1 /* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Implementation of the Transmission Control Protocol(TCP). 7 * 8 * Authors: Ross Biro 9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 10 * Mark Evans, <evansmp@uhura.aston.ac.uk> 11 * Corey Minyard <wf-rch!minyard@relay.EU.net> 12 * Florian La Roche, <flla@stud.uni-sb.de> 13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu> 14 * Linus Torvalds, <torvalds@cs.helsinki.fi> 15 * Alan Cox, <gw4pts@gw4pts.ampr.org> 16 * Matthew Dillon, <dillon@apollo.west.oic.com> 17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no> 18 * Jorge Cwik, <jorge@laser.satlink.net> 19 * 20 * Fixes: 21 * Alan Cox : Numerous verify_area() calls 22 * Alan Cox : Set the ACK bit on a reset 23 * Alan Cox : Stopped it crashing if it closed while 24 * sk->inuse=1 and was trying to connect 25 * (tcp_err()). 26 * Alan Cox : All icmp error handling was broken 27 * pointers passed where wrong and the 28 * socket was looked up backwards. Nobody 29 * tested any icmp error code obviously. 30 * Alan Cox : tcp_err() now handled properly. It 31 * wakes people on errors. poll 32 * behaves and the icmp error race 33 * has gone by moving it into sock.c 34 * Alan Cox : tcp_send_reset() fixed to work for 35 * everything not just packets for 36 * unknown sockets. 37 * Alan Cox : tcp option processing. 38 * Alan Cox : Reset tweaked (still not 100%) [Had 39 * syn rule wrong] 40 * Herp Rosmanith : More reset fixes 41 * Alan Cox : No longer acks invalid rst frames. 42 * Acking any kind of RST is right out. 43 * Alan Cox : Sets an ignore me flag on an rst 44 * receive otherwise odd bits of prattle 45 * escape still 46 * Alan Cox : Fixed another acking RST frame bug. 47 * Should stop LAN workplace lockups. 48 * Alan Cox : Some tidyups using the new skb list 49 * facilities 50 * Alan Cox : sk->keepopen now seems to work 51 * Alan Cox : Pulls options out correctly on accepts 52 * Alan Cox : Fixed assorted sk->rqueue->next errors 53 * Alan Cox : PSH doesn't end a TCP read. Switched a 54 * bit to skb ops. 55 * Alan Cox : Tidied tcp_data to avoid a potential 56 * nasty. 57 * Alan Cox : Added some better commenting, as the 58 * tcp is hard to follow 59 * Alan Cox : Removed incorrect check for 20 * psh 60 * Michael O'Reilly : ack < copied bug fix. 61 * Johannes Stille : Misc tcp fixes (not all in yet). 62 * Alan Cox : FIN with no memory -> CRASH 63 * Alan Cox : Added socket option proto entries. 64 * Also added awareness of them to accept. 65 * Alan Cox : Added TCP options (SOL_TCP) 66 * Alan Cox : Switched wakeup calls to callbacks, 67 * so the kernel can layer network 68 * sockets. 69 * Alan Cox : Use ip_tos/ip_ttl settings. 70 * Alan Cox : Handle FIN (more) properly (we hope). 71 * Alan Cox : RST frames sent on unsynchronised 72 * state ack error. 73 * Alan Cox : Put in missing check for SYN bit. 74 * Alan Cox : Added tcp_select_window() aka NET2E 75 * window non shrink trick. 76 * Alan Cox : Added a couple of small NET2E timer 77 * fixes 78 * Charles Hedrick : TCP fixes 79 * Toomas Tamm : TCP window fixes 80 * Alan Cox : Small URG fix to rlogin ^C ack fight 81 * Charles Hedrick : Rewrote most of it to actually work 82 * Linus : Rewrote tcp_read() and URG handling 83 * completely 84 * Gerhard Koerting: Fixed some missing timer handling 85 * Matthew Dillon : Reworked TCP machine states as per RFC 86 * Gerhard Koerting: PC/TCP workarounds 87 * Adam Caldwell : Assorted timer/timing errors 88 * Matthew Dillon : Fixed another RST bug 89 * Alan Cox : Move to kernel side addressing changes. 90 * Alan Cox : Beginning work on TCP fastpathing 91 * (not yet usable) 92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine. 93 * Alan Cox : TCP fast path debugging 94 * Alan Cox : Window clamping 95 * Michael Riepe : Bug in tcp_check() 96 * Matt Dillon : More TCP improvements and RST bug fixes 97 * Matt Dillon : Yet more small nasties remove from the 98 * TCP code (Be very nice to this man if 99 * tcp finally works 100%) 8) 100 * Alan Cox : BSD accept semantics. 101 * Alan Cox : Reset on closedown bug. 102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto(). 103 * Michael Pall : Handle poll() after URG properly in 104 * all cases. 105 * Michael Pall : Undo the last fix in tcp_read_urg() 106 * (multi URG PUSH broke rlogin). 107 * Michael Pall : Fix the multi URG PUSH problem in 108 * tcp_readable(), poll() after URG 109 * works now. 110 * Michael Pall : recv(...,MSG_OOB) never blocks in the 111 * BSD api. 112 * Alan Cox : Changed the semantics of sk->socket to 113 * fix a race and a signal problem with 114 * accept() and async I/O. 115 * Alan Cox : Relaxed the rules on tcp_sendto(). 116 * Yury Shevchuk : Really fixed accept() blocking problem. 117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for 118 * clients/servers which listen in on 119 * fixed ports. 120 * Alan Cox : Cleaned the above up and shrank it to 121 * a sensible code size. 122 * Alan Cox : Self connect lockup fix. 123 * Alan Cox : No connect to multicast. 124 * Ross Biro : Close unaccepted children on master 125 * socket close. 126 * Alan Cox : Reset tracing code. 127 * Alan Cox : Spurious resets on shutdown. 128 * Alan Cox : Giant 15 minute/60 second timer error 129 * Alan Cox : Small whoops in polling before an 130 * accept. 131 * Alan Cox : Kept the state trace facility since 132 * it's handy for debugging. 133 * Alan Cox : More reset handler fixes. 134 * Alan Cox : Started rewriting the code based on 135 * the RFC's for other useful protocol 136 * references see: Comer, KA9Q NOS, and 137 * for a reference on the difference 138 * between specifications and how BSD 139 * works see the 4.4lite source. 140 * A.N.Kuznetsov : Don't time wait on completion of tidy 141 * close. 142 * Linus Torvalds : Fin/Shutdown & copied_seq changes. 143 * Linus Torvalds : Fixed BSD port reuse to work first syn 144 * Alan Cox : Reimplemented timers as per the RFC 145 * and using multiple timers for sanity. 146 * Alan Cox : Small bug fixes, and a lot of new 147 * comments. 148 * Alan Cox : Fixed dual reader crash by locking 149 * the buffers (much like datagram.c) 150 * Alan Cox : Fixed stuck sockets in probe. A probe 151 * now gets fed up of retrying without 152 * (even a no space) answer. 153 * Alan Cox : Extracted closing code better 154 * Alan Cox : Fixed the closing state machine to 155 * resemble the RFC. 156 * Alan Cox : More 'per spec' fixes. 157 * Jorge Cwik : Even faster checksumming. 158 * Alan Cox : tcp_data() doesn't ack illegal PSH 159 * only frames. At least one pc tcp stack 160 * generates them. 161 * Alan Cox : Cache last socket. 162 * Alan Cox : Per route irtt. 163 * Matt Day : poll()->select() match BSD precisely on error 164 * Alan Cox : New buffers 165 * Marc Tamsky : Various sk->prot->retransmits and 166 * sk->retransmits misupdating fixed. 167 * Fixed tcp_write_timeout: stuck close, 168 * and TCP syn retries gets used now. 169 * Mark Yarvis : In tcp_read_wakeup(), don't send an 170 * ack if state is TCP_CLOSED. 171 * Alan Cox : Look up device on a retransmit - routes may 172 * change. Doesn't yet cope with MSS shrink right 173 * but it's a start! 174 * Marc Tamsky : Closing in closing fixes. 175 * Mike Shaver : RFC1122 verifications. 176 * Alan Cox : rcv_saddr errors. 177 * Alan Cox : Block double connect(). 178 * Alan Cox : Small hooks for enSKIP. 179 * Alexey Kuznetsov: Path MTU discovery. 180 * Alan Cox : Support soft errors. 181 * Alan Cox : Fix MTU discovery pathological case 182 * when the remote claims no mtu! 183 * Marc Tamsky : TCP_CLOSE fix. 184 * Colin (G3TNE) : Send a reset on syn ack replies in 185 * window but wrong (fixes NT lpd problems) 186 * Pedro Roque : Better TCP window handling, delayed ack. 187 * Joerg Reuter : No modification of locked buffers in 188 * tcp_do_retransmit() 189 * Eric Schenk : Changed receiver side silly window 190 * avoidance algorithm to BSD style 191 * algorithm. This doubles throughput 192 * against machines running Solaris, 193 * and seems to result in general 194 * improvement. 195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD 196 * Willy Konynenberg : Transparent proxying support. 197 * Mike McLagan : Routing by source 198 * Keith Owens : Do proper merging with partial SKB's in 199 * tcp_do_sendmsg to avoid burstiness. 200 * Eric Schenk : Fix fast close down bug with 201 * shutdown() followed by close(). 202 * Andi Kleen : Make poll agree with SIGIO 203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and 204 * lingertime == 0 (RFC 793 ABORT Call) 205 * Hirokazu Takahashi : Use copy_from_user() instead of 206 * csum_and_copy_from_user() if possible. 207 * 208 * This program is free software; you can redistribute it and/or 209 * modify it under the terms of the GNU General Public License 210 * as published by the Free Software Foundation; either version 211 * 2 of the License, or(at your option) any later version. 212 * 213 * Description of States: 214 * 215 * TCP_SYN_SENT sent a connection request, waiting for ack 216 * 217 * TCP_SYN_RECV received a connection request, sent ack, 218 * waiting for final ack in three-way handshake. 219 * 220 * TCP_ESTABLISHED connection established 221 * 222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete 223 * transmission of remaining buffered data 224 * 225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote 226 * to shutdown 227 * 228 * TCP_CLOSING both sides have shutdown but we still have 229 * data we have to finish sending 230 * 231 * TCP_TIME_WAIT timeout to catch resent junk before entering 232 * closed, can only be entered from FIN_WAIT2 233 * or CLOSING. Required because the other end 234 * may not have gotten our last ACK causing it 235 * to retransmit the data packet (which we ignore) 236 * 237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for 238 * us to finish writing our data and to shutdown 239 * (we have to close() to move on to LAST_ACK) 240 * 241 * TCP_LAST_ACK out side has shutdown after remote has 242 * shutdown. There may still be data in our 243 * buffer that we have to finish sending 244 * 245 * TCP_CLOSE socket is finished 246 */ 247 248 #define pr_fmt(fmt) "TCP: " fmt 249 250 #include <crypto/hash.h> 251 #include <linux/kernel.h> 252 #include <linux/module.h> 253 #include <linux/types.h> 254 #include <linux/fcntl.h> 255 #include <linux/poll.h> 256 #include <linux/inet_diag.h> 257 #include <linux/init.h> 258 #include <linux/fs.h> 259 #include <linux/skbuff.h> 260 #include <linux/scatterlist.h> 261 #include <linux/splice.h> 262 #include <linux/net.h> 263 #include <linux/socket.h> 264 #include <linux/random.h> 265 #include <linux/bootmem.h> 266 #include <linux/highmem.h> 267 #include <linux/swap.h> 268 #include <linux/cache.h> 269 #include <linux/err.h> 270 #include <linux/time.h> 271 #include <linux/slab.h> 272 #include <linux/errqueue.h> 273 #include <linux/static_key.h> 274 275 #include <net/icmp.h> 276 #include <net/inet_common.h> 277 #include <net/tcp.h> 278 #include <net/xfrm.h> 279 #include <net/ip.h> 280 #include <net/sock.h> 281 282 #include <linux/uaccess.h> 283 #include <asm/ioctls.h> 284 #include <net/busy_poll.h> 285 286 struct percpu_counter tcp_orphan_count; 287 EXPORT_SYMBOL_GPL(tcp_orphan_count); 288 289 long sysctl_tcp_mem[3] __read_mostly; 290 EXPORT_SYMBOL(sysctl_tcp_mem); 291 292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */ 293 EXPORT_SYMBOL(tcp_memory_allocated); 294 295 #if IS_ENABLED(CONFIG_SMC) 296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc); 297 EXPORT_SYMBOL(tcp_have_smc); 298 #endif 299 300 /* 301 * Current number of TCP sockets. 302 */ 303 struct percpu_counter tcp_sockets_allocated; 304 EXPORT_SYMBOL(tcp_sockets_allocated); 305 306 /* 307 * TCP splice context 308 */ 309 struct tcp_splice_state { 310 struct pipe_inode_info *pipe; 311 size_t len; 312 unsigned int flags; 313 }; 314 315 /* 316 * Pressure flag: try to collapse. 317 * Technical note: it is used by multiple contexts non atomically. 318 * All the __sk_mem_schedule() is of this nature: accounting 319 * is strict, actions are advisory and have some latency. 320 */ 321 unsigned long tcp_memory_pressure __read_mostly; 322 EXPORT_SYMBOL_GPL(tcp_memory_pressure); 323 324 void tcp_enter_memory_pressure(struct sock *sk) 325 { 326 unsigned long val; 327 328 if (tcp_memory_pressure) 329 return; 330 val = jiffies; 331 332 if (!val) 333 val--; 334 if (!cmpxchg(&tcp_memory_pressure, 0, val)) 335 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES); 336 } 337 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure); 338 339 void tcp_leave_memory_pressure(struct sock *sk) 340 { 341 unsigned long val; 342 343 if (!tcp_memory_pressure) 344 return; 345 val = xchg(&tcp_memory_pressure, 0); 346 if (val) 347 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO, 348 jiffies_to_msecs(jiffies - val)); 349 } 350 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure); 351 352 /* Convert seconds to retransmits based on initial and max timeout */ 353 static u8 secs_to_retrans(int seconds, int timeout, int rto_max) 354 { 355 u8 res = 0; 356 357 if (seconds > 0) { 358 int period = timeout; 359 360 res = 1; 361 while (seconds > period && res < 255) { 362 res++; 363 timeout <<= 1; 364 if (timeout > rto_max) 365 timeout = rto_max; 366 period += timeout; 367 } 368 } 369 return res; 370 } 371 372 /* Convert retransmits to seconds based on initial and max timeout */ 373 static int retrans_to_secs(u8 retrans, int timeout, int rto_max) 374 { 375 int period = 0; 376 377 if (retrans > 0) { 378 period = timeout; 379 while (--retrans) { 380 timeout <<= 1; 381 if (timeout > rto_max) 382 timeout = rto_max; 383 period += timeout; 384 } 385 } 386 return period; 387 } 388 389 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp) 390 { 391 u32 rate = READ_ONCE(tp->rate_delivered); 392 u32 intv = READ_ONCE(tp->rate_interval_us); 393 u64 rate64 = 0; 394 395 if (rate && intv) { 396 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC; 397 do_div(rate64, intv); 398 } 399 return rate64; 400 } 401 402 /* Address-family independent initialization for a tcp_sock. 403 * 404 * NOTE: A lot of things set to zero explicitly by call to 405 * sk_alloc() so need not be done here. 406 */ 407 void tcp_init_sock(struct sock *sk) 408 { 409 struct inet_connection_sock *icsk = inet_csk(sk); 410 struct tcp_sock *tp = tcp_sk(sk); 411 412 tp->out_of_order_queue = RB_ROOT; 413 sk->tcp_rtx_queue = RB_ROOT; 414 tcp_init_xmit_timers(sk); 415 INIT_LIST_HEAD(&tp->tsq_node); 416 INIT_LIST_HEAD(&tp->tsorted_sent_queue); 417 418 icsk->icsk_rto = TCP_TIMEOUT_INIT; 419 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT); 420 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U); 421 422 /* So many TCP implementations out there (incorrectly) count the 423 * initial SYN frame in their delayed-ACK and congestion control 424 * algorithms that we must have the following bandaid to talk 425 * efficiently to them. -DaveM 426 */ 427 tp->snd_cwnd = TCP_INIT_CWND; 428 429 /* There's a bubble in the pipe until at least the first ACK. */ 430 tp->app_limited = ~0U; 431 432 /* See draft-stevens-tcpca-spec-01 for discussion of the 433 * initialization of these values. 434 */ 435 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 436 tp->snd_cwnd_clamp = ~0; 437 tp->mss_cache = TCP_MSS_DEFAULT; 438 439 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering; 440 tcp_assign_congestion_control(sk); 441 442 tp->tsoffset = 0; 443 tp->rack.reo_wnd_steps = 1; 444 445 sk->sk_state = TCP_CLOSE; 446 447 sk->sk_write_space = sk_stream_write_space; 448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); 449 450 icsk->icsk_sync_mss = tcp_sync_mss; 451 452 sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1]; 453 sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1]; 454 455 sk_sockets_allocated_inc(sk); 456 sk->sk_route_forced_caps = NETIF_F_GSO; 457 } 458 EXPORT_SYMBOL(tcp_init_sock); 459 460 void tcp_init_transfer(struct sock *sk, int bpf_op) 461 { 462 struct inet_connection_sock *icsk = inet_csk(sk); 463 464 tcp_mtup_init(sk); 465 icsk->icsk_af_ops->rebuild_header(sk); 466 tcp_init_metrics(sk); 467 tcp_call_bpf(sk, bpf_op, 0, NULL); 468 tcp_init_congestion_control(sk); 469 tcp_init_buffer_space(sk); 470 } 471 472 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags) 473 { 474 struct sk_buff *skb = tcp_write_queue_tail(sk); 475 476 if (tsflags && skb) { 477 struct skb_shared_info *shinfo = skb_shinfo(skb); 478 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 479 480 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags); 481 if (tsflags & SOF_TIMESTAMPING_TX_ACK) 482 tcb->txstamp_ack = 1; 483 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) 484 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1; 485 } 486 } 487 488 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp, 489 int target, struct sock *sk) 490 { 491 return (tp->rcv_nxt - tp->copied_seq >= target) || 492 (sk->sk_prot->stream_memory_read ? 493 sk->sk_prot->stream_memory_read(sk) : false); 494 } 495 496 /* 497 * Socket is not locked. We are protected from async events by poll logic and 498 * correct handling of state changes made by other threads is impossible in 499 * any case. 500 */ 501 __poll_t tcp_poll_mask(struct socket *sock, __poll_t events) 502 { 503 struct sock *sk = sock->sk; 504 const struct tcp_sock *tp = tcp_sk(sk); 505 __poll_t mask = 0; 506 int state; 507 508 state = inet_sk_state_load(sk); 509 if (state == TCP_LISTEN) 510 return inet_csk_listen_poll(sk); 511 512 /* 513 * EPOLLHUP is certainly not done right. But poll() doesn't 514 * have a notion of HUP in just one direction, and for a 515 * socket the read side is more interesting. 516 * 517 * Some poll() documentation says that EPOLLHUP is incompatible 518 * with the EPOLLOUT/POLLWR flags, so somebody should check this 519 * all. But careful, it tends to be safer to return too many 520 * bits than too few, and you can easily break real applications 521 * if you don't tell them that something has hung up! 522 * 523 * Check-me. 524 * 525 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and 526 * our fs/select.c). It means that after we received EOF, 527 * poll always returns immediately, making impossible poll() on write() 528 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP 529 * if and only if shutdown has been made in both directions. 530 * Actually, it is interesting to look how Solaris and DUX 531 * solve this dilemma. I would prefer, if EPOLLHUP were maskable, 532 * then we could set it on SND_SHUTDOWN. BTW examples given 533 * in Stevens' books assume exactly this behaviour, it explains 534 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK 535 * 536 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent 537 * blocking on fresh not-connected or disconnected socket. --ANK 538 */ 539 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE) 540 mask |= EPOLLHUP; 541 if (sk->sk_shutdown & RCV_SHUTDOWN) 542 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP; 543 544 /* Connected or passive Fast Open socket? */ 545 if (state != TCP_SYN_SENT && 546 (state != TCP_SYN_RECV || tp->fastopen_rsk)) { 547 int target = sock_rcvlowat(sk, 0, INT_MAX); 548 549 if (tp->urg_seq == tp->copied_seq && 550 !sock_flag(sk, SOCK_URGINLINE) && 551 tp->urg_data) 552 target++; 553 554 if (tcp_stream_is_readable(tp, target, sk)) 555 mask |= EPOLLIN | EPOLLRDNORM; 556 557 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { 558 if (sk_stream_is_writeable(sk)) { 559 mask |= EPOLLOUT | EPOLLWRNORM; 560 } else { /* send SIGIO later */ 561 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk); 562 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 563 564 /* Race breaker. If space is freed after 565 * wspace test but before the flags are set, 566 * IO signal will be lost. Memory barrier 567 * pairs with the input side. 568 */ 569 smp_mb__after_atomic(); 570 if (sk_stream_is_writeable(sk)) 571 mask |= EPOLLOUT | EPOLLWRNORM; 572 } 573 } else 574 mask |= EPOLLOUT | EPOLLWRNORM; 575 576 if (tp->urg_data & TCP_URG_VALID) 577 mask |= EPOLLPRI; 578 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) { 579 /* Active TCP fastopen socket with defer_connect 580 * Return EPOLLOUT so application can call write() 581 * in order for kernel to generate SYN+data 582 */ 583 mask |= EPOLLOUT | EPOLLWRNORM; 584 } 585 /* This barrier is coupled with smp_wmb() in tcp_reset() */ 586 smp_rmb(); 587 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 588 mask |= EPOLLERR; 589 590 return mask; 591 } 592 EXPORT_SYMBOL(tcp_poll_mask); 593 594 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg) 595 { 596 struct tcp_sock *tp = tcp_sk(sk); 597 int answ; 598 bool slow; 599 600 switch (cmd) { 601 case SIOCINQ: 602 if (sk->sk_state == TCP_LISTEN) 603 return -EINVAL; 604 605 slow = lock_sock_fast(sk); 606 answ = tcp_inq(sk); 607 unlock_sock_fast(sk, slow); 608 break; 609 case SIOCATMARK: 610 answ = tp->urg_data && tp->urg_seq == tp->copied_seq; 611 break; 612 case SIOCOUTQ: 613 if (sk->sk_state == TCP_LISTEN) 614 return -EINVAL; 615 616 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 617 answ = 0; 618 else 619 answ = tp->write_seq - tp->snd_una; 620 break; 621 case SIOCOUTQNSD: 622 if (sk->sk_state == TCP_LISTEN) 623 return -EINVAL; 624 625 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) 626 answ = 0; 627 else 628 answ = tp->write_seq - tp->snd_nxt; 629 break; 630 default: 631 return -ENOIOCTLCMD; 632 } 633 634 return put_user(answ, (int __user *)arg); 635 } 636 EXPORT_SYMBOL(tcp_ioctl); 637 638 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb) 639 { 640 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH; 641 tp->pushed_seq = tp->write_seq; 642 } 643 644 static inline bool forced_push(const struct tcp_sock *tp) 645 { 646 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1)); 647 } 648 649 static void skb_entail(struct sock *sk, struct sk_buff *skb) 650 { 651 struct tcp_sock *tp = tcp_sk(sk); 652 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); 653 654 skb->csum = 0; 655 tcb->seq = tcb->end_seq = tp->write_seq; 656 tcb->tcp_flags = TCPHDR_ACK; 657 tcb->sacked = 0; 658 __skb_header_release(skb); 659 tcp_add_write_queue_tail(sk, skb); 660 sk->sk_wmem_queued += skb->truesize; 661 sk_mem_charge(sk, skb->truesize); 662 if (tp->nonagle & TCP_NAGLE_PUSH) 663 tp->nonagle &= ~TCP_NAGLE_PUSH; 664 665 tcp_slow_start_after_idle_check(sk); 666 } 667 668 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags) 669 { 670 if (flags & MSG_OOB) 671 tp->snd_up = tp->write_seq; 672 } 673 674 /* If a not yet filled skb is pushed, do not send it if 675 * we have data packets in Qdisc or NIC queues : 676 * Because TX completion will happen shortly, it gives a chance 677 * to coalesce future sendmsg() payload into this skb, without 678 * need for a timer, and with no latency trade off. 679 * As packets containing data payload have a bigger truesize 680 * than pure acks (dataless) packets, the last checks prevent 681 * autocorking if we only have an ACK in Qdisc/NIC queues, 682 * or if TX completion was delayed after we processed ACK packet. 683 */ 684 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb, 685 int size_goal) 686 { 687 return skb->len < size_goal && 688 sock_net(sk)->ipv4.sysctl_tcp_autocorking && 689 !tcp_rtx_queue_empty(sk) && 690 refcount_read(&sk->sk_wmem_alloc) > skb->truesize; 691 } 692 693 static void tcp_push(struct sock *sk, int flags, int mss_now, 694 int nonagle, int size_goal) 695 { 696 struct tcp_sock *tp = tcp_sk(sk); 697 struct sk_buff *skb; 698 699 skb = tcp_write_queue_tail(sk); 700 if (!skb) 701 return; 702 if (!(flags & MSG_MORE) || forced_push(tp)) 703 tcp_mark_push(tp, skb); 704 705 tcp_mark_urg(tp, flags); 706 707 if (tcp_should_autocork(sk, skb, size_goal)) { 708 709 /* avoid atomic op if TSQ_THROTTLED bit is already set */ 710 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) { 711 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING); 712 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags); 713 } 714 /* It is possible TX completion already happened 715 * before we set TSQ_THROTTLED. 716 */ 717 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize) 718 return; 719 } 720 721 if (flags & MSG_MORE) 722 nonagle = TCP_NAGLE_CORK; 723 724 __tcp_push_pending_frames(sk, mss_now, nonagle); 725 } 726 727 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb, 728 unsigned int offset, size_t len) 729 { 730 struct tcp_splice_state *tss = rd_desc->arg.data; 731 int ret; 732 733 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe, 734 min(rd_desc->count, len), tss->flags); 735 if (ret > 0) 736 rd_desc->count -= ret; 737 return ret; 738 } 739 740 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss) 741 { 742 /* Store TCP splice context information in read_descriptor_t. */ 743 read_descriptor_t rd_desc = { 744 .arg.data = tss, 745 .count = tss->len, 746 }; 747 748 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv); 749 } 750 751 /** 752 * tcp_splice_read - splice data from TCP socket to a pipe 753 * @sock: socket to splice from 754 * @ppos: position (not valid) 755 * @pipe: pipe to splice to 756 * @len: number of bytes to splice 757 * @flags: splice modifier flags 758 * 759 * Description: 760 * Will read pages from given socket and fill them into a pipe. 761 * 762 **/ 763 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos, 764 struct pipe_inode_info *pipe, size_t len, 765 unsigned int flags) 766 { 767 struct sock *sk = sock->sk; 768 struct tcp_splice_state tss = { 769 .pipe = pipe, 770 .len = len, 771 .flags = flags, 772 }; 773 long timeo; 774 ssize_t spliced; 775 int ret; 776 777 sock_rps_record_flow(sk); 778 /* 779 * We can't seek on a socket input 780 */ 781 if (unlikely(*ppos)) 782 return -ESPIPE; 783 784 ret = spliced = 0; 785 786 lock_sock(sk); 787 788 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK); 789 while (tss.len) { 790 ret = __tcp_splice_read(sk, &tss); 791 if (ret < 0) 792 break; 793 else if (!ret) { 794 if (spliced) 795 break; 796 if (sock_flag(sk, SOCK_DONE)) 797 break; 798 if (sk->sk_err) { 799 ret = sock_error(sk); 800 break; 801 } 802 if (sk->sk_shutdown & RCV_SHUTDOWN) 803 break; 804 if (sk->sk_state == TCP_CLOSE) { 805 /* 806 * This occurs when user tries to read 807 * from never connected socket. 808 */ 809 if (!sock_flag(sk, SOCK_DONE)) 810 ret = -ENOTCONN; 811 break; 812 } 813 if (!timeo) { 814 ret = -EAGAIN; 815 break; 816 } 817 /* if __tcp_splice_read() got nothing while we have 818 * an skb in receive queue, we do not want to loop. 819 * This might happen with URG data. 820 */ 821 if (!skb_queue_empty(&sk->sk_receive_queue)) 822 break; 823 sk_wait_data(sk, &timeo, NULL); 824 if (signal_pending(current)) { 825 ret = sock_intr_errno(timeo); 826 break; 827 } 828 continue; 829 } 830 tss.len -= ret; 831 spliced += ret; 832 833 if (!timeo) 834 break; 835 release_sock(sk); 836 lock_sock(sk); 837 838 if (sk->sk_err || sk->sk_state == TCP_CLOSE || 839 (sk->sk_shutdown & RCV_SHUTDOWN) || 840 signal_pending(current)) 841 break; 842 } 843 844 release_sock(sk); 845 846 if (spliced) 847 return spliced; 848 849 return ret; 850 } 851 EXPORT_SYMBOL(tcp_splice_read); 852 853 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp, 854 bool force_schedule) 855 { 856 struct sk_buff *skb; 857 858 /* The TCP header must be at least 32-bit aligned. */ 859 size = ALIGN(size, 4); 860 861 if (unlikely(tcp_under_memory_pressure(sk))) 862 sk_mem_reclaim_partial(sk); 863 864 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp); 865 if (likely(skb)) { 866 bool mem_scheduled; 867 868 if (force_schedule) { 869 mem_scheduled = true; 870 sk_forced_mem_schedule(sk, skb->truesize); 871 } else { 872 mem_scheduled = sk_wmem_schedule(sk, skb->truesize); 873 } 874 if (likely(mem_scheduled)) { 875 skb_reserve(skb, sk->sk_prot->max_header); 876 /* 877 * Make sure that we have exactly size bytes 878 * available to the caller, no more, no less. 879 */ 880 skb->reserved_tailroom = skb->end - skb->tail - size; 881 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor); 882 return skb; 883 } 884 __kfree_skb(skb); 885 } else { 886 sk->sk_prot->enter_memory_pressure(sk); 887 sk_stream_moderate_sndbuf(sk); 888 } 889 return NULL; 890 } 891 892 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now, 893 int large_allowed) 894 { 895 struct tcp_sock *tp = tcp_sk(sk); 896 u32 new_size_goal, size_goal; 897 898 if (!large_allowed) 899 return mss_now; 900 901 /* Note : tcp_tso_autosize() will eventually split this later */ 902 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER; 903 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal); 904 905 /* We try hard to avoid divides here */ 906 size_goal = tp->gso_segs * mss_now; 907 if (unlikely(new_size_goal < size_goal || 908 new_size_goal >= size_goal + mss_now)) { 909 tp->gso_segs = min_t(u16, new_size_goal / mss_now, 910 sk->sk_gso_max_segs); 911 size_goal = tp->gso_segs * mss_now; 912 } 913 914 return max(size_goal, mss_now); 915 } 916 917 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags) 918 { 919 int mss_now; 920 921 mss_now = tcp_current_mss(sk); 922 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB)); 923 924 return mss_now; 925 } 926 927 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset, 928 size_t size, int flags) 929 { 930 struct tcp_sock *tp = tcp_sk(sk); 931 int mss_now, size_goal; 932 int err; 933 ssize_t copied; 934 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 935 936 /* Wait for a connection to finish. One exception is TCP Fast Open 937 * (passive side) where data is allowed to be sent before a connection 938 * is fully established. 939 */ 940 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 941 !tcp_passive_fastopen(sk)) { 942 err = sk_stream_wait_connect(sk, &timeo); 943 if (err != 0) 944 goto out_err; 945 } 946 947 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 948 949 mss_now = tcp_send_mss(sk, &size_goal, flags); 950 copied = 0; 951 952 err = -EPIPE; 953 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 954 goto out_err; 955 956 while (size > 0) { 957 struct sk_buff *skb = tcp_write_queue_tail(sk); 958 int copy, i; 959 bool can_coalesce; 960 961 if (!skb || (copy = size_goal - skb->len) <= 0 || 962 !tcp_skb_can_collapse_to(skb)) { 963 new_segment: 964 if (!sk_stream_memory_free(sk)) 965 goto wait_for_sndbuf; 966 967 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, 968 tcp_rtx_and_write_queues_empty(sk)); 969 if (!skb) 970 goto wait_for_memory; 971 972 skb_entail(sk, skb); 973 copy = size_goal; 974 } 975 976 if (copy > size) 977 copy = size; 978 979 i = skb_shinfo(skb)->nr_frags; 980 can_coalesce = skb_can_coalesce(skb, i, page, offset); 981 if (!can_coalesce && i >= sysctl_max_skb_frags) { 982 tcp_mark_push(tp, skb); 983 goto new_segment; 984 } 985 if (!sk_wmem_schedule(sk, copy)) 986 goto wait_for_memory; 987 988 if (can_coalesce) { 989 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 990 } else { 991 get_page(page); 992 skb_fill_page_desc(skb, i, page, offset, copy); 993 } 994 995 if (!(flags & MSG_NO_SHARED_FRAGS)) 996 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG; 997 998 skb->len += copy; 999 skb->data_len += copy; 1000 skb->truesize += copy; 1001 sk->sk_wmem_queued += copy; 1002 sk_mem_charge(sk, copy); 1003 skb->ip_summed = CHECKSUM_PARTIAL; 1004 tp->write_seq += copy; 1005 TCP_SKB_CB(skb)->end_seq += copy; 1006 tcp_skb_pcount_set(skb, 0); 1007 1008 if (!copied) 1009 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1010 1011 copied += copy; 1012 offset += copy; 1013 size -= copy; 1014 if (!size) 1015 goto out; 1016 1017 if (skb->len < size_goal || (flags & MSG_OOB)) 1018 continue; 1019 1020 if (forced_push(tp)) { 1021 tcp_mark_push(tp, skb); 1022 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1023 } else if (skb == tcp_send_head(sk)) 1024 tcp_push_one(sk, mss_now); 1025 continue; 1026 1027 wait_for_sndbuf: 1028 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1029 wait_for_memory: 1030 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1031 TCP_NAGLE_PUSH, size_goal); 1032 1033 err = sk_stream_wait_memory(sk, &timeo); 1034 if (err != 0) 1035 goto do_error; 1036 1037 mss_now = tcp_send_mss(sk, &size_goal, flags); 1038 } 1039 1040 out: 1041 if (copied) { 1042 tcp_tx_timestamp(sk, sk->sk_tsflags); 1043 if (!(flags & MSG_SENDPAGE_NOTLAST)) 1044 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1045 } 1046 return copied; 1047 1048 do_error: 1049 if (copied) 1050 goto out; 1051 out_err: 1052 /* make sure we wake any epoll edge trigger waiter */ 1053 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1054 err == -EAGAIN)) { 1055 sk->sk_write_space(sk); 1056 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1057 } 1058 return sk_stream_error(sk, flags, err); 1059 } 1060 EXPORT_SYMBOL_GPL(do_tcp_sendpages); 1061 1062 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset, 1063 size_t size, int flags) 1064 { 1065 if (!(sk->sk_route_caps & NETIF_F_SG)) 1066 return sock_no_sendpage_locked(sk, page, offset, size, flags); 1067 1068 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1069 1070 return do_tcp_sendpages(sk, page, offset, size, flags); 1071 } 1072 EXPORT_SYMBOL_GPL(tcp_sendpage_locked); 1073 1074 int tcp_sendpage(struct sock *sk, struct page *page, int offset, 1075 size_t size, int flags) 1076 { 1077 int ret; 1078 1079 lock_sock(sk); 1080 ret = tcp_sendpage_locked(sk, page, offset, size, flags); 1081 release_sock(sk); 1082 1083 return ret; 1084 } 1085 EXPORT_SYMBOL(tcp_sendpage); 1086 1087 /* Do not bother using a page frag for very small frames. 1088 * But use this heuristic only for the first skb in write queue. 1089 * 1090 * Having no payload in skb->head allows better SACK shifting 1091 * in tcp_shift_skb_data(), reducing sack/rack overhead, because 1092 * write queue has less skbs. 1093 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB. 1094 * This also speeds up tso_fragment(), since it wont fallback 1095 * to tcp_fragment(). 1096 */ 1097 static int linear_payload_sz(bool first_skb) 1098 { 1099 if (first_skb) 1100 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER); 1101 return 0; 1102 } 1103 1104 static int select_size(bool first_skb, bool zc) 1105 { 1106 if (zc) 1107 return 0; 1108 return linear_payload_sz(first_skb); 1109 } 1110 1111 void tcp_free_fastopen_req(struct tcp_sock *tp) 1112 { 1113 if (tp->fastopen_req) { 1114 kfree(tp->fastopen_req); 1115 tp->fastopen_req = NULL; 1116 } 1117 } 1118 1119 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, 1120 int *copied, size_t size) 1121 { 1122 struct tcp_sock *tp = tcp_sk(sk); 1123 struct inet_sock *inet = inet_sk(sk); 1124 struct sockaddr *uaddr = msg->msg_name; 1125 int err, flags; 1126 1127 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) || 1128 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) && 1129 uaddr->sa_family == AF_UNSPEC)) 1130 return -EOPNOTSUPP; 1131 if (tp->fastopen_req) 1132 return -EALREADY; /* Another Fast Open is in progress */ 1133 1134 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request), 1135 sk->sk_allocation); 1136 if (unlikely(!tp->fastopen_req)) 1137 return -ENOBUFS; 1138 tp->fastopen_req->data = msg; 1139 tp->fastopen_req->size = size; 1140 1141 if (inet->defer_connect) { 1142 err = tcp_connect(sk); 1143 /* Same failure procedure as in tcp_v4/6_connect */ 1144 if (err) { 1145 tcp_set_state(sk, TCP_CLOSE); 1146 inet->inet_dport = 0; 1147 sk->sk_route_caps = 0; 1148 } 1149 } 1150 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0; 1151 err = __inet_stream_connect(sk->sk_socket, uaddr, 1152 msg->msg_namelen, flags, 1); 1153 /* fastopen_req could already be freed in __inet_stream_connect 1154 * if the connection times out or gets rst 1155 */ 1156 if (tp->fastopen_req) { 1157 *copied = tp->fastopen_req->copied; 1158 tcp_free_fastopen_req(tp); 1159 inet->defer_connect = 0; 1160 } 1161 return err; 1162 } 1163 1164 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size) 1165 { 1166 struct tcp_sock *tp = tcp_sk(sk); 1167 struct ubuf_info *uarg = NULL; 1168 struct sk_buff *skb; 1169 struct sockcm_cookie sockc; 1170 int flags, err, copied = 0; 1171 int mss_now = 0, size_goal, copied_syn = 0; 1172 bool process_backlog = false; 1173 bool zc = false; 1174 long timeo; 1175 1176 flags = msg->msg_flags; 1177 1178 if (flags & MSG_ZEROCOPY && size) { 1179 if (sk->sk_state != TCP_ESTABLISHED) { 1180 err = -EINVAL; 1181 goto out_err; 1182 } 1183 1184 skb = tcp_write_queue_tail(sk); 1185 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb)); 1186 if (!uarg) { 1187 err = -ENOBUFS; 1188 goto out_err; 1189 } 1190 1191 zc = sk->sk_route_caps & NETIF_F_SG; 1192 if (!zc) 1193 uarg->zerocopy = 0; 1194 } 1195 1196 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) && 1197 !tp->repair) { 1198 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size); 1199 if (err == -EINPROGRESS && copied_syn > 0) 1200 goto out; 1201 else if (err) 1202 goto out_err; 1203 } 1204 1205 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); 1206 1207 tcp_rate_check_app_limited(sk); /* is sending application-limited? */ 1208 1209 /* Wait for a connection to finish. One exception is TCP Fast Open 1210 * (passive side) where data is allowed to be sent before a connection 1211 * is fully established. 1212 */ 1213 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) && 1214 !tcp_passive_fastopen(sk)) { 1215 err = sk_stream_wait_connect(sk, &timeo); 1216 if (err != 0) 1217 goto do_error; 1218 } 1219 1220 if (unlikely(tp->repair)) { 1221 if (tp->repair_queue == TCP_RECV_QUEUE) { 1222 copied = tcp_send_rcvq(sk, msg, size); 1223 goto out_nopush; 1224 } 1225 1226 err = -EINVAL; 1227 if (tp->repair_queue == TCP_NO_QUEUE) 1228 goto out_err; 1229 1230 /* 'common' sending to sendq */ 1231 } 1232 1233 sockc.tsflags = sk->sk_tsflags; 1234 if (msg->msg_controllen) { 1235 err = sock_cmsg_send(sk, msg, &sockc); 1236 if (unlikely(err)) { 1237 err = -EINVAL; 1238 goto out_err; 1239 } 1240 } 1241 1242 /* This should be in poll */ 1243 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk); 1244 1245 /* Ok commence sending. */ 1246 copied = 0; 1247 1248 restart: 1249 mss_now = tcp_send_mss(sk, &size_goal, flags); 1250 1251 err = -EPIPE; 1252 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) 1253 goto do_error; 1254 1255 while (msg_data_left(msg)) { 1256 int copy = 0; 1257 1258 skb = tcp_write_queue_tail(sk); 1259 if (skb) 1260 copy = size_goal - skb->len; 1261 1262 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) { 1263 bool first_skb; 1264 int linear; 1265 1266 new_segment: 1267 /* Allocate new segment. If the interface is SG, 1268 * allocate skb fitting to single page. 1269 */ 1270 if (!sk_stream_memory_free(sk)) 1271 goto wait_for_sndbuf; 1272 1273 if (process_backlog && sk_flush_backlog(sk)) { 1274 process_backlog = false; 1275 goto restart; 1276 } 1277 first_skb = tcp_rtx_and_write_queues_empty(sk); 1278 linear = select_size(first_skb, zc); 1279 skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation, 1280 first_skb); 1281 if (!skb) 1282 goto wait_for_memory; 1283 1284 process_backlog = true; 1285 skb->ip_summed = CHECKSUM_PARTIAL; 1286 1287 skb_entail(sk, skb); 1288 copy = size_goal; 1289 1290 /* All packets are restored as if they have 1291 * already been sent. skb_mstamp isn't set to 1292 * avoid wrong rtt estimation. 1293 */ 1294 if (tp->repair) 1295 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED; 1296 } 1297 1298 /* Try to append data to the end of skb. */ 1299 if (copy > msg_data_left(msg)) 1300 copy = msg_data_left(msg); 1301 1302 /* Where to copy to? */ 1303 if (skb_availroom(skb) > 0 && !zc) { 1304 /* We have some space in skb head. Superb! */ 1305 copy = min_t(int, copy, skb_availroom(skb)); 1306 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy); 1307 if (err) 1308 goto do_fault; 1309 } else if (!zc) { 1310 bool merge = true; 1311 int i = skb_shinfo(skb)->nr_frags; 1312 struct page_frag *pfrag = sk_page_frag(sk); 1313 1314 if (!sk_page_frag_refill(sk, pfrag)) 1315 goto wait_for_memory; 1316 1317 if (!skb_can_coalesce(skb, i, pfrag->page, 1318 pfrag->offset)) { 1319 if (i >= sysctl_max_skb_frags) { 1320 tcp_mark_push(tp, skb); 1321 goto new_segment; 1322 } 1323 merge = false; 1324 } 1325 1326 copy = min_t(int, copy, pfrag->size - pfrag->offset); 1327 1328 if (!sk_wmem_schedule(sk, copy)) 1329 goto wait_for_memory; 1330 1331 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb, 1332 pfrag->page, 1333 pfrag->offset, 1334 copy); 1335 if (err) 1336 goto do_error; 1337 1338 /* Update the skb. */ 1339 if (merge) { 1340 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); 1341 } else { 1342 skb_fill_page_desc(skb, i, pfrag->page, 1343 pfrag->offset, copy); 1344 page_ref_inc(pfrag->page); 1345 } 1346 pfrag->offset += copy; 1347 } else { 1348 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg); 1349 if (err == -EMSGSIZE || err == -EEXIST) { 1350 tcp_mark_push(tp, skb); 1351 goto new_segment; 1352 } 1353 if (err < 0) 1354 goto do_error; 1355 copy = err; 1356 } 1357 1358 if (!copied) 1359 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH; 1360 1361 tp->write_seq += copy; 1362 TCP_SKB_CB(skb)->end_seq += copy; 1363 tcp_skb_pcount_set(skb, 0); 1364 1365 copied += copy; 1366 if (!msg_data_left(msg)) { 1367 if (unlikely(flags & MSG_EOR)) 1368 TCP_SKB_CB(skb)->eor = 1; 1369 goto out; 1370 } 1371 1372 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair)) 1373 continue; 1374 1375 if (forced_push(tp)) { 1376 tcp_mark_push(tp, skb); 1377 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH); 1378 } else if (skb == tcp_send_head(sk)) 1379 tcp_push_one(sk, mss_now); 1380 continue; 1381 1382 wait_for_sndbuf: 1383 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags); 1384 wait_for_memory: 1385 if (copied) 1386 tcp_push(sk, flags & ~MSG_MORE, mss_now, 1387 TCP_NAGLE_PUSH, size_goal); 1388 1389 err = sk_stream_wait_memory(sk, &timeo); 1390 if (err != 0) 1391 goto do_error; 1392 1393 mss_now = tcp_send_mss(sk, &size_goal, flags); 1394 } 1395 1396 out: 1397 if (copied) { 1398 tcp_tx_timestamp(sk, sockc.tsflags); 1399 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal); 1400 } 1401 out_nopush: 1402 sock_zerocopy_put(uarg); 1403 return copied + copied_syn; 1404 1405 do_fault: 1406 if (!skb->len) { 1407 tcp_unlink_write_queue(skb, sk); 1408 /* It is the one place in all of TCP, except connection 1409 * reset, where we can be unlinking the send_head. 1410 */ 1411 tcp_check_send_head(sk, skb); 1412 sk_wmem_free_skb(sk, skb); 1413 } 1414 1415 do_error: 1416 if (copied + copied_syn) 1417 goto out; 1418 out_err: 1419 sock_zerocopy_put_abort(uarg); 1420 err = sk_stream_error(sk, flags, err); 1421 /* make sure we wake any epoll edge trigger waiter */ 1422 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && 1423 err == -EAGAIN)) { 1424 sk->sk_write_space(sk); 1425 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED); 1426 } 1427 return err; 1428 } 1429 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked); 1430 1431 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size) 1432 { 1433 int ret; 1434 1435 lock_sock(sk); 1436 ret = tcp_sendmsg_locked(sk, msg, size); 1437 release_sock(sk); 1438 1439 return ret; 1440 } 1441 EXPORT_SYMBOL(tcp_sendmsg); 1442 1443 /* 1444 * Handle reading urgent data. BSD has very simple semantics for 1445 * this, no blocking and very strange errors 8) 1446 */ 1447 1448 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags) 1449 { 1450 struct tcp_sock *tp = tcp_sk(sk); 1451 1452 /* No URG data to read. */ 1453 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data || 1454 tp->urg_data == TCP_URG_READ) 1455 return -EINVAL; /* Yes this is right ! */ 1456 1457 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE)) 1458 return -ENOTCONN; 1459 1460 if (tp->urg_data & TCP_URG_VALID) { 1461 int err = 0; 1462 char c = tp->urg_data; 1463 1464 if (!(flags & MSG_PEEK)) 1465 tp->urg_data = TCP_URG_READ; 1466 1467 /* Read urgent data. */ 1468 msg->msg_flags |= MSG_OOB; 1469 1470 if (len > 0) { 1471 if (!(flags & MSG_TRUNC)) 1472 err = memcpy_to_msg(msg, &c, 1); 1473 len = 1; 1474 } else 1475 msg->msg_flags |= MSG_TRUNC; 1476 1477 return err ? -EFAULT : len; 1478 } 1479 1480 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN)) 1481 return 0; 1482 1483 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and 1484 * the available implementations agree in this case: 1485 * this call should never block, independent of the 1486 * blocking state of the socket. 1487 * Mike <pall@rz.uni-karlsruhe.de> 1488 */ 1489 return -EAGAIN; 1490 } 1491 1492 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len) 1493 { 1494 struct sk_buff *skb; 1495 int copied = 0, err = 0; 1496 1497 /* XXX -- need to support SO_PEEK_OFF */ 1498 1499 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) { 1500 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1501 if (err) 1502 return err; 1503 copied += skb->len; 1504 } 1505 1506 skb_queue_walk(&sk->sk_write_queue, skb) { 1507 err = skb_copy_datagram_msg(skb, 0, msg, skb->len); 1508 if (err) 1509 break; 1510 1511 copied += skb->len; 1512 } 1513 1514 return err ?: copied; 1515 } 1516 1517 /* Clean up the receive buffer for full frames taken by the user, 1518 * then send an ACK if necessary. COPIED is the number of bytes 1519 * tcp_recvmsg has given to the user so far, it speeds up the 1520 * calculation of whether or not we must ACK for the sake of 1521 * a window update. 1522 */ 1523 static void tcp_cleanup_rbuf(struct sock *sk, int copied) 1524 { 1525 struct tcp_sock *tp = tcp_sk(sk); 1526 bool time_to_ack = false; 1527 1528 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue); 1529 1530 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq), 1531 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n", 1532 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt); 1533 1534 if (inet_csk_ack_scheduled(sk)) { 1535 const struct inet_connection_sock *icsk = inet_csk(sk); 1536 /* Delayed ACKs frequently hit locked sockets during bulk 1537 * receive. */ 1538 if (icsk->icsk_ack.blocked || 1539 /* Once-per-two-segments ACK was not sent by tcp_input.c */ 1540 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss || 1541 /* 1542 * If this read emptied read buffer, we send ACK, if 1543 * connection is not bidirectional, user drained 1544 * receive buffer and there was a small segment 1545 * in queue. 1546 */ 1547 (copied > 0 && 1548 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) || 1549 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) && 1550 !icsk->icsk_ack.pingpong)) && 1551 !atomic_read(&sk->sk_rmem_alloc))) 1552 time_to_ack = true; 1553 } 1554 1555 /* We send an ACK if we can now advertise a non-zero window 1556 * which has been raised "significantly". 1557 * 1558 * Even if window raised up to infinity, do not send window open ACK 1559 * in states, where we will not receive more. It is useless. 1560 */ 1561 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) { 1562 __u32 rcv_window_now = tcp_receive_window(tp); 1563 1564 /* Optimize, __tcp_select_window() is not cheap. */ 1565 if (2*rcv_window_now <= tp->window_clamp) { 1566 __u32 new_window = __tcp_select_window(sk); 1567 1568 /* Send ACK now, if this read freed lots of space 1569 * in our buffer. Certainly, new_window is new window. 1570 * We can advertise it now, if it is not less than current one. 1571 * "Lots" means "at least twice" here. 1572 */ 1573 if (new_window && new_window >= 2 * rcv_window_now) 1574 time_to_ack = true; 1575 } 1576 } 1577 if (time_to_ack) 1578 tcp_send_ack(sk); 1579 } 1580 1581 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off) 1582 { 1583 struct sk_buff *skb; 1584 u32 offset; 1585 1586 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) { 1587 offset = seq - TCP_SKB_CB(skb)->seq; 1588 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1589 pr_err_once("%s: found a SYN, please report !\n", __func__); 1590 offset--; 1591 } 1592 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) { 1593 *off = offset; 1594 return skb; 1595 } 1596 /* This looks weird, but this can happen if TCP collapsing 1597 * splitted a fat GRO packet, while we released socket lock 1598 * in skb_splice_bits() 1599 */ 1600 sk_eat_skb(sk, skb); 1601 } 1602 return NULL; 1603 } 1604 1605 /* 1606 * This routine provides an alternative to tcp_recvmsg() for routines 1607 * that would like to handle copying from skbuffs directly in 'sendfile' 1608 * fashion. 1609 * Note: 1610 * - It is assumed that the socket was locked by the caller. 1611 * - The routine does not block. 1612 * - At present, there is no support for reading OOB data 1613 * or for 'peeking' the socket using this routine 1614 * (although both would be easy to implement). 1615 */ 1616 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc, 1617 sk_read_actor_t recv_actor) 1618 { 1619 struct sk_buff *skb; 1620 struct tcp_sock *tp = tcp_sk(sk); 1621 u32 seq = tp->copied_seq; 1622 u32 offset; 1623 int copied = 0; 1624 1625 if (sk->sk_state == TCP_LISTEN) 1626 return -ENOTCONN; 1627 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) { 1628 if (offset < skb->len) { 1629 int used; 1630 size_t len; 1631 1632 len = skb->len - offset; 1633 /* Stop reading if we hit a patch of urgent data */ 1634 if (tp->urg_data) { 1635 u32 urg_offset = tp->urg_seq - seq; 1636 if (urg_offset < len) 1637 len = urg_offset; 1638 if (!len) 1639 break; 1640 } 1641 used = recv_actor(desc, skb, offset, len); 1642 if (used <= 0) { 1643 if (!copied) 1644 copied = used; 1645 break; 1646 } else if (used <= len) { 1647 seq += used; 1648 copied += used; 1649 offset += used; 1650 } 1651 /* If recv_actor drops the lock (e.g. TCP splice 1652 * receive) the skb pointer might be invalid when 1653 * getting here: tcp_collapse might have deleted it 1654 * while aggregating skbs from the socket queue. 1655 */ 1656 skb = tcp_recv_skb(sk, seq - 1, &offset); 1657 if (!skb) 1658 break; 1659 /* TCP coalescing might have appended data to the skb. 1660 * Try to splice more frags 1661 */ 1662 if (offset + 1 != skb->len) 1663 continue; 1664 } 1665 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { 1666 sk_eat_skb(sk, skb); 1667 ++seq; 1668 break; 1669 } 1670 sk_eat_skb(sk, skb); 1671 if (!desc->count) 1672 break; 1673 tp->copied_seq = seq; 1674 } 1675 tp->copied_seq = seq; 1676 1677 tcp_rcv_space_adjust(sk); 1678 1679 /* Clean up data we have read: This will do ACK frames. */ 1680 if (copied > 0) { 1681 tcp_recv_skb(sk, seq, &offset); 1682 tcp_cleanup_rbuf(sk, copied); 1683 } 1684 return copied; 1685 } 1686 EXPORT_SYMBOL(tcp_read_sock); 1687 1688 int tcp_peek_len(struct socket *sock) 1689 { 1690 return tcp_inq(sock->sk); 1691 } 1692 EXPORT_SYMBOL(tcp_peek_len); 1693 1694 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */ 1695 int tcp_set_rcvlowat(struct sock *sk, int val) 1696 { 1697 sk->sk_rcvlowat = val ? : 1; 1698 1699 /* Check if we need to signal EPOLLIN right now */ 1700 tcp_data_ready(sk); 1701 1702 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK) 1703 return 0; 1704 1705 /* val comes from user space and might be close to INT_MAX */ 1706 val <<= 1; 1707 if (val < 0) 1708 val = INT_MAX; 1709 1710 val = min(val, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]); 1711 if (val > sk->sk_rcvbuf) { 1712 sk->sk_rcvbuf = val; 1713 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val); 1714 } 1715 return 0; 1716 } 1717 EXPORT_SYMBOL(tcp_set_rcvlowat); 1718 1719 #ifdef CONFIG_MMU 1720 static const struct vm_operations_struct tcp_vm_ops = { 1721 }; 1722 1723 int tcp_mmap(struct file *file, struct socket *sock, 1724 struct vm_area_struct *vma) 1725 { 1726 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 1727 return -EPERM; 1728 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); 1729 1730 /* Instruct vm_insert_page() to not down_read(mmap_sem) */ 1731 vma->vm_flags |= VM_MIXEDMAP; 1732 1733 vma->vm_ops = &tcp_vm_ops; 1734 return 0; 1735 } 1736 EXPORT_SYMBOL(tcp_mmap); 1737 1738 static int tcp_zerocopy_receive(struct sock *sk, 1739 struct tcp_zerocopy_receive *zc) 1740 { 1741 unsigned long address = (unsigned long)zc->address; 1742 const skb_frag_t *frags = NULL; 1743 u32 length = 0, seq, offset; 1744 struct vm_area_struct *vma; 1745 struct sk_buff *skb = NULL; 1746 struct tcp_sock *tp; 1747 int ret; 1748 1749 if (address & (PAGE_SIZE - 1) || address != zc->address) 1750 return -EINVAL; 1751 1752 if (sk->sk_state == TCP_LISTEN) 1753 return -ENOTCONN; 1754 1755 sock_rps_record_flow(sk); 1756 1757 down_read(¤t->mm->mmap_sem); 1758 1759 ret = -EINVAL; 1760 vma = find_vma(current->mm, address); 1761 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) 1762 goto out; 1763 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address); 1764 1765 tp = tcp_sk(sk); 1766 seq = tp->copied_seq; 1767 zc->length = min_t(u32, zc->length, tcp_inq(sk)); 1768 zc->length &= ~(PAGE_SIZE - 1); 1769 1770 zap_page_range(vma, address, zc->length); 1771 1772 zc->recv_skip_hint = 0; 1773 ret = 0; 1774 while (length + PAGE_SIZE <= zc->length) { 1775 if (zc->recv_skip_hint < PAGE_SIZE) { 1776 if (skb) { 1777 skb = skb->next; 1778 offset = seq - TCP_SKB_CB(skb)->seq; 1779 } else { 1780 skb = tcp_recv_skb(sk, seq, &offset); 1781 } 1782 1783 zc->recv_skip_hint = skb->len - offset; 1784 offset -= skb_headlen(skb); 1785 if ((int)offset < 0 || skb_has_frag_list(skb)) 1786 break; 1787 frags = skb_shinfo(skb)->frags; 1788 while (offset) { 1789 if (frags->size > offset) 1790 goto out; 1791 offset -= frags->size; 1792 frags++; 1793 } 1794 } 1795 if (frags->size != PAGE_SIZE || frags->page_offset) 1796 break; 1797 ret = vm_insert_page(vma, address + length, 1798 skb_frag_page(frags)); 1799 if (ret) 1800 break; 1801 length += PAGE_SIZE; 1802 seq += PAGE_SIZE; 1803 zc->recv_skip_hint -= PAGE_SIZE; 1804 frags++; 1805 } 1806 out: 1807 up_read(¤t->mm->mmap_sem); 1808 if (length) { 1809 tp->copied_seq = seq; 1810 tcp_rcv_space_adjust(sk); 1811 1812 /* Clean up data we have read: This will do ACK frames. */ 1813 tcp_recv_skb(sk, seq, &offset); 1814 tcp_cleanup_rbuf(sk, length); 1815 ret = 0; 1816 if (length == zc->length) 1817 zc->recv_skip_hint = 0; 1818 } else { 1819 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE)) 1820 ret = -EIO; 1821 } 1822 zc->length = length; 1823 return ret; 1824 } 1825 #endif 1826 1827 static void tcp_update_recv_tstamps(struct sk_buff *skb, 1828 struct scm_timestamping *tss) 1829 { 1830 if (skb->tstamp) 1831 tss->ts[0] = ktime_to_timespec(skb->tstamp); 1832 else 1833 tss->ts[0] = (struct timespec) {0}; 1834 1835 if (skb_hwtstamps(skb)->hwtstamp) 1836 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp); 1837 else 1838 tss->ts[2] = (struct timespec) {0}; 1839 } 1840 1841 /* Similar to __sock_recv_timestamp, but does not require an skb */ 1842 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk, 1843 struct scm_timestamping *tss) 1844 { 1845 struct timeval tv; 1846 bool has_timestamping = false; 1847 1848 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) { 1849 if (sock_flag(sk, SOCK_RCVTSTAMP)) { 1850 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) { 1851 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 1852 sizeof(tss->ts[0]), &tss->ts[0]); 1853 } else { 1854 tv.tv_sec = tss->ts[0].tv_sec; 1855 tv.tv_usec = tss->ts[0].tv_nsec / 1000; 1856 1857 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 1858 sizeof(tv), &tv); 1859 } 1860 } 1861 1862 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) 1863 has_timestamping = true; 1864 else 1865 tss->ts[0] = (struct timespec) {0}; 1866 } 1867 1868 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) { 1869 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) 1870 has_timestamping = true; 1871 else 1872 tss->ts[2] = (struct timespec) {0}; 1873 } 1874 1875 if (has_timestamping) { 1876 tss->ts[1] = (struct timespec) {0}; 1877 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING, 1878 sizeof(*tss), tss); 1879 } 1880 } 1881 1882 static int tcp_inq_hint(struct sock *sk) 1883 { 1884 const struct tcp_sock *tp = tcp_sk(sk); 1885 u32 copied_seq = READ_ONCE(tp->copied_seq); 1886 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt); 1887 int inq; 1888 1889 inq = rcv_nxt - copied_seq; 1890 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) { 1891 lock_sock(sk); 1892 inq = tp->rcv_nxt - tp->copied_seq; 1893 release_sock(sk); 1894 } 1895 return inq; 1896 } 1897 1898 /* 1899 * This routine copies from a sock struct into the user buffer. 1900 * 1901 * Technical note: in 2.3 we work on _locked_ socket, so that 1902 * tricks with *seq access order and skb->users are not required. 1903 * Probably, code can be easily improved even more. 1904 */ 1905 1906 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock, 1907 int flags, int *addr_len) 1908 { 1909 struct tcp_sock *tp = tcp_sk(sk); 1910 int copied = 0; 1911 u32 peek_seq; 1912 u32 *seq; 1913 unsigned long used; 1914 int err, inq; 1915 int target; /* Read at least this many bytes */ 1916 long timeo; 1917 struct sk_buff *skb, *last; 1918 u32 urg_hole = 0; 1919 struct scm_timestamping tss; 1920 bool has_tss = false; 1921 bool has_cmsg; 1922 1923 if (unlikely(flags & MSG_ERRQUEUE)) 1924 return inet_recv_error(sk, msg, len, addr_len); 1925 1926 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) && 1927 (sk->sk_state == TCP_ESTABLISHED)) 1928 sk_busy_loop(sk, nonblock); 1929 1930 lock_sock(sk); 1931 1932 err = -ENOTCONN; 1933 if (sk->sk_state == TCP_LISTEN) 1934 goto out; 1935 1936 has_cmsg = tp->recvmsg_inq; 1937 timeo = sock_rcvtimeo(sk, nonblock); 1938 1939 /* Urgent data needs to be handled specially. */ 1940 if (flags & MSG_OOB) 1941 goto recv_urg; 1942 1943 if (unlikely(tp->repair)) { 1944 err = -EPERM; 1945 if (!(flags & MSG_PEEK)) 1946 goto out; 1947 1948 if (tp->repair_queue == TCP_SEND_QUEUE) 1949 goto recv_sndq; 1950 1951 err = -EINVAL; 1952 if (tp->repair_queue == TCP_NO_QUEUE) 1953 goto out; 1954 1955 /* 'common' recv queue MSG_PEEK-ing */ 1956 } 1957 1958 seq = &tp->copied_seq; 1959 if (flags & MSG_PEEK) { 1960 peek_seq = tp->copied_seq; 1961 seq = &peek_seq; 1962 } 1963 1964 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len); 1965 1966 do { 1967 u32 offset; 1968 1969 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */ 1970 if (tp->urg_data && tp->urg_seq == *seq) { 1971 if (copied) 1972 break; 1973 if (signal_pending(current)) { 1974 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN; 1975 break; 1976 } 1977 } 1978 1979 /* Next get a buffer. */ 1980 1981 last = skb_peek_tail(&sk->sk_receive_queue); 1982 skb_queue_walk(&sk->sk_receive_queue, skb) { 1983 last = skb; 1984 /* Now that we have two receive queues this 1985 * shouldn't happen. 1986 */ 1987 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq), 1988 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n", 1989 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, 1990 flags)) 1991 break; 1992 1993 offset = *seq - TCP_SKB_CB(skb)->seq; 1994 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) { 1995 pr_err_once("%s: found a SYN, please report !\n", __func__); 1996 offset--; 1997 } 1998 if (offset < skb->len) 1999 goto found_ok_skb; 2000 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2001 goto found_fin_ok; 2002 WARN(!(flags & MSG_PEEK), 2003 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n", 2004 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags); 2005 } 2006 2007 /* Well, if we have backlog, try to process it now yet. */ 2008 2009 if (copied >= target && !sk->sk_backlog.tail) 2010 break; 2011 2012 if (copied) { 2013 if (sk->sk_err || 2014 sk->sk_state == TCP_CLOSE || 2015 (sk->sk_shutdown & RCV_SHUTDOWN) || 2016 !timeo || 2017 signal_pending(current)) 2018 break; 2019 } else { 2020 if (sock_flag(sk, SOCK_DONE)) 2021 break; 2022 2023 if (sk->sk_err) { 2024 copied = sock_error(sk); 2025 break; 2026 } 2027 2028 if (sk->sk_shutdown & RCV_SHUTDOWN) 2029 break; 2030 2031 if (sk->sk_state == TCP_CLOSE) { 2032 if (!sock_flag(sk, SOCK_DONE)) { 2033 /* This occurs when user tries to read 2034 * from never connected socket. 2035 */ 2036 copied = -ENOTCONN; 2037 break; 2038 } 2039 break; 2040 } 2041 2042 if (!timeo) { 2043 copied = -EAGAIN; 2044 break; 2045 } 2046 2047 if (signal_pending(current)) { 2048 copied = sock_intr_errno(timeo); 2049 break; 2050 } 2051 } 2052 2053 tcp_cleanup_rbuf(sk, copied); 2054 2055 if (copied >= target) { 2056 /* Do not sleep, just process backlog. */ 2057 release_sock(sk); 2058 lock_sock(sk); 2059 } else { 2060 sk_wait_data(sk, &timeo, last); 2061 } 2062 2063 if ((flags & MSG_PEEK) && 2064 (peek_seq - copied - urg_hole != tp->copied_seq)) { 2065 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n", 2066 current->comm, 2067 task_pid_nr(current)); 2068 peek_seq = tp->copied_seq; 2069 } 2070 continue; 2071 2072 found_ok_skb: 2073 /* Ok so how much can we use? */ 2074 used = skb->len - offset; 2075 if (len < used) 2076 used = len; 2077 2078 /* Do we have urgent data here? */ 2079 if (tp->urg_data) { 2080 u32 urg_offset = tp->urg_seq - *seq; 2081 if (urg_offset < used) { 2082 if (!urg_offset) { 2083 if (!sock_flag(sk, SOCK_URGINLINE)) { 2084 ++*seq; 2085 urg_hole++; 2086 offset++; 2087 used--; 2088 if (!used) 2089 goto skip_copy; 2090 } 2091 } else 2092 used = urg_offset; 2093 } 2094 } 2095 2096 if (!(flags & MSG_TRUNC)) { 2097 err = skb_copy_datagram_msg(skb, offset, msg, used); 2098 if (err) { 2099 /* Exception. Bailout! */ 2100 if (!copied) 2101 copied = -EFAULT; 2102 break; 2103 } 2104 } 2105 2106 *seq += used; 2107 copied += used; 2108 len -= used; 2109 2110 tcp_rcv_space_adjust(sk); 2111 2112 skip_copy: 2113 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) { 2114 tp->urg_data = 0; 2115 tcp_fast_path_check(sk); 2116 } 2117 if (used + offset < skb->len) 2118 continue; 2119 2120 if (TCP_SKB_CB(skb)->has_rxtstamp) { 2121 tcp_update_recv_tstamps(skb, &tss); 2122 has_tss = true; 2123 has_cmsg = true; 2124 } 2125 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2126 goto found_fin_ok; 2127 if (!(flags & MSG_PEEK)) 2128 sk_eat_skb(sk, skb); 2129 continue; 2130 2131 found_fin_ok: 2132 /* Process the FIN. */ 2133 ++*seq; 2134 if (!(flags & MSG_PEEK)) 2135 sk_eat_skb(sk, skb); 2136 break; 2137 } while (len > 0); 2138 2139 /* According to UNIX98, msg_name/msg_namelen are ignored 2140 * on connected socket. I was just happy when found this 8) --ANK 2141 */ 2142 2143 /* Clean up data we have read: This will do ACK frames. */ 2144 tcp_cleanup_rbuf(sk, copied); 2145 2146 release_sock(sk); 2147 2148 if (has_cmsg) { 2149 if (has_tss) 2150 tcp_recv_timestamp(msg, sk, &tss); 2151 if (tp->recvmsg_inq) { 2152 inq = tcp_inq_hint(sk); 2153 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq); 2154 } 2155 } 2156 2157 return copied; 2158 2159 out: 2160 release_sock(sk); 2161 return err; 2162 2163 recv_urg: 2164 err = tcp_recv_urg(sk, msg, len, flags); 2165 goto out; 2166 2167 recv_sndq: 2168 err = tcp_peek_sndq(sk, msg, len); 2169 goto out; 2170 } 2171 EXPORT_SYMBOL(tcp_recvmsg); 2172 2173 void tcp_set_state(struct sock *sk, int state) 2174 { 2175 int oldstate = sk->sk_state; 2176 2177 /* We defined a new enum for TCP states that are exported in BPF 2178 * so as not force the internal TCP states to be frozen. The 2179 * following checks will detect if an internal state value ever 2180 * differs from the BPF value. If this ever happens, then we will 2181 * need to remap the internal value to the BPF value before calling 2182 * tcp_call_bpf_2arg. 2183 */ 2184 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED); 2185 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT); 2186 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV); 2187 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1); 2188 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2); 2189 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT); 2190 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE); 2191 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT); 2192 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK); 2193 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN); 2194 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING); 2195 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV); 2196 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES); 2197 2198 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG)) 2199 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state); 2200 2201 switch (state) { 2202 case TCP_ESTABLISHED: 2203 if (oldstate != TCP_ESTABLISHED) 2204 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2205 break; 2206 2207 case TCP_CLOSE: 2208 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED) 2209 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS); 2210 2211 sk->sk_prot->unhash(sk); 2212 if (inet_csk(sk)->icsk_bind_hash && 2213 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) 2214 inet_put_port(sk); 2215 /* fall through */ 2216 default: 2217 if (oldstate == TCP_ESTABLISHED) 2218 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB); 2219 } 2220 2221 /* Change state AFTER socket is unhashed to avoid closed 2222 * socket sitting in hash tables. 2223 */ 2224 inet_sk_state_store(sk, state); 2225 2226 #ifdef STATE_TRACE 2227 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]); 2228 #endif 2229 } 2230 EXPORT_SYMBOL_GPL(tcp_set_state); 2231 2232 /* 2233 * State processing on a close. This implements the state shift for 2234 * sending our FIN frame. Note that we only send a FIN for some 2235 * states. A shutdown() may have already sent the FIN, or we may be 2236 * closed. 2237 */ 2238 2239 static const unsigned char new_state[16] = { 2240 /* current state: new state: action: */ 2241 [0 /* (Invalid) */] = TCP_CLOSE, 2242 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2243 [TCP_SYN_SENT] = TCP_CLOSE, 2244 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN, 2245 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1, 2246 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2, 2247 [TCP_TIME_WAIT] = TCP_CLOSE, 2248 [TCP_CLOSE] = TCP_CLOSE, 2249 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN, 2250 [TCP_LAST_ACK] = TCP_LAST_ACK, 2251 [TCP_LISTEN] = TCP_CLOSE, 2252 [TCP_CLOSING] = TCP_CLOSING, 2253 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */ 2254 }; 2255 2256 static int tcp_close_state(struct sock *sk) 2257 { 2258 int next = (int)new_state[sk->sk_state]; 2259 int ns = next & TCP_STATE_MASK; 2260 2261 tcp_set_state(sk, ns); 2262 2263 return next & TCP_ACTION_FIN; 2264 } 2265 2266 /* 2267 * Shutdown the sending side of a connection. Much like close except 2268 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD). 2269 */ 2270 2271 void tcp_shutdown(struct sock *sk, int how) 2272 { 2273 /* We need to grab some memory, and put together a FIN, 2274 * and then put it into the queue to be sent. 2275 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92. 2276 */ 2277 if (!(how & SEND_SHUTDOWN)) 2278 return; 2279 2280 /* If we've already sent a FIN, or it's a closed state, skip this. */ 2281 if ((1 << sk->sk_state) & 2282 (TCPF_ESTABLISHED | TCPF_SYN_SENT | 2283 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) { 2284 /* Clear out any half completed packets. FIN if needed. */ 2285 if (tcp_close_state(sk)) 2286 tcp_send_fin(sk); 2287 } 2288 } 2289 EXPORT_SYMBOL(tcp_shutdown); 2290 2291 bool tcp_check_oom(struct sock *sk, int shift) 2292 { 2293 bool too_many_orphans, out_of_socket_memory; 2294 2295 too_many_orphans = tcp_too_many_orphans(sk, shift); 2296 out_of_socket_memory = tcp_out_of_memory(sk); 2297 2298 if (too_many_orphans) 2299 net_info_ratelimited("too many orphaned sockets\n"); 2300 if (out_of_socket_memory) 2301 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n"); 2302 return too_many_orphans || out_of_socket_memory; 2303 } 2304 2305 void tcp_close(struct sock *sk, long timeout) 2306 { 2307 struct sk_buff *skb; 2308 int data_was_unread = 0; 2309 int state; 2310 2311 lock_sock(sk); 2312 sk->sk_shutdown = SHUTDOWN_MASK; 2313 2314 if (sk->sk_state == TCP_LISTEN) { 2315 tcp_set_state(sk, TCP_CLOSE); 2316 2317 /* Special case. */ 2318 inet_csk_listen_stop(sk); 2319 2320 goto adjudge_to_death; 2321 } 2322 2323 /* We need to flush the recv. buffs. We do this only on the 2324 * descriptor close, not protocol-sourced closes, because the 2325 * reader process may not have drained the data yet! 2326 */ 2327 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) { 2328 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq; 2329 2330 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) 2331 len--; 2332 data_was_unread += len; 2333 __kfree_skb(skb); 2334 } 2335 2336 sk_mem_reclaim(sk); 2337 2338 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */ 2339 if (sk->sk_state == TCP_CLOSE) 2340 goto adjudge_to_death; 2341 2342 /* As outlined in RFC 2525, section 2.17, we send a RST here because 2343 * data was lost. To witness the awful effects of the old behavior of 2344 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk 2345 * GET in an FTP client, suspend the process, wait for the client to 2346 * advertise a zero window, then kill -9 the FTP client, wheee... 2347 * Note: timeout is always zero in such a case. 2348 */ 2349 if (unlikely(tcp_sk(sk)->repair)) { 2350 sk->sk_prot->disconnect(sk, 0); 2351 } else if (data_was_unread) { 2352 /* Unread data was tossed, zap the connection. */ 2353 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE); 2354 tcp_set_state(sk, TCP_CLOSE); 2355 tcp_send_active_reset(sk, sk->sk_allocation); 2356 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) { 2357 /* Check zero linger _after_ checking for unread data. */ 2358 sk->sk_prot->disconnect(sk, 0); 2359 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA); 2360 } else if (tcp_close_state(sk)) { 2361 /* We FIN if the application ate all the data before 2362 * zapping the connection. 2363 */ 2364 2365 /* RED-PEN. Formally speaking, we have broken TCP state 2366 * machine. State transitions: 2367 * 2368 * TCP_ESTABLISHED -> TCP_FIN_WAIT1 2369 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible) 2370 * TCP_CLOSE_WAIT -> TCP_LAST_ACK 2371 * 2372 * are legal only when FIN has been sent (i.e. in window), 2373 * rather than queued out of window. Purists blame. 2374 * 2375 * F.e. "RFC state" is ESTABLISHED, 2376 * if Linux state is FIN-WAIT-1, but FIN is still not sent. 2377 * 2378 * The visible declinations are that sometimes 2379 * we enter time-wait state, when it is not required really 2380 * (harmless), do not send active resets, when they are 2381 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when 2382 * they look as CLOSING or LAST_ACK for Linux) 2383 * Probably, I missed some more holelets. 2384 * --ANK 2385 * XXX (TFO) - To start off we don't support SYN+ACK+FIN 2386 * in a single packet! (May consider it later but will 2387 * probably need API support or TCP_CORK SYN-ACK until 2388 * data is written and socket is closed.) 2389 */ 2390 tcp_send_fin(sk); 2391 } 2392 2393 sk_stream_wait_close(sk, timeout); 2394 2395 adjudge_to_death: 2396 state = sk->sk_state; 2397 sock_hold(sk); 2398 sock_orphan(sk); 2399 2400 /* It is the last release_sock in its life. It will remove backlog. */ 2401 release_sock(sk); 2402 2403 2404 /* Now socket is owned by kernel and we acquire BH lock 2405 * to finish close. No need to check for user refs. 2406 */ 2407 local_bh_disable(); 2408 bh_lock_sock(sk); 2409 WARN_ON(sock_owned_by_user(sk)); 2410 2411 percpu_counter_inc(sk->sk_prot->orphan_count); 2412 2413 /* Have we already been destroyed by a softirq or backlog? */ 2414 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE) 2415 goto out; 2416 2417 /* This is a (useful) BSD violating of the RFC. There is a 2418 * problem with TCP as specified in that the other end could 2419 * keep a socket open forever with no application left this end. 2420 * We use a 1 minute timeout (about the same as BSD) then kill 2421 * our end. If they send after that then tough - BUT: long enough 2422 * that we won't make the old 4*rto = almost no time - whoops 2423 * reset mistake. 2424 * 2425 * Nope, it was not mistake. It is really desired behaviour 2426 * f.e. on http servers, when such sockets are useless, but 2427 * consume significant resources. Let's do it with special 2428 * linger2 option. --ANK 2429 */ 2430 2431 if (sk->sk_state == TCP_FIN_WAIT2) { 2432 struct tcp_sock *tp = tcp_sk(sk); 2433 if (tp->linger2 < 0) { 2434 tcp_set_state(sk, TCP_CLOSE); 2435 tcp_send_active_reset(sk, GFP_ATOMIC); 2436 __NET_INC_STATS(sock_net(sk), 2437 LINUX_MIB_TCPABORTONLINGER); 2438 } else { 2439 const int tmo = tcp_fin_time(sk); 2440 2441 if (tmo > TCP_TIMEWAIT_LEN) { 2442 inet_csk_reset_keepalive_timer(sk, 2443 tmo - TCP_TIMEWAIT_LEN); 2444 } else { 2445 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo); 2446 goto out; 2447 } 2448 } 2449 } 2450 if (sk->sk_state != TCP_CLOSE) { 2451 sk_mem_reclaim(sk); 2452 if (tcp_check_oom(sk, 0)) { 2453 tcp_set_state(sk, TCP_CLOSE); 2454 tcp_send_active_reset(sk, GFP_ATOMIC); 2455 __NET_INC_STATS(sock_net(sk), 2456 LINUX_MIB_TCPABORTONMEMORY); 2457 } else if (!check_net(sock_net(sk))) { 2458 /* Not possible to send reset; just close */ 2459 tcp_set_state(sk, TCP_CLOSE); 2460 } 2461 } 2462 2463 if (sk->sk_state == TCP_CLOSE) { 2464 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 2465 /* We could get here with a non-NULL req if the socket is 2466 * aborted (e.g., closed with unread data) before 3WHS 2467 * finishes. 2468 */ 2469 if (req) 2470 reqsk_fastopen_remove(sk, req, false); 2471 inet_csk_destroy_sock(sk); 2472 } 2473 /* Otherwise, socket is reprieved until protocol close. */ 2474 2475 out: 2476 bh_unlock_sock(sk); 2477 local_bh_enable(); 2478 sock_put(sk); 2479 } 2480 EXPORT_SYMBOL(tcp_close); 2481 2482 /* These states need RST on ABORT according to RFC793 */ 2483 2484 static inline bool tcp_need_reset(int state) 2485 { 2486 return (1 << state) & 2487 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 | 2488 TCPF_FIN_WAIT2 | TCPF_SYN_RECV); 2489 } 2490 2491 static void tcp_rtx_queue_purge(struct sock *sk) 2492 { 2493 struct rb_node *p = rb_first(&sk->tcp_rtx_queue); 2494 2495 while (p) { 2496 struct sk_buff *skb = rb_to_skb(p); 2497 2498 p = rb_next(p); 2499 /* Since we are deleting whole queue, no need to 2500 * list_del(&skb->tcp_tsorted_anchor) 2501 */ 2502 tcp_rtx_queue_unlink(skb, sk); 2503 sk_wmem_free_skb(sk, skb); 2504 } 2505 } 2506 2507 void tcp_write_queue_purge(struct sock *sk) 2508 { 2509 struct sk_buff *skb; 2510 2511 tcp_chrono_stop(sk, TCP_CHRONO_BUSY); 2512 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) { 2513 tcp_skb_tsorted_anchor_cleanup(skb); 2514 sk_wmem_free_skb(sk, skb); 2515 } 2516 tcp_rtx_queue_purge(sk); 2517 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue); 2518 sk_mem_reclaim(sk); 2519 tcp_clear_all_retrans_hints(tcp_sk(sk)); 2520 tcp_sk(sk)->packets_out = 0; 2521 } 2522 2523 int tcp_disconnect(struct sock *sk, int flags) 2524 { 2525 struct inet_sock *inet = inet_sk(sk); 2526 struct inet_connection_sock *icsk = inet_csk(sk); 2527 struct tcp_sock *tp = tcp_sk(sk); 2528 int err = 0; 2529 int old_state = sk->sk_state; 2530 2531 if (old_state != TCP_CLOSE) 2532 tcp_set_state(sk, TCP_CLOSE); 2533 2534 /* ABORT function of RFC793 */ 2535 if (old_state == TCP_LISTEN) { 2536 inet_csk_listen_stop(sk); 2537 } else if (unlikely(tp->repair)) { 2538 sk->sk_err = ECONNABORTED; 2539 } else if (tcp_need_reset(old_state) || 2540 (tp->snd_nxt != tp->write_seq && 2541 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) { 2542 /* The last check adjusts for discrepancy of Linux wrt. RFC 2543 * states 2544 */ 2545 tcp_send_active_reset(sk, gfp_any()); 2546 sk->sk_err = ECONNRESET; 2547 } else if (old_state == TCP_SYN_SENT) 2548 sk->sk_err = ECONNRESET; 2549 2550 tcp_clear_xmit_timers(sk); 2551 __skb_queue_purge(&sk->sk_receive_queue); 2552 tcp_write_queue_purge(sk); 2553 tcp_fastopen_active_disable_ofo_check(sk); 2554 skb_rbtree_purge(&tp->out_of_order_queue); 2555 2556 inet->inet_dport = 0; 2557 2558 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) 2559 inet_reset_saddr(sk); 2560 2561 sk->sk_shutdown = 0; 2562 sock_reset_flag(sk, SOCK_DONE); 2563 tp->srtt_us = 0; 2564 tp->write_seq += tp->max_window + 2; 2565 if (tp->write_seq == 0) 2566 tp->write_seq = 1; 2567 icsk->icsk_backoff = 0; 2568 tp->snd_cwnd = 2; 2569 icsk->icsk_probes_out = 0; 2570 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH; 2571 tp->snd_cwnd_cnt = 0; 2572 tp->window_clamp = 0; 2573 tp->delivered_ce = 0; 2574 tcp_set_ca_state(sk, TCP_CA_Open); 2575 tp->is_sack_reneg = 0; 2576 tcp_clear_retrans(tp); 2577 inet_csk_delack_init(sk); 2578 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0 2579 * issue in __tcp_select_window() 2580 */ 2581 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS; 2582 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt)); 2583 __sk_dst_reset(sk); 2584 dst_release(sk->sk_rx_dst); 2585 sk->sk_rx_dst = NULL; 2586 tcp_saved_syn_free(tp); 2587 tp->compressed_ack = 0; 2588 2589 /* Clean up fastopen related fields */ 2590 tcp_free_fastopen_req(tp); 2591 inet->defer_connect = 0; 2592 2593 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash); 2594 2595 if (sk->sk_frag.page) { 2596 put_page(sk->sk_frag.page); 2597 sk->sk_frag.page = NULL; 2598 sk->sk_frag.offset = 0; 2599 } 2600 2601 sk->sk_error_report(sk); 2602 return err; 2603 } 2604 EXPORT_SYMBOL(tcp_disconnect); 2605 2606 static inline bool tcp_can_repair_sock(const struct sock *sk) 2607 { 2608 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) && 2609 (sk->sk_state != TCP_LISTEN); 2610 } 2611 2612 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len) 2613 { 2614 struct tcp_repair_window opt; 2615 2616 if (!tp->repair) 2617 return -EPERM; 2618 2619 if (len != sizeof(opt)) 2620 return -EINVAL; 2621 2622 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2623 return -EFAULT; 2624 2625 if (opt.max_window < opt.snd_wnd) 2626 return -EINVAL; 2627 2628 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd)) 2629 return -EINVAL; 2630 2631 if (after(opt.rcv_wup, tp->rcv_nxt)) 2632 return -EINVAL; 2633 2634 tp->snd_wl1 = opt.snd_wl1; 2635 tp->snd_wnd = opt.snd_wnd; 2636 tp->max_window = opt.max_window; 2637 2638 tp->rcv_wnd = opt.rcv_wnd; 2639 tp->rcv_wup = opt.rcv_wup; 2640 2641 return 0; 2642 } 2643 2644 static int tcp_repair_options_est(struct sock *sk, 2645 struct tcp_repair_opt __user *optbuf, unsigned int len) 2646 { 2647 struct tcp_sock *tp = tcp_sk(sk); 2648 struct tcp_repair_opt opt; 2649 2650 while (len >= sizeof(opt)) { 2651 if (copy_from_user(&opt, optbuf, sizeof(opt))) 2652 return -EFAULT; 2653 2654 optbuf++; 2655 len -= sizeof(opt); 2656 2657 switch (opt.opt_code) { 2658 case TCPOPT_MSS: 2659 tp->rx_opt.mss_clamp = opt.opt_val; 2660 tcp_mtup_init(sk); 2661 break; 2662 case TCPOPT_WINDOW: 2663 { 2664 u16 snd_wscale = opt.opt_val & 0xFFFF; 2665 u16 rcv_wscale = opt.opt_val >> 16; 2666 2667 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE) 2668 return -EFBIG; 2669 2670 tp->rx_opt.snd_wscale = snd_wscale; 2671 tp->rx_opt.rcv_wscale = rcv_wscale; 2672 tp->rx_opt.wscale_ok = 1; 2673 } 2674 break; 2675 case TCPOPT_SACK_PERM: 2676 if (opt.opt_val != 0) 2677 return -EINVAL; 2678 2679 tp->rx_opt.sack_ok |= TCP_SACK_SEEN; 2680 break; 2681 case TCPOPT_TIMESTAMP: 2682 if (opt.opt_val != 0) 2683 return -EINVAL; 2684 2685 tp->rx_opt.tstamp_ok = 1; 2686 break; 2687 } 2688 } 2689 2690 return 0; 2691 } 2692 2693 /* 2694 * Socket option code for TCP. 2695 */ 2696 static int do_tcp_setsockopt(struct sock *sk, int level, 2697 int optname, char __user *optval, unsigned int optlen) 2698 { 2699 struct tcp_sock *tp = tcp_sk(sk); 2700 struct inet_connection_sock *icsk = inet_csk(sk); 2701 struct net *net = sock_net(sk); 2702 int val; 2703 int err = 0; 2704 2705 /* These are data/string values, all the others are ints */ 2706 switch (optname) { 2707 case TCP_CONGESTION: { 2708 char name[TCP_CA_NAME_MAX]; 2709 2710 if (optlen < 1) 2711 return -EINVAL; 2712 2713 val = strncpy_from_user(name, optval, 2714 min_t(long, TCP_CA_NAME_MAX-1, optlen)); 2715 if (val < 0) 2716 return -EFAULT; 2717 name[val] = 0; 2718 2719 lock_sock(sk); 2720 err = tcp_set_congestion_control(sk, name, true, true); 2721 release_sock(sk); 2722 return err; 2723 } 2724 case TCP_ULP: { 2725 char name[TCP_ULP_NAME_MAX]; 2726 2727 if (optlen < 1) 2728 return -EINVAL; 2729 2730 val = strncpy_from_user(name, optval, 2731 min_t(long, TCP_ULP_NAME_MAX - 1, 2732 optlen)); 2733 if (val < 0) 2734 return -EFAULT; 2735 name[val] = 0; 2736 2737 lock_sock(sk); 2738 err = tcp_set_ulp(sk, name); 2739 release_sock(sk); 2740 return err; 2741 } 2742 case TCP_FASTOPEN_KEY: { 2743 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 2744 2745 if (optlen != sizeof(key)) 2746 return -EINVAL; 2747 2748 if (copy_from_user(key, optval, optlen)) 2749 return -EFAULT; 2750 2751 return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key)); 2752 } 2753 default: 2754 /* fallthru */ 2755 break; 2756 } 2757 2758 if (optlen < sizeof(int)) 2759 return -EINVAL; 2760 2761 if (get_user(val, (int __user *)optval)) 2762 return -EFAULT; 2763 2764 lock_sock(sk); 2765 2766 switch (optname) { 2767 case TCP_MAXSEG: 2768 /* Values greater than interface MTU won't take effect. However 2769 * at the point when this call is done we typically don't yet 2770 * know which interface is going to be used 2771 */ 2772 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) { 2773 err = -EINVAL; 2774 break; 2775 } 2776 tp->rx_opt.user_mss = val; 2777 break; 2778 2779 case TCP_NODELAY: 2780 if (val) { 2781 /* TCP_NODELAY is weaker than TCP_CORK, so that 2782 * this option on corked socket is remembered, but 2783 * it is not activated until cork is cleared. 2784 * 2785 * However, when TCP_NODELAY is set we make 2786 * an explicit push, which overrides even TCP_CORK 2787 * for currently queued segments. 2788 */ 2789 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH; 2790 tcp_push_pending_frames(sk); 2791 } else { 2792 tp->nonagle &= ~TCP_NAGLE_OFF; 2793 } 2794 break; 2795 2796 case TCP_THIN_LINEAR_TIMEOUTS: 2797 if (val < 0 || val > 1) 2798 err = -EINVAL; 2799 else 2800 tp->thin_lto = val; 2801 break; 2802 2803 case TCP_THIN_DUPACK: 2804 if (val < 0 || val > 1) 2805 err = -EINVAL; 2806 break; 2807 2808 case TCP_REPAIR: 2809 if (!tcp_can_repair_sock(sk)) 2810 err = -EPERM; 2811 else if (val == 1) { 2812 tp->repair = 1; 2813 sk->sk_reuse = SK_FORCE_REUSE; 2814 tp->repair_queue = TCP_NO_QUEUE; 2815 } else if (val == 0) { 2816 tp->repair = 0; 2817 sk->sk_reuse = SK_NO_REUSE; 2818 tcp_send_window_probe(sk); 2819 } else 2820 err = -EINVAL; 2821 2822 break; 2823 2824 case TCP_REPAIR_QUEUE: 2825 if (!tp->repair) 2826 err = -EPERM; 2827 else if ((unsigned int)val < TCP_QUEUES_NR) 2828 tp->repair_queue = val; 2829 else 2830 err = -EINVAL; 2831 break; 2832 2833 case TCP_QUEUE_SEQ: 2834 if (sk->sk_state != TCP_CLOSE) 2835 err = -EPERM; 2836 else if (tp->repair_queue == TCP_SEND_QUEUE) 2837 tp->write_seq = val; 2838 else if (tp->repair_queue == TCP_RECV_QUEUE) 2839 tp->rcv_nxt = val; 2840 else 2841 err = -EINVAL; 2842 break; 2843 2844 case TCP_REPAIR_OPTIONS: 2845 if (!tp->repair) 2846 err = -EINVAL; 2847 else if (sk->sk_state == TCP_ESTABLISHED) 2848 err = tcp_repair_options_est(sk, 2849 (struct tcp_repair_opt __user *)optval, 2850 optlen); 2851 else 2852 err = -EPERM; 2853 break; 2854 2855 case TCP_CORK: 2856 /* When set indicates to always queue non-full frames. 2857 * Later the user clears this option and we transmit 2858 * any pending partial frames in the queue. This is 2859 * meant to be used alongside sendfile() to get properly 2860 * filled frames when the user (for example) must write 2861 * out headers with a write() call first and then use 2862 * sendfile to send out the data parts. 2863 * 2864 * TCP_CORK can be set together with TCP_NODELAY and it is 2865 * stronger than TCP_NODELAY. 2866 */ 2867 if (val) { 2868 tp->nonagle |= TCP_NAGLE_CORK; 2869 } else { 2870 tp->nonagle &= ~TCP_NAGLE_CORK; 2871 if (tp->nonagle&TCP_NAGLE_OFF) 2872 tp->nonagle |= TCP_NAGLE_PUSH; 2873 tcp_push_pending_frames(sk); 2874 } 2875 break; 2876 2877 case TCP_KEEPIDLE: 2878 if (val < 1 || val > MAX_TCP_KEEPIDLE) 2879 err = -EINVAL; 2880 else { 2881 tp->keepalive_time = val * HZ; 2882 if (sock_flag(sk, SOCK_KEEPOPEN) && 2883 !((1 << sk->sk_state) & 2884 (TCPF_CLOSE | TCPF_LISTEN))) { 2885 u32 elapsed = keepalive_time_elapsed(tp); 2886 if (tp->keepalive_time > elapsed) 2887 elapsed = tp->keepalive_time - elapsed; 2888 else 2889 elapsed = 0; 2890 inet_csk_reset_keepalive_timer(sk, elapsed); 2891 } 2892 } 2893 break; 2894 case TCP_KEEPINTVL: 2895 if (val < 1 || val > MAX_TCP_KEEPINTVL) 2896 err = -EINVAL; 2897 else 2898 tp->keepalive_intvl = val * HZ; 2899 break; 2900 case TCP_KEEPCNT: 2901 if (val < 1 || val > MAX_TCP_KEEPCNT) 2902 err = -EINVAL; 2903 else 2904 tp->keepalive_probes = val; 2905 break; 2906 case TCP_SYNCNT: 2907 if (val < 1 || val > MAX_TCP_SYNCNT) 2908 err = -EINVAL; 2909 else 2910 icsk->icsk_syn_retries = val; 2911 break; 2912 2913 case TCP_SAVE_SYN: 2914 if (val < 0 || val > 1) 2915 err = -EINVAL; 2916 else 2917 tp->save_syn = val; 2918 break; 2919 2920 case TCP_LINGER2: 2921 if (val < 0) 2922 tp->linger2 = -1; 2923 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ) 2924 tp->linger2 = 0; 2925 else 2926 tp->linger2 = val * HZ; 2927 break; 2928 2929 case TCP_DEFER_ACCEPT: 2930 /* Translate value in seconds to number of retransmits */ 2931 icsk->icsk_accept_queue.rskq_defer_accept = 2932 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ, 2933 TCP_RTO_MAX / HZ); 2934 break; 2935 2936 case TCP_WINDOW_CLAMP: 2937 if (!val) { 2938 if (sk->sk_state != TCP_CLOSE) { 2939 err = -EINVAL; 2940 break; 2941 } 2942 tp->window_clamp = 0; 2943 } else 2944 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ? 2945 SOCK_MIN_RCVBUF / 2 : val; 2946 break; 2947 2948 case TCP_QUICKACK: 2949 if (!val) { 2950 icsk->icsk_ack.pingpong = 1; 2951 } else { 2952 icsk->icsk_ack.pingpong = 0; 2953 if ((1 << sk->sk_state) & 2954 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) && 2955 inet_csk_ack_scheduled(sk)) { 2956 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED; 2957 tcp_cleanup_rbuf(sk, 1); 2958 if (!(val & 1)) 2959 icsk->icsk_ack.pingpong = 1; 2960 } 2961 } 2962 break; 2963 2964 #ifdef CONFIG_TCP_MD5SIG 2965 case TCP_MD5SIG: 2966 case TCP_MD5SIG_EXT: 2967 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) 2968 err = tp->af_specific->md5_parse(sk, optname, optval, optlen); 2969 else 2970 err = -EINVAL; 2971 break; 2972 #endif 2973 case TCP_USER_TIMEOUT: 2974 /* Cap the max time in ms TCP will retry or probe the window 2975 * before giving up and aborting (ETIMEDOUT) a connection. 2976 */ 2977 if (val < 0) 2978 err = -EINVAL; 2979 else 2980 icsk->icsk_user_timeout = msecs_to_jiffies(val); 2981 break; 2982 2983 case TCP_FASTOPEN: 2984 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE | 2985 TCPF_LISTEN))) { 2986 tcp_fastopen_init_key_once(net); 2987 2988 fastopen_queue_tune(sk, val); 2989 } else { 2990 err = -EINVAL; 2991 } 2992 break; 2993 case TCP_FASTOPEN_CONNECT: 2994 if (val > 1 || val < 0) { 2995 err = -EINVAL; 2996 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) { 2997 if (sk->sk_state == TCP_CLOSE) 2998 tp->fastopen_connect = val; 2999 else 3000 err = -EINVAL; 3001 } else { 3002 err = -EOPNOTSUPP; 3003 } 3004 break; 3005 case TCP_FASTOPEN_NO_COOKIE: 3006 if (val > 1 || val < 0) 3007 err = -EINVAL; 3008 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3009 err = -EINVAL; 3010 else 3011 tp->fastopen_no_cookie = val; 3012 break; 3013 case TCP_TIMESTAMP: 3014 if (!tp->repair) 3015 err = -EPERM; 3016 else 3017 tp->tsoffset = val - tcp_time_stamp_raw(); 3018 break; 3019 case TCP_REPAIR_WINDOW: 3020 err = tcp_repair_set_window(tp, optval, optlen); 3021 break; 3022 case TCP_NOTSENT_LOWAT: 3023 tp->notsent_lowat = val; 3024 sk->sk_write_space(sk); 3025 break; 3026 case TCP_INQ: 3027 if (val > 1 || val < 0) 3028 err = -EINVAL; 3029 else 3030 tp->recvmsg_inq = val; 3031 break; 3032 default: 3033 err = -ENOPROTOOPT; 3034 break; 3035 } 3036 3037 release_sock(sk); 3038 return err; 3039 } 3040 3041 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval, 3042 unsigned int optlen) 3043 { 3044 const struct inet_connection_sock *icsk = inet_csk(sk); 3045 3046 if (level != SOL_TCP) 3047 return icsk->icsk_af_ops->setsockopt(sk, level, optname, 3048 optval, optlen); 3049 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3050 } 3051 EXPORT_SYMBOL(tcp_setsockopt); 3052 3053 #ifdef CONFIG_COMPAT 3054 int compat_tcp_setsockopt(struct sock *sk, int level, int optname, 3055 char __user *optval, unsigned int optlen) 3056 { 3057 if (level != SOL_TCP) 3058 return inet_csk_compat_setsockopt(sk, level, optname, 3059 optval, optlen); 3060 return do_tcp_setsockopt(sk, level, optname, optval, optlen); 3061 } 3062 EXPORT_SYMBOL(compat_tcp_setsockopt); 3063 #endif 3064 3065 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp, 3066 struct tcp_info *info) 3067 { 3068 u64 stats[__TCP_CHRONO_MAX], total = 0; 3069 enum tcp_chrono i; 3070 3071 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) { 3072 stats[i] = tp->chrono_stat[i - 1]; 3073 if (i == tp->chrono_type) 3074 stats[i] += tcp_jiffies32 - tp->chrono_start; 3075 stats[i] *= USEC_PER_SEC / HZ; 3076 total += stats[i]; 3077 } 3078 3079 info->tcpi_busy_time = total; 3080 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED]; 3081 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED]; 3082 } 3083 3084 /* Return information about state of tcp endpoint in API format. */ 3085 void tcp_get_info(struct sock *sk, struct tcp_info *info) 3086 { 3087 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */ 3088 const struct inet_connection_sock *icsk = inet_csk(sk); 3089 u32 now; 3090 u64 rate64; 3091 bool slow; 3092 u32 rate; 3093 3094 memset(info, 0, sizeof(*info)); 3095 if (sk->sk_type != SOCK_STREAM) 3096 return; 3097 3098 info->tcpi_state = inet_sk_state_load(sk); 3099 3100 /* Report meaningful fields for all TCP states, including listeners */ 3101 rate = READ_ONCE(sk->sk_pacing_rate); 3102 rate64 = rate != ~0U ? rate : ~0ULL; 3103 info->tcpi_pacing_rate = rate64; 3104 3105 rate = READ_ONCE(sk->sk_max_pacing_rate); 3106 rate64 = rate != ~0U ? rate : ~0ULL; 3107 info->tcpi_max_pacing_rate = rate64; 3108 3109 info->tcpi_reordering = tp->reordering; 3110 info->tcpi_snd_cwnd = tp->snd_cwnd; 3111 3112 if (info->tcpi_state == TCP_LISTEN) { 3113 /* listeners aliased fields : 3114 * tcpi_unacked -> Number of children ready for accept() 3115 * tcpi_sacked -> max backlog 3116 */ 3117 info->tcpi_unacked = sk->sk_ack_backlog; 3118 info->tcpi_sacked = sk->sk_max_ack_backlog; 3119 return; 3120 } 3121 3122 slow = lock_sock_fast(sk); 3123 3124 info->tcpi_ca_state = icsk->icsk_ca_state; 3125 info->tcpi_retransmits = icsk->icsk_retransmits; 3126 info->tcpi_probes = icsk->icsk_probes_out; 3127 info->tcpi_backoff = icsk->icsk_backoff; 3128 3129 if (tp->rx_opt.tstamp_ok) 3130 info->tcpi_options |= TCPI_OPT_TIMESTAMPS; 3131 if (tcp_is_sack(tp)) 3132 info->tcpi_options |= TCPI_OPT_SACK; 3133 if (tp->rx_opt.wscale_ok) { 3134 info->tcpi_options |= TCPI_OPT_WSCALE; 3135 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale; 3136 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale; 3137 } 3138 3139 if (tp->ecn_flags & TCP_ECN_OK) 3140 info->tcpi_options |= TCPI_OPT_ECN; 3141 if (tp->ecn_flags & TCP_ECN_SEEN) 3142 info->tcpi_options |= TCPI_OPT_ECN_SEEN; 3143 if (tp->syn_data_acked) 3144 info->tcpi_options |= TCPI_OPT_SYN_DATA; 3145 3146 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto); 3147 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato); 3148 info->tcpi_snd_mss = tp->mss_cache; 3149 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss; 3150 3151 info->tcpi_unacked = tp->packets_out; 3152 info->tcpi_sacked = tp->sacked_out; 3153 3154 info->tcpi_lost = tp->lost_out; 3155 info->tcpi_retrans = tp->retrans_out; 3156 3157 now = tcp_jiffies32; 3158 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime); 3159 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime); 3160 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp); 3161 3162 info->tcpi_pmtu = icsk->icsk_pmtu_cookie; 3163 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh; 3164 info->tcpi_rtt = tp->srtt_us >> 3; 3165 info->tcpi_rttvar = tp->mdev_us >> 2; 3166 info->tcpi_snd_ssthresh = tp->snd_ssthresh; 3167 info->tcpi_advmss = tp->advmss; 3168 3169 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3; 3170 info->tcpi_rcv_space = tp->rcvq_space.space; 3171 3172 info->tcpi_total_retrans = tp->total_retrans; 3173 3174 info->tcpi_bytes_acked = tp->bytes_acked; 3175 info->tcpi_bytes_received = tp->bytes_received; 3176 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt); 3177 tcp_get_info_chrono_stats(tp, info); 3178 3179 info->tcpi_segs_out = tp->segs_out; 3180 info->tcpi_segs_in = tp->segs_in; 3181 3182 info->tcpi_min_rtt = tcp_min_rtt(tp); 3183 info->tcpi_data_segs_in = tp->data_segs_in; 3184 info->tcpi_data_segs_out = tp->data_segs_out; 3185 3186 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0; 3187 rate64 = tcp_compute_delivery_rate(tp); 3188 if (rate64) 3189 info->tcpi_delivery_rate = rate64; 3190 info->tcpi_delivered = tp->delivered; 3191 info->tcpi_delivered_ce = tp->delivered_ce; 3192 unlock_sock_fast(sk, slow); 3193 } 3194 EXPORT_SYMBOL_GPL(tcp_get_info); 3195 3196 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk) 3197 { 3198 const struct tcp_sock *tp = tcp_sk(sk); 3199 struct sk_buff *stats; 3200 struct tcp_info info; 3201 u64 rate64; 3202 u32 rate; 3203 3204 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) + 3205 7 * nla_total_size(sizeof(u32)) + 3206 3 * nla_total_size(sizeof(u8)), GFP_ATOMIC); 3207 if (!stats) 3208 return NULL; 3209 3210 tcp_get_info_chrono_stats(tp, &info); 3211 nla_put_u64_64bit(stats, TCP_NLA_BUSY, 3212 info.tcpi_busy_time, TCP_NLA_PAD); 3213 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED, 3214 info.tcpi_rwnd_limited, TCP_NLA_PAD); 3215 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED, 3216 info.tcpi_sndbuf_limited, TCP_NLA_PAD); 3217 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT, 3218 tp->data_segs_out, TCP_NLA_PAD); 3219 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS, 3220 tp->total_retrans, TCP_NLA_PAD); 3221 3222 rate = READ_ONCE(sk->sk_pacing_rate); 3223 rate64 = rate != ~0U ? rate : ~0ULL; 3224 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD); 3225 3226 rate64 = tcp_compute_delivery_rate(tp); 3227 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD); 3228 3229 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd); 3230 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering); 3231 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp)); 3232 3233 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits); 3234 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited); 3235 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh); 3236 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered); 3237 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce); 3238 3239 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una); 3240 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state); 3241 3242 return stats; 3243 } 3244 3245 static int do_tcp_getsockopt(struct sock *sk, int level, 3246 int optname, char __user *optval, int __user *optlen) 3247 { 3248 struct inet_connection_sock *icsk = inet_csk(sk); 3249 struct tcp_sock *tp = tcp_sk(sk); 3250 struct net *net = sock_net(sk); 3251 int val, len; 3252 3253 if (get_user(len, optlen)) 3254 return -EFAULT; 3255 3256 len = min_t(unsigned int, len, sizeof(int)); 3257 3258 if (len < 0) 3259 return -EINVAL; 3260 3261 switch (optname) { 3262 case TCP_MAXSEG: 3263 val = tp->mss_cache; 3264 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) 3265 val = tp->rx_opt.user_mss; 3266 if (tp->repair) 3267 val = tp->rx_opt.mss_clamp; 3268 break; 3269 case TCP_NODELAY: 3270 val = !!(tp->nonagle&TCP_NAGLE_OFF); 3271 break; 3272 case TCP_CORK: 3273 val = !!(tp->nonagle&TCP_NAGLE_CORK); 3274 break; 3275 case TCP_KEEPIDLE: 3276 val = keepalive_time_when(tp) / HZ; 3277 break; 3278 case TCP_KEEPINTVL: 3279 val = keepalive_intvl_when(tp) / HZ; 3280 break; 3281 case TCP_KEEPCNT: 3282 val = keepalive_probes(tp); 3283 break; 3284 case TCP_SYNCNT: 3285 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries; 3286 break; 3287 case TCP_LINGER2: 3288 val = tp->linger2; 3289 if (val >= 0) 3290 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ; 3291 break; 3292 case TCP_DEFER_ACCEPT: 3293 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept, 3294 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ); 3295 break; 3296 case TCP_WINDOW_CLAMP: 3297 val = tp->window_clamp; 3298 break; 3299 case TCP_INFO: { 3300 struct tcp_info info; 3301 3302 if (get_user(len, optlen)) 3303 return -EFAULT; 3304 3305 tcp_get_info(sk, &info); 3306 3307 len = min_t(unsigned int, len, sizeof(info)); 3308 if (put_user(len, optlen)) 3309 return -EFAULT; 3310 if (copy_to_user(optval, &info, len)) 3311 return -EFAULT; 3312 return 0; 3313 } 3314 case TCP_CC_INFO: { 3315 const struct tcp_congestion_ops *ca_ops; 3316 union tcp_cc_info info; 3317 size_t sz = 0; 3318 int attr; 3319 3320 if (get_user(len, optlen)) 3321 return -EFAULT; 3322 3323 ca_ops = icsk->icsk_ca_ops; 3324 if (ca_ops && ca_ops->get_info) 3325 sz = ca_ops->get_info(sk, ~0U, &attr, &info); 3326 3327 len = min_t(unsigned int, len, sz); 3328 if (put_user(len, optlen)) 3329 return -EFAULT; 3330 if (copy_to_user(optval, &info, len)) 3331 return -EFAULT; 3332 return 0; 3333 } 3334 case TCP_QUICKACK: 3335 val = !icsk->icsk_ack.pingpong; 3336 break; 3337 3338 case TCP_CONGESTION: 3339 if (get_user(len, optlen)) 3340 return -EFAULT; 3341 len = min_t(unsigned int, len, TCP_CA_NAME_MAX); 3342 if (put_user(len, optlen)) 3343 return -EFAULT; 3344 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len)) 3345 return -EFAULT; 3346 return 0; 3347 3348 case TCP_ULP: 3349 if (get_user(len, optlen)) 3350 return -EFAULT; 3351 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX); 3352 if (!icsk->icsk_ulp_ops) { 3353 if (put_user(0, optlen)) 3354 return -EFAULT; 3355 return 0; 3356 } 3357 if (put_user(len, optlen)) 3358 return -EFAULT; 3359 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len)) 3360 return -EFAULT; 3361 return 0; 3362 3363 case TCP_FASTOPEN_KEY: { 3364 __u8 key[TCP_FASTOPEN_KEY_LENGTH]; 3365 struct tcp_fastopen_context *ctx; 3366 3367 if (get_user(len, optlen)) 3368 return -EFAULT; 3369 3370 rcu_read_lock(); 3371 ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); 3372 if (ctx) 3373 memcpy(key, ctx->key, sizeof(key)); 3374 else 3375 len = 0; 3376 rcu_read_unlock(); 3377 3378 len = min_t(unsigned int, len, sizeof(key)); 3379 if (put_user(len, optlen)) 3380 return -EFAULT; 3381 if (copy_to_user(optval, key, len)) 3382 return -EFAULT; 3383 return 0; 3384 } 3385 case TCP_THIN_LINEAR_TIMEOUTS: 3386 val = tp->thin_lto; 3387 break; 3388 3389 case TCP_THIN_DUPACK: 3390 val = 0; 3391 break; 3392 3393 case TCP_REPAIR: 3394 val = tp->repair; 3395 break; 3396 3397 case TCP_REPAIR_QUEUE: 3398 if (tp->repair) 3399 val = tp->repair_queue; 3400 else 3401 return -EINVAL; 3402 break; 3403 3404 case TCP_REPAIR_WINDOW: { 3405 struct tcp_repair_window opt; 3406 3407 if (get_user(len, optlen)) 3408 return -EFAULT; 3409 3410 if (len != sizeof(opt)) 3411 return -EINVAL; 3412 3413 if (!tp->repair) 3414 return -EPERM; 3415 3416 opt.snd_wl1 = tp->snd_wl1; 3417 opt.snd_wnd = tp->snd_wnd; 3418 opt.max_window = tp->max_window; 3419 opt.rcv_wnd = tp->rcv_wnd; 3420 opt.rcv_wup = tp->rcv_wup; 3421 3422 if (copy_to_user(optval, &opt, len)) 3423 return -EFAULT; 3424 return 0; 3425 } 3426 case TCP_QUEUE_SEQ: 3427 if (tp->repair_queue == TCP_SEND_QUEUE) 3428 val = tp->write_seq; 3429 else if (tp->repair_queue == TCP_RECV_QUEUE) 3430 val = tp->rcv_nxt; 3431 else 3432 return -EINVAL; 3433 break; 3434 3435 case TCP_USER_TIMEOUT: 3436 val = jiffies_to_msecs(icsk->icsk_user_timeout); 3437 break; 3438 3439 case TCP_FASTOPEN: 3440 val = icsk->icsk_accept_queue.fastopenq.max_qlen; 3441 break; 3442 3443 case TCP_FASTOPEN_CONNECT: 3444 val = tp->fastopen_connect; 3445 break; 3446 3447 case TCP_FASTOPEN_NO_COOKIE: 3448 val = tp->fastopen_no_cookie; 3449 break; 3450 3451 case TCP_TIMESTAMP: 3452 val = tcp_time_stamp_raw() + tp->tsoffset; 3453 break; 3454 case TCP_NOTSENT_LOWAT: 3455 val = tp->notsent_lowat; 3456 break; 3457 case TCP_INQ: 3458 val = tp->recvmsg_inq; 3459 break; 3460 case TCP_SAVE_SYN: 3461 val = tp->save_syn; 3462 break; 3463 case TCP_SAVED_SYN: { 3464 if (get_user(len, optlen)) 3465 return -EFAULT; 3466 3467 lock_sock(sk); 3468 if (tp->saved_syn) { 3469 if (len < tp->saved_syn[0]) { 3470 if (put_user(tp->saved_syn[0], optlen)) { 3471 release_sock(sk); 3472 return -EFAULT; 3473 } 3474 release_sock(sk); 3475 return -EINVAL; 3476 } 3477 len = tp->saved_syn[0]; 3478 if (put_user(len, optlen)) { 3479 release_sock(sk); 3480 return -EFAULT; 3481 } 3482 if (copy_to_user(optval, tp->saved_syn + 1, len)) { 3483 release_sock(sk); 3484 return -EFAULT; 3485 } 3486 tcp_saved_syn_free(tp); 3487 release_sock(sk); 3488 } else { 3489 release_sock(sk); 3490 len = 0; 3491 if (put_user(len, optlen)) 3492 return -EFAULT; 3493 } 3494 return 0; 3495 } 3496 #ifdef CONFIG_MMU 3497 case TCP_ZEROCOPY_RECEIVE: { 3498 struct tcp_zerocopy_receive zc; 3499 int err; 3500 3501 if (get_user(len, optlen)) 3502 return -EFAULT; 3503 if (len != sizeof(zc)) 3504 return -EINVAL; 3505 if (copy_from_user(&zc, optval, len)) 3506 return -EFAULT; 3507 lock_sock(sk); 3508 err = tcp_zerocopy_receive(sk, &zc); 3509 release_sock(sk); 3510 if (!err && copy_to_user(optval, &zc, len)) 3511 err = -EFAULT; 3512 return err; 3513 } 3514 #endif 3515 default: 3516 return -ENOPROTOOPT; 3517 } 3518 3519 if (put_user(len, optlen)) 3520 return -EFAULT; 3521 if (copy_to_user(optval, &val, len)) 3522 return -EFAULT; 3523 return 0; 3524 } 3525 3526 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval, 3527 int __user *optlen) 3528 { 3529 struct inet_connection_sock *icsk = inet_csk(sk); 3530 3531 if (level != SOL_TCP) 3532 return icsk->icsk_af_ops->getsockopt(sk, level, optname, 3533 optval, optlen); 3534 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3535 } 3536 EXPORT_SYMBOL(tcp_getsockopt); 3537 3538 #ifdef CONFIG_COMPAT 3539 int compat_tcp_getsockopt(struct sock *sk, int level, int optname, 3540 char __user *optval, int __user *optlen) 3541 { 3542 if (level != SOL_TCP) 3543 return inet_csk_compat_getsockopt(sk, level, optname, 3544 optval, optlen); 3545 return do_tcp_getsockopt(sk, level, optname, optval, optlen); 3546 } 3547 EXPORT_SYMBOL(compat_tcp_getsockopt); 3548 #endif 3549 3550 #ifdef CONFIG_TCP_MD5SIG 3551 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool); 3552 static DEFINE_MUTEX(tcp_md5sig_mutex); 3553 static bool tcp_md5sig_pool_populated = false; 3554 3555 static void __tcp_alloc_md5sig_pool(void) 3556 { 3557 struct crypto_ahash *hash; 3558 int cpu; 3559 3560 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC); 3561 if (IS_ERR(hash)) 3562 return; 3563 3564 for_each_possible_cpu(cpu) { 3565 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch; 3566 struct ahash_request *req; 3567 3568 if (!scratch) { 3569 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) + 3570 sizeof(struct tcphdr), 3571 GFP_KERNEL, 3572 cpu_to_node(cpu)); 3573 if (!scratch) 3574 return; 3575 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch; 3576 } 3577 if (per_cpu(tcp_md5sig_pool, cpu).md5_req) 3578 continue; 3579 3580 req = ahash_request_alloc(hash, GFP_KERNEL); 3581 if (!req) 3582 return; 3583 3584 ahash_request_set_callback(req, 0, NULL, NULL); 3585 3586 per_cpu(tcp_md5sig_pool, cpu).md5_req = req; 3587 } 3588 /* before setting tcp_md5sig_pool_populated, we must commit all writes 3589 * to memory. See smp_rmb() in tcp_get_md5sig_pool() 3590 */ 3591 smp_wmb(); 3592 tcp_md5sig_pool_populated = true; 3593 } 3594 3595 bool tcp_alloc_md5sig_pool(void) 3596 { 3597 if (unlikely(!tcp_md5sig_pool_populated)) { 3598 mutex_lock(&tcp_md5sig_mutex); 3599 3600 if (!tcp_md5sig_pool_populated) 3601 __tcp_alloc_md5sig_pool(); 3602 3603 mutex_unlock(&tcp_md5sig_mutex); 3604 } 3605 return tcp_md5sig_pool_populated; 3606 } 3607 EXPORT_SYMBOL(tcp_alloc_md5sig_pool); 3608 3609 3610 /** 3611 * tcp_get_md5sig_pool - get md5sig_pool for this user 3612 * 3613 * We use percpu structure, so if we succeed, we exit with preemption 3614 * and BH disabled, to make sure another thread or softirq handling 3615 * wont try to get same context. 3616 */ 3617 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void) 3618 { 3619 local_bh_disable(); 3620 3621 if (tcp_md5sig_pool_populated) { 3622 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */ 3623 smp_rmb(); 3624 return this_cpu_ptr(&tcp_md5sig_pool); 3625 } 3626 local_bh_enable(); 3627 return NULL; 3628 } 3629 EXPORT_SYMBOL(tcp_get_md5sig_pool); 3630 3631 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp, 3632 const struct sk_buff *skb, unsigned int header_len) 3633 { 3634 struct scatterlist sg; 3635 const struct tcphdr *tp = tcp_hdr(skb); 3636 struct ahash_request *req = hp->md5_req; 3637 unsigned int i; 3638 const unsigned int head_data_len = skb_headlen(skb) > header_len ? 3639 skb_headlen(skb) - header_len : 0; 3640 const struct skb_shared_info *shi = skb_shinfo(skb); 3641 struct sk_buff *frag_iter; 3642 3643 sg_init_table(&sg, 1); 3644 3645 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len); 3646 ahash_request_set_crypt(req, &sg, NULL, head_data_len); 3647 if (crypto_ahash_update(req)) 3648 return 1; 3649 3650 for (i = 0; i < shi->nr_frags; ++i) { 3651 const struct skb_frag_struct *f = &shi->frags[i]; 3652 unsigned int offset = f->page_offset; 3653 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT); 3654 3655 sg_set_page(&sg, page, skb_frag_size(f), 3656 offset_in_page(offset)); 3657 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f)); 3658 if (crypto_ahash_update(req)) 3659 return 1; 3660 } 3661 3662 skb_walk_frags(skb, frag_iter) 3663 if (tcp_md5_hash_skb_data(hp, frag_iter, 0)) 3664 return 1; 3665 3666 return 0; 3667 } 3668 EXPORT_SYMBOL(tcp_md5_hash_skb_data); 3669 3670 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key) 3671 { 3672 struct scatterlist sg; 3673 3674 sg_init_one(&sg, key->key, key->keylen); 3675 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen); 3676 return crypto_ahash_update(hp->md5_req); 3677 } 3678 EXPORT_SYMBOL(tcp_md5_hash_key); 3679 3680 #endif 3681 3682 void tcp_done(struct sock *sk) 3683 { 3684 struct request_sock *req = tcp_sk(sk)->fastopen_rsk; 3685 3686 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV) 3687 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS); 3688 3689 tcp_set_state(sk, TCP_CLOSE); 3690 tcp_clear_xmit_timers(sk); 3691 if (req) 3692 reqsk_fastopen_remove(sk, req, false); 3693 3694 sk->sk_shutdown = SHUTDOWN_MASK; 3695 3696 if (!sock_flag(sk, SOCK_DEAD)) 3697 sk->sk_state_change(sk); 3698 else 3699 inet_csk_destroy_sock(sk); 3700 } 3701 EXPORT_SYMBOL_GPL(tcp_done); 3702 3703 int tcp_abort(struct sock *sk, int err) 3704 { 3705 if (!sk_fullsock(sk)) { 3706 if (sk->sk_state == TCP_NEW_SYN_RECV) { 3707 struct request_sock *req = inet_reqsk(sk); 3708 3709 local_bh_disable(); 3710 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, 3711 req); 3712 local_bh_enable(); 3713 return 0; 3714 } 3715 return -EOPNOTSUPP; 3716 } 3717 3718 /* Don't race with userspace socket closes such as tcp_close. */ 3719 lock_sock(sk); 3720 3721 if (sk->sk_state == TCP_LISTEN) { 3722 tcp_set_state(sk, TCP_CLOSE); 3723 inet_csk_listen_stop(sk); 3724 } 3725 3726 /* Don't race with BH socket closes such as inet_csk_listen_stop. */ 3727 local_bh_disable(); 3728 bh_lock_sock(sk); 3729 3730 if (!sock_flag(sk, SOCK_DEAD)) { 3731 sk->sk_err = err; 3732 /* This barrier is coupled with smp_rmb() in tcp_poll() */ 3733 smp_wmb(); 3734 sk->sk_error_report(sk); 3735 if (tcp_need_reset(sk->sk_state)) 3736 tcp_send_active_reset(sk, GFP_ATOMIC); 3737 tcp_done(sk); 3738 } 3739 3740 bh_unlock_sock(sk); 3741 local_bh_enable(); 3742 tcp_write_queue_purge(sk); 3743 release_sock(sk); 3744 return 0; 3745 } 3746 EXPORT_SYMBOL_GPL(tcp_abort); 3747 3748 extern struct tcp_congestion_ops tcp_reno; 3749 3750 static __initdata unsigned long thash_entries; 3751 static int __init set_thash_entries(char *str) 3752 { 3753 ssize_t ret; 3754 3755 if (!str) 3756 return 0; 3757 3758 ret = kstrtoul(str, 0, &thash_entries); 3759 if (ret) 3760 return 0; 3761 3762 return 1; 3763 } 3764 __setup("thash_entries=", set_thash_entries); 3765 3766 static void __init tcp_init_mem(void) 3767 { 3768 unsigned long limit = nr_free_buffer_pages() / 16; 3769 3770 limit = max(limit, 128UL); 3771 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */ 3772 sysctl_tcp_mem[1] = limit; /* 6.25 % */ 3773 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */ 3774 } 3775 3776 void __init tcp_init(void) 3777 { 3778 int max_rshare, max_wshare, cnt; 3779 unsigned long limit; 3780 unsigned int i; 3781 3782 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) > 3783 FIELD_SIZEOF(struct sk_buff, cb)); 3784 3785 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL); 3786 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL); 3787 inet_hashinfo_init(&tcp_hashinfo); 3788 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash", 3789 thash_entries, 21, /* one slot per 2 MB*/ 3790 0, 64 * 1024); 3791 tcp_hashinfo.bind_bucket_cachep = 3792 kmem_cache_create("tcp_bind_bucket", 3793 sizeof(struct inet_bind_bucket), 0, 3794 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3795 3796 /* Size and allocate the main established and bind bucket 3797 * hash tables. 3798 * 3799 * The methodology is similar to that of the buffer cache. 3800 */ 3801 tcp_hashinfo.ehash = 3802 alloc_large_system_hash("TCP established", 3803 sizeof(struct inet_ehash_bucket), 3804 thash_entries, 3805 17, /* one slot per 128 KB of memory */ 3806 0, 3807 NULL, 3808 &tcp_hashinfo.ehash_mask, 3809 0, 3810 thash_entries ? 0 : 512 * 1024); 3811 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++) 3812 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i); 3813 3814 if (inet_ehash_locks_alloc(&tcp_hashinfo)) 3815 panic("TCP: failed to alloc ehash_locks"); 3816 tcp_hashinfo.bhash = 3817 alloc_large_system_hash("TCP bind", 3818 sizeof(struct inet_bind_hashbucket), 3819 tcp_hashinfo.ehash_mask + 1, 3820 17, /* one slot per 128 KB of memory */ 3821 0, 3822 &tcp_hashinfo.bhash_size, 3823 NULL, 3824 0, 3825 64 * 1024); 3826 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size; 3827 for (i = 0; i < tcp_hashinfo.bhash_size; i++) { 3828 spin_lock_init(&tcp_hashinfo.bhash[i].lock); 3829 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain); 3830 } 3831 3832 3833 cnt = tcp_hashinfo.ehash_mask + 1; 3834 sysctl_tcp_max_orphans = cnt / 2; 3835 3836 tcp_init_mem(); 3837 /* Set per-socket limits to no more than 1/128 the pressure threshold */ 3838 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7); 3839 max_wshare = min(4UL*1024*1024, limit); 3840 max_rshare = min(6UL*1024*1024, limit); 3841 3842 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM; 3843 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024; 3844 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare); 3845 3846 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM; 3847 init_net.ipv4.sysctl_tcp_rmem[1] = 87380; 3848 init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare); 3849 3850 pr_info("Hash tables configured (established %u bind %u)\n", 3851 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size); 3852 3853 tcp_v4_init(); 3854 tcp_metrics_init(); 3855 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0); 3856 tcp_tasklet_init(); 3857 } 3858