xref: /linux/net/ipv4/tcp_input.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:	$Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche, <flla@stud.uni-sb.de>
15  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *		Matthew Dillon, <dillon@apollo.west.oic.com>
19  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *		Jorge Cwik, <jorge@laser.satlink.net>
21  */
22 
23 /*
24  * Changes:
25  *		Pedro Roque	:	Fast Retransmit/Recovery.
26  *					Two receive queues.
27  *					Retransmit queue handled by TCP.
28  *					Better retransmit timer handling.
29  *					New congestion avoidance.
30  *					Header prediction.
31  *					Variable renaming.
32  *
33  *		Eric		:	Fast Retransmit.
34  *		Randy Scott	:	MSS option defines.
35  *		Eric Schenk	:	Fixes to slow start algorithm.
36  *		Eric Schenk	:	Yet another double ACK bug.
37  *		Eric Schenk	:	Delayed ACK bug fixes.
38  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
39  *		David S. Miller	:	Don't allow zero congestion window.
40  *		Eric Schenk	:	Fix retransmitter so that it sends
41  *					next packet on ack of previous packet.
42  *		Andi Kleen	:	Moved open_request checking here
43  *					and process RSTs for open_requests.
44  *		Andi Kleen	:	Better prune_queue, and other fixes.
45  *		Andrey Savochkin:	Fix RTT measurements in the presnce of
46  *					timestamps.
47  *		Andrey Savochkin:	Check sequence numbers correctly when
48  *					removing SACKs due to in sequence incoming
49  *					data segments.
50  *		Andi Kleen:		Make sure we never ack data there is not
51  *					enough room for. Also make this condition
52  *					a fatal error if it might still happen.
53  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
54  *					connections with MSS<min(MTU,ann. MSS)
55  *					work without delayed acks.
56  *		Andi Kleen:		Process packets with PSH set in the
57  *					fast path.
58  *		J Hadi Salim:		ECN support
59  *	 	Andrei Gurtov,
60  *		Pasi Sarolahti,
61  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
62  *					engine. Lots of bugs are found.
63  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
64  */
65 
66 #include <linux/config.h>
67 #include <linux/mm.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
74 
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
84 
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
88 int sysctl_tcp_frto;
89 int sysctl_tcp_nometrics_save;
90 
91 int sysctl_tcp_moderate_rcvbuf = 1;
92 
93 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
94 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
95 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
96 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
97 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
98 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
99 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
100 #define FLAG_DATA_LOST		0x80 /* SACK detected data lossage.		*/
101 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
102 
103 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE)
106 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
107 
108 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
109 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
110 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
111 
112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
113 
114 /* Adapt the MSS value used to make delayed ack decision to the
115  * real world.
116  */
117 static inline void tcp_measure_rcv_mss(struct sock *sk,
118 				       const struct sk_buff *skb)
119 {
120 	struct inet_connection_sock *icsk = inet_csk(sk);
121 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
122 	unsigned int len;
123 
124 	icsk->icsk_ack.last_seg_size = 0;
125 
126 	/* skb->len may jitter because of SACKs, even if peer
127 	 * sends good full-sized frames.
128 	 */
129 	len = skb->len;
130 	if (len >= icsk->icsk_ack.rcv_mss) {
131 		icsk->icsk_ack.rcv_mss = len;
132 	} else {
133 		/* Otherwise, we make more careful check taking into account,
134 		 * that SACKs block is variable.
135 		 *
136 		 * "len" is invariant segment length, including TCP header.
137 		 */
138 		len += skb->data - skb->h.raw;
139 		if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
140 		    /* If PSH is not set, packet should be
141 		     * full sized, provided peer TCP is not badly broken.
142 		     * This observation (if it is correct 8)) allows
143 		     * to handle super-low mtu links fairly.
144 		     */
145 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
146 		     !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
147 			/* Subtract also invariant (if peer is RFC compliant),
148 			 * tcp header plus fixed timestamp option length.
149 			 * Resulting "len" is MSS free of SACK jitter.
150 			 */
151 			len -= tcp_sk(sk)->tcp_header_len;
152 			icsk->icsk_ack.last_seg_size = len;
153 			if (len == lss) {
154 				icsk->icsk_ack.rcv_mss = len;
155 				return;
156 			}
157 		}
158 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
159 	}
160 }
161 
162 static void tcp_incr_quickack(struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
166 
167 	if (quickacks==0)
168 		quickacks=2;
169 	if (quickacks > icsk->icsk_ack.quick)
170 		icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
171 }
172 
173 void tcp_enter_quickack_mode(struct sock *sk)
174 {
175 	struct inet_connection_sock *icsk = inet_csk(sk);
176 	tcp_incr_quickack(sk);
177 	icsk->icsk_ack.pingpong = 0;
178 	icsk->icsk_ack.ato = TCP_ATO_MIN;
179 }
180 
181 /* Send ACKs quickly, if "quick" count is not exhausted
182  * and the session is not interactive.
183  */
184 
185 static inline int tcp_in_quickack_mode(const struct sock *sk)
186 {
187 	const struct inet_connection_sock *icsk = inet_csk(sk);
188 	return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
189 }
190 
191 /* Buffer size and advertised window tuning.
192  *
193  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
194  */
195 
196 static void tcp_fixup_sndbuf(struct sock *sk)
197 {
198 	int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
199 		     sizeof(struct sk_buff);
200 
201 	if (sk->sk_sndbuf < 3 * sndmem)
202 		sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
203 }
204 
205 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
206  *
207  * All tcp_full_space() is split to two parts: "network" buffer, allocated
208  * forward and advertised in receiver window (tp->rcv_wnd) and
209  * "application buffer", required to isolate scheduling/application
210  * latencies from network.
211  * window_clamp is maximal advertised window. It can be less than
212  * tcp_full_space(), in this case tcp_full_space() - window_clamp
213  * is reserved for "application" buffer. The less window_clamp is
214  * the smoother our behaviour from viewpoint of network, but the lower
215  * throughput and the higher sensitivity of the connection to losses. 8)
216  *
217  * rcv_ssthresh is more strict window_clamp used at "slow start"
218  * phase to predict further behaviour of this connection.
219  * It is used for two goals:
220  * - to enforce header prediction at sender, even when application
221  *   requires some significant "application buffer". It is check #1.
222  * - to prevent pruning of receive queue because of misprediction
223  *   of receiver window. Check #2.
224  *
225  * The scheme does not work when sender sends good segments opening
226  * window and then starts to feed us spagetti. But it should work
227  * in common situations. Otherwise, we have to rely on queue collapsing.
228  */
229 
230 /* Slow part of check#2. */
231 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
232 			     const struct sk_buff *skb)
233 {
234 	/* Optimize this! */
235 	int truesize = tcp_win_from_space(skb->truesize)/2;
236 	int window = tcp_full_space(sk)/2;
237 
238 	while (tp->rcv_ssthresh <= window) {
239 		if (truesize <= skb->len)
240 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
241 
242 		truesize >>= 1;
243 		window >>= 1;
244 	}
245 	return 0;
246 }
247 
248 static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
249 				   struct sk_buff *skb)
250 {
251 	/* Check #1 */
252 	if (tp->rcv_ssthresh < tp->window_clamp &&
253 	    (int)tp->rcv_ssthresh < tcp_space(sk) &&
254 	    !tcp_memory_pressure) {
255 		int incr;
256 
257 		/* Check #2. Increase window, if skb with such overhead
258 		 * will fit to rcvbuf in future.
259 		 */
260 		if (tcp_win_from_space(skb->truesize) <= skb->len)
261 			incr = 2*tp->advmss;
262 		else
263 			incr = __tcp_grow_window(sk, tp, skb);
264 
265 		if (incr) {
266 			tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
267 			inet_csk(sk)->icsk_ack.quick |= 1;
268 		}
269 	}
270 }
271 
272 /* 3. Tuning rcvbuf, when connection enters established state. */
273 
274 static void tcp_fixup_rcvbuf(struct sock *sk)
275 {
276 	struct tcp_sock *tp = tcp_sk(sk);
277 	int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
278 
279 	/* Try to select rcvbuf so that 4 mss-sized segments
280 	 * will fit to window and correspoding skbs will fit to our rcvbuf.
281 	 * (was 3; 4 is minimum to allow fast retransmit to work.)
282 	 */
283 	while (tcp_win_from_space(rcvmem) < tp->advmss)
284 		rcvmem += 128;
285 	if (sk->sk_rcvbuf < 4 * rcvmem)
286 		sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
287 }
288 
289 /* 4. Try to fixup all. It is made iimediately after connection enters
290  *    established state.
291  */
292 static void tcp_init_buffer_space(struct sock *sk)
293 {
294 	struct tcp_sock *tp = tcp_sk(sk);
295 	int maxwin;
296 
297 	if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
298 		tcp_fixup_rcvbuf(sk);
299 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
300 		tcp_fixup_sndbuf(sk);
301 
302 	tp->rcvq_space.space = tp->rcv_wnd;
303 
304 	maxwin = tcp_full_space(sk);
305 
306 	if (tp->window_clamp >= maxwin) {
307 		tp->window_clamp = maxwin;
308 
309 		if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
310 			tp->window_clamp = max(maxwin -
311 					       (maxwin >> sysctl_tcp_app_win),
312 					       4 * tp->advmss);
313 	}
314 
315 	/* Force reservation of one segment. */
316 	if (sysctl_tcp_app_win &&
317 	    tp->window_clamp > 2 * tp->advmss &&
318 	    tp->window_clamp + tp->advmss > maxwin)
319 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
320 
321 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
322 	tp->snd_cwnd_stamp = tcp_time_stamp;
323 }
324 
325 /* 5. Recalculate window clamp after socket hit its memory bounds. */
326 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
327 {
328 	struct inet_connection_sock *icsk = inet_csk(sk);
329 	struct sk_buff *skb;
330 	unsigned int app_win = tp->rcv_nxt - tp->copied_seq;
331 	int ofo_win = 0;
332 
333 	icsk->icsk_ack.quick = 0;
334 
335 	skb_queue_walk(&tp->out_of_order_queue, skb) {
336 		ofo_win += skb->len;
337 	}
338 
339 	/* If overcommit is due to out of order segments,
340 	 * do not clamp window. Try to expand rcvbuf instead.
341 	 */
342 	if (ofo_win) {
343 		if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
344 		    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
345 		    !tcp_memory_pressure &&
346 		    atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
347 			sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
348 					    sysctl_tcp_rmem[2]);
349 	}
350 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
351 		app_win += ofo_win;
352 		if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf)
353 			app_win >>= 1;
354 		if (app_win > icsk->icsk_ack.rcv_mss)
355 			app_win -= icsk->icsk_ack.rcv_mss;
356 		app_win = max(app_win, 2U*tp->advmss);
357 
358 		if (!ofo_win)
359 			tp->window_clamp = min(tp->window_clamp, app_win);
360 		tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
361 	}
362 }
363 
364 /* Receiver "autotuning" code.
365  *
366  * The algorithm for RTT estimation w/o timestamps is based on
367  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
368  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
369  *
370  * More detail on this code can be found at
371  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
372  * though this reference is out of date.  A new paper
373  * is pending.
374  */
375 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
376 {
377 	u32 new_sample = tp->rcv_rtt_est.rtt;
378 	long m = sample;
379 
380 	if (m == 0)
381 		m = 1;
382 
383 	if (new_sample != 0) {
384 		/* If we sample in larger samples in the non-timestamp
385 		 * case, we could grossly overestimate the RTT especially
386 		 * with chatty applications or bulk transfer apps which
387 		 * are stalled on filesystem I/O.
388 		 *
389 		 * Also, since we are only going for a minimum in the
390 		 * non-timestamp case, we do not smoothe things out
391 		 * else with timestamps disabled convergance takes too
392 		 * long.
393 		 */
394 		if (!win_dep) {
395 			m -= (new_sample >> 3);
396 			new_sample += m;
397 		} else if (m < new_sample)
398 			new_sample = m << 3;
399 	} else {
400 		/* No previous mesaure. */
401 		new_sample = m << 3;
402 	}
403 
404 	if (tp->rcv_rtt_est.rtt != new_sample)
405 		tp->rcv_rtt_est.rtt = new_sample;
406 }
407 
408 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
409 {
410 	if (tp->rcv_rtt_est.time == 0)
411 		goto new_measure;
412 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
413 		return;
414 	tcp_rcv_rtt_update(tp,
415 			   jiffies - tp->rcv_rtt_est.time,
416 			   1);
417 
418 new_measure:
419 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
420 	tp->rcv_rtt_est.time = tcp_time_stamp;
421 }
422 
423 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
424 {
425 	struct tcp_sock *tp = tcp_sk(sk);
426 	if (tp->rx_opt.rcv_tsecr &&
427 	    (TCP_SKB_CB(skb)->end_seq -
428 	     TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
429 		tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
430 }
431 
432 /*
433  * This function should be called every time data is copied to user space.
434  * It calculates the appropriate TCP receive buffer space.
435  */
436 void tcp_rcv_space_adjust(struct sock *sk)
437 {
438 	struct tcp_sock *tp = tcp_sk(sk);
439 	int time;
440 	int space;
441 
442 	if (tp->rcvq_space.time == 0)
443 		goto new_measure;
444 
445 	time = tcp_time_stamp - tp->rcvq_space.time;
446 	if (time < (tp->rcv_rtt_est.rtt >> 3) ||
447 	    tp->rcv_rtt_est.rtt == 0)
448 		return;
449 
450 	space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
451 
452 	space = max(tp->rcvq_space.space, space);
453 
454 	if (tp->rcvq_space.space != space) {
455 		int rcvmem;
456 
457 		tp->rcvq_space.space = space;
458 
459 		if (sysctl_tcp_moderate_rcvbuf) {
460 			int new_clamp = space;
461 
462 			/* Receive space grows, normalize in order to
463 			 * take into account packet headers and sk_buff
464 			 * structure overhead.
465 			 */
466 			space /= tp->advmss;
467 			if (!space)
468 				space = 1;
469 			rcvmem = (tp->advmss + MAX_TCP_HEADER +
470 				  16 + sizeof(struct sk_buff));
471 			while (tcp_win_from_space(rcvmem) < tp->advmss)
472 				rcvmem += 128;
473 			space *= rcvmem;
474 			space = min(space, sysctl_tcp_rmem[2]);
475 			if (space > sk->sk_rcvbuf) {
476 				sk->sk_rcvbuf = space;
477 
478 				/* Make the window clamp follow along.  */
479 				tp->window_clamp = new_clamp;
480 			}
481 		}
482 	}
483 
484 new_measure:
485 	tp->rcvq_space.seq = tp->copied_seq;
486 	tp->rcvq_space.time = tcp_time_stamp;
487 }
488 
489 /* There is something which you must keep in mind when you analyze the
490  * behavior of the tp->ato delayed ack timeout interval.  When a
491  * connection starts up, we want to ack as quickly as possible.  The
492  * problem is that "good" TCP's do slow start at the beginning of data
493  * transmission.  The means that until we send the first few ACK's the
494  * sender will sit on his end and only queue most of his data, because
495  * he can only send snd_cwnd unacked packets at any given time.  For
496  * each ACK we send, he increments snd_cwnd and transmits more of his
497  * queue.  -DaveM
498  */
499 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
500 {
501 	struct inet_connection_sock *icsk = inet_csk(sk);
502 	u32 now;
503 
504 	inet_csk_schedule_ack(sk);
505 
506 	tcp_measure_rcv_mss(sk, skb);
507 
508 	tcp_rcv_rtt_measure(tp);
509 
510 	now = tcp_time_stamp;
511 
512 	if (!icsk->icsk_ack.ato) {
513 		/* The _first_ data packet received, initialize
514 		 * delayed ACK engine.
515 		 */
516 		tcp_incr_quickack(sk);
517 		icsk->icsk_ack.ato = TCP_ATO_MIN;
518 	} else {
519 		int m = now - icsk->icsk_ack.lrcvtime;
520 
521 		if (m <= TCP_ATO_MIN/2) {
522 			/* The fastest case is the first. */
523 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
524 		} else if (m < icsk->icsk_ack.ato) {
525 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
526 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
527 				icsk->icsk_ack.ato = icsk->icsk_rto;
528 		} else if (m > icsk->icsk_rto) {
529 			/* Too long gap. Apparently sender falled to
530 			 * restart window, so that we send ACKs quickly.
531 			 */
532 			tcp_incr_quickack(sk);
533 			sk_stream_mem_reclaim(sk);
534 		}
535 	}
536 	icsk->icsk_ack.lrcvtime = now;
537 
538 	TCP_ECN_check_ce(tp, skb);
539 
540 	if (skb->len >= 128)
541 		tcp_grow_window(sk, tp, skb);
542 }
543 
544 /* Called to compute a smoothed rtt estimate. The data fed to this
545  * routine either comes from timestamps, or from segments that were
546  * known _not_ to have been retransmitted [see Karn/Partridge
547  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
548  * piece by Van Jacobson.
549  * NOTE: the next three routines used to be one big routine.
550  * To save cycles in the RFC 1323 implementation it was better to break
551  * it up into three procedures. -- erics
552  */
553 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt, u32 *usrtt)
554 {
555 	struct tcp_sock *tp = tcp_sk(sk);
556 	const struct inet_connection_sock *icsk = inet_csk(sk);
557 	long m = mrtt; /* RTT */
558 
559 	/*	The following amusing code comes from Jacobson's
560 	 *	article in SIGCOMM '88.  Note that rtt and mdev
561 	 *	are scaled versions of rtt and mean deviation.
562 	 *	This is designed to be as fast as possible
563 	 *	m stands for "measurement".
564 	 *
565 	 *	On a 1990 paper the rto value is changed to:
566 	 *	RTO = rtt + 4 * mdev
567 	 *
568 	 * Funny. This algorithm seems to be very broken.
569 	 * These formulae increase RTO, when it should be decreased, increase
570 	 * too slowly, when it should be incresed fastly, decrease too fastly
571 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
572 	 * does not matter how to _calculate_ it. Seems, it was trap
573 	 * that VJ failed to avoid. 8)
574 	 */
575 	if(m == 0)
576 		m = 1;
577 	if (tp->srtt != 0) {
578 		m -= (tp->srtt >> 3);	/* m is now error in rtt est */
579 		tp->srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
580 		if (m < 0) {
581 			m = -m;		/* m is now abs(error) */
582 			m -= (tp->mdev >> 2);   /* similar update on mdev */
583 			/* This is similar to one of Eifel findings.
584 			 * Eifel blocks mdev updates when rtt decreases.
585 			 * This solution is a bit different: we use finer gain
586 			 * for mdev in this case (alpha*beta).
587 			 * Like Eifel it also prevents growth of rto,
588 			 * but also it limits too fast rto decreases,
589 			 * happening in pure Eifel.
590 			 */
591 			if (m > 0)
592 				m >>= 3;
593 		} else {
594 			m -= (tp->mdev >> 2);   /* similar update on mdev */
595 		}
596 		tp->mdev += m;	    	/* mdev = 3/4 mdev + 1/4 new */
597 		if (tp->mdev > tp->mdev_max) {
598 			tp->mdev_max = tp->mdev;
599 			if (tp->mdev_max > tp->rttvar)
600 				tp->rttvar = tp->mdev_max;
601 		}
602 		if (after(tp->snd_una, tp->rtt_seq)) {
603 			if (tp->mdev_max < tp->rttvar)
604 				tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
605 			tp->rtt_seq = tp->snd_nxt;
606 			tp->mdev_max = TCP_RTO_MIN;
607 		}
608 	} else {
609 		/* no previous measure. */
610 		tp->srtt = m<<3;	/* take the measured time to be rtt */
611 		tp->mdev = m<<1;	/* make sure rto = 3*rtt */
612 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
613 		tp->rtt_seq = tp->snd_nxt;
614 	}
615 
616 	if (icsk->icsk_ca_ops->rtt_sample)
617 		icsk->icsk_ca_ops->rtt_sample(sk, *usrtt);
618 }
619 
620 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
621  * routine referred to above.
622  */
623 static inline void tcp_set_rto(struct sock *sk)
624 {
625 	const struct tcp_sock *tp = tcp_sk(sk);
626 	/* Old crap is replaced with new one. 8)
627 	 *
628 	 * More seriously:
629 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
630 	 *    It cannot be less due to utterly erratic ACK generation made
631 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
632 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
633 	 *    is invisible. Actually, Linux-2.4 also generates erratic
634 	 *    ACKs in some curcumstances.
635 	 */
636 	inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
637 
638 	/* 2. Fixups made earlier cannot be right.
639 	 *    If we do not estimate RTO correctly without them,
640 	 *    all the algo is pure shit and should be replaced
641 	 *    with correct one. It is exaclty, which we pretend to do.
642 	 */
643 }
644 
645 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
646  * guarantees that rto is higher.
647  */
648 static inline void tcp_bound_rto(struct sock *sk)
649 {
650 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
651 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
652 }
653 
654 /* Save metrics learned by this TCP session.
655    This function is called only, when TCP finishes successfully
656    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
657  */
658 void tcp_update_metrics(struct sock *sk)
659 {
660 	struct tcp_sock *tp = tcp_sk(sk);
661 	struct dst_entry *dst = __sk_dst_get(sk);
662 
663 	if (sysctl_tcp_nometrics_save)
664 		return;
665 
666 	dst_confirm(dst);
667 
668 	if (dst && (dst->flags&DST_HOST)) {
669 		const struct inet_connection_sock *icsk = inet_csk(sk);
670 		int m;
671 
672 		if (icsk->icsk_backoff || !tp->srtt) {
673 			/* This session failed to estimate rtt. Why?
674 			 * Probably, no packets returned in time.
675 			 * Reset our results.
676 			 */
677 			if (!(dst_metric_locked(dst, RTAX_RTT)))
678 				dst->metrics[RTAX_RTT-1] = 0;
679 			return;
680 		}
681 
682 		m = dst_metric(dst, RTAX_RTT) - tp->srtt;
683 
684 		/* If newly calculated rtt larger than stored one,
685 		 * store new one. Otherwise, use EWMA. Remember,
686 		 * rtt overestimation is always better than underestimation.
687 		 */
688 		if (!(dst_metric_locked(dst, RTAX_RTT))) {
689 			if (m <= 0)
690 				dst->metrics[RTAX_RTT-1] = tp->srtt;
691 			else
692 				dst->metrics[RTAX_RTT-1] -= (m>>3);
693 		}
694 
695 		if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
696 			if (m < 0)
697 				m = -m;
698 
699 			/* Scale deviation to rttvar fixed point */
700 			m >>= 1;
701 			if (m < tp->mdev)
702 				m = tp->mdev;
703 
704 			if (m >= dst_metric(dst, RTAX_RTTVAR))
705 				dst->metrics[RTAX_RTTVAR-1] = m;
706 			else
707 				dst->metrics[RTAX_RTTVAR-1] -=
708 					(dst->metrics[RTAX_RTTVAR-1] - m)>>2;
709 		}
710 
711 		if (tp->snd_ssthresh >= 0xFFFF) {
712 			/* Slow start still did not finish. */
713 			if (dst_metric(dst, RTAX_SSTHRESH) &&
714 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
715 			    (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
716 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
717 			if (!dst_metric_locked(dst, RTAX_CWND) &&
718 			    tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
719 				dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
720 		} else if (tp->snd_cwnd > tp->snd_ssthresh &&
721 			   icsk->icsk_ca_state == TCP_CA_Open) {
722 			/* Cong. avoidance phase, cwnd is reliable. */
723 			if (!dst_metric_locked(dst, RTAX_SSTHRESH))
724 				dst->metrics[RTAX_SSTHRESH-1] =
725 					max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
726 			if (!dst_metric_locked(dst, RTAX_CWND))
727 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
728 		} else {
729 			/* Else slow start did not finish, cwnd is non-sense,
730 			   ssthresh may be also invalid.
731 			 */
732 			if (!dst_metric_locked(dst, RTAX_CWND))
733 				dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
734 			if (dst->metrics[RTAX_SSTHRESH-1] &&
735 			    !dst_metric_locked(dst, RTAX_SSTHRESH) &&
736 			    tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
737 				dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
738 		}
739 
740 		if (!dst_metric_locked(dst, RTAX_REORDERING)) {
741 			if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
742 			    tp->reordering != sysctl_tcp_reordering)
743 				dst->metrics[RTAX_REORDERING-1] = tp->reordering;
744 		}
745 	}
746 }
747 
748 /* Numbers are taken from RFC2414.  */
749 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
750 {
751 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
752 
753 	if (!cwnd) {
754 		if (tp->mss_cache > 1460)
755 			cwnd = 2;
756 		else
757 			cwnd = (tp->mss_cache > 1095) ? 3 : 4;
758 	}
759 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
760 }
761 
762 /* Initialize metrics on socket. */
763 
764 static void tcp_init_metrics(struct sock *sk)
765 {
766 	struct tcp_sock *tp = tcp_sk(sk);
767 	struct dst_entry *dst = __sk_dst_get(sk);
768 
769 	if (dst == NULL)
770 		goto reset;
771 
772 	dst_confirm(dst);
773 
774 	if (dst_metric_locked(dst, RTAX_CWND))
775 		tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
776 	if (dst_metric(dst, RTAX_SSTHRESH)) {
777 		tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
778 		if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
779 			tp->snd_ssthresh = tp->snd_cwnd_clamp;
780 	}
781 	if (dst_metric(dst, RTAX_REORDERING) &&
782 	    tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
783 		tp->rx_opt.sack_ok &= ~2;
784 		tp->reordering = dst_metric(dst, RTAX_REORDERING);
785 	}
786 
787 	if (dst_metric(dst, RTAX_RTT) == 0)
788 		goto reset;
789 
790 	if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
791 		goto reset;
792 
793 	/* Initial rtt is determined from SYN,SYN-ACK.
794 	 * The segment is small and rtt may appear much
795 	 * less than real one. Use per-dst memory
796 	 * to make it more realistic.
797 	 *
798 	 * A bit of theory. RTT is time passed after "normal" sized packet
799 	 * is sent until it is ACKed. In normal curcumstances sending small
800 	 * packets force peer to delay ACKs and calculation is correct too.
801 	 * The algorithm is adaptive and, provided we follow specs, it
802 	 * NEVER underestimate RTT. BUT! If peer tries to make some clever
803 	 * tricks sort of "quick acks" for time long enough to decrease RTT
804 	 * to low value, and then abruptly stops to do it and starts to delay
805 	 * ACKs, wait for troubles.
806 	 */
807 	if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
808 		tp->srtt = dst_metric(dst, RTAX_RTT);
809 		tp->rtt_seq = tp->snd_nxt;
810 	}
811 	if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
812 		tp->mdev = dst_metric(dst, RTAX_RTTVAR);
813 		tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
814 	}
815 	tcp_set_rto(sk);
816 	tcp_bound_rto(sk);
817 	if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
818 		goto reset;
819 	tp->snd_cwnd = tcp_init_cwnd(tp, dst);
820 	tp->snd_cwnd_stamp = tcp_time_stamp;
821 	return;
822 
823 reset:
824 	/* Play conservative. If timestamps are not
825 	 * supported, TCP will fail to recalculate correct
826 	 * rtt, if initial rto is too small. FORGET ALL AND RESET!
827 	 */
828 	if (!tp->rx_opt.saw_tstamp && tp->srtt) {
829 		tp->srtt = 0;
830 		tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
831 		inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
832 	}
833 }
834 
835 static void tcp_update_reordering(struct sock *sk, const int metric,
836 				  const int ts)
837 {
838 	struct tcp_sock *tp = tcp_sk(sk);
839 	if (metric > tp->reordering) {
840 		tp->reordering = min(TCP_MAX_REORDERING, metric);
841 
842 		/* This exciting event is worth to be remembered. 8) */
843 		if (ts)
844 			NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
845 		else if (IsReno(tp))
846 			NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
847 		else if (IsFack(tp))
848 			NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
849 		else
850 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
851 #if FASTRETRANS_DEBUG > 1
852 		printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
853 		       tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
854 		       tp->reordering,
855 		       tp->fackets_out,
856 		       tp->sacked_out,
857 		       tp->undo_marker ? tp->undo_retrans : 0);
858 #endif
859 		/* Disable FACK yet. */
860 		tp->rx_opt.sack_ok &= ~2;
861 	}
862 }
863 
864 /* This procedure tags the retransmission queue when SACKs arrive.
865  *
866  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
867  * Packets in queue with these bits set are counted in variables
868  * sacked_out, retrans_out and lost_out, correspondingly.
869  *
870  * Valid combinations are:
871  * Tag  InFlight	Description
872  * 0	1		- orig segment is in flight.
873  * S	0		- nothing flies, orig reached receiver.
874  * L	0		- nothing flies, orig lost by net.
875  * R	2		- both orig and retransmit are in flight.
876  * L|R	1		- orig is lost, retransmit is in flight.
877  * S|R  1		- orig reached receiver, retrans is still in flight.
878  * (L|S|R is logically valid, it could occur when L|R is sacked,
879  *  but it is equivalent to plain S and code short-curcuits it to S.
880  *  L|S is logically invalid, it would mean -1 packet in flight 8))
881  *
882  * These 6 states form finite state machine, controlled by the following events:
883  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
884  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
885  * 3. Loss detection event of one of three flavors:
886  *	A. Scoreboard estimator decided the packet is lost.
887  *	   A'. Reno "three dupacks" marks head of queue lost.
888  *	   A''. Its FACK modfication, head until snd.fack is lost.
889  *	B. SACK arrives sacking data transmitted after never retransmitted
890  *	   hole was sent out.
891  *	C. SACK arrives sacking SND.NXT at the moment, when the
892  *	   segment was retransmitted.
893  * 4. D-SACK added new rule: D-SACK changes any tag to S.
894  *
895  * It is pleasant to note, that state diagram turns out to be commutative,
896  * so that we are allowed not to be bothered by order of our actions,
897  * when multiple events arrive simultaneously. (see the function below).
898  *
899  * Reordering detection.
900  * --------------------
901  * Reordering metric is maximal distance, which a packet can be displaced
902  * in packet stream. With SACKs we can estimate it:
903  *
904  * 1. SACK fills old hole and the corresponding segment was not
905  *    ever retransmitted -> reordering. Alas, we cannot use it
906  *    when segment was retransmitted.
907  * 2. The last flaw is solved with D-SACK. D-SACK arrives
908  *    for retransmitted and already SACKed segment -> reordering..
909  * Both of these heuristics are not used in Loss state, when we cannot
910  * account for retransmits accurately.
911  */
912 static int
913 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
914 {
915 	const struct inet_connection_sock *icsk = inet_csk(sk);
916 	struct tcp_sock *tp = tcp_sk(sk);
917 	unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
918 	struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
919 	int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
920 	int reord = tp->packets_out;
921 	int prior_fackets;
922 	u32 lost_retrans = 0;
923 	int flag = 0;
924 	int i;
925 
926 	/* So, SACKs for already sent large segments will be lost.
927 	 * Not good, but alternative is to resegment the queue. */
928 	if (sk->sk_route_caps & NETIF_F_TSO) {
929 		sk->sk_route_caps &= ~NETIF_F_TSO;
930 		sock_set_flag(sk, SOCK_NO_LARGESEND);
931 		tp->mss_cache = tp->mss_cache;
932 	}
933 
934 	if (!tp->sacked_out)
935 		tp->fackets_out = 0;
936 	prior_fackets = tp->fackets_out;
937 
938 	for (i=0; i<num_sacks; i++, sp++) {
939 		struct sk_buff *skb;
940 		__u32 start_seq = ntohl(sp->start_seq);
941 		__u32 end_seq = ntohl(sp->end_seq);
942 		int fack_count = 0;
943 		int dup_sack = 0;
944 
945 		/* Check for D-SACK. */
946 		if (i == 0) {
947 			u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
948 
949 			if (before(start_seq, ack)) {
950 				dup_sack = 1;
951 				tp->rx_opt.sack_ok |= 4;
952 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
953 			} else if (num_sacks > 1 &&
954 				   !after(end_seq, ntohl(sp[1].end_seq)) &&
955 				   !before(start_seq, ntohl(sp[1].start_seq))) {
956 				dup_sack = 1;
957 				tp->rx_opt.sack_ok |= 4;
958 				NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
959 			}
960 
961 			/* D-SACK for already forgotten data...
962 			 * Do dumb counting. */
963 			if (dup_sack &&
964 			    !after(end_seq, prior_snd_una) &&
965 			    after(end_seq, tp->undo_marker))
966 				tp->undo_retrans--;
967 
968 			/* Eliminate too old ACKs, but take into
969 			 * account more or less fresh ones, they can
970 			 * contain valid SACK info.
971 			 */
972 			if (before(ack, prior_snd_una - tp->max_window))
973 				return 0;
974 		}
975 
976 		/* Event "B" in the comment above. */
977 		if (after(end_seq, tp->high_seq))
978 			flag |= FLAG_DATA_LOST;
979 
980 		sk_stream_for_retrans_queue(skb, sk) {
981 			u8 sacked = TCP_SKB_CB(skb)->sacked;
982 			int in_sack;
983 
984 			/* The retransmission queue is always in order, so
985 			 * we can short-circuit the walk early.
986 			 */
987 			if(!before(TCP_SKB_CB(skb)->seq, end_seq))
988 				break;
989 
990 			fack_count += tcp_skb_pcount(skb);
991 
992 			in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
993 				!before(end_seq, TCP_SKB_CB(skb)->end_seq);
994 
995 			/* Account D-SACK for retransmitted packet. */
996 			if ((dup_sack && in_sack) &&
997 			    (sacked & TCPCB_RETRANS) &&
998 			    after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
999 				tp->undo_retrans--;
1000 
1001 			/* The frame is ACKed. */
1002 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1003 				if (sacked&TCPCB_RETRANS) {
1004 					if ((dup_sack && in_sack) &&
1005 					    (sacked&TCPCB_SACKED_ACKED))
1006 						reord = min(fack_count, reord);
1007 				} else {
1008 					/* If it was in a hole, we detected reordering. */
1009 					if (fack_count < prior_fackets &&
1010 					    !(sacked&TCPCB_SACKED_ACKED))
1011 						reord = min(fack_count, reord);
1012 				}
1013 
1014 				/* Nothing to do; acked frame is about to be dropped. */
1015 				continue;
1016 			}
1017 
1018 			if ((sacked&TCPCB_SACKED_RETRANS) &&
1019 			    after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1020 			    (!lost_retrans || after(end_seq, lost_retrans)))
1021 				lost_retrans = end_seq;
1022 
1023 			if (!in_sack)
1024 				continue;
1025 
1026 			if (!(sacked&TCPCB_SACKED_ACKED)) {
1027 				if (sacked & TCPCB_SACKED_RETRANS) {
1028 					/* If the segment is not tagged as lost,
1029 					 * we do not clear RETRANS, believing
1030 					 * that retransmission is still in flight.
1031 					 */
1032 					if (sacked & TCPCB_LOST) {
1033 						TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1034 						tp->lost_out -= tcp_skb_pcount(skb);
1035 						tp->retrans_out -= tcp_skb_pcount(skb);
1036 					}
1037 				} else {
1038 					/* New sack for not retransmitted frame,
1039 					 * which was in hole. It is reordering.
1040 					 */
1041 					if (!(sacked & TCPCB_RETRANS) &&
1042 					    fack_count < prior_fackets)
1043 						reord = min(fack_count, reord);
1044 
1045 					if (sacked & TCPCB_LOST) {
1046 						TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1047 						tp->lost_out -= tcp_skb_pcount(skb);
1048 					}
1049 				}
1050 
1051 				TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1052 				flag |= FLAG_DATA_SACKED;
1053 				tp->sacked_out += tcp_skb_pcount(skb);
1054 
1055 				if (fack_count > tp->fackets_out)
1056 					tp->fackets_out = fack_count;
1057 			} else {
1058 				if (dup_sack && (sacked&TCPCB_RETRANS))
1059 					reord = min(fack_count, reord);
1060 			}
1061 
1062 			/* D-SACK. We can detect redundant retransmission
1063 			 * in S|R and plain R frames and clear it.
1064 			 * undo_retrans is decreased above, L|R frames
1065 			 * are accounted above as well.
1066 			 */
1067 			if (dup_sack &&
1068 			    (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1069 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1070 				tp->retrans_out -= tcp_skb_pcount(skb);
1071 			}
1072 		}
1073 	}
1074 
1075 	/* Check for lost retransmit. This superb idea is
1076 	 * borrowed from "ratehalving". Event "C".
1077 	 * Later note: FACK people cheated me again 8),
1078 	 * we have to account for reordering! Ugly,
1079 	 * but should help.
1080 	 */
1081 	if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1082 		struct sk_buff *skb;
1083 
1084 		sk_stream_for_retrans_queue(skb, sk) {
1085 			if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1086 				break;
1087 			if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1088 				continue;
1089 			if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1090 			    after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1091 			    (IsFack(tp) ||
1092 			     !before(lost_retrans,
1093 				     TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1094 				     tp->mss_cache))) {
1095 				TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1096 				tp->retrans_out -= tcp_skb_pcount(skb);
1097 
1098 				if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1099 					tp->lost_out += tcp_skb_pcount(skb);
1100 					TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1101 					flag |= FLAG_DATA_SACKED;
1102 					NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1103 				}
1104 			}
1105 		}
1106 	}
1107 
1108 	tp->left_out = tp->sacked_out + tp->lost_out;
1109 
1110 	if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1111 		tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1112 
1113 #if FASTRETRANS_DEBUG > 0
1114 	BUG_TRAP((int)tp->sacked_out >= 0);
1115 	BUG_TRAP((int)tp->lost_out >= 0);
1116 	BUG_TRAP((int)tp->retrans_out >= 0);
1117 	BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1118 #endif
1119 	return flag;
1120 }
1121 
1122 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1123  * segments to see from the next ACKs whether any data was really missing.
1124  * If the RTO was spurious, new ACKs should arrive.
1125  */
1126 void tcp_enter_frto(struct sock *sk)
1127 {
1128 	const struct inet_connection_sock *icsk = inet_csk(sk);
1129 	struct tcp_sock *tp = tcp_sk(sk);
1130 	struct sk_buff *skb;
1131 
1132 	tp->frto_counter = 1;
1133 
1134 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1135             tp->snd_una == tp->high_seq ||
1136             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1137 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1138 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1139 		tcp_ca_event(sk, CA_EVENT_FRTO);
1140 	}
1141 
1142 	/* Have to clear retransmission markers here to keep the bookkeeping
1143 	 * in shape, even though we are not yet in Loss state.
1144 	 * If something was really lost, it is eventually caught up
1145 	 * in tcp_enter_frto_loss.
1146 	 */
1147 	tp->retrans_out = 0;
1148 	tp->undo_marker = tp->snd_una;
1149 	tp->undo_retrans = 0;
1150 
1151 	sk_stream_for_retrans_queue(skb, sk) {
1152 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1153 	}
1154 	tcp_sync_left_out(tp);
1155 
1156 	tcp_set_ca_state(sk, TCP_CA_Open);
1157 	tp->frto_highmark = tp->snd_nxt;
1158 }
1159 
1160 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1161  * which indicates that we should follow the traditional RTO recovery,
1162  * i.e. mark everything lost and do go-back-N retransmission.
1163  */
1164 static void tcp_enter_frto_loss(struct sock *sk)
1165 {
1166 	struct tcp_sock *tp = tcp_sk(sk);
1167 	struct sk_buff *skb;
1168 	int cnt = 0;
1169 
1170 	tp->sacked_out = 0;
1171 	tp->lost_out = 0;
1172 	tp->fackets_out = 0;
1173 
1174 	sk_stream_for_retrans_queue(skb, sk) {
1175 		cnt += tcp_skb_pcount(skb);
1176 		TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1177 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1178 
1179 			/* Do not mark those segments lost that were
1180 			 * forward transmitted after RTO
1181 			 */
1182 			if (!after(TCP_SKB_CB(skb)->end_seq,
1183 				   tp->frto_highmark)) {
1184 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1185 				tp->lost_out += tcp_skb_pcount(skb);
1186 			}
1187 		} else {
1188 			tp->sacked_out += tcp_skb_pcount(skb);
1189 			tp->fackets_out = cnt;
1190 		}
1191 	}
1192 	tcp_sync_left_out(tp);
1193 
1194 	tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1195 	tp->snd_cwnd_cnt = 0;
1196 	tp->snd_cwnd_stamp = tcp_time_stamp;
1197 	tp->undo_marker = 0;
1198 	tp->frto_counter = 0;
1199 
1200 	tp->reordering = min_t(unsigned int, tp->reordering,
1201 					     sysctl_tcp_reordering);
1202 	tcp_set_ca_state(sk, TCP_CA_Loss);
1203 	tp->high_seq = tp->frto_highmark;
1204 	TCP_ECN_queue_cwr(tp);
1205 }
1206 
1207 void tcp_clear_retrans(struct tcp_sock *tp)
1208 {
1209 	tp->left_out = 0;
1210 	tp->retrans_out = 0;
1211 
1212 	tp->fackets_out = 0;
1213 	tp->sacked_out = 0;
1214 	tp->lost_out = 0;
1215 
1216 	tp->undo_marker = 0;
1217 	tp->undo_retrans = 0;
1218 }
1219 
1220 /* Enter Loss state. If "how" is not zero, forget all SACK information
1221  * and reset tags completely, otherwise preserve SACKs. If receiver
1222  * dropped its ofo queue, we will know this due to reneging detection.
1223  */
1224 void tcp_enter_loss(struct sock *sk, int how)
1225 {
1226 	const struct inet_connection_sock *icsk = inet_csk(sk);
1227 	struct tcp_sock *tp = tcp_sk(sk);
1228 	struct sk_buff *skb;
1229 	int cnt = 0;
1230 
1231 	/* Reduce ssthresh if it has not yet been made inside this window. */
1232 	if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1233 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1234 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
1235 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1236 		tcp_ca_event(sk, CA_EVENT_LOSS);
1237 	}
1238 	tp->snd_cwnd	   = 1;
1239 	tp->snd_cwnd_cnt   = 0;
1240 	tp->snd_cwnd_stamp = tcp_time_stamp;
1241 
1242 	tcp_clear_retrans(tp);
1243 
1244 	/* Push undo marker, if it was plain RTO and nothing
1245 	 * was retransmitted. */
1246 	if (!how)
1247 		tp->undo_marker = tp->snd_una;
1248 
1249 	sk_stream_for_retrans_queue(skb, sk) {
1250 		cnt += tcp_skb_pcount(skb);
1251 		if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1252 			tp->undo_marker = 0;
1253 		TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1254 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1255 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1256 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1257 			tp->lost_out += tcp_skb_pcount(skb);
1258 		} else {
1259 			tp->sacked_out += tcp_skb_pcount(skb);
1260 			tp->fackets_out = cnt;
1261 		}
1262 	}
1263 	tcp_sync_left_out(tp);
1264 
1265 	tp->reordering = min_t(unsigned int, tp->reordering,
1266 					     sysctl_tcp_reordering);
1267 	tcp_set_ca_state(sk, TCP_CA_Loss);
1268 	tp->high_seq = tp->snd_nxt;
1269 	TCP_ECN_queue_cwr(tp);
1270 }
1271 
1272 static int tcp_check_sack_reneging(struct sock *sk)
1273 {
1274 	struct sk_buff *skb;
1275 
1276 	/* If ACK arrived pointing to a remembered SACK,
1277 	 * it means that our remembered SACKs do not reflect
1278 	 * real state of receiver i.e.
1279 	 * receiver _host_ is heavily congested (or buggy).
1280 	 * Do processing similar to RTO timeout.
1281 	 */
1282 	if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1283 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1284 		struct inet_connection_sock *icsk = inet_csk(sk);
1285 		NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1286 
1287 		tcp_enter_loss(sk, 1);
1288 		icsk->icsk_retransmits++;
1289 		tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1290 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1291 					  icsk->icsk_rto, TCP_RTO_MAX);
1292 		return 1;
1293 	}
1294 	return 0;
1295 }
1296 
1297 static inline int tcp_fackets_out(struct tcp_sock *tp)
1298 {
1299 	return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1300 }
1301 
1302 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1303 {
1304 	return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1305 }
1306 
1307 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1308 {
1309 	return tp->packets_out &&
1310 	       tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1311 }
1312 
1313 /* Linux NewReno/SACK/FACK/ECN state machine.
1314  * --------------------------------------
1315  *
1316  * "Open"	Normal state, no dubious events, fast path.
1317  * "Disorder"   In all the respects it is "Open",
1318  *		but requires a bit more attention. It is entered when
1319  *		we see some SACKs or dupacks. It is split of "Open"
1320  *		mainly to move some processing from fast path to slow one.
1321  * "CWR"	CWND was reduced due to some Congestion Notification event.
1322  *		It can be ECN, ICMP source quench, local device congestion.
1323  * "Recovery"	CWND was reduced, we are fast-retransmitting.
1324  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
1325  *
1326  * tcp_fastretrans_alert() is entered:
1327  * - each incoming ACK, if state is not "Open"
1328  * - when arrived ACK is unusual, namely:
1329  *	* SACK
1330  *	* Duplicate ACK.
1331  *	* ECN ECE.
1332  *
1333  * Counting packets in flight is pretty simple.
1334  *
1335  *	in_flight = packets_out - left_out + retrans_out
1336  *
1337  *	packets_out is SND.NXT-SND.UNA counted in packets.
1338  *
1339  *	retrans_out is number of retransmitted segments.
1340  *
1341  *	left_out is number of segments left network, but not ACKed yet.
1342  *
1343  *		left_out = sacked_out + lost_out
1344  *
1345  *     sacked_out: Packets, which arrived to receiver out of order
1346  *		   and hence not ACKed. With SACKs this number is simply
1347  *		   amount of SACKed data. Even without SACKs
1348  *		   it is easy to give pretty reliable estimate of this number,
1349  *		   counting duplicate ACKs.
1350  *
1351  *       lost_out: Packets lost by network. TCP has no explicit
1352  *		   "loss notification" feedback from network (for now).
1353  *		   It means that this number can be only _guessed_.
1354  *		   Actually, it is the heuristics to predict lossage that
1355  *		   distinguishes different algorithms.
1356  *
1357  *	F.e. after RTO, when all the queue is considered as lost,
1358  *	lost_out = packets_out and in_flight = retrans_out.
1359  *
1360  *		Essentially, we have now two algorithms counting
1361  *		lost packets.
1362  *
1363  *		FACK: It is the simplest heuristics. As soon as we decided
1364  *		that something is lost, we decide that _all_ not SACKed
1365  *		packets until the most forward SACK are lost. I.e.
1366  *		lost_out = fackets_out - sacked_out and left_out = fackets_out.
1367  *		It is absolutely correct estimate, if network does not reorder
1368  *		packets. And it loses any connection to reality when reordering
1369  *		takes place. We use FACK by default until reordering
1370  *		is suspected on the path to this destination.
1371  *
1372  *		NewReno: when Recovery is entered, we assume that one segment
1373  *		is lost (classic Reno). While we are in Recovery and
1374  *		a partial ACK arrives, we assume that one more packet
1375  *		is lost (NewReno). This heuristics are the same in NewReno
1376  *		and SACK.
1377  *
1378  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1379  *  deflation etc. CWND is real congestion window, never inflated, changes
1380  *  only according to classic VJ rules.
1381  *
1382  * Really tricky (and requiring careful tuning) part of algorithm
1383  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1384  * The first determines the moment _when_ we should reduce CWND and,
1385  * hence, slow down forward transmission. In fact, it determines the moment
1386  * when we decide that hole is caused by loss, rather than by a reorder.
1387  *
1388  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1389  * holes, caused by lost packets.
1390  *
1391  * And the most logically complicated part of algorithm is undo
1392  * heuristics. We detect false retransmits due to both too early
1393  * fast retransmit (reordering) and underestimated RTO, analyzing
1394  * timestamps and D-SACKs. When we detect that some segments were
1395  * retransmitted by mistake and CWND reduction was wrong, we undo
1396  * window reduction and abort recovery phase. This logic is hidden
1397  * inside several functions named tcp_try_undo_<something>.
1398  */
1399 
1400 /* This function decides, when we should leave Disordered state
1401  * and enter Recovery phase, reducing congestion window.
1402  *
1403  * Main question: may we further continue forward transmission
1404  * with the same cwnd?
1405  */
1406 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1407 {
1408 	__u32 packets_out;
1409 
1410 	/* Trick#1: The loss is proven. */
1411 	if (tp->lost_out)
1412 		return 1;
1413 
1414 	/* Not-A-Trick#2 : Classic rule... */
1415 	if (tcp_fackets_out(tp) > tp->reordering)
1416 		return 1;
1417 
1418 	/* Trick#3 : when we use RFC2988 timer restart, fast
1419 	 * retransmit can be triggered by timeout of queue head.
1420 	 */
1421 	if (tcp_head_timedout(sk, tp))
1422 		return 1;
1423 
1424 	/* Trick#4: It is still not OK... But will it be useful to delay
1425 	 * recovery more?
1426 	 */
1427 	packets_out = tp->packets_out;
1428 	if (packets_out <= tp->reordering &&
1429 	    tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1430 	    !tcp_may_send_now(sk, tp)) {
1431 		/* We have nothing to send. This connection is limited
1432 		 * either by receiver window or by application.
1433 		 */
1434 		return 1;
1435 	}
1436 
1437 	return 0;
1438 }
1439 
1440 /* If we receive more dupacks than we expected counting segments
1441  * in assumption of absent reordering, interpret this as reordering.
1442  * The only another reason could be bug in receiver TCP.
1443  */
1444 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1445 {
1446 	struct tcp_sock *tp = tcp_sk(sk);
1447 	u32 holes;
1448 
1449 	holes = max(tp->lost_out, 1U);
1450 	holes = min(holes, tp->packets_out);
1451 
1452 	if ((tp->sacked_out + holes) > tp->packets_out) {
1453 		tp->sacked_out = tp->packets_out - holes;
1454 		tcp_update_reordering(sk, tp->packets_out + addend, 0);
1455 	}
1456 }
1457 
1458 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1459 
1460 static void tcp_add_reno_sack(struct sock *sk)
1461 {
1462 	struct tcp_sock *tp = tcp_sk(sk);
1463 	tp->sacked_out++;
1464 	tcp_check_reno_reordering(sk, 0);
1465 	tcp_sync_left_out(tp);
1466 }
1467 
1468 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1469 
1470 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1471 {
1472 	if (acked > 0) {
1473 		/* One ACK acked hole. The rest eat duplicate ACKs. */
1474 		if (acked-1 >= tp->sacked_out)
1475 			tp->sacked_out = 0;
1476 		else
1477 			tp->sacked_out -= acked-1;
1478 	}
1479 	tcp_check_reno_reordering(sk, acked);
1480 	tcp_sync_left_out(tp);
1481 }
1482 
1483 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1484 {
1485 	tp->sacked_out = 0;
1486 	tp->left_out = tp->lost_out;
1487 }
1488 
1489 /* Mark head of queue up as lost. */
1490 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1491 			       int packets, u32 high_seq)
1492 {
1493 	struct sk_buff *skb;
1494 	int cnt = packets;
1495 
1496 	BUG_TRAP(cnt <= tp->packets_out);
1497 
1498 	sk_stream_for_retrans_queue(skb, sk) {
1499 		cnt -= tcp_skb_pcount(skb);
1500 		if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1501 			break;
1502 		if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1503 			TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1504 			tp->lost_out += tcp_skb_pcount(skb);
1505 		}
1506 	}
1507 	tcp_sync_left_out(tp);
1508 }
1509 
1510 /* Account newly detected lost packet(s) */
1511 
1512 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1513 {
1514 	if (IsFack(tp)) {
1515 		int lost = tp->fackets_out - tp->reordering;
1516 		if (lost <= 0)
1517 			lost = 1;
1518 		tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1519 	} else {
1520 		tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1521 	}
1522 
1523 	/* New heuristics: it is possible only after we switched
1524 	 * to restart timer each time when something is ACKed.
1525 	 * Hence, we can detect timed out packets during fast
1526 	 * retransmit without falling to slow start.
1527 	 */
1528 	if (tcp_head_timedout(sk, tp)) {
1529 		struct sk_buff *skb;
1530 
1531 		sk_stream_for_retrans_queue(skb, sk) {
1532 			if (tcp_skb_timedout(sk, skb) &&
1533 			    !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1534 				TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1535 				tp->lost_out += tcp_skb_pcount(skb);
1536 			}
1537 		}
1538 		tcp_sync_left_out(tp);
1539 	}
1540 }
1541 
1542 /* CWND moderation, preventing bursts due to too big ACKs
1543  * in dubious situations.
1544  */
1545 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1546 {
1547 	tp->snd_cwnd = min(tp->snd_cwnd,
1548 			   tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1549 	tp->snd_cwnd_stamp = tcp_time_stamp;
1550 }
1551 
1552 /* Decrease cwnd each second ack. */
1553 static void tcp_cwnd_down(struct sock *sk)
1554 {
1555 	const struct inet_connection_sock *icsk = inet_csk(sk);
1556 	struct tcp_sock *tp = tcp_sk(sk);
1557 	int decr = tp->snd_cwnd_cnt + 1;
1558 
1559 	tp->snd_cwnd_cnt = decr&1;
1560 	decr >>= 1;
1561 
1562 	if (decr && tp->snd_cwnd > icsk->icsk_ca_ops->min_cwnd(sk))
1563 		tp->snd_cwnd -= decr;
1564 
1565 	tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1566 	tp->snd_cwnd_stamp = tcp_time_stamp;
1567 }
1568 
1569 /* Nothing was retransmitted or returned timestamp is less
1570  * than timestamp of the first retransmission.
1571  */
1572 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1573 {
1574 	return !tp->retrans_stamp ||
1575 		(tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1576 		 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1577 }
1578 
1579 /* Undo procedures. */
1580 
1581 #if FASTRETRANS_DEBUG > 1
1582 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1583 {
1584 	struct inet_sock *inet = inet_sk(sk);
1585 	printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1586 	       msg,
1587 	       NIPQUAD(inet->daddr), ntohs(inet->dport),
1588 	       tp->snd_cwnd, tp->left_out,
1589 	       tp->snd_ssthresh, tp->prior_ssthresh,
1590 	       tp->packets_out);
1591 }
1592 #else
1593 #define DBGUNDO(x...) do { } while (0)
1594 #endif
1595 
1596 static void tcp_undo_cwr(struct sock *sk, const int undo)
1597 {
1598 	struct tcp_sock *tp = tcp_sk(sk);
1599 
1600 	if (tp->prior_ssthresh) {
1601 		const struct inet_connection_sock *icsk = inet_csk(sk);
1602 
1603 		if (icsk->icsk_ca_ops->undo_cwnd)
1604 			tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1605 		else
1606 			tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1607 
1608 		if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1609 			tp->snd_ssthresh = tp->prior_ssthresh;
1610 			TCP_ECN_withdraw_cwr(tp);
1611 		}
1612 	} else {
1613 		tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1614 	}
1615 	tcp_moderate_cwnd(tp);
1616 	tp->snd_cwnd_stamp = tcp_time_stamp;
1617 }
1618 
1619 static inline int tcp_may_undo(struct tcp_sock *tp)
1620 {
1621 	return tp->undo_marker &&
1622 		(!tp->undo_retrans || tcp_packet_delayed(tp));
1623 }
1624 
1625 /* People celebrate: "We love our President!" */
1626 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1627 {
1628 	if (tcp_may_undo(tp)) {
1629 		/* Happy end! We did not retransmit anything
1630 		 * or our original transmission succeeded.
1631 		 */
1632 		DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1633 		tcp_undo_cwr(sk, 1);
1634 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1635 			NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1636 		else
1637 			NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1638 		tp->undo_marker = 0;
1639 	}
1640 	if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1641 		/* Hold old state until something *above* high_seq
1642 		 * is ACKed. For Reno it is MUST to prevent false
1643 		 * fast retransmits (RFC2582). SACK TCP is safe. */
1644 		tcp_moderate_cwnd(tp);
1645 		return 1;
1646 	}
1647 	tcp_set_ca_state(sk, TCP_CA_Open);
1648 	return 0;
1649 }
1650 
1651 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1652 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1653 {
1654 	if (tp->undo_marker && !tp->undo_retrans) {
1655 		DBGUNDO(sk, tp, "D-SACK");
1656 		tcp_undo_cwr(sk, 1);
1657 		tp->undo_marker = 0;
1658 		NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1659 	}
1660 }
1661 
1662 /* Undo during fast recovery after partial ACK. */
1663 
1664 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1665 				int acked)
1666 {
1667 	/* Partial ACK arrived. Force Hoe's retransmit. */
1668 	int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1669 
1670 	if (tcp_may_undo(tp)) {
1671 		/* Plain luck! Hole if filled with delayed
1672 		 * packet, rather than with a retransmit.
1673 		 */
1674 		if (tp->retrans_out == 0)
1675 			tp->retrans_stamp = 0;
1676 
1677 		tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1678 
1679 		DBGUNDO(sk, tp, "Hoe");
1680 		tcp_undo_cwr(sk, 0);
1681 		NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1682 
1683 		/* So... Do not make Hoe's retransmit yet.
1684 		 * If the first packet was delayed, the rest
1685 		 * ones are most probably delayed as well.
1686 		 */
1687 		failed = 0;
1688 	}
1689 	return failed;
1690 }
1691 
1692 /* Undo during loss recovery after partial ACK. */
1693 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1694 {
1695 	if (tcp_may_undo(tp)) {
1696 		struct sk_buff *skb;
1697 		sk_stream_for_retrans_queue(skb, sk) {
1698 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1699 		}
1700 		DBGUNDO(sk, tp, "partial loss");
1701 		tp->lost_out = 0;
1702 		tp->left_out = tp->sacked_out;
1703 		tcp_undo_cwr(sk, 1);
1704 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1705 		inet_csk(sk)->icsk_retransmits = 0;
1706 		tp->undo_marker = 0;
1707 		if (!IsReno(tp))
1708 			tcp_set_ca_state(sk, TCP_CA_Open);
1709 		return 1;
1710 	}
1711 	return 0;
1712 }
1713 
1714 static inline void tcp_complete_cwr(struct sock *sk)
1715 {
1716 	struct tcp_sock *tp = tcp_sk(sk);
1717 	tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1718 	tp->snd_cwnd_stamp = tcp_time_stamp;
1719 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1720 }
1721 
1722 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1723 {
1724 	tp->left_out = tp->sacked_out;
1725 
1726 	if (tp->retrans_out == 0)
1727 		tp->retrans_stamp = 0;
1728 
1729 	if (flag&FLAG_ECE)
1730 		tcp_enter_cwr(sk);
1731 
1732 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1733 		int state = TCP_CA_Open;
1734 
1735 		if (tp->left_out || tp->retrans_out || tp->undo_marker)
1736 			state = TCP_CA_Disorder;
1737 
1738 		if (inet_csk(sk)->icsk_ca_state != state) {
1739 			tcp_set_ca_state(sk, state);
1740 			tp->high_seq = tp->snd_nxt;
1741 		}
1742 		tcp_moderate_cwnd(tp);
1743 	} else {
1744 		tcp_cwnd_down(sk);
1745 	}
1746 }
1747 
1748 /* Process an event, which can update packets-in-flight not trivially.
1749  * Main goal of this function is to calculate new estimate for left_out,
1750  * taking into account both packets sitting in receiver's buffer and
1751  * packets lost by network.
1752  *
1753  * Besides that it does CWND reduction, when packet loss is detected
1754  * and changes state of machine.
1755  *
1756  * It does _not_ decide what to send, it is made in function
1757  * tcp_xmit_retransmit_queue().
1758  */
1759 static void
1760 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1761 		      int prior_packets, int flag)
1762 {
1763 	struct inet_connection_sock *icsk = inet_csk(sk);
1764 	struct tcp_sock *tp = tcp_sk(sk);
1765 	int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1766 
1767 	/* Some technical things:
1768 	 * 1. Reno does not count dupacks (sacked_out) automatically. */
1769 	if (!tp->packets_out)
1770 		tp->sacked_out = 0;
1771         /* 2. SACK counts snd_fack in packets inaccurately. */
1772 	if (tp->sacked_out == 0)
1773 		tp->fackets_out = 0;
1774 
1775         /* Now state machine starts.
1776 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1777 	if (flag&FLAG_ECE)
1778 		tp->prior_ssthresh = 0;
1779 
1780 	/* B. In all the states check for reneging SACKs. */
1781 	if (tp->sacked_out && tcp_check_sack_reneging(sk))
1782 		return;
1783 
1784 	/* C. Process data loss notification, provided it is valid. */
1785 	if ((flag&FLAG_DATA_LOST) &&
1786 	    before(tp->snd_una, tp->high_seq) &&
1787 	    icsk->icsk_ca_state != TCP_CA_Open &&
1788 	    tp->fackets_out > tp->reordering) {
1789 		tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1790 		NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1791 	}
1792 
1793 	/* D. Synchronize left_out to current state. */
1794 	tcp_sync_left_out(tp);
1795 
1796 	/* E. Check state exit conditions. State can be terminated
1797 	 *    when high_seq is ACKed. */
1798 	if (icsk->icsk_ca_state == TCP_CA_Open) {
1799 		if (!sysctl_tcp_frto)
1800 			BUG_TRAP(tp->retrans_out == 0);
1801 		tp->retrans_stamp = 0;
1802 	} else if (!before(tp->snd_una, tp->high_seq)) {
1803 		switch (icsk->icsk_ca_state) {
1804 		case TCP_CA_Loss:
1805 			icsk->icsk_retransmits = 0;
1806 			if (tcp_try_undo_recovery(sk, tp))
1807 				return;
1808 			break;
1809 
1810 		case TCP_CA_CWR:
1811 			/* CWR is to be held something *above* high_seq
1812 			 * is ACKed for CWR bit to reach receiver. */
1813 			if (tp->snd_una != tp->high_seq) {
1814 				tcp_complete_cwr(sk);
1815 				tcp_set_ca_state(sk, TCP_CA_Open);
1816 			}
1817 			break;
1818 
1819 		case TCP_CA_Disorder:
1820 			tcp_try_undo_dsack(sk, tp);
1821 			if (!tp->undo_marker ||
1822 			    /* For SACK case do not Open to allow to undo
1823 			     * catching for all duplicate ACKs. */
1824 			    IsReno(tp) || tp->snd_una != tp->high_seq) {
1825 				tp->undo_marker = 0;
1826 				tcp_set_ca_state(sk, TCP_CA_Open);
1827 			}
1828 			break;
1829 
1830 		case TCP_CA_Recovery:
1831 			if (IsReno(tp))
1832 				tcp_reset_reno_sack(tp);
1833 			if (tcp_try_undo_recovery(sk, tp))
1834 				return;
1835 			tcp_complete_cwr(sk);
1836 			break;
1837 		}
1838 	}
1839 
1840 	/* F. Process state. */
1841 	switch (icsk->icsk_ca_state) {
1842 	case TCP_CA_Recovery:
1843 		if (prior_snd_una == tp->snd_una) {
1844 			if (IsReno(tp) && is_dupack)
1845 				tcp_add_reno_sack(sk);
1846 		} else {
1847 			int acked = prior_packets - tp->packets_out;
1848 			if (IsReno(tp))
1849 				tcp_remove_reno_sacks(sk, tp, acked);
1850 			is_dupack = tcp_try_undo_partial(sk, tp, acked);
1851 		}
1852 		break;
1853 	case TCP_CA_Loss:
1854 		if (flag&FLAG_DATA_ACKED)
1855 			icsk->icsk_retransmits = 0;
1856 		if (!tcp_try_undo_loss(sk, tp)) {
1857 			tcp_moderate_cwnd(tp);
1858 			tcp_xmit_retransmit_queue(sk);
1859 			return;
1860 		}
1861 		if (icsk->icsk_ca_state != TCP_CA_Open)
1862 			return;
1863 		/* Loss is undone; fall through to processing in Open state. */
1864 	default:
1865 		if (IsReno(tp)) {
1866 			if (tp->snd_una != prior_snd_una)
1867 				tcp_reset_reno_sack(tp);
1868 			if (is_dupack)
1869 				tcp_add_reno_sack(sk);
1870 		}
1871 
1872 		if (icsk->icsk_ca_state == TCP_CA_Disorder)
1873 			tcp_try_undo_dsack(sk, tp);
1874 
1875 		if (!tcp_time_to_recover(sk, tp)) {
1876 			tcp_try_to_open(sk, tp, flag);
1877 			return;
1878 		}
1879 
1880 		/* Otherwise enter Recovery state */
1881 
1882 		if (IsReno(tp))
1883 			NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
1884 		else
1885 			NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
1886 
1887 		tp->high_seq = tp->snd_nxt;
1888 		tp->prior_ssthresh = 0;
1889 		tp->undo_marker = tp->snd_una;
1890 		tp->undo_retrans = tp->retrans_out;
1891 
1892 		if (icsk->icsk_ca_state < TCP_CA_CWR) {
1893 			if (!(flag&FLAG_ECE))
1894 				tp->prior_ssthresh = tcp_current_ssthresh(sk);
1895 			tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1896 			TCP_ECN_queue_cwr(tp);
1897 		}
1898 
1899 		tp->snd_cwnd_cnt = 0;
1900 		tcp_set_ca_state(sk, TCP_CA_Recovery);
1901 	}
1902 
1903 	if (is_dupack || tcp_head_timedout(sk, tp))
1904 		tcp_update_scoreboard(sk, tp);
1905 	tcp_cwnd_down(sk);
1906 	tcp_xmit_retransmit_queue(sk);
1907 }
1908 
1909 /* Read draft-ietf-tcplw-high-performance before mucking
1910  * with this code. (Superceeds RFC1323)
1911  */
1912 static void tcp_ack_saw_tstamp(struct sock *sk, u32 *usrtt, int flag)
1913 {
1914 	/* RTTM Rule: A TSecr value received in a segment is used to
1915 	 * update the averaged RTT measurement only if the segment
1916 	 * acknowledges some new data, i.e., only if it advances the
1917 	 * left edge of the send window.
1918 	 *
1919 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
1920 	 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
1921 	 *
1922 	 * Changed: reset backoff as soon as we see the first valid sample.
1923 	 * If we do not, we get strongly overstimated rto. With timestamps
1924 	 * samples are accepted even from very old segments: f.e., when rtt=1
1925 	 * increases to 8, we retransmit 5 times and after 8 seconds delayed
1926 	 * answer arrives rto becomes 120 seconds! If at least one of segments
1927 	 * in window is lost... Voila.	 			--ANK (010210)
1928 	 */
1929 	struct tcp_sock *tp = tcp_sk(sk);
1930 	const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
1931 	tcp_rtt_estimator(sk, seq_rtt, usrtt);
1932 	tcp_set_rto(sk);
1933 	inet_csk(sk)->icsk_backoff = 0;
1934 	tcp_bound_rto(sk);
1935 }
1936 
1937 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, u32 *usrtt, int flag)
1938 {
1939 	/* We don't have a timestamp. Can only use
1940 	 * packets that are not retransmitted to determine
1941 	 * rtt estimates. Also, we must not reset the
1942 	 * backoff for rto until we get a non-retransmitted
1943 	 * packet. This allows us to deal with a situation
1944 	 * where the network delay has increased suddenly.
1945 	 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
1946 	 */
1947 
1948 	if (flag & FLAG_RETRANS_DATA_ACKED)
1949 		return;
1950 
1951 	tcp_rtt_estimator(sk, seq_rtt, usrtt);
1952 	tcp_set_rto(sk);
1953 	inet_csk(sk)->icsk_backoff = 0;
1954 	tcp_bound_rto(sk);
1955 }
1956 
1957 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
1958 				      const s32 seq_rtt, u32 *usrtt)
1959 {
1960 	const struct tcp_sock *tp = tcp_sk(sk);
1961 	/* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
1962 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
1963 		tcp_ack_saw_tstamp(sk, usrtt, flag);
1964 	else if (seq_rtt >= 0)
1965 		tcp_ack_no_tstamp(sk, seq_rtt, usrtt, flag);
1966 }
1967 
1968 static inline void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
1969 				  u32 in_flight, int good)
1970 {
1971 	const struct inet_connection_sock *icsk = inet_csk(sk);
1972 	icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
1973 	tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1974 }
1975 
1976 /* Restart timer after forward progress on connection.
1977  * RFC2988 recommends to restart timer to now+rto.
1978  */
1979 
1980 static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
1981 {
1982 	if (!tp->packets_out) {
1983 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1984 	} else {
1985 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1986 	}
1987 }
1988 
1989 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
1990 			 __u32 now, __s32 *seq_rtt)
1991 {
1992 	struct tcp_sock *tp = tcp_sk(sk);
1993 	struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1994 	__u32 seq = tp->snd_una;
1995 	__u32 packets_acked;
1996 	int acked = 0;
1997 
1998 	/* If we get here, the whole TSO packet has not been
1999 	 * acked.
2000 	 */
2001 	BUG_ON(!after(scb->end_seq, seq));
2002 
2003 	packets_acked = tcp_skb_pcount(skb);
2004 	if (tcp_trim_head(sk, skb, seq - scb->seq))
2005 		return 0;
2006 	packets_acked -= tcp_skb_pcount(skb);
2007 
2008 	if (packets_acked) {
2009 		__u8 sacked = scb->sacked;
2010 
2011 		acked |= FLAG_DATA_ACKED;
2012 		if (sacked) {
2013 			if (sacked & TCPCB_RETRANS) {
2014 				if (sacked & TCPCB_SACKED_RETRANS)
2015 					tp->retrans_out -= packets_acked;
2016 				acked |= FLAG_RETRANS_DATA_ACKED;
2017 				*seq_rtt = -1;
2018 			} else if (*seq_rtt < 0)
2019 				*seq_rtt = now - scb->when;
2020 			if (sacked & TCPCB_SACKED_ACKED)
2021 				tp->sacked_out -= packets_acked;
2022 			if (sacked & TCPCB_LOST)
2023 				tp->lost_out -= packets_acked;
2024 			if (sacked & TCPCB_URG) {
2025 				if (tp->urg_mode &&
2026 				    !before(seq, tp->snd_up))
2027 					tp->urg_mode = 0;
2028 			}
2029 		} else if (*seq_rtt < 0)
2030 			*seq_rtt = now - scb->when;
2031 
2032 		if (tp->fackets_out) {
2033 			__u32 dval = min(tp->fackets_out, packets_acked);
2034 			tp->fackets_out -= dval;
2035 		}
2036 		tp->packets_out -= packets_acked;
2037 
2038 		BUG_ON(tcp_skb_pcount(skb) == 0);
2039 		BUG_ON(!before(scb->seq, scb->end_seq));
2040 	}
2041 
2042 	return acked;
2043 }
2044 
2045 
2046 /* Remove acknowledged frames from the retransmission queue. */
2047 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p, s32 *seq_usrtt)
2048 {
2049 	struct tcp_sock *tp = tcp_sk(sk);
2050 	struct sk_buff *skb;
2051 	__u32 now = tcp_time_stamp;
2052 	int acked = 0;
2053 	__s32 seq_rtt = -1;
2054 	struct timeval usnow;
2055 	u32 pkts_acked = 0;
2056 
2057 	if (seq_usrtt)
2058 		do_gettimeofday(&usnow);
2059 
2060 	while ((skb = skb_peek(&sk->sk_write_queue)) &&
2061 	       skb != sk->sk_send_head) {
2062 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2063 		__u8 sacked = scb->sacked;
2064 
2065 		/* If our packet is before the ack sequence we can
2066 		 * discard it as it's confirmed to have arrived at
2067 		 * the other end.
2068 		 */
2069 		if (after(scb->end_seq, tp->snd_una)) {
2070 			if (tcp_skb_pcount(skb) > 1 &&
2071 			    after(tp->snd_una, scb->seq))
2072 				acked |= tcp_tso_acked(sk, skb,
2073 						       now, &seq_rtt);
2074 			break;
2075 		}
2076 
2077 		/* Initial outgoing SYN's get put onto the write_queue
2078 		 * just like anything else we transmit.  It is not
2079 		 * true data, and if we misinform our callers that
2080 		 * this ACK acks real data, we will erroneously exit
2081 		 * connection startup slow start one packet too
2082 		 * quickly.  This is severely frowned upon behavior.
2083 		 */
2084 		if (!(scb->flags & TCPCB_FLAG_SYN)) {
2085 			acked |= FLAG_DATA_ACKED;
2086 			++pkts_acked;
2087 		} else {
2088 			acked |= FLAG_SYN_ACKED;
2089 			tp->retrans_stamp = 0;
2090 		}
2091 
2092 		if (sacked) {
2093 			if (sacked & TCPCB_RETRANS) {
2094 				if(sacked & TCPCB_SACKED_RETRANS)
2095 					tp->retrans_out -= tcp_skb_pcount(skb);
2096 				acked |= FLAG_RETRANS_DATA_ACKED;
2097 				seq_rtt = -1;
2098 			} else if (seq_rtt < 0)
2099 				seq_rtt = now - scb->when;
2100 			if (seq_usrtt) {
2101 				struct timeval tv;
2102 
2103 				skb_get_timestamp(skb, &tv);
2104 				*seq_usrtt = (usnow.tv_sec - tv.tv_sec) * 1000000
2105 					+ (usnow.tv_usec - tv.tv_usec);
2106 			}
2107 
2108 			if (sacked & TCPCB_SACKED_ACKED)
2109 				tp->sacked_out -= tcp_skb_pcount(skb);
2110 			if (sacked & TCPCB_LOST)
2111 				tp->lost_out -= tcp_skb_pcount(skb);
2112 			if (sacked & TCPCB_URG) {
2113 				if (tp->urg_mode &&
2114 				    !before(scb->end_seq, tp->snd_up))
2115 					tp->urg_mode = 0;
2116 			}
2117 		} else if (seq_rtt < 0)
2118 			seq_rtt = now - scb->when;
2119 		tcp_dec_pcount_approx(&tp->fackets_out, skb);
2120 		tcp_packets_out_dec(tp, skb);
2121 		__skb_unlink(skb, &sk->sk_write_queue);
2122 		sk_stream_free_skb(sk, skb);
2123 	}
2124 
2125 	if (acked&FLAG_ACKED) {
2126 		const struct inet_connection_sock *icsk = inet_csk(sk);
2127 		tcp_ack_update_rtt(sk, acked, seq_rtt, seq_usrtt);
2128 		tcp_ack_packets_out(sk, tp);
2129 
2130 		if (icsk->icsk_ca_ops->pkts_acked)
2131 			icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2132 	}
2133 
2134 #if FASTRETRANS_DEBUG > 0
2135 	BUG_TRAP((int)tp->sacked_out >= 0);
2136 	BUG_TRAP((int)tp->lost_out >= 0);
2137 	BUG_TRAP((int)tp->retrans_out >= 0);
2138 	if (!tp->packets_out && tp->rx_opt.sack_ok) {
2139 		const struct inet_connection_sock *icsk = inet_csk(sk);
2140 		if (tp->lost_out) {
2141 			printk(KERN_DEBUG "Leak l=%u %d\n",
2142 			       tp->lost_out, icsk->icsk_ca_state);
2143 			tp->lost_out = 0;
2144 		}
2145 		if (tp->sacked_out) {
2146 			printk(KERN_DEBUG "Leak s=%u %d\n",
2147 			       tp->sacked_out, icsk->icsk_ca_state);
2148 			tp->sacked_out = 0;
2149 		}
2150 		if (tp->retrans_out) {
2151 			printk(KERN_DEBUG "Leak r=%u %d\n",
2152 			       tp->retrans_out, icsk->icsk_ca_state);
2153 			tp->retrans_out = 0;
2154 		}
2155 	}
2156 #endif
2157 	*seq_rtt_p = seq_rtt;
2158 	return acked;
2159 }
2160 
2161 static void tcp_ack_probe(struct sock *sk)
2162 {
2163 	const struct tcp_sock *tp = tcp_sk(sk);
2164 	struct inet_connection_sock *icsk = inet_csk(sk);
2165 
2166 	/* Was it a usable window open? */
2167 
2168 	if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2169 		   tp->snd_una + tp->snd_wnd)) {
2170 		icsk->icsk_backoff = 0;
2171 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2172 		/* Socket must be waked up by subsequent tcp_data_snd_check().
2173 		 * This function is not for random using!
2174 		 */
2175 	} else {
2176 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2177 					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2178 					  TCP_RTO_MAX);
2179 	}
2180 }
2181 
2182 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2183 {
2184 	return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2185 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2186 }
2187 
2188 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2189 {
2190 	const struct tcp_sock *tp = tcp_sk(sk);
2191 	return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2192 		!((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2193 }
2194 
2195 /* Check that window update is acceptable.
2196  * The function assumes that snd_una<=ack<=snd_next.
2197  */
2198 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2199 					const u32 ack_seq, const u32 nwin)
2200 {
2201 	return (after(ack, tp->snd_una) ||
2202 		after(ack_seq, tp->snd_wl1) ||
2203 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2204 }
2205 
2206 /* Update our send window.
2207  *
2208  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2209  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2210  */
2211 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2212 				 struct sk_buff *skb, u32 ack, u32 ack_seq)
2213 {
2214 	int flag = 0;
2215 	u32 nwin = ntohs(skb->h.th->window);
2216 
2217 	if (likely(!skb->h.th->syn))
2218 		nwin <<= tp->rx_opt.snd_wscale;
2219 
2220 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2221 		flag |= FLAG_WIN_UPDATE;
2222 		tcp_update_wl(tp, ack, ack_seq);
2223 
2224 		if (tp->snd_wnd != nwin) {
2225 			tp->snd_wnd = nwin;
2226 
2227 			/* Note, it is the only place, where
2228 			 * fast path is recovered for sending TCP.
2229 			 */
2230 			tcp_fast_path_check(sk, tp);
2231 
2232 			if (nwin > tp->max_window) {
2233 				tp->max_window = nwin;
2234 				tcp_sync_mss(sk, tp->pmtu_cookie);
2235 			}
2236 		}
2237 	}
2238 
2239 	tp->snd_una = ack;
2240 
2241 	return flag;
2242 }
2243 
2244 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2245 {
2246 	struct tcp_sock *tp = tcp_sk(sk);
2247 
2248 	tcp_sync_left_out(tp);
2249 
2250 	if (tp->snd_una == prior_snd_una ||
2251 	    !before(tp->snd_una, tp->frto_highmark)) {
2252 		/* RTO was caused by loss, start retransmitting in
2253 		 * go-back-N slow start
2254 		 */
2255 		tcp_enter_frto_loss(sk);
2256 		return;
2257 	}
2258 
2259 	if (tp->frto_counter == 1) {
2260 		/* First ACK after RTO advances the window: allow two new
2261 		 * segments out.
2262 		 */
2263 		tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2264 	} else {
2265 		/* Also the second ACK after RTO advances the window.
2266 		 * The RTO was likely spurious. Reduce cwnd and continue
2267 		 * in congestion avoidance
2268 		 */
2269 		tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2270 		tcp_moderate_cwnd(tp);
2271 	}
2272 
2273 	/* F-RTO affects on two new ACKs following RTO.
2274 	 * At latest on third ACK the TCP behavor is back to normal.
2275 	 */
2276 	tp->frto_counter = (tp->frto_counter + 1) % 3;
2277 }
2278 
2279 /* This routine deals with incoming acks, but not outgoing ones. */
2280 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2281 {
2282 	struct inet_connection_sock *icsk = inet_csk(sk);
2283 	struct tcp_sock *tp = tcp_sk(sk);
2284 	u32 prior_snd_una = tp->snd_una;
2285 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
2286 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2287 	u32 prior_in_flight;
2288 	s32 seq_rtt;
2289 	s32 seq_usrtt = 0;
2290 	int prior_packets;
2291 
2292 	/* If the ack is newer than sent or older than previous acks
2293 	 * then we can probably ignore it.
2294 	 */
2295 	if (after(ack, tp->snd_nxt))
2296 		goto uninteresting_ack;
2297 
2298 	if (before(ack, prior_snd_una))
2299 		goto old_ack;
2300 
2301 	if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2302 		/* Window is constant, pure forward advance.
2303 		 * No more checks are required.
2304 		 * Note, we use the fact that SND.UNA>=SND.WL2.
2305 		 */
2306 		tcp_update_wl(tp, ack, ack_seq);
2307 		tp->snd_una = ack;
2308 		flag |= FLAG_WIN_UPDATE;
2309 
2310 		tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2311 
2312 		NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2313 	} else {
2314 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2315 			flag |= FLAG_DATA;
2316 		else
2317 			NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2318 
2319 		flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2320 
2321 		if (TCP_SKB_CB(skb)->sacked)
2322 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2323 
2324 		if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2325 			flag |= FLAG_ECE;
2326 
2327 		tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2328 	}
2329 
2330 	/* We passed data and got it acked, remove any soft error
2331 	 * log. Something worked...
2332 	 */
2333 	sk->sk_err_soft = 0;
2334 	tp->rcv_tstamp = tcp_time_stamp;
2335 	prior_packets = tp->packets_out;
2336 	if (!prior_packets)
2337 		goto no_queue;
2338 
2339 	prior_in_flight = tcp_packets_in_flight(tp);
2340 
2341 	/* See if we can take anything off of the retransmit queue. */
2342 	flag |= tcp_clean_rtx_queue(sk, &seq_rtt,
2343 				    icsk->icsk_ca_ops->rtt_sample ? &seq_usrtt : NULL);
2344 
2345 	if (tp->frto_counter)
2346 		tcp_process_frto(sk, prior_snd_una);
2347 
2348 	if (tcp_ack_is_dubious(sk, flag)) {
2349 		/* Advanve CWND, if state allows this. */
2350 		if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2351 			tcp_cong_avoid(sk, ack,  seq_rtt, prior_in_flight, 0);
2352 		tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2353 	} else {
2354 		if ((flag & FLAG_DATA_ACKED))
2355 			tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2356 	}
2357 
2358 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2359 		dst_confirm(sk->sk_dst_cache);
2360 
2361 	return 1;
2362 
2363 no_queue:
2364 	icsk->icsk_probes_out = 0;
2365 
2366 	/* If this ack opens up a zero window, clear backoff.  It was
2367 	 * being used to time the probes, and is probably far higher than
2368 	 * it needs to be for normal retransmission.
2369 	 */
2370 	if (sk->sk_send_head)
2371 		tcp_ack_probe(sk);
2372 	return 1;
2373 
2374 old_ack:
2375 	if (TCP_SKB_CB(skb)->sacked)
2376 		tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2377 
2378 uninteresting_ack:
2379 	SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2380 	return 0;
2381 }
2382 
2383 
2384 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2385  * But, this can also be called on packets in the established flow when
2386  * the fast version below fails.
2387  */
2388 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2389 {
2390 	unsigned char *ptr;
2391 	struct tcphdr *th = skb->h.th;
2392 	int length=(th->doff*4)-sizeof(struct tcphdr);
2393 
2394 	ptr = (unsigned char *)(th + 1);
2395 	opt_rx->saw_tstamp = 0;
2396 
2397 	while(length>0) {
2398 	  	int opcode=*ptr++;
2399 		int opsize;
2400 
2401 		switch (opcode) {
2402 			case TCPOPT_EOL:
2403 				return;
2404 			case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
2405 				length--;
2406 				continue;
2407 			default:
2408 				opsize=*ptr++;
2409 				if (opsize < 2) /* "silly options" */
2410 					return;
2411 				if (opsize > length)
2412 					return;	/* don't parse partial options */
2413 	  			switch(opcode) {
2414 				case TCPOPT_MSS:
2415 					if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2416 						u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2417 						if (in_mss) {
2418 							if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2419 								in_mss = opt_rx->user_mss;
2420 							opt_rx->mss_clamp = in_mss;
2421 						}
2422 					}
2423 					break;
2424 				case TCPOPT_WINDOW:
2425 					if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2426 						if (sysctl_tcp_window_scaling) {
2427 							__u8 snd_wscale = *(__u8 *) ptr;
2428 							opt_rx->wscale_ok = 1;
2429 							if (snd_wscale > 14) {
2430 								if(net_ratelimit())
2431 									printk(KERN_INFO "tcp_parse_options: Illegal window "
2432 									       "scaling value %d >14 received.\n",
2433 									       snd_wscale);
2434 								snd_wscale = 14;
2435 							}
2436 							opt_rx->snd_wscale = snd_wscale;
2437 						}
2438 					break;
2439 				case TCPOPT_TIMESTAMP:
2440 					if(opsize==TCPOLEN_TIMESTAMP) {
2441 						if ((estab && opt_rx->tstamp_ok) ||
2442 						    (!estab && sysctl_tcp_timestamps)) {
2443 							opt_rx->saw_tstamp = 1;
2444 							opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2445 							opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2446 						}
2447 					}
2448 					break;
2449 				case TCPOPT_SACK_PERM:
2450 					if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2451 						if (sysctl_tcp_sack) {
2452 							opt_rx->sack_ok = 1;
2453 							tcp_sack_reset(opt_rx);
2454 						}
2455 					}
2456 					break;
2457 
2458 				case TCPOPT_SACK:
2459 					if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2460 					   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2461 					   opt_rx->sack_ok) {
2462 						TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2463 					}
2464 	  			};
2465 	  			ptr+=opsize-2;
2466 	  			length-=opsize;
2467 	  	};
2468 	}
2469 }
2470 
2471 /* Fast parse options. This hopes to only see timestamps.
2472  * If it is wrong it falls back on tcp_parse_options().
2473  */
2474 static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2475 					 struct tcp_sock *tp)
2476 {
2477 	if (th->doff == sizeof(struct tcphdr)>>2) {
2478 		tp->rx_opt.saw_tstamp = 0;
2479 		return 0;
2480 	} else if (tp->rx_opt.tstamp_ok &&
2481 		   th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2482 		__u32 *ptr = (__u32 *)(th + 1);
2483 		if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2484 				  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2485 			tp->rx_opt.saw_tstamp = 1;
2486 			++ptr;
2487 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
2488 			++ptr;
2489 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2490 			return 1;
2491 		}
2492 	}
2493 	tcp_parse_options(skb, &tp->rx_opt, 1);
2494 	return 1;
2495 }
2496 
2497 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2498 {
2499 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2500 	tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2501 }
2502 
2503 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2504 {
2505 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2506 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
2507 		 * extra check below makes sure this can only happen
2508 		 * for pure ACK frames.  -DaveM
2509 		 *
2510 		 * Not only, also it occurs for expired timestamps.
2511 		 */
2512 
2513 		if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2514 		   xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2515 			tcp_store_ts_recent(tp);
2516 	}
2517 }
2518 
2519 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2520  *
2521  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2522  * it can pass through stack. So, the following predicate verifies that
2523  * this segment is not used for anything but congestion avoidance or
2524  * fast retransmit. Moreover, we even are able to eliminate most of such
2525  * second order effects, if we apply some small "replay" window (~RTO)
2526  * to timestamp space.
2527  *
2528  * All these measures still do not guarantee that we reject wrapped ACKs
2529  * on networks with high bandwidth, when sequence space is recycled fastly,
2530  * but it guarantees that such events will be very rare and do not affect
2531  * connection seriously. This doesn't look nice, but alas, PAWS is really
2532  * buggy extension.
2533  *
2534  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2535  * states that events when retransmit arrives after original data are rare.
2536  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2537  * the biggest problem on large power networks even with minor reordering.
2538  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2539  * up to bandwidth of 18Gigabit/sec. 8) ]
2540  */
2541 
2542 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2543 {
2544 	struct tcp_sock *tp = tcp_sk(sk);
2545 	struct tcphdr *th = skb->h.th;
2546 	u32 seq = TCP_SKB_CB(skb)->seq;
2547 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
2548 
2549 	return (/* 1. Pure ACK with correct sequence number. */
2550 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2551 
2552 		/* 2. ... and duplicate ACK. */
2553 		ack == tp->snd_una &&
2554 
2555 		/* 3. ... and does not update window. */
2556 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2557 
2558 		/* 4. ... and sits in replay window. */
2559 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2560 }
2561 
2562 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2563 {
2564 	const struct tcp_sock *tp = tcp_sk(sk);
2565 	return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2566 		xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2567 		!tcp_disordered_ack(sk, skb));
2568 }
2569 
2570 /* Check segment sequence number for validity.
2571  *
2572  * Segment controls are considered valid, if the segment
2573  * fits to the window after truncation to the window. Acceptability
2574  * of data (and SYN, FIN, of course) is checked separately.
2575  * See tcp_data_queue(), for example.
2576  *
2577  * Also, controls (RST is main one) are accepted using RCV.WUP instead
2578  * of RCV.NXT. Peer still did not advance his SND.UNA when we
2579  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2580  * (borrowed from freebsd)
2581  */
2582 
2583 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2584 {
2585 	return	!before(end_seq, tp->rcv_wup) &&
2586 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2587 }
2588 
2589 /* When we get a reset we do this. */
2590 static void tcp_reset(struct sock *sk)
2591 {
2592 	/* We want the right error as BSD sees it (and indeed as we do). */
2593 	switch (sk->sk_state) {
2594 		case TCP_SYN_SENT:
2595 			sk->sk_err = ECONNREFUSED;
2596 			break;
2597 		case TCP_CLOSE_WAIT:
2598 			sk->sk_err = EPIPE;
2599 			break;
2600 		case TCP_CLOSE:
2601 			return;
2602 		default:
2603 			sk->sk_err = ECONNRESET;
2604 	}
2605 
2606 	if (!sock_flag(sk, SOCK_DEAD))
2607 		sk->sk_error_report(sk);
2608 
2609 	tcp_done(sk);
2610 }
2611 
2612 /*
2613  * 	Process the FIN bit. This now behaves as it is supposed to work
2614  *	and the FIN takes effect when it is validly part of sequence
2615  *	space. Not before when we get holes.
2616  *
2617  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2618  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
2619  *	TIME-WAIT)
2620  *
2621  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
2622  *	close and we go into CLOSING (and later onto TIME-WAIT)
2623  *
2624  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2625  */
2626 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2627 {
2628 	struct tcp_sock *tp = tcp_sk(sk);
2629 
2630 	inet_csk_schedule_ack(sk);
2631 
2632 	sk->sk_shutdown |= RCV_SHUTDOWN;
2633 	sock_set_flag(sk, SOCK_DONE);
2634 
2635 	switch (sk->sk_state) {
2636 		case TCP_SYN_RECV:
2637 		case TCP_ESTABLISHED:
2638 			/* Move to CLOSE_WAIT */
2639 			tcp_set_state(sk, TCP_CLOSE_WAIT);
2640 			inet_csk(sk)->icsk_ack.pingpong = 1;
2641 			break;
2642 
2643 		case TCP_CLOSE_WAIT:
2644 		case TCP_CLOSING:
2645 			/* Received a retransmission of the FIN, do
2646 			 * nothing.
2647 			 */
2648 			break;
2649 		case TCP_LAST_ACK:
2650 			/* RFC793: Remain in the LAST-ACK state. */
2651 			break;
2652 
2653 		case TCP_FIN_WAIT1:
2654 			/* This case occurs when a simultaneous close
2655 			 * happens, we must ack the received FIN and
2656 			 * enter the CLOSING state.
2657 			 */
2658 			tcp_send_ack(sk);
2659 			tcp_set_state(sk, TCP_CLOSING);
2660 			break;
2661 		case TCP_FIN_WAIT2:
2662 			/* Received a FIN -- send ACK and enter TIME_WAIT. */
2663 			tcp_send_ack(sk);
2664 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2665 			break;
2666 		default:
2667 			/* Only TCP_LISTEN and TCP_CLOSE are left, in these
2668 			 * cases we should never reach this piece of code.
2669 			 */
2670 			printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2671 			       __FUNCTION__, sk->sk_state);
2672 			break;
2673 	};
2674 
2675 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
2676 	 * Probably, we should reset in this case. For now drop them.
2677 	 */
2678 	__skb_queue_purge(&tp->out_of_order_queue);
2679 	if (tp->rx_opt.sack_ok)
2680 		tcp_sack_reset(&tp->rx_opt);
2681 	sk_stream_mem_reclaim(sk);
2682 
2683 	if (!sock_flag(sk, SOCK_DEAD)) {
2684 		sk->sk_state_change(sk);
2685 
2686 		/* Do not send POLL_HUP for half duplex close. */
2687 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
2688 		    sk->sk_state == TCP_CLOSE)
2689 			sk_wake_async(sk, 1, POLL_HUP);
2690 		else
2691 			sk_wake_async(sk, 1, POLL_IN);
2692 	}
2693 }
2694 
2695 static __inline__ int
2696 tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2697 {
2698 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2699 		if (before(seq, sp->start_seq))
2700 			sp->start_seq = seq;
2701 		if (after(end_seq, sp->end_seq))
2702 			sp->end_seq = end_seq;
2703 		return 1;
2704 	}
2705 	return 0;
2706 }
2707 
2708 static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2709 {
2710 	if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2711 		if (before(seq, tp->rcv_nxt))
2712 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2713 		else
2714 			NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2715 
2716 		tp->rx_opt.dsack = 1;
2717 		tp->duplicate_sack[0].start_seq = seq;
2718 		tp->duplicate_sack[0].end_seq = end_seq;
2719 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2720 	}
2721 }
2722 
2723 static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2724 {
2725 	if (!tp->rx_opt.dsack)
2726 		tcp_dsack_set(tp, seq, end_seq);
2727 	else
2728 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2729 }
2730 
2731 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2732 {
2733 	struct tcp_sock *tp = tcp_sk(sk);
2734 
2735 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2736 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2737 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2738 		tcp_enter_quickack_mode(sk);
2739 
2740 		if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2741 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2742 
2743 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2744 				end_seq = tp->rcv_nxt;
2745 			tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2746 		}
2747 	}
2748 
2749 	tcp_send_ack(sk);
2750 }
2751 
2752 /* These routines update the SACK block as out-of-order packets arrive or
2753  * in-order packets close up the sequence space.
2754  */
2755 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2756 {
2757 	int this_sack;
2758 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2759 	struct tcp_sack_block *swalk = sp+1;
2760 
2761 	/* See if the recent change to the first SACK eats into
2762 	 * or hits the sequence space of other SACK blocks, if so coalesce.
2763 	 */
2764 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2765 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2766 			int i;
2767 
2768 			/* Zap SWALK, by moving every further SACK up by one slot.
2769 			 * Decrease num_sacks.
2770 			 */
2771 			tp->rx_opt.num_sacks--;
2772 			tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2773 			for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2774 				sp[i] = sp[i+1];
2775 			continue;
2776 		}
2777 		this_sack++, swalk++;
2778 	}
2779 }
2780 
2781 static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2782 {
2783 	__u32 tmp;
2784 
2785 	tmp = sack1->start_seq;
2786 	sack1->start_seq = sack2->start_seq;
2787 	sack2->start_seq = tmp;
2788 
2789 	tmp = sack1->end_seq;
2790 	sack1->end_seq = sack2->end_seq;
2791 	sack2->end_seq = tmp;
2792 }
2793 
2794 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2795 {
2796 	struct tcp_sock *tp = tcp_sk(sk);
2797 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2798 	int cur_sacks = tp->rx_opt.num_sacks;
2799 	int this_sack;
2800 
2801 	if (!cur_sacks)
2802 		goto new_sack;
2803 
2804 	for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
2805 		if (tcp_sack_extend(sp, seq, end_seq)) {
2806 			/* Rotate this_sack to the first one. */
2807 			for (; this_sack>0; this_sack--, sp--)
2808 				tcp_sack_swap(sp, sp-1);
2809 			if (cur_sacks > 1)
2810 				tcp_sack_maybe_coalesce(tp);
2811 			return;
2812 		}
2813 	}
2814 
2815 	/* Could not find an adjacent existing SACK, build a new one,
2816 	 * put it at the front, and shift everyone else down.  We
2817 	 * always know there is at least one SACK present already here.
2818 	 *
2819 	 * If the sack array is full, forget about the last one.
2820 	 */
2821 	if (this_sack >= 4) {
2822 		this_sack--;
2823 		tp->rx_opt.num_sacks--;
2824 		sp--;
2825 	}
2826 	for(; this_sack > 0; this_sack--, sp--)
2827 		*sp = *(sp-1);
2828 
2829 new_sack:
2830 	/* Build the new head SACK, and we're done. */
2831 	sp->start_seq = seq;
2832 	sp->end_seq = end_seq;
2833 	tp->rx_opt.num_sacks++;
2834 	tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2835 }
2836 
2837 /* RCV.NXT advances, some SACKs should be eaten. */
2838 
2839 static void tcp_sack_remove(struct tcp_sock *tp)
2840 {
2841 	struct tcp_sack_block *sp = &tp->selective_acks[0];
2842 	int num_sacks = tp->rx_opt.num_sacks;
2843 	int this_sack;
2844 
2845 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
2846 	if (skb_queue_empty(&tp->out_of_order_queue)) {
2847 		tp->rx_opt.num_sacks = 0;
2848 		tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
2849 		return;
2850 	}
2851 
2852 	for(this_sack = 0; this_sack < num_sacks; ) {
2853 		/* Check if the start of the sack is covered by RCV.NXT. */
2854 		if (!before(tp->rcv_nxt, sp->start_seq)) {
2855 			int i;
2856 
2857 			/* RCV.NXT must cover all the block! */
2858 			BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
2859 
2860 			/* Zap this SACK, by moving forward any other SACKS. */
2861 			for (i=this_sack+1; i < num_sacks; i++)
2862 				tp->selective_acks[i-1] = tp->selective_acks[i];
2863 			num_sacks--;
2864 			continue;
2865 		}
2866 		this_sack++;
2867 		sp++;
2868 	}
2869 	if (num_sacks != tp->rx_opt.num_sacks) {
2870 		tp->rx_opt.num_sacks = num_sacks;
2871 		tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2872 	}
2873 }
2874 
2875 /* This one checks to see if we can put data from the
2876  * out_of_order queue into the receive_queue.
2877  */
2878 static void tcp_ofo_queue(struct sock *sk)
2879 {
2880 	struct tcp_sock *tp = tcp_sk(sk);
2881 	__u32 dsack_high = tp->rcv_nxt;
2882 	struct sk_buff *skb;
2883 
2884 	while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
2885 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
2886 			break;
2887 
2888 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
2889 			__u32 dsack = dsack_high;
2890 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
2891 				dsack_high = TCP_SKB_CB(skb)->end_seq;
2892 			tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
2893 		}
2894 
2895 		if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2896 			SOCK_DEBUG(sk, "ofo packet was already received \n");
2897 			__skb_unlink(skb, &tp->out_of_order_queue);
2898 			__kfree_skb(skb);
2899 			continue;
2900 		}
2901 		SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
2902 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2903 			   TCP_SKB_CB(skb)->end_seq);
2904 
2905 		__skb_unlink(skb, &tp->out_of_order_queue);
2906 		__skb_queue_tail(&sk->sk_receive_queue, skb);
2907 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2908 		if(skb->h.th->fin)
2909 			tcp_fin(skb, sk, skb->h.th);
2910 	}
2911 }
2912 
2913 static int tcp_prune_queue(struct sock *sk);
2914 
2915 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
2916 {
2917 	struct tcphdr *th = skb->h.th;
2918 	struct tcp_sock *tp = tcp_sk(sk);
2919 	int eaten = -1;
2920 
2921 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
2922 		goto drop;
2923 
2924 	__skb_pull(skb, th->doff*4);
2925 
2926 	TCP_ECN_accept_cwr(tp, skb);
2927 
2928 	if (tp->rx_opt.dsack) {
2929 		tp->rx_opt.dsack = 0;
2930 		tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
2931 						    4 - tp->rx_opt.tstamp_ok);
2932 	}
2933 
2934 	/*  Queue data for delivery to the user.
2935 	 *  Packets in sequence go to the receive queue.
2936 	 *  Out of sequence packets to the out_of_order_queue.
2937 	 */
2938 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
2939 		if (tcp_receive_window(tp) == 0)
2940 			goto out_of_window;
2941 
2942 		/* Ok. In sequence. In window. */
2943 		if (tp->ucopy.task == current &&
2944 		    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
2945 		    sock_owned_by_user(sk) && !tp->urg_data) {
2946 			int chunk = min_t(unsigned int, skb->len,
2947 							tp->ucopy.len);
2948 
2949 			__set_current_state(TASK_RUNNING);
2950 
2951 			local_bh_enable();
2952 			if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
2953 				tp->ucopy.len -= chunk;
2954 				tp->copied_seq += chunk;
2955 				eaten = (chunk == skb->len && !th->fin);
2956 				tcp_rcv_space_adjust(sk);
2957 			}
2958 			local_bh_disable();
2959 		}
2960 
2961 		if (eaten <= 0) {
2962 queue_and_out:
2963 			if (eaten < 0 &&
2964 			    (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
2965 			     !sk_stream_rmem_schedule(sk, skb))) {
2966 				if (tcp_prune_queue(sk) < 0 ||
2967 				    !sk_stream_rmem_schedule(sk, skb))
2968 					goto drop;
2969 			}
2970 			sk_stream_set_owner_r(skb, sk);
2971 			__skb_queue_tail(&sk->sk_receive_queue, skb);
2972 		}
2973 		tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2974 		if(skb->len)
2975 			tcp_event_data_recv(sk, tp, skb);
2976 		if(th->fin)
2977 			tcp_fin(skb, sk, th);
2978 
2979 		if (!skb_queue_empty(&tp->out_of_order_queue)) {
2980 			tcp_ofo_queue(sk);
2981 
2982 			/* RFC2581. 4.2. SHOULD send immediate ACK, when
2983 			 * gap in queue is filled.
2984 			 */
2985 			if (skb_queue_empty(&tp->out_of_order_queue))
2986 				inet_csk(sk)->icsk_ack.pingpong = 0;
2987 		}
2988 
2989 		if (tp->rx_opt.num_sacks)
2990 			tcp_sack_remove(tp);
2991 
2992 		tcp_fast_path_check(sk, tp);
2993 
2994 		if (eaten > 0)
2995 			__kfree_skb(skb);
2996 		else if (!sock_flag(sk, SOCK_DEAD))
2997 			sk->sk_data_ready(sk, 0);
2998 		return;
2999 	}
3000 
3001 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3002 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
3003 		NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3004 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3005 
3006 out_of_window:
3007 		tcp_enter_quickack_mode(sk);
3008 		inet_csk_schedule_ack(sk);
3009 drop:
3010 		__kfree_skb(skb);
3011 		return;
3012 	}
3013 
3014 	/* Out of window. F.e. zero window probe. */
3015 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3016 		goto out_of_window;
3017 
3018 	tcp_enter_quickack_mode(sk);
3019 
3020 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3021 		/* Partial packet, seq < rcv_next < end_seq */
3022 		SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3023 			   tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3024 			   TCP_SKB_CB(skb)->end_seq);
3025 
3026 		tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3027 
3028 		/* If window is closed, drop tail of packet. But after
3029 		 * remembering D-SACK for its head made in previous line.
3030 		 */
3031 		if (!tcp_receive_window(tp))
3032 			goto out_of_window;
3033 		goto queue_and_out;
3034 	}
3035 
3036 	TCP_ECN_check_ce(tp, skb);
3037 
3038 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3039 	    !sk_stream_rmem_schedule(sk, skb)) {
3040 		if (tcp_prune_queue(sk) < 0 ||
3041 		    !sk_stream_rmem_schedule(sk, skb))
3042 			goto drop;
3043 	}
3044 
3045 	/* Disable header prediction. */
3046 	tp->pred_flags = 0;
3047 	inet_csk_schedule_ack(sk);
3048 
3049 	SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3050 		   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3051 
3052 	sk_stream_set_owner_r(skb, sk);
3053 
3054 	if (!skb_peek(&tp->out_of_order_queue)) {
3055 		/* Initial out of order segment, build 1 SACK. */
3056 		if (tp->rx_opt.sack_ok) {
3057 			tp->rx_opt.num_sacks = 1;
3058 			tp->rx_opt.dsack     = 0;
3059 			tp->rx_opt.eff_sacks = 1;
3060 			tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3061 			tp->selective_acks[0].end_seq =
3062 						TCP_SKB_CB(skb)->end_seq;
3063 		}
3064 		__skb_queue_head(&tp->out_of_order_queue,skb);
3065 	} else {
3066 		struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3067 		u32 seq = TCP_SKB_CB(skb)->seq;
3068 		u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3069 
3070 		if (seq == TCP_SKB_CB(skb1)->end_seq) {
3071 			__skb_append(skb1, skb, &tp->out_of_order_queue);
3072 
3073 			if (!tp->rx_opt.num_sacks ||
3074 			    tp->selective_acks[0].end_seq != seq)
3075 				goto add_sack;
3076 
3077 			/* Common case: data arrive in order after hole. */
3078 			tp->selective_acks[0].end_seq = end_seq;
3079 			return;
3080 		}
3081 
3082 		/* Find place to insert this segment. */
3083 		do {
3084 			if (!after(TCP_SKB_CB(skb1)->seq, seq))
3085 				break;
3086 		} while ((skb1 = skb1->prev) !=
3087 			 (struct sk_buff*)&tp->out_of_order_queue);
3088 
3089 		/* Do skb overlap to previous one? */
3090 		if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3091 		    before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3092 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3093 				/* All the bits are present. Drop. */
3094 				__kfree_skb(skb);
3095 				tcp_dsack_set(tp, seq, end_seq);
3096 				goto add_sack;
3097 			}
3098 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3099 				/* Partial overlap. */
3100 				tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3101 			} else {
3102 				skb1 = skb1->prev;
3103 			}
3104 		}
3105 		__skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3106 
3107 		/* And clean segments covered by new one as whole. */
3108 		while ((skb1 = skb->next) !=
3109 		       (struct sk_buff*)&tp->out_of_order_queue &&
3110 		       after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3111 		       if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3112 			       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3113 			       break;
3114 		       }
3115 		       __skb_unlink(skb1, &tp->out_of_order_queue);
3116 		       tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3117 		       __kfree_skb(skb1);
3118 		}
3119 
3120 add_sack:
3121 		if (tp->rx_opt.sack_ok)
3122 			tcp_sack_new_ofo_skb(sk, seq, end_seq);
3123 	}
3124 }
3125 
3126 /* Collapse contiguous sequence of skbs head..tail with
3127  * sequence numbers start..end.
3128  * Segments with FIN/SYN are not collapsed (only because this
3129  * simplifies code)
3130  */
3131 static void
3132 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3133 	     struct sk_buff *head, struct sk_buff *tail,
3134 	     u32 start, u32 end)
3135 {
3136 	struct sk_buff *skb;
3137 
3138 	/* First, check that queue is collapsable and find
3139 	 * the point where collapsing can be useful. */
3140 	for (skb = head; skb != tail; ) {
3141 		/* No new bits? It is possible on ofo queue. */
3142 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3143 			struct sk_buff *next = skb->next;
3144 			__skb_unlink(skb, list);
3145 			__kfree_skb(skb);
3146 			NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3147 			skb = next;
3148 			continue;
3149 		}
3150 
3151 		/* The first skb to collapse is:
3152 		 * - not SYN/FIN and
3153 		 * - bloated or contains data before "start" or
3154 		 *   overlaps to the next one.
3155 		 */
3156 		if (!skb->h.th->syn && !skb->h.th->fin &&
3157 		    (tcp_win_from_space(skb->truesize) > skb->len ||
3158 		     before(TCP_SKB_CB(skb)->seq, start) ||
3159 		     (skb->next != tail &&
3160 		      TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3161 			break;
3162 
3163 		/* Decided to skip this, advance start seq. */
3164 		start = TCP_SKB_CB(skb)->end_seq;
3165 		skb = skb->next;
3166 	}
3167 	if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3168 		return;
3169 
3170 	while (before(start, end)) {
3171 		struct sk_buff *nskb;
3172 		int header = skb_headroom(skb);
3173 		int copy = SKB_MAX_ORDER(header, 0);
3174 
3175 		/* Too big header? This can happen with IPv6. */
3176 		if (copy < 0)
3177 			return;
3178 		if (end-start < copy)
3179 			copy = end-start;
3180 		nskb = alloc_skb(copy+header, GFP_ATOMIC);
3181 		if (!nskb)
3182 			return;
3183 		skb_reserve(nskb, header);
3184 		memcpy(nskb->head, skb->head, header);
3185 		nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3186 		nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3187 		nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3188 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3189 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3190 		__skb_insert(nskb, skb->prev, skb, list);
3191 		sk_stream_set_owner_r(nskb, sk);
3192 
3193 		/* Copy data, releasing collapsed skbs. */
3194 		while (copy > 0) {
3195 			int offset = start - TCP_SKB_CB(skb)->seq;
3196 			int size = TCP_SKB_CB(skb)->end_seq - start;
3197 
3198 			if (offset < 0) BUG();
3199 			if (size > 0) {
3200 				size = min(copy, size);
3201 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3202 					BUG();
3203 				TCP_SKB_CB(nskb)->end_seq += size;
3204 				copy -= size;
3205 				start += size;
3206 			}
3207 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3208 				struct sk_buff *next = skb->next;
3209 				__skb_unlink(skb, list);
3210 				__kfree_skb(skb);
3211 				NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3212 				skb = next;
3213 				if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3214 					return;
3215 			}
3216 		}
3217 	}
3218 }
3219 
3220 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3221  * and tcp_collapse() them until all the queue is collapsed.
3222  */
3223 static void tcp_collapse_ofo_queue(struct sock *sk)
3224 {
3225 	struct tcp_sock *tp = tcp_sk(sk);
3226 	struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3227 	struct sk_buff *head;
3228 	u32 start, end;
3229 
3230 	if (skb == NULL)
3231 		return;
3232 
3233 	start = TCP_SKB_CB(skb)->seq;
3234 	end = TCP_SKB_CB(skb)->end_seq;
3235 	head = skb;
3236 
3237 	for (;;) {
3238 		skb = skb->next;
3239 
3240 		/* Segment is terminated when we see gap or when
3241 		 * we are at the end of all the queue. */
3242 		if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3243 		    after(TCP_SKB_CB(skb)->seq, end) ||
3244 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
3245 			tcp_collapse(sk, &tp->out_of_order_queue,
3246 				     head, skb, start, end);
3247 			head = skb;
3248 			if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3249 				break;
3250 			/* Start new segment */
3251 			start = TCP_SKB_CB(skb)->seq;
3252 			end = TCP_SKB_CB(skb)->end_seq;
3253 		} else {
3254 			if (before(TCP_SKB_CB(skb)->seq, start))
3255 				start = TCP_SKB_CB(skb)->seq;
3256 			if (after(TCP_SKB_CB(skb)->end_seq, end))
3257 				end = TCP_SKB_CB(skb)->end_seq;
3258 		}
3259 	}
3260 }
3261 
3262 /* Reduce allocated memory if we can, trying to get
3263  * the socket within its memory limits again.
3264  *
3265  * Return less than zero if we should start dropping frames
3266  * until the socket owning process reads some of the data
3267  * to stabilize the situation.
3268  */
3269 static int tcp_prune_queue(struct sock *sk)
3270 {
3271 	struct tcp_sock *tp = tcp_sk(sk);
3272 
3273 	SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3274 
3275 	NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3276 
3277 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3278 		tcp_clamp_window(sk, tp);
3279 	else if (tcp_memory_pressure)
3280 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3281 
3282 	tcp_collapse_ofo_queue(sk);
3283 	tcp_collapse(sk, &sk->sk_receive_queue,
3284 		     sk->sk_receive_queue.next,
3285 		     (struct sk_buff*)&sk->sk_receive_queue,
3286 		     tp->copied_seq, tp->rcv_nxt);
3287 	sk_stream_mem_reclaim(sk);
3288 
3289 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3290 		return 0;
3291 
3292 	/* Collapsing did not help, destructive actions follow.
3293 	 * This must not ever occur. */
3294 
3295 	/* First, purge the out_of_order queue. */
3296 	if (!skb_queue_empty(&tp->out_of_order_queue)) {
3297 		NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3298 		__skb_queue_purge(&tp->out_of_order_queue);
3299 
3300 		/* Reset SACK state.  A conforming SACK implementation will
3301 		 * do the same at a timeout based retransmit.  When a connection
3302 		 * is in a sad state like this, we care only about integrity
3303 		 * of the connection not performance.
3304 		 */
3305 		if (tp->rx_opt.sack_ok)
3306 			tcp_sack_reset(&tp->rx_opt);
3307 		sk_stream_mem_reclaim(sk);
3308 	}
3309 
3310 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3311 		return 0;
3312 
3313 	/* If we are really being abused, tell the caller to silently
3314 	 * drop receive data on the floor.  It will get retransmitted
3315 	 * and hopefully then we'll have sufficient space.
3316 	 */
3317 	NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3318 
3319 	/* Massive buffer overcommit. */
3320 	tp->pred_flags = 0;
3321 	return -1;
3322 }
3323 
3324 
3325 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3326  * As additional protections, we do not touch cwnd in retransmission phases,
3327  * and if application hit its sndbuf limit recently.
3328  */
3329 void tcp_cwnd_application_limited(struct sock *sk)
3330 {
3331 	struct tcp_sock *tp = tcp_sk(sk);
3332 
3333 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3334 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3335 		/* Limited by application or receiver window. */
3336 		u32 win_used = max(tp->snd_cwnd_used, 2U);
3337 		if (win_used < tp->snd_cwnd) {
3338 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
3339 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3340 		}
3341 		tp->snd_cwnd_used = 0;
3342 	}
3343 	tp->snd_cwnd_stamp = tcp_time_stamp;
3344 }
3345 
3346 static inline int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3347 {
3348 	/* If the user specified a specific send buffer setting, do
3349 	 * not modify it.
3350 	 */
3351 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3352 		return 0;
3353 
3354 	/* If we are under global TCP memory pressure, do not expand.  */
3355 	if (tcp_memory_pressure)
3356 		return 0;
3357 
3358 	/* If we are under soft global TCP memory pressure, do not expand.  */
3359 	if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3360 		return 0;
3361 
3362 	/* If we filled the congestion window, do not expand.  */
3363 	if (tp->packets_out >= tp->snd_cwnd)
3364 		return 0;
3365 
3366 	return 1;
3367 }
3368 
3369 /* When incoming ACK allowed to free some skb from write_queue,
3370  * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3371  * on the exit from tcp input handler.
3372  *
3373  * PROBLEM: sndbuf expansion does not work well with largesend.
3374  */
3375 static void tcp_new_space(struct sock *sk)
3376 {
3377 	struct tcp_sock *tp = tcp_sk(sk);
3378 
3379 	if (tcp_should_expand_sndbuf(sk, tp)) {
3380  		int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3381 			MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3382 		    demanded = max_t(unsigned int, tp->snd_cwnd,
3383 						   tp->reordering + 1);
3384 		sndmem *= 2*demanded;
3385 		if (sndmem > sk->sk_sndbuf)
3386 			sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3387 		tp->snd_cwnd_stamp = tcp_time_stamp;
3388 	}
3389 
3390 	sk->sk_write_space(sk);
3391 }
3392 
3393 static inline void tcp_check_space(struct sock *sk)
3394 {
3395 	if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3396 		sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3397 		if (sk->sk_socket &&
3398 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3399 			tcp_new_space(sk);
3400 	}
3401 }
3402 
3403 static __inline__ void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3404 {
3405 	tcp_push_pending_frames(sk, tp);
3406 	tcp_check_space(sk);
3407 }
3408 
3409 /*
3410  * Check if sending an ack is needed.
3411  */
3412 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3413 {
3414 	struct tcp_sock *tp = tcp_sk(sk);
3415 
3416 	    /* More than one full frame received... */
3417 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3418 	     /* ... and right edge of window advances far enough.
3419 	      * (tcp_recvmsg() will send ACK otherwise). Or...
3420 	      */
3421 	     && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3422 	    /* We ACK each frame or... */
3423 	    tcp_in_quickack_mode(sk) ||
3424 	    /* We have out of order data. */
3425 	    (ofo_possible &&
3426 	     skb_peek(&tp->out_of_order_queue))) {
3427 		/* Then ack it now */
3428 		tcp_send_ack(sk);
3429 	} else {
3430 		/* Else, send delayed ack. */
3431 		tcp_send_delayed_ack(sk);
3432 	}
3433 }
3434 
3435 static __inline__ void tcp_ack_snd_check(struct sock *sk)
3436 {
3437 	if (!inet_csk_ack_scheduled(sk)) {
3438 		/* We sent a data segment already. */
3439 		return;
3440 	}
3441 	__tcp_ack_snd_check(sk, 1);
3442 }
3443 
3444 /*
3445  *	This routine is only called when we have urgent data
3446  *	signalled. Its the 'slow' part of tcp_urg. It could be
3447  *	moved inline now as tcp_urg is only called from one
3448  *	place. We handle URGent data wrong. We have to - as
3449  *	BSD still doesn't use the correction from RFC961.
3450  *	For 1003.1g we should support a new option TCP_STDURG to permit
3451  *	either form (or just set the sysctl tcp_stdurg).
3452  */
3453 
3454 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3455 {
3456 	struct tcp_sock *tp = tcp_sk(sk);
3457 	u32 ptr = ntohs(th->urg_ptr);
3458 
3459 	if (ptr && !sysctl_tcp_stdurg)
3460 		ptr--;
3461 	ptr += ntohl(th->seq);
3462 
3463 	/* Ignore urgent data that we've already seen and read. */
3464 	if (after(tp->copied_seq, ptr))
3465 		return;
3466 
3467 	/* Do not replay urg ptr.
3468 	 *
3469 	 * NOTE: interesting situation not covered by specs.
3470 	 * Misbehaving sender may send urg ptr, pointing to segment,
3471 	 * which we already have in ofo queue. We are not able to fetch
3472 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
3473 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
3474 	 * situations. But it is worth to think about possibility of some
3475 	 * DoSes using some hypothetical application level deadlock.
3476 	 */
3477 	if (before(ptr, tp->rcv_nxt))
3478 		return;
3479 
3480 	/* Do we already have a newer (or duplicate) urgent pointer? */
3481 	if (tp->urg_data && !after(ptr, tp->urg_seq))
3482 		return;
3483 
3484 	/* Tell the world about our new urgent pointer. */
3485 	sk_send_sigurg(sk);
3486 
3487 	/* We may be adding urgent data when the last byte read was
3488 	 * urgent. To do this requires some care. We cannot just ignore
3489 	 * tp->copied_seq since we would read the last urgent byte again
3490 	 * as data, nor can we alter copied_seq until this data arrives
3491 	 * or we break the sematics of SIOCATMARK (and thus sockatmark())
3492 	 *
3493 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
3494 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
3495 	 * and expect that both A and B disappear from stream. This is _wrong_.
3496 	 * Though this happens in BSD with high probability, this is occasional.
3497 	 * Any application relying on this is buggy. Note also, that fix "works"
3498 	 * only in this artificial test. Insert some normal data between A and B and we will
3499 	 * decline of BSD again. Verdict: it is better to remove to trap
3500 	 * buggy users.
3501 	 */
3502 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3503 	    !sock_flag(sk, SOCK_URGINLINE) &&
3504 	    tp->copied_seq != tp->rcv_nxt) {
3505 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3506 		tp->copied_seq++;
3507 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3508 			__skb_unlink(skb, &sk->sk_receive_queue);
3509 			__kfree_skb(skb);
3510 		}
3511 	}
3512 
3513 	tp->urg_data   = TCP_URG_NOTYET;
3514 	tp->urg_seq    = ptr;
3515 
3516 	/* Disable header prediction. */
3517 	tp->pred_flags = 0;
3518 }
3519 
3520 /* This is the 'fast' part of urgent handling. */
3521 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3522 {
3523 	struct tcp_sock *tp = tcp_sk(sk);
3524 
3525 	/* Check if we get a new urgent pointer - normally not. */
3526 	if (th->urg)
3527 		tcp_check_urg(sk,th);
3528 
3529 	/* Do we wait for any urgent data? - normally not... */
3530 	if (tp->urg_data == TCP_URG_NOTYET) {
3531 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3532 			  th->syn;
3533 
3534 		/* Is the urgent pointer pointing into this packet? */
3535 		if (ptr < skb->len) {
3536 			u8 tmp;
3537 			if (skb_copy_bits(skb, ptr, &tmp, 1))
3538 				BUG();
3539 			tp->urg_data = TCP_URG_VALID | tmp;
3540 			if (!sock_flag(sk, SOCK_DEAD))
3541 				sk->sk_data_ready(sk, 0);
3542 		}
3543 	}
3544 }
3545 
3546 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3547 {
3548 	struct tcp_sock *tp = tcp_sk(sk);
3549 	int chunk = skb->len - hlen;
3550 	int err;
3551 
3552 	local_bh_enable();
3553 	if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3554 		err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3555 	else
3556 		err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3557 						       tp->ucopy.iov);
3558 
3559 	if (!err) {
3560 		tp->ucopy.len -= chunk;
3561 		tp->copied_seq += chunk;
3562 		tcp_rcv_space_adjust(sk);
3563 	}
3564 
3565 	local_bh_disable();
3566 	return err;
3567 }
3568 
3569 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3570 {
3571 	int result;
3572 
3573 	if (sock_owned_by_user(sk)) {
3574 		local_bh_enable();
3575 		result = __tcp_checksum_complete(skb);
3576 		local_bh_disable();
3577 	} else {
3578 		result = __tcp_checksum_complete(skb);
3579 	}
3580 	return result;
3581 }
3582 
3583 static __inline__ int
3584 tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3585 {
3586 	return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3587 		__tcp_checksum_complete_user(sk, skb);
3588 }
3589 
3590 /*
3591  *	TCP receive function for the ESTABLISHED state.
3592  *
3593  *	It is split into a fast path and a slow path. The fast path is
3594  * 	disabled when:
3595  *	- A zero window was announced from us - zero window probing
3596  *        is only handled properly in the slow path.
3597  *	- Out of order segments arrived.
3598  *	- Urgent data is expected.
3599  *	- There is no buffer space left
3600  *	- Unexpected TCP flags/window values/header lengths are received
3601  *	  (detected by checking the TCP header against pred_flags)
3602  *	- Data is sent in both directions. Fast path only supports pure senders
3603  *	  or pure receivers (this means either the sequence number or the ack
3604  *	  value must stay constant)
3605  *	- Unexpected TCP option.
3606  *
3607  *	When these conditions are not satisfied it drops into a standard
3608  *	receive procedure patterned after RFC793 to handle all cases.
3609  *	The first three cases are guaranteed by proper pred_flags setting,
3610  *	the rest is checked inline. Fast processing is turned on in
3611  *	tcp_data_queue when everything is OK.
3612  */
3613 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3614 			struct tcphdr *th, unsigned len)
3615 {
3616 	struct tcp_sock *tp = tcp_sk(sk);
3617 
3618 	/*
3619 	 *	Header prediction.
3620 	 *	The code loosely follows the one in the famous
3621 	 *	"30 instruction TCP receive" Van Jacobson mail.
3622 	 *
3623 	 *	Van's trick is to deposit buffers into socket queue
3624 	 *	on a device interrupt, to call tcp_recv function
3625 	 *	on the receive process context and checksum and copy
3626 	 *	the buffer to user space. smart...
3627 	 *
3628 	 *	Our current scheme is not silly either but we take the
3629 	 *	extra cost of the net_bh soft interrupt processing...
3630 	 *	We do checksum and copy also but from device to kernel.
3631 	 */
3632 
3633 	tp->rx_opt.saw_tstamp = 0;
3634 
3635 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
3636 	 *	if header_predition is to be made
3637 	 *	'S' will always be tp->tcp_header_len >> 2
3638 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
3639 	 *  turn it off	(when there are holes in the receive
3640 	 *	 space for instance)
3641 	 *	PSH flag is ignored.
3642 	 */
3643 
3644 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3645 		TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3646 		int tcp_header_len = tp->tcp_header_len;
3647 
3648 		/* Timestamp header prediction: tcp_header_len
3649 		 * is automatically equal to th->doff*4 due to pred_flags
3650 		 * match.
3651 		 */
3652 
3653 		/* Check timestamp */
3654 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3655 			__u32 *ptr = (__u32 *)(th + 1);
3656 
3657 			/* No? Slow path! */
3658 			if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3659 					  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3660 				goto slow_path;
3661 
3662 			tp->rx_opt.saw_tstamp = 1;
3663 			++ptr;
3664 			tp->rx_opt.rcv_tsval = ntohl(*ptr);
3665 			++ptr;
3666 			tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3667 
3668 			/* If PAWS failed, check it more carefully in slow path */
3669 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3670 				goto slow_path;
3671 
3672 			/* DO NOT update ts_recent here, if checksum fails
3673 			 * and timestamp was corrupted part, it will result
3674 			 * in a hung connection since we will drop all
3675 			 * future packets due to the PAWS test.
3676 			 */
3677 		}
3678 
3679 		if (len <= tcp_header_len) {
3680 			/* Bulk data transfer: sender */
3681 			if (len == tcp_header_len) {
3682 				/* Predicted packet is in window by definition.
3683 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3684 				 * Hence, check seq<=rcv_wup reduces to:
3685 				 */
3686 				if (tcp_header_len ==
3687 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3688 				    tp->rcv_nxt == tp->rcv_wup)
3689 					tcp_store_ts_recent(tp);
3690 
3691 				tcp_rcv_rtt_measure_ts(sk, skb);
3692 
3693 				/* We know that such packets are checksummed
3694 				 * on entry.
3695 				 */
3696 				tcp_ack(sk, skb, 0);
3697 				__kfree_skb(skb);
3698 				tcp_data_snd_check(sk, tp);
3699 				return 0;
3700 			} else { /* Header too small */
3701 				TCP_INC_STATS_BH(TCP_MIB_INERRS);
3702 				goto discard;
3703 			}
3704 		} else {
3705 			int eaten = 0;
3706 
3707 			if (tp->ucopy.task == current &&
3708 			    tp->copied_seq == tp->rcv_nxt &&
3709 			    len - tcp_header_len <= tp->ucopy.len &&
3710 			    sock_owned_by_user(sk)) {
3711 				__set_current_state(TASK_RUNNING);
3712 
3713 				if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3714 					/* Predicted packet is in window by definition.
3715 					 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3716 					 * Hence, check seq<=rcv_wup reduces to:
3717 					 */
3718 					if (tcp_header_len ==
3719 					    (sizeof(struct tcphdr) +
3720 					     TCPOLEN_TSTAMP_ALIGNED) &&
3721 					    tp->rcv_nxt == tp->rcv_wup)
3722 						tcp_store_ts_recent(tp);
3723 
3724 					tcp_rcv_rtt_measure_ts(sk, skb);
3725 
3726 					__skb_pull(skb, tcp_header_len);
3727 					tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3728 					NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3729 					eaten = 1;
3730 				}
3731 			}
3732 			if (!eaten) {
3733 				if (tcp_checksum_complete_user(sk, skb))
3734 					goto csum_error;
3735 
3736 				/* Predicted packet is in window by definition.
3737 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3738 				 * Hence, check seq<=rcv_wup reduces to:
3739 				 */
3740 				if (tcp_header_len ==
3741 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3742 				    tp->rcv_nxt == tp->rcv_wup)
3743 					tcp_store_ts_recent(tp);
3744 
3745 				tcp_rcv_rtt_measure_ts(sk, skb);
3746 
3747 				if ((int)skb->truesize > sk->sk_forward_alloc)
3748 					goto step5;
3749 
3750 				NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3751 
3752 				/* Bulk data transfer: receiver */
3753 				__skb_pull(skb,tcp_header_len);
3754 				__skb_queue_tail(&sk->sk_receive_queue, skb);
3755 				sk_stream_set_owner_r(skb, sk);
3756 				tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3757 			}
3758 
3759 			tcp_event_data_recv(sk, tp, skb);
3760 
3761 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3762 				/* Well, only one small jumplet in fast path... */
3763 				tcp_ack(sk, skb, FLAG_DATA);
3764 				tcp_data_snd_check(sk, tp);
3765 				if (!inet_csk_ack_scheduled(sk))
3766 					goto no_ack;
3767 			}
3768 
3769 			__tcp_ack_snd_check(sk, 0);
3770 no_ack:
3771 			if (eaten)
3772 				__kfree_skb(skb);
3773 			else
3774 				sk->sk_data_ready(sk, 0);
3775 			return 0;
3776 		}
3777 	}
3778 
3779 slow_path:
3780 	if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3781 		goto csum_error;
3782 
3783 	/*
3784 	 * RFC1323: H1. Apply PAWS check first.
3785 	 */
3786 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
3787 	    tcp_paws_discard(sk, skb)) {
3788 		if (!th->rst) {
3789 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3790 			tcp_send_dupack(sk, skb);
3791 			goto discard;
3792 		}
3793 		/* Resets are accepted even if PAWS failed.
3794 
3795 		   ts_recent update must be made after we are sure
3796 		   that the packet is in window.
3797 		 */
3798 	}
3799 
3800 	/*
3801 	 *	Standard slow path.
3802 	 */
3803 
3804 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
3805 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
3806 		 * (RST) segments are validated by checking their SEQ-fields."
3807 		 * And page 69: "If an incoming segment is not acceptable,
3808 		 * an acknowledgment should be sent in reply (unless the RST bit
3809 		 * is set, if so drop the segment and return)".
3810 		 */
3811 		if (!th->rst)
3812 			tcp_send_dupack(sk, skb);
3813 		goto discard;
3814 	}
3815 
3816 	if(th->rst) {
3817 		tcp_reset(sk);
3818 		goto discard;
3819 	}
3820 
3821 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3822 
3823 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3824 		TCP_INC_STATS_BH(TCP_MIB_INERRS);
3825 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
3826 		tcp_reset(sk);
3827 		return 1;
3828 	}
3829 
3830 step5:
3831 	if(th->ack)
3832 		tcp_ack(sk, skb, FLAG_SLOWPATH);
3833 
3834 	tcp_rcv_rtt_measure_ts(sk, skb);
3835 
3836 	/* Process urgent data. */
3837 	tcp_urg(sk, skb, th);
3838 
3839 	/* step 7: process the segment text */
3840 	tcp_data_queue(sk, skb);
3841 
3842 	tcp_data_snd_check(sk, tp);
3843 	tcp_ack_snd_check(sk);
3844 	return 0;
3845 
3846 csum_error:
3847 	TCP_INC_STATS_BH(TCP_MIB_INERRS);
3848 
3849 discard:
3850 	__kfree_skb(skb);
3851 	return 0;
3852 }
3853 
3854 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
3855 					 struct tcphdr *th, unsigned len)
3856 {
3857 	struct tcp_sock *tp = tcp_sk(sk);
3858 	int saved_clamp = tp->rx_opt.mss_clamp;
3859 
3860 	tcp_parse_options(skb, &tp->rx_opt, 0);
3861 
3862 	if (th->ack) {
3863 		struct inet_connection_sock *icsk;
3864 		/* rfc793:
3865 		 * "If the state is SYN-SENT then
3866 		 *    first check the ACK bit
3867 		 *      If the ACK bit is set
3868 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
3869 		 *        a reset (unless the RST bit is set, if so drop
3870 		 *        the segment and return)"
3871 		 *
3872 		 *  We do not send data with SYN, so that RFC-correct
3873 		 *  test reduces to:
3874 		 */
3875 		if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
3876 			goto reset_and_undo;
3877 
3878 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3879 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
3880 			     tcp_time_stamp)) {
3881 			NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
3882 			goto reset_and_undo;
3883 		}
3884 
3885 		/* Now ACK is acceptable.
3886 		 *
3887 		 * "If the RST bit is set
3888 		 *    If the ACK was acceptable then signal the user "error:
3889 		 *    connection reset", drop the segment, enter CLOSED state,
3890 		 *    delete TCB, and return."
3891 		 */
3892 
3893 		if (th->rst) {
3894 			tcp_reset(sk);
3895 			goto discard;
3896 		}
3897 
3898 		/* rfc793:
3899 		 *   "fifth, if neither of the SYN or RST bits is set then
3900 		 *    drop the segment and return."
3901 		 *
3902 		 *    See note below!
3903 		 *                                        --ANK(990513)
3904 		 */
3905 		if (!th->syn)
3906 			goto discard_and_undo;
3907 
3908 		/* rfc793:
3909 		 *   "If the SYN bit is on ...
3910 		 *    are acceptable then ...
3911 		 *    (our SYN has been ACKed), change the connection
3912 		 *    state to ESTABLISHED..."
3913 		 */
3914 
3915 		TCP_ECN_rcv_synack(tp, th);
3916 		if (tp->ecn_flags&TCP_ECN_OK)
3917 			sock_set_flag(sk, SOCK_NO_LARGESEND);
3918 
3919 		tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
3920 		tcp_ack(sk, skb, FLAG_SLOWPATH);
3921 
3922 		/* Ok.. it's good. Set up sequence numbers and
3923 		 * move to established.
3924 		 */
3925 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
3926 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
3927 
3928 		/* RFC1323: The window in SYN & SYN/ACK segments is
3929 		 * never scaled.
3930 		 */
3931 		tp->snd_wnd = ntohs(th->window);
3932 		tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
3933 
3934 		if (!tp->rx_opt.wscale_ok) {
3935 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
3936 			tp->window_clamp = min(tp->window_clamp, 65535U);
3937 		}
3938 
3939 		if (tp->rx_opt.saw_tstamp) {
3940 			tp->rx_opt.tstamp_ok	   = 1;
3941 			tp->tcp_header_len =
3942 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
3943 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
3944 			tcp_store_ts_recent(tp);
3945 		} else {
3946 			tp->tcp_header_len = sizeof(struct tcphdr);
3947 		}
3948 
3949 		if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
3950 			tp->rx_opt.sack_ok |= 2;
3951 
3952 		tcp_sync_mss(sk, tp->pmtu_cookie);
3953 		tcp_initialize_rcv_mss(sk);
3954 
3955 		/* Remember, tcp_poll() does not lock socket!
3956 		 * Change state from SYN-SENT only after copied_seq
3957 		 * is initialized. */
3958 		tp->copied_seq = tp->rcv_nxt;
3959 		mb();
3960 		tcp_set_state(sk, TCP_ESTABLISHED);
3961 
3962 		/* Make sure socket is routed, for correct metrics.  */
3963 		tp->af_specific->rebuild_header(sk);
3964 
3965 		tcp_init_metrics(sk);
3966 
3967 		tcp_init_congestion_control(sk);
3968 
3969 		/* Prevent spurious tcp_cwnd_restart() on first data
3970 		 * packet.
3971 		 */
3972 		tp->lsndtime = tcp_time_stamp;
3973 
3974 		tcp_init_buffer_space(sk);
3975 
3976 		if (sock_flag(sk, SOCK_KEEPOPEN))
3977 			inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
3978 
3979 		if (!tp->rx_opt.snd_wscale)
3980 			__tcp_fast_path_on(tp, tp->snd_wnd);
3981 		else
3982 			tp->pred_flags = 0;
3983 
3984 		if (!sock_flag(sk, SOCK_DEAD)) {
3985 			sk->sk_state_change(sk);
3986 			sk_wake_async(sk, 0, POLL_OUT);
3987 		}
3988 
3989 		icsk = inet_csk(sk);
3990 
3991 		if (sk->sk_write_pending ||
3992 		    icsk->icsk_accept_queue.rskq_defer_accept ||
3993 		    icsk->icsk_ack.pingpong) {
3994 			/* Save one ACK. Data will be ready after
3995 			 * several ticks, if write_pending is set.
3996 			 *
3997 			 * It may be deleted, but with this feature tcpdumps
3998 			 * look so _wonderfully_ clever, that I was not able
3999 			 * to stand against the temptation 8)     --ANK
4000 			 */
4001 			inet_csk_schedule_ack(sk);
4002 			icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4003 			icsk->icsk_ack.ato	 = TCP_ATO_MIN;
4004 			tcp_incr_quickack(sk);
4005 			tcp_enter_quickack_mode(sk);
4006 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4007 						  TCP_DELACK_MAX, TCP_RTO_MAX);
4008 
4009 discard:
4010 			__kfree_skb(skb);
4011 			return 0;
4012 		} else {
4013 			tcp_send_ack(sk);
4014 		}
4015 		return -1;
4016 	}
4017 
4018 	/* No ACK in the segment */
4019 
4020 	if (th->rst) {
4021 		/* rfc793:
4022 		 * "If the RST bit is set
4023 		 *
4024 		 *      Otherwise (no ACK) drop the segment and return."
4025 		 */
4026 
4027 		goto discard_and_undo;
4028 	}
4029 
4030 	/* PAWS check. */
4031 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4032 		goto discard_and_undo;
4033 
4034 	if (th->syn) {
4035 		/* We see SYN without ACK. It is attempt of
4036 		 * simultaneous connect with crossed SYNs.
4037 		 * Particularly, it can be connect to self.
4038 		 */
4039 		tcp_set_state(sk, TCP_SYN_RECV);
4040 
4041 		if (tp->rx_opt.saw_tstamp) {
4042 			tp->rx_opt.tstamp_ok = 1;
4043 			tcp_store_ts_recent(tp);
4044 			tp->tcp_header_len =
4045 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4046 		} else {
4047 			tp->tcp_header_len = sizeof(struct tcphdr);
4048 		}
4049 
4050 		tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4051 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4052 
4053 		/* RFC1323: The window in SYN & SYN/ACK segments is
4054 		 * never scaled.
4055 		 */
4056 		tp->snd_wnd    = ntohs(th->window);
4057 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
4058 		tp->max_window = tp->snd_wnd;
4059 
4060 		TCP_ECN_rcv_syn(tp, th);
4061 		if (tp->ecn_flags&TCP_ECN_OK)
4062 			sock_set_flag(sk, SOCK_NO_LARGESEND);
4063 
4064 		tcp_sync_mss(sk, tp->pmtu_cookie);
4065 		tcp_initialize_rcv_mss(sk);
4066 
4067 
4068 		tcp_send_synack(sk);
4069 #if 0
4070 		/* Note, we could accept data and URG from this segment.
4071 		 * There are no obstacles to make this.
4072 		 *
4073 		 * However, if we ignore data in ACKless segments sometimes,
4074 		 * we have no reasons to accept it sometimes.
4075 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4076 		 * is not flawless. So, discard packet for sanity.
4077 		 * Uncomment this return to process the data.
4078 		 */
4079 		return -1;
4080 #else
4081 		goto discard;
4082 #endif
4083 	}
4084 	/* "fifth, if neither of the SYN or RST bits is set then
4085 	 * drop the segment and return."
4086 	 */
4087 
4088 discard_and_undo:
4089 	tcp_clear_options(&tp->rx_opt);
4090 	tp->rx_opt.mss_clamp = saved_clamp;
4091 	goto discard;
4092 
4093 reset_and_undo:
4094 	tcp_clear_options(&tp->rx_opt);
4095 	tp->rx_opt.mss_clamp = saved_clamp;
4096 	return 1;
4097 }
4098 
4099 
4100 /*
4101  *	This function implements the receiving procedure of RFC 793 for
4102  *	all states except ESTABLISHED and TIME_WAIT.
4103  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4104  *	address independent.
4105  */
4106 
4107 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4108 			  struct tcphdr *th, unsigned len)
4109 {
4110 	struct tcp_sock *tp = tcp_sk(sk);
4111 	int queued = 0;
4112 
4113 	tp->rx_opt.saw_tstamp = 0;
4114 
4115 	switch (sk->sk_state) {
4116 	case TCP_CLOSE:
4117 		goto discard;
4118 
4119 	case TCP_LISTEN:
4120 		if(th->ack)
4121 			return 1;
4122 
4123 		if(th->rst)
4124 			goto discard;
4125 
4126 		if(th->syn) {
4127 			if(tp->af_specific->conn_request(sk, skb) < 0)
4128 				return 1;
4129 
4130 			/* Now we have several options: In theory there is
4131 			 * nothing else in the frame. KA9Q has an option to
4132 			 * send data with the syn, BSD accepts data with the
4133 			 * syn up to the [to be] advertised window and
4134 			 * Solaris 2.1 gives you a protocol error. For now
4135 			 * we just ignore it, that fits the spec precisely
4136 			 * and avoids incompatibilities. It would be nice in
4137 			 * future to drop through and process the data.
4138 			 *
4139 			 * Now that TTCP is starting to be used we ought to
4140 			 * queue this data.
4141 			 * But, this leaves one open to an easy denial of
4142 		 	 * service attack, and SYN cookies can't defend
4143 			 * against this problem. So, we drop the data
4144 			 * in the interest of security over speed.
4145 			 */
4146 			goto discard;
4147 		}
4148 		goto discard;
4149 
4150 	case TCP_SYN_SENT:
4151 		queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4152 		if (queued >= 0)
4153 			return queued;
4154 
4155 		/* Do step6 onward by hand. */
4156 		tcp_urg(sk, skb, th);
4157 		__kfree_skb(skb);
4158 		tcp_data_snd_check(sk, tp);
4159 		return 0;
4160 	}
4161 
4162 	if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4163 	    tcp_paws_discard(sk, skb)) {
4164 		if (!th->rst) {
4165 			NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4166 			tcp_send_dupack(sk, skb);
4167 			goto discard;
4168 		}
4169 		/* Reset is accepted even if it did not pass PAWS. */
4170 	}
4171 
4172 	/* step 1: check sequence number */
4173 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4174 		if (!th->rst)
4175 			tcp_send_dupack(sk, skb);
4176 		goto discard;
4177 	}
4178 
4179 	/* step 2: check RST bit */
4180 	if(th->rst) {
4181 		tcp_reset(sk);
4182 		goto discard;
4183 	}
4184 
4185 	tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4186 
4187 	/* step 3: check security and precedence [ignored] */
4188 
4189 	/*	step 4:
4190 	 *
4191 	 *	Check for a SYN in window.
4192 	 */
4193 	if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4194 		NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4195 		tcp_reset(sk);
4196 		return 1;
4197 	}
4198 
4199 	/* step 5: check the ACK field */
4200 	if (th->ack) {
4201 		int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4202 
4203 		switch(sk->sk_state) {
4204 		case TCP_SYN_RECV:
4205 			if (acceptable) {
4206 				tp->copied_seq = tp->rcv_nxt;
4207 				mb();
4208 				tcp_set_state(sk, TCP_ESTABLISHED);
4209 				sk->sk_state_change(sk);
4210 
4211 				/* Note, that this wakeup is only for marginal
4212 				 * crossed SYN case. Passively open sockets
4213 				 * are not waked up, because sk->sk_sleep ==
4214 				 * NULL and sk->sk_socket == NULL.
4215 				 */
4216 				if (sk->sk_socket) {
4217 					sk_wake_async(sk,0,POLL_OUT);
4218 				}
4219 
4220 				tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4221 				tp->snd_wnd = ntohs(th->window) <<
4222 					      tp->rx_opt.snd_wscale;
4223 				tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4224 					    TCP_SKB_CB(skb)->seq);
4225 
4226 				/* tcp_ack considers this ACK as duplicate
4227 				 * and does not calculate rtt.
4228 				 * Fix it at least with timestamps.
4229 				 */
4230 				if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4231 				    !tp->srtt)
4232 					tcp_ack_saw_tstamp(sk, NULL, 0);
4233 
4234 				if (tp->rx_opt.tstamp_ok)
4235 					tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4236 
4237 				/* Make sure socket is routed, for
4238 				 * correct metrics.
4239 				 */
4240 				tp->af_specific->rebuild_header(sk);
4241 
4242 				tcp_init_metrics(sk);
4243 
4244 				tcp_init_congestion_control(sk);
4245 
4246 				/* Prevent spurious tcp_cwnd_restart() on
4247 				 * first data packet.
4248 				 */
4249 				tp->lsndtime = tcp_time_stamp;
4250 
4251 				tcp_initialize_rcv_mss(sk);
4252 				tcp_init_buffer_space(sk);
4253 				tcp_fast_path_on(tp);
4254 			} else {
4255 				return 1;
4256 			}
4257 			break;
4258 
4259 		case TCP_FIN_WAIT1:
4260 			if (tp->snd_una == tp->write_seq) {
4261 				tcp_set_state(sk, TCP_FIN_WAIT2);
4262 				sk->sk_shutdown |= SEND_SHUTDOWN;
4263 				dst_confirm(sk->sk_dst_cache);
4264 
4265 				if (!sock_flag(sk, SOCK_DEAD))
4266 					/* Wake up lingering close() */
4267 					sk->sk_state_change(sk);
4268 				else {
4269 					int tmo;
4270 
4271 					if (tp->linger2 < 0 ||
4272 					    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4273 					     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4274 						tcp_done(sk);
4275 						NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4276 						return 1;
4277 					}
4278 
4279 					tmo = tcp_fin_time(sk);
4280 					if (tmo > TCP_TIMEWAIT_LEN) {
4281 						inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4282 					} else if (th->fin || sock_owned_by_user(sk)) {
4283 						/* Bad case. We could lose such FIN otherwise.
4284 						 * It is not a big problem, but it looks confusing
4285 						 * and not so rare event. We still can lose it now,
4286 						 * if it spins in bh_lock_sock(), but it is really
4287 						 * marginal case.
4288 						 */
4289 						inet_csk_reset_keepalive_timer(sk, tmo);
4290 					} else {
4291 						tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4292 						goto discard;
4293 					}
4294 				}
4295 			}
4296 			break;
4297 
4298 		case TCP_CLOSING:
4299 			if (tp->snd_una == tp->write_seq) {
4300 				tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4301 				goto discard;
4302 			}
4303 			break;
4304 
4305 		case TCP_LAST_ACK:
4306 			if (tp->snd_una == tp->write_seq) {
4307 				tcp_update_metrics(sk);
4308 				tcp_done(sk);
4309 				goto discard;
4310 			}
4311 			break;
4312 		}
4313 	} else
4314 		goto discard;
4315 
4316 	/* step 6: check the URG bit */
4317 	tcp_urg(sk, skb, th);
4318 
4319 	/* step 7: process the segment text */
4320 	switch (sk->sk_state) {
4321 	case TCP_CLOSE_WAIT:
4322 	case TCP_CLOSING:
4323 	case TCP_LAST_ACK:
4324 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4325 			break;
4326 	case TCP_FIN_WAIT1:
4327 	case TCP_FIN_WAIT2:
4328 		/* RFC 793 says to queue data in these states,
4329 		 * RFC 1122 says we MUST send a reset.
4330 		 * BSD 4.4 also does reset.
4331 		 */
4332 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
4333 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4334 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4335 				NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4336 				tcp_reset(sk);
4337 				return 1;
4338 			}
4339 		}
4340 		/* Fall through */
4341 	case TCP_ESTABLISHED:
4342 		tcp_data_queue(sk, skb);
4343 		queued = 1;
4344 		break;
4345 	}
4346 
4347 	/* tcp_data could move socket to TIME-WAIT */
4348 	if (sk->sk_state != TCP_CLOSE) {
4349 		tcp_data_snd_check(sk, tp);
4350 		tcp_ack_snd_check(sk);
4351 	}
4352 
4353 	if (!queued) {
4354 discard:
4355 		__kfree_skb(skb);
4356 	}
4357 	return 0;
4358 }
4359 
4360 EXPORT_SYMBOL(sysctl_tcp_ecn);
4361 EXPORT_SYMBOL(sysctl_tcp_reordering);
4362 EXPORT_SYMBOL(tcp_parse_options);
4363 EXPORT_SYMBOL(tcp_rcv_established);
4364 EXPORT_SYMBOL(tcp_rcv_state_process);
4365