xref: /linux/net/ipv4/tcp.c (revision 778e73d2411abc8f3a2d60dbf038acaec218792e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278 
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 
283 /* Track pending CMSGs. */
284 enum {
285 	TCP_CMSG_INQ = 1,
286 	TCP_CMSG_TS = 2
287 };
288 
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294 
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299 
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304 
305 /*
306  * Current number of TCP sockets.
307  */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310 
311 /*
312  * TCP splice context
313  */
314 struct tcp_splice_state {
315 	struct pipe_inode_info *pipe;
316 	size_t len;
317 	unsigned int flags;
318 };
319 
320 /*
321  * Pressure flag: try to collapse.
322  * Technical note: it is used by multiple contexts non atomically.
323  * All the __sk_mem_schedule() is of this nature: accounting
324  * is strict, actions are advisory and have some latency.
325  */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328 
329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 	unsigned long val;
332 
333 	if (READ_ONCE(tcp_memory_pressure))
334 		return;
335 	val = jiffies;
336 
337 	if (!val)
338 		val--;
339 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343 
344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 	unsigned long val;
347 
348 	if (!READ_ONCE(tcp_memory_pressure))
349 		return;
350 	val = xchg(&tcp_memory_pressure, 0);
351 	if (val)
352 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 			      jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356 
357 /* Convert seconds to retransmits based on initial and max timeout */
358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 	u8 res = 0;
361 
362 	if (seconds > 0) {
363 		int period = timeout;
364 
365 		res = 1;
366 		while (seconds > period && res < 255) {
367 			res++;
368 			timeout <<= 1;
369 			if (timeout > rto_max)
370 				timeout = rto_max;
371 			period += timeout;
372 		}
373 	}
374 	return res;
375 }
376 
377 /* Convert retransmits to seconds based on initial and max timeout */
378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 	int period = 0;
381 
382 	if (retrans > 0) {
383 		period = timeout;
384 		while (--retrans) {
385 			timeout <<= 1;
386 			if (timeout > rto_max)
387 				timeout = rto_max;
388 			period += timeout;
389 		}
390 	}
391 	return period;
392 }
393 
394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 	u32 rate = READ_ONCE(tp->rate_delivered);
397 	u32 intv = READ_ONCE(tp->rate_interval_us);
398 	u64 rate64 = 0;
399 
400 	if (rate && intv) {
401 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 		do_div(rate64, intv);
403 	}
404 	return rate64;
405 }
406 
407 /* Address-family independent initialization for a tcp_sock.
408  *
409  * NOTE: A lot of things set to zero explicitly by call to
410  *       sk_alloc() so need not be done here.
411  */
412 void tcp_init_sock(struct sock *sk)
413 {
414 	struct inet_connection_sock *icsk = inet_csk(sk);
415 	struct tcp_sock *tp = tcp_sk(sk);
416 
417 	tp->out_of_order_queue = RB_ROOT;
418 	sk->tcp_rtx_queue = RB_ROOT;
419 	tcp_init_xmit_timers(sk);
420 	INIT_LIST_HEAD(&tp->tsq_node);
421 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422 
423 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 	icsk->icsk_rto_min = TCP_RTO_MIN;
425 	icsk->icsk_delack_max = TCP_DELACK_MAX;
426 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428 
429 	/* So many TCP implementations out there (incorrectly) count the
430 	 * initial SYN frame in their delayed-ACK and congestion control
431 	 * algorithms that we must have the following bandaid to talk
432 	 * efficiently to them.  -DaveM
433 	 */
434 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435 
436 	/* There's a bubble in the pipe until at least the first ACK. */
437 	tp->app_limited = ~0U;
438 	tp->rate_app_limited = 1;
439 
440 	/* See draft-stevens-tcpca-spec-01 for discussion of the
441 	 * initialization of these values.
442 	 */
443 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 	tp->snd_cwnd_clamp = ~0;
445 	tp->mss_cache = TCP_MSS_DEFAULT;
446 
447 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 	tcp_assign_congestion_control(sk);
449 
450 	tp->tsoffset = 0;
451 	tp->rack.reo_wnd_steps = 1;
452 
453 	sk->sk_write_space = sk_stream_write_space;
454 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455 
456 	icsk->icsk_sync_mss = tcp_sync_mss;
457 
458 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460 	tcp_scaling_ratio_init(sk);
461 
462 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
463 	sk_sockets_allocated_inc(sk);
464 }
465 EXPORT_SYMBOL(tcp_init_sock);
466 
467 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
468 {
469 	struct sk_buff *skb = tcp_write_queue_tail(sk);
470 
471 	if (tsflags && skb) {
472 		struct skb_shared_info *shinfo = skb_shinfo(skb);
473 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
474 
475 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
476 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
477 			tcb->txstamp_ack = 1;
478 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
479 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
480 	}
481 }
482 
483 static bool tcp_stream_is_readable(struct sock *sk, int target)
484 {
485 	if (tcp_epollin_ready(sk, target))
486 		return true;
487 	return sk_is_readable(sk);
488 }
489 
490 /*
491  *	Wait for a TCP event.
492  *
493  *	Note that we don't need to lock the socket, as the upper poll layers
494  *	take care of normal races (between the test and the event) and we don't
495  *	go look at any of the socket buffers directly.
496  */
497 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
498 {
499 	__poll_t mask;
500 	struct sock *sk = sock->sk;
501 	const struct tcp_sock *tp = tcp_sk(sk);
502 	u8 shutdown;
503 	int state;
504 
505 	sock_poll_wait(file, sock, wait);
506 
507 	state = inet_sk_state_load(sk);
508 	if (state == TCP_LISTEN)
509 		return inet_csk_listen_poll(sk);
510 
511 	/* Socket is not locked. We are protected from async events
512 	 * by poll logic and correct handling of state changes
513 	 * made by other threads is impossible in any case.
514 	 */
515 
516 	mask = 0;
517 
518 	/*
519 	 * EPOLLHUP is certainly not done right. But poll() doesn't
520 	 * have a notion of HUP in just one direction, and for a
521 	 * socket the read side is more interesting.
522 	 *
523 	 * Some poll() documentation says that EPOLLHUP is incompatible
524 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
525 	 * all. But careful, it tends to be safer to return too many
526 	 * bits than too few, and you can easily break real applications
527 	 * if you don't tell them that something has hung up!
528 	 *
529 	 * Check-me.
530 	 *
531 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
532 	 * our fs/select.c). It means that after we received EOF,
533 	 * poll always returns immediately, making impossible poll() on write()
534 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
535 	 * if and only if shutdown has been made in both directions.
536 	 * Actually, it is interesting to look how Solaris and DUX
537 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
538 	 * then we could set it on SND_SHUTDOWN. BTW examples given
539 	 * in Stevens' books assume exactly this behaviour, it explains
540 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
541 	 *
542 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
543 	 * blocking on fresh not-connected or disconnected socket. --ANK
544 	 */
545 	shutdown = READ_ONCE(sk->sk_shutdown);
546 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
547 		mask |= EPOLLHUP;
548 	if (shutdown & RCV_SHUTDOWN)
549 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
550 
551 	/* Connected or passive Fast Open socket? */
552 	if (state != TCP_SYN_SENT &&
553 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
554 		int target = sock_rcvlowat(sk, 0, INT_MAX);
555 		u16 urg_data = READ_ONCE(tp->urg_data);
556 
557 		if (unlikely(urg_data) &&
558 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
559 		    !sock_flag(sk, SOCK_URGINLINE))
560 			target++;
561 
562 		if (tcp_stream_is_readable(sk, target))
563 			mask |= EPOLLIN | EPOLLRDNORM;
564 
565 		if (!(shutdown & SEND_SHUTDOWN)) {
566 			if (__sk_stream_is_writeable(sk, 1)) {
567 				mask |= EPOLLOUT | EPOLLWRNORM;
568 			} else {  /* send SIGIO later */
569 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
570 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
571 
572 				/* Race breaker. If space is freed after
573 				 * wspace test but before the flags are set,
574 				 * IO signal will be lost. Memory barrier
575 				 * pairs with the input side.
576 				 */
577 				smp_mb__after_atomic();
578 				if (__sk_stream_is_writeable(sk, 1))
579 					mask |= EPOLLOUT | EPOLLWRNORM;
580 			}
581 		} else
582 			mask |= EPOLLOUT | EPOLLWRNORM;
583 
584 		if (urg_data & TCP_URG_VALID)
585 			mask |= EPOLLPRI;
586 	} else if (state == TCP_SYN_SENT &&
587 		   inet_test_bit(DEFER_CONNECT, sk)) {
588 		/* Active TCP fastopen socket with defer_connect
589 		 * Return EPOLLOUT so application can call write()
590 		 * in order for kernel to generate SYN+data
591 		 */
592 		mask |= EPOLLOUT | EPOLLWRNORM;
593 	}
594 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
595 	smp_rmb();
596 	if (READ_ONCE(sk->sk_err) ||
597 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
598 		mask |= EPOLLERR;
599 
600 	return mask;
601 }
602 EXPORT_SYMBOL(tcp_poll);
603 
604 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
605 {
606 	struct tcp_sock *tp = tcp_sk(sk);
607 	int answ;
608 	bool slow;
609 
610 	switch (cmd) {
611 	case SIOCINQ:
612 		if (sk->sk_state == TCP_LISTEN)
613 			return -EINVAL;
614 
615 		slow = lock_sock_fast(sk);
616 		answ = tcp_inq(sk);
617 		unlock_sock_fast(sk, slow);
618 		break;
619 	case SIOCATMARK:
620 		answ = READ_ONCE(tp->urg_data) &&
621 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
622 		break;
623 	case SIOCOUTQ:
624 		if (sk->sk_state == TCP_LISTEN)
625 			return -EINVAL;
626 
627 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 			answ = 0;
629 		else
630 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
631 		break;
632 	case SIOCOUTQNSD:
633 		if (sk->sk_state == TCP_LISTEN)
634 			return -EINVAL;
635 
636 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 			answ = 0;
638 		else
639 			answ = READ_ONCE(tp->write_seq) -
640 			       READ_ONCE(tp->snd_nxt);
641 		break;
642 	default:
643 		return -ENOIOCTLCMD;
644 	}
645 
646 	*karg = answ;
647 	return 0;
648 }
649 EXPORT_SYMBOL(tcp_ioctl);
650 
651 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
652 {
653 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
654 	tp->pushed_seq = tp->write_seq;
655 }
656 
657 static inline bool forced_push(const struct tcp_sock *tp)
658 {
659 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
660 }
661 
662 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
663 {
664 	struct tcp_sock *tp = tcp_sk(sk);
665 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
666 
667 	tcb->seq     = tcb->end_seq = tp->write_seq;
668 	tcb->tcp_flags = TCPHDR_ACK;
669 	__skb_header_release(skb);
670 	tcp_add_write_queue_tail(sk, skb);
671 	sk_wmem_queued_add(sk, skb->truesize);
672 	sk_mem_charge(sk, skb->truesize);
673 	if (tp->nonagle & TCP_NAGLE_PUSH)
674 		tp->nonagle &= ~TCP_NAGLE_PUSH;
675 
676 	tcp_slow_start_after_idle_check(sk);
677 }
678 
679 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680 {
681 	if (flags & MSG_OOB)
682 		tp->snd_up = tp->write_seq;
683 }
684 
685 /* If a not yet filled skb is pushed, do not send it if
686  * we have data packets in Qdisc or NIC queues :
687  * Because TX completion will happen shortly, it gives a chance
688  * to coalesce future sendmsg() payload into this skb, without
689  * need for a timer, and with no latency trade off.
690  * As packets containing data payload have a bigger truesize
691  * than pure acks (dataless) packets, the last checks prevent
692  * autocorking if we only have an ACK in Qdisc/NIC queues,
693  * or if TX completion was delayed after we processed ACK packet.
694  */
695 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 				int size_goal)
697 {
698 	return skb->len < size_goal &&
699 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
700 	       !tcp_rtx_queue_empty(sk) &&
701 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
702 	       tcp_skb_can_collapse_to(skb);
703 }
704 
705 void tcp_push(struct sock *sk, int flags, int mss_now,
706 	      int nonagle, int size_goal)
707 {
708 	struct tcp_sock *tp = tcp_sk(sk);
709 	struct sk_buff *skb;
710 
711 	skb = tcp_write_queue_tail(sk);
712 	if (!skb)
713 		return;
714 	if (!(flags & MSG_MORE) || forced_push(tp))
715 		tcp_mark_push(tp, skb);
716 
717 	tcp_mark_urg(tp, flags);
718 
719 	if (tcp_should_autocork(sk, skb, size_goal)) {
720 
721 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
722 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
723 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
724 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
725 		}
726 		/* It is possible TX completion already happened
727 		 * before we set TSQ_THROTTLED.
728 		 */
729 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
730 			return;
731 	}
732 
733 	if (flags & MSG_MORE)
734 		nonagle = TCP_NAGLE_CORK;
735 
736 	__tcp_push_pending_frames(sk, mss_now, nonagle);
737 }
738 
739 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
740 				unsigned int offset, size_t len)
741 {
742 	struct tcp_splice_state *tss = rd_desc->arg.data;
743 	int ret;
744 
745 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
746 			      min(rd_desc->count, len), tss->flags);
747 	if (ret > 0)
748 		rd_desc->count -= ret;
749 	return ret;
750 }
751 
752 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
753 {
754 	/* Store TCP splice context information in read_descriptor_t. */
755 	read_descriptor_t rd_desc = {
756 		.arg.data = tss,
757 		.count	  = tss->len,
758 	};
759 
760 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
761 }
762 
763 /**
764  *  tcp_splice_read - splice data from TCP socket to a pipe
765  * @sock:	socket to splice from
766  * @ppos:	position (not valid)
767  * @pipe:	pipe to splice to
768  * @len:	number of bytes to splice
769  * @flags:	splice modifier flags
770  *
771  * Description:
772  *    Will read pages from given socket and fill them into a pipe.
773  *
774  **/
775 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
776 			struct pipe_inode_info *pipe, size_t len,
777 			unsigned int flags)
778 {
779 	struct sock *sk = sock->sk;
780 	struct tcp_splice_state tss = {
781 		.pipe = pipe,
782 		.len = len,
783 		.flags = flags,
784 	};
785 	long timeo;
786 	ssize_t spliced;
787 	int ret;
788 
789 	sock_rps_record_flow(sk);
790 	/*
791 	 * We can't seek on a socket input
792 	 */
793 	if (unlikely(*ppos))
794 		return -ESPIPE;
795 
796 	ret = spliced = 0;
797 
798 	lock_sock(sk);
799 
800 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
801 	while (tss.len) {
802 		ret = __tcp_splice_read(sk, &tss);
803 		if (ret < 0)
804 			break;
805 		else if (!ret) {
806 			if (spliced)
807 				break;
808 			if (sock_flag(sk, SOCK_DONE))
809 				break;
810 			if (sk->sk_err) {
811 				ret = sock_error(sk);
812 				break;
813 			}
814 			if (sk->sk_shutdown & RCV_SHUTDOWN)
815 				break;
816 			if (sk->sk_state == TCP_CLOSE) {
817 				/*
818 				 * This occurs when user tries to read
819 				 * from never connected socket.
820 				 */
821 				ret = -ENOTCONN;
822 				break;
823 			}
824 			if (!timeo) {
825 				ret = -EAGAIN;
826 				break;
827 			}
828 			/* if __tcp_splice_read() got nothing while we have
829 			 * an skb in receive queue, we do not want to loop.
830 			 * This might happen with URG data.
831 			 */
832 			if (!skb_queue_empty(&sk->sk_receive_queue))
833 				break;
834 			ret = sk_wait_data(sk, &timeo, NULL);
835 			if (ret < 0)
836 				break;
837 			if (signal_pending(current)) {
838 				ret = sock_intr_errno(timeo);
839 				break;
840 			}
841 			continue;
842 		}
843 		tss.len -= ret;
844 		spliced += ret;
845 
846 		if (!tss.len || !timeo)
847 			break;
848 		release_sock(sk);
849 		lock_sock(sk);
850 
851 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
852 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
853 		    signal_pending(current))
854 			break;
855 	}
856 
857 	release_sock(sk);
858 
859 	if (spliced)
860 		return spliced;
861 
862 	return ret;
863 }
864 EXPORT_SYMBOL(tcp_splice_read);
865 
866 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
867 				     bool force_schedule)
868 {
869 	struct sk_buff *skb;
870 
871 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
872 	if (likely(skb)) {
873 		bool mem_scheduled;
874 
875 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
876 		if (force_schedule) {
877 			mem_scheduled = true;
878 			sk_forced_mem_schedule(sk, skb->truesize);
879 		} else {
880 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
881 		}
882 		if (likely(mem_scheduled)) {
883 			skb_reserve(skb, MAX_TCP_HEADER);
884 			skb->ip_summed = CHECKSUM_PARTIAL;
885 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
886 			return skb;
887 		}
888 		__kfree_skb(skb);
889 	} else {
890 		sk->sk_prot->enter_memory_pressure(sk);
891 		sk_stream_moderate_sndbuf(sk);
892 	}
893 	return NULL;
894 }
895 
896 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
897 				       int large_allowed)
898 {
899 	struct tcp_sock *tp = tcp_sk(sk);
900 	u32 new_size_goal, size_goal;
901 
902 	if (!large_allowed)
903 		return mss_now;
904 
905 	/* Note : tcp_tso_autosize() will eventually split this later */
906 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
907 
908 	/* We try hard to avoid divides here */
909 	size_goal = tp->gso_segs * mss_now;
910 	if (unlikely(new_size_goal < size_goal ||
911 		     new_size_goal >= size_goal + mss_now)) {
912 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
913 				     sk->sk_gso_max_segs);
914 		size_goal = tp->gso_segs * mss_now;
915 	}
916 
917 	return max(size_goal, mss_now);
918 }
919 
920 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
921 {
922 	int mss_now;
923 
924 	mss_now = tcp_current_mss(sk);
925 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
926 
927 	return mss_now;
928 }
929 
930 /* In some cases, sendmsg() could have added an skb to the write queue,
931  * but failed adding payload on it. We need to remove it to consume less
932  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
933  * epoll() users. Another reason is that tcp_write_xmit() does not like
934  * finding an empty skb in the write queue.
935  */
936 void tcp_remove_empty_skb(struct sock *sk)
937 {
938 	struct sk_buff *skb = tcp_write_queue_tail(sk);
939 
940 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
941 		tcp_unlink_write_queue(skb, sk);
942 		if (tcp_write_queue_empty(sk))
943 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
944 		tcp_wmem_free_skb(sk, skb);
945 	}
946 }
947 
948 /* skb changing from pure zc to mixed, must charge zc */
949 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
950 {
951 	if (unlikely(skb_zcopy_pure(skb))) {
952 		u32 extra = skb->truesize -
953 			    SKB_TRUESIZE(skb_end_offset(skb));
954 
955 		if (!sk_wmem_schedule(sk, extra))
956 			return -ENOMEM;
957 
958 		sk_mem_charge(sk, extra);
959 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
960 	}
961 	return 0;
962 }
963 
964 
965 int tcp_wmem_schedule(struct sock *sk, int copy)
966 {
967 	int left;
968 
969 	if (likely(sk_wmem_schedule(sk, copy)))
970 		return copy;
971 
972 	/* We could be in trouble if we have nothing queued.
973 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
974 	 * to guarantee some progress.
975 	 */
976 	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
977 	if (left > 0)
978 		sk_forced_mem_schedule(sk, min(left, copy));
979 	return min(copy, sk->sk_forward_alloc);
980 }
981 
982 void tcp_free_fastopen_req(struct tcp_sock *tp)
983 {
984 	if (tp->fastopen_req) {
985 		kfree(tp->fastopen_req);
986 		tp->fastopen_req = NULL;
987 	}
988 }
989 
990 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
991 			 size_t size, struct ubuf_info *uarg)
992 {
993 	struct tcp_sock *tp = tcp_sk(sk);
994 	struct inet_sock *inet = inet_sk(sk);
995 	struct sockaddr *uaddr = msg->msg_name;
996 	int err, flags;
997 
998 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
999 	      TFO_CLIENT_ENABLE) ||
1000 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1001 	     uaddr->sa_family == AF_UNSPEC))
1002 		return -EOPNOTSUPP;
1003 	if (tp->fastopen_req)
1004 		return -EALREADY; /* Another Fast Open is in progress */
1005 
1006 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1007 				   sk->sk_allocation);
1008 	if (unlikely(!tp->fastopen_req))
1009 		return -ENOBUFS;
1010 	tp->fastopen_req->data = msg;
1011 	tp->fastopen_req->size = size;
1012 	tp->fastopen_req->uarg = uarg;
1013 
1014 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1015 		err = tcp_connect(sk);
1016 		/* Same failure procedure as in tcp_v4/6_connect */
1017 		if (err) {
1018 			tcp_set_state(sk, TCP_CLOSE);
1019 			inet->inet_dport = 0;
1020 			sk->sk_route_caps = 0;
1021 		}
1022 	}
1023 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1024 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1025 				    msg->msg_namelen, flags, 1);
1026 	/* fastopen_req could already be freed in __inet_stream_connect
1027 	 * if the connection times out or gets rst
1028 	 */
1029 	if (tp->fastopen_req) {
1030 		*copied = tp->fastopen_req->copied;
1031 		tcp_free_fastopen_req(tp);
1032 		inet_clear_bit(DEFER_CONNECT, sk);
1033 	}
1034 	return err;
1035 }
1036 
1037 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1038 {
1039 	struct tcp_sock *tp = tcp_sk(sk);
1040 	struct ubuf_info *uarg = NULL;
1041 	struct sk_buff *skb;
1042 	struct sockcm_cookie sockc;
1043 	int flags, err, copied = 0;
1044 	int mss_now = 0, size_goal, copied_syn = 0;
1045 	int process_backlog = 0;
1046 	int zc = 0;
1047 	long timeo;
1048 
1049 	flags = msg->msg_flags;
1050 
1051 	if ((flags & MSG_ZEROCOPY) && size) {
1052 		if (msg->msg_ubuf) {
1053 			uarg = msg->msg_ubuf;
1054 			if (sk->sk_route_caps & NETIF_F_SG)
1055 				zc = MSG_ZEROCOPY;
1056 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1057 			skb = tcp_write_queue_tail(sk);
1058 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1059 			if (!uarg) {
1060 				err = -ENOBUFS;
1061 				goto out_err;
1062 			}
1063 			if (sk->sk_route_caps & NETIF_F_SG)
1064 				zc = MSG_ZEROCOPY;
1065 			else
1066 				uarg_to_msgzc(uarg)->zerocopy = 0;
1067 		}
1068 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1069 		if (sk->sk_route_caps & NETIF_F_SG)
1070 			zc = MSG_SPLICE_PAGES;
1071 	}
1072 
1073 	if (unlikely(flags & MSG_FASTOPEN ||
1074 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1075 	    !tp->repair) {
1076 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1077 		if (err == -EINPROGRESS && copied_syn > 0)
1078 			goto out;
1079 		else if (err)
1080 			goto out_err;
1081 	}
1082 
1083 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1084 
1085 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1086 
1087 	/* Wait for a connection to finish. One exception is TCP Fast Open
1088 	 * (passive side) where data is allowed to be sent before a connection
1089 	 * is fully established.
1090 	 */
1091 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1092 	    !tcp_passive_fastopen(sk)) {
1093 		err = sk_stream_wait_connect(sk, &timeo);
1094 		if (err != 0)
1095 			goto do_error;
1096 	}
1097 
1098 	if (unlikely(tp->repair)) {
1099 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1100 			copied = tcp_send_rcvq(sk, msg, size);
1101 			goto out_nopush;
1102 		}
1103 
1104 		err = -EINVAL;
1105 		if (tp->repair_queue == TCP_NO_QUEUE)
1106 			goto out_err;
1107 
1108 		/* 'common' sending to sendq */
1109 	}
1110 
1111 	sockcm_init(&sockc, sk);
1112 	if (msg->msg_controllen) {
1113 		err = sock_cmsg_send(sk, msg, &sockc);
1114 		if (unlikely(err)) {
1115 			err = -EINVAL;
1116 			goto out_err;
1117 		}
1118 	}
1119 
1120 	/* This should be in poll */
1121 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1122 
1123 	/* Ok commence sending. */
1124 	copied = 0;
1125 
1126 restart:
1127 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1128 
1129 	err = -EPIPE;
1130 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1131 		goto do_error;
1132 
1133 	while (msg_data_left(msg)) {
1134 		ssize_t copy = 0;
1135 
1136 		skb = tcp_write_queue_tail(sk);
1137 		if (skb)
1138 			copy = size_goal - skb->len;
1139 
1140 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1141 			bool first_skb;
1142 
1143 new_segment:
1144 			if (!sk_stream_memory_free(sk))
1145 				goto wait_for_space;
1146 
1147 			if (unlikely(process_backlog >= 16)) {
1148 				process_backlog = 0;
1149 				if (sk_flush_backlog(sk))
1150 					goto restart;
1151 			}
1152 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1153 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1154 						   first_skb);
1155 			if (!skb)
1156 				goto wait_for_space;
1157 
1158 			process_backlog++;
1159 
1160 			tcp_skb_entail(sk, skb);
1161 			copy = size_goal;
1162 
1163 			/* All packets are restored as if they have
1164 			 * already been sent. skb_mstamp_ns isn't set to
1165 			 * avoid wrong rtt estimation.
1166 			 */
1167 			if (tp->repair)
1168 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1169 		}
1170 
1171 		/* Try to append data to the end of skb. */
1172 		if (copy > msg_data_left(msg))
1173 			copy = msg_data_left(msg);
1174 
1175 		if (zc == 0) {
1176 			bool merge = true;
1177 			int i = skb_shinfo(skb)->nr_frags;
1178 			struct page_frag *pfrag = sk_page_frag(sk);
1179 
1180 			if (!sk_page_frag_refill(sk, pfrag))
1181 				goto wait_for_space;
1182 
1183 			if (!skb_can_coalesce(skb, i, pfrag->page,
1184 					      pfrag->offset)) {
1185 				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1186 					tcp_mark_push(tp, skb);
1187 					goto new_segment;
1188 				}
1189 				merge = false;
1190 			}
1191 
1192 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1193 
1194 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1195 				if (tcp_downgrade_zcopy_pure(sk, skb))
1196 					goto wait_for_space;
1197 				skb_zcopy_downgrade_managed(skb);
1198 			}
1199 
1200 			copy = tcp_wmem_schedule(sk, copy);
1201 			if (!copy)
1202 				goto wait_for_space;
1203 
1204 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1205 						       pfrag->page,
1206 						       pfrag->offset,
1207 						       copy);
1208 			if (err)
1209 				goto do_error;
1210 
1211 			/* Update the skb. */
1212 			if (merge) {
1213 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1214 			} else {
1215 				skb_fill_page_desc(skb, i, pfrag->page,
1216 						   pfrag->offset, copy);
1217 				page_ref_inc(pfrag->page);
1218 			}
1219 			pfrag->offset += copy;
1220 		} else if (zc == MSG_ZEROCOPY)  {
1221 			/* First append to a fragless skb builds initial
1222 			 * pure zerocopy skb
1223 			 */
1224 			if (!skb->len)
1225 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1226 
1227 			if (!skb_zcopy_pure(skb)) {
1228 				copy = tcp_wmem_schedule(sk, copy);
1229 				if (!copy)
1230 					goto wait_for_space;
1231 			}
1232 
1233 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1234 			if (err == -EMSGSIZE || err == -EEXIST) {
1235 				tcp_mark_push(tp, skb);
1236 				goto new_segment;
1237 			}
1238 			if (err < 0)
1239 				goto do_error;
1240 			copy = err;
1241 		} else if (zc == MSG_SPLICE_PAGES) {
1242 			/* Splice in data if we can; copy if we can't. */
1243 			if (tcp_downgrade_zcopy_pure(sk, skb))
1244 				goto wait_for_space;
1245 			copy = tcp_wmem_schedule(sk, copy);
1246 			if (!copy)
1247 				goto wait_for_space;
1248 
1249 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1250 						   sk->sk_allocation);
1251 			if (err < 0) {
1252 				if (err == -EMSGSIZE) {
1253 					tcp_mark_push(tp, skb);
1254 					goto new_segment;
1255 				}
1256 				goto do_error;
1257 			}
1258 			copy = err;
1259 
1260 			if (!(flags & MSG_NO_SHARED_FRAGS))
1261 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1262 
1263 			sk_wmem_queued_add(sk, copy);
1264 			sk_mem_charge(sk, copy);
1265 		}
1266 
1267 		if (!copied)
1268 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1269 
1270 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1271 		TCP_SKB_CB(skb)->end_seq += copy;
1272 		tcp_skb_pcount_set(skb, 0);
1273 
1274 		copied += copy;
1275 		if (!msg_data_left(msg)) {
1276 			if (unlikely(flags & MSG_EOR))
1277 				TCP_SKB_CB(skb)->eor = 1;
1278 			goto out;
1279 		}
1280 
1281 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1282 			continue;
1283 
1284 		if (forced_push(tp)) {
1285 			tcp_mark_push(tp, skb);
1286 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1287 		} else if (skb == tcp_send_head(sk))
1288 			tcp_push_one(sk, mss_now);
1289 		continue;
1290 
1291 wait_for_space:
1292 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1293 		tcp_remove_empty_skb(sk);
1294 		if (copied)
1295 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1296 				 TCP_NAGLE_PUSH, size_goal);
1297 
1298 		err = sk_stream_wait_memory(sk, &timeo);
1299 		if (err != 0)
1300 			goto do_error;
1301 
1302 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1303 	}
1304 
1305 out:
1306 	if (copied) {
1307 		tcp_tx_timestamp(sk, sockc.tsflags);
1308 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1309 	}
1310 out_nopush:
1311 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1312 	if (uarg && !msg->msg_ubuf)
1313 		net_zcopy_put(uarg);
1314 	return copied + copied_syn;
1315 
1316 do_error:
1317 	tcp_remove_empty_skb(sk);
1318 
1319 	if (copied + copied_syn)
1320 		goto out;
1321 out_err:
1322 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1323 	if (uarg && !msg->msg_ubuf)
1324 		net_zcopy_put_abort(uarg, true);
1325 	err = sk_stream_error(sk, flags, err);
1326 	/* make sure we wake any epoll edge trigger waiter */
1327 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1328 		sk->sk_write_space(sk);
1329 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1330 	}
1331 	return err;
1332 }
1333 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1334 
1335 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1336 {
1337 	int ret;
1338 
1339 	lock_sock(sk);
1340 	ret = tcp_sendmsg_locked(sk, msg, size);
1341 	release_sock(sk);
1342 
1343 	return ret;
1344 }
1345 EXPORT_SYMBOL(tcp_sendmsg);
1346 
1347 void tcp_splice_eof(struct socket *sock)
1348 {
1349 	struct sock *sk = sock->sk;
1350 	struct tcp_sock *tp = tcp_sk(sk);
1351 	int mss_now, size_goal;
1352 
1353 	if (!tcp_write_queue_tail(sk))
1354 		return;
1355 
1356 	lock_sock(sk);
1357 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1358 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1359 	release_sock(sk);
1360 }
1361 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1362 
1363 /*
1364  *	Handle reading urgent data. BSD has very simple semantics for
1365  *	this, no blocking and very strange errors 8)
1366  */
1367 
1368 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1369 {
1370 	struct tcp_sock *tp = tcp_sk(sk);
1371 
1372 	/* No URG data to read. */
1373 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1374 	    tp->urg_data == TCP_URG_READ)
1375 		return -EINVAL;	/* Yes this is right ! */
1376 
1377 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1378 		return -ENOTCONN;
1379 
1380 	if (tp->urg_data & TCP_URG_VALID) {
1381 		int err = 0;
1382 		char c = tp->urg_data;
1383 
1384 		if (!(flags & MSG_PEEK))
1385 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1386 
1387 		/* Read urgent data. */
1388 		msg->msg_flags |= MSG_OOB;
1389 
1390 		if (len > 0) {
1391 			if (!(flags & MSG_TRUNC))
1392 				err = memcpy_to_msg(msg, &c, 1);
1393 			len = 1;
1394 		} else
1395 			msg->msg_flags |= MSG_TRUNC;
1396 
1397 		return err ? -EFAULT : len;
1398 	}
1399 
1400 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1401 		return 0;
1402 
1403 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1404 	 * the available implementations agree in this case:
1405 	 * this call should never block, independent of the
1406 	 * blocking state of the socket.
1407 	 * Mike <pall@rz.uni-karlsruhe.de>
1408 	 */
1409 	return -EAGAIN;
1410 }
1411 
1412 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1413 {
1414 	struct sk_buff *skb;
1415 	int copied = 0, err = 0;
1416 
1417 	/* XXX -- need to support SO_PEEK_OFF */
1418 
1419 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1420 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1421 		if (err)
1422 			return err;
1423 		copied += skb->len;
1424 	}
1425 
1426 	skb_queue_walk(&sk->sk_write_queue, skb) {
1427 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1428 		if (err)
1429 			break;
1430 
1431 		copied += skb->len;
1432 	}
1433 
1434 	return err ?: copied;
1435 }
1436 
1437 /* Clean up the receive buffer for full frames taken by the user,
1438  * then send an ACK if necessary.  COPIED is the number of bytes
1439  * tcp_recvmsg has given to the user so far, it speeds up the
1440  * calculation of whether or not we must ACK for the sake of
1441  * a window update.
1442  */
1443 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1444 {
1445 	struct tcp_sock *tp = tcp_sk(sk);
1446 	bool time_to_ack = false;
1447 
1448 	if (inet_csk_ack_scheduled(sk)) {
1449 		const struct inet_connection_sock *icsk = inet_csk(sk);
1450 
1451 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1452 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1453 		    /*
1454 		     * If this read emptied read buffer, we send ACK, if
1455 		     * connection is not bidirectional, user drained
1456 		     * receive buffer and there was a small segment
1457 		     * in queue.
1458 		     */
1459 		    (copied > 0 &&
1460 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1461 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1462 		       !inet_csk_in_pingpong_mode(sk))) &&
1463 		      !atomic_read(&sk->sk_rmem_alloc)))
1464 			time_to_ack = true;
1465 	}
1466 
1467 	/* We send an ACK if we can now advertise a non-zero window
1468 	 * which has been raised "significantly".
1469 	 *
1470 	 * Even if window raised up to infinity, do not send window open ACK
1471 	 * in states, where we will not receive more. It is useless.
1472 	 */
1473 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1474 		__u32 rcv_window_now = tcp_receive_window(tp);
1475 
1476 		/* Optimize, __tcp_select_window() is not cheap. */
1477 		if (2*rcv_window_now <= tp->window_clamp) {
1478 			__u32 new_window = __tcp_select_window(sk);
1479 
1480 			/* Send ACK now, if this read freed lots of space
1481 			 * in our buffer. Certainly, new_window is new window.
1482 			 * We can advertise it now, if it is not less than current one.
1483 			 * "Lots" means "at least twice" here.
1484 			 */
1485 			if (new_window && new_window >= 2 * rcv_window_now)
1486 				time_to_ack = true;
1487 		}
1488 	}
1489 	if (time_to_ack)
1490 		tcp_send_ack(sk);
1491 }
1492 
1493 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1494 {
1495 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1496 	struct tcp_sock *tp = tcp_sk(sk);
1497 
1498 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1499 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1500 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1501 	__tcp_cleanup_rbuf(sk, copied);
1502 }
1503 
1504 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1505 {
1506 	__skb_unlink(skb, &sk->sk_receive_queue);
1507 	if (likely(skb->destructor == sock_rfree)) {
1508 		sock_rfree(skb);
1509 		skb->destructor = NULL;
1510 		skb->sk = NULL;
1511 		return skb_attempt_defer_free(skb);
1512 	}
1513 	__kfree_skb(skb);
1514 }
1515 
1516 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1517 {
1518 	struct sk_buff *skb;
1519 	u32 offset;
1520 
1521 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1522 		offset = seq - TCP_SKB_CB(skb)->seq;
1523 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1524 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1525 			offset--;
1526 		}
1527 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1528 			*off = offset;
1529 			return skb;
1530 		}
1531 		/* This looks weird, but this can happen if TCP collapsing
1532 		 * splitted a fat GRO packet, while we released socket lock
1533 		 * in skb_splice_bits()
1534 		 */
1535 		tcp_eat_recv_skb(sk, skb);
1536 	}
1537 	return NULL;
1538 }
1539 EXPORT_SYMBOL(tcp_recv_skb);
1540 
1541 /*
1542  * This routine provides an alternative to tcp_recvmsg() for routines
1543  * that would like to handle copying from skbuffs directly in 'sendfile'
1544  * fashion.
1545  * Note:
1546  *	- It is assumed that the socket was locked by the caller.
1547  *	- The routine does not block.
1548  *	- At present, there is no support for reading OOB data
1549  *	  or for 'peeking' the socket using this routine
1550  *	  (although both would be easy to implement).
1551  */
1552 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1553 		  sk_read_actor_t recv_actor)
1554 {
1555 	struct sk_buff *skb;
1556 	struct tcp_sock *tp = tcp_sk(sk);
1557 	u32 seq = tp->copied_seq;
1558 	u32 offset;
1559 	int copied = 0;
1560 
1561 	if (sk->sk_state == TCP_LISTEN)
1562 		return -ENOTCONN;
1563 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1564 		if (offset < skb->len) {
1565 			int used;
1566 			size_t len;
1567 
1568 			len = skb->len - offset;
1569 			/* Stop reading if we hit a patch of urgent data */
1570 			if (unlikely(tp->urg_data)) {
1571 				u32 urg_offset = tp->urg_seq - seq;
1572 				if (urg_offset < len)
1573 					len = urg_offset;
1574 				if (!len)
1575 					break;
1576 			}
1577 			used = recv_actor(desc, skb, offset, len);
1578 			if (used <= 0) {
1579 				if (!copied)
1580 					copied = used;
1581 				break;
1582 			}
1583 			if (WARN_ON_ONCE(used > len))
1584 				used = len;
1585 			seq += used;
1586 			copied += used;
1587 			offset += used;
1588 
1589 			/* If recv_actor drops the lock (e.g. TCP splice
1590 			 * receive) the skb pointer might be invalid when
1591 			 * getting here: tcp_collapse might have deleted it
1592 			 * while aggregating skbs from the socket queue.
1593 			 */
1594 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1595 			if (!skb)
1596 				break;
1597 			/* TCP coalescing might have appended data to the skb.
1598 			 * Try to splice more frags
1599 			 */
1600 			if (offset + 1 != skb->len)
1601 				continue;
1602 		}
1603 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1604 			tcp_eat_recv_skb(sk, skb);
1605 			++seq;
1606 			break;
1607 		}
1608 		tcp_eat_recv_skb(sk, skb);
1609 		if (!desc->count)
1610 			break;
1611 		WRITE_ONCE(tp->copied_seq, seq);
1612 	}
1613 	WRITE_ONCE(tp->copied_seq, seq);
1614 
1615 	tcp_rcv_space_adjust(sk);
1616 
1617 	/* Clean up data we have read: This will do ACK frames. */
1618 	if (copied > 0) {
1619 		tcp_recv_skb(sk, seq, &offset);
1620 		tcp_cleanup_rbuf(sk, copied);
1621 	}
1622 	return copied;
1623 }
1624 EXPORT_SYMBOL(tcp_read_sock);
1625 
1626 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1627 {
1628 	struct sk_buff *skb;
1629 	int copied = 0;
1630 
1631 	if (sk->sk_state == TCP_LISTEN)
1632 		return -ENOTCONN;
1633 
1634 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1635 		u8 tcp_flags;
1636 		int used;
1637 
1638 		__skb_unlink(skb, &sk->sk_receive_queue);
1639 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1640 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1641 		used = recv_actor(sk, skb);
1642 		if (used < 0) {
1643 			if (!copied)
1644 				copied = used;
1645 			break;
1646 		}
1647 		copied += used;
1648 
1649 		if (tcp_flags & TCPHDR_FIN)
1650 			break;
1651 	}
1652 	return copied;
1653 }
1654 EXPORT_SYMBOL(tcp_read_skb);
1655 
1656 void tcp_read_done(struct sock *sk, size_t len)
1657 {
1658 	struct tcp_sock *tp = tcp_sk(sk);
1659 	u32 seq = tp->copied_seq;
1660 	struct sk_buff *skb;
1661 	size_t left;
1662 	u32 offset;
1663 
1664 	if (sk->sk_state == TCP_LISTEN)
1665 		return;
1666 
1667 	left = len;
1668 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1669 		int used;
1670 
1671 		used = min_t(size_t, skb->len - offset, left);
1672 		seq += used;
1673 		left -= used;
1674 
1675 		if (skb->len > offset + used)
1676 			break;
1677 
1678 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1679 			tcp_eat_recv_skb(sk, skb);
1680 			++seq;
1681 			break;
1682 		}
1683 		tcp_eat_recv_skb(sk, skb);
1684 	}
1685 	WRITE_ONCE(tp->copied_seq, seq);
1686 
1687 	tcp_rcv_space_adjust(sk);
1688 
1689 	/* Clean up data we have read: This will do ACK frames. */
1690 	if (left != len)
1691 		tcp_cleanup_rbuf(sk, len - left);
1692 }
1693 EXPORT_SYMBOL(tcp_read_done);
1694 
1695 int tcp_peek_len(struct socket *sock)
1696 {
1697 	return tcp_inq(sock->sk);
1698 }
1699 EXPORT_SYMBOL(tcp_peek_len);
1700 
1701 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1702 int tcp_set_rcvlowat(struct sock *sk, int val)
1703 {
1704 	int space, cap;
1705 
1706 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1707 		cap = sk->sk_rcvbuf >> 1;
1708 	else
1709 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1710 	val = min(val, cap);
1711 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1712 
1713 	/* Check if we need to signal EPOLLIN right now */
1714 	tcp_data_ready(sk);
1715 
1716 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1717 		return 0;
1718 
1719 	space = tcp_space_from_win(sk, val);
1720 	if (space > sk->sk_rcvbuf) {
1721 		WRITE_ONCE(sk->sk_rcvbuf, space);
1722 		tcp_sk(sk)->window_clamp = val;
1723 	}
1724 	return 0;
1725 }
1726 EXPORT_SYMBOL(tcp_set_rcvlowat);
1727 
1728 void tcp_update_recv_tstamps(struct sk_buff *skb,
1729 			     struct scm_timestamping_internal *tss)
1730 {
1731 	if (skb->tstamp)
1732 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1733 	else
1734 		tss->ts[0] = (struct timespec64) {0};
1735 
1736 	if (skb_hwtstamps(skb)->hwtstamp)
1737 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1738 	else
1739 		tss->ts[2] = (struct timespec64) {0};
1740 }
1741 
1742 #ifdef CONFIG_MMU
1743 static const struct vm_operations_struct tcp_vm_ops = {
1744 };
1745 
1746 int tcp_mmap(struct file *file, struct socket *sock,
1747 	     struct vm_area_struct *vma)
1748 {
1749 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1750 		return -EPERM;
1751 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1752 
1753 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1754 	vm_flags_set(vma, VM_MIXEDMAP);
1755 
1756 	vma->vm_ops = &tcp_vm_ops;
1757 	return 0;
1758 }
1759 EXPORT_SYMBOL(tcp_mmap);
1760 
1761 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1762 				       u32 *offset_frag)
1763 {
1764 	skb_frag_t *frag;
1765 
1766 	if (unlikely(offset_skb >= skb->len))
1767 		return NULL;
1768 
1769 	offset_skb -= skb_headlen(skb);
1770 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1771 		return NULL;
1772 
1773 	frag = skb_shinfo(skb)->frags;
1774 	while (offset_skb) {
1775 		if (skb_frag_size(frag) > offset_skb) {
1776 			*offset_frag = offset_skb;
1777 			return frag;
1778 		}
1779 		offset_skb -= skb_frag_size(frag);
1780 		++frag;
1781 	}
1782 	*offset_frag = 0;
1783 	return frag;
1784 }
1785 
1786 static bool can_map_frag(const skb_frag_t *frag)
1787 {
1788 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1789 }
1790 
1791 static int find_next_mappable_frag(const skb_frag_t *frag,
1792 				   int remaining_in_skb)
1793 {
1794 	int offset = 0;
1795 
1796 	if (likely(can_map_frag(frag)))
1797 		return 0;
1798 
1799 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1800 		offset += skb_frag_size(frag);
1801 		++frag;
1802 	}
1803 	return offset;
1804 }
1805 
1806 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1807 					  struct tcp_zerocopy_receive *zc,
1808 					  struct sk_buff *skb, u32 offset)
1809 {
1810 	u32 frag_offset, partial_frag_remainder = 0;
1811 	int mappable_offset;
1812 	skb_frag_t *frag;
1813 
1814 	/* worst case: skip to next skb. try to improve on this case below */
1815 	zc->recv_skip_hint = skb->len - offset;
1816 
1817 	/* Find the frag containing this offset (and how far into that frag) */
1818 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1819 	if (!frag)
1820 		return;
1821 
1822 	if (frag_offset) {
1823 		struct skb_shared_info *info = skb_shinfo(skb);
1824 
1825 		/* We read part of the last frag, must recvmsg() rest of skb. */
1826 		if (frag == &info->frags[info->nr_frags - 1])
1827 			return;
1828 
1829 		/* Else, we must at least read the remainder in this frag. */
1830 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1831 		zc->recv_skip_hint -= partial_frag_remainder;
1832 		++frag;
1833 	}
1834 
1835 	/* partial_frag_remainder: If part way through a frag, must read rest.
1836 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1837 	 * in partial_frag_remainder.
1838 	 */
1839 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1840 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1841 }
1842 
1843 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1844 			      int flags, struct scm_timestamping_internal *tss,
1845 			      int *cmsg_flags);
1846 static int receive_fallback_to_copy(struct sock *sk,
1847 				    struct tcp_zerocopy_receive *zc, int inq,
1848 				    struct scm_timestamping_internal *tss)
1849 {
1850 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1851 	struct msghdr msg = {};
1852 	int err;
1853 
1854 	zc->length = 0;
1855 	zc->recv_skip_hint = 0;
1856 
1857 	if (copy_address != zc->copybuf_address)
1858 		return -EINVAL;
1859 
1860 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1861 			  &msg.msg_iter);
1862 	if (err)
1863 		return err;
1864 
1865 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1866 				 tss, &zc->msg_flags);
1867 	if (err < 0)
1868 		return err;
1869 
1870 	zc->copybuf_len = err;
1871 	if (likely(zc->copybuf_len)) {
1872 		struct sk_buff *skb;
1873 		u32 offset;
1874 
1875 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1876 		if (skb)
1877 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1878 	}
1879 	return 0;
1880 }
1881 
1882 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1883 				   struct sk_buff *skb, u32 copylen,
1884 				   u32 *offset, u32 *seq)
1885 {
1886 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1887 	struct msghdr msg = {};
1888 	int err;
1889 
1890 	if (copy_address != zc->copybuf_address)
1891 		return -EINVAL;
1892 
1893 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1894 			  &msg.msg_iter);
1895 	if (err)
1896 		return err;
1897 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1898 	if (err)
1899 		return err;
1900 	zc->recv_skip_hint -= copylen;
1901 	*offset += copylen;
1902 	*seq += copylen;
1903 	return (__s32)copylen;
1904 }
1905 
1906 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1907 				  struct sock *sk,
1908 				  struct sk_buff *skb,
1909 				  u32 *seq,
1910 				  s32 copybuf_len,
1911 				  struct scm_timestamping_internal *tss)
1912 {
1913 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1914 
1915 	if (!copylen)
1916 		return 0;
1917 	/* skb is null if inq < PAGE_SIZE. */
1918 	if (skb) {
1919 		offset = *seq - TCP_SKB_CB(skb)->seq;
1920 	} else {
1921 		skb = tcp_recv_skb(sk, *seq, &offset);
1922 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1923 			tcp_update_recv_tstamps(skb, tss);
1924 			zc->msg_flags |= TCP_CMSG_TS;
1925 		}
1926 	}
1927 
1928 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1929 						  seq);
1930 	return zc->copybuf_len < 0 ? 0 : copylen;
1931 }
1932 
1933 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1934 					      struct page **pending_pages,
1935 					      unsigned long pages_remaining,
1936 					      unsigned long *address,
1937 					      u32 *length,
1938 					      u32 *seq,
1939 					      struct tcp_zerocopy_receive *zc,
1940 					      u32 total_bytes_to_map,
1941 					      int err)
1942 {
1943 	/* At least one page did not map. Try zapping if we skipped earlier. */
1944 	if (err == -EBUSY &&
1945 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1946 		u32 maybe_zap_len;
1947 
1948 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1949 				*length + /* Mapped or pending */
1950 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1951 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1952 		err = 0;
1953 	}
1954 
1955 	if (!err) {
1956 		unsigned long leftover_pages = pages_remaining;
1957 		int bytes_mapped;
1958 
1959 		/* We called zap_page_range_single, try to reinsert. */
1960 		err = vm_insert_pages(vma, *address,
1961 				      pending_pages,
1962 				      &pages_remaining);
1963 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1964 		*seq += bytes_mapped;
1965 		*address += bytes_mapped;
1966 	}
1967 	if (err) {
1968 		/* Either we were unable to zap, OR we zapped, retried an
1969 		 * insert, and still had an issue. Either ways, pages_remaining
1970 		 * is the number of pages we were unable to map, and we unroll
1971 		 * some state we speculatively touched before.
1972 		 */
1973 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1974 
1975 		*length -= bytes_not_mapped;
1976 		zc->recv_skip_hint += bytes_not_mapped;
1977 	}
1978 	return err;
1979 }
1980 
1981 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1982 					struct page **pages,
1983 					unsigned int pages_to_map,
1984 					unsigned long *address,
1985 					u32 *length,
1986 					u32 *seq,
1987 					struct tcp_zerocopy_receive *zc,
1988 					u32 total_bytes_to_map)
1989 {
1990 	unsigned long pages_remaining = pages_to_map;
1991 	unsigned int pages_mapped;
1992 	unsigned int bytes_mapped;
1993 	int err;
1994 
1995 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
1996 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
1997 	bytes_mapped = PAGE_SIZE * pages_mapped;
1998 	/* Even if vm_insert_pages fails, it may have partially succeeded in
1999 	 * mapping (some but not all of the pages).
2000 	 */
2001 	*seq += bytes_mapped;
2002 	*address += bytes_mapped;
2003 
2004 	if (likely(!err))
2005 		return 0;
2006 
2007 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2008 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2009 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2010 		err);
2011 }
2012 
2013 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2014 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2015 				      struct tcp_zerocopy_receive *zc,
2016 				      struct scm_timestamping_internal *tss)
2017 {
2018 	unsigned long msg_control_addr;
2019 	struct msghdr cmsg_dummy;
2020 
2021 	msg_control_addr = (unsigned long)zc->msg_control;
2022 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2023 	cmsg_dummy.msg_controllen =
2024 		(__kernel_size_t)zc->msg_controllen;
2025 	cmsg_dummy.msg_flags = in_compat_syscall()
2026 		? MSG_CMSG_COMPAT : 0;
2027 	cmsg_dummy.msg_control_is_user = true;
2028 	zc->msg_flags = 0;
2029 	if (zc->msg_control == msg_control_addr &&
2030 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2031 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2032 		zc->msg_control = (__u64)
2033 			((uintptr_t)cmsg_dummy.msg_control_user);
2034 		zc->msg_controllen =
2035 			(__u64)cmsg_dummy.msg_controllen;
2036 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2037 	}
2038 }
2039 
2040 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2041 					   unsigned long address,
2042 					   bool *mmap_locked)
2043 {
2044 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2045 
2046 	if (vma) {
2047 		if (vma->vm_ops != &tcp_vm_ops) {
2048 			vma_end_read(vma);
2049 			return NULL;
2050 		}
2051 		*mmap_locked = false;
2052 		return vma;
2053 	}
2054 
2055 	mmap_read_lock(mm);
2056 	vma = vma_lookup(mm, address);
2057 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2058 		mmap_read_unlock(mm);
2059 		return NULL;
2060 	}
2061 	*mmap_locked = true;
2062 	return vma;
2063 }
2064 
2065 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2066 static int tcp_zerocopy_receive(struct sock *sk,
2067 				struct tcp_zerocopy_receive *zc,
2068 				struct scm_timestamping_internal *tss)
2069 {
2070 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2071 	unsigned long address = (unsigned long)zc->address;
2072 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2073 	s32 copybuf_len = zc->copybuf_len;
2074 	struct tcp_sock *tp = tcp_sk(sk);
2075 	const skb_frag_t *frags = NULL;
2076 	unsigned int pages_to_map = 0;
2077 	struct vm_area_struct *vma;
2078 	struct sk_buff *skb = NULL;
2079 	u32 seq = tp->copied_seq;
2080 	u32 total_bytes_to_map;
2081 	int inq = tcp_inq(sk);
2082 	bool mmap_locked;
2083 	int ret;
2084 
2085 	zc->copybuf_len = 0;
2086 	zc->msg_flags = 0;
2087 
2088 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2089 		return -EINVAL;
2090 
2091 	if (sk->sk_state == TCP_LISTEN)
2092 		return -ENOTCONN;
2093 
2094 	sock_rps_record_flow(sk);
2095 
2096 	if (inq && inq <= copybuf_len)
2097 		return receive_fallback_to_copy(sk, zc, inq, tss);
2098 
2099 	if (inq < PAGE_SIZE) {
2100 		zc->length = 0;
2101 		zc->recv_skip_hint = inq;
2102 		if (!inq && sock_flag(sk, SOCK_DONE))
2103 			return -EIO;
2104 		return 0;
2105 	}
2106 
2107 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2108 	if (!vma)
2109 		return -EINVAL;
2110 
2111 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2112 	avail_len = min_t(u32, vma_len, inq);
2113 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2114 	if (total_bytes_to_map) {
2115 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2116 			zap_page_range_single(vma, address, total_bytes_to_map,
2117 					      NULL);
2118 		zc->length = total_bytes_to_map;
2119 		zc->recv_skip_hint = 0;
2120 	} else {
2121 		zc->length = avail_len;
2122 		zc->recv_skip_hint = avail_len;
2123 	}
2124 	ret = 0;
2125 	while (length + PAGE_SIZE <= zc->length) {
2126 		int mappable_offset;
2127 		struct page *page;
2128 
2129 		if (zc->recv_skip_hint < PAGE_SIZE) {
2130 			u32 offset_frag;
2131 
2132 			if (skb) {
2133 				if (zc->recv_skip_hint > 0)
2134 					break;
2135 				skb = skb->next;
2136 				offset = seq - TCP_SKB_CB(skb)->seq;
2137 			} else {
2138 				skb = tcp_recv_skb(sk, seq, &offset);
2139 			}
2140 
2141 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2142 				tcp_update_recv_tstamps(skb, tss);
2143 				zc->msg_flags |= TCP_CMSG_TS;
2144 			}
2145 			zc->recv_skip_hint = skb->len - offset;
2146 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2147 			if (!frags || offset_frag)
2148 				break;
2149 		}
2150 
2151 		mappable_offset = find_next_mappable_frag(frags,
2152 							  zc->recv_skip_hint);
2153 		if (mappable_offset) {
2154 			zc->recv_skip_hint = mappable_offset;
2155 			break;
2156 		}
2157 		page = skb_frag_page(frags);
2158 		prefetchw(page);
2159 		pages[pages_to_map++] = page;
2160 		length += PAGE_SIZE;
2161 		zc->recv_skip_hint -= PAGE_SIZE;
2162 		frags++;
2163 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2164 		    zc->recv_skip_hint < PAGE_SIZE) {
2165 			/* Either full batch, or we're about to go to next skb
2166 			 * (and we cannot unroll failed ops across skbs).
2167 			 */
2168 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2169 							   pages_to_map,
2170 							   &address, &length,
2171 							   &seq, zc,
2172 							   total_bytes_to_map);
2173 			if (ret)
2174 				goto out;
2175 			pages_to_map = 0;
2176 		}
2177 	}
2178 	if (pages_to_map) {
2179 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2180 						   &address, &length, &seq,
2181 						   zc, total_bytes_to_map);
2182 	}
2183 out:
2184 	if (mmap_locked)
2185 		mmap_read_unlock(current->mm);
2186 	else
2187 		vma_end_read(vma);
2188 	/* Try to copy straggler data. */
2189 	if (!ret)
2190 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2191 
2192 	if (length + copylen) {
2193 		WRITE_ONCE(tp->copied_seq, seq);
2194 		tcp_rcv_space_adjust(sk);
2195 
2196 		/* Clean up data we have read: This will do ACK frames. */
2197 		tcp_recv_skb(sk, seq, &offset);
2198 		tcp_cleanup_rbuf(sk, length + copylen);
2199 		ret = 0;
2200 		if (length == zc->length)
2201 			zc->recv_skip_hint = 0;
2202 	} else {
2203 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2204 			ret = -EIO;
2205 	}
2206 	zc->length = length;
2207 	return ret;
2208 }
2209 #endif
2210 
2211 /* Similar to __sock_recv_timestamp, but does not require an skb */
2212 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2213 			struct scm_timestamping_internal *tss)
2214 {
2215 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2216 	bool has_timestamping = false;
2217 
2218 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2219 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2220 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2221 				if (new_tstamp) {
2222 					struct __kernel_timespec kts = {
2223 						.tv_sec = tss->ts[0].tv_sec,
2224 						.tv_nsec = tss->ts[0].tv_nsec,
2225 					};
2226 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2227 						 sizeof(kts), &kts);
2228 				} else {
2229 					struct __kernel_old_timespec ts_old = {
2230 						.tv_sec = tss->ts[0].tv_sec,
2231 						.tv_nsec = tss->ts[0].tv_nsec,
2232 					};
2233 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2234 						 sizeof(ts_old), &ts_old);
2235 				}
2236 			} else {
2237 				if (new_tstamp) {
2238 					struct __kernel_sock_timeval stv = {
2239 						.tv_sec = tss->ts[0].tv_sec,
2240 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2241 					};
2242 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2243 						 sizeof(stv), &stv);
2244 				} else {
2245 					struct __kernel_old_timeval tv = {
2246 						.tv_sec = tss->ts[0].tv_sec,
2247 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2248 					};
2249 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2250 						 sizeof(tv), &tv);
2251 				}
2252 			}
2253 		}
2254 
2255 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2256 			has_timestamping = true;
2257 		else
2258 			tss->ts[0] = (struct timespec64) {0};
2259 	}
2260 
2261 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2262 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2263 			has_timestamping = true;
2264 		else
2265 			tss->ts[2] = (struct timespec64) {0};
2266 	}
2267 
2268 	if (has_timestamping) {
2269 		tss->ts[1] = (struct timespec64) {0};
2270 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2271 			put_cmsg_scm_timestamping64(msg, tss);
2272 		else
2273 			put_cmsg_scm_timestamping(msg, tss);
2274 	}
2275 }
2276 
2277 static int tcp_inq_hint(struct sock *sk)
2278 {
2279 	const struct tcp_sock *tp = tcp_sk(sk);
2280 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2281 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2282 	int inq;
2283 
2284 	inq = rcv_nxt - copied_seq;
2285 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2286 		lock_sock(sk);
2287 		inq = tp->rcv_nxt - tp->copied_seq;
2288 		release_sock(sk);
2289 	}
2290 	/* After receiving a FIN, tell the user-space to continue reading
2291 	 * by returning a non-zero inq.
2292 	 */
2293 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2294 		inq = 1;
2295 	return inq;
2296 }
2297 
2298 /*
2299  *	This routine copies from a sock struct into the user buffer.
2300  *
2301  *	Technical note: in 2.3 we work on _locked_ socket, so that
2302  *	tricks with *seq access order and skb->users are not required.
2303  *	Probably, code can be easily improved even more.
2304  */
2305 
2306 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2307 			      int flags, struct scm_timestamping_internal *tss,
2308 			      int *cmsg_flags)
2309 {
2310 	struct tcp_sock *tp = tcp_sk(sk);
2311 	int copied = 0;
2312 	u32 peek_seq;
2313 	u32 *seq;
2314 	unsigned long used;
2315 	int err;
2316 	int target;		/* Read at least this many bytes */
2317 	long timeo;
2318 	struct sk_buff *skb, *last;
2319 	u32 urg_hole = 0;
2320 
2321 	err = -ENOTCONN;
2322 	if (sk->sk_state == TCP_LISTEN)
2323 		goto out;
2324 
2325 	if (tp->recvmsg_inq) {
2326 		*cmsg_flags = TCP_CMSG_INQ;
2327 		msg->msg_get_inq = 1;
2328 	}
2329 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2330 
2331 	/* Urgent data needs to be handled specially. */
2332 	if (flags & MSG_OOB)
2333 		goto recv_urg;
2334 
2335 	if (unlikely(tp->repair)) {
2336 		err = -EPERM;
2337 		if (!(flags & MSG_PEEK))
2338 			goto out;
2339 
2340 		if (tp->repair_queue == TCP_SEND_QUEUE)
2341 			goto recv_sndq;
2342 
2343 		err = -EINVAL;
2344 		if (tp->repair_queue == TCP_NO_QUEUE)
2345 			goto out;
2346 
2347 		/* 'common' recv queue MSG_PEEK-ing */
2348 	}
2349 
2350 	seq = &tp->copied_seq;
2351 	if (flags & MSG_PEEK) {
2352 		peek_seq = tp->copied_seq;
2353 		seq = &peek_seq;
2354 	}
2355 
2356 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2357 
2358 	do {
2359 		u32 offset;
2360 
2361 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2362 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2363 			if (copied)
2364 				break;
2365 			if (signal_pending(current)) {
2366 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2367 				break;
2368 			}
2369 		}
2370 
2371 		/* Next get a buffer. */
2372 
2373 		last = skb_peek_tail(&sk->sk_receive_queue);
2374 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2375 			last = skb;
2376 			/* Now that we have two receive queues this
2377 			 * shouldn't happen.
2378 			 */
2379 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2380 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2381 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2382 				 flags))
2383 				break;
2384 
2385 			offset = *seq - TCP_SKB_CB(skb)->seq;
2386 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2387 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2388 				offset--;
2389 			}
2390 			if (offset < skb->len)
2391 				goto found_ok_skb;
2392 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2393 				goto found_fin_ok;
2394 			WARN(!(flags & MSG_PEEK),
2395 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2396 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2397 		}
2398 
2399 		/* Well, if we have backlog, try to process it now yet. */
2400 
2401 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2402 			break;
2403 
2404 		if (copied) {
2405 			if (!timeo ||
2406 			    sk->sk_err ||
2407 			    sk->sk_state == TCP_CLOSE ||
2408 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2409 			    signal_pending(current))
2410 				break;
2411 		} else {
2412 			if (sock_flag(sk, SOCK_DONE))
2413 				break;
2414 
2415 			if (sk->sk_err) {
2416 				copied = sock_error(sk);
2417 				break;
2418 			}
2419 
2420 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2421 				break;
2422 
2423 			if (sk->sk_state == TCP_CLOSE) {
2424 				/* This occurs when user tries to read
2425 				 * from never connected socket.
2426 				 */
2427 				copied = -ENOTCONN;
2428 				break;
2429 			}
2430 
2431 			if (!timeo) {
2432 				copied = -EAGAIN;
2433 				break;
2434 			}
2435 
2436 			if (signal_pending(current)) {
2437 				copied = sock_intr_errno(timeo);
2438 				break;
2439 			}
2440 		}
2441 
2442 		if (copied >= target) {
2443 			/* Do not sleep, just process backlog. */
2444 			__sk_flush_backlog(sk);
2445 		} else {
2446 			tcp_cleanup_rbuf(sk, copied);
2447 			err = sk_wait_data(sk, &timeo, last);
2448 			if (err < 0) {
2449 				err = copied ? : err;
2450 				goto out;
2451 			}
2452 		}
2453 
2454 		if ((flags & MSG_PEEK) &&
2455 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2456 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2457 					    current->comm,
2458 					    task_pid_nr(current));
2459 			peek_seq = tp->copied_seq;
2460 		}
2461 		continue;
2462 
2463 found_ok_skb:
2464 		/* Ok so how much can we use? */
2465 		used = skb->len - offset;
2466 		if (len < used)
2467 			used = len;
2468 
2469 		/* Do we have urgent data here? */
2470 		if (unlikely(tp->urg_data)) {
2471 			u32 urg_offset = tp->urg_seq - *seq;
2472 			if (urg_offset < used) {
2473 				if (!urg_offset) {
2474 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2475 						WRITE_ONCE(*seq, *seq + 1);
2476 						urg_hole++;
2477 						offset++;
2478 						used--;
2479 						if (!used)
2480 							goto skip_copy;
2481 					}
2482 				} else
2483 					used = urg_offset;
2484 			}
2485 		}
2486 
2487 		if (!(flags & MSG_TRUNC)) {
2488 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2489 			if (err) {
2490 				/* Exception. Bailout! */
2491 				if (!copied)
2492 					copied = -EFAULT;
2493 				break;
2494 			}
2495 		}
2496 
2497 		WRITE_ONCE(*seq, *seq + used);
2498 		copied += used;
2499 		len -= used;
2500 
2501 		tcp_rcv_space_adjust(sk);
2502 
2503 skip_copy:
2504 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2505 			WRITE_ONCE(tp->urg_data, 0);
2506 			tcp_fast_path_check(sk);
2507 		}
2508 
2509 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2510 			tcp_update_recv_tstamps(skb, tss);
2511 			*cmsg_flags |= TCP_CMSG_TS;
2512 		}
2513 
2514 		if (used + offset < skb->len)
2515 			continue;
2516 
2517 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2518 			goto found_fin_ok;
2519 		if (!(flags & MSG_PEEK))
2520 			tcp_eat_recv_skb(sk, skb);
2521 		continue;
2522 
2523 found_fin_ok:
2524 		/* Process the FIN. */
2525 		WRITE_ONCE(*seq, *seq + 1);
2526 		if (!(flags & MSG_PEEK))
2527 			tcp_eat_recv_skb(sk, skb);
2528 		break;
2529 	} while (len > 0);
2530 
2531 	/* According to UNIX98, msg_name/msg_namelen are ignored
2532 	 * on connected socket. I was just happy when found this 8) --ANK
2533 	 */
2534 
2535 	/* Clean up data we have read: This will do ACK frames. */
2536 	tcp_cleanup_rbuf(sk, copied);
2537 	return copied;
2538 
2539 out:
2540 	return err;
2541 
2542 recv_urg:
2543 	err = tcp_recv_urg(sk, msg, len, flags);
2544 	goto out;
2545 
2546 recv_sndq:
2547 	err = tcp_peek_sndq(sk, msg, len);
2548 	goto out;
2549 }
2550 
2551 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2552 		int *addr_len)
2553 {
2554 	int cmsg_flags = 0, ret;
2555 	struct scm_timestamping_internal tss;
2556 
2557 	if (unlikely(flags & MSG_ERRQUEUE))
2558 		return inet_recv_error(sk, msg, len, addr_len);
2559 
2560 	if (sk_can_busy_loop(sk) &&
2561 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2562 	    sk->sk_state == TCP_ESTABLISHED)
2563 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2564 
2565 	lock_sock(sk);
2566 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2567 	release_sock(sk);
2568 
2569 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2570 		if (cmsg_flags & TCP_CMSG_TS)
2571 			tcp_recv_timestamp(msg, sk, &tss);
2572 		if (msg->msg_get_inq) {
2573 			msg->msg_inq = tcp_inq_hint(sk);
2574 			if (cmsg_flags & TCP_CMSG_INQ)
2575 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2576 					 sizeof(msg->msg_inq), &msg->msg_inq);
2577 		}
2578 	}
2579 	return ret;
2580 }
2581 EXPORT_SYMBOL(tcp_recvmsg);
2582 
2583 void tcp_set_state(struct sock *sk, int state)
2584 {
2585 	int oldstate = sk->sk_state;
2586 
2587 	/* We defined a new enum for TCP states that are exported in BPF
2588 	 * so as not force the internal TCP states to be frozen. The
2589 	 * following checks will detect if an internal state value ever
2590 	 * differs from the BPF value. If this ever happens, then we will
2591 	 * need to remap the internal value to the BPF value before calling
2592 	 * tcp_call_bpf_2arg.
2593 	 */
2594 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2595 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2596 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2597 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2598 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2599 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2600 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2601 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2602 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2603 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2604 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2605 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2606 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2607 
2608 	/* bpf uapi header bpf.h defines an anonymous enum with values
2609 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2610 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2611 	 * But clang built vmlinux does not have this enum in DWARF
2612 	 * since clang removes the above code before generating IR/debuginfo.
2613 	 * Let us explicitly emit the type debuginfo to ensure the
2614 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2615 	 * regardless of which compiler is used.
2616 	 */
2617 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2618 
2619 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2620 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2621 
2622 	switch (state) {
2623 	case TCP_ESTABLISHED:
2624 		if (oldstate != TCP_ESTABLISHED)
2625 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2626 		break;
2627 
2628 	case TCP_CLOSE:
2629 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2630 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2631 
2632 		sk->sk_prot->unhash(sk);
2633 		if (inet_csk(sk)->icsk_bind_hash &&
2634 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2635 			inet_put_port(sk);
2636 		fallthrough;
2637 	default:
2638 		if (oldstate == TCP_ESTABLISHED)
2639 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2640 	}
2641 
2642 	/* Change state AFTER socket is unhashed to avoid closed
2643 	 * socket sitting in hash tables.
2644 	 */
2645 	inet_sk_state_store(sk, state);
2646 }
2647 EXPORT_SYMBOL_GPL(tcp_set_state);
2648 
2649 /*
2650  *	State processing on a close. This implements the state shift for
2651  *	sending our FIN frame. Note that we only send a FIN for some
2652  *	states. A shutdown() may have already sent the FIN, or we may be
2653  *	closed.
2654  */
2655 
2656 static const unsigned char new_state[16] = {
2657   /* current state:        new state:      action:	*/
2658   [0 /* (Invalid) */]	= TCP_CLOSE,
2659   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2660   [TCP_SYN_SENT]	= TCP_CLOSE,
2661   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2662   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2663   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2664   [TCP_TIME_WAIT]	= TCP_CLOSE,
2665   [TCP_CLOSE]		= TCP_CLOSE,
2666   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2667   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2668   [TCP_LISTEN]		= TCP_CLOSE,
2669   [TCP_CLOSING]		= TCP_CLOSING,
2670   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2671 };
2672 
2673 static int tcp_close_state(struct sock *sk)
2674 {
2675 	int next = (int)new_state[sk->sk_state];
2676 	int ns = next & TCP_STATE_MASK;
2677 
2678 	tcp_set_state(sk, ns);
2679 
2680 	return next & TCP_ACTION_FIN;
2681 }
2682 
2683 /*
2684  *	Shutdown the sending side of a connection. Much like close except
2685  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2686  */
2687 
2688 void tcp_shutdown(struct sock *sk, int how)
2689 {
2690 	/*	We need to grab some memory, and put together a FIN,
2691 	 *	and then put it into the queue to be sent.
2692 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2693 	 */
2694 	if (!(how & SEND_SHUTDOWN))
2695 		return;
2696 
2697 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2698 	if ((1 << sk->sk_state) &
2699 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2700 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2701 		/* Clear out any half completed packets.  FIN if needed. */
2702 		if (tcp_close_state(sk))
2703 			tcp_send_fin(sk);
2704 	}
2705 }
2706 EXPORT_SYMBOL(tcp_shutdown);
2707 
2708 int tcp_orphan_count_sum(void)
2709 {
2710 	int i, total = 0;
2711 
2712 	for_each_possible_cpu(i)
2713 		total += per_cpu(tcp_orphan_count, i);
2714 
2715 	return max(total, 0);
2716 }
2717 
2718 static int tcp_orphan_cache;
2719 static struct timer_list tcp_orphan_timer;
2720 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2721 
2722 static void tcp_orphan_update(struct timer_list *unused)
2723 {
2724 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2725 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2726 }
2727 
2728 static bool tcp_too_many_orphans(int shift)
2729 {
2730 	return READ_ONCE(tcp_orphan_cache) << shift >
2731 		READ_ONCE(sysctl_tcp_max_orphans);
2732 }
2733 
2734 bool tcp_check_oom(struct sock *sk, int shift)
2735 {
2736 	bool too_many_orphans, out_of_socket_memory;
2737 
2738 	too_many_orphans = tcp_too_many_orphans(shift);
2739 	out_of_socket_memory = tcp_out_of_memory(sk);
2740 
2741 	if (too_many_orphans)
2742 		net_info_ratelimited("too many orphaned sockets\n");
2743 	if (out_of_socket_memory)
2744 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2745 	return too_many_orphans || out_of_socket_memory;
2746 }
2747 
2748 void __tcp_close(struct sock *sk, long timeout)
2749 {
2750 	struct sk_buff *skb;
2751 	int data_was_unread = 0;
2752 	int state;
2753 
2754 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2755 
2756 	if (sk->sk_state == TCP_LISTEN) {
2757 		tcp_set_state(sk, TCP_CLOSE);
2758 
2759 		/* Special case. */
2760 		inet_csk_listen_stop(sk);
2761 
2762 		goto adjudge_to_death;
2763 	}
2764 
2765 	/*  We need to flush the recv. buffs.  We do this only on the
2766 	 *  descriptor close, not protocol-sourced closes, because the
2767 	 *  reader process may not have drained the data yet!
2768 	 */
2769 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2770 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2771 
2772 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2773 			len--;
2774 		data_was_unread += len;
2775 		__kfree_skb(skb);
2776 	}
2777 
2778 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2779 	if (sk->sk_state == TCP_CLOSE)
2780 		goto adjudge_to_death;
2781 
2782 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2783 	 * data was lost. To witness the awful effects of the old behavior of
2784 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2785 	 * GET in an FTP client, suspend the process, wait for the client to
2786 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2787 	 * Note: timeout is always zero in such a case.
2788 	 */
2789 	if (unlikely(tcp_sk(sk)->repair)) {
2790 		sk->sk_prot->disconnect(sk, 0);
2791 	} else if (data_was_unread) {
2792 		/* Unread data was tossed, zap the connection. */
2793 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2794 		tcp_set_state(sk, TCP_CLOSE);
2795 		tcp_send_active_reset(sk, sk->sk_allocation);
2796 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2797 		/* Check zero linger _after_ checking for unread data. */
2798 		sk->sk_prot->disconnect(sk, 0);
2799 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2800 	} else if (tcp_close_state(sk)) {
2801 		/* We FIN if the application ate all the data before
2802 		 * zapping the connection.
2803 		 */
2804 
2805 		/* RED-PEN. Formally speaking, we have broken TCP state
2806 		 * machine. State transitions:
2807 		 *
2808 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2809 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2810 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2811 		 *
2812 		 * are legal only when FIN has been sent (i.e. in window),
2813 		 * rather than queued out of window. Purists blame.
2814 		 *
2815 		 * F.e. "RFC state" is ESTABLISHED,
2816 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2817 		 *
2818 		 * The visible declinations are that sometimes
2819 		 * we enter time-wait state, when it is not required really
2820 		 * (harmless), do not send active resets, when they are
2821 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2822 		 * they look as CLOSING or LAST_ACK for Linux)
2823 		 * Probably, I missed some more holelets.
2824 		 * 						--ANK
2825 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2826 		 * in a single packet! (May consider it later but will
2827 		 * probably need API support or TCP_CORK SYN-ACK until
2828 		 * data is written and socket is closed.)
2829 		 */
2830 		tcp_send_fin(sk);
2831 	}
2832 
2833 	sk_stream_wait_close(sk, timeout);
2834 
2835 adjudge_to_death:
2836 	state = sk->sk_state;
2837 	sock_hold(sk);
2838 	sock_orphan(sk);
2839 
2840 	local_bh_disable();
2841 	bh_lock_sock(sk);
2842 	/* remove backlog if any, without releasing ownership. */
2843 	__release_sock(sk);
2844 
2845 	this_cpu_inc(tcp_orphan_count);
2846 
2847 	/* Have we already been destroyed by a softirq or backlog? */
2848 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2849 		goto out;
2850 
2851 	/*	This is a (useful) BSD violating of the RFC. There is a
2852 	 *	problem with TCP as specified in that the other end could
2853 	 *	keep a socket open forever with no application left this end.
2854 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2855 	 *	our end. If they send after that then tough - BUT: long enough
2856 	 *	that we won't make the old 4*rto = almost no time - whoops
2857 	 *	reset mistake.
2858 	 *
2859 	 *	Nope, it was not mistake. It is really desired behaviour
2860 	 *	f.e. on http servers, when such sockets are useless, but
2861 	 *	consume significant resources. Let's do it with special
2862 	 *	linger2	option.					--ANK
2863 	 */
2864 
2865 	if (sk->sk_state == TCP_FIN_WAIT2) {
2866 		struct tcp_sock *tp = tcp_sk(sk);
2867 		if (READ_ONCE(tp->linger2) < 0) {
2868 			tcp_set_state(sk, TCP_CLOSE);
2869 			tcp_send_active_reset(sk, GFP_ATOMIC);
2870 			__NET_INC_STATS(sock_net(sk),
2871 					LINUX_MIB_TCPABORTONLINGER);
2872 		} else {
2873 			const int tmo = tcp_fin_time(sk);
2874 
2875 			if (tmo > TCP_TIMEWAIT_LEN) {
2876 				inet_csk_reset_keepalive_timer(sk,
2877 						tmo - TCP_TIMEWAIT_LEN);
2878 			} else {
2879 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2880 				goto out;
2881 			}
2882 		}
2883 	}
2884 	if (sk->sk_state != TCP_CLOSE) {
2885 		if (tcp_check_oom(sk, 0)) {
2886 			tcp_set_state(sk, TCP_CLOSE);
2887 			tcp_send_active_reset(sk, GFP_ATOMIC);
2888 			__NET_INC_STATS(sock_net(sk),
2889 					LINUX_MIB_TCPABORTONMEMORY);
2890 		} else if (!check_net(sock_net(sk))) {
2891 			/* Not possible to send reset; just close */
2892 			tcp_set_state(sk, TCP_CLOSE);
2893 		}
2894 	}
2895 
2896 	if (sk->sk_state == TCP_CLOSE) {
2897 		struct request_sock *req;
2898 
2899 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2900 						lockdep_sock_is_held(sk));
2901 		/* We could get here with a non-NULL req if the socket is
2902 		 * aborted (e.g., closed with unread data) before 3WHS
2903 		 * finishes.
2904 		 */
2905 		if (req)
2906 			reqsk_fastopen_remove(sk, req, false);
2907 		inet_csk_destroy_sock(sk);
2908 	}
2909 	/* Otherwise, socket is reprieved until protocol close. */
2910 
2911 out:
2912 	bh_unlock_sock(sk);
2913 	local_bh_enable();
2914 }
2915 
2916 void tcp_close(struct sock *sk, long timeout)
2917 {
2918 	lock_sock(sk);
2919 	__tcp_close(sk, timeout);
2920 	release_sock(sk);
2921 	sock_put(sk);
2922 }
2923 EXPORT_SYMBOL(tcp_close);
2924 
2925 /* These states need RST on ABORT according to RFC793 */
2926 
2927 static inline bool tcp_need_reset(int state)
2928 {
2929 	return (1 << state) &
2930 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2931 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2932 }
2933 
2934 static void tcp_rtx_queue_purge(struct sock *sk)
2935 {
2936 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2937 
2938 	tcp_sk(sk)->highest_sack = NULL;
2939 	while (p) {
2940 		struct sk_buff *skb = rb_to_skb(p);
2941 
2942 		p = rb_next(p);
2943 		/* Since we are deleting whole queue, no need to
2944 		 * list_del(&skb->tcp_tsorted_anchor)
2945 		 */
2946 		tcp_rtx_queue_unlink(skb, sk);
2947 		tcp_wmem_free_skb(sk, skb);
2948 	}
2949 }
2950 
2951 void tcp_write_queue_purge(struct sock *sk)
2952 {
2953 	struct sk_buff *skb;
2954 
2955 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2956 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2957 		tcp_skb_tsorted_anchor_cleanup(skb);
2958 		tcp_wmem_free_skb(sk, skb);
2959 	}
2960 	tcp_rtx_queue_purge(sk);
2961 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2962 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2963 	tcp_sk(sk)->packets_out = 0;
2964 	inet_csk(sk)->icsk_backoff = 0;
2965 }
2966 
2967 int tcp_disconnect(struct sock *sk, int flags)
2968 {
2969 	struct inet_sock *inet = inet_sk(sk);
2970 	struct inet_connection_sock *icsk = inet_csk(sk);
2971 	struct tcp_sock *tp = tcp_sk(sk);
2972 	int old_state = sk->sk_state;
2973 	u32 seq;
2974 
2975 	if (old_state != TCP_CLOSE)
2976 		tcp_set_state(sk, TCP_CLOSE);
2977 
2978 	/* ABORT function of RFC793 */
2979 	if (old_state == TCP_LISTEN) {
2980 		inet_csk_listen_stop(sk);
2981 	} else if (unlikely(tp->repair)) {
2982 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
2983 	} else if (tcp_need_reset(old_state) ||
2984 		   (tp->snd_nxt != tp->write_seq &&
2985 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2986 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2987 		 * states
2988 		 */
2989 		tcp_send_active_reset(sk, gfp_any());
2990 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2991 	} else if (old_state == TCP_SYN_SENT)
2992 		WRITE_ONCE(sk->sk_err, ECONNRESET);
2993 
2994 	tcp_clear_xmit_timers(sk);
2995 	__skb_queue_purge(&sk->sk_receive_queue);
2996 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2997 	WRITE_ONCE(tp->urg_data, 0);
2998 	tcp_write_queue_purge(sk);
2999 	tcp_fastopen_active_disable_ofo_check(sk);
3000 	skb_rbtree_purge(&tp->out_of_order_queue);
3001 
3002 	inet->inet_dport = 0;
3003 
3004 	inet_bhash2_reset_saddr(sk);
3005 
3006 	WRITE_ONCE(sk->sk_shutdown, 0);
3007 	sock_reset_flag(sk, SOCK_DONE);
3008 	tp->srtt_us = 0;
3009 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3010 	tp->rcv_rtt_last_tsecr = 0;
3011 
3012 	seq = tp->write_seq + tp->max_window + 2;
3013 	if (!seq)
3014 		seq = 1;
3015 	WRITE_ONCE(tp->write_seq, seq);
3016 
3017 	icsk->icsk_backoff = 0;
3018 	icsk->icsk_probes_out = 0;
3019 	icsk->icsk_probes_tstamp = 0;
3020 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3021 	icsk->icsk_rto_min = TCP_RTO_MIN;
3022 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3023 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3024 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3025 	tp->snd_cwnd_cnt = 0;
3026 	tp->is_cwnd_limited = 0;
3027 	tp->max_packets_out = 0;
3028 	tp->window_clamp = 0;
3029 	tp->delivered = 0;
3030 	tp->delivered_ce = 0;
3031 	if (icsk->icsk_ca_ops->release)
3032 		icsk->icsk_ca_ops->release(sk);
3033 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3034 	icsk->icsk_ca_initialized = 0;
3035 	tcp_set_ca_state(sk, TCP_CA_Open);
3036 	tp->is_sack_reneg = 0;
3037 	tcp_clear_retrans(tp);
3038 	tp->total_retrans = 0;
3039 	inet_csk_delack_init(sk);
3040 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3041 	 * issue in __tcp_select_window()
3042 	 */
3043 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3044 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3045 	__sk_dst_reset(sk);
3046 	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3047 	tcp_saved_syn_free(tp);
3048 	tp->compressed_ack = 0;
3049 	tp->segs_in = 0;
3050 	tp->segs_out = 0;
3051 	tp->bytes_sent = 0;
3052 	tp->bytes_acked = 0;
3053 	tp->bytes_received = 0;
3054 	tp->bytes_retrans = 0;
3055 	tp->data_segs_in = 0;
3056 	tp->data_segs_out = 0;
3057 	tp->duplicate_sack[0].start_seq = 0;
3058 	tp->duplicate_sack[0].end_seq = 0;
3059 	tp->dsack_dups = 0;
3060 	tp->reord_seen = 0;
3061 	tp->retrans_out = 0;
3062 	tp->sacked_out = 0;
3063 	tp->tlp_high_seq = 0;
3064 	tp->last_oow_ack_time = 0;
3065 	tp->plb_rehash = 0;
3066 	/* There's a bubble in the pipe until at least the first ACK. */
3067 	tp->app_limited = ~0U;
3068 	tp->rate_app_limited = 1;
3069 	tp->rack.mstamp = 0;
3070 	tp->rack.advanced = 0;
3071 	tp->rack.reo_wnd_steps = 1;
3072 	tp->rack.last_delivered = 0;
3073 	tp->rack.reo_wnd_persist = 0;
3074 	tp->rack.dsack_seen = 0;
3075 	tp->syn_data_acked = 0;
3076 	tp->rx_opt.saw_tstamp = 0;
3077 	tp->rx_opt.dsack = 0;
3078 	tp->rx_opt.num_sacks = 0;
3079 	tp->rcv_ooopack = 0;
3080 
3081 
3082 	/* Clean up fastopen related fields */
3083 	tcp_free_fastopen_req(tp);
3084 	inet_clear_bit(DEFER_CONNECT, sk);
3085 	tp->fastopen_client_fail = 0;
3086 
3087 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3088 
3089 	if (sk->sk_frag.page) {
3090 		put_page(sk->sk_frag.page);
3091 		sk->sk_frag.page = NULL;
3092 		sk->sk_frag.offset = 0;
3093 	}
3094 	sk_error_report(sk);
3095 	return 0;
3096 }
3097 EXPORT_SYMBOL(tcp_disconnect);
3098 
3099 static inline bool tcp_can_repair_sock(const struct sock *sk)
3100 {
3101 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3102 		(sk->sk_state != TCP_LISTEN);
3103 }
3104 
3105 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3106 {
3107 	struct tcp_repair_window opt;
3108 
3109 	if (!tp->repair)
3110 		return -EPERM;
3111 
3112 	if (len != sizeof(opt))
3113 		return -EINVAL;
3114 
3115 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3116 		return -EFAULT;
3117 
3118 	if (opt.max_window < opt.snd_wnd)
3119 		return -EINVAL;
3120 
3121 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3122 		return -EINVAL;
3123 
3124 	if (after(opt.rcv_wup, tp->rcv_nxt))
3125 		return -EINVAL;
3126 
3127 	tp->snd_wl1	= opt.snd_wl1;
3128 	tp->snd_wnd	= opt.snd_wnd;
3129 	tp->max_window	= opt.max_window;
3130 
3131 	tp->rcv_wnd	= opt.rcv_wnd;
3132 	tp->rcv_wup	= opt.rcv_wup;
3133 
3134 	return 0;
3135 }
3136 
3137 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3138 		unsigned int len)
3139 {
3140 	struct tcp_sock *tp = tcp_sk(sk);
3141 	struct tcp_repair_opt opt;
3142 	size_t offset = 0;
3143 
3144 	while (len >= sizeof(opt)) {
3145 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3146 			return -EFAULT;
3147 
3148 		offset += sizeof(opt);
3149 		len -= sizeof(opt);
3150 
3151 		switch (opt.opt_code) {
3152 		case TCPOPT_MSS:
3153 			tp->rx_opt.mss_clamp = opt.opt_val;
3154 			tcp_mtup_init(sk);
3155 			break;
3156 		case TCPOPT_WINDOW:
3157 			{
3158 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3159 				u16 rcv_wscale = opt.opt_val >> 16;
3160 
3161 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3162 					return -EFBIG;
3163 
3164 				tp->rx_opt.snd_wscale = snd_wscale;
3165 				tp->rx_opt.rcv_wscale = rcv_wscale;
3166 				tp->rx_opt.wscale_ok = 1;
3167 			}
3168 			break;
3169 		case TCPOPT_SACK_PERM:
3170 			if (opt.opt_val != 0)
3171 				return -EINVAL;
3172 
3173 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3174 			break;
3175 		case TCPOPT_TIMESTAMP:
3176 			if (opt.opt_val != 0)
3177 				return -EINVAL;
3178 
3179 			tp->rx_opt.tstamp_ok = 1;
3180 			break;
3181 		}
3182 	}
3183 
3184 	return 0;
3185 }
3186 
3187 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3188 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3189 
3190 static void tcp_enable_tx_delay(void)
3191 {
3192 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3193 		static int __tcp_tx_delay_enabled = 0;
3194 
3195 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3196 			static_branch_enable(&tcp_tx_delay_enabled);
3197 			pr_info("TCP_TX_DELAY enabled\n");
3198 		}
3199 	}
3200 }
3201 
3202 /* When set indicates to always queue non-full frames.  Later the user clears
3203  * this option and we transmit any pending partial frames in the queue.  This is
3204  * meant to be used alongside sendfile() to get properly filled frames when the
3205  * user (for example) must write out headers with a write() call first and then
3206  * use sendfile to send out the data parts.
3207  *
3208  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3209  * TCP_NODELAY.
3210  */
3211 void __tcp_sock_set_cork(struct sock *sk, bool on)
3212 {
3213 	struct tcp_sock *tp = tcp_sk(sk);
3214 
3215 	if (on) {
3216 		tp->nonagle |= TCP_NAGLE_CORK;
3217 	} else {
3218 		tp->nonagle &= ~TCP_NAGLE_CORK;
3219 		if (tp->nonagle & TCP_NAGLE_OFF)
3220 			tp->nonagle |= TCP_NAGLE_PUSH;
3221 		tcp_push_pending_frames(sk);
3222 	}
3223 }
3224 
3225 void tcp_sock_set_cork(struct sock *sk, bool on)
3226 {
3227 	lock_sock(sk);
3228 	__tcp_sock_set_cork(sk, on);
3229 	release_sock(sk);
3230 }
3231 EXPORT_SYMBOL(tcp_sock_set_cork);
3232 
3233 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3234  * remembered, but it is not activated until cork is cleared.
3235  *
3236  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3237  * even TCP_CORK for currently queued segments.
3238  */
3239 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3240 {
3241 	if (on) {
3242 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3243 		tcp_push_pending_frames(sk);
3244 	} else {
3245 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3246 	}
3247 }
3248 
3249 void tcp_sock_set_nodelay(struct sock *sk)
3250 {
3251 	lock_sock(sk);
3252 	__tcp_sock_set_nodelay(sk, true);
3253 	release_sock(sk);
3254 }
3255 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3256 
3257 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3258 {
3259 	if (!val) {
3260 		inet_csk_enter_pingpong_mode(sk);
3261 		return;
3262 	}
3263 
3264 	inet_csk_exit_pingpong_mode(sk);
3265 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3266 	    inet_csk_ack_scheduled(sk)) {
3267 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3268 		tcp_cleanup_rbuf(sk, 1);
3269 		if (!(val & 1))
3270 			inet_csk_enter_pingpong_mode(sk);
3271 	}
3272 }
3273 
3274 void tcp_sock_set_quickack(struct sock *sk, int val)
3275 {
3276 	lock_sock(sk);
3277 	__tcp_sock_set_quickack(sk, val);
3278 	release_sock(sk);
3279 }
3280 EXPORT_SYMBOL(tcp_sock_set_quickack);
3281 
3282 int tcp_sock_set_syncnt(struct sock *sk, int val)
3283 {
3284 	if (val < 1 || val > MAX_TCP_SYNCNT)
3285 		return -EINVAL;
3286 
3287 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3288 	return 0;
3289 }
3290 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3291 
3292 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3293 {
3294 	/* Cap the max time in ms TCP will retry or probe the window
3295 	 * before giving up and aborting (ETIMEDOUT) a connection.
3296 	 */
3297 	if (val < 0)
3298 		return -EINVAL;
3299 
3300 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3301 	return 0;
3302 }
3303 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3304 
3305 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3306 {
3307 	struct tcp_sock *tp = tcp_sk(sk);
3308 
3309 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3310 		return -EINVAL;
3311 
3312 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3313 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3314 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3315 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3316 		u32 elapsed = keepalive_time_elapsed(tp);
3317 
3318 		if (tp->keepalive_time > elapsed)
3319 			elapsed = tp->keepalive_time - elapsed;
3320 		else
3321 			elapsed = 0;
3322 		inet_csk_reset_keepalive_timer(sk, elapsed);
3323 	}
3324 
3325 	return 0;
3326 }
3327 
3328 int tcp_sock_set_keepidle(struct sock *sk, int val)
3329 {
3330 	int err;
3331 
3332 	lock_sock(sk);
3333 	err = tcp_sock_set_keepidle_locked(sk, val);
3334 	release_sock(sk);
3335 	return err;
3336 }
3337 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3338 
3339 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3340 {
3341 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3342 		return -EINVAL;
3343 
3344 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3345 	return 0;
3346 }
3347 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3348 
3349 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3350 {
3351 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3352 		return -EINVAL;
3353 
3354 	/* Paired with READ_ONCE() in keepalive_probes() */
3355 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3356 	return 0;
3357 }
3358 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3359 
3360 int tcp_set_window_clamp(struct sock *sk, int val)
3361 {
3362 	struct tcp_sock *tp = tcp_sk(sk);
3363 
3364 	if (!val) {
3365 		if (sk->sk_state != TCP_CLOSE)
3366 			return -EINVAL;
3367 		tp->window_clamp = 0;
3368 	} else {
3369 		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3370 		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3371 						SOCK_MIN_RCVBUF / 2 : val;
3372 
3373 		if (new_window_clamp == old_window_clamp)
3374 			return 0;
3375 
3376 		tp->window_clamp = new_window_clamp;
3377 		if (new_window_clamp < old_window_clamp) {
3378 			/* need to apply the reserved mem provisioning only
3379 			 * when shrinking the window clamp
3380 			 */
3381 			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3382 
3383 		} else {
3384 			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3385 			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3386 					       tp->rcv_ssthresh);
3387 		}
3388 	}
3389 	return 0;
3390 }
3391 
3392 /*
3393  *	Socket option code for TCP.
3394  */
3395 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3396 		      sockptr_t optval, unsigned int optlen)
3397 {
3398 	struct tcp_sock *tp = tcp_sk(sk);
3399 	struct inet_connection_sock *icsk = inet_csk(sk);
3400 	struct net *net = sock_net(sk);
3401 	int val;
3402 	int err = 0;
3403 
3404 	/* These are data/string values, all the others are ints */
3405 	switch (optname) {
3406 	case TCP_CONGESTION: {
3407 		char name[TCP_CA_NAME_MAX];
3408 
3409 		if (optlen < 1)
3410 			return -EINVAL;
3411 
3412 		val = strncpy_from_sockptr(name, optval,
3413 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3414 		if (val < 0)
3415 			return -EFAULT;
3416 		name[val] = 0;
3417 
3418 		sockopt_lock_sock(sk);
3419 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3420 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3421 								    CAP_NET_ADMIN));
3422 		sockopt_release_sock(sk);
3423 		return err;
3424 	}
3425 	case TCP_ULP: {
3426 		char name[TCP_ULP_NAME_MAX];
3427 
3428 		if (optlen < 1)
3429 			return -EINVAL;
3430 
3431 		val = strncpy_from_sockptr(name, optval,
3432 					min_t(long, TCP_ULP_NAME_MAX - 1,
3433 					      optlen));
3434 		if (val < 0)
3435 			return -EFAULT;
3436 		name[val] = 0;
3437 
3438 		sockopt_lock_sock(sk);
3439 		err = tcp_set_ulp(sk, name);
3440 		sockopt_release_sock(sk);
3441 		return err;
3442 	}
3443 	case TCP_FASTOPEN_KEY: {
3444 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3445 		__u8 *backup_key = NULL;
3446 
3447 		/* Allow a backup key as well to facilitate key rotation
3448 		 * First key is the active one.
3449 		 */
3450 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3451 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3452 			return -EINVAL;
3453 
3454 		if (copy_from_sockptr(key, optval, optlen))
3455 			return -EFAULT;
3456 
3457 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3458 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3459 
3460 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3461 	}
3462 	default:
3463 		/* fallthru */
3464 		break;
3465 	}
3466 
3467 	if (optlen < sizeof(int))
3468 		return -EINVAL;
3469 
3470 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3471 		return -EFAULT;
3472 
3473 	/* Handle options that can be set without locking the socket. */
3474 	switch (optname) {
3475 	case TCP_SYNCNT:
3476 		return tcp_sock_set_syncnt(sk, val);
3477 	case TCP_USER_TIMEOUT:
3478 		return tcp_sock_set_user_timeout(sk, val);
3479 	case TCP_KEEPINTVL:
3480 		return tcp_sock_set_keepintvl(sk, val);
3481 	case TCP_KEEPCNT:
3482 		return tcp_sock_set_keepcnt(sk, val);
3483 	case TCP_LINGER2:
3484 		if (val < 0)
3485 			WRITE_ONCE(tp->linger2, -1);
3486 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3487 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3488 		else
3489 			WRITE_ONCE(tp->linger2, val * HZ);
3490 		return 0;
3491 	case TCP_DEFER_ACCEPT:
3492 		/* Translate value in seconds to number of retransmits */
3493 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3494 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3495 					   TCP_RTO_MAX / HZ));
3496 		return 0;
3497 	}
3498 
3499 	sockopt_lock_sock(sk);
3500 
3501 	switch (optname) {
3502 	case TCP_MAXSEG:
3503 		/* Values greater than interface MTU won't take effect. However
3504 		 * at the point when this call is done we typically don't yet
3505 		 * know which interface is going to be used
3506 		 */
3507 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3508 			err = -EINVAL;
3509 			break;
3510 		}
3511 		tp->rx_opt.user_mss = val;
3512 		break;
3513 
3514 	case TCP_NODELAY:
3515 		__tcp_sock_set_nodelay(sk, val);
3516 		break;
3517 
3518 	case TCP_THIN_LINEAR_TIMEOUTS:
3519 		if (val < 0 || val > 1)
3520 			err = -EINVAL;
3521 		else
3522 			tp->thin_lto = val;
3523 		break;
3524 
3525 	case TCP_THIN_DUPACK:
3526 		if (val < 0 || val > 1)
3527 			err = -EINVAL;
3528 		break;
3529 
3530 	case TCP_REPAIR:
3531 		if (!tcp_can_repair_sock(sk))
3532 			err = -EPERM;
3533 		else if (val == TCP_REPAIR_ON) {
3534 			tp->repair = 1;
3535 			sk->sk_reuse = SK_FORCE_REUSE;
3536 			tp->repair_queue = TCP_NO_QUEUE;
3537 		} else if (val == TCP_REPAIR_OFF) {
3538 			tp->repair = 0;
3539 			sk->sk_reuse = SK_NO_REUSE;
3540 			tcp_send_window_probe(sk);
3541 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3542 			tp->repair = 0;
3543 			sk->sk_reuse = SK_NO_REUSE;
3544 		} else
3545 			err = -EINVAL;
3546 
3547 		break;
3548 
3549 	case TCP_REPAIR_QUEUE:
3550 		if (!tp->repair)
3551 			err = -EPERM;
3552 		else if ((unsigned int)val < TCP_QUEUES_NR)
3553 			tp->repair_queue = val;
3554 		else
3555 			err = -EINVAL;
3556 		break;
3557 
3558 	case TCP_QUEUE_SEQ:
3559 		if (sk->sk_state != TCP_CLOSE) {
3560 			err = -EPERM;
3561 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3562 			if (!tcp_rtx_queue_empty(sk))
3563 				err = -EPERM;
3564 			else
3565 				WRITE_ONCE(tp->write_seq, val);
3566 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3567 			if (tp->rcv_nxt != tp->copied_seq) {
3568 				err = -EPERM;
3569 			} else {
3570 				WRITE_ONCE(tp->rcv_nxt, val);
3571 				WRITE_ONCE(tp->copied_seq, val);
3572 			}
3573 		} else {
3574 			err = -EINVAL;
3575 		}
3576 		break;
3577 
3578 	case TCP_REPAIR_OPTIONS:
3579 		if (!tp->repair)
3580 			err = -EINVAL;
3581 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3582 			err = tcp_repair_options_est(sk, optval, optlen);
3583 		else
3584 			err = -EPERM;
3585 		break;
3586 
3587 	case TCP_CORK:
3588 		__tcp_sock_set_cork(sk, val);
3589 		break;
3590 
3591 	case TCP_KEEPIDLE:
3592 		err = tcp_sock_set_keepidle_locked(sk, val);
3593 		break;
3594 	case TCP_SAVE_SYN:
3595 		/* 0: disable, 1: enable, 2: start from ether_header */
3596 		if (val < 0 || val > 2)
3597 			err = -EINVAL;
3598 		else
3599 			tp->save_syn = val;
3600 		break;
3601 
3602 	case TCP_WINDOW_CLAMP:
3603 		err = tcp_set_window_clamp(sk, val);
3604 		break;
3605 
3606 	case TCP_QUICKACK:
3607 		__tcp_sock_set_quickack(sk, val);
3608 		break;
3609 
3610 	case TCP_AO_REPAIR:
3611 		if (!tcp_can_repair_sock(sk)) {
3612 			err = -EPERM;
3613 			break;
3614 		}
3615 		err = tcp_ao_set_repair(sk, optval, optlen);
3616 		break;
3617 #ifdef CONFIG_TCP_AO
3618 	case TCP_AO_ADD_KEY:
3619 	case TCP_AO_DEL_KEY:
3620 	case TCP_AO_INFO: {
3621 		/* If this is the first TCP-AO setsockopt() on the socket,
3622 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3623 		 * in any state.
3624 		 */
3625 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3626 			goto ao_parse;
3627 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3628 					      lockdep_sock_is_held(sk)))
3629 			goto ao_parse;
3630 		if (tp->repair)
3631 			goto ao_parse;
3632 		err = -EISCONN;
3633 		break;
3634 ao_parse:
3635 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3636 		break;
3637 	}
3638 #endif
3639 #ifdef CONFIG_TCP_MD5SIG
3640 	case TCP_MD5SIG:
3641 	case TCP_MD5SIG_EXT:
3642 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3643 		break;
3644 #endif
3645 	case TCP_FASTOPEN:
3646 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3647 		    TCPF_LISTEN))) {
3648 			tcp_fastopen_init_key_once(net);
3649 
3650 			fastopen_queue_tune(sk, val);
3651 		} else {
3652 			err = -EINVAL;
3653 		}
3654 		break;
3655 	case TCP_FASTOPEN_CONNECT:
3656 		if (val > 1 || val < 0) {
3657 			err = -EINVAL;
3658 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3659 			   TFO_CLIENT_ENABLE) {
3660 			if (sk->sk_state == TCP_CLOSE)
3661 				tp->fastopen_connect = val;
3662 			else
3663 				err = -EINVAL;
3664 		} else {
3665 			err = -EOPNOTSUPP;
3666 		}
3667 		break;
3668 	case TCP_FASTOPEN_NO_COOKIE:
3669 		if (val > 1 || val < 0)
3670 			err = -EINVAL;
3671 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3672 			err = -EINVAL;
3673 		else
3674 			tp->fastopen_no_cookie = val;
3675 		break;
3676 	case TCP_TIMESTAMP:
3677 		if (!tp->repair) {
3678 			err = -EPERM;
3679 			break;
3680 		}
3681 		/* val is an opaque field,
3682 		 * and low order bit contains usec_ts enable bit.
3683 		 * Its a best effort, and we do not care if user makes an error.
3684 		 */
3685 		tp->tcp_usec_ts = val & 1;
3686 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3687 		break;
3688 	case TCP_REPAIR_WINDOW:
3689 		err = tcp_repair_set_window(tp, optval, optlen);
3690 		break;
3691 	case TCP_NOTSENT_LOWAT:
3692 		WRITE_ONCE(tp->notsent_lowat, val);
3693 		sk->sk_write_space(sk);
3694 		break;
3695 	case TCP_INQ:
3696 		if (val > 1 || val < 0)
3697 			err = -EINVAL;
3698 		else
3699 			tp->recvmsg_inq = val;
3700 		break;
3701 	case TCP_TX_DELAY:
3702 		if (val)
3703 			tcp_enable_tx_delay();
3704 		WRITE_ONCE(tp->tcp_tx_delay, val);
3705 		break;
3706 	default:
3707 		err = -ENOPROTOOPT;
3708 		break;
3709 	}
3710 
3711 	sockopt_release_sock(sk);
3712 	return err;
3713 }
3714 
3715 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3716 		   unsigned int optlen)
3717 {
3718 	const struct inet_connection_sock *icsk = inet_csk(sk);
3719 
3720 	if (level != SOL_TCP)
3721 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3722 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3723 								optval, optlen);
3724 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3725 }
3726 EXPORT_SYMBOL(tcp_setsockopt);
3727 
3728 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3729 				      struct tcp_info *info)
3730 {
3731 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3732 	enum tcp_chrono i;
3733 
3734 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3735 		stats[i] = tp->chrono_stat[i - 1];
3736 		if (i == tp->chrono_type)
3737 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3738 		stats[i] *= USEC_PER_SEC / HZ;
3739 		total += stats[i];
3740 	}
3741 
3742 	info->tcpi_busy_time = total;
3743 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3744 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3745 }
3746 
3747 /* Return information about state of tcp endpoint in API format. */
3748 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3749 {
3750 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3751 	const struct inet_connection_sock *icsk = inet_csk(sk);
3752 	unsigned long rate;
3753 	u32 now;
3754 	u64 rate64;
3755 	bool slow;
3756 
3757 	memset(info, 0, sizeof(*info));
3758 	if (sk->sk_type != SOCK_STREAM)
3759 		return;
3760 
3761 	info->tcpi_state = inet_sk_state_load(sk);
3762 
3763 	/* Report meaningful fields for all TCP states, including listeners */
3764 	rate = READ_ONCE(sk->sk_pacing_rate);
3765 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3766 	info->tcpi_pacing_rate = rate64;
3767 
3768 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3769 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3770 	info->tcpi_max_pacing_rate = rate64;
3771 
3772 	info->tcpi_reordering = tp->reordering;
3773 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3774 
3775 	if (info->tcpi_state == TCP_LISTEN) {
3776 		/* listeners aliased fields :
3777 		 * tcpi_unacked -> Number of children ready for accept()
3778 		 * tcpi_sacked  -> max backlog
3779 		 */
3780 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3781 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3782 		return;
3783 	}
3784 
3785 	slow = lock_sock_fast(sk);
3786 
3787 	info->tcpi_ca_state = icsk->icsk_ca_state;
3788 	info->tcpi_retransmits = icsk->icsk_retransmits;
3789 	info->tcpi_probes = icsk->icsk_probes_out;
3790 	info->tcpi_backoff = icsk->icsk_backoff;
3791 
3792 	if (tp->rx_opt.tstamp_ok)
3793 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3794 	if (tcp_is_sack(tp))
3795 		info->tcpi_options |= TCPI_OPT_SACK;
3796 	if (tp->rx_opt.wscale_ok) {
3797 		info->tcpi_options |= TCPI_OPT_WSCALE;
3798 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3799 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3800 	}
3801 
3802 	if (tp->ecn_flags & TCP_ECN_OK)
3803 		info->tcpi_options |= TCPI_OPT_ECN;
3804 	if (tp->ecn_flags & TCP_ECN_SEEN)
3805 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3806 	if (tp->syn_data_acked)
3807 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3808 	if (tp->tcp_usec_ts)
3809 		info->tcpi_options |= TCPI_OPT_USEC_TS;
3810 
3811 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3812 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
3813 						tcp_delack_max(sk)));
3814 	info->tcpi_snd_mss = tp->mss_cache;
3815 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3816 
3817 	info->tcpi_unacked = tp->packets_out;
3818 	info->tcpi_sacked = tp->sacked_out;
3819 
3820 	info->tcpi_lost = tp->lost_out;
3821 	info->tcpi_retrans = tp->retrans_out;
3822 
3823 	now = tcp_jiffies32;
3824 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3825 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3826 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3827 
3828 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3829 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3830 	info->tcpi_rtt = tp->srtt_us >> 3;
3831 	info->tcpi_rttvar = tp->mdev_us >> 2;
3832 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3833 	info->tcpi_advmss = tp->advmss;
3834 
3835 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3836 	info->tcpi_rcv_space = tp->rcvq_space.space;
3837 
3838 	info->tcpi_total_retrans = tp->total_retrans;
3839 
3840 	info->tcpi_bytes_acked = tp->bytes_acked;
3841 	info->tcpi_bytes_received = tp->bytes_received;
3842 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3843 	tcp_get_info_chrono_stats(tp, info);
3844 
3845 	info->tcpi_segs_out = tp->segs_out;
3846 
3847 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3848 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3849 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3850 
3851 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3852 	info->tcpi_data_segs_out = tp->data_segs_out;
3853 
3854 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3855 	rate64 = tcp_compute_delivery_rate(tp);
3856 	if (rate64)
3857 		info->tcpi_delivery_rate = rate64;
3858 	info->tcpi_delivered = tp->delivered;
3859 	info->tcpi_delivered_ce = tp->delivered_ce;
3860 	info->tcpi_bytes_sent = tp->bytes_sent;
3861 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3862 	info->tcpi_dsack_dups = tp->dsack_dups;
3863 	info->tcpi_reord_seen = tp->reord_seen;
3864 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3865 	info->tcpi_snd_wnd = tp->snd_wnd;
3866 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3867 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3868 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3869 
3870 	info->tcpi_total_rto = tp->total_rto;
3871 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
3872 	info->tcpi_total_rto_time = tp->total_rto_time;
3873 	if (tp->rto_stamp)
3874 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
3875 
3876 	unlock_sock_fast(sk, slow);
3877 }
3878 EXPORT_SYMBOL_GPL(tcp_get_info);
3879 
3880 static size_t tcp_opt_stats_get_size(void)
3881 {
3882 	return
3883 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3884 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3885 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3886 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3887 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3888 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3889 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3890 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3891 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3892 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3893 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3894 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3895 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3896 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3897 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3898 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3899 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3900 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3901 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3902 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3903 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3904 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3905 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3906 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3907 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3908 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3909 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3910 		0;
3911 }
3912 
3913 /* Returns TTL or hop limit of an incoming packet from skb. */
3914 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3915 {
3916 	if (skb->protocol == htons(ETH_P_IP))
3917 		return ip_hdr(skb)->ttl;
3918 	else if (skb->protocol == htons(ETH_P_IPV6))
3919 		return ipv6_hdr(skb)->hop_limit;
3920 	else
3921 		return 0;
3922 }
3923 
3924 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3925 					       const struct sk_buff *orig_skb,
3926 					       const struct sk_buff *ack_skb)
3927 {
3928 	const struct tcp_sock *tp = tcp_sk(sk);
3929 	struct sk_buff *stats;
3930 	struct tcp_info info;
3931 	unsigned long rate;
3932 	u64 rate64;
3933 
3934 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3935 	if (!stats)
3936 		return NULL;
3937 
3938 	tcp_get_info_chrono_stats(tp, &info);
3939 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3940 			  info.tcpi_busy_time, TCP_NLA_PAD);
3941 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3942 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3943 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3944 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3945 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3946 			  tp->data_segs_out, TCP_NLA_PAD);
3947 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3948 			  tp->total_retrans, TCP_NLA_PAD);
3949 
3950 	rate = READ_ONCE(sk->sk_pacing_rate);
3951 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3952 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3953 
3954 	rate64 = tcp_compute_delivery_rate(tp);
3955 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3956 
3957 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3958 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3959 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3960 
3961 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3962 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3963 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3964 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3965 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3966 
3967 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3968 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3969 
3970 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3971 			  TCP_NLA_PAD);
3972 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3973 			  TCP_NLA_PAD);
3974 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3975 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3976 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3977 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3978 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3979 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3980 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3981 			  TCP_NLA_PAD);
3982 	if (ack_skb)
3983 		nla_put_u8(stats, TCP_NLA_TTL,
3984 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3985 
3986 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3987 	return stats;
3988 }
3989 
3990 int do_tcp_getsockopt(struct sock *sk, int level,
3991 		      int optname, sockptr_t optval, sockptr_t optlen)
3992 {
3993 	struct inet_connection_sock *icsk = inet_csk(sk);
3994 	struct tcp_sock *tp = tcp_sk(sk);
3995 	struct net *net = sock_net(sk);
3996 	int val, len;
3997 
3998 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
3999 		return -EFAULT;
4000 
4001 	len = min_t(unsigned int, len, sizeof(int));
4002 
4003 	if (len < 0)
4004 		return -EINVAL;
4005 
4006 	switch (optname) {
4007 	case TCP_MAXSEG:
4008 		val = tp->mss_cache;
4009 		if (tp->rx_opt.user_mss &&
4010 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4011 			val = tp->rx_opt.user_mss;
4012 		if (tp->repair)
4013 			val = tp->rx_opt.mss_clamp;
4014 		break;
4015 	case TCP_NODELAY:
4016 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4017 		break;
4018 	case TCP_CORK:
4019 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4020 		break;
4021 	case TCP_KEEPIDLE:
4022 		val = keepalive_time_when(tp) / HZ;
4023 		break;
4024 	case TCP_KEEPINTVL:
4025 		val = keepalive_intvl_when(tp) / HZ;
4026 		break;
4027 	case TCP_KEEPCNT:
4028 		val = keepalive_probes(tp);
4029 		break;
4030 	case TCP_SYNCNT:
4031 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4032 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4033 		break;
4034 	case TCP_LINGER2:
4035 		val = READ_ONCE(tp->linger2);
4036 		if (val >= 0)
4037 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4038 		break;
4039 	case TCP_DEFER_ACCEPT:
4040 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4041 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4042 				      TCP_RTO_MAX / HZ);
4043 		break;
4044 	case TCP_WINDOW_CLAMP:
4045 		val = tp->window_clamp;
4046 		break;
4047 	case TCP_INFO: {
4048 		struct tcp_info info;
4049 
4050 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4051 			return -EFAULT;
4052 
4053 		tcp_get_info(sk, &info);
4054 
4055 		len = min_t(unsigned int, len, sizeof(info));
4056 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4057 			return -EFAULT;
4058 		if (copy_to_sockptr(optval, &info, len))
4059 			return -EFAULT;
4060 		return 0;
4061 	}
4062 	case TCP_CC_INFO: {
4063 		const struct tcp_congestion_ops *ca_ops;
4064 		union tcp_cc_info info;
4065 		size_t sz = 0;
4066 		int attr;
4067 
4068 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4069 			return -EFAULT;
4070 
4071 		ca_ops = icsk->icsk_ca_ops;
4072 		if (ca_ops && ca_ops->get_info)
4073 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4074 
4075 		len = min_t(unsigned int, len, sz);
4076 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4077 			return -EFAULT;
4078 		if (copy_to_sockptr(optval, &info, len))
4079 			return -EFAULT;
4080 		return 0;
4081 	}
4082 	case TCP_QUICKACK:
4083 		val = !inet_csk_in_pingpong_mode(sk);
4084 		break;
4085 
4086 	case TCP_CONGESTION:
4087 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4088 			return -EFAULT;
4089 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4090 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4091 			return -EFAULT;
4092 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4093 			return -EFAULT;
4094 		return 0;
4095 
4096 	case TCP_ULP:
4097 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4098 			return -EFAULT;
4099 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4100 		if (!icsk->icsk_ulp_ops) {
4101 			len = 0;
4102 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4103 				return -EFAULT;
4104 			return 0;
4105 		}
4106 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4107 			return -EFAULT;
4108 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4109 			return -EFAULT;
4110 		return 0;
4111 
4112 	case TCP_FASTOPEN_KEY: {
4113 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4114 		unsigned int key_len;
4115 
4116 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4117 			return -EFAULT;
4118 
4119 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4120 				TCP_FASTOPEN_KEY_LENGTH;
4121 		len = min_t(unsigned int, len, key_len);
4122 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4123 			return -EFAULT;
4124 		if (copy_to_sockptr(optval, key, len))
4125 			return -EFAULT;
4126 		return 0;
4127 	}
4128 	case TCP_THIN_LINEAR_TIMEOUTS:
4129 		val = tp->thin_lto;
4130 		break;
4131 
4132 	case TCP_THIN_DUPACK:
4133 		val = 0;
4134 		break;
4135 
4136 	case TCP_REPAIR:
4137 		val = tp->repair;
4138 		break;
4139 
4140 	case TCP_REPAIR_QUEUE:
4141 		if (tp->repair)
4142 			val = tp->repair_queue;
4143 		else
4144 			return -EINVAL;
4145 		break;
4146 
4147 	case TCP_REPAIR_WINDOW: {
4148 		struct tcp_repair_window opt;
4149 
4150 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4151 			return -EFAULT;
4152 
4153 		if (len != sizeof(opt))
4154 			return -EINVAL;
4155 
4156 		if (!tp->repair)
4157 			return -EPERM;
4158 
4159 		opt.snd_wl1	= tp->snd_wl1;
4160 		opt.snd_wnd	= tp->snd_wnd;
4161 		opt.max_window	= tp->max_window;
4162 		opt.rcv_wnd	= tp->rcv_wnd;
4163 		opt.rcv_wup	= tp->rcv_wup;
4164 
4165 		if (copy_to_sockptr(optval, &opt, len))
4166 			return -EFAULT;
4167 		return 0;
4168 	}
4169 	case TCP_QUEUE_SEQ:
4170 		if (tp->repair_queue == TCP_SEND_QUEUE)
4171 			val = tp->write_seq;
4172 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4173 			val = tp->rcv_nxt;
4174 		else
4175 			return -EINVAL;
4176 		break;
4177 
4178 	case TCP_USER_TIMEOUT:
4179 		val = READ_ONCE(icsk->icsk_user_timeout);
4180 		break;
4181 
4182 	case TCP_FASTOPEN:
4183 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4184 		break;
4185 
4186 	case TCP_FASTOPEN_CONNECT:
4187 		val = tp->fastopen_connect;
4188 		break;
4189 
4190 	case TCP_FASTOPEN_NO_COOKIE:
4191 		val = tp->fastopen_no_cookie;
4192 		break;
4193 
4194 	case TCP_TX_DELAY:
4195 		val = READ_ONCE(tp->tcp_tx_delay);
4196 		break;
4197 
4198 	case TCP_TIMESTAMP:
4199 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4200 		if (tp->tcp_usec_ts)
4201 			val |= 1;
4202 		else
4203 			val &= ~1;
4204 		break;
4205 	case TCP_NOTSENT_LOWAT:
4206 		val = READ_ONCE(tp->notsent_lowat);
4207 		break;
4208 	case TCP_INQ:
4209 		val = tp->recvmsg_inq;
4210 		break;
4211 	case TCP_SAVE_SYN:
4212 		val = tp->save_syn;
4213 		break;
4214 	case TCP_SAVED_SYN: {
4215 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4216 			return -EFAULT;
4217 
4218 		sockopt_lock_sock(sk);
4219 		if (tp->saved_syn) {
4220 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4221 				len = tcp_saved_syn_len(tp->saved_syn);
4222 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4223 					sockopt_release_sock(sk);
4224 					return -EFAULT;
4225 				}
4226 				sockopt_release_sock(sk);
4227 				return -EINVAL;
4228 			}
4229 			len = tcp_saved_syn_len(tp->saved_syn);
4230 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4231 				sockopt_release_sock(sk);
4232 				return -EFAULT;
4233 			}
4234 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4235 				sockopt_release_sock(sk);
4236 				return -EFAULT;
4237 			}
4238 			tcp_saved_syn_free(tp);
4239 			sockopt_release_sock(sk);
4240 		} else {
4241 			sockopt_release_sock(sk);
4242 			len = 0;
4243 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4244 				return -EFAULT;
4245 		}
4246 		return 0;
4247 	}
4248 #ifdef CONFIG_MMU
4249 	case TCP_ZEROCOPY_RECEIVE: {
4250 		struct scm_timestamping_internal tss;
4251 		struct tcp_zerocopy_receive zc = {};
4252 		int err;
4253 
4254 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4255 			return -EFAULT;
4256 		if (len < 0 ||
4257 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4258 			return -EINVAL;
4259 		if (unlikely(len > sizeof(zc))) {
4260 			err = check_zeroed_sockptr(optval, sizeof(zc),
4261 						   len - sizeof(zc));
4262 			if (err < 1)
4263 				return err == 0 ? -EINVAL : err;
4264 			len = sizeof(zc);
4265 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4266 				return -EFAULT;
4267 		}
4268 		if (copy_from_sockptr(&zc, optval, len))
4269 			return -EFAULT;
4270 		if (zc.reserved)
4271 			return -EINVAL;
4272 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4273 			return -EINVAL;
4274 		sockopt_lock_sock(sk);
4275 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4276 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4277 							  &zc, &len, err);
4278 		sockopt_release_sock(sk);
4279 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4280 			goto zerocopy_rcv_cmsg;
4281 		switch (len) {
4282 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4283 			goto zerocopy_rcv_cmsg;
4284 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4285 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4286 		case offsetofend(struct tcp_zerocopy_receive, flags):
4287 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4288 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4289 		case offsetofend(struct tcp_zerocopy_receive, err):
4290 			goto zerocopy_rcv_sk_err;
4291 		case offsetofend(struct tcp_zerocopy_receive, inq):
4292 			goto zerocopy_rcv_inq;
4293 		case offsetofend(struct tcp_zerocopy_receive, length):
4294 		default:
4295 			goto zerocopy_rcv_out;
4296 		}
4297 zerocopy_rcv_cmsg:
4298 		if (zc.msg_flags & TCP_CMSG_TS)
4299 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4300 		else
4301 			zc.msg_flags = 0;
4302 zerocopy_rcv_sk_err:
4303 		if (!err)
4304 			zc.err = sock_error(sk);
4305 zerocopy_rcv_inq:
4306 		zc.inq = tcp_inq_hint(sk);
4307 zerocopy_rcv_out:
4308 		if (!err && copy_to_sockptr(optval, &zc, len))
4309 			err = -EFAULT;
4310 		return err;
4311 	}
4312 #endif
4313 	case TCP_AO_REPAIR:
4314 		if (!tcp_can_repair_sock(sk))
4315 			return -EPERM;
4316 		return tcp_ao_get_repair(sk, optval, optlen);
4317 	case TCP_AO_GET_KEYS:
4318 	case TCP_AO_INFO: {
4319 		int err;
4320 
4321 		sockopt_lock_sock(sk);
4322 		if (optname == TCP_AO_GET_KEYS)
4323 			err = tcp_ao_get_mkts(sk, optval, optlen);
4324 		else
4325 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4326 		sockopt_release_sock(sk);
4327 
4328 		return err;
4329 	}
4330 	default:
4331 		return -ENOPROTOOPT;
4332 	}
4333 
4334 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4335 		return -EFAULT;
4336 	if (copy_to_sockptr(optval, &val, len))
4337 		return -EFAULT;
4338 	return 0;
4339 }
4340 
4341 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4342 {
4343 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4344 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4345 	 */
4346 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4347 		return true;
4348 
4349 	return false;
4350 }
4351 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4352 
4353 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4354 		   int __user *optlen)
4355 {
4356 	struct inet_connection_sock *icsk = inet_csk(sk);
4357 
4358 	if (level != SOL_TCP)
4359 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4360 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4361 								optval, optlen);
4362 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4363 				 USER_SOCKPTR(optlen));
4364 }
4365 EXPORT_SYMBOL(tcp_getsockopt);
4366 
4367 #ifdef CONFIG_TCP_MD5SIG
4368 int tcp_md5_sigpool_id = -1;
4369 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4370 
4371 int tcp_md5_alloc_sigpool(void)
4372 {
4373 	size_t scratch_size;
4374 	int ret;
4375 
4376 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4377 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4378 	if (ret >= 0) {
4379 		/* As long as any md5 sigpool was allocated, the return
4380 		 * id would stay the same. Re-write the id only for the case
4381 		 * when previously all MD5 keys were deleted and this call
4382 		 * allocates the first MD5 key, which may return a different
4383 		 * sigpool id than was used previously.
4384 		 */
4385 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4386 		return 0;
4387 	}
4388 	return ret;
4389 }
4390 
4391 void tcp_md5_release_sigpool(void)
4392 {
4393 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4394 }
4395 
4396 void tcp_md5_add_sigpool(void)
4397 {
4398 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4399 }
4400 
4401 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4402 		     const struct tcp_md5sig_key *key)
4403 {
4404 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4405 	struct scatterlist sg;
4406 
4407 	sg_init_one(&sg, key->key, keylen);
4408 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4409 
4410 	/* We use data_race() because tcp_md5_do_add() might change
4411 	 * key->key under us
4412 	 */
4413 	return data_race(crypto_ahash_update(hp->req));
4414 }
4415 EXPORT_SYMBOL(tcp_md5_hash_key);
4416 
4417 /* Called with rcu_read_lock() */
4418 enum skb_drop_reason
4419 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4420 		     const void *saddr, const void *daddr,
4421 		     int family, int l3index, const __u8 *hash_location)
4422 {
4423 	/* This gets called for each TCP segment that has TCP-MD5 option.
4424 	 * We have 3 drop cases:
4425 	 * o No MD5 hash and one expected.
4426 	 * o MD5 hash and we're not expecting one.
4427 	 * o MD5 hash and its wrong.
4428 	 */
4429 	const struct tcp_sock *tp = tcp_sk(sk);
4430 	struct tcp_md5sig_key *key;
4431 	u8 newhash[16];
4432 	int genhash;
4433 
4434 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4435 
4436 	if (!key && hash_location) {
4437 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4438 		tcp_hash_fail("Unexpected MD5 Hash found", family, skb, "");
4439 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4440 	}
4441 
4442 	/* Check the signature.
4443 	 * To support dual stack listeners, we need to handle
4444 	 * IPv4-mapped case.
4445 	 */
4446 	if (family == AF_INET)
4447 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4448 	else
4449 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4450 							 NULL, skb);
4451 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4452 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4453 		if (family == AF_INET) {
4454 			tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d",
4455 				      genhash ? "tcp_v4_calc_md5_hash failed"
4456 				      : "", l3index);
4457 		} else {
4458 			if (genhash) {
4459 				tcp_hash_fail("MD5 Hash failed",
4460 					      AF_INET6, skb, "L3 index %d",
4461 					      l3index);
4462 			} else {
4463 				tcp_hash_fail("MD5 Hash mismatch",
4464 					      AF_INET6, skb, "L3 index %d",
4465 					      l3index);
4466 			}
4467 		}
4468 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4469 	}
4470 	return SKB_NOT_DROPPED_YET;
4471 }
4472 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4473 
4474 #endif
4475 
4476 void tcp_done(struct sock *sk)
4477 {
4478 	struct request_sock *req;
4479 
4480 	/* We might be called with a new socket, after
4481 	 * inet_csk_prepare_forced_close() has been called
4482 	 * so we can not use lockdep_sock_is_held(sk)
4483 	 */
4484 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4485 
4486 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4487 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4488 
4489 	tcp_set_state(sk, TCP_CLOSE);
4490 	tcp_clear_xmit_timers(sk);
4491 	if (req)
4492 		reqsk_fastopen_remove(sk, req, false);
4493 
4494 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4495 
4496 	if (!sock_flag(sk, SOCK_DEAD))
4497 		sk->sk_state_change(sk);
4498 	else
4499 		inet_csk_destroy_sock(sk);
4500 }
4501 EXPORT_SYMBOL_GPL(tcp_done);
4502 
4503 int tcp_abort(struct sock *sk, int err)
4504 {
4505 	int state = inet_sk_state_load(sk);
4506 
4507 	if (state == TCP_NEW_SYN_RECV) {
4508 		struct request_sock *req = inet_reqsk(sk);
4509 
4510 		local_bh_disable();
4511 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4512 		local_bh_enable();
4513 		return 0;
4514 	}
4515 	if (state == TCP_TIME_WAIT) {
4516 		struct inet_timewait_sock *tw = inet_twsk(sk);
4517 
4518 		refcount_inc(&tw->tw_refcnt);
4519 		local_bh_disable();
4520 		inet_twsk_deschedule_put(tw);
4521 		local_bh_enable();
4522 		return 0;
4523 	}
4524 
4525 	/* BPF context ensures sock locking. */
4526 	if (!has_current_bpf_ctx())
4527 		/* Don't race with userspace socket closes such as tcp_close. */
4528 		lock_sock(sk);
4529 
4530 	if (sk->sk_state == TCP_LISTEN) {
4531 		tcp_set_state(sk, TCP_CLOSE);
4532 		inet_csk_listen_stop(sk);
4533 	}
4534 
4535 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4536 	local_bh_disable();
4537 	bh_lock_sock(sk);
4538 
4539 	if (!sock_flag(sk, SOCK_DEAD)) {
4540 		WRITE_ONCE(sk->sk_err, err);
4541 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4542 		smp_wmb();
4543 		sk_error_report(sk);
4544 		if (tcp_need_reset(sk->sk_state))
4545 			tcp_send_active_reset(sk, GFP_ATOMIC);
4546 		tcp_done(sk);
4547 	}
4548 
4549 	bh_unlock_sock(sk);
4550 	local_bh_enable();
4551 	tcp_write_queue_purge(sk);
4552 	if (!has_current_bpf_ctx())
4553 		release_sock(sk);
4554 	return 0;
4555 }
4556 EXPORT_SYMBOL_GPL(tcp_abort);
4557 
4558 extern struct tcp_congestion_ops tcp_reno;
4559 
4560 static __initdata unsigned long thash_entries;
4561 static int __init set_thash_entries(char *str)
4562 {
4563 	ssize_t ret;
4564 
4565 	if (!str)
4566 		return 0;
4567 
4568 	ret = kstrtoul(str, 0, &thash_entries);
4569 	if (ret)
4570 		return 0;
4571 
4572 	return 1;
4573 }
4574 __setup("thash_entries=", set_thash_entries);
4575 
4576 static void __init tcp_init_mem(void)
4577 {
4578 	unsigned long limit = nr_free_buffer_pages() / 16;
4579 
4580 	limit = max(limit, 128UL);
4581 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4582 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4583 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4584 }
4585 
4586 void __init tcp_init(void)
4587 {
4588 	int max_rshare, max_wshare, cnt;
4589 	unsigned long limit;
4590 	unsigned int i;
4591 
4592 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4593 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4594 		     sizeof_field(struct sk_buff, cb));
4595 
4596 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4597 
4598 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4599 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4600 
4601 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4602 			    thash_entries, 21,  /* one slot per 2 MB*/
4603 			    0, 64 * 1024);
4604 	tcp_hashinfo.bind_bucket_cachep =
4605 		kmem_cache_create("tcp_bind_bucket",
4606 				  sizeof(struct inet_bind_bucket), 0,
4607 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4608 				  SLAB_ACCOUNT,
4609 				  NULL);
4610 	tcp_hashinfo.bind2_bucket_cachep =
4611 		kmem_cache_create("tcp_bind2_bucket",
4612 				  sizeof(struct inet_bind2_bucket), 0,
4613 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4614 				  SLAB_ACCOUNT,
4615 				  NULL);
4616 
4617 	/* Size and allocate the main established and bind bucket
4618 	 * hash tables.
4619 	 *
4620 	 * The methodology is similar to that of the buffer cache.
4621 	 */
4622 	tcp_hashinfo.ehash =
4623 		alloc_large_system_hash("TCP established",
4624 					sizeof(struct inet_ehash_bucket),
4625 					thash_entries,
4626 					17, /* one slot per 128 KB of memory */
4627 					0,
4628 					NULL,
4629 					&tcp_hashinfo.ehash_mask,
4630 					0,
4631 					thash_entries ? 0 : 512 * 1024);
4632 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4633 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4634 
4635 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4636 		panic("TCP: failed to alloc ehash_locks");
4637 	tcp_hashinfo.bhash =
4638 		alloc_large_system_hash("TCP bind",
4639 					2 * sizeof(struct inet_bind_hashbucket),
4640 					tcp_hashinfo.ehash_mask + 1,
4641 					17, /* one slot per 128 KB of memory */
4642 					0,
4643 					&tcp_hashinfo.bhash_size,
4644 					NULL,
4645 					0,
4646 					64 * 1024);
4647 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4648 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4649 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4650 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4651 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4652 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4653 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4654 	}
4655 
4656 	tcp_hashinfo.pernet = false;
4657 
4658 	cnt = tcp_hashinfo.ehash_mask + 1;
4659 	sysctl_tcp_max_orphans = cnt / 2;
4660 
4661 	tcp_init_mem();
4662 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4663 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4664 	max_wshare = min(4UL*1024*1024, limit);
4665 	max_rshare = min(6UL*1024*1024, limit);
4666 
4667 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4668 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4669 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4670 
4671 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4672 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4673 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4674 
4675 	pr_info("Hash tables configured (established %u bind %u)\n",
4676 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4677 
4678 	tcp_v4_init();
4679 	tcp_metrics_init();
4680 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4681 	tcp_tasklet_init();
4682 	mptcp_init();
4683 }
4684