __tcp_select_window(sk);
220 
221 	/* Never shrink the offered window */
222 	if(new_win < cur_win) {
223 		/* Danger Will Robinson!
224 		 * Don't update rcv_wup/rcv_wnd here or else
225 		 * we will not be able to advertise a zero
226 		 * window in time.  --DaveM
227 		 *
228 		 * Relax Will Robinson.
229 		 */
230 		new_win = cur_win;
231 	}
232 	tp->rcv_wnd = new_win;
233 	tp->rcv_wup = tp->rcv_nxt;
234 
235 	/* Make sure we do not exceed the maximum possible
236 	 * scaled window.
237 	 */
238 	if (!tp->rx_opt.rcv_wscale)
239 		new_win = min(new_win, MAX_TCP_WINDOW);
240 	else
241 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
242 
243 	/* RFC1323 scaling applied */
244 	new_win >>= tp->rx_opt.rcv_wscale;
245 
246 	/* If we advertise zero window, disable fast path. */
247 	if (new_win == 0)
248 		tp->pred_flags = 0;
249 
250 	return new_win;
251 }
252 
253 
254 /* This routine actually transmits TCP packets queued in by
255  * tcp_do_sendmsg().  This is used by both the initial
256  * transmission and possible later retransmissions.
257  * All SKB's seen here are completely headerless.  It is our
258  * job to build the TCP header, and pass the packet down to
259  * IP so it can do the same plus pass the packet off to the
260  * device.
261  *
262  * We are working here with either a clone of the original
263  * SKB, or a fresh unique copy made by the retransmit engine.
264  */
265 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb)
266 {
267 	if (skb != NULL) {
268 		const struct inet_connection_sock *icsk = inet_csk(sk);
269 		struct inet_sock *inet = inet_sk(sk);
270 		struct tcp_sock *tp = tcp_sk(sk);
271 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
272 		int tcp_header_size = tp->tcp_header_len;
273 		struct tcphdr *th;
274 		int sysctl_flags;
275 		int err;
276 
277 		BUG_ON(!tcp_skb_pcount(skb));
278 
279 #define SYSCTL_FLAG_TSTAMPS	0x1
280 #define SYSCTL_FLAG_WSCALE	0x2
281 #define SYSCTL_FLAG_SACK	0x4
282 
283 		/* If congestion control is doing timestamping */
284 		if (icsk->icsk_ca_ops->rtt_sample)
285 			__net_timestamp(skb);
286 
287 		sysctl_flags = 0;
288 		if (tcb->flags & TCPCB_FLAG_SYN) {
289 			tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS;
290 			if(sysctl_tcp_timestamps) {
291 				tcp_header_size += TCPOLEN_TSTAMP_ALIGNED;
292 				sysctl_flags |= SYSCTL_FLAG_TSTAMPS;
293 			}
294 			if(sysctl_tcp_window_scaling) {
295 				tcp_header_size += TCPOLEN_WSCALE_ALIGNED;
296 				sysctl_flags |= SYSCTL_FLAG_WSCALE;
297 			}
298 			if(sysctl_tcp_sack) {
299 				sysctl_flags |= SYSCTL_FLAG_SACK;
300 				if(!(sysctl_flags & SYSCTL_FLAG_TSTAMPS))
301 					tcp_header_size += TCPOLEN_SACKPERM_ALIGNED;
302 			}
303 		} else if (tp->rx_opt.eff_sacks) {
304 			/* A SACK is 2 pad bytes, a 2 byte header, plus
305 			 * 2 32-bit sequence numbers for each SACK block.
306 			 */
307 			tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED +
308 					    (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
309 		}
310 
311 		if (tcp_packets_in_flight(tp) == 0)
312 			tcp_ca_event(sk, CA_EVENT_TX_START);
313 
314 		th = (struct tcphdr *) skb_push(skb, tcp_header_size);
315 		skb->h.th = th;
316 		skb_set_owner_w(skb, sk);
317 
318 		/* Build TCP header and checksum it. */
319 		th->source		= inet->sport;
320 		th->dest		= inet->dport;
321 		th->seq			= htonl(tcb->seq);
322 		th->ack_seq		= htonl(tp->rcv_nxt);
323 		*(((__u16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) | tcb->flags);
324 		if (tcb->flags & TCPCB_FLAG_SYN) {
325 			/* RFC1323: The window in SYN & SYN/ACK segments
326 			 * is never scaled.
327 			 */
328 			th->window	= htons(tp->rcv_wnd);
329 		} else {
330 			th->window	= htons(tcp_select_window(sk));
331 		}
332 		th->check		= 0;
333 		th->urg_ptr		= 0;
334 
335 		if (tp->urg_mode &&
336 		    between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF)) {
337 			th->urg_ptr		= htons(tp->snd_up-tcb->seq);
338 			th->urg			= 1;
339 		}
340 
341 		if (tcb->flags & TCPCB_FLAG_SYN) {
342 			tcp_syn_build_options((__u32 *)(th + 1),
343 					      tcp_advertise_mss(sk),
344 					      (sysctl_flags & SYSCTL_FLAG_TSTAMPS),
345 					      (sysctl_flags & SYSCTL_FLAG_SACK),
346 					      (sysctl_flags & SYSCTL_FLAG_WSCALE),
347 					      tp->rx_opt.rcv_wscale,
348 					      tcb->when,
349 		      			      tp->rx_opt.ts_recent);
350 		} else {
351 			tcp_build_and_update_options((__u32 *)(th + 1),
352 						     tp, tcb->when);
353 
354 			TCP_ECN_send(sk, tp, skb, tcp_header_size);
355 		}
356 		tp->af_specific->send_check(sk, th, skb->len, skb);
357 
358 		if (tcb->flags & TCPCB_FLAG_ACK)
359 			tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
360 
361 		if (skb->len != tcp_header_size)
362 			tcp_event_data_sent(tp, skb, sk);
363 
364 		TCP_INC_STATS(TCP_MIB_OUTSEGS);
365 
366 		err = tp->af_specific->queue_xmit(skb, 0);
367 		if (err <= 0)
368 			return err;
369 
370 		tcp_enter_cwr(sk);
371 
372 		/* NET_XMIT_CN is special. It does not guarantee,
373 		 * that this packet is lost. It tells that device
374 		 * is about to start to drop packets or already
375 		 * drops some packets of the same priority and
376 		 * invokes us to send less aggressively.
377 		 */
378 		return err == NET_XMIT_CN ? 0 : err;
379 	}
380 	return -ENOBUFS;
381 #undef SYSCTL_FLAG_TSTAMPS
382 #undef SYSCTL_FLAG_WSCALE
383 #undef SYSCTL_FLAG_SACK
384 }
385 
386 
387 /* This routine just queue's the buffer
388  *
389  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
390  * otherwise socket can stall.
391  */
392 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
393 {
394 	struct tcp_sock *tp = tcp_sk(sk);
395 
396 	/* Advance write_seq and place onto the write_queue. */
397 	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
398 	skb_header_release(skb);
399 	__skb_queue_tail(&sk->sk_write_queue, skb);
400 	sk_charge_skb(sk, skb);
401 
402 	/* Queue it, remembering where we must start sending. */
403 	if (sk->sk_send_head == NULL)
404 		sk->sk_send_head = skb;
405 }
406 
407 static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now)
408 {
409 	if (skb->len <= mss_now ||
410 	    !(sk->sk_route_caps & NETIF_F_TSO)) {
411 		/* Avoid the costly divide in the normal
412 		 * non-TSO case.
413 		 */
414 		skb_shinfo(skb)->tso_segs = 1;
415 		skb_shinfo(skb)->tso_size = 0;
416 	} else {
417 		unsigned int factor;
418 
419 		factor = skb->len + (mss_now - 1);
420 		factor /= mss_now;
421 		skb_shinfo(skb)->tso_segs = factor;
422 		skb_shinfo(skb)->tso_size = mss_now;
423 	}
424 }
425 
426 /* Function to create two new TCP segments.  Shrinks the given segment
427  * to the specified size and appends a new segment with the rest of the
428  * packet to the list.  This won't be called frequently, I hope.
429  * Remember, these are still headerless SKBs at this point.
430  */
431 int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, unsigned int mss_now)
432 {
433 	struct tcp_sock *tp = tcp_sk(sk);
434 	struct sk_buff *buff;
435 	int nsize, old_factor;
436 	u16 flags;
437 
438 	nsize = skb_headlen(skb) - len;
439 	if (nsize < 0)
440 		nsize = 0;
441 
442 	if (skb_cloned(skb) &&
443 	    skb_is_nonlinear(skb) &&
444 	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
445 		return -ENOMEM;
446 
447 	/* Get a new skb... force flag on. */
448 	buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
449 	if (buff == NULL)
450 		return -ENOMEM; /* We'll just try again later. */
451 	sk_charge_skb(sk, buff);
452 
453 	/* Correct the sequence numbers. */
454 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
455 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
456 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
457 
458 	/* PSH and FIN should only be set in the second packet. */
459 	flags = TCP_SKB_CB(skb)->flags;
460 	TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
461 	TCP_SKB_CB(buff)->flags = flags;
462 	TCP_SKB_CB(buff)->sacked =
463 		(TCP_SKB_CB(skb)->sacked &
464 		 (TCPCB_LOST | TCPCB_EVER_RETRANS | TCPCB_AT_TAIL));
465 	TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL;
466 
467 	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_HW) {
468 		/* Copy and checksum data tail into the new buffer. */
469 		buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize),
470 						       nsize, 0);
471 
472 		skb_trim(skb, len);
473 
474 		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
475 	} else {
476 		skb->ip_summed = CHECKSUM_HW;
477 		skb_split(skb, buff, len);
478 	}
479 
480 	buff->ip_summed = skb->ip_summed;
481 
482 	/* Looks stupid, but our code really uses when of
483 	 * skbs, which it never sent before. --ANK
484 	 */
485 	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
486 	buff->tstamp = skb->tstamp;
487 
488 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
489 		tp->lost_out -= tcp_skb_pcount(skb);
490 		tp->left_out -= tcp_skb_pcount(skb);
491 	}
492 
493 	old_factor = tcp_skb_pcount(skb);
494 
495 	/* Fix up tso_factor for both original and new SKB.  */
496 	tcp_set_skb_tso_segs(sk, skb, mss_now);
497 	tcp_set_skb_tso_segs(sk, buff, mss_now);
498 
499 	/* If this packet has been sent out already, we must
500 	 * adjust the various packet counters.
501 	 */
502 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
503 		int diff = old_factor - tcp_skb_pcount(skb) -
504 			tcp_skb_pcount(buff);
505 
506 		tp->packets_out -= diff;
507 		if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) {
508 			tp->lost_out -= diff;
509 			tp->left_out -= diff;
510 		}
511 		if (diff > 0) {
512 			tp->fackets_out -= diff;
513 			if ((int)tp->fackets_out < 0)
514 				tp->fackets_out = 0;
515 		}
516 	}
517 
518 	/* Link BUFF into the send queue. */
519 	skb_header_release(buff);
520 	__skb_append(skb, buff, &sk->sk_write_queue);
521 
522 	return 0;
523 }
524 
525 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
526  * eventually). The difference is that pulled data not copied, but
527  * immediately discarded.
528  */
529 static unsigned char *__pskb_trim_head(struct sk_buff *skb, int len)
530 {
531 	int i, k, eat;
532 
533 	eat = len;
534 	k = 0;
535 	for (i=0; i<skb_shinfo(skb)->nr_frags; i++) {
536 		if (skb_shinfo(skb)->frags[i].size <= eat) {
537 			put_page(skb_shinfo(skb)->frags[i].page);
538 			eat -= skb_shinfo(skb)->frags[i].size;
539 		} else {
540 			skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
541 			if (eat) {
542 				skb_shinfo(skb)->frags[k].page_offset += eat;
543 				skb_shinfo(skb)->frags[k].size -= eat;
544 				eat = 0;
545 			}
546 			k++;
547 		}
548 	}
549 	skb_shinfo(skb)->nr_frags = k;
550 
551 	skb->tail = skb->data;
552 	skb->data_len -= len;
553 	skb->len = skb->data_len;
554 	return skb->tail;
555 }
556 
557 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
558 {
559 	if (skb_cloned(skb) &&
560 	    pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
561 		return -ENOMEM;
562 
563 	if (len <= skb_headlen(skb)) {
564 		__skb_pull(skb, len);
565 	} else {
566 		if (__pskb_trim_head(skb, len-skb_headlen(skb)) == NULL)
567 			return -ENOMEM;
568 	}
569 
570 	TCP_SKB_CB(skb)->seq += len;
571 	skb->ip_summed = CHECKSUM_HW;
572 
573 	skb->truesize	     -= len;
574 	sk->sk_wmem_queued   -= len;
575 	sk->sk_forward_alloc += len;
576 	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
577 
578 	/* Any change of skb->len requires recalculation of tso
579 	 * factor and mss.
580 	 */
581 	if (tcp_skb_pcount(skb) > 1)
582 		tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1));
583 
584 	return 0;
585 }
586 
587 /* This function synchronize snd mss to current pmtu/exthdr set.
588 
589    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
590    for TCP options, but includes only bare TCP header.
591 
592    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
593    It is minumum of user_mss and mss received with SYN.
594    It also does not include TCP options.
595 
596    tp->pmtu_cookie is last pmtu, seen by this function.
597 
598    tp->mss_cache is current effective sending mss, including
599    all tcp options except for SACKs. It is evaluated,
600    taking into account current pmtu, but never exceeds
601    tp->rx_opt.mss_clamp.
602 
603    NOTE1. rfc1122 clearly states that advertised MSS
604    DOES NOT include either tcp or ip options.
605 
606    NOTE2. tp->pmtu_cookie and tp->mss_cache are READ ONLY outside
607    this function.			--ANK (980731)
608  */
609 
610 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
611 {
612 	struct tcp_sock *tp = tcp_sk(sk);
613 	int mss_now;
614 
615 	/* Calculate base mss without TCP options:
616 	   It is MMS_S - sizeof(tcphdr) of rfc1122
617 	 */
618 	mss_now = pmtu - tp->af_specific->net_header_len - sizeof(struct tcphdr);
619 
620 	/* Clamp it (mss_clamp does not include tcp options) */
621 	if (mss_now > tp->rx_opt.mss_clamp)
622 		mss_now = tp->rx_opt.mss_clamp;
623 
624 	/* Now subtract optional transport overhead */
625 	mss_now -= tp->ext_header_len;
626 
627 	/* Then reserve room for full set of TCP options and 8 bytes of data */
628 	if (mss_now < 48)
629 		mss_now = 48;
630 
631 	/* Now subtract TCP options size, not including SACKs */
632 	mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);
633 
634 	/* Bound mss with half of window */
635 	if (tp->max_window && mss_now > (tp->max_window>>1))
636 		mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len);
637 
638 	/* And store cached results */
639 	tp->pmtu_cookie = pmtu;
640 	tp->mss_cache = mss_now;
641 
642 	return mss_now;
643 }
644 
645 /* Compute the current effective MSS, taking SACKs and IP options,
646  * and even PMTU discovery events into account.
647  *
648  * LARGESEND note: !urg_mode is overkill, only frames up to snd_up
649  * cannot be large. However, taking into account rare use of URG, this
650  * is not a big flaw.
651  */
652 unsigned int tcp_current_mss(struct sock *sk, int large_allowed)
653 {
654 	struct tcp_sock *tp = tcp_sk(sk);
655 	struct dst_entry *dst = __sk_dst_get(sk);
656 	u32 mss_now;
657 	u16 xmit_size_goal;
658 	int doing_tso = 0;
659 
660 	mss_now = tp->mss_cache;
661 
662 	if (large_allowed &&
663 	    (sk->sk_route_caps & NETIF_F_TSO) &&
664 	    !tp->urg_mode)
665 		doing_tso = 1;
666 
667 	if (dst) {
668 		u32 mtu = dst_mtu(dst);
669 		if (mtu != tp->pmtu_cookie)
670 			mss_now = tcp_sync_mss(sk, mtu);
671 	}
672 
673 	if (tp->rx_opt.eff_sacks)
674 		mss_now -= (TCPOLEN_SACK_BASE_ALIGNED +
675 			    (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK));
676 
677 	xmit_size_goal = mss_now;
678 
679 	if (doing_tso) {
680 		xmit_size_goal = 65535 -
681 			tp->af_specific->net_header_len -
682 			tp->ext_header_len - tp->tcp_header_len;
683 
684 		if (tp->max_window &&
685 		    (xmit_size_goal > (tp->max_window >> 1)))
686 			xmit_size_goal = max((tp->max_window >> 1),
687 					     68U - tp->tcp_header_len);
688 
689 		xmit_size_goal -= (xmit_size_goal % mss_now);
690 	}
691 	tp->xmit_size_goal = xmit_size_goal;
692 
693 	return mss_now;
694 }
695 
696 /* Congestion window validation. (RFC2861) */
697 
698 static inline void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp)
699 {
700 	__u32 packets_out = tp->packets_out;
701 
702 	if (packets_out >= tp->snd_cwnd) {
703 		/* Network is feed fully. */
704 		tp->snd_cwnd_used = 0;
705 		tp->snd_cwnd_stamp = tcp_time_stamp;
706 	} else {
707 		/* Network starves. */
708 		if (tp->packets_out > tp->snd_cwnd_used)
709 			tp->snd_cwnd_used = tp->packets_out;
710 
711 		if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
712 			tcp_cwnd_application_limited(sk);
713 	}
714 }
715 
716 static unsigned int tcp_window_allows(struct tcp_sock *tp, struct sk_buff *skb, unsigned int mss_now, unsigned int cwnd)
717 {
718 	u32 window, cwnd_len;
719 
720 	window = (tp->snd_una + tp->snd_wnd - TCP_SKB_CB(skb)->seq);
721 	cwnd_len = mss_now * cwnd;
722 	return min(window, cwnd_len);
723 }
724 
725 /* Can at least one segment of SKB be sent right now, according to the
726  * congestion window rules?  If so, return how many segments are allowed.
727  */
728 static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb)
729 {
730 	u32 in_flight, cwnd;
731 
732 	/* Don't be strict about the congestion window for the final FIN.  */
733 	if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
734 		return 1;
735 
736 	in_flight = tcp_packets_in_flight(tp);
737 	cwnd = tp->snd_cwnd;
738 	if (in_flight < cwnd)
739 		return (cwnd - in_flight);
740 
741 	return 0;
742 }
743 
744 /* This must be invoked the first time we consider transmitting
745  * SKB onto the wire.
746  */
747 static inline int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now)
748 {
749 	int tso_segs = tcp_skb_pcount(skb);
750 
751 	if (!tso_segs ||
752 	    (tso_segs > 1 &&
753 	     skb_shinfo(skb)->tso_size != mss_now)) {
754 		tcp_set_skb_tso_segs(sk, skb, mss_now);
755 		tso_segs = tcp_skb_pcount(skb);
756 	}
757 	return tso_segs;
758 }
759 
760 static inline int tcp_minshall_check(const struct tcp_sock *tp)
761 {
762 	return after(tp->snd_sml,tp->snd_una) &&
763 		!after(tp->snd_sml, tp->snd_nxt);
764 }
765 
766 /* Return 0, if packet can be sent now without violation Nagle's rules:
767  * 1. It is full sized.
768  * 2. Or it contains FIN. (already checked by caller)
769  * 3. Or TCP_NODELAY was set.
770  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
771  *    With Minshall's modification: all sent small packets are ACKed.
772  */
773 
774 static inline int tcp_nagle_check(const struct tcp_sock *tp,
775 				  const struct sk_buff *skb,
776 				  unsigned mss_now, int nonagle)
777 {
778 	return (skb->len < mss_now &&
779 		((nonagle&TCP_NAGLE_CORK) ||
780 		 (!nonagle &&
781 		  tp->packets_out &&
782 		  tcp_minshall_check(tp))));
783 }
784 
785 /* Return non-zero if the Nagle test allows this packet to be
786  * sent now.
787  */
788 static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
789 				 unsigned int cur_mss, int nonagle)
790 {
791 	/* Nagle rule does not apply to frames, which sit in the middle of the
792 	 * write_queue (they have no chances to get new data).
793 	 *
794 	 * This is implemented in the callers, where they modify the 'nonagle'
795 	 * argument based upon the location of SKB in the send queue.
796 	 */
797 	if (nonagle & TCP_NAGLE_PUSH)
798 		return 1;
799 
800 	/* Don't use the nagle rule for urgent data (or for the final FIN).  */
801 	if (tp->urg_mode ||
802 	    (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
803 		return 1;
804 
805 	if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
806 		return 1;
807 
808 	return 0;
809 }
810 
811 /* Does at least the first segment of SKB fit into the send window? */
812 static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss)
813 {
814 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
815 
816 	if (skb->len > cur_mss)
817 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
818 
819 	return !after(end_seq, tp->snd_una + tp->snd_wnd);
820 }
821 
822 /* This checks if the data bearing packet SKB (usually sk->sk_send_head)
823  * should be put on the wire right now.  If so, it returns the number of
824  * packets allowed by the congestion window.
825  */
826 static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
827 				 unsigned int cur_mss, int nonagle)
828 {
829 	struct tcp_sock *tp = tcp_sk(sk);
830 	unsigned int cwnd_quota;
831 
832 	tcp_init_tso_segs(sk, skb, cur_mss);
833 
834 	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
835 		return 0;
836 
837 	cwnd_quota = tcp_cwnd_test(tp, skb);
838 	if (cwnd_quota &&
839 	    !tcp_snd_wnd_test(tp, skb, cur_mss))
840 		cwnd_quota = 0;
841 
842 	return cwnd_quota;
843 }
844 
845 static inline int tcp_skb_is_last(const struct sock *sk,
846 				  const struct sk_buff *skb)
847 {
848 	return skb->next == (struct sk_buff *)&sk->sk_write_queue;
849 }
850 
851 int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp)
852 {
853 	struct sk_buff *skb = sk->sk_send_head;
854 
855 	return (skb &&
856 		tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
857 			     (tcp_skb_is_last(sk, skb) ?
858 			      TCP_NAGLE_PUSH :
859 			      tp->nonagle)));
860 }
861 
862 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
863  * which is put after SKB on the list.  It is very much like
864  * tcp_fragment() except that it may make several kinds of assumptions
865  * in order to speed up the splitting operation.  In particular, we
866  * know that all the data is in scatter-gather pages, and that the
867  * packet has never been sent out before (and thus is not cloned).
868  */
869 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, unsigned int mss_now)
870 {
871 	struct sk_buff *buff;
872 	int nlen = skb->len - len;
873 	u16 flags;
874 
875 	/* All of a TSO frame must be composed of paged data.  */
876 	if (skb->len != skb->data_len)
877 		return tcp_fragment(sk, skb, len, mss_now);
878 
879 	buff = sk_stream_alloc_pskb(sk, 0, 0, GFP_ATOMIC);
880 	if (unlikely(buff == NULL))
881 		return -ENOMEM;
882 
883 	buff->truesize = nlen;
884 	skb->truesize -= nlen;
885 
886 	/* Correct the sequence numbers. */
887 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
888 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
889 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
890 
891 	/* PSH and FIN should only be set in the second packet. */
892 	flags = TCP_SKB_CB(skb)->flags;
893 	TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
894 	TCP_SKB_CB(buff)->flags = flags;
895 
896 	/* This packet was never sent out yet, so no SACK bits. */
897 	TCP_SKB_CB(buff)->sacked = 0;
898 
899 	buff->ip_summed = skb->ip_summed = CHECKSUM_HW;
900 	skb_split(skb, buff, len);
901 
902 	/* Fix up tso_factor for both original and new SKB.  */
903 	tcp_set_skb_tso_segs(sk, skb, mss_now);
904 	tcp_set_skb_tso_segs(sk, buff, mss_now);
905 
906 	/* Link BUFF into the send queue. */
907 	skb_header_release(buff);
908 	__skb_append(skb, buff, &sk->sk_write_queue);
909 
910 	return 0;
911 }
912 
913 /* Try to defer sending, if possible, in order to minimize the amount
914  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
915  *
916  * This algorithm is from John Heffner.
917  */
918 static int tcp_tso_should_defer(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
919 {
920 	const struct inet_connection_sock *icsk = inet_csk(sk);
921 	u32 send_win, cong_win, limit, in_flight;
922 
923 	if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
924 		return 0;
925 
926 	if (icsk->icsk_ca_state != TCP_CA_Open)
927 		return 0;
928 
929 	in_flight = tcp_packets_in_flight(tp);
930 
931 	BUG_ON(tcp_skb_pcount(skb) <= 1 ||
932 	       (tp->snd_cwnd <= in_flight));
933 
934 	send_win = (tp->snd_una + tp->snd_wnd) - TCP_SKB_CB(skb)->seq;
935 
936 	/* From in_flight test above, we know that cwnd > in_flight.  */
937 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
938 
939 	limit = min(send_win, cong_win);
940 
941 	if (sysctl_tcp_tso_win_divisor) {
942 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
943 
944 		/* If at least some fraction of a window is available,
945 		 * just use it.
946 		 */
947 		chunk /= sysctl_tcp_tso_win_divisor;
948 		if (limit >= chunk)
949 			return 0;
950 	} else {
951 		/* Different approach, try not to defer past a single
952 		 * ACK.  Receiver should ACK every other full sized
953 		 * frame, so if we have space for more than 3 frames
954 		 * then send now.
955 		 */
956 		if (limit > tcp_max_burst(tp) * tp->mss_cache)
957 			return 0;
958 	}
959 
960 	/* Ok, it looks like it is advisable to defer.  */
961 	return 1;
962 }
963 
964 /* This routine writes packets to the network.  It advances the
965  * send_head.  This happens as incoming acks open up the remote
966  * window for us.
967  *
968  * Returns 1, if no segments are in flight and we have queued segments, but
969  * cannot send anything now because of SWS or another problem.
970  */
971 static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle)
972 {
973 	struct tcp_sock *tp = tcp_sk(sk);
974 	struct sk_buff *skb;
975 	unsigned int tso_segs, sent_pkts;
976 	int cwnd_quota;
977 
978 	/* If we are closed, the bytes will have to remain here.
979 	 * In time closedown will finish, we empty the write queue and all
980 	 * will be happy.
981 	 */
982 	if (unlikely(sk->sk_state == TCP_CLOSE))
983 		return 0;
984 
985 	sent_pkts = 0;
986 	while ((skb = sk->sk_send_head)) {
987 		unsigned int limit;
988 
989 		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
990 		BUG_ON(!tso_segs);
991 
992 		cwnd_quota = tcp_cwnd_test(tp, skb);
993 		if (!cwnd_quota)
994 			break;
995 
996 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
997 			break;
998 
999 		if (tso_segs == 1) {
1000 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1001 						     (tcp_skb_is_last(sk, skb) ?
1002 						      nonagle : TCP_NAGLE_PUSH))))
1003 				break;
1004 		} else {
1005 			if (tcp_tso_should_defer(sk, tp, skb))
1006 				break;
1007 		}
1008 
1009 		limit = mss_now;
1010 		if (tso_segs > 1) {
1011 			limit = tcp_window_allows(tp, skb,
1012 						  mss_now, cwnd_quota);
1013 
1014 			if (skb->len < limit) {
1015 				unsigned int trim = skb->len % mss_now;
1016 
1017 				if (trim)
1018 					limit = skb->len - trim;
1019 			}
1020 		}
1021 
1022 		if (skb->len > limit &&
1023 		    unlikely(tso_fragment(sk, skb, limit, mss_now)))
1024 			break;
1025 
1026 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
1027 
1028 		if (unlikely(tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC))))
1029 			break;
1030 
1031 		/* Advance the send_head.  This one is sent out.
1032 		 * This call will increment packets_out.
1033 		 */
1034 		update_send_head(sk, tp, skb);
1035 
1036 		tcp_minshall_update(tp, mss_now, skb);
1037 		sent_pkts++;
1038 	}
1039 
1040 	if (likely(sent_pkts)) {
1041 		tcp_cwnd_validate(sk, tp);
1042 		return 0;
1043 	}
1044 	return !tp->packets_out && sk->sk_send_head;
1045 }
1046 
1047 /* Push out any pending frames which were held back due to
1048  * TCP_CORK or attempt at coalescing tiny packets.
1049  * The socket must be locked by the caller.
1050  */
1051 void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp,
1052 			       unsigned int cur_mss, int nonagle)
1053 {
1054 	struct sk_buff *skb = sk->sk_send_head;
1055 
1056 	if (skb) {
1057 		if (tcp_write_xmit(sk, cur_mss, nonagle))
1058 			tcp_check_probe_timer(sk, tp);
1059 	}
1060 }
1061 
1062 /* Send _single_ skb sitting at the send head. This function requires
1063  * true push pending frames to setup probe timer etc.
1064  */
1065 void tcp_push_one(struct sock *sk, unsigned int mss_now)
1066 {
1067 	struct tcp_sock *tp = tcp_sk(sk);
1068 	struct sk_buff *skb = sk->sk_send_head;
1069 	unsigned int tso_segs, cwnd_quota;
1070 
1071 	BUG_ON(!skb || skb->len < mss_now);
1072 
1073 	tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1074 	cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH);
1075 
1076 	if (likely(cwnd_quota)) {
1077 		unsigned int limit;
1078 
1079 		BUG_ON(!tso_segs);
1080 
1081 		limit = mss_now;
1082 		if (tso_segs > 1) {
1083 			limit = tcp_window_allows(tp, skb,
1084 						  mss_now, cwnd_quota);
1085 
1086 			if (skb->len < limit) {
1087 				unsigned int trim = skb->len % mss_now;
1088 
1089 				if (trim)
1090 					limit = skb->len - trim;
1091 			}
1092 		}
1093 
1094 		if (skb->len > limit &&
1095 		    unlikely(tso_fragment(sk, skb, limit, mss_now)))
1096 			return;
1097 
1098 		/* Send it out now. */
1099 		TCP_SKB_CB(skb)->when = tcp_time_stamp;
1100 
1101 		if (likely(!tcp_transmit_skb(sk, skb_clone(skb, sk->sk_allocation)))) {
1102 			update_send_head(sk, tp, skb);
1103 			tcp_cwnd_validate(sk, tp);
1104 			return;
1105 		}
1106 	}
1107 }
1108 
1109 /* This function returns the amount that we can raise the
1110  * usable window based on the following constraints
1111  *
1112  * 1. The window can never be shrunk once it is offered (RFC 793)
1113  * 2. We limit memory per socket
1114  *
1115  * RFC 1122:
1116  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1117  *  RECV.NEXT + RCV.WIN fixed until:
1118  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1119  *
1120  * i.e. don't raise the right edge of the window until you can raise
1121  * it at least MSS bytes.
1122  *
1123  * Unfortunately, the recommended algorithm breaks header prediction,
1124  * since header prediction assumes th->window stays fixed.
1125  *
1126  * Strictly speaking, keeping th->window fixed violates the receiver
1127  * side SWS prevention criteria. The problem is that under this rule
1128  * a stream of single byte packets will cause the right side of the
1129  * window to always advance by a single byte.
1130  *
1131  * Of course, if the sender implements sender side SWS prevention
1132  * then this will not be a problem.
1133  *
1134  * BSD seems to make the following compromise:
1135  *
1136  *	If the free space is less than the 1/4 of the maximum
1137  *	space available and the free space is less than 1/2 mss,
1138  *	then set the window to 0.
1139  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1140  *	Otherwise, just prevent the window from shrinking
1141  *	and from being larger than the largest representable value.
1142  *
1143  * This prevents incremental opening of the window in the regime
1144  * where TCP is limited by the speed of the reader side taking
1145  * data out of the TCP receive queue. It does nothing about
1146  * those cases where the window is constrained on the sender side
1147  * because the pipeline is full.
1148  *
1149  * BSD also seems to "accidentally" limit itself to windows that are a
1150  * multiple of MSS, at least until the free space gets quite small.
1151  * This would appear to be a side effect of the mbuf implementation.
1152  * Combining these two algorithms results in the observed behavior
1153  * of having a fixed window size at almost all times.
1154  *
1155  * Below we obtain similar behavior by forcing the offered window to
1156  * a multiple of the mss when it is feasible to do so.
1157  *
1158  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1159  * Regular options like TIMESTAMP are taken into account.
1160  */
1161 u32 __tcp_select_window(struct sock *sk)
1162 {
1163 	struct inet_connection_sock *icsk = inet_csk(sk);
1164 	struct tcp_sock *tp = tcp_sk(sk);
1165 	/* MSS for the peer's data.  Previous verions used mss_clamp
1166 	 * here.  I don't know if the value based on our guesses
1167 	 * of peer's MSS is better for the performance.  It's more correct
1168 	 * but may be worse for the performance because of rcv_mss
1169 	 * fluctuations.  --SAW  1998/11/1
1170 	 */
1171 	int mss = icsk->icsk_ack.rcv_mss;
1172 	int free_space = tcp_space(sk);
1173 	int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
1174 	int window;
1175 
1176 	if (mss > full_space)
1177 		mss = full_space;
1178 
1179 	if (free_space < full_space/2) {
1180 		icsk->icsk_ack.quick = 0;
1181 
1182 		if (tcp_memory_pressure)
1183 			tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss);
1184 
1185 		if (free_space < mss)
1186 			return 0;
1187 	}
1188 
1189 	if (free_space > tp->rcv_ssthresh)
1190 		free_space = tp->rcv_ssthresh;
1191 
1192 	/* Don't do rounding if we are using window scaling, since the
1193 	 * scaled window will not line up with the MSS boundary anyway.
1194 	 */
1195 	window = tp->rcv_wnd;
1196 	if (tp->rx_opt.rcv_wscale) {
1197 		window = free_space;
1198 
1199 		/* Advertise enough space so that it won't get scaled away.
1200 		 * Import case: prevent zero window announcement if
1201 		 * 1<<rcv_wscale > mss.
1202 		 */
1203 		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
1204 			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
1205 				  << tp->rx_opt.rcv_wscale);
1206 	} else {
1207 		/* Get the largest window that is a nice multiple of mss.
1208 		 * Window clamp already applied above.
1209 		 * If our current window offering is within 1 mss of the
1210 		 * free space we just keep it. This prevents the divide
1211 		 * and multiply from happening most of the time.
1212 		 * We also don't do any window rounding when the free space
1213 		 * is too small.
1214 		 */
1215 		if (window <= free_space - mss || window > free_space)
1216 			window = (free_space/mss)*mss;
1217 	}
1218 
1219 	return window;
1220 }
1221 
1222 /* Attempt to collapse two adjacent SKB's during retransmission. */
1223 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now)
1224 {
1225 	struct tcp_sock *tp = tcp_sk(sk);
1226 	struct sk_buff *next_skb = skb->next;
1227 
1228 	/* The first test we must make is that neither of these two
1229 	 * SKB's are still referenced by someone else.
1230 	 */
1231 	if (!skb_cloned(skb) && !skb_cloned(next_skb)) {
1232 		int skb_size = skb->len, next_skb_size = next_skb->len;
1233 		u16 flags = TCP_SKB_CB(skb)->flags;
1234 
1235 		/* Also punt if next skb has been SACK'd. */
1236 		if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
1237 			return;
1238 
1239 		/* Next skb is out of window. */
1240 		if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd))
1241 			return;
1242 
1243 		/* Punt if not enough space exists in the first SKB for
1244 		 * the data in the second, or the total combined payload
1245 		 * would exceed the MSS.
1246 		 */
1247 		if ((next_skb_size > skb_tailroom(skb)) ||
1248 		    ((skb_size + next_skb_size) > mss_now))
1249 			return;
1250 
1251 		BUG_ON(tcp_skb_pcount(skb) != 1 ||
1252 		       tcp_skb_pcount(next_skb) != 1);
1253 
1254 		/* Ok.  We will be able to collapse the packet. */
1255 		__skb_unlink(next_skb, &sk->sk_write_queue);
1256 
1257 		memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size);
1258 
1259 		if (next_skb->ip_summed == CHECKSUM_HW)
1260 			skb->ip_summed = CHECKSUM_HW;
1261 
1262 		if (skb->ip_summed != CHECKSUM_HW)
1263 			skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
1264 
1265 		/* Update sequence range on original skb. */
1266 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
1267 
1268 		/* Merge over control information. */
1269 		flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
1270 		TCP_SKB_CB(skb)->flags = flags;
1271 
1272 		/* All done, get rid of second SKB and account for it so
1273 		 * packet counting does not break.
1274 		 */
1275 		TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL);
1276 		if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS)
1277 			tp->retrans_out -= tcp_skb_pcount(next_skb);
1278 		if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) {
1279 			tp->lost_out -= tcp_skb_pcount(next_skb);
1280 			tp->left_out -= tcp_skb_pcount(next_skb);
1281 		}
1282 		/* Reno case is special. Sigh... */
1283 		if (!tp->rx_opt.sack_ok && tp->sacked_out) {
1284 			tcp_dec_pcount_approx(&tp->sacked_out, next_skb);
1285 			tp->left_out -= tcp_skb_pcount(next_skb);
1286 		}
1287 
1288 		/* Not quite right: it can be > snd.fack, but
1289 		 * it is better to underestimate fackets.
1290 		 */
1291 		tcp_dec_pcount_approx(&tp->fackets_out, next_skb);
1292 		tcp_packets_out_dec(tp, next_skb);
1293 		sk_stream_free_skb(sk, next_skb);
1294 	}
1295 }
1296 
1297 /* Do a simple retransmit without using the backoff mechanisms in
1298  * tcp_timer. This is used for path mtu discovery.
1299  * The socket is already locked here.
1300  */
1301 void tcp_simple_retransmit(struct sock *sk)
1302 {
1303 	const struct inet_connection_sock *icsk = inet_csk(sk);
1304 	struct tcp_sock *tp = tcp_sk(sk);
1305 	struct sk_buff *skb;
1306 	unsigned int mss = tcp_current_mss(sk, 0);
1307 	int lost = 0;
1308 
1309 	sk_stream_for_retrans_queue(skb, sk) {
1310 		if (skb->len > mss &&
1311 		    !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1312 			if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1313 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1314 				tp->retrans_out -= tcp_skb_pcount(skb);
1315 			}
1316 			if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) {
1317 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1318 				tp->lost_out += tcp_skb_pcount(skb);
1319 				lost = 1;
1320 			}
1321 		}
1322 	}
1323 
1324 	if (!lost)
1325 		return;
1326 
1327 	tcp_sync_left_out(tp);
1328 
1329  	/* Don't muck with the congestion window here.
1330 	 * Reason is that we do not increase amount of _data_
1331 	 * in network, but units changed and effective
1332 	 * cwnd/ssthresh really reduced now.
1333 	 */
1334 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
1335 		tp->high_seq = tp->snd_nxt;
1336 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
1337 		tp->prior_ssthresh = 0;
1338 		tp->undo_marker = 0;
1339 		tcp_set_ca_state(sk, TCP_CA_Loss);
1340 	}
1341 	tcp_xmit_retransmit_queue(sk);
1342 }
1343 
1344 /* This retransmits one SKB.  Policy decisions and retransmit queue
1345  * state updates are done by the caller.  Returns non-zero if an
1346  * error occurred which prevented the send.
1347  */
1348 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
1349 {
1350 	struct tcp_sock *tp = tcp_sk(sk);
1351  	unsigned int cur_mss = tcp_current_mss(sk, 0);
1352 	int err;
1353 
1354 	/* Do not sent more than we queued. 1/4 is reserved for possible
1355 	 * copying overhead: frgagmentation, tunneling, mangling etc.
1356 	 */
1357 	if (atomic_read(&sk->sk_wmem_alloc) >
1358 	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
1359 		return -EAGAIN;
1360 
1361 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
1362 		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1363 			BUG();
1364 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1365 			return -ENOMEM;
1366 	}
1367 
1368 	/* If receiver has shrunk his window, and skb is out of
1369 	 * new window, do not retransmit it. The exception is the
1370 	 * case, when window is shrunk to zero. In this case
1371 	 * our retransmit serves as a zero window probe.
1372 	 */
1373 	if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)
1374 	    && TCP_SKB_CB(skb)->seq != tp->snd_una)
1375 		return -EAGAIN;
1376 
1377 	if (skb->len > cur_mss) {
1378 		if (tcp_fragment(sk, skb, cur_mss, cur_mss))
1379 			return -ENOMEM; /* We'll try again later. */
1380 	}
1381 
1382 	/* Collapse two adjacent packets if worthwhile and we can. */
1383 	if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
1384 	   (skb->len < (cur_mss >> 1)) &&
1385 	   (skb->next != sk->sk_send_head) &&
1386 	   (skb->next != (struct sk_buff *)&sk->sk_write_queue) &&
1387 	   (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) &&
1388 	   (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) &&
1389 	   (sysctl_tcp_retrans_collapse != 0))
1390 		tcp_retrans_try_collapse(sk, skb, cur_mss);
1391 
1392 	if(tp->af_specific->rebuild_header(sk))
1393 		return -EHOSTUNREACH; /* Routing failure or similar. */
1394 
1395 	/* Some Solaris stacks overoptimize and ignore the FIN on a
1396 	 * retransmit when old data is attached.  So strip it off
1397 	 * since it is cheap to do so and saves bytes on the network.
1398 	 */
1399 	if(skb->len > 0 &&
1400 	   (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1401 	   tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
1402 		if (!pskb_trim(skb, 0)) {
1403 			TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1;
1404 			skb_shinfo(skb)->tso_segs = 1;
1405 			skb_shinfo(skb)->tso_size = 0;
1406 			skb->ip_summed = CHECKSUM_NONE;
1407 			skb->csum = 0;
1408 		}
1409 	}
1410 
1411 	/* Make a copy, if the first transmission SKB clone we made
1412 	 * is still in somebody's hands, else make a clone.
1413 	 */
1414 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1415 
1416 	err = tcp_transmit_skb(sk, (skb_cloned(skb) ?
1417 				    pskb_copy(skb, GFP_ATOMIC):
1418 				    skb_clone(skb, GFP_ATOMIC)));
1419 
1420 	if (err == 0) {
1421 		/* Update global TCP statistics. */
1422 		TCP_INC_STATS(TCP_MIB_RETRANSSEGS);
1423 
1424 		tp->total_retrans++;
1425 
1426 #if FASTRETRANS_DEBUG > 0
1427 		if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) {
1428 			if (net_ratelimit())
1429 				printk(KERN_DEBUG "retrans_out leaked.\n");
1430 		}
1431 #endif
1432 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
1433 		tp->retrans_out += tcp_skb_pcount(skb);
1434 
1435 		/* Save stamp of the first retransmit. */
1436 		if (!tp->retrans_stamp)
1437 			tp->retrans_stamp = TCP_SKB_CB(skb)->when;
1438 
1439 		tp->undo_retrans++;
1440 
1441 		/* snd_nxt is stored to detect loss of retransmitted segment,
1442 		 * see tcp_input.c tcp_sacktag_write_queue().
1443 		 */
1444 		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
1445 	}
1446 	return err;
1447 }
1448 
1449 /* This gets called after a retransmit timeout, and the initially
1450  * retransmitted data is acknowledged.  It tries to continue
1451  * resending the rest of the retransmit queue, until either
1452  * we've sent it all or the congestion window limit is reached.
1453  * If doing SACK, the first ACK which comes back for a timeout
1454  * based retransmit packet might feed us FACK information again.
1455  * If so, we use it to avoid unnecessarily retransmissions.
1456  */
1457 void tcp_xmit_retransmit_queue(struct sock *sk)
1458 {
1459 	const struct inet_connection_sock *icsk = inet_csk(sk);
1460 	struct tcp_sock *tp = tcp_sk(sk);
1461 	struct sk_buff *skb;
1462 	int packet_cnt = tp->lost_out;
1463 
1464 	/* First pass: retransmit lost packets. */
1465 	if (packet_cnt) {
1466 		sk_stream_for_retrans_queue(skb, sk) {
1467 			__u8 sacked = TCP_SKB_CB(skb)->sacked;
1468 
1469 			/* Assume this retransmit will generate
1470 			 * only one packet for congestion window
1471 			 * calculation purposes.  This works because
1472 			 * tcp_retransmit_skb() will chop up the
1473 			 * packet to be MSS sized and all the
1474 			 * packet counting works out.
1475 			 */
1476 			if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1477 				return;
1478 
1479 			if (sacked&TCPCB_LOST) {
1480 				if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) {
1481 					if (tcp_retransmit_skb(sk, skb))
1482 						return;
1483 					if (icsk->icsk_ca_state != TCP_CA_Loss)
1484 						NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS);
1485 					else
1486 						NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS);
1487 
1488 					if (skb ==
1489 					    skb_peek(&sk->sk_write_queue))
1490 						inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1491 									  inet_csk(sk)->icsk_rto,
1492 									  TCP_RTO_MAX);
1493 				}
1494 
1495 				packet_cnt -= tcp_skb_pcount(skb);
1496 				if (packet_cnt <= 0)
1497 					break;
1498 			}
1499 		}
1500 	}
1501 
1502 	/* OK, demanded retransmission is finished. */
1503 
1504 	/* Forward retransmissions are possible only during Recovery. */
1505 	if (icsk->icsk_ca_state != TCP_CA_Recovery)
1506 		return;
1507 
1508 	/* No forward retransmissions in Reno are possible. */
1509 	if (!tp->rx_opt.sack_ok)
1510 		return;
1511 
1512 	/* Yeah, we have to make difficult choice between forward transmission
1513 	 * and retransmission... Both ways have their merits...
1514 	 *
1515 	 * For now we do not retransmit anything, while we have some new
1516 	 * segments to send.
1517 	 */
1518 
1519 	if (tcp_may_send_now(sk, tp))
1520 		return;
1521 
1522 	packet_cnt = 0;
1523 
1524 	sk_stream_for_retrans_queue(skb, sk) {
1525 		/* Similar to the retransmit loop above we
1526 		 * can pretend that the retransmitted SKB
1527 		 * we send out here will be composed of one
1528 		 * real MSS sized packet because tcp_retransmit_skb()
1529 		 * will fragment it if necessary.
1530 		 */
1531 		if (++packet_cnt > tp->fackets_out)
1532 			break;
1533 
1534 		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
1535 			break;
1536 
1537 		if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS)
1538 			continue;
1539 
1540 		/* Ok, retransmit it. */
1541 		if (tcp_retransmit_skb(sk, skb))
1542 			break;
1543 
1544 		if (skb == skb_peek(&sk->sk_write_queue))
1545 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1546 						  inet_csk(sk)->icsk_rto,
1547 						  TCP_RTO_MAX);
1548 
1549 		NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS);
1550 	}
1551 }
1552 
1553 
1554 /* Send a fin.  The caller locks the socket for us.  This cannot be
1555  * allowed to fail queueing a FIN frame under any circumstances.
1556  */
1557 void tcp_send_fin(struct sock *sk)
1558 {
1559 	struct tcp_sock *tp = tcp_sk(sk);
1560 	struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue);
1561 	int mss_now;
1562 
1563 	/* Optimization, tack on the FIN if we have a queue of
1564 	 * unsent frames.  But be careful about outgoing SACKS
1565 	 * and IP options.
1566 	 */
1567 	mss_now = tcp_current_mss(sk, 1);
1568 
1569 	if (sk->sk_send_head != NULL) {
1570 		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
1571 		TCP_SKB_CB(skb)->end_seq++;
1572 		tp->write_seq++;
1573 	} else {
1574 		/* Socket is locked, keep trying until memory is available. */
1575 		for (;;) {
1576 			skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL);
1577 			if (skb)
1578 				break;
1579 			yield();
1580 		}
1581 
1582 		/* Reserve space for headers and prepare control bits. */
1583 		skb_reserve(skb, MAX_TCP_HEADER);
1584 		skb->csum = 0;
1585 		TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
1586 		TCP_SKB_CB(skb)->sacked = 0;
1587 		skb_shinfo(skb)->tso_segs = 1;
1588 		skb_shinfo(skb)->tso_size = 0;
1589 
1590 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
1591 		TCP_SKB_CB(skb)->seq = tp->write_seq;
1592 		TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1593 		tcp_queue_skb(sk, skb);
1594 	}
1595 	__tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF);
1596 }
1597 
1598 /* We get here when a process closes a file descriptor (either due to
1599  * an explicit close() or as a byproduct of exit()'ing) and there
1600  * was unread data in the receive queue.  This behavior is recommended
1601  * by draft-ietf-tcpimpl-prob-03.txt section 3.10.  -DaveM
1602  */
1603 void tcp_send_active_reset(struct sock *sk, unsigned int __nocast priority)
1604 {
1605 	struct tcp_sock *tp = tcp_sk(sk);
1606 	struct sk_buff *skb;
1607 
1608 	/* NOTE: No TCP options attached and we never retransmit this. */
1609 	skb = alloc_skb(MAX_TCP_HEADER, priority);
1610 	if (!skb) {
1611 		NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1612 		return;
1613 	}
1614 
1615 	/* Reserve space for headers and prepare control bits. */
1616 	skb_reserve(skb, MAX_TCP_HEADER);
1617 	skb->csum = 0;
1618 	TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
1619 	TCP_SKB_CB(skb)->sacked = 0;
1620 	skb_shinfo(skb)->tso_segs = 1;
1621 	skb_shinfo(skb)->tso_size = 0;
1622 
1623 	/* Send it off. */
1624 	TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp);
1625 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1626 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1627 	if (tcp_transmit_skb(sk, skb))
1628 		NET_INC_STATS(LINUX_MIB_TCPABORTFAILED);
1629 }
1630 
1631 /* WARNING: This routine must only be called when we have already sent
1632  * a SYN packet that crossed the incoming SYN that caused this routine
1633  * to get called. If this assumption fails then the initial rcv_wnd
1634  * and rcv_wscale values will not be correct.
1635  */
1636 int tcp_send_synack(struct sock *sk)
1637 {
1638 	struct sk_buff* skb;
1639 
1640 	skb = skb_peek(&sk->sk_write_queue);
1641 	if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) {
1642 		printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
1643 		return -EFAULT;
1644 	}
1645 	if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) {
1646 		if (skb_cloned(skb)) {
1647 			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
1648 			if (nskb == NULL)
1649 				return -ENOMEM;
1650 			__skb_unlink(skb, &sk->sk_write_queue);
1651 			skb_header_release(nskb);
1652 			__skb_queue_head(&sk->sk_write_queue, nskb);
1653 			sk_stream_free_skb(sk, skb);
1654 			sk_charge_skb(sk, nskb);
1655 			skb = nskb;
1656 		}
1657 
1658 		TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
1659 		TCP_ECN_send_synack(tcp_sk(sk), skb);
1660 	}
1661 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1662 	return tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
1663 }
1664 
1665 /*
1666  * Prepare a SYN-ACK.
1667  */
1668 struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
1669 				 struct request_sock *req)
1670 {
1671 	struct inet_request_sock *ireq = inet_rsk(req);
1672 	struct tcp_sock *tp = tcp_sk(sk);
1673 	struct tcphdr *th;
1674 	int tcp_header_size;
1675 	struct sk_buff *skb;
1676 
1677 	skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
1678 	if (skb == NULL)
1679 		return NULL;
1680 
1681 	/* Reserve space for headers. */
1682 	skb_reserve(skb, MAX_TCP_HEADER);
1683 
1684 	skb->dst = dst_clone(dst);
1685 
1686 	tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS +
1687 			   (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) +
1688 			   (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) +
1689 			   /* SACK_PERM is in the place of NOP NOP of TS */
1690 			   ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0));
1691 	skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size);
1692 
1693 	memset(th, 0, sizeof(struct tcphdr));
1694 	th->syn = 1;
1695 	th->ack = 1;
1696 	if (dst->dev->features&NETIF_F_TSO)
1697 		ireq->ecn_ok = 0;
1698 	TCP_ECN_make_synack(req, th);
1699 	th->source = inet_sk(sk)->sport;
1700 	th->dest = ireq->rmt_port;
1701 	TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn;
1702 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1;
1703 	TCP_SKB_CB(skb)->sacked = 0;
1704 	skb_shinfo(skb)->tso_segs = 1;
1705 	skb_shinfo(skb)->tso_size = 0;
1706 	th->seq = htonl(TCP_SKB_CB(skb)->seq);
1707 	th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);
1708 	if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
1709 		__u8 rcv_wscale;
1710 		/* Set this up on the first call only */
1711 		req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
1712 		/* tcp_full_space because it is guaranteed to be the first packet */
1713 		tcp_select_initial_window(tcp_full_space(sk),
1714 			dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
1715 			&req->rcv_wnd,
1716 			&req->window_clamp,
1717 			ireq->wscale_ok,
1718 			&rcv_wscale);
1719 		ireq->rcv_wscale = rcv_wscale;
1720 	}
1721 
1722 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
1723 	th->window = htons(req->rcv_wnd);
1724 
1725 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1726 	tcp_syn_build_options((__u32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok,
1727 			      ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale,
1728 			      TCP_SKB_CB(skb)->when,
1729 			      req->ts_recent);
1730 
1731 	skb->csum = 0;
1732 	th->doff = (tcp_header_size >> 2);
1733 	TCP_INC_STATS(TCP_MIB_OUTSEGS);
1734 	return skb;
1735 }
1736 
1737 /*
1738  * Do all connect socket setups that can be done AF independent.
1739  */
1740 static inline void tcp_connect_init(struct sock *sk)
1741 {
1742 	struct dst_entry *dst = __sk_dst_get(sk);
1743 	struct tcp_sock *tp = tcp_sk(sk);
1744 	__u8 rcv_wscale;
1745 
1746 	/* We'll fix this up when we get a response from the other end.
1747 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
1748 	 */
1749 	tp->tcp_header_len = sizeof(struct tcphdr) +
1750 		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
1751 
1752 	/* If user gave his TCP_MAXSEG, record it to clamp */
1753 	if (tp->rx_opt.user_mss)
1754 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
1755 	tp->max_window = 0;
1756 	tcp_sync_mss(sk, dst_mtu(dst));
1757 
1758 	if (!tp->window_clamp)
1759 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
1760 	tp->advmss = dst_metric(dst, RTAX_ADVMSS);
1761 	tcp_initialize_rcv_mss(sk);
1762 
1763 	tcp_select_initial_window(tcp_full_space(sk),
1764 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
1765 				  &tp->rcv_wnd,
1766 				  &tp->window_clamp,
1767 				  sysctl_tcp_window_scaling,
1768 				  &rcv_wscale);
1769 
1770 	tp->rx_opt.rcv_wscale = rcv_wscale;
1771 	tp->rcv_ssthresh = tp->rcv_wnd;
1772 
1773 	sk->sk_err = 0;
1774 	sock_reset_flag(sk, SOCK_DONE);
1775 	tp->snd_wnd = 0;
1776 	tcp_init_wl(tp, tp->write_seq, 0);
1777 	tp->snd_una = tp->write_seq;
1778 	tp->snd_sml = tp->write_seq;
1779 	tp->rcv_nxt = 0;
1780 	tp->rcv_wup = 0;
1781 	tp->copied_seq = 0;
1782 
1783 	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1784 	inet_csk(sk)->icsk_retransmits = 0;
1785 	tcp_clear_retrans(tp);
1786 }
1787 
1788 /*
1789  * Build a SYN and send it off.
1790  */
1791 int tcp_connect(struct sock *sk)
1792 {
1793 	struct tcp_sock *tp = tcp_sk(sk);
1794 	struct sk_buff *buff;
1795 
1796 	tcp_connect_init(sk);
1797 
1798 	buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
1799 	if (unlikely(buff == NULL))
1800 		return -ENOBUFS;
1801 
1802 	/* Reserve space for headers. */
1803 	skb_reserve(buff, MAX_TCP_HEADER);
1804 
1805 	TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN;
1806 	TCP_ECN_send_syn(sk, tp, buff);
1807 	TCP_SKB_CB(buff)->sacked = 0;
1808 	skb_shinfo(buff)->tso_segs = 1;
1809 	skb_shinfo(buff)->tso_size = 0;
1810 	buff->csum = 0;
1811 	TCP_SKB_CB(buff)->seq = tp->write_seq++;
1812 	TCP_SKB_CB(buff)->end_seq = tp->write_seq;
1813 	tp->snd_nxt = tp->write_seq;
1814 	tp->pushed_seq = tp->write_seq;
1815 
1816 	/* Send it off. */
1817 	TCP_SKB_CB(buff)->when = tcp_time_stamp;
1818 	tp->retrans_stamp = TCP_SKB_CB(buff)->when;
1819 	skb_header_release(buff);
1820 	__skb_queue_tail(&sk->sk_write_queue, buff);
1821 	sk_charge_skb(sk, buff);
1822 	tp->packets_out += tcp_skb_pcount(buff);
1823 	tcp_transmit_skb(sk, skb_clone(buff, GFP_KERNEL));
1824 	TCP_INC_STATS(TCP_MIB_ACTIVEOPENS);
1825 
1826 	/* Timer for repeating the SYN until an answer. */
1827 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1828 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1829 	return 0;
1830 }
1831 
1832 /* Send out a delayed ack, the caller does the policy checking
1833  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
1834  * for details.
1835  */
1836 void tcp_send_delayed_ack(struct sock *sk)
1837 {
1838 	struct inet_connection_sock *icsk = inet_csk(sk);
1839 	int ato = icsk->icsk_ack.ato;
1840 	unsigned long timeout;
1841 
1842 	if (ato > TCP_DELACK_MIN) {
1843 		const struct tcp_sock *tp = tcp_sk(sk);
1844 		int max_ato = HZ/2;
1845 
1846 		if (icsk->icsk_ack.pingpong || (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
1847 			max_ato = TCP_DELACK_MAX;
1848 
1849 		/* Slow path, intersegment interval is "high". */
1850 
1851 		/* If some rtt estimate is known, use it to bound delayed ack.
1852 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
1853 		 * directly.
1854 		 */
1855 		if (tp->srtt) {
1856 			int rtt = max(tp->srtt>>3, TCP_DELACK_MIN);
1857 
1858 			if (rtt < max_ato)
1859 				max_ato = rtt;
1860 		}
1861 
1862 		ato = min(ato, max_ato);
1863 	}
1864 
1865 	/* Stay within the limit we were given */
1866 	timeout = jiffies + ato;
1867 
1868 	/* Use new timeout only if there wasn't a older one earlier. */
1869 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
1870 		/* If delack timer was blocked or is about to expire,
1871 		 * send ACK now.
1872 		 */
1873 		if (icsk->icsk_ack.blocked ||
1874 		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
1875 			tcp_send_ack(sk);
1876 			return;
1877 		}
1878 
1879 		if (!time_before(timeout, icsk->icsk_ack.timeout))
1880 			timeout = icsk->icsk_ack.timeout;
1881 	}
1882 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
1883 	icsk->icsk_ack.timeout = timeout;
1884 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
1885 }
1886 
1887 /* This routine sends an ack and also updates the window. */
1888 void tcp_send_ack(struct sock *sk)
1889 {
1890 	/* If we have been reset, we may not send again. */
1891 	if (sk->sk_state != TCP_CLOSE) {
1892 		struct tcp_sock *tp = tcp_sk(sk);
1893 		struct sk_buff *buff;
1894 
1895 		/* We are not putting this on the write queue, so
1896 		 * tcp_transmit_skb() will set the ownership to this
1897 		 * sock.
1898 		 */
1899 		buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1900 		if (buff == NULL) {
1901 			inet_csk_schedule_ack(sk);
1902 			inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
1903 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1904 						  TCP_DELACK_MAX, TCP_RTO_MAX);
1905 			return;
1906 		}
1907 
1908 		/* Reserve space for headers and prepare control bits. */
1909 		skb_reserve(buff, MAX_TCP_HEADER);
1910 		buff->csum = 0;
1911 		TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK;
1912 		TCP_SKB_CB(buff)->sacked = 0;
1913 		skb_shinfo(buff)->tso_segs = 1;
1914 		skb_shinfo(buff)->tso_size = 0;
1915 
1916 		/* Send it off, this clears delayed acks for us. */
1917 		TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp);
1918 		TCP_SKB_CB(buff)->when = tcp_time_stamp;
1919 		tcp_transmit_skb(sk, buff);
1920 	}
1921 }
1922 
1923 /* This routine sends a packet with an out of date sequence
1924  * number. It assumes the other end will try to ack it.
1925  *
1926  * Question: what should we make while urgent mode?
1927  * 4.4BSD forces sending single byte of data. We cannot send
1928  * out of window data, because we have SND.NXT==SND.MAX...
1929  *
1930  * Current solution: to send TWO zero-length segments in urgent mode:
1931  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
1932  * out-of-date with SND.UNA-1 to probe window.
1933  */
1934 static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
1935 {
1936 	struct tcp_sock *tp = tcp_sk(sk);
1937 	struct sk_buff *skb;
1938 
1939 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
1940 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1941 	if (skb == NULL)
1942 		return -1;
1943 
1944 	/* Reserve space for headers and set control bits. */
1945 	skb_reserve(skb, MAX_TCP_HEADER);
1946 	skb->csum = 0;
1947 	TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK;
1948 	TCP_SKB_CB(skb)->sacked = urgent;
1949 	skb_shinfo(skb)->tso_segs = 1;
1950 	skb_shinfo(skb)->tso_size = 0;
1951 
1952 	/* Use a previous sequence.  This should cause the other
1953 	 * end to send an ack.  Don't queue or clone SKB, just
1954 	 * send it.
1955 	 */
1956 	TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1;
1957 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq;
1958 	TCP_SKB_CB(skb)->when = tcp_time_stamp;
1959 	return tcp_transmit_skb(sk, skb);
1960 }
1961 
1962 int tcp_write_wakeup(struct sock *sk)
1963 {
1964 	if (sk->sk_state != TCP_CLOSE) {
1965 		struct tcp_sock *tp = tcp_sk(sk);
1966 		struct sk_buff *skb;
1967 
1968 		if ((skb = sk->sk_send_head) != NULL &&
1969 		    before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) {
1970 			int err;
1971 			unsigned int mss = tcp_current_mss(sk, 0);
1972 			unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq;
1973 
1974 			if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
1975 				tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
1976 
1977 			/* We are probing the opening of a window
1978 			 * but the window size is != 0
1979 			 * must have been a result SWS avoidance ( sender )
1980 			 */
1981 			if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
1982 			    skb->len > mss) {
1983 				seg_size = min(seg_size, mss);
1984 				TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
1985 				if (tcp_fragment(sk, skb, seg_size, mss))
1986 					return -1;
1987 			} else if (!tcp_skb_pcount(skb))
1988 				tcp_set_skb_tso_segs(sk, skb, mss);
1989 
1990 			TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
1991 			TCP_SKB_CB(skb)->when = tcp_time_stamp;
1992 			err = tcp_transmit_skb(sk, skb_clone(skb, GFP_ATOMIC));
1993 			if (!err) {
1994 				update_send_head(sk, tp, skb);
1995 			}
1996 			return err;
1997 		} else {
1998 			if (tp->urg_mode &&
1999 			    between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF))
2000 				tcp_xmit_probe_skb(sk, TCPCB_URG);
2001 			return tcp_xmit_probe_skb(sk, 0);
2002 		}
2003 	}
2004 	return -1;
2005 }
2006 
2007 /* A window probe timeout has occurred.  If window is not closed send
2008  * a partial packet else a zero probe.
2009  */
2010 void tcp_send_probe0(struct sock *sk)
2011 {
2012 	struct inet_connection_sock *icsk = inet_csk(sk);
2013 	struct tcp_sock *tp = tcp_sk(sk);
2014 	int err;
2015 
2016 	err = tcp_write_wakeup(sk);
2017 
2018 	if (tp->packets_out || !sk->sk_send_head) {
2019 		/* Cancel probe timer, if it is not required. */
2020 		icsk->icsk_probes_out = 0;
2021 		icsk->icsk_backoff = 0;
2022 		return;
2023 	}
2024 
2025 	if (err <= 0) {
2026 		if (icsk->icsk_backoff < sysctl_tcp_retries2)
2027 			icsk->icsk_backoff++;
2028 		icsk->icsk_probes_out++;
2029 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2030 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2031 					  TCP_RTO_MAX);
2032 	} else {
2033 		/* If packet was not sent due to local congestion,
2034 		 * do not backoff and do not remember icsk_probes_out.
2035 		 * Let local senders to fight for local resources.
2036 		 *
2037 		 * Use accumulated backoff yet.
2038 		 */
2039 		if (!icsk->icsk_probes_out)
2040 			icsk->icsk_probes_out = 1;
2041 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2042 					  min(icsk->icsk_rto << icsk->icsk_backoff,
2043 					      TCP_RESOURCE_PROBE_INTERVAL),
2044 					  TCP_RTO_MAX);
2045 	}
2046 }
2047 
2048 EXPORT_SYMBOL(tcp_connect);
2049 EXPORT_SYMBOL(tcp_make_synack);
2050 EXPORT_SYMBOL(tcp_simple_retransmit);
2051 EXPORT_SYMBOL(tcp_sync_mss);
2052