xref: /linux/net/ipv4/tcp.c (revision 297fef494d78d00fa563ead08396da6b4ba58172)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280 
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
286 #include <net/rps.h>
287 
288 /* Track pending CMSGs. */
289 enum {
290 	TCP_CMSG_INQ = 1,
291 	TCP_CMSG_TS = 2
292 };
293 
294 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
295 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
296 
297 DEFINE_PER_CPU(u32, tcp_tw_isn);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
299 
300 long sysctl_tcp_mem[3] __read_mostly;
301 EXPORT_SYMBOL(sysctl_tcp_mem);
302 
303 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
304 EXPORT_SYMBOL(tcp_memory_allocated);
305 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
306 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
307 
308 #if IS_ENABLED(CONFIG_SMC)
309 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
310 EXPORT_SYMBOL(tcp_have_smc);
311 #endif
312 
313 /*
314  * Current number of TCP sockets.
315  */
316 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
317 EXPORT_SYMBOL(tcp_sockets_allocated);
318 
319 /*
320  * TCP splice context
321  */
322 struct tcp_splice_state {
323 	struct pipe_inode_info *pipe;
324 	size_t len;
325 	unsigned int flags;
326 };
327 
328 /*
329  * Pressure flag: try to collapse.
330  * Technical note: it is used by multiple contexts non atomically.
331  * All the __sk_mem_schedule() is of this nature: accounting
332  * is strict, actions are advisory and have some latency.
333  */
334 unsigned long tcp_memory_pressure __read_mostly;
335 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
336 
337 void tcp_enter_memory_pressure(struct sock *sk)
338 {
339 	unsigned long val;
340 
341 	if (READ_ONCE(tcp_memory_pressure))
342 		return;
343 	val = jiffies;
344 
345 	if (!val)
346 		val--;
347 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
348 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
349 }
350 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
351 
352 void tcp_leave_memory_pressure(struct sock *sk)
353 {
354 	unsigned long val;
355 
356 	if (!READ_ONCE(tcp_memory_pressure))
357 		return;
358 	val = xchg(&tcp_memory_pressure, 0);
359 	if (val)
360 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
361 			      jiffies_to_msecs(jiffies - val));
362 }
363 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
364 
365 /* Convert seconds to retransmits based on initial and max timeout */
366 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
367 {
368 	u8 res = 0;
369 
370 	if (seconds > 0) {
371 		int period = timeout;
372 
373 		res = 1;
374 		while (seconds > period && res < 255) {
375 			res++;
376 			timeout <<= 1;
377 			if (timeout > rto_max)
378 				timeout = rto_max;
379 			period += timeout;
380 		}
381 	}
382 	return res;
383 }
384 
385 /* Convert retransmits to seconds based on initial and max timeout */
386 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
387 {
388 	int period = 0;
389 
390 	if (retrans > 0) {
391 		period = timeout;
392 		while (--retrans) {
393 			timeout <<= 1;
394 			if (timeout > rto_max)
395 				timeout = rto_max;
396 			period += timeout;
397 		}
398 	}
399 	return period;
400 }
401 
402 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
403 {
404 	u32 rate = READ_ONCE(tp->rate_delivered);
405 	u32 intv = READ_ONCE(tp->rate_interval_us);
406 	u64 rate64 = 0;
407 
408 	if (rate && intv) {
409 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
410 		do_div(rate64, intv);
411 	}
412 	return rate64;
413 }
414 
415 /* Address-family independent initialization for a tcp_sock.
416  *
417  * NOTE: A lot of things set to zero explicitly by call to
418  *       sk_alloc() so need not be done here.
419  */
420 void tcp_init_sock(struct sock *sk)
421 {
422 	struct inet_connection_sock *icsk = inet_csk(sk);
423 	struct tcp_sock *tp = tcp_sk(sk);
424 	int rto_min_us;
425 
426 	tp->out_of_order_queue = RB_ROOT;
427 	sk->tcp_rtx_queue = RB_ROOT;
428 	tcp_init_xmit_timers(sk);
429 	INIT_LIST_HEAD(&tp->tsq_node);
430 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
431 
432 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
433 	rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
434 	icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
435 	icsk->icsk_delack_max = TCP_DELACK_MAX;
436 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
437 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
438 
439 	/* So many TCP implementations out there (incorrectly) count the
440 	 * initial SYN frame in their delayed-ACK and congestion control
441 	 * algorithms that we must have the following bandaid to talk
442 	 * efficiently to them.  -DaveM
443 	 */
444 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
445 
446 	/* There's a bubble in the pipe until at least the first ACK. */
447 	tp->app_limited = ~0U;
448 	tp->rate_app_limited = 1;
449 
450 	/* See draft-stevens-tcpca-spec-01 for discussion of the
451 	 * initialization of these values.
452 	 */
453 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
454 	tp->snd_cwnd_clamp = ~0;
455 	tp->mss_cache = TCP_MSS_DEFAULT;
456 
457 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
458 	tcp_assign_congestion_control(sk);
459 
460 	tp->tsoffset = 0;
461 	tp->rack.reo_wnd_steps = 1;
462 
463 	sk->sk_write_space = sk_stream_write_space;
464 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
465 
466 	icsk->icsk_sync_mss = tcp_sync_mss;
467 
468 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
469 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
470 	tcp_scaling_ratio_init(sk);
471 
472 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
473 	sk_sockets_allocated_inc(sk);
474 }
475 EXPORT_SYMBOL(tcp_init_sock);
476 
477 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
478 {
479 	struct sk_buff *skb = tcp_write_queue_tail(sk);
480 
481 	if (tsflags && skb) {
482 		struct skb_shared_info *shinfo = skb_shinfo(skb);
483 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
484 
485 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
486 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
487 			tcb->txstamp_ack = 1;
488 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
489 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
490 	}
491 }
492 
493 static bool tcp_stream_is_readable(struct sock *sk, int target)
494 {
495 	if (tcp_epollin_ready(sk, target))
496 		return true;
497 	return sk_is_readable(sk);
498 }
499 
500 /*
501  *	Wait for a TCP event.
502  *
503  *	Note that we don't need to lock the socket, as the upper poll layers
504  *	take care of normal races (between the test and the event) and we don't
505  *	go look at any of the socket buffers directly.
506  */
507 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
508 {
509 	__poll_t mask;
510 	struct sock *sk = sock->sk;
511 	const struct tcp_sock *tp = tcp_sk(sk);
512 	u8 shutdown;
513 	int state;
514 
515 	sock_poll_wait(file, sock, wait);
516 
517 	state = inet_sk_state_load(sk);
518 	if (state == TCP_LISTEN)
519 		return inet_csk_listen_poll(sk);
520 
521 	/* Socket is not locked. We are protected from async events
522 	 * by poll logic and correct handling of state changes
523 	 * made by other threads is impossible in any case.
524 	 */
525 
526 	mask = 0;
527 
528 	/*
529 	 * EPOLLHUP is certainly not done right. But poll() doesn't
530 	 * have a notion of HUP in just one direction, and for a
531 	 * socket the read side is more interesting.
532 	 *
533 	 * Some poll() documentation says that EPOLLHUP is incompatible
534 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
535 	 * all. But careful, it tends to be safer to return too many
536 	 * bits than too few, and you can easily break real applications
537 	 * if you don't tell them that something has hung up!
538 	 *
539 	 * Check-me.
540 	 *
541 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
542 	 * our fs/select.c). It means that after we received EOF,
543 	 * poll always returns immediately, making impossible poll() on write()
544 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
545 	 * if and only if shutdown has been made in both directions.
546 	 * Actually, it is interesting to look how Solaris and DUX
547 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
548 	 * then we could set it on SND_SHUTDOWN. BTW examples given
549 	 * in Stevens' books assume exactly this behaviour, it explains
550 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
551 	 *
552 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
553 	 * blocking on fresh not-connected or disconnected socket. --ANK
554 	 */
555 	shutdown = READ_ONCE(sk->sk_shutdown);
556 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
557 		mask |= EPOLLHUP;
558 	if (shutdown & RCV_SHUTDOWN)
559 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
560 
561 	/* Connected or passive Fast Open socket? */
562 	if (state != TCP_SYN_SENT &&
563 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
564 		int target = sock_rcvlowat(sk, 0, INT_MAX);
565 		u16 urg_data = READ_ONCE(tp->urg_data);
566 
567 		if (unlikely(urg_data) &&
568 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
569 		    !sock_flag(sk, SOCK_URGINLINE))
570 			target++;
571 
572 		if (tcp_stream_is_readable(sk, target))
573 			mask |= EPOLLIN | EPOLLRDNORM;
574 
575 		if (!(shutdown & SEND_SHUTDOWN)) {
576 			if (__sk_stream_is_writeable(sk, 1)) {
577 				mask |= EPOLLOUT | EPOLLWRNORM;
578 			} else {  /* send SIGIO later */
579 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
580 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
581 
582 				/* Race breaker. If space is freed after
583 				 * wspace test but before the flags are set,
584 				 * IO signal will be lost. Memory barrier
585 				 * pairs with the input side.
586 				 */
587 				smp_mb__after_atomic();
588 				if (__sk_stream_is_writeable(sk, 1))
589 					mask |= EPOLLOUT | EPOLLWRNORM;
590 			}
591 		} else
592 			mask |= EPOLLOUT | EPOLLWRNORM;
593 
594 		if (urg_data & TCP_URG_VALID)
595 			mask |= EPOLLPRI;
596 	} else if (state == TCP_SYN_SENT &&
597 		   inet_test_bit(DEFER_CONNECT, sk)) {
598 		/* Active TCP fastopen socket with defer_connect
599 		 * Return EPOLLOUT so application can call write()
600 		 * in order for kernel to generate SYN+data
601 		 */
602 		mask |= EPOLLOUT | EPOLLWRNORM;
603 	}
604 	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
605 	smp_rmb();
606 	if (READ_ONCE(sk->sk_err) ||
607 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
608 		mask |= EPOLLERR;
609 
610 	return mask;
611 }
612 EXPORT_SYMBOL(tcp_poll);
613 
614 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
615 {
616 	struct tcp_sock *tp = tcp_sk(sk);
617 	int answ;
618 	bool slow;
619 
620 	switch (cmd) {
621 	case SIOCINQ:
622 		if (sk->sk_state == TCP_LISTEN)
623 			return -EINVAL;
624 
625 		slow = lock_sock_fast(sk);
626 		answ = tcp_inq(sk);
627 		unlock_sock_fast(sk, slow);
628 		break;
629 	case SIOCATMARK:
630 		answ = READ_ONCE(tp->urg_data) &&
631 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
632 		break;
633 	case SIOCOUTQ:
634 		if (sk->sk_state == TCP_LISTEN)
635 			return -EINVAL;
636 
637 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
638 			answ = 0;
639 		else
640 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
641 		break;
642 	case SIOCOUTQNSD:
643 		if (sk->sk_state == TCP_LISTEN)
644 			return -EINVAL;
645 
646 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
647 			answ = 0;
648 		else
649 			answ = READ_ONCE(tp->write_seq) -
650 			       READ_ONCE(tp->snd_nxt);
651 		break;
652 	default:
653 		return -ENOIOCTLCMD;
654 	}
655 
656 	*karg = answ;
657 	return 0;
658 }
659 EXPORT_SYMBOL(tcp_ioctl);
660 
661 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
662 {
663 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
664 	tp->pushed_seq = tp->write_seq;
665 }
666 
667 static inline bool forced_push(const struct tcp_sock *tp)
668 {
669 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
670 }
671 
672 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
673 {
674 	struct tcp_sock *tp = tcp_sk(sk);
675 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
676 
677 	tcb->seq     = tcb->end_seq = tp->write_seq;
678 	tcb->tcp_flags = TCPHDR_ACK;
679 	__skb_header_release(skb);
680 	tcp_add_write_queue_tail(sk, skb);
681 	sk_wmem_queued_add(sk, skb->truesize);
682 	sk_mem_charge(sk, skb->truesize);
683 	if (tp->nonagle & TCP_NAGLE_PUSH)
684 		tp->nonagle &= ~TCP_NAGLE_PUSH;
685 
686 	tcp_slow_start_after_idle_check(sk);
687 }
688 
689 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
690 {
691 	if (flags & MSG_OOB)
692 		tp->snd_up = tp->write_seq;
693 }
694 
695 /* If a not yet filled skb is pushed, do not send it if
696  * we have data packets in Qdisc or NIC queues :
697  * Because TX completion will happen shortly, it gives a chance
698  * to coalesce future sendmsg() payload into this skb, without
699  * need for a timer, and with no latency trade off.
700  * As packets containing data payload have a bigger truesize
701  * than pure acks (dataless) packets, the last checks prevent
702  * autocorking if we only have an ACK in Qdisc/NIC queues,
703  * or if TX completion was delayed after we processed ACK packet.
704  */
705 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
706 				int size_goal)
707 {
708 	return skb->len < size_goal &&
709 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
710 	       !tcp_rtx_queue_empty(sk) &&
711 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
712 	       tcp_skb_can_collapse_to(skb);
713 }
714 
715 void tcp_push(struct sock *sk, int flags, int mss_now,
716 	      int nonagle, int size_goal)
717 {
718 	struct tcp_sock *tp = tcp_sk(sk);
719 	struct sk_buff *skb;
720 
721 	skb = tcp_write_queue_tail(sk);
722 	if (!skb)
723 		return;
724 	if (!(flags & MSG_MORE) || forced_push(tp))
725 		tcp_mark_push(tp, skb);
726 
727 	tcp_mark_urg(tp, flags);
728 
729 	if (tcp_should_autocork(sk, skb, size_goal)) {
730 
731 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
732 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
733 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
734 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
735 			smp_mb__after_atomic();
736 		}
737 		/* It is possible TX completion already happened
738 		 * before we set TSQ_THROTTLED.
739 		 */
740 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
741 			return;
742 	}
743 
744 	if (flags & MSG_MORE)
745 		nonagle = TCP_NAGLE_CORK;
746 
747 	__tcp_push_pending_frames(sk, mss_now, nonagle);
748 }
749 
750 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
751 				unsigned int offset, size_t len)
752 {
753 	struct tcp_splice_state *tss = rd_desc->arg.data;
754 	int ret;
755 
756 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
757 			      min(rd_desc->count, len), tss->flags);
758 	if (ret > 0)
759 		rd_desc->count -= ret;
760 	return ret;
761 }
762 
763 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
764 {
765 	/* Store TCP splice context information in read_descriptor_t. */
766 	read_descriptor_t rd_desc = {
767 		.arg.data = tss,
768 		.count	  = tss->len,
769 	};
770 
771 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
772 }
773 
774 /**
775  *  tcp_splice_read - splice data from TCP socket to a pipe
776  * @sock:	socket to splice from
777  * @ppos:	position (not valid)
778  * @pipe:	pipe to splice to
779  * @len:	number of bytes to splice
780  * @flags:	splice modifier flags
781  *
782  * Description:
783  *    Will read pages from given socket and fill them into a pipe.
784  *
785  **/
786 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
787 			struct pipe_inode_info *pipe, size_t len,
788 			unsigned int flags)
789 {
790 	struct sock *sk = sock->sk;
791 	struct tcp_splice_state tss = {
792 		.pipe = pipe,
793 		.len = len,
794 		.flags = flags,
795 	};
796 	long timeo;
797 	ssize_t spliced;
798 	int ret;
799 
800 	sock_rps_record_flow(sk);
801 	/*
802 	 * We can't seek on a socket input
803 	 */
804 	if (unlikely(*ppos))
805 		return -ESPIPE;
806 
807 	ret = spliced = 0;
808 
809 	lock_sock(sk);
810 
811 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
812 	while (tss.len) {
813 		ret = __tcp_splice_read(sk, &tss);
814 		if (ret < 0)
815 			break;
816 		else if (!ret) {
817 			if (spliced)
818 				break;
819 			if (sock_flag(sk, SOCK_DONE))
820 				break;
821 			if (sk->sk_err) {
822 				ret = sock_error(sk);
823 				break;
824 			}
825 			if (sk->sk_shutdown & RCV_SHUTDOWN)
826 				break;
827 			if (sk->sk_state == TCP_CLOSE) {
828 				/*
829 				 * This occurs when user tries to read
830 				 * from never connected socket.
831 				 */
832 				ret = -ENOTCONN;
833 				break;
834 			}
835 			if (!timeo) {
836 				ret = -EAGAIN;
837 				break;
838 			}
839 			/* if __tcp_splice_read() got nothing while we have
840 			 * an skb in receive queue, we do not want to loop.
841 			 * This might happen with URG data.
842 			 */
843 			if (!skb_queue_empty(&sk->sk_receive_queue))
844 				break;
845 			ret = sk_wait_data(sk, &timeo, NULL);
846 			if (ret < 0)
847 				break;
848 			if (signal_pending(current)) {
849 				ret = sock_intr_errno(timeo);
850 				break;
851 			}
852 			continue;
853 		}
854 		tss.len -= ret;
855 		spliced += ret;
856 
857 		if (!tss.len || !timeo)
858 			break;
859 		release_sock(sk);
860 		lock_sock(sk);
861 
862 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
863 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
864 		    signal_pending(current))
865 			break;
866 	}
867 
868 	release_sock(sk);
869 
870 	if (spliced)
871 		return spliced;
872 
873 	return ret;
874 }
875 EXPORT_SYMBOL(tcp_splice_read);
876 
877 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
878 				     bool force_schedule)
879 {
880 	struct sk_buff *skb;
881 
882 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
883 	if (likely(skb)) {
884 		bool mem_scheduled;
885 
886 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
887 		if (force_schedule) {
888 			mem_scheduled = true;
889 			sk_forced_mem_schedule(sk, skb->truesize);
890 		} else {
891 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
892 		}
893 		if (likely(mem_scheduled)) {
894 			skb_reserve(skb, MAX_TCP_HEADER);
895 			skb->ip_summed = CHECKSUM_PARTIAL;
896 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
897 			return skb;
898 		}
899 		__kfree_skb(skb);
900 	} else {
901 		sk->sk_prot->enter_memory_pressure(sk);
902 		sk_stream_moderate_sndbuf(sk);
903 	}
904 	return NULL;
905 }
906 
907 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
908 				       int large_allowed)
909 {
910 	struct tcp_sock *tp = tcp_sk(sk);
911 	u32 new_size_goal, size_goal;
912 
913 	if (!large_allowed)
914 		return mss_now;
915 
916 	/* Note : tcp_tso_autosize() will eventually split this later */
917 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
918 
919 	/* We try hard to avoid divides here */
920 	size_goal = tp->gso_segs * mss_now;
921 	if (unlikely(new_size_goal < size_goal ||
922 		     new_size_goal >= size_goal + mss_now)) {
923 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
924 				     sk->sk_gso_max_segs);
925 		size_goal = tp->gso_segs * mss_now;
926 	}
927 
928 	return max(size_goal, mss_now);
929 }
930 
931 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
932 {
933 	int mss_now;
934 
935 	mss_now = tcp_current_mss(sk);
936 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
937 
938 	return mss_now;
939 }
940 
941 /* In some cases, sendmsg() could have added an skb to the write queue,
942  * but failed adding payload on it. We need to remove it to consume less
943  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
944  * epoll() users. Another reason is that tcp_write_xmit() does not like
945  * finding an empty skb in the write queue.
946  */
947 void tcp_remove_empty_skb(struct sock *sk)
948 {
949 	struct sk_buff *skb = tcp_write_queue_tail(sk);
950 
951 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
952 		tcp_unlink_write_queue(skb, sk);
953 		if (tcp_write_queue_empty(sk))
954 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
955 		tcp_wmem_free_skb(sk, skb);
956 	}
957 }
958 
959 /* skb changing from pure zc to mixed, must charge zc */
960 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
961 {
962 	if (unlikely(skb_zcopy_pure(skb))) {
963 		u32 extra = skb->truesize -
964 			    SKB_TRUESIZE(skb_end_offset(skb));
965 
966 		if (!sk_wmem_schedule(sk, extra))
967 			return -ENOMEM;
968 
969 		sk_mem_charge(sk, extra);
970 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
971 	}
972 	return 0;
973 }
974 
975 
976 int tcp_wmem_schedule(struct sock *sk, int copy)
977 {
978 	int left;
979 
980 	if (likely(sk_wmem_schedule(sk, copy)))
981 		return copy;
982 
983 	/* We could be in trouble if we have nothing queued.
984 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
985 	 * to guarantee some progress.
986 	 */
987 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
988 	if (left > 0)
989 		sk_forced_mem_schedule(sk, min(left, copy));
990 	return min(copy, sk->sk_forward_alloc);
991 }
992 
993 void tcp_free_fastopen_req(struct tcp_sock *tp)
994 {
995 	if (tp->fastopen_req) {
996 		kfree(tp->fastopen_req);
997 		tp->fastopen_req = NULL;
998 	}
999 }
1000 
1001 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1002 			 size_t size, struct ubuf_info *uarg)
1003 {
1004 	struct tcp_sock *tp = tcp_sk(sk);
1005 	struct inet_sock *inet = inet_sk(sk);
1006 	struct sockaddr *uaddr = msg->msg_name;
1007 	int err, flags;
1008 
1009 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1010 	      TFO_CLIENT_ENABLE) ||
1011 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1012 	     uaddr->sa_family == AF_UNSPEC))
1013 		return -EOPNOTSUPP;
1014 	if (tp->fastopen_req)
1015 		return -EALREADY; /* Another Fast Open is in progress */
1016 
1017 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1018 				   sk->sk_allocation);
1019 	if (unlikely(!tp->fastopen_req))
1020 		return -ENOBUFS;
1021 	tp->fastopen_req->data = msg;
1022 	tp->fastopen_req->size = size;
1023 	tp->fastopen_req->uarg = uarg;
1024 
1025 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1026 		err = tcp_connect(sk);
1027 		/* Same failure procedure as in tcp_v4/6_connect */
1028 		if (err) {
1029 			tcp_set_state(sk, TCP_CLOSE);
1030 			inet->inet_dport = 0;
1031 			sk->sk_route_caps = 0;
1032 		}
1033 	}
1034 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1035 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1036 				    msg->msg_namelen, flags, 1);
1037 	/* fastopen_req could already be freed in __inet_stream_connect
1038 	 * if the connection times out or gets rst
1039 	 */
1040 	if (tp->fastopen_req) {
1041 		*copied = tp->fastopen_req->copied;
1042 		tcp_free_fastopen_req(tp);
1043 		inet_clear_bit(DEFER_CONNECT, sk);
1044 	}
1045 	return err;
1046 }
1047 
1048 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1049 {
1050 	struct tcp_sock *tp = tcp_sk(sk);
1051 	struct ubuf_info *uarg = NULL;
1052 	struct sk_buff *skb;
1053 	struct sockcm_cookie sockc;
1054 	int flags, err, copied = 0;
1055 	int mss_now = 0, size_goal, copied_syn = 0;
1056 	int process_backlog = 0;
1057 	int zc = 0;
1058 	long timeo;
1059 
1060 	flags = msg->msg_flags;
1061 
1062 	if ((flags & MSG_ZEROCOPY) && size) {
1063 		if (msg->msg_ubuf) {
1064 			uarg = msg->msg_ubuf;
1065 			if (sk->sk_route_caps & NETIF_F_SG)
1066 				zc = MSG_ZEROCOPY;
1067 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1068 			skb = tcp_write_queue_tail(sk);
1069 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1070 			if (!uarg) {
1071 				err = -ENOBUFS;
1072 				goto out_err;
1073 			}
1074 			if (sk->sk_route_caps & NETIF_F_SG)
1075 				zc = MSG_ZEROCOPY;
1076 			else
1077 				uarg_to_msgzc(uarg)->zerocopy = 0;
1078 		}
1079 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1080 		if (sk->sk_route_caps & NETIF_F_SG)
1081 			zc = MSG_SPLICE_PAGES;
1082 	}
1083 
1084 	if (unlikely(flags & MSG_FASTOPEN ||
1085 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1086 	    !tp->repair) {
1087 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1088 		if (err == -EINPROGRESS && copied_syn > 0)
1089 			goto out;
1090 		else if (err)
1091 			goto out_err;
1092 	}
1093 
1094 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1095 
1096 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1097 
1098 	/* Wait for a connection to finish. One exception is TCP Fast Open
1099 	 * (passive side) where data is allowed to be sent before a connection
1100 	 * is fully established.
1101 	 */
1102 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1103 	    !tcp_passive_fastopen(sk)) {
1104 		err = sk_stream_wait_connect(sk, &timeo);
1105 		if (err != 0)
1106 			goto do_error;
1107 	}
1108 
1109 	if (unlikely(tp->repair)) {
1110 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1111 			copied = tcp_send_rcvq(sk, msg, size);
1112 			goto out_nopush;
1113 		}
1114 
1115 		err = -EINVAL;
1116 		if (tp->repair_queue == TCP_NO_QUEUE)
1117 			goto out_err;
1118 
1119 		/* 'common' sending to sendq */
1120 	}
1121 
1122 	sockcm_init(&sockc, sk);
1123 	if (msg->msg_controllen) {
1124 		err = sock_cmsg_send(sk, msg, &sockc);
1125 		if (unlikely(err)) {
1126 			err = -EINVAL;
1127 			goto out_err;
1128 		}
1129 	}
1130 
1131 	/* This should be in poll */
1132 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1133 
1134 	/* Ok commence sending. */
1135 	copied = 0;
1136 
1137 restart:
1138 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1139 
1140 	err = -EPIPE;
1141 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1142 		goto do_error;
1143 
1144 	while (msg_data_left(msg)) {
1145 		ssize_t copy = 0;
1146 
1147 		skb = tcp_write_queue_tail(sk);
1148 		if (skb)
1149 			copy = size_goal - skb->len;
1150 
1151 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1152 			bool first_skb;
1153 
1154 new_segment:
1155 			if (!sk_stream_memory_free(sk))
1156 				goto wait_for_space;
1157 
1158 			if (unlikely(process_backlog >= 16)) {
1159 				process_backlog = 0;
1160 				if (sk_flush_backlog(sk))
1161 					goto restart;
1162 			}
1163 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1164 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1165 						   first_skb);
1166 			if (!skb)
1167 				goto wait_for_space;
1168 
1169 			process_backlog++;
1170 
1171 #ifdef CONFIG_SKB_DECRYPTED
1172 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1173 #endif
1174 			tcp_skb_entail(sk, skb);
1175 			copy = size_goal;
1176 
1177 			/* All packets are restored as if they have
1178 			 * already been sent. skb_mstamp_ns isn't set to
1179 			 * avoid wrong rtt estimation.
1180 			 */
1181 			if (tp->repair)
1182 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1183 		}
1184 
1185 		/* Try to append data to the end of skb. */
1186 		if (copy > msg_data_left(msg))
1187 			copy = msg_data_left(msg);
1188 
1189 		if (zc == 0) {
1190 			bool merge = true;
1191 			int i = skb_shinfo(skb)->nr_frags;
1192 			struct page_frag *pfrag = sk_page_frag(sk);
1193 
1194 			if (!sk_page_frag_refill(sk, pfrag))
1195 				goto wait_for_space;
1196 
1197 			if (!skb_can_coalesce(skb, i, pfrag->page,
1198 					      pfrag->offset)) {
1199 				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1200 					tcp_mark_push(tp, skb);
1201 					goto new_segment;
1202 				}
1203 				merge = false;
1204 			}
1205 
1206 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1207 
1208 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1209 				if (tcp_downgrade_zcopy_pure(sk, skb))
1210 					goto wait_for_space;
1211 				skb_zcopy_downgrade_managed(skb);
1212 			}
1213 
1214 			copy = tcp_wmem_schedule(sk, copy);
1215 			if (!copy)
1216 				goto wait_for_space;
1217 
1218 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1219 						       pfrag->page,
1220 						       pfrag->offset,
1221 						       copy);
1222 			if (err)
1223 				goto do_error;
1224 
1225 			/* Update the skb. */
1226 			if (merge) {
1227 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1228 			} else {
1229 				skb_fill_page_desc(skb, i, pfrag->page,
1230 						   pfrag->offset, copy);
1231 				page_ref_inc(pfrag->page);
1232 			}
1233 			pfrag->offset += copy;
1234 		} else if (zc == MSG_ZEROCOPY)  {
1235 			/* First append to a fragless skb builds initial
1236 			 * pure zerocopy skb
1237 			 */
1238 			if (!skb->len)
1239 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1240 
1241 			if (!skb_zcopy_pure(skb)) {
1242 				copy = tcp_wmem_schedule(sk, copy);
1243 				if (!copy)
1244 					goto wait_for_space;
1245 			}
1246 
1247 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1248 			if (err == -EMSGSIZE || err == -EEXIST) {
1249 				tcp_mark_push(tp, skb);
1250 				goto new_segment;
1251 			}
1252 			if (err < 0)
1253 				goto do_error;
1254 			copy = err;
1255 		} else if (zc == MSG_SPLICE_PAGES) {
1256 			/* Splice in data if we can; copy if we can't. */
1257 			if (tcp_downgrade_zcopy_pure(sk, skb))
1258 				goto wait_for_space;
1259 			copy = tcp_wmem_schedule(sk, copy);
1260 			if (!copy)
1261 				goto wait_for_space;
1262 
1263 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1264 						   sk->sk_allocation);
1265 			if (err < 0) {
1266 				if (err == -EMSGSIZE) {
1267 					tcp_mark_push(tp, skb);
1268 					goto new_segment;
1269 				}
1270 				goto do_error;
1271 			}
1272 			copy = err;
1273 
1274 			if (!(flags & MSG_NO_SHARED_FRAGS))
1275 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1276 
1277 			sk_wmem_queued_add(sk, copy);
1278 			sk_mem_charge(sk, copy);
1279 		}
1280 
1281 		if (!copied)
1282 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1283 
1284 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1285 		TCP_SKB_CB(skb)->end_seq += copy;
1286 		tcp_skb_pcount_set(skb, 0);
1287 
1288 		copied += copy;
1289 		if (!msg_data_left(msg)) {
1290 			if (unlikely(flags & MSG_EOR))
1291 				TCP_SKB_CB(skb)->eor = 1;
1292 			goto out;
1293 		}
1294 
1295 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1296 			continue;
1297 
1298 		if (forced_push(tp)) {
1299 			tcp_mark_push(tp, skb);
1300 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1301 		} else if (skb == tcp_send_head(sk))
1302 			tcp_push_one(sk, mss_now);
1303 		continue;
1304 
1305 wait_for_space:
1306 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1307 		tcp_remove_empty_skb(sk);
1308 		if (copied)
1309 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1310 				 TCP_NAGLE_PUSH, size_goal);
1311 
1312 		err = sk_stream_wait_memory(sk, &timeo);
1313 		if (err != 0)
1314 			goto do_error;
1315 
1316 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1317 	}
1318 
1319 out:
1320 	if (copied) {
1321 		tcp_tx_timestamp(sk, sockc.tsflags);
1322 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1323 	}
1324 out_nopush:
1325 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1326 	if (uarg && !msg->msg_ubuf)
1327 		net_zcopy_put(uarg);
1328 	return copied + copied_syn;
1329 
1330 do_error:
1331 	tcp_remove_empty_skb(sk);
1332 
1333 	if (copied + copied_syn)
1334 		goto out;
1335 out_err:
1336 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1337 	if (uarg && !msg->msg_ubuf)
1338 		net_zcopy_put_abort(uarg, true);
1339 	err = sk_stream_error(sk, flags, err);
1340 	/* make sure we wake any epoll edge trigger waiter */
1341 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1342 		sk->sk_write_space(sk);
1343 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1344 	}
1345 	return err;
1346 }
1347 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1348 
1349 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1350 {
1351 	int ret;
1352 
1353 	lock_sock(sk);
1354 	ret = tcp_sendmsg_locked(sk, msg, size);
1355 	release_sock(sk);
1356 
1357 	return ret;
1358 }
1359 EXPORT_SYMBOL(tcp_sendmsg);
1360 
1361 void tcp_splice_eof(struct socket *sock)
1362 {
1363 	struct sock *sk = sock->sk;
1364 	struct tcp_sock *tp = tcp_sk(sk);
1365 	int mss_now, size_goal;
1366 
1367 	if (!tcp_write_queue_tail(sk))
1368 		return;
1369 
1370 	lock_sock(sk);
1371 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1372 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1373 	release_sock(sk);
1374 }
1375 EXPORT_SYMBOL_GPL(tcp_splice_eof);
1376 
1377 /*
1378  *	Handle reading urgent data. BSD has very simple semantics for
1379  *	this, no blocking and very strange errors 8)
1380  */
1381 
1382 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1383 {
1384 	struct tcp_sock *tp = tcp_sk(sk);
1385 
1386 	/* No URG data to read. */
1387 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1388 	    tp->urg_data == TCP_URG_READ)
1389 		return -EINVAL;	/* Yes this is right ! */
1390 
1391 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1392 		return -ENOTCONN;
1393 
1394 	if (tp->urg_data & TCP_URG_VALID) {
1395 		int err = 0;
1396 		char c = tp->urg_data;
1397 
1398 		if (!(flags & MSG_PEEK))
1399 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1400 
1401 		/* Read urgent data. */
1402 		msg->msg_flags |= MSG_OOB;
1403 
1404 		if (len > 0) {
1405 			if (!(flags & MSG_TRUNC))
1406 				err = memcpy_to_msg(msg, &c, 1);
1407 			len = 1;
1408 		} else
1409 			msg->msg_flags |= MSG_TRUNC;
1410 
1411 		return err ? -EFAULT : len;
1412 	}
1413 
1414 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1415 		return 0;
1416 
1417 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1418 	 * the available implementations agree in this case:
1419 	 * this call should never block, independent of the
1420 	 * blocking state of the socket.
1421 	 * Mike <pall@rz.uni-karlsruhe.de>
1422 	 */
1423 	return -EAGAIN;
1424 }
1425 
1426 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1427 {
1428 	struct sk_buff *skb;
1429 	int copied = 0, err = 0;
1430 
1431 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1432 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1433 		if (err)
1434 			return err;
1435 		copied += skb->len;
1436 	}
1437 
1438 	skb_queue_walk(&sk->sk_write_queue, skb) {
1439 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1440 		if (err)
1441 			break;
1442 
1443 		copied += skb->len;
1444 	}
1445 
1446 	return err ?: copied;
1447 }
1448 
1449 /* Clean up the receive buffer for full frames taken by the user,
1450  * then send an ACK if necessary.  COPIED is the number of bytes
1451  * tcp_recvmsg has given to the user so far, it speeds up the
1452  * calculation of whether or not we must ACK for the sake of
1453  * a window update.
1454  */
1455 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1456 {
1457 	struct tcp_sock *tp = tcp_sk(sk);
1458 	bool time_to_ack = false;
1459 
1460 	if (inet_csk_ack_scheduled(sk)) {
1461 		const struct inet_connection_sock *icsk = inet_csk(sk);
1462 
1463 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1464 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1465 		    /*
1466 		     * If this read emptied read buffer, we send ACK, if
1467 		     * connection is not bidirectional, user drained
1468 		     * receive buffer and there was a small segment
1469 		     * in queue.
1470 		     */
1471 		    (copied > 0 &&
1472 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1473 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1474 		       !inet_csk_in_pingpong_mode(sk))) &&
1475 		      !atomic_read(&sk->sk_rmem_alloc)))
1476 			time_to_ack = true;
1477 	}
1478 
1479 	/* We send an ACK if we can now advertise a non-zero window
1480 	 * which has been raised "significantly".
1481 	 *
1482 	 * Even if window raised up to infinity, do not send window open ACK
1483 	 * in states, where we will not receive more. It is useless.
1484 	 */
1485 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1486 		__u32 rcv_window_now = tcp_receive_window(tp);
1487 
1488 		/* Optimize, __tcp_select_window() is not cheap. */
1489 		if (2*rcv_window_now <= tp->window_clamp) {
1490 			__u32 new_window = __tcp_select_window(sk);
1491 
1492 			/* Send ACK now, if this read freed lots of space
1493 			 * in our buffer. Certainly, new_window is new window.
1494 			 * We can advertise it now, if it is not less than current one.
1495 			 * "Lots" means "at least twice" here.
1496 			 */
1497 			if (new_window && new_window >= 2 * rcv_window_now)
1498 				time_to_ack = true;
1499 		}
1500 	}
1501 	if (time_to_ack)
1502 		tcp_send_ack(sk);
1503 }
1504 
1505 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1506 {
1507 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1508 	struct tcp_sock *tp = tcp_sk(sk);
1509 
1510 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1511 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1512 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1513 	__tcp_cleanup_rbuf(sk, copied);
1514 }
1515 
1516 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1517 {
1518 	__skb_unlink(skb, &sk->sk_receive_queue);
1519 	if (likely(skb->destructor == sock_rfree)) {
1520 		sock_rfree(skb);
1521 		skb->destructor = NULL;
1522 		skb->sk = NULL;
1523 		return skb_attempt_defer_free(skb);
1524 	}
1525 	__kfree_skb(skb);
1526 }
1527 
1528 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1529 {
1530 	struct sk_buff *skb;
1531 	u32 offset;
1532 
1533 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1534 		offset = seq - TCP_SKB_CB(skb)->seq;
1535 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1536 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1537 			offset--;
1538 		}
1539 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1540 			*off = offset;
1541 			return skb;
1542 		}
1543 		/* This looks weird, but this can happen if TCP collapsing
1544 		 * splitted a fat GRO packet, while we released socket lock
1545 		 * in skb_splice_bits()
1546 		 */
1547 		tcp_eat_recv_skb(sk, skb);
1548 	}
1549 	return NULL;
1550 }
1551 EXPORT_SYMBOL(tcp_recv_skb);
1552 
1553 /*
1554  * This routine provides an alternative to tcp_recvmsg() for routines
1555  * that would like to handle copying from skbuffs directly in 'sendfile'
1556  * fashion.
1557  * Note:
1558  *	- It is assumed that the socket was locked by the caller.
1559  *	- The routine does not block.
1560  *	- At present, there is no support for reading OOB data
1561  *	  or for 'peeking' the socket using this routine
1562  *	  (although both would be easy to implement).
1563  */
1564 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1565 		  sk_read_actor_t recv_actor)
1566 {
1567 	struct sk_buff *skb;
1568 	struct tcp_sock *tp = tcp_sk(sk);
1569 	u32 seq = tp->copied_seq;
1570 	u32 offset;
1571 	int copied = 0;
1572 
1573 	if (sk->sk_state == TCP_LISTEN)
1574 		return -ENOTCONN;
1575 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1576 		if (offset < skb->len) {
1577 			int used;
1578 			size_t len;
1579 
1580 			len = skb->len - offset;
1581 			/* Stop reading if we hit a patch of urgent data */
1582 			if (unlikely(tp->urg_data)) {
1583 				u32 urg_offset = tp->urg_seq - seq;
1584 				if (urg_offset < len)
1585 					len = urg_offset;
1586 				if (!len)
1587 					break;
1588 			}
1589 			used = recv_actor(desc, skb, offset, len);
1590 			if (used <= 0) {
1591 				if (!copied)
1592 					copied = used;
1593 				break;
1594 			}
1595 			if (WARN_ON_ONCE(used > len))
1596 				used = len;
1597 			seq += used;
1598 			copied += used;
1599 			offset += used;
1600 
1601 			/* If recv_actor drops the lock (e.g. TCP splice
1602 			 * receive) the skb pointer might be invalid when
1603 			 * getting here: tcp_collapse might have deleted it
1604 			 * while aggregating skbs from the socket queue.
1605 			 */
1606 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1607 			if (!skb)
1608 				break;
1609 			/* TCP coalescing might have appended data to the skb.
1610 			 * Try to splice more frags
1611 			 */
1612 			if (offset + 1 != skb->len)
1613 				continue;
1614 		}
1615 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1616 			tcp_eat_recv_skb(sk, skb);
1617 			++seq;
1618 			break;
1619 		}
1620 		tcp_eat_recv_skb(sk, skb);
1621 		if (!desc->count)
1622 			break;
1623 		WRITE_ONCE(tp->copied_seq, seq);
1624 	}
1625 	WRITE_ONCE(tp->copied_seq, seq);
1626 
1627 	tcp_rcv_space_adjust(sk);
1628 
1629 	/* Clean up data we have read: This will do ACK frames. */
1630 	if (copied > 0) {
1631 		tcp_recv_skb(sk, seq, &offset);
1632 		tcp_cleanup_rbuf(sk, copied);
1633 	}
1634 	return copied;
1635 }
1636 EXPORT_SYMBOL(tcp_read_sock);
1637 
1638 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1639 {
1640 	struct sk_buff *skb;
1641 	int copied = 0;
1642 
1643 	if (sk->sk_state == TCP_LISTEN)
1644 		return -ENOTCONN;
1645 
1646 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1647 		u8 tcp_flags;
1648 		int used;
1649 
1650 		__skb_unlink(skb, &sk->sk_receive_queue);
1651 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1652 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1653 		used = recv_actor(sk, skb);
1654 		if (used < 0) {
1655 			if (!copied)
1656 				copied = used;
1657 			break;
1658 		}
1659 		copied += used;
1660 
1661 		if (tcp_flags & TCPHDR_FIN)
1662 			break;
1663 	}
1664 	return copied;
1665 }
1666 EXPORT_SYMBOL(tcp_read_skb);
1667 
1668 void tcp_read_done(struct sock *sk, size_t len)
1669 {
1670 	struct tcp_sock *tp = tcp_sk(sk);
1671 	u32 seq = tp->copied_seq;
1672 	struct sk_buff *skb;
1673 	size_t left;
1674 	u32 offset;
1675 
1676 	if (sk->sk_state == TCP_LISTEN)
1677 		return;
1678 
1679 	left = len;
1680 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1681 		int used;
1682 
1683 		used = min_t(size_t, skb->len - offset, left);
1684 		seq += used;
1685 		left -= used;
1686 
1687 		if (skb->len > offset + used)
1688 			break;
1689 
1690 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1691 			tcp_eat_recv_skb(sk, skb);
1692 			++seq;
1693 			break;
1694 		}
1695 		tcp_eat_recv_skb(sk, skb);
1696 	}
1697 	WRITE_ONCE(tp->copied_seq, seq);
1698 
1699 	tcp_rcv_space_adjust(sk);
1700 
1701 	/* Clean up data we have read: This will do ACK frames. */
1702 	if (left != len)
1703 		tcp_cleanup_rbuf(sk, len - left);
1704 }
1705 EXPORT_SYMBOL(tcp_read_done);
1706 
1707 int tcp_peek_len(struct socket *sock)
1708 {
1709 	return tcp_inq(sock->sk);
1710 }
1711 EXPORT_SYMBOL(tcp_peek_len);
1712 
1713 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1714 int tcp_set_rcvlowat(struct sock *sk, int val)
1715 {
1716 	int space, cap;
1717 
1718 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1719 		cap = sk->sk_rcvbuf >> 1;
1720 	else
1721 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1722 	val = min(val, cap);
1723 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1724 
1725 	/* Check if we need to signal EPOLLIN right now */
1726 	tcp_data_ready(sk);
1727 
1728 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1729 		return 0;
1730 
1731 	space = tcp_space_from_win(sk, val);
1732 	if (space > sk->sk_rcvbuf) {
1733 		WRITE_ONCE(sk->sk_rcvbuf, space);
1734 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1735 	}
1736 	return 0;
1737 }
1738 EXPORT_SYMBOL(tcp_set_rcvlowat);
1739 
1740 void tcp_update_recv_tstamps(struct sk_buff *skb,
1741 			     struct scm_timestamping_internal *tss)
1742 {
1743 	if (skb->tstamp)
1744 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1745 	else
1746 		tss->ts[0] = (struct timespec64) {0};
1747 
1748 	if (skb_hwtstamps(skb)->hwtstamp)
1749 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1750 	else
1751 		tss->ts[2] = (struct timespec64) {0};
1752 }
1753 
1754 #ifdef CONFIG_MMU
1755 static const struct vm_operations_struct tcp_vm_ops = {
1756 };
1757 
1758 int tcp_mmap(struct file *file, struct socket *sock,
1759 	     struct vm_area_struct *vma)
1760 {
1761 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1762 		return -EPERM;
1763 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1764 
1765 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1766 	vm_flags_set(vma, VM_MIXEDMAP);
1767 
1768 	vma->vm_ops = &tcp_vm_ops;
1769 	return 0;
1770 }
1771 EXPORT_SYMBOL(tcp_mmap);
1772 
1773 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1774 				       u32 *offset_frag)
1775 {
1776 	skb_frag_t *frag;
1777 
1778 	if (unlikely(offset_skb >= skb->len))
1779 		return NULL;
1780 
1781 	offset_skb -= skb_headlen(skb);
1782 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1783 		return NULL;
1784 
1785 	frag = skb_shinfo(skb)->frags;
1786 	while (offset_skb) {
1787 		if (skb_frag_size(frag) > offset_skb) {
1788 			*offset_frag = offset_skb;
1789 			return frag;
1790 		}
1791 		offset_skb -= skb_frag_size(frag);
1792 		++frag;
1793 	}
1794 	*offset_frag = 0;
1795 	return frag;
1796 }
1797 
1798 static bool can_map_frag(const skb_frag_t *frag)
1799 {
1800 	struct page *page;
1801 
1802 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1803 		return false;
1804 
1805 	page = skb_frag_page(frag);
1806 
1807 	if (PageCompound(page) || page->mapping)
1808 		return false;
1809 
1810 	return true;
1811 }
1812 
1813 static int find_next_mappable_frag(const skb_frag_t *frag,
1814 				   int remaining_in_skb)
1815 {
1816 	int offset = 0;
1817 
1818 	if (likely(can_map_frag(frag)))
1819 		return 0;
1820 
1821 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1822 		offset += skb_frag_size(frag);
1823 		++frag;
1824 	}
1825 	return offset;
1826 }
1827 
1828 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1829 					  struct tcp_zerocopy_receive *zc,
1830 					  struct sk_buff *skb, u32 offset)
1831 {
1832 	u32 frag_offset, partial_frag_remainder = 0;
1833 	int mappable_offset;
1834 	skb_frag_t *frag;
1835 
1836 	/* worst case: skip to next skb. try to improve on this case below */
1837 	zc->recv_skip_hint = skb->len - offset;
1838 
1839 	/* Find the frag containing this offset (and how far into that frag) */
1840 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1841 	if (!frag)
1842 		return;
1843 
1844 	if (frag_offset) {
1845 		struct skb_shared_info *info = skb_shinfo(skb);
1846 
1847 		/* We read part of the last frag, must recvmsg() rest of skb. */
1848 		if (frag == &info->frags[info->nr_frags - 1])
1849 			return;
1850 
1851 		/* Else, we must at least read the remainder in this frag. */
1852 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1853 		zc->recv_skip_hint -= partial_frag_remainder;
1854 		++frag;
1855 	}
1856 
1857 	/* partial_frag_remainder: If part way through a frag, must read rest.
1858 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1859 	 * in partial_frag_remainder.
1860 	 */
1861 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1862 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1863 }
1864 
1865 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1866 			      int flags, struct scm_timestamping_internal *tss,
1867 			      int *cmsg_flags);
1868 static int receive_fallback_to_copy(struct sock *sk,
1869 				    struct tcp_zerocopy_receive *zc, int inq,
1870 				    struct scm_timestamping_internal *tss)
1871 {
1872 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1873 	struct msghdr msg = {};
1874 	int err;
1875 
1876 	zc->length = 0;
1877 	zc->recv_skip_hint = 0;
1878 
1879 	if (copy_address != zc->copybuf_address)
1880 		return -EINVAL;
1881 
1882 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1883 			  &msg.msg_iter);
1884 	if (err)
1885 		return err;
1886 
1887 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1888 				 tss, &zc->msg_flags);
1889 	if (err < 0)
1890 		return err;
1891 
1892 	zc->copybuf_len = err;
1893 	if (likely(zc->copybuf_len)) {
1894 		struct sk_buff *skb;
1895 		u32 offset;
1896 
1897 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1898 		if (skb)
1899 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1900 	}
1901 	return 0;
1902 }
1903 
1904 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1905 				   struct sk_buff *skb, u32 copylen,
1906 				   u32 *offset, u32 *seq)
1907 {
1908 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1909 	struct msghdr msg = {};
1910 	int err;
1911 
1912 	if (copy_address != zc->copybuf_address)
1913 		return -EINVAL;
1914 
1915 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1916 			  &msg.msg_iter);
1917 	if (err)
1918 		return err;
1919 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1920 	if (err)
1921 		return err;
1922 	zc->recv_skip_hint -= copylen;
1923 	*offset += copylen;
1924 	*seq += copylen;
1925 	return (__s32)copylen;
1926 }
1927 
1928 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1929 				  struct sock *sk,
1930 				  struct sk_buff *skb,
1931 				  u32 *seq,
1932 				  s32 copybuf_len,
1933 				  struct scm_timestamping_internal *tss)
1934 {
1935 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1936 
1937 	if (!copylen)
1938 		return 0;
1939 	/* skb is null if inq < PAGE_SIZE. */
1940 	if (skb) {
1941 		offset = *seq - TCP_SKB_CB(skb)->seq;
1942 	} else {
1943 		skb = tcp_recv_skb(sk, *seq, &offset);
1944 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1945 			tcp_update_recv_tstamps(skb, tss);
1946 			zc->msg_flags |= TCP_CMSG_TS;
1947 		}
1948 	}
1949 
1950 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1951 						  seq);
1952 	return zc->copybuf_len < 0 ? 0 : copylen;
1953 }
1954 
1955 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1956 					      struct page **pending_pages,
1957 					      unsigned long pages_remaining,
1958 					      unsigned long *address,
1959 					      u32 *length,
1960 					      u32 *seq,
1961 					      struct tcp_zerocopy_receive *zc,
1962 					      u32 total_bytes_to_map,
1963 					      int err)
1964 {
1965 	/* At least one page did not map. Try zapping if we skipped earlier. */
1966 	if (err == -EBUSY &&
1967 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1968 		u32 maybe_zap_len;
1969 
1970 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1971 				*length + /* Mapped or pending */
1972 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1973 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1974 		err = 0;
1975 	}
1976 
1977 	if (!err) {
1978 		unsigned long leftover_pages = pages_remaining;
1979 		int bytes_mapped;
1980 
1981 		/* We called zap_page_range_single, try to reinsert. */
1982 		err = vm_insert_pages(vma, *address,
1983 				      pending_pages,
1984 				      &pages_remaining);
1985 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1986 		*seq += bytes_mapped;
1987 		*address += bytes_mapped;
1988 	}
1989 	if (err) {
1990 		/* Either we were unable to zap, OR we zapped, retried an
1991 		 * insert, and still had an issue. Either ways, pages_remaining
1992 		 * is the number of pages we were unable to map, and we unroll
1993 		 * some state we speculatively touched before.
1994 		 */
1995 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1996 
1997 		*length -= bytes_not_mapped;
1998 		zc->recv_skip_hint += bytes_not_mapped;
1999 	}
2000 	return err;
2001 }
2002 
2003 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2004 					struct page **pages,
2005 					unsigned int pages_to_map,
2006 					unsigned long *address,
2007 					u32 *length,
2008 					u32 *seq,
2009 					struct tcp_zerocopy_receive *zc,
2010 					u32 total_bytes_to_map)
2011 {
2012 	unsigned long pages_remaining = pages_to_map;
2013 	unsigned int pages_mapped;
2014 	unsigned int bytes_mapped;
2015 	int err;
2016 
2017 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2018 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2019 	bytes_mapped = PAGE_SIZE * pages_mapped;
2020 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2021 	 * mapping (some but not all of the pages).
2022 	 */
2023 	*seq += bytes_mapped;
2024 	*address += bytes_mapped;
2025 
2026 	if (likely(!err))
2027 		return 0;
2028 
2029 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2030 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2031 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2032 		err);
2033 }
2034 
2035 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2036 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2037 				      struct tcp_zerocopy_receive *zc,
2038 				      struct scm_timestamping_internal *tss)
2039 {
2040 	unsigned long msg_control_addr;
2041 	struct msghdr cmsg_dummy;
2042 
2043 	msg_control_addr = (unsigned long)zc->msg_control;
2044 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2045 	cmsg_dummy.msg_controllen =
2046 		(__kernel_size_t)zc->msg_controllen;
2047 	cmsg_dummy.msg_flags = in_compat_syscall()
2048 		? MSG_CMSG_COMPAT : 0;
2049 	cmsg_dummy.msg_control_is_user = true;
2050 	zc->msg_flags = 0;
2051 	if (zc->msg_control == msg_control_addr &&
2052 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2053 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2054 		zc->msg_control = (__u64)
2055 			((uintptr_t)cmsg_dummy.msg_control_user);
2056 		zc->msg_controllen =
2057 			(__u64)cmsg_dummy.msg_controllen;
2058 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2059 	}
2060 }
2061 
2062 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2063 					   unsigned long address,
2064 					   bool *mmap_locked)
2065 {
2066 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2067 
2068 	if (vma) {
2069 		if (vma->vm_ops != &tcp_vm_ops) {
2070 			vma_end_read(vma);
2071 			return NULL;
2072 		}
2073 		*mmap_locked = false;
2074 		return vma;
2075 	}
2076 
2077 	mmap_read_lock(mm);
2078 	vma = vma_lookup(mm, address);
2079 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2080 		mmap_read_unlock(mm);
2081 		return NULL;
2082 	}
2083 	*mmap_locked = true;
2084 	return vma;
2085 }
2086 
2087 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2088 static int tcp_zerocopy_receive(struct sock *sk,
2089 				struct tcp_zerocopy_receive *zc,
2090 				struct scm_timestamping_internal *tss)
2091 {
2092 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2093 	unsigned long address = (unsigned long)zc->address;
2094 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2095 	s32 copybuf_len = zc->copybuf_len;
2096 	struct tcp_sock *tp = tcp_sk(sk);
2097 	const skb_frag_t *frags = NULL;
2098 	unsigned int pages_to_map = 0;
2099 	struct vm_area_struct *vma;
2100 	struct sk_buff *skb = NULL;
2101 	u32 seq = tp->copied_seq;
2102 	u32 total_bytes_to_map;
2103 	int inq = tcp_inq(sk);
2104 	bool mmap_locked;
2105 	int ret;
2106 
2107 	zc->copybuf_len = 0;
2108 	zc->msg_flags = 0;
2109 
2110 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2111 		return -EINVAL;
2112 
2113 	if (sk->sk_state == TCP_LISTEN)
2114 		return -ENOTCONN;
2115 
2116 	sock_rps_record_flow(sk);
2117 
2118 	if (inq && inq <= copybuf_len)
2119 		return receive_fallback_to_copy(sk, zc, inq, tss);
2120 
2121 	if (inq < PAGE_SIZE) {
2122 		zc->length = 0;
2123 		zc->recv_skip_hint = inq;
2124 		if (!inq && sock_flag(sk, SOCK_DONE))
2125 			return -EIO;
2126 		return 0;
2127 	}
2128 
2129 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2130 	if (!vma)
2131 		return -EINVAL;
2132 
2133 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2134 	avail_len = min_t(u32, vma_len, inq);
2135 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2136 	if (total_bytes_to_map) {
2137 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2138 			zap_page_range_single(vma, address, total_bytes_to_map,
2139 					      NULL);
2140 		zc->length = total_bytes_to_map;
2141 		zc->recv_skip_hint = 0;
2142 	} else {
2143 		zc->length = avail_len;
2144 		zc->recv_skip_hint = avail_len;
2145 	}
2146 	ret = 0;
2147 	while (length + PAGE_SIZE <= zc->length) {
2148 		int mappable_offset;
2149 		struct page *page;
2150 
2151 		if (zc->recv_skip_hint < PAGE_SIZE) {
2152 			u32 offset_frag;
2153 
2154 			if (skb) {
2155 				if (zc->recv_skip_hint > 0)
2156 					break;
2157 				skb = skb->next;
2158 				offset = seq - TCP_SKB_CB(skb)->seq;
2159 			} else {
2160 				skb = tcp_recv_skb(sk, seq, &offset);
2161 			}
2162 
2163 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2164 				tcp_update_recv_tstamps(skb, tss);
2165 				zc->msg_flags |= TCP_CMSG_TS;
2166 			}
2167 			zc->recv_skip_hint = skb->len - offset;
2168 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2169 			if (!frags || offset_frag)
2170 				break;
2171 		}
2172 
2173 		mappable_offset = find_next_mappable_frag(frags,
2174 							  zc->recv_skip_hint);
2175 		if (mappable_offset) {
2176 			zc->recv_skip_hint = mappable_offset;
2177 			break;
2178 		}
2179 		page = skb_frag_page(frags);
2180 		prefetchw(page);
2181 		pages[pages_to_map++] = page;
2182 		length += PAGE_SIZE;
2183 		zc->recv_skip_hint -= PAGE_SIZE;
2184 		frags++;
2185 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2186 		    zc->recv_skip_hint < PAGE_SIZE) {
2187 			/* Either full batch, or we're about to go to next skb
2188 			 * (and we cannot unroll failed ops across skbs).
2189 			 */
2190 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2191 							   pages_to_map,
2192 							   &address, &length,
2193 							   &seq, zc,
2194 							   total_bytes_to_map);
2195 			if (ret)
2196 				goto out;
2197 			pages_to_map = 0;
2198 		}
2199 	}
2200 	if (pages_to_map) {
2201 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2202 						   &address, &length, &seq,
2203 						   zc, total_bytes_to_map);
2204 	}
2205 out:
2206 	if (mmap_locked)
2207 		mmap_read_unlock(current->mm);
2208 	else
2209 		vma_end_read(vma);
2210 	/* Try to copy straggler data. */
2211 	if (!ret)
2212 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2213 
2214 	if (length + copylen) {
2215 		WRITE_ONCE(tp->copied_seq, seq);
2216 		tcp_rcv_space_adjust(sk);
2217 
2218 		/* Clean up data we have read: This will do ACK frames. */
2219 		tcp_recv_skb(sk, seq, &offset);
2220 		tcp_cleanup_rbuf(sk, length + copylen);
2221 		ret = 0;
2222 		if (length == zc->length)
2223 			zc->recv_skip_hint = 0;
2224 	} else {
2225 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2226 			ret = -EIO;
2227 	}
2228 	zc->length = length;
2229 	return ret;
2230 }
2231 #endif
2232 
2233 /* Similar to __sock_recv_timestamp, but does not require an skb */
2234 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2235 			struct scm_timestamping_internal *tss)
2236 {
2237 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2238 	bool has_timestamping = false;
2239 
2240 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2241 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2242 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2243 				if (new_tstamp) {
2244 					struct __kernel_timespec kts = {
2245 						.tv_sec = tss->ts[0].tv_sec,
2246 						.tv_nsec = tss->ts[0].tv_nsec,
2247 					};
2248 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2249 						 sizeof(kts), &kts);
2250 				} else {
2251 					struct __kernel_old_timespec ts_old = {
2252 						.tv_sec = tss->ts[0].tv_sec,
2253 						.tv_nsec = tss->ts[0].tv_nsec,
2254 					};
2255 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2256 						 sizeof(ts_old), &ts_old);
2257 				}
2258 			} else {
2259 				if (new_tstamp) {
2260 					struct __kernel_sock_timeval stv = {
2261 						.tv_sec = tss->ts[0].tv_sec,
2262 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2263 					};
2264 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2265 						 sizeof(stv), &stv);
2266 				} else {
2267 					struct __kernel_old_timeval tv = {
2268 						.tv_sec = tss->ts[0].tv_sec,
2269 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2270 					};
2271 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2272 						 sizeof(tv), &tv);
2273 				}
2274 			}
2275 		}
2276 
2277 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2278 			has_timestamping = true;
2279 		else
2280 			tss->ts[0] = (struct timespec64) {0};
2281 	}
2282 
2283 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2284 		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2285 			has_timestamping = true;
2286 		else
2287 			tss->ts[2] = (struct timespec64) {0};
2288 	}
2289 
2290 	if (has_timestamping) {
2291 		tss->ts[1] = (struct timespec64) {0};
2292 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2293 			put_cmsg_scm_timestamping64(msg, tss);
2294 		else
2295 			put_cmsg_scm_timestamping(msg, tss);
2296 	}
2297 }
2298 
2299 static int tcp_inq_hint(struct sock *sk)
2300 {
2301 	const struct tcp_sock *tp = tcp_sk(sk);
2302 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2303 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2304 	int inq;
2305 
2306 	inq = rcv_nxt - copied_seq;
2307 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2308 		lock_sock(sk);
2309 		inq = tp->rcv_nxt - tp->copied_seq;
2310 		release_sock(sk);
2311 	}
2312 	/* After receiving a FIN, tell the user-space to continue reading
2313 	 * by returning a non-zero inq.
2314 	 */
2315 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2316 		inq = 1;
2317 	return inq;
2318 }
2319 
2320 /*
2321  *	This routine copies from a sock struct into the user buffer.
2322  *
2323  *	Technical note: in 2.3 we work on _locked_ socket, so that
2324  *	tricks with *seq access order and skb->users are not required.
2325  *	Probably, code can be easily improved even more.
2326  */
2327 
2328 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2329 			      int flags, struct scm_timestamping_internal *tss,
2330 			      int *cmsg_flags)
2331 {
2332 	struct tcp_sock *tp = tcp_sk(sk);
2333 	int copied = 0;
2334 	u32 peek_seq;
2335 	u32 *seq;
2336 	unsigned long used;
2337 	int err;
2338 	int target;		/* Read at least this many bytes */
2339 	long timeo;
2340 	struct sk_buff *skb, *last;
2341 	u32 peek_offset = 0;
2342 	u32 urg_hole = 0;
2343 
2344 	err = -ENOTCONN;
2345 	if (sk->sk_state == TCP_LISTEN)
2346 		goto out;
2347 
2348 	if (tp->recvmsg_inq) {
2349 		*cmsg_flags = TCP_CMSG_INQ;
2350 		msg->msg_get_inq = 1;
2351 	}
2352 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2353 
2354 	/* Urgent data needs to be handled specially. */
2355 	if (flags & MSG_OOB)
2356 		goto recv_urg;
2357 
2358 	if (unlikely(tp->repair)) {
2359 		err = -EPERM;
2360 		if (!(flags & MSG_PEEK))
2361 			goto out;
2362 
2363 		if (tp->repair_queue == TCP_SEND_QUEUE)
2364 			goto recv_sndq;
2365 
2366 		err = -EINVAL;
2367 		if (tp->repair_queue == TCP_NO_QUEUE)
2368 			goto out;
2369 
2370 		/* 'common' recv queue MSG_PEEK-ing */
2371 	}
2372 
2373 	seq = &tp->copied_seq;
2374 	if (flags & MSG_PEEK) {
2375 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2376 		peek_seq = tp->copied_seq + peek_offset;
2377 		seq = &peek_seq;
2378 	}
2379 
2380 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2381 
2382 	do {
2383 		u32 offset;
2384 
2385 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2386 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2387 			if (copied)
2388 				break;
2389 			if (signal_pending(current)) {
2390 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2391 				break;
2392 			}
2393 		}
2394 
2395 		/* Next get a buffer. */
2396 
2397 		last = skb_peek_tail(&sk->sk_receive_queue);
2398 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2399 			last = skb;
2400 			/* Now that we have two receive queues this
2401 			 * shouldn't happen.
2402 			 */
2403 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2404 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2405 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2406 				 flags))
2407 				break;
2408 
2409 			offset = *seq - TCP_SKB_CB(skb)->seq;
2410 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2411 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2412 				offset--;
2413 			}
2414 			if (offset < skb->len)
2415 				goto found_ok_skb;
2416 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2417 				goto found_fin_ok;
2418 			WARN(!(flags & MSG_PEEK),
2419 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2420 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2421 		}
2422 
2423 		/* Well, if we have backlog, try to process it now yet. */
2424 
2425 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2426 			break;
2427 
2428 		if (copied) {
2429 			if (!timeo ||
2430 			    sk->sk_err ||
2431 			    sk->sk_state == TCP_CLOSE ||
2432 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2433 			    signal_pending(current))
2434 				break;
2435 		} else {
2436 			if (sock_flag(sk, SOCK_DONE))
2437 				break;
2438 
2439 			if (sk->sk_err) {
2440 				copied = sock_error(sk);
2441 				break;
2442 			}
2443 
2444 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2445 				break;
2446 
2447 			if (sk->sk_state == TCP_CLOSE) {
2448 				/* This occurs when user tries to read
2449 				 * from never connected socket.
2450 				 */
2451 				copied = -ENOTCONN;
2452 				break;
2453 			}
2454 
2455 			if (!timeo) {
2456 				copied = -EAGAIN;
2457 				break;
2458 			}
2459 
2460 			if (signal_pending(current)) {
2461 				copied = sock_intr_errno(timeo);
2462 				break;
2463 			}
2464 		}
2465 
2466 		if (copied >= target) {
2467 			/* Do not sleep, just process backlog. */
2468 			__sk_flush_backlog(sk);
2469 		} else {
2470 			tcp_cleanup_rbuf(sk, copied);
2471 			err = sk_wait_data(sk, &timeo, last);
2472 			if (err < 0) {
2473 				err = copied ? : err;
2474 				goto out;
2475 			}
2476 		}
2477 
2478 		if ((flags & MSG_PEEK) &&
2479 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2480 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2481 					    current->comm,
2482 					    task_pid_nr(current));
2483 			peek_seq = tp->copied_seq + peek_offset;
2484 		}
2485 		continue;
2486 
2487 found_ok_skb:
2488 		/* Ok so how much can we use? */
2489 		used = skb->len - offset;
2490 		if (len < used)
2491 			used = len;
2492 
2493 		/* Do we have urgent data here? */
2494 		if (unlikely(tp->urg_data)) {
2495 			u32 urg_offset = tp->urg_seq - *seq;
2496 			if (urg_offset < used) {
2497 				if (!urg_offset) {
2498 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2499 						WRITE_ONCE(*seq, *seq + 1);
2500 						urg_hole++;
2501 						offset++;
2502 						used--;
2503 						if (!used)
2504 							goto skip_copy;
2505 					}
2506 				} else
2507 					used = urg_offset;
2508 			}
2509 		}
2510 
2511 		if (!(flags & MSG_TRUNC)) {
2512 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2513 			if (err) {
2514 				/* Exception. Bailout! */
2515 				if (!copied)
2516 					copied = -EFAULT;
2517 				break;
2518 			}
2519 		}
2520 
2521 		WRITE_ONCE(*seq, *seq + used);
2522 		copied += used;
2523 		len -= used;
2524 		if (flags & MSG_PEEK)
2525 			sk_peek_offset_fwd(sk, used);
2526 		else
2527 			sk_peek_offset_bwd(sk, used);
2528 		tcp_rcv_space_adjust(sk);
2529 
2530 skip_copy:
2531 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2532 			WRITE_ONCE(tp->urg_data, 0);
2533 			tcp_fast_path_check(sk);
2534 		}
2535 
2536 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2537 			tcp_update_recv_tstamps(skb, tss);
2538 			*cmsg_flags |= TCP_CMSG_TS;
2539 		}
2540 
2541 		if (used + offset < skb->len)
2542 			continue;
2543 
2544 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2545 			goto found_fin_ok;
2546 		if (!(flags & MSG_PEEK))
2547 			tcp_eat_recv_skb(sk, skb);
2548 		continue;
2549 
2550 found_fin_ok:
2551 		/* Process the FIN. */
2552 		WRITE_ONCE(*seq, *seq + 1);
2553 		if (!(flags & MSG_PEEK))
2554 			tcp_eat_recv_skb(sk, skb);
2555 		break;
2556 	} while (len > 0);
2557 
2558 	/* According to UNIX98, msg_name/msg_namelen are ignored
2559 	 * on connected socket. I was just happy when found this 8) --ANK
2560 	 */
2561 
2562 	/* Clean up data we have read: This will do ACK frames. */
2563 	tcp_cleanup_rbuf(sk, copied);
2564 	return copied;
2565 
2566 out:
2567 	return err;
2568 
2569 recv_urg:
2570 	err = tcp_recv_urg(sk, msg, len, flags);
2571 	goto out;
2572 
2573 recv_sndq:
2574 	err = tcp_peek_sndq(sk, msg, len);
2575 	goto out;
2576 }
2577 
2578 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2579 		int *addr_len)
2580 {
2581 	int cmsg_flags = 0, ret;
2582 	struct scm_timestamping_internal tss;
2583 
2584 	if (unlikely(flags & MSG_ERRQUEUE))
2585 		return inet_recv_error(sk, msg, len, addr_len);
2586 
2587 	if (sk_can_busy_loop(sk) &&
2588 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2589 	    sk->sk_state == TCP_ESTABLISHED)
2590 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2591 
2592 	lock_sock(sk);
2593 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2594 	release_sock(sk);
2595 
2596 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2597 		if (cmsg_flags & TCP_CMSG_TS)
2598 			tcp_recv_timestamp(msg, sk, &tss);
2599 		if (msg->msg_get_inq) {
2600 			msg->msg_inq = tcp_inq_hint(sk);
2601 			if (cmsg_flags & TCP_CMSG_INQ)
2602 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2603 					 sizeof(msg->msg_inq), &msg->msg_inq);
2604 		}
2605 	}
2606 	return ret;
2607 }
2608 EXPORT_SYMBOL(tcp_recvmsg);
2609 
2610 void tcp_set_state(struct sock *sk, int state)
2611 {
2612 	int oldstate = sk->sk_state;
2613 
2614 	/* We defined a new enum for TCP states that are exported in BPF
2615 	 * so as not force the internal TCP states to be frozen. The
2616 	 * following checks will detect if an internal state value ever
2617 	 * differs from the BPF value. If this ever happens, then we will
2618 	 * need to remap the internal value to the BPF value before calling
2619 	 * tcp_call_bpf_2arg.
2620 	 */
2621 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2622 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2623 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2624 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2625 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2626 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2627 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2628 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2629 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2630 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2631 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2632 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2633 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2634 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2635 
2636 	/* bpf uapi header bpf.h defines an anonymous enum with values
2637 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2638 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2639 	 * But clang built vmlinux does not have this enum in DWARF
2640 	 * since clang removes the above code before generating IR/debuginfo.
2641 	 * Let us explicitly emit the type debuginfo to ensure the
2642 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2643 	 * regardless of which compiler is used.
2644 	 */
2645 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2646 
2647 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2648 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2649 
2650 	switch (state) {
2651 	case TCP_ESTABLISHED:
2652 		if (oldstate != TCP_ESTABLISHED)
2653 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2654 		break;
2655 	case TCP_CLOSE_WAIT:
2656 		if (oldstate == TCP_SYN_RECV)
2657 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2658 		break;
2659 
2660 	case TCP_CLOSE:
2661 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2662 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2663 
2664 		sk->sk_prot->unhash(sk);
2665 		if (inet_csk(sk)->icsk_bind_hash &&
2666 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2667 			inet_put_port(sk);
2668 		fallthrough;
2669 	default:
2670 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2671 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2672 	}
2673 
2674 	/* Change state AFTER socket is unhashed to avoid closed
2675 	 * socket sitting in hash tables.
2676 	 */
2677 	inet_sk_state_store(sk, state);
2678 }
2679 EXPORT_SYMBOL_GPL(tcp_set_state);
2680 
2681 /*
2682  *	State processing on a close. This implements the state shift for
2683  *	sending our FIN frame. Note that we only send a FIN for some
2684  *	states. A shutdown() may have already sent the FIN, or we may be
2685  *	closed.
2686  */
2687 
2688 static const unsigned char new_state[16] = {
2689   /* current state:        new state:      action:	*/
2690   [0 /* (Invalid) */]	= TCP_CLOSE,
2691   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2692   [TCP_SYN_SENT]	= TCP_CLOSE,
2693   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2694   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2695   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2696   [TCP_TIME_WAIT]	= TCP_CLOSE,
2697   [TCP_CLOSE]		= TCP_CLOSE,
2698   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2699   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2700   [TCP_LISTEN]		= TCP_CLOSE,
2701   [TCP_CLOSING]		= TCP_CLOSING,
2702   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2703 };
2704 
2705 static int tcp_close_state(struct sock *sk)
2706 {
2707 	int next = (int)new_state[sk->sk_state];
2708 	int ns = next & TCP_STATE_MASK;
2709 
2710 	tcp_set_state(sk, ns);
2711 
2712 	return next & TCP_ACTION_FIN;
2713 }
2714 
2715 /*
2716  *	Shutdown the sending side of a connection. Much like close except
2717  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2718  */
2719 
2720 void tcp_shutdown(struct sock *sk, int how)
2721 {
2722 	/*	We need to grab some memory, and put together a FIN,
2723 	 *	and then put it into the queue to be sent.
2724 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2725 	 */
2726 	if (!(how & SEND_SHUTDOWN))
2727 		return;
2728 
2729 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2730 	if ((1 << sk->sk_state) &
2731 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2732 	     TCPF_CLOSE_WAIT)) {
2733 		/* Clear out any half completed packets.  FIN if needed. */
2734 		if (tcp_close_state(sk))
2735 			tcp_send_fin(sk);
2736 	}
2737 }
2738 EXPORT_SYMBOL(tcp_shutdown);
2739 
2740 int tcp_orphan_count_sum(void)
2741 {
2742 	int i, total = 0;
2743 
2744 	for_each_possible_cpu(i)
2745 		total += per_cpu(tcp_orphan_count, i);
2746 
2747 	return max(total, 0);
2748 }
2749 
2750 static int tcp_orphan_cache;
2751 static struct timer_list tcp_orphan_timer;
2752 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2753 
2754 static void tcp_orphan_update(struct timer_list *unused)
2755 {
2756 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2757 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2758 }
2759 
2760 static bool tcp_too_many_orphans(int shift)
2761 {
2762 	return READ_ONCE(tcp_orphan_cache) << shift >
2763 		READ_ONCE(sysctl_tcp_max_orphans);
2764 }
2765 
2766 static bool tcp_out_of_memory(const struct sock *sk)
2767 {
2768 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
2769 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
2770 		return true;
2771 	return false;
2772 }
2773 
2774 bool tcp_check_oom(const struct sock *sk, int shift)
2775 {
2776 	bool too_many_orphans, out_of_socket_memory;
2777 
2778 	too_many_orphans = tcp_too_many_orphans(shift);
2779 	out_of_socket_memory = tcp_out_of_memory(sk);
2780 
2781 	if (too_many_orphans)
2782 		net_info_ratelimited("too many orphaned sockets\n");
2783 	if (out_of_socket_memory)
2784 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2785 	return too_many_orphans || out_of_socket_memory;
2786 }
2787 
2788 void __tcp_close(struct sock *sk, long timeout)
2789 {
2790 	struct sk_buff *skb;
2791 	int data_was_unread = 0;
2792 	int state;
2793 
2794 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2795 
2796 	if (sk->sk_state == TCP_LISTEN) {
2797 		tcp_set_state(sk, TCP_CLOSE);
2798 
2799 		/* Special case. */
2800 		inet_csk_listen_stop(sk);
2801 
2802 		goto adjudge_to_death;
2803 	}
2804 
2805 	/*  We need to flush the recv. buffs.  We do this only on the
2806 	 *  descriptor close, not protocol-sourced closes, because the
2807 	 *  reader process may not have drained the data yet!
2808 	 */
2809 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2810 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2811 
2812 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2813 			len--;
2814 		data_was_unread += len;
2815 		__kfree_skb(skb);
2816 	}
2817 
2818 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2819 	if (sk->sk_state == TCP_CLOSE)
2820 		goto adjudge_to_death;
2821 
2822 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2823 	 * data was lost. To witness the awful effects of the old behavior of
2824 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2825 	 * GET in an FTP client, suspend the process, wait for the client to
2826 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2827 	 * Note: timeout is always zero in such a case.
2828 	 */
2829 	if (unlikely(tcp_sk(sk)->repair)) {
2830 		sk->sk_prot->disconnect(sk, 0);
2831 	} else if (data_was_unread) {
2832 		/* Unread data was tossed, zap the connection. */
2833 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2834 		tcp_set_state(sk, TCP_CLOSE);
2835 		tcp_send_active_reset(sk, sk->sk_allocation,
2836 				      SK_RST_REASON_NOT_SPECIFIED);
2837 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2838 		/* Check zero linger _after_ checking for unread data. */
2839 		sk->sk_prot->disconnect(sk, 0);
2840 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2841 	} else if (tcp_close_state(sk)) {
2842 		/* We FIN if the application ate all the data before
2843 		 * zapping the connection.
2844 		 */
2845 
2846 		/* RED-PEN. Formally speaking, we have broken TCP state
2847 		 * machine. State transitions:
2848 		 *
2849 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2850 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
2851 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2852 		 *
2853 		 * are legal only when FIN has been sent (i.e. in window),
2854 		 * rather than queued out of window. Purists blame.
2855 		 *
2856 		 * F.e. "RFC state" is ESTABLISHED,
2857 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2858 		 *
2859 		 * The visible declinations are that sometimes
2860 		 * we enter time-wait state, when it is not required really
2861 		 * (harmless), do not send active resets, when they are
2862 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2863 		 * they look as CLOSING or LAST_ACK for Linux)
2864 		 * Probably, I missed some more holelets.
2865 		 * 						--ANK
2866 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2867 		 * in a single packet! (May consider it later but will
2868 		 * probably need API support or TCP_CORK SYN-ACK until
2869 		 * data is written and socket is closed.)
2870 		 */
2871 		tcp_send_fin(sk);
2872 	}
2873 
2874 	sk_stream_wait_close(sk, timeout);
2875 
2876 adjudge_to_death:
2877 	state = sk->sk_state;
2878 	sock_hold(sk);
2879 	sock_orphan(sk);
2880 
2881 	local_bh_disable();
2882 	bh_lock_sock(sk);
2883 	/* remove backlog if any, without releasing ownership. */
2884 	__release_sock(sk);
2885 
2886 	this_cpu_inc(tcp_orphan_count);
2887 
2888 	/* Have we already been destroyed by a softirq or backlog? */
2889 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2890 		goto out;
2891 
2892 	/*	This is a (useful) BSD violating of the RFC. There is a
2893 	 *	problem with TCP as specified in that the other end could
2894 	 *	keep a socket open forever with no application left this end.
2895 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2896 	 *	our end. If they send after that then tough - BUT: long enough
2897 	 *	that we won't make the old 4*rto = almost no time - whoops
2898 	 *	reset mistake.
2899 	 *
2900 	 *	Nope, it was not mistake. It is really desired behaviour
2901 	 *	f.e. on http servers, when such sockets are useless, but
2902 	 *	consume significant resources. Let's do it with special
2903 	 *	linger2	option.					--ANK
2904 	 */
2905 
2906 	if (sk->sk_state == TCP_FIN_WAIT2) {
2907 		struct tcp_sock *tp = tcp_sk(sk);
2908 		if (READ_ONCE(tp->linger2) < 0) {
2909 			tcp_set_state(sk, TCP_CLOSE);
2910 			tcp_send_active_reset(sk, GFP_ATOMIC,
2911 					      SK_RST_REASON_NOT_SPECIFIED);
2912 			__NET_INC_STATS(sock_net(sk),
2913 					LINUX_MIB_TCPABORTONLINGER);
2914 		} else {
2915 			const int tmo = tcp_fin_time(sk);
2916 
2917 			if (tmo > TCP_TIMEWAIT_LEN) {
2918 				inet_csk_reset_keepalive_timer(sk,
2919 						tmo - TCP_TIMEWAIT_LEN);
2920 			} else {
2921 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2922 				goto out;
2923 			}
2924 		}
2925 	}
2926 	if (sk->sk_state != TCP_CLOSE) {
2927 		if (tcp_check_oom(sk, 0)) {
2928 			tcp_set_state(sk, TCP_CLOSE);
2929 			tcp_send_active_reset(sk, GFP_ATOMIC,
2930 					      SK_RST_REASON_NOT_SPECIFIED);
2931 			__NET_INC_STATS(sock_net(sk),
2932 					LINUX_MIB_TCPABORTONMEMORY);
2933 		} else if (!check_net(sock_net(sk))) {
2934 			/* Not possible to send reset; just close */
2935 			tcp_set_state(sk, TCP_CLOSE);
2936 		}
2937 	}
2938 
2939 	if (sk->sk_state == TCP_CLOSE) {
2940 		struct request_sock *req;
2941 
2942 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2943 						lockdep_sock_is_held(sk));
2944 		/* We could get here with a non-NULL req if the socket is
2945 		 * aborted (e.g., closed with unread data) before 3WHS
2946 		 * finishes.
2947 		 */
2948 		if (req)
2949 			reqsk_fastopen_remove(sk, req, false);
2950 		inet_csk_destroy_sock(sk);
2951 	}
2952 	/* Otherwise, socket is reprieved until protocol close. */
2953 
2954 out:
2955 	bh_unlock_sock(sk);
2956 	local_bh_enable();
2957 }
2958 
2959 void tcp_close(struct sock *sk, long timeout)
2960 {
2961 	lock_sock(sk);
2962 	__tcp_close(sk, timeout);
2963 	release_sock(sk);
2964 	if (!sk->sk_net_refcnt)
2965 		inet_csk_clear_xmit_timers_sync(sk);
2966 	sock_put(sk);
2967 }
2968 EXPORT_SYMBOL(tcp_close);
2969 
2970 /* These states need RST on ABORT according to RFC793 */
2971 
2972 static inline bool tcp_need_reset(int state)
2973 {
2974 	return (1 << state) &
2975 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2976 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2977 }
2978 
2979 static void tcp_rtx_queue_purge(struct sock *sk)
2980 {
2981 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2982 
2983 	tcp_sk(sk)->highest_sack = NULL;
2984 	while (p) {
2985 		struct sk_buff *skb = rb_to_skb(p);
2986 
2987 		p = rb_next(p);
2988 		/* Since we are deleting whole queue, no need to
2989 		 * list_del(&skb->tcp_tsorted_anchor)
2990 		 */
2991 		tcp_rtx_queue_unlink(skb, sk);
2992 		tcp_wmem_free_skb(sk, skb);
2993 	}
2994 }
2995 
2996 void tcp_write_queue_purge(struct sock *sk)
2997 {
2998 	struct sk_buff *skb;
2999 
3000 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3001 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3002 		tcp_skb_tsorted_anchor_cleanup(skb);
3003 		tcp_wmem_free_skb(sk, skb);
3004 	}
3005 	tcp_rtx_queue_purge(sk);
3006 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3007 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3008 	tcp_sk(sk)->packets_out = 0;
3009 	inet_csk(sk)->icsk_backoff = 0;
3010 }
3011 
3012 int tcp_disconnect(struct sock *sk, int flags)
3013 {
3014 	struct inet_sock *inet = inet_sk(sk);
3015 	struct inet_connection_sock *icsk = inet_csk(sk);
3016 	struct tcp_sock *tp = tcp_sk(sk);
3017 	int old_state = sk->sk_state;
3018 	u32 seq;
3019 
3020 	if (old_state != TCP_CLOSE)
3021 		tcp_set_state(sk, TCP_CLOSE);
3022 
3023 	/* ABORT function of RFC793 */
3024 	if (old_state == TCP_LISTEN) {
3025 		inet_csk_listen_stop(sk);
3026 	} else if (unlikely(tp->repair)) {
3027 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3028 	} else if (tcp_need_reset(old_state) ||
3029 		   (tp->snd_nxt != tp->write_seq &&
3030 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3031 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3032 		 * states
3033 		 */
3034 		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_NOT_SPECIFIED);
3035 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3036 	} else if (old_state == TCP_SYN_SENT)
3037 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3038 
3039 	tcp_clear_xmit_timers(sk);
3040 	__skb_queue_purge(&sk->sk_receive_queue);
3041 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3042 	WRITE_ONCE(tp->urg_data, 0);
3043 	sk_set_peek_off(sk, -1);
3044 	tcp_write_queue_purge(sk);
3045 	tcp_fastopen_active_disable_ofo_check(sk);
3046 	skb_rbtree_purge(&tp->out_of_order_queue);
3047 
3048 	inet->inet_dport = 0;
3049 
3050 	inet_bhash2_reset_saddr(sk);
3051 
3052 	WRITE_ONCE(sk->sk_shutdown, 0);
3053 	sock_reset_flag(sk, SOCK_DONE);
3054 	tp->srtt_us = 0;
3055 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3056 	tp->rcv_rtt_last_tsecr = 0;
3057 
3058 	seq = tp->write_seq + tp->max_window + 2;
3059 	if (!seq)
3060 		seq = 1;
3061 	WRITE_ONCE(tp->write_seq, seq);
3062 
3063 	icsk->icsk_backoff = 0;
3064 	icsk->icsk_probes_out = 0;
3065 	icsk->icsk_probes_tstamp = 0;
3066 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3067 	icsk->icsk_rto_min = TCP_RTO_MIN;
3068 	icsk->icsk_delack_max = TCP_DELACK_MAX;
3069 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3070 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3071 	tp->snd_cwnd_cnt = 0;
3072 	tp->is_cwnd_limited = 0;
3073 	tp->max_packets_out = 0;
3074 	tp->window_clamp = 0;
3075 	tp->delivered = 0;
3076 	tp->delivered_ce = 0;
3077 	if (icsk->icsk_ca_ops->release)
3078 		icsk->icsk_ca_ops->release(sk);
3079 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3080 	icsk->icsk_ca_initialized = 0;
3081 	tcp_set_ca_state(sk, TCP_CA_Open);
3082 	tp->is_sack_reneg = 0;
3083 	tcp_clear_retrans(tp);
3084 	tp->total_retrans = 0;
3085 	inet_csk_delack_init(sk);
3086 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3087 	 * issue in __tcp_select_window()
3088 	 */
3089 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3090 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3091 	__sk_dst_reset(sk);
3092 	dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3093 	tcp_saved_syn_free(tp);
3094 	tp->compressed_ack = 0;
3095 	tp->segs_in = 0;
3096 	tp->segs_out = 0;
3097 	tp->bytes_sent = 0;
3098 	tp->bytes_acked = 0;
3099 	tp->bytes_received = 0;
3100 	tp->bytes_retrans = 0;
3101 	tp->data_segs_in = 0;
3102 	tp->data_segs_out = 0;
3103 	tp->duplicate_sack[0].start_seq = 0;
3104 	tp->duplicate_sack[0].end_seq = 0;
3105 	tp->dsack_dups = 0;
3106 	tp->reord_seen = 0;
3107 	tp->retrans_out = 0;
3108 	tp->sacked_out = 0;
3109 	tp->tlp_high_seq = 0;
3110 	tp->last_oow_ack_time = 0;
3111 	tp->plb_rehash = 0;
3112 	/* There's a bubble in the pipe until at least the first ACK. */
3113 	tp->app_limited = ~0U;
3114 	tp->rate_app_limited = 1;
3115 	tp->rack.mstamp = 0;
3116 	tp->rack.advanced = 0;
3117 	tp->rack.reo_wnd_steps = 1;
3118 	tp->rack.last_delivered = 0;
3119 	tp->rack.reo_wnd_persist = 0;
3120 	tp->rack.dsack_seen = 0;
3121 	tp->syn_data_acked = 0;
3122 	tp->rx_opt.saw_tstamp = 0;
3123 	tp->rx_opt.dsack = 0;
3124 	tp->rx_opt.num_sacks = 0;
3125 	tp->rcv_ooopack = 0;
3126 
3127 
3128 	/* Clean up fastopen related fields */
3129 	tcp_free_fastopen_req(tp);
3130 	inet_clear_bit(DEFER_CONNECT, sk);
3131 	tp->fastopen_client_fail = 0;
3132 
3133 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3134 
3135 	if (sk->sk_frag.page) {
3136 		put_page(sk->sk_frag.page);
3137 		sk->sk_frag.page = NULL;
3138 		sk->sk_frag.offset = 0;
3139 	}
3140 	sk_error_report(sk);
3141 	return 0;
3142 }
3143 EXPORT_SYMBOL(tcp_disconnect);
3144 
3145 static inline bool tcp_can_repair_sock(const struct sock *sk)
3146 {
3147 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3148 		(sk->sk_state != TCP_LISTEN);
3149 }
3150 
3151 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3152 {
3153 	struct tcp_repair_window opt;
3154 
3155 	if (!tp->repair)
3156 		return -EPERM;
3157 
3158 	if (len != sizeof(opt))
3159 		return -EINVAL;
3160 
3161 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3162 		return -EFAULT;
3163 
3164 	if (opt.max_window < opt.snd_wnd)
3165 		return -EINVAL;
3166 
3167 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3168 		return -EINVAL;
3169 
3170 	if (after(opt.rcv_wup, tp->rcv_nxt))
3171 		return -EINVAL;
3172 
3173 	tp->snd_wl1	= opt.snd_wl1;
3174 	tp->snd_wnd	= opt.snd_wnd;
3175 	tp->max_window	= opt.max_window;
3176 
3177 	tp->rcv_wnd	= opt.rcv_wnd;
3178 	tp->rcv_wup	= opt.rcv_wup;
3179 
3180 	return 0;
3181 }
3182 
3183 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3184 		unsigned int len)
3185 {
3186 	struct tcp_sock *tp = tcp_sk(sk);
3187 	struct tcp_repair_opt opt;
3188 	size_t offset = 0;
3189 
3190 	while (len >= sizeof(opt)) {
3191 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3192 			return -EFAULT;
3193 
3194 		offset += sizeof(opt);
3195 		len -= sizeof(opt);
3196 
3197 		switch (opt.opt_code) {
3198 		case TCPOPT_MSS:
3199 			tp->rx_opt.mss_clamp = opt.opt_val;
3200 			tcp_mtup_init(sk);
3201 			break;
3202 		case TCPOPT_WINDOW:
3203 			{
3204 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3205 				u16 rcv_wscale = opt.opt_val >> 16;
3206 
3207 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3208 					return -EFBIG;
3209 
3210 				tp->rx_opt.snd_wscale = snd_wscale;
3211 				tp->rx_opt.rcv_wscale = rcv_wscale;
3212 				tp->rx_opt.wscale_ok = 1;
3213 			}
3214 			break;
3215 		case TCPOPT_SACK_PERM:
3216 			if (opt.opt_val != 0)
3217 				return -EINVAL;
3218 
3219 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3220 			break;
3221 		case TCPOPT_TIMESTAMP:
3222 			if (opt.opt_val != 0)
3223 				return -EINVAL;
3224 
3225 			tp->rx_opt.tstamp_ok = 1;
3226 			break;
3227 		}
3228 	}
3229 
3230 	return 0;
3231 }
3232 
3233 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3234 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3235 
3236 static void tcp_enable_tx_delay(void)
3237 {
3238 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3239 		static int __tcp_tx_delay_enabled = 0;
3240 
3241 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3242 			static_branch_enable(&tcp_tx_delay_enabled);
3243 			pr_info("TCP_TX_DELAY enabled\n");
3244 		}
3245 	}
3246 }
3247 
3248 /* When set indicates to always queue non-full frames.  Later the user clears
3249  * this option and we transmit any pending partial frames in the queue.  This is
3250  * meant to be used alongside sendfile() to get properly filled frames when the
3251  * user (for example) must write out headers with a write() call first and then
3252  * use sendfile to send out the data parts.
3253  *
3254  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3255  * TCP_NODELAY.
3256  */
3257 void __tcp_sock_set_cork(struct sock *sk, bool on)
3258 {
3259 	struct tcp_sock *tp = tcp_sk(sk);
3260 
3261 	if (on) {
3262 		tp->nonagle |= TCP_NAGLE_CORK;
3263 	} else {
3264 		tp->nonagle &= ~TCP_NAGLE_CORK;
3265 		if (tp->nonagle & TCP_NAGLE_OFF)
3266 			tp->nonagle |= TCP_NAGLE_PUSH;
3267 		tcp_push_pending_frames(sk);
3268 	}
3269 }
3270 
3271 void tcp_sock_set_cork(struct sock *sk, bool on)
3272 {
3273 	lock_sock(sk);
3274 	__tcp_sock_set_cork(sk, on);
3275 	release_sock(sk);
3276 }
3277 EXPORT_SYMBOL(tcp_sock_set_cork);
3278 
3279 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3280  * remembered, but it is not activated until cork is cleared.
3281  *
3282  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3283  * even TCP_CORK for currently queued segments.
3284  */
3285 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3286 {
3287 	if (on) {
3288 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3289 		tcp_push_pending_frames(sk);
3290 	} else {
3291 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3292 	}
3293 }
3294 
3295 void tcp_sock_set_nodelay(struct sock *sk)
3296 {
3297 	lock_sock(sk);
3298 	__tcp_sock_set_nodelay(sk, true);
3299 	release_sock(sk);
3300 }
3301 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3302 
3303 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3304 {
3305 	if (!val) {
3306 		inet_csk_enter_pingpong_mode(sk);
3307 		return;
3308 	}
3309 
3310 	inet_csk_exit_pingpong_mode(sk);
3311 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3312 	    inet_csk_ack_scheduled(sk)) {
3313 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3314 		tcp_cleanup_rbuf(sk, 1);
3315 		if (!(val & 1))
3316 			inet_csk_enter_pingpong_mode(sk);
3317 	}
3318 }
3319 
3320 void tcp_sock_set_quickack(struct sock *sk, int val)
3321 {
3322 	lock_sock(sk);
3323 	__tcp_sock_set_quickack(sk, val);
3324 	release_sock(sk);
3325 }
3326 EXPORT_SYMBOL(tcp_sock_set_quickack);
3327 
3328 int tcp_sock_set_syncnt(struct sock *sk, int val)
3329 {
3330 	if (val < 1 || val > MAX_TCP_SYNCNT)
3331 		return -EINVAL;
3332 
3333 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3334 	return 0;
3335 }
3336 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3337 
3338 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3339 {
3340 	/* Cap the max time in ms TCP will retry or probe the window
3341 	 * before giving up and aborting (ETIMEDOUT) a connection.
3342 	 */
3343 	if (val < 0)
3344 		return -EINVAL;
3345 
3346 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3347 	return 0;
3348 }
3349 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3350 
3351 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3352 {
3353 	struct tcp_sock *tp = tcp_sk(sk);
3354 
3355 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3356 		return -EINVAL;
3357 
3358 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3359 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3360 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3361 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3362 		u32 elapsed = keepalive_time_elapsed(tp);
3363 
3364 		if (tp->keepalive_time > elapsed)
3365 			elapsed = tp->keepalive_time - elapsed;
3366 		else
3367 			elapsed = 0;
3368 		inet_csk_reset_keepalive_timer(sk, elapsed);
3369 	}
3370 
3371 	return 0;
3372 }
3373 
3374 int tcp_sock_set_keepidle(struct sock *sk, int val)
3375 {
3376 	int err;
3377 
3378 	lock_sock(sk);
3379 	err = tcp_sock_set_keepidle_locked(sk, val);
3380 	release_sock(sk);
3381 	return err;
3382 }
3383 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3384 
3385 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3386 {
3387 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3388 		return -EINVAL;
3389 
3390 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3391 	return 0;
3392 }
3393 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3394 
3395 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3396 {
3397 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3398 		return -EINVAL;
3399 
3400 	/* Paired with READ_ONCE() in keepalive_probes() */
3401 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3402 	return 0;
3403 }
3404 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3405 
3406 int tcp_set_window_clamp(struct sock *sk, int val)
3407 {
3408 	struct tcp_sock *tp = tcp_sk(sk);
3409 
3410 	if (!val) {
3411 		if (sk->sk_state != TCP_CLOSE)
3412 			return -EINVAL;
3413 		WRITE_ONCE(tp->window_clamp, 0);
3414 	} else {
3415 		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3416 		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3417 						SOCK_MIN_RCVBUF / 2 : val;
3418 
3419 		if (new_window_clamp == old_window_clamp)
3420 			return 0;
3421 
3422 		WRITE_ONCE(tp->window_clamp, new_window_clamp);
3423 		if (new_window_clamp < old_window_clamp) {
3424 			/* need to apply the reserved mem provisioning only
3425 			 * when shrinking the window clamp
3426 			 */
3427 			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3428 
3429 		} else {
3430 			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3431 			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3432 					       tp->rcv_ssthresh);
3433 		}
3434 	}
3435 	return 0;
3436 }
3437 
3438 /*
3439  *	Socket option code for TCP.
3440  */
3441 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3442 		      sockptr_t optval, unsigned int optlen)
3443 {
3444 	struct tcp_sock *tp = tcp_sk(sk);
3445 	struct inet_connection_sock *icsk = inet_csk(sk);
3446 	struct net *net = sock_net(sk);
3447 	int val;
3448 	int err = 0;
3449 
3450 	/* These are data/string values, all the others are ints */
3451 	switch (optname) {
3452 	case TCP_CONGESTION: {
3453 		char name[TCP_CA_NAME_MAX];
3454 
3455 		if (optlen < 1)
3456 			return -EINVAL;
3457 
3458 		val = strncpy_from_sockptr(name, optval,
3459 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3460 		if (val < 0)
3461 			return -EFAULT;
3462 		name[val] = 0;
3463 
3464 		sockopt_lock_sock(sk);
3465 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3466 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3467 								    CAP_NET_ADMIN));
3468 		sockopt_release_sock(sk);
3469 		return err;
3470 	}
3471 	case TCP_ULP: {
3472 		char name[TCP_ULP_NAME_MAX];
3473 
3474 		if (optlen < 1)
3475 			return -EINVAL;
3476 
3477 		val = strncpy_from_sockptr(name, optval,
3478 					min_t(long, TCP_ULP_NAME_MAX - 1,
3479 					      optlen));
3480 		if (val < 0)
3481 			return -EFAULT;
3482 		name[val] = 0;
3483 
3484 		sockopt_lock_sock(sk);
3485 		err = tcp_set_ulp(sk, name);
3486 		sockopt_release_sock(sk);
3487 		return err;
3488 	}
3489 	case TCP_FASTOPEN_KEY: {
3490 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3491 		__u8 *backup_key = NULL;
3492 
3493 		/* Allow a backup key as well to facilitate key rotation
3494 		 * First key is the active one.
3495 		 */
3496 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3497 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3498 			return -EINVAL;
3499 
3500 		if (copy_from_sockptr(key, optval, optlen))
3501 			return -EFAULT;
3502 
3503 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3504 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3505 
3506 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3507 	}
3508 	default:
3509 		/* fallthru */
3510 		break;
3511 	}
3512 
3513 	if (optlen < sizeof(int))
3514 		return -EINVAL;
3515 
3516 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3517 		return -EFAULT;
3518 
3519 	/* Handle options that can be set without locking the socket. */
3520 	switch (optname) {
3521 	case TCP_SYNCNT:
3522 		return tcp_sock_set_syncnt(sk, val);
3523 	case TCP_USER_TIMEOUT:
3524 		return tcp_sock_set_user_timeout(sk, val);
3525 	case TCP_KEEPINTVL:
3526 		return tcp_sock_set_keepintvl(sk, val);
3527 	case TCP_KEEPCNT:
3528 		return tcp_sock_set_keepcnt(sk, val);
3529 	case TCP_LINGER2:
3530 		if (val < 0)
3531 			WRITE_ONCE(tp->linger2, -1);
3532 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3533 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3534 		else
3535 			WRITE_ONCE(tp->linger2, val * HZ);
3536 		return 0;
3537 	case TCP_DEFER_ACCEPT:
3538 		/* Translate value in seconds to number of retransmits */
3539 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3540 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3541 					   TCP_RTO_MAX / HZ));
3542 		return 0;
3543 	}
3544 
3545 	sockopt_lock_sock(sk);
3546 
3547 	switch (optname) {
3548 	case TCP_MAXSEG:
3549 		/* Values greater than interface MTU won't take effect. However
3550 		 * at the point when this call is done we typically don't yet
3551 		 * know which interface is going to be used
3552 		 */
3553 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3554 			err = -EINVAL;
3555 			break;
3556 		}
3557 		tp->rx_opt.user_mss = val;
3558 		break;
3559 
3560 	case TCP_NODELAY:
3561 		__tcp_sock_set_nodelay(sk, val);
3562 		break;
3563 
3564 	case TCP_THIN_LINEAR_TIMEOUTS:
3565 		if (val < 0 || val > 1)
3566 			err = -EINVAL;
3567 		else
3568 			tp->thin_lto = val;
3569 		break;
3570 
3571 	case TCP_THIN_DUPACK:
3572 		if (val < 0 || val > 1)
3573 			err = -EINVAL;
3574 		break;
3575 
3576 	case TCP_REPAIR:
3577 		if (!tcp_can_repair_sock(sk))
3578 			err = -EPERM;
3579 		else if (val == TCP_REPAIR_ON) {
3580 			tp->repair = 1;
3581 			sk->sk_reuse = SK_FORCE_REUSE;
3582 			tp->repair_queue = TCP_NO_QUEUE;
3583 		} else if (val == TCP_REPAIR_OFF) {
3584 			tp->repair = 0;
3585 			sk->sk_reuse = SK_NO_REUSE;
3586 			tcp_send_window_probe(sk);
3587 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3588 			tp->repair = 0;
3589 			sk->sk_reuse = SK_NO_REUSE;
3590 		} else
3591 			err = -EINVAL;
3592 
3593 		break;
3594 
3595 	case TCP_REPAIR_QUEUE:
3596 		if (!tp->repair)
3597 			err = -EPERM;
3598 		else if ((unsigned int)val < TCP_QUEUES_NR)
3599 			tp->repair_queue = val;
3600 		else
3601 			err = -EINVAL;
3602 		break;
3603 
3604 	case TCP_QUEUE_SEQ:
3605 		if (sk->sk_state != TCP_CLOSE) {
3606 			err = -EPERM;
3607 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3608 			if (!tcp_rtx_queue_empty(sk))
3609 				err = -EPERM;
3610 			else
3611 				WRITE_ONCE(tp->write_seq, val);
3612 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3613 			if (tp->rcv_nxt != tp->copied_seq) {
3614 				err = -EPERM;
3615 			} else {
3616 				WRITE_ONCE(tp->rcv_nxt, val);
3617 				WRITE_ONCE(tp->copied_seq, val);
3618 			}
3619 		} else {
3620 			err = -EINVAL;
3621 		}
3622 		break;
3623 
3624 	case TCP_REPAIR_OPTIONS:
3625 		if (!tp->repair)
3626 			err = -EINVAL;
3627 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3628 			err = tcp_repair_options_est(sk, optval, optlen);
3629 		else
3630 			err = -EPERM;
3631 		break;
3632 
3633 	case TCP_CORK:
3634 		__tcp_sock_set_cork(sk, val);
3635 		break;
3636 
3637 	case TCP_KEEPIDLE:
3638 		err = tcp_sock_set_keepidle_locked(sk, val);
3639 		break;
3640 	case TCP_SAVE_SYN:
3641 		/* 0: disable, 1: enable, 2: start from ether_header */
3642 		if (val < 0 || val > 2)
3643 			err = -EINVAL;
3644 		else
3645 			tp->save_syn = val;
3646 		break;
3647 
3648 	case TCP_WINDOW_CLAMP:
3649 		err = tcp_set_window_clamp(sk, val);
3650 		break;
3651 
3652 	case TCP_QUICKACK:
3653 		__tcp_sock_set_quickack(sk, val);
3654 		break;
3655 
3656 	case TCP_AO_REPAIR:
3657 		if (!tcp_can_repair_sock(sk)) {
3658 			err = -EPERM;
3659 			break;
3660 		}
3661 		err = tcp_ao_set_repair(sk, optval, optlen);
3662 		break;
3663 #ifdef CONFIG_TCP_AO
3664 	case TCP_AO_ADD_KEY:
3665 	case TCP_AO_DEL_KEY:
3666 	case TCP_AO_INFO: {
3667 		/* If this is the first TCP-AO setsockopt() on the socket,
3668 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3669 		 * in any state.
3670 		 */
3671 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3672 			goto ao_parse;
3673 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3674 					      lockdep_sock_is_held(sk)))
3675 			goto ao_parse;
3676 		if (tp->repair)
3677 			goto ao_parse;
3678 		err = -EISCONN;
3679 		break;
3680 ao_parse:
3681 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3682 		break;
3683 	}
3684 #endif
3685 #ifdef CONFIG_TCP_MD5SIG
3686 	case TCP_MD5SIG:
3687 	case TCP_MD5SIG_EXT:
3688 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3689 		break;
3690 #endif
3691 	case TCP_FASTOPEN:
3692 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3693 		    TCPF_LISTEN))) {
3694 			tcp_fastopen_init_key_once(net);
3695 
3696 			fastopen_queue_tune(sk, val);
3697 		} else {
3698 			err = -EINVAL;
3699 		}
3700 		break;
3701 	case TCP_FASTOPEN_CONNECT:
3702 		if (val > 1 || val < 0) {
3703 			err = -EINVAL;
3704 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3705 			   TFO_CLIENT_ENABLE) {
3706 			if (sk->sk_state == TCP_CLOSE)
3707 				tp->fastopen_connect = val;
3708 			else
3709 				err = -EINVAL;
3710 		} else {
3711 			err = -EOPNOTSUPP;
3712 		}
3713 		break;
3714 	case TCP_FASTOPEN_NO_COOKIE:
3715 		if (val > 1 || val < 0)
3716 			err = -EINVAL;
3717 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3718 			err = -EINVAL;
3719 		else
3720 			tp->fastopen_no_cookie = val;
3721 		break;
3722 	case TCP_TIMESTAMP:
3723 		if (!tp->repair) {
3724 			err = -EPERM;
3725 			break;
3726 		}
3727 		/* val is an opaque field,
3728 		 * and low order bit contains usec_ts enable bit.
3729 		 * Its a best effort, and we do not care if user makes an error.
3730 		 */
3731 		tp->tcp_usec_ts = val & 1;
3732 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3733 		break;
3734 	case TCP_REPAIR_WINDOW:
3735 		err = tcp_repair_set_window(tp, optval, optlen);
3736 		break;
3737 	case TCP_NOTSENT_LOWAT:
3738 		WRITE_ONCE(tp->notsent_lowat, val);
3739 		sk->sk_write_space(sk);
3740 		break;
3741 	case TCP_INQ:
3742 		if (val > 1 || val < 0)
3743 			err = -EINVAL;
3744 		else
3745 			tp->recvmsg_inq = val;
3746 		break;
3747 	case TCP_TX_DELAY:
3748 		if (val)
3749 			tcp_enable_tx_delay();
3750 		WRITE_ONCE(tp->tcp_tx_delay, val);
3751 		break;
3752 	default:
3753 		err = -ENOPROTOOPT;
3754 		break;
3755 	}
3756 
3757 	sockopt_release_sock(sk);
3758 	return err;
3759 }
3760 
3761 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3762 		   unsigned int optlen)
3763 {
3764 	const struct inet_connection_sock *icsk = inet_csk(sk);
3765 
3766 	if (level != SOL_TCP)
3767 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3768 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3769 								optval, optlen);
3770 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3771 }
3772 EXPORT_SYMBOL(tcp_setsockopt);
3773 
3774 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3775 				      struct tcp_info *info)
3776 {
3777 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3778 	enum tcp_chrono i;
3779 
3780 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3781 		stats[i] = tp->chrono_stat[i - 1];
3782 		if (i == tp->chrono_type)
3783 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3784 		stats[i] *= USEC_PER_SEC / HZ;
3785 		total += stats[i];
3786 	}
3787 
3788 	info->tcpi_busy_time = total;
3789 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3790 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3791 }
3792 
3793 /* Return information about state of tcp endpoint in API format. */
3794 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3795 {
3796 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3797 	const struct inet_connection_sock *icsk = inet_csk(sk);
3798 	unsigned long rate;
3799 	u32 now;
3800 	u64 rate64;
3801 	bool slow;
3802 
3803 	memset(info, 0, sizeof(*info));
3804 	if (sk->sk_type != SOCK_STREAM)
3805 		return;
3806 
3807 	info->tcpi_state = inet_sk_state_load(sk);
3808 
3809 	/* Report meaningful fields for all TCP states, including listeners */
3810 	rate = READ_ONCE(sk->sk_pacing_rate);
3811 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3812 	info->tcpi_pacing_rate = rate64;
3813 
3814 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3815 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3816 	info->tcpi_max_pacing_rate = rate64;
3817 
3818 	info->tcpi_reordering = tp->reordering;
3819 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3820 
3821 	if (info->tcpi_state == TCP_LISTEN) {
3822 		/* listeners aliased fields :
3823 		 * tcpi_unacked -> Number of children ready for accept()
3824 		 * tcpi_sacked  -> max backlog
3825 		 */
3826 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3827 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3828 		return;
3829 	}
3830 
3831 	slow = lock_sock_fast(sk);
3832 
3833 	info->tcpi_ca_state = icsk->icsk_ca_state;
3834 	info->tcpi_retransmits = icsk->icsk_retransmits;
3835 	info->tcpi_probes = icsk->icsk_probes_out;
3836 	info->tcpi_backoff = icsk->icsk_backoff;
3837 
3838 	if (tp->rx_opt.tstamp_ok)
3839 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3840 	if (tcp_is_sack(tp))
3841 		info->tcpi_options |= TCPI_OPT_SACK;
3842 	if (tp->rx_opt.wscale_ok) {
3843 		info->tcpi_options |= TCPI_OPT_WSCALE;
3844 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3845 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3846 	}
3847 
3848 	if (tp->ecn_flags & TCP_ECN_OK)
3849 		info->tcpi_options |= TCPI_OPT_ECN;
3850 	if (tp->ecn_flags & TCP_ECN_SEEN)
3851 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3852 	if (tp->syn_data_acked)
3853 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3854 	if (tp->tcp_usec_ts)
3855 		info->tcpi_options |= TCPI_OPT_USEC_TS;
3856 
3857 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3858 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
3859 						tcp_delack_max(sk)));
3860 	info->tcpi_snd_mss = tp->mss_cache;
3861 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3862 
3863 	info->tcpi_unacked = tp->packets_out;
3864 	info->tcpi_sacked = tp->sacked_out;
3865 
3866 	info->tcpi_lost = tp->lost_out;
3867 	info->tcpi_retrans = tp->retrans_out;
3868 
3869 	now = tcp_jiffies32;
3870 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3871 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3872 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3873 
3874 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3875 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3876 	info->tcpi_rtt = tp->srtt_us >> 3;
3877 	info->tcpi_rttvar = tp->mdev_us >> 2;
3878 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3879 	info->tcpi_advmss = tp->advmss;
3880 
3881 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3882 	info->tcpi_rcv_space = tp->rcvq_space.space;
3883 
3884 	info->tcpi_total_retrans = tp->total_retrans;
3885 
3886 	info->tcpi_bytes_acked = tp->bytes_acked;
3887 	info->tcpi_bytes_received = tp->bytes_received;
3888 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3889 	tcp_get_info_chrono_stats(tp, info);
3890 
3891 	info->tcpi_segs_out = tp->segs_out;
3892 
3893 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3894 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3895 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3896 
3897 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3898 	info->tcpi_data_segs_out = tp->data_segs_out;
3899 
3900 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3901 	rate64 = tcp_compute_delivery_rate(tp);
3902 	if (rate64)
3903 		info->tcpi_delivery_rate = rate64;
3904 	info->tcpi_delivered = tp->delivered;
3905 	info->tcpi_delivered_ce = tp->delivered_ce;
3906 	info->tcpi_bytes_sent = tp->bytes_sent;
3907 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3908 	info->tcpi_dsack_dups = tp->dsack_dups;
3909 	info->tcpi_reord_seen = tp->reord_seen;
3910 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3911 	info->tcpi_snd_wnd = tp->snd_wnd;
3912 	info->tcpi_rcv_wnd = tp->rcv_wnd;
3913 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3914 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3915 
3916 	info->tcpi_total_rto = tp->total_rto;
3917 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
3918 	info->tcpi_total_rto_time = tp->total_rto_time;
3919 	if (tp->rto_stamp)
3920 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
3921 
3922 	unlock_sock_fast(sk, slow);
3923 }
3924 EXPORT_SYMBOL_GPL(tcp_get_info);
3925 
3926 static size_t tcp_opt_stats_get_size(void)
3927 {
3928 	return
3929 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3930 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3931 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3932 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3933 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3934 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3935 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3936 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3937 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3938 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3939 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3940 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3941 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3942 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3943 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3944 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3945 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3946 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3947 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3948 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3949 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3950 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3951 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3952 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3953 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3954 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3955 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3956 		0;
3957 }
3958 
3959 /* Returns TTL or hop limit of an incoming packet from skb. */
3960 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3961 {
3962 	if (skb->protocol == htons(ETH_P_IP))
3963 		return ip_hdr(skb)->ttl;
3964 	else if (skb->protocol == htons(ETH_P_IPV6))
3965 		return ipv6_hdr(skb)->hop_limit;
3966 	else
3967 		return 0;
3968 }
3969 
3970 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3971 					       const struct sk_buff *orig_skb,
3972 					       const struct sk_buff *ack_skb)
3973 {
3974 	const struct tcp_sock *tp = tcp_sk(sk);
3975 	struct sk_buff *stats;
3976 	struct tcp_info info;
3977 	unsigned long rate;
3978 	u64 rate64;
3979 
3980 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3981 	if (!stats)
3982 		return NULL;
3983 
3984 	tcp_get_info_chrono_stats(tp, &info);
3985 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3986 			  info.tcpi_busy_time, TCP_NLA_PAD);
3987 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3988 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3989 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3990 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3991 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3992 			  tp->data_segs_out, TCP_NLA_PAD);
3993 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3994 			  tp->total_retrans, TCP_NLA_PAD);
3995 
3996 	rate = READ_ONCE(sk->sk_pacing_rate);
3997 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3998 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3999 
4000 	rate64 = tcp_compute_delivery_rate(tp);
4001 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4002 
4003 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4004 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4005 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4006 
4007 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4008 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4009 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4010 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4011 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4012 
4013 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4014 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4015 
4016 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4017 			  TCP_NLA_PAD);
4018 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4019 			  TCP_NLA_PAD);
4020 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4021 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4022 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4023 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4024 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4025 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4026 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4027 			  TCP_NLA_PAD);
4028 	if (ack_skb)
4029 		nla_put_u8(stats, TCP_NLA_TTL,
4030 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4031 
4032 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4033 	return stats;
4034 }
4035 
4036 int do_tcp_getsockopt(struct sock *sk, int level,
4037 		      int optname, sockptr_t optval, sockptr_t optlen)
4038 {
4039 	struct inet_connection_sock *icsk = inet_csk(sk);
4040 	struct tcp_sock *tp = tcp_sk(sk);
4041 	struct net *net = sock_net(sk);
4042 	int val, len;
4043 
4044 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4045 		return -EFAULT;
4046 
4047 	if (len < 0)
4048 		return -EINVAL;
4049 
4050 	len = min_t(unsigned int, len, sizeof(int));
4051 
4052 	switch (optname) {
4053 	case TCP_MAXSEG:
4054 		val = tp->mss_cache;
4055 		if (tp->rx_opt.user_mss &&
4056 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4057 			val = tp->rx_opt.user_mss;
4058 		if (tp->repair)
4059 			val = tp->rx_opt.mss_clamp;
4060 		break;
4061 	case TCP_NODELAY:
4062 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4063 		break;
4064 	case TCP_CORK:
4065 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4066 		break;
4067 	case TCP_KEEPIDLE:
4068 		val = keepalive_time_when(tp) / HZ;
4069 		break;
4070 	case TCP_KEEPINTVL:
4071 		val = keepalive_intvl_when(tp) / HZ;
4072 		break;
4073 	case TCP_KEEPCNT:
4074 		val = keepalive_probes(tp);
4075 		break;
4076 	case TCP_SYNCNT:
4077 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4078 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4079 		break;
4080 	case TCP_LINGER2:
4081 		val = READ_ONCE(tp->linger2);
4082 		if (val >= 0)
4083 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4084 		break;
4085 	case TCP_DEFER_ACCEPT:
4086 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4087 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4088 				      TCP_RTO_MAX / HZ);
4089 		break;
4090 	case TCP_WINDOW_CLAMP:
4091 		val = READ_ONCE(tp->window_clamp);
4092 		break;
4093 	case TCP_INFO: {
4094 		struct tcp_info info;
4095 
4096 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4097 			return -EFAULT;
4098 
4099 		tcp_get_info(sk, &info);
4100 
4101 		len = min_t(unsigned int, len, sizeof(info));
4102 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4103 			return -EFAULT;
4104 		if (copy_to_sockptr(optval, &info, len))
4105 			return -EFAULT;
4106 		return 0;
4107 	}
4108 	case TCP_CC_INFO: {
4109 		const struct tcp_congestion_ops *ca_ops;
4110 		union tcp_cc_info info;
4111 		size_t sz = 0;
4112 		int attr;
4113 
4114 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4115 			return -EFAULT;
4116 
4117 		ca_ops = icsk->icsk_ca_ops;
4118 		if (ca_ops && ca_ops->get_info)
4119 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4120 
4121 		len = min_t(unsigned int, len, sz);
4122 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4123 			return -EFAULT;
4124 		if (copy_to_sockptr(optval, &info, len))
4125 			return -EFAULT;
4126 		return 0;
4127 	}
4128 	case TCP_QUICKACK:
4129 		val = !inet_csk_in_pingpong_mode(sk);
4130 		break;
4131 
4132 	case TCP_CONGESTION:
4133 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4134 			return -EFAULT;
4135 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4136 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4137 			return -EFAULT;
4138 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4139 			return -EFAULT;
4140 		return 0;
4141 
4142 	case TCP_ULP:
4143 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4144 			return -EFAULT;
4145 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4146 		if (!icsk->icsk_ulp_ops) {
4147 			len = 0;
4148 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4149 				return -EFAULT;
4150 			return 0;
4151 		}
4152 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4153 			return -EFAULT;
4154 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4155 			return -EFAULT;
4156 		return 0;
4157 
4158 	case TCP_FASTOPEN_KEY: {
4159 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4160 		unsigned int key_len;
4161 
4162 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4163 			return -EFAULT;
4164 
4165 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4166 				TCP_FASTOPEN_KEY_LENGTH;
4167 		len = min_t(unsigned int, len, key_len);
4168 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4169 			return -EFAULT;
4170 		if (copy_to_sockptr(optval, key, len))
4171 			return -EFAULT;
4172 		return 0;
4173 	}
4174 	case TCP_THIN_LINEAR_TIMEOUTS:
4175 		val = tp->thin_lto;
4176 		break;
4177 
4178 	case TCP_THIN_DUPACK:
4179 		val = 0;
4180 		break;
4181 
4182 	case TCP_REPAIR:
4183 		val = tp->repair;
4184 		break;
4185 
4186 	case TCP_REPAIR_QUEUE:
4187 		if (tp->repair)
4188 			val = tp->repair_queue;
4189 		else
4190 			return -EINVAL;
4191 		break;
4192 
4193 	case TCP_REPAIR_WINDOW: {
4194 		struct tcp_repair_window opt;
4195 
4196 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4197 			return -EFAULT;
4198 
4199 		if (len != sizeof(opt))
4200 			return -EINVAL;
4201 
4202 		if (!tp->repair)
4203 			return -EPERM;
4204 
4205 		opt.snd_wl1	= tp->snd_wl1;
4206 		opt.snd_wnd	= tp->snd_wnd;
4207 		opt.max_window	= tp->max_window;
4208 		opt.rcv_wnd	= tp->rcv_wnd;
4209 		opt.rcv_wup	= tp->rcv_wup;
4210 
4211 		if (copy_to_sockptr(optval, &opt, len))
4212 			return -EFAULT;
4213 		return 0;
4214 	}
4215 	case TCP_QUEUE_SEQ:
4216 		if (tp->repair_queue == TCP_SEND_QUEUE)
4217 			val = tp->write_seq;
4218 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4219 			val = tp->rcv_nxt;
4220 		else
4221 			return -EINVAL;
4222 		break;
4223 
4224 	case TCP_USER_TIMEOUT:
4225 		val = READ_ONCE(icsk->icsk_user_timeout);
4226 		break;
4227 
4228 	case TCP_FASTOPEN:
4229 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4230 		break;
4231 
4232 	case TCP_FASTOPEN_CONNECT:
4233 		val = tp->fastopen_connect;
4234 		break;
4235 
4236 	case TCP_FASTOPEN_NO_COOKIE:
4237 		val = tp->fastopen_no_cookie;
4238 		break;
4239 
4240 	case TCP_TX_DELAY:
4241 		val = READ_ONCE(tp->tcp_tx_delay);
4242 		break;
4243 
4244 	case TCP_TIMESTAMP:
4245 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4246 		if (tp->tcp_usec_ts)
4247 			val |= 1;
4248 		else
4249 			val &= ~1;
4250 		break;
4251 	case TCP_NOTSENT_LOWAT:
4252 		val = READ_ONCE(tp->notsent_lowat);
4253 		break;
4254 	case TCP_INQ:
4255 		val = tp->recvmsg_inq;
4256 		break;
4257 	case TCP_SAVE_SYN:
4258 		val = tp->save_syn;
4259 		break;
4260 	case TCP_SAVED_SYN: {
4261 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4262 			return -EFAULT;
4263 
4264 		sockopt_lock_sock(sk);
4265 		if (tp->saved_syn) {
4266 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4267 				len = tcp_saved_syn_len(tp->saved_syn);
4268 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4269 					sockopt_release_sock(sk);
4270 					return -EFAULT;
4271 				}
4272 				sockopt_release_sock(sk);
4273 				return -EINVAL;
4274 			}
4275 			len = tcp_saved_syn_len(tp->saved_syn);
4276 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4277 				sockopt_release_sock(sk);
4278 				return -EFAULT;
4279 			}
4280 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4281 				sockopt_release_sock(sk);
4282 				return -EFAULT;
4283 			}
4284 			tcp_saved_syn_free(tp);
4285 			sockopt_release_sock(sk);
4286 		} else {
4287 			sockopt_release_sock(sk);
4288 			len = 0;
4289 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4290 				return -EFAULT;
4291 		}
4292 		return 0;
4293 	}
4294 #ifdef CONFIG_MMU
4295 	case TCP_ZEROCOPY_RECEIVE: {
4296 		struct scm_timestamping_internal tss;
4297 		struct tcp_zerocopy_receive zc = {};
4298 		int err;
4299 
4300 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4301 			return -EFAULT;
4302 		if (len < 0 ||
4303 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4304 			return -EINVAL;
4305 		if (unlikely(len > sizeof(zc))) {
4306 			err = check_zeroed_sockptr(optval, sizeof(zc),
4307 						   len - sizeof(zc));
4308 			if (err < 1)
4309 				return err == 0 ? -EINVAL : err;
4310 			len = sizeof(zc);
4311 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4312 				return -EFAULT;
4313 		}
4314 		if (copy_from_sockptr(&zc, optval, len))
4315 			return -EFAULT;
4316 		if (zc.reserved)
4317 			return -EINVAL;
4318 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4319 			return -EINVAL;
4320 		sockopt_lock_sock(sk);
4321 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4322 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4323 							  &zc, &len, err);
4324 		sockopt_release_sock(sk);
4325 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4326 			goto zerocopy_rcv_cmsg;
4327 		switch (len) {
4328 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4329 			goto zerocopy_rcv_cmsg;
4330 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4331 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4332 		case offsetofend(struct tcp_zerocopy_receive, flags):
4333 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4334 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4335 		case offsetofend(struct tcp_zerocopy_receive, err):
4336 			goto zerocopy_rcv_sk_err;
4337 		case offsetofend(struct tcp_zerocopy_receive, inq):
4338 			goto zerocopy_rcv_inq;
4339 		case offsetofend(struct tcp_zerocopy_receive, length):
4340 		default:
4341 			goto zerocopy_rcv_out;
4342 		}
4343 zerocopy_rcv_cmsg:
4344 		if (zc.msg_flags & TCP_CMSG_TS)
4345 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4346 		else
4347 			zc.msg_flags = 0;
4348 zerocopy_rcv_sk_err:
4349 		if (!err)
4350 			zc.err = sock_error(sk);
4351 zerocopy_rcv_inq:
4352 		zc.inq = tcp_inq_hint(sk);
4353 zerocopy_rcv_out:
4354 		if (!err && copy_to_sockptr(optval, &zc, len))
4355 			err = -EFAULT;
4356 		return err;
4357 	}
4358 #endif
4359 	case TCP_AO_REPAIR:
4360 		if (!tcp_can_repair_sock(sk))
4361 			return -EPERM;
4362 		return tcp_ao_get_repair(sk, optval, optlen);
4363 	case TCP_AO_GET_KEYS:
4364 	case TCP_AO_INFO: {
4365 		int err;
4366 
4367 		sockopt_lock_sock(sk);
4368 		if (optname == TCP_AO_GET_KEYS)
4369 			err = tcp_ao_get_mkts(sk, optval, optlen);
4370 		else
4371 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4372 		sockopt_release_sock(sk);
4373 
4374 		return err;
4375 	}
4376 	case TCP_IS_MPTCP:
4377 		val = 0;
4378 		break;
4379 	default:
4380 		return -ENOPROTOOPT;
4381 	}
4382 
4383 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4384 		return -EFAULT;
4385 	if (copy_to_sockptr(optval, &val, len))
4386 		return -EFAULT;
4387 	return 0;
4388 }
4389 
4390 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4391 {
4392 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4393 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4394 	 */
4395 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4396 		return true;
4397 
4398 	return false;
4399 }
4400 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4401 
4402 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4403 		   int __user *optlen)
4404 {
4405 	struct inet_connection_sock *icsk = inet_csk(sk);
4406 
4407 	if (level != SOL_TCP)
4408 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4409 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4410 								optval, optlen);
4411 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4412 				 USER_SOCKPTR(optlen));
4413 }
4414 EXPORT_SYMBOL(tcp_getsockopt);
4415 
4416 #ifdef CONFIG_TCP_MD5SIG
4417 int tcp_md5_sigpool_id = -1;
4418 EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4419 
4420 int tcp_md5_alloc_sigpool(void)
4421 {
4422 	size_t scratch_size;
4423 	int ret;
4424 
4425 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4426 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4427 	if (ret >= 0) {
4428 		/* As long as any md5 sigpool was allocated, the return
4429 		 * id would stay the same. Re-write the id only for the case
4430 		 * when previously all MD5 keys were deleted and this call
4431 		 * allocates the first MD5 key, which may return a different
4432 		 * sigpool id than was used previously.
4433 		 */
4434 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4435 		return 0;
4436 	}
4437 	return ret;
4438 }
4439 
4440 void tcp_md5_release_sigpool(void)
4441 {
4442 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4443 }
4444 
4445 void tcp_md5_add_sigpool(void)
4446 {
4447 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4448 }
4449 
4450 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4451 		     const struct tcp_md5sig_key *key)
4452 {
4453 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4454 	struct scatterlist sg;
4455 
4456 	sg_init_one(&sg, key->key, keylen);
4457 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4458 
4459 	/* We use data_race() because tcp_md5_do_add() might change
4460 	 * key->key under us
4461 	 */
4462 	return data_race(crypto_ahash_update(hp->req));
4463 }
4464 EXPORT_SYMBOL(tcp_md5_hash_key);
4465 
4466 /* Called with rcu_read_lock() */
4467 static enum skb_drop_reason
4468 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4469 		     const void *saddr, const void *daddr,
4470 		     int family, int l3index, const __u8 *hash_location)
4471 {
4472 	/* This gets called for each TCP segment that has TCP-MD5 option.
4473 	 * We have 3 drop cases:
4474 	 * o No MD5 hash and one expected.
4475 	 * o MD5 hash and we're not expecting one.
4476 	 * o MD5 hash and its wrong.
4477 	 */
4478 	const struct tcp_sock *tp = tcp_sk(sk);
4479 	struct tcp_md5sig_key *key;
4480 	u8 newhash[16];
4481 	int genhash;
4482 
4483 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4484 
4485 	if (!key && hash_location) {
4486 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4487 		trace_tcp_hash_md5_unexpected(sk, skb);
4488 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4489 	}
4490 
4491 	/* Check the signature.
4492 	 * To support dual stack listeners, we need to handle
4493 	 * IPv4-mapped case.
4494 	 */
4495 	if (family == AF_INET)
4496 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4497 	else
4498 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4499 							 NULL, skb);
4500 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4501 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4502 		trace_tcp_hash_md5_mismatch(sk, skb);
4503 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4504 	}
4505 	return SKB_NOT_DROPPED_YET;
4506 }
4507 #else
4508 static inline enum skb_drop_reason
4509 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4510 		     const void *saddr, const void *daddr,
4511 		     int family, int l3index, const __u8 *hash_location)
4512 {
4513 	return SKB_NOT_DROPPED_YET;
4514 }
4515 
4516 #endif
4517 
4518 /* Called with rcu_read_lock() */
4519 enum skb_drop_reason
4520 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4521 		 const struct sk_buff *skb,
4522 		 const void *saddr, const void *daddr,
4523 		 int family, int dif, int sdif)
4524 {
4525 	const struct tcphdr *th = tcp_hdr(skb);
4526 	const struct tcp_ao_hdr *aoh;
4527 	const __u8 *md5_location;
4528 	int l3index;
4529 
4530 	/* Invalid option or two times meet any of auth options */
4531 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4532 		trace_tcp_hash_bad_header(sk, skb);
4533 		return SKB_DROP_REASON_TCP_AUTH_HDR;
4534 	}
4535 
4536 	if (req) {
4537 		if (tcp_rsk_used_ao(req) != !!aoh) {
4538 			u8 keyid, rnext, maclen;
4539 
4540 			if (aoh) {
4541 				keyid = aoh->keyid;
4542 				rnext = aoh->rnext_keyid;
4543 				maclen = tcp_ao_hdr_maclen(aoh);
4544 			} else {
4545 				keyid = rnext = maclen = 0;
4546 			}
4547 
4548 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4549 			trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4550 			return SKB_DROP_REASON_TCP_AOFAILURE;
4551 		}
4552 	}
4553 
4554 	/* sdif set, means packet ingressed via a device
4555 	 * in an L3 domain and dif is set to the l3mdev
4556 	 */
4557 	l3index = sdif ? dif : 0;
4558 
4559 	/* Fast path: unsigned segments */
4560 	if (likely(!md5_location && !aoh)) {
4561 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4562 		 * for the remote peer. On TCP-AO established connection
4563 		 * the last key is impossible to remove, so there's
4564 		 * always at least one current_key.
4565 		 */
4566 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4567 			trace_tcp_hash_ao_required(sk, skb);
4568 			return SKB_DROP_REASON_TCP_AONOTFOUND;
4569 		}
4570 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4571 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4572 			trace_tcp_hash_md5_required(sk, skb);
4573 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4574 		}
4575 		return SKB_NOT_DROPPED_YET;
4576 	}
4577 
4578 	if (aoh)
4579 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4580 
4581 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4582 				    l3index, md5_location);
4583 }
4584 EXPORT_SYMBOL_GPL(tcp_inbound_hash);
4585 
4586 void tcp_done(struct sock *sk)
4587 {
4588 	struct request_sock *req;
4589 
4590 	/* We might be called with a new socket, after
4591 	 * inet_csk_prepare_forced_close() has been called
4592 	 * so we can not use lockdep_sock_is_held(sk)
4593 	 */
4594 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4595 
4596 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4597 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4598 
4599 	tcp_set_state(sk, TCP_CLOSE);
4600 	tcp_clear_xmit_timers(sk);
4601 	if (req)
4602 		reqsk_fastopen_remove(sk, req, false);
4603 
4604 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4605 
4606 	if (!sock_flag(sk, SOCK_DEAD))
4607 		sk->sk_state_change(sk);
4608 	else
4609 		inet_csk_destroy_sock(sk);
4610 }
4611 EXPORT_SYMBOL_GPL(tcp_done);
4612 
4613 int tcp_abort(struct sock *sk, int err)
4614 {
4615 	int state = inet_sk_state_load(sk);
4616 
4617 	if (state == TCP_NEW_SYN_RECV) {
4618 		struct request_sock *req = inet_reqsk(sk);
4619 
4620 		local_bh_disable();
4621 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4622 		local_bh_enable();
4623 		return 0;
4624 	}
4625 	if (state == TCP_TIME_WAIT) {
4626 		struct inet_timewait_sock *tw = inet_twsk(sk);
4627 
4628 		refcount_inc(&tw->tw_refcnt);
4629 		local_bh_disable();
4630 		inet_twsk_deschedule_put(tw);
4631 		local_bh_enable();
4632 		return 0;
4633 	}
4634 
4635 	/* BPF context ensures sock locking. */
4636 	if (!has_current_bpf_ctx())
4637 		/* Don't race with userspace socket closes such as tcp_close. */
4638 		lock_sock(sk);
4639 
4640 	if (sk->sk_state == TCP_LISTEN) {
4641 		tcp_set_state(sk, TCP_CLOSE);
4642 		inet_csk_listen_stop(sk);
4643 	}
4644 
4645 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4646 	local_bh_disable();
4647 	bh_lock_sock(sk);
4648 
4649 	if (!sock_flag(sk, SOCK_DEAD)) {
4650 		if (tcp_need_reset(sk->sk_state))
4651 			tcp_send_active_reset(sk, GFP_ATOMIC,
4652 					      SK_RST_REASON_NOT_SPECIFIED);
4653 		tcp_done_with_error(sk, err);
4654 	}
4655 
4656 	bh_unlock_sock(sk);
4657 	local_bh_enable();
4658 	tcp_write_queue_purge(sk);
4659 	if (!has_current_bpf_ctx())
4660 		release_sock(sk);
4661 	return 0;
4662 }
4663 EXPORT_SYMBOL_GPL(tcp_abort);
4664 
4665 extern struct tcp_congestion_ops tcp_reno;
4666 
4667 static __initdata unsigned long thash_entries;
4668 static int __init set_thash_entries(char *str)
4669 {
4670 	ssize_t ret;
4671 
4672 	if (!str)
4673 		return 0;
4674 
4675 	ret = kstrtoul(str, 0, &thash_entries);
4676 	if (ret)
4677 		return 0;
4678 
4679 	return 1;
4680 }
4681 __setup("thash_entries=", set_thash_entries);
4682 
4683 static void __init tcp_init_mem(void)
4684 {
4685 	unsigned long limit = nr_free_buffer_pages() / 16;
4686 
4687 	limit = max(limit, 128UL);
4688 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4689 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4690 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4691 }
4692 
4693 static void __init tcp_struct_check(void)
4694 {
4695 	/* TX read-mostly hotpath cache lines */
4696 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4697 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4698 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4699 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4700 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4701 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4702 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4703 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4704 
4705 	/* TXRX read-mostly hotpath cache lines */
4706 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4707 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4708 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4709 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4710 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4711 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4712 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4713 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4714 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
4715 
4716 	/* RX read-mostly hotpath cache lines */
4717 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
4718 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
4719 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
4720 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
4721 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
4722 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
4723 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
4724 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
4725 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
4726 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
4727 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
4728 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
4729 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
4730 
4731 	/* TX read-write hotpath cache lines */
4732 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
4733 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
4734 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
4735 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
4736 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
4737 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
4738 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
4739 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
4740 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
4741 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
4742 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
4743 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
4744 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
4745 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
4746 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
4747 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
4748 
4749 	/* TXRX read-write hotpath cache lines */
4750 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
4751 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
4752 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
4753 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
4754 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
4755 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
4756 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
4757 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
4758 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
4759 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
4760 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
4761 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
4762 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
4763 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
4764 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
4765 
4766 	/* 32bit arches with 8byte alignment on u64 fields might need padding
4767 	 * before tcp_clock_cache.
4768 	 */
4769 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
4770 
4771 	/* RX read-write hotpath cache lines */
4772 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
4773 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
4774 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
4775 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
4776 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
4777 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
4778 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
4779 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
4780 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
4781 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
4782 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
4783 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
4784 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
4785 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
4786 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
4787 }
4788 
4789 void __init tcp_init(void)
4790 {
4791 	int max_rshare, max_wshare, cnt;
4792 	unsigned long limit;
4793 	unsigned int i;
4794 
4795 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4796 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4797 		     sizeof_field(struct sk_buff, cb));
4798 
4799 	tcp_struct_check();
4800 
4801 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4802 
4803 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4804 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4805 
4806 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4807 			    thash_entries, 21,  /* one slot per 2 MB*/
4808 			    0, 64 * 1024);
4809 	tcp_hashinfo.bind_bucket_cachep =
4810 		kmem_cache_create("tcp_bind_bucket",
4811 				  sizeof(struct inet_bind_bucket), 0,
4812 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4813 				  SLAB_ACCOUNT,
4814 				  NULL);
4815 	tcp_hashinfo.bind2_bucket_cachep =
4816 		kmem_cache_create("tcp_bind2_bucket",
4817 				  sizeof(struct inet_bind2_bucket), 0,
4818 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4819 				  SLAB_ACCOUNT,
4820 				  NULL);
4821 
4822 	/* Size and allocate the main established and bind bucket
4823 	 * hash tables.
4824 	 *
4825 	 * The methodology is similar to that of the buffer cache.
4826 	 */
4827 	tcp_hashinfo.ehash =
4828 		alloc_large_system_hash("TCP established",
4829 					sizeof(struct inet_ehash_bucket),
4830 					thash_entries,
4831 					17, /* one slot per 128 KB of memory */
4832 					0,
4833 					NULL,
4834 					&tcp_hashinfo.ehash_mask,
4835 					0,
4836 					thash_entries ? 0 : 512 * 1024);
4837 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4838 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4839 
4840 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4841 		panic("TCP: failed to alloc ehash_locks");
4842 	tcp_hashinfo.bhash =
4843 		alloc_large_system_hash("TCP bind",
4844 					2 * sizeof(struct inet_bind_hashbucket),
4845 					tcp_hashinfo.ehash_mask + 1,
4846 					17, /* one slot per 128 KB of memory */
4847 					0,
4848 					&tcp_hashinfo.bhash_size,
4849 					NULL,
4850 					0,
4851 					64 * 1024);
4852 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4853 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4854 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4855 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4856 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4857 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4858 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4859 	}
4860 
4861 	tcp_hashinfo.pernet = false;
4862 
4863 	cnt = tcp_hashinfo.ehash_mask + 1;
4864 	sysctl_tcp_max_orphans = cnt / 2;
4865 
4866 	tcp_init_mem();
4867 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4868 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4869 	max_wshare = min(4UL*1024*1024, limit);
4870 	max_rshare = min(6UL*1024*1024, limit);
4871 
4872 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4873 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4874 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4875 
4876 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4877 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4878 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4879 
4880 	pr_info("Hash tables configured (established %u bind %u)\n",
4881 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4882 
4883 	tcp_v4_init();
4884 	tcp_metrics_init();
4885 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4886 	tcp_tasklet_init();
4887 	mptcp_init();
4888 }
4889