xref: /linux/net/core/net_namespace.c (revision 9d796e66230205cd3366f5660387bd9ecca9d336)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/rtnetlink.h>
20 #include <net/sock.h>
21 #include <net/netlink.h>
22 #include <net/net_namespace.h>
23 #include <net/netns/generic.h>
24 
25 /*
26  *	Our network namespace constructor/destructor lists
27  */
28 
29 static LIST_HEAD(pernet_list);
30 static struct list_head *first_device = &pernet_list;
31 DEFINE_MUTEX(net_mutex);
32 
33 LIST_HEAD(net_namespace_list);
34 EXPORT_SYMBOL_GPL(net_namespace_list);
35 
36 struct net init_net = {
37 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
38 };
39 EXPORT_SYMBOL(init_net);
40 
41 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
42 
43 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
44 
45 static struct net_generic *net_alloc_generic(void)
46 {
47 	struct net_generic *ng;
48 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
49 
50 	ng = kzalloc(generic_size, GFP_KERNEL);
51 	if (ng)
52 		ng->len = max_gen_ptrs;
53 
54 	return ng;
55 }
56 
57 static int net_assign_generic(struct net *net, int id, void *data)
58 {
59 	struct net_generic *ng, *old_ng;
60 
61 	BUG_ON(!mutex_is_locked(&net_mutex));
62 	BUG_ON(id == 0);
63 
64 	old_ng = rcu_dereference_protected(net->gen,
65 					   lockdep_is_held(&net_mutex));
66 	ng = old_ng;
67 	if (old_ng->len >= id)
68 		goto assign;
69 
70 	ng = net_alloc_generic();
71 	if (ng == NULL)
72 		return -ENOMEM;
73 
74 	/*
75 	 * Some synchronisation notes:
76 	 *
77 	 * The net_generic explores the net->gen array inside rcu
78 	 * read section. Besides once set the net->gen->ptr[x]
79 	 * pointer never changes (see rules in netns/generic.h).
80 	 *
81 	 * That said, we simply duplicate this array and schedule
82 	 * the old copy for kfree after a grace period.
83 	 */
84 
85 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
86 
87 	rcu_assign_pointer(net->gen, ng);
88 	kfree_rcu(old_ng, rcu);
89 assign:
90 	ng->ptr[id - 1] = data;
91 	return 0;
92 }
93 
94 static int ops_init(const struct pernet_operations *ops, struct net *net)
95 {
96 	int err = -ENOMEM;
97 	void *data = NULL;
98 
99 	if (ops->id && ops->size) {
100 		data = kzalloc(ops->size, GFP_KERNEL);
101 		if (!data)
102 			goto out;
103 
104 		err = net_assign_generic(net, *ops->id, data);
105 		if (err)
106 			goto cleanup;
107 	}
108 	err = 0;
109 	if (ops->init)
110 		err = ops->init(net);
111 	if (!err)
112 		return 0;
113 
114 cleanup:
115 	kfree(data);
116 
117 out:
118 	return err;
119 }
120 
121 static void ops_free(const struct pernet_operations *ops, struct net *net)
122 {
123 	if (ops->id && ops->size) {
124 		int id = *ops->id;
125 		kfree(net_generic(net, id));
126 	}
127 }
128 
129 static void ops_exit_list(const struct pernet_operations *ops,
130 			  struct list_head *net_exit_list)
131 {
132 	struct net *net;
133 	if (ops->exit) {
134 		list_for_each_entry(net, net_exit_list, exit_list)
135 			ops->exit(net);
136 	}
137 	if (ops->exit_batch)
138 		ops->exit_batch(net_exit_list);
139 }
140 
141 static void ops_free_list(const struct pernet_operations *ops,
142 			  struct list_head *net_exit_list)
143 {
144 	struct net *net;
145 	if (ops->size && ops->id) {
146 		list_for_each_entry(net, net_exit_list, exit_list)
147 			ops_free(ops, net);
148 	}
149 }
150 
151 static void rtnl_net_notifyid(struct net *net, struct net *peer, int cmd,
152 			      int id);
153 static int alloc_netid(struct net *net, struct net *peer, int reqid)
154 {
155 	int min = 0, max = 0, id;
156 
157 	ASSERT_RTNL();
158 
159 	if (reqid >= 0) {
160 		min = reqid;
161 		max = reqid + 1;
162 	}
163 
164 	id = idr_alloc(&net->netns_ids, peer, min, max, GFP_KERNEL);
165 	if (id >= 0)
166 		rtnl_net_notifyid(net, peer, RTM_NEWNSID, id);
167 
168 	return id;
169 }
170 
171 /* This function is used by idr_for_each(). If net is equal to peer, the
172  * function returns the id so that idr_for_each() stops. Because we cannot
173  * returns the id 0 (idr_for_each() will not stop), we return the magic value
174  * NET_ID_ZERO (-1) for it.
175  */
176 #define NET_ID_ZERO -1
177 static int net_eq_idr(int id, void *net, void *peer)
178 {
179 	if (net_eq(net, peer))
180 		return id ? : NET_ID_ZERO;
181 	return 0;
182 }
183 
184 static int __peernet2id(struct net *net, struct net *peer, bool alloc)
185 {
186 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
187 
188 	ASSERT_RTNL();
189 
190 	/* Magic value for id 0. */
191 	if (id == NET_ID_ZERO)
192 		return 0;
193 	if (id > 0)
194 		return id;
195 
196 	if (alloc)
197 		return alloc_netid(net, peer, -1);
198 
199 	return -ENOENT;
200 }
201 
202 /* This function returns the id of a peer netns. If no id is assigned, one will
203  * be allocated and returned.
204  */
205 int peernet2id(struct net *net, struct net *peer)
206 {
207 	bool alloc = atomic_read(&peer->count) == 0 ? false : true;
208 	int id;
209 
210 	id = __peernet2id(net, peer, alloc);
211 	return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
212 }
213 EXPORT_SYMBOL(peernet2id);
214 
215 struct net *get_net_ns_by_id(struct net *net, int id)
216 {
217 	struct net *peer;
218 
219 	if (id < 0)
220 		return NULL;
221 
222 	rcu_read_lock();
223 	peer = idr_find(&net->netns_ids, id);
224 	if (peer)
225 		get_net(peer);
226 	rcu_read_unlock();
227 
228 	return peer;
229 }
230 
231 /*
232  * setup_net runs the initializers for the network namespace object.
233  */
234 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
235 {
236 	/* Must be called with net_mutex held */
237 	const struct pernet_operations *ops, *saved_ops;
238 	int error = 0;
239 	LIST_HEAD(net_exit_list);
240 
241 	atomic_set(&net->count, 1);
242 	atomic_set(&net->passive, 1);
243 	net->dev_base_seq = 1;
244 	net->user_ns = user_ns;
245 	idr_init(&net->netns_ids);
246 
247 	list_for_each_entry(ops, &pernet_list, list) {
248 		error = ops_init(ops, net);
249 		if (error < 0)
250 			goto out_undo;
251 	}
252 out:
253 	return error;
254 
255 out_undo:
256 	/* Walk through the list backwards calling the exit functions
257 	 * for the pernet modules whose init functions did not fail.
258 	 */
259 	list_add(&net->exit_list, &net_exit_list);
260 	saved_ops = ops;
261 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
262 		ops_exit_list(ops, &net_exit_list);
263 
264 	ops = saved_ops;
265 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
266 		ops_free_list(ops, &net_exit_list);
267 
268 	rcu_barrier();
269 	goto out;
270 }
271 
272 
273 #ifdef CONFIG_NET_NS
274 static struct kmem_cache *net_cachep;
275 static struct workqueue_struct *netns_wq;
276 
277 static struct net *net_alloc(void)
278 {
279 	struct net *net = NULL;
280 	struct net_generic *ng;
281 
282 	ng = net_alloc_generic();
283 	if (!ng)
284 		goto out;
285 
286 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
287 	if (!net)
288 		goto out_free;
289 
290 	rcu_assign_pointer(net->gen, ng);
291 out:
292 	return net;
293 
294 out_free:
295 	kfree(ng);
296 	goto out;
297 }
298 
299 static void net_free(struct net *net)
300 {
301 	kfree(rcu_access_pointer(net->gen));
302 	kmem_cache_free(net_cachep, net);
303 }
304 
305 void net_drop_ns(void *p)
306 {
307 	struct net *ns = p;
308 	if (ns && atomic_dec_and_test(&ns->passive))
309 		net_free(ns);
310 }
311 
312 struct net *copy_net_ns(unsigned long flags,
313 			struct user_namespace *user_ns, struct net *old_net)
314 {
315 	struct net *net;
316 	int rv;
317 
318 	if (!(flags & CLONE_NEWNET))
319 		return get_net(old_net);
320 
321 	net = net_alloc();
322 	if (!net)
323 		return ERR_PTR(-ENOMEM);
324 
325 	get_user_ns(user_ns);
326 
327 	mutex_lock(&net_mutex);
328 	rv = setup_net(net, user_ns);
329 	if (rv == 0) {
330 		rtnl_lock();
331 		list_add_tail_rcu(&net->list, &net_namespace_list);
332 		rtnl_unlock();
333 	}
334 	mutex_unlock(&net_mutex);
335 	if (rv < 0) {
336 		put_user_ns(user_ns);
337 		net_drop_ns(net);
338 		return ERR_PTR(rv);
339 	}
340 	return net;
341 }
342 
343 static DEFINE_SPINLOCK(cleanup_list_lock);
344 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
345 
346 static void cleanup_net(struct work_struct *work)
347 {
348 	const struct pernet_operations *ops;
349 	struct net *net, *tmp;
350 	struct list_head net_kill_list;
351 	LIST_HEAD(net_exit_list);
352 
353 	/* Atomically snapshot the list of namespaces to cleanup */
354 	spin_lock_irq(&cleanup_list_lock);
355 	list_replace_init(&cleanup_list, &net_kill_list);
356 	spin_unlock_irq(&cleanup_list_lock);
357 
358 	mutex_lock(&net_mutex);
359 
360 	/* Don't let anyone else find us. */
361 	rtnl_lock();
362 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
363 		list_del_rcu(&net->list);
364 		list_add_tail(&net->exit_list, &net_exit_list);
365 		for_each_net(tmp) {
366 			int id = __peernet2id(tmp, net, false);
367 
368 			if (id >= 0) {
369 				rtnl_net_notifyid(tmp, net, RTM_DELNSID, id);
370 				idr_remove(&tmp->netns_ids, id);
371 			}
372 		}
373 		idr_destroy(&net->netns_ids);
374 
375 	}
376 	rtnl_unlock();
377 
378 	/*
379 	 * Another CPU might be rcu-iterating the list, wait for it.
380 	 * This needs to be before calling the exit() notifiers, so
381 	 * the rcu_barrier() below isn't sufficient alone.
382 	 */
383 	synchronize_rcu();
384 
385 	/* Run all of the network namespace exit methods */
386 	list_for_each_entry_reverse(ops, &pernet_list, list)
387 		ops_exit_list(ops, &net_exit_list);
388 
389 	/* Free the net generic variables */
390 	list_for_each_entry_reverse(ops, &pernet_list, list)
391 		ops_free_list(ops, &net_exit_list);
392 
393 	mutex_unlock(&net_mutex);
394 
395 	/* Ensure there are no outstanding rcu callbacks using this
396 	 * network namespace.
397 	 */
398 	rcu_barrier();
399 
400 	/* Finally it is safe to free my network namespace structure */
401 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
402 		list_del_init(&net->exit_list);
403 		put_user_ns(net->user_ns);
404 		net_drop_ns(net);
405 	}
406 }
407 static DECLARE_WORK(net_cleanup_work, cleanup_net);
408 
409 void __put_net(struct net *net)
410 {
411 	/* Cleanup the network namespace in process context */
412 	unsigned long flags;
413 
414 	spin_lock_irqsave(&cleanup_list_lock, flags);
415 	list_add(&net->cleanup_list, &cleanup_list);
416 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
417 
418 	queue_work(netns_wq, &net_cleanup_work);
419 }
420 EXPORT_SYMBOL_GPL(__put_net);
421 
422 struct net *get_net_ns_by_fd(int fd)
423 {
424 	struct file *file;
425 	struct ns_common *ns;
426 	struct net *net;
427 
428 	file = proc_ns_fget(fd);
429 	if (IS_ERR(file))
430 		return ERR_CAST(file);
431 
432 	ns = get_proc_ns(file_inode(file));
433 	if (ns->ops == &netns_operations)
434 		net = get_net(container_of(ns, struct net, ns));
435 	else
436 		net = ERR_PTR(-EINVAL);
437 
438 	fput(file);
439 	return net;
440 }
441 
442 #else
443 struct net *get_net_ns_by_fd(int fd)
444 {
445 	return ERR_PTR(-EINVAL);
446 }
447 #endif
448 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
449 
450 struct net *get_net_ns_by_pid(pid_t pid)
451 {
452 	struct task_struct *tsk;
453 	struct net *net;
454 
455 	/* Lookup the network namespace */
456 	net = ERR_PTR(-ESRCH);
457 	rcu_read_lock();
458 	tsk = find_task_by_vpid(pid);
459 	if (tsk) {
460 		struct nsproxy *nsproxy;
461 		task_lock(tsk);
462 		nsproxy = tsk->nsproxy;
463 		if (nsproxy)
464 			net = get_net(nsproxy->net_ns);
465 		task_unlock(tsk);
466 	}
467 	rcu_read_unlock();
468 	return net;
469 }
470 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
471 
472 static __net_init int net_ns_net_init(struct net *net)
473 {
474 #ifdef CONFIG_NET_NS
475 	net->ns.ops = &netns_operations;
476 #endif
477 	return ns_alloc_inum(&net->ns);
478 }
479 
480 static __net_exit void net_ns_net_exit(struct net *net)
481 {
482 	ns_free_inum(&net->ns);
483 }
484 
485 static struct pernet_operations __net_initdata net_ns_ops = {
486 	.init = net_ns_net_init,
487 	.exit = net_ns_net_exit,
488 };
489 
490 static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
491 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
492 	[NETNSA_NSID]		= { .type = NLA_S32 },
493 	[NETNSA_PID]		= { .type = NLA_U32 },
494 	[NETNSA_FD]		= { .type = NLA_U32 },
495 };
496 
497 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
498 {
499 	struct net *net = sock_net(skb->sk);
500 	struct nlattr *tb[NETNSA_MAX + 1];
501 	struct net *peer;
502 	int nsid, err;
503 
504 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
505 			  rtnl_net_policy);
506 	if (err < 0)
507 		return err;
508 	if (!tb[NETNSA_NSID])
509 		return -EINVAL;
510 	nsid = nla_get_s32(tb[NETNSA_NSID]);
511 
512 	if (tb[NETNSA_PID])
513 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
514 	else if (tb[NETNSA_FD])
515 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
516 	else
517 		return -EINVAL;
518 	if (IS_ERR(peer))
519 		return PTR_ERR(peer);
520 
521 	if (__peernet2id(net, peer, false) >= 0) {
522 		err = -EEXIST;
523 		goto out;
524 	}
525 
526 	err = alloc_netid(net, peer, nsid);
527 	if (err > 0)
528 		err = 0;
529 out:
530 	put_net(peer);
531 	return err;
532 }
533 
534 static int rtnl_net_get_size(void)
535 {
536 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
537 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
538 	       ;
539 }
540 
541 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
542 			 int cmd, struct net *net, struct net *peer,
543 			 int nsid)
544 {
545 	struct nlmsghdr *nlh;
546 	struct rtgenmsg *rth;
547 	int id;
548 
549 	ASSERT_RTNL();
550 
551 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
552 	if (!nlh)
553 		return -EMSGSIZE;
554 
555 	rth = nlmsg_data(nlh);
556 	rth->rtgen_family = AF_UNSPEC;
557 
558 	if (nsid >= 0) {
559 		id = nsid;
560 	} else {
561 		id = __peernet2id(net, peer, false);
562 		if  (id < 0)
563 			id = NETNSA_NSID_NOT_ASSIGNED;
564 	}
565 	if (nla_put_s32(skb, NETNSA_NSID, id))
566 		goto nla_put_failure;
567 
568 	nlmsg_end(skb, nlh);
569 	return 0;
570 
571 nla_put_failure:
572 	nlmsg_cancel(skb, nlh);
573 	return -EMSGSIZE;
574 }
575 
576 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
577 {
578 	struct net *net = sock_net(skb->sk);
579 	struct nlattr *tb[NETNSA_MAX + 1];
580 	struct sk_buff *msg;
581 	struct net *peer;
582 	int err;
583 
584 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
585 			  rtnl_net_policy);
586 	if (err < 0)
587 		return err;
588 	if (tb[NETNSA_PID])
589 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
590 	else if (tb[NETNSA_FD])
591 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
592 	else
593 		return -EINVAL;
594 
595 	if (IS_ERR(peer))
596 		return PTR_ERR(peer);
597 
598 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
599 	if (!msg) {
600 		err = -ENOMEM;
601 		goto out;
602 	}
603 
604 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
605 			    RTM_GETNSID, net, peer, -1);
606 	if (err < 0)
607 		goto err_out;
608 
609 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
610 	goto out;
611 
612 err_out:
613 	nlmsg_free(msg);
614 out:
615 	put_net(peer);
616 	return err;
617 }
618 
619 struct rtnl_net_dump_cb {
620 	struct net *net;
621 	struct sk_buff *skb;
622 	struct netlink_callback *cb;
623 	int idx;
624 	int s_idx;
625 };
626 
627 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
628 {
629 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
630 	int ret;
631 
632 	if (net_cb->idx < net_cb->s_idx)
633 		goto cont;
634 
635 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
636 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
637 			    RTM_NEWNSID, net_cb->net, peer, id);
638 	if (ret < 0)
639 		return ret;
640 
641 cont:
642 	net_cb->idx++;
643 	return 0;
644 }
645 
646 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
647 {
648 	struct net *net = sock_net(skb->sk);
649 	struct rtnl_net_dump_cb net_cb = {
650 		.net = net,
651 		.skb = skb,
652 		.cb = cb,
653 		.idx = 0,
654 		.s_idx = cb->args[0],
655 	};
656 
657 	ASSERT_RTNL();
658 
659 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
660 
661 	cb->args[0] = net_cb.idx;
662 	return skb->len;
663 }
664 
665 static void rtnl_net_notifyid(struct net *net, struct net *peer, int cmd,
666 			      int id)
667 {
668 	struct sk_buff *msg;
669 	int err = -ENOMEM;
670 
671 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
672 	if (!msg)
673 		goto out;
674 
675 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, peer, id);
676 	if (err < 0)
677 		goto err_out;
678 
679 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
680 	return;
681 
682 err_out:
683 	nlmsg_free(msg);
684 out:
685 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
686 }
687 
688 static int __init net_ns_init(void)
689 {
690 	struct net_generic *ng;
691 
692 #ifdef CONFIG_NET_NS
693 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
694 					SMP_CACHE_BYTES,
695 					SLAB_PANIC, NULL);
696 
697 	/* Create workqueue for cleanup */
698 	netns_wq = create_singlethread_workqueue("netns");
699 	if (!netns_wq)
700 		panic("Could not create netns workq");
701 #endif
702 
703 	ng = net_alloc_generic();
704 	if (!ng)
705 		panic("Could not allocate generic netns");
706 
707 	rcu_assign_pointer(init_net.gen, ng);
708 
709 	mutex_lock(&net_mutex);
710 	if (setup_net(&init_net, &init_user_ns))
711 		panic("Could not setup the initial network namespace");
712 
713 	rtnl_lock();
714 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
715 	rtnl_unlock();
716 
717 	mutex_unlock(&net_mutex);
718 
719 	register_pernet_subsys(&net_ns_ops);
720 
721 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
722 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
723 		      NULL);
724 
725 	return 0;
726 }
727 
728 pure_initcall(net_ns_init);
729 
730 #ifdef CONFIG_NET_NS
731 static int __register_pernet_operations(struct list_head *list,
732 					struct pernet_operations *ops)
733 {
734 	struct net *net;
735 	int error;
736 	LIST_HEAD(net_exit_list);
737 
738 	list_add_tail(&ops->list, list);
739 	if (ops->init || (ops->id && ops->size)) {
740 		for_each_net(net) {
741 			error = ops_init(ops, net);
742 			if (error)
743 				goto out_undo;
744 			list_add_tail(&net->exit_list, &net_exit_list);
745 		}
746 	}
747 	return 0;
748 
749 out_undo:
750 	/* If I have an error cleanup all namespaces I initialized */
751 	list_del(&ops->list);
752 	ops_exit_list(ops, &net_exit_list);
753 	ops_free_list(ops, &net_exit_list);
754 	return error;
755 }
756 
757 static void __unregister_pernet_operations(struct pernet_operations *ops)
758 {
759 	struct net *net;
760 	LIST_HEAD(net_exit_list);
761 
762 	list_del(&ops->list);
763 	for_each_net(net)
764 		list_add_tail(&net->exit_list, &net_exit_list);
765 	ops_exit_list(ops, &net_exit_list);
766 	ops_free_list(ops, &net_exit_list);
767 }
768 
769 #else
770 
771 static int __register_pernet_operations(struct list_head *list,
772 					struct pernet_operations *ops)
773 {
774 	return ops_init(ops, &init_net);
775 }
776 
777 static void __unregister_pernet_operations(struct pernet_operations *ops)
778 {
779 	LIST_HEAD(net_exit_list);
780 	list_add(&init_net.exit_list, &net_exit_list);
781 	ops_exit_list(ops, &net_exit_list);
782 	ops_free_list(ops, &net_exit_list);
783 }
784 
785 #endif /* CONFIG_NET_NS */
786 
787 static DEFINE_IDA(net_generic_ids);
788 
789 static int register_pernet_operations(struct list_head *list,
790 				      struct pernet_operations *ops)
791 {
792 	int error;
793 
794 	if (ops->id) {
795 again:
796 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
797 		if (error < 0) {
798 			if (error == -EAGAIN) {
799 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
800 				goto again;
801 			}
802 			return error;
803 		}
804 		max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
805 	}
806 	error = __register_pernet_operations(list, ops);
807 	if (error) {
808 		rcu_barrier();
809 		if (ops->id)
810 			ida_remove(&net_generic_ids, *ops->id);
811 	}
812 
813 	return error;
814 }
815 
816 static void unregister_pernet_operations(struct pernet_operations *ops)
817 {
818 
819 	__unregister_pernet_operations(ops);
820 	rcu_barrier();
821 	if (ops->id)
822 		ida_remove(&net_generic_ids, *ops->id);
823 }
824 
825 /**
826  *      register_pernet_subsys - register a network namespace subsystem
827  *	@ops:  pernet operations structure for the subsystem
828  *
829  *	Register a subsystem which has init and exit functions
830  *	that are called when network namespaces are created and
831  *	destroyed respectively.
832  *
833  *	When registered all network namespace init functions are
834  *	called for every existing network namespace.  Allowing kernel
835  *	modules to have a race free view of the set of network namespaces.
836  *
837  *	When a new network namespace is created all of the init
838  *	methods are called in the order in which they were registered.
839  *
840  *	When a network namespace is destroyed all of the exit methods
841  *	are called in the reverse of the order with which they were
842  *	registered.
843  */
844 int register_pernet_subsys(struct pernet_operations *ops)
845 {
846 	int error;
847 	mutex_lock(&net_mutex);
848 	error =  register_pernet_operations(first_device, ops);
849 	mutex_unlock(&net_mutex);
850 	return error;
851 }
852 EXPORT_SYMBOL_GPL(register_pernet_subsys);
853 
854 /**
855  *      unregister_pernet_subsys - unregister a network namespace subsystem
856  *	@ops: pernet operations structure to manipulate
857  *
858  *	Remove the pernet operations structure from the list to be
859  *	used when network namespaces are created or destroyed.  In
860  *	addition run the exit method for all existing network
861  *	namespaces.
862  */
863 void unregister_pernet_subsys(struct pernet_operations *ops)
864 {
865 	mutex_lock(&net_mutex);
866 	unregister_pernet_operations(ops);
867 	mutex_unlock(&net_mutex);
868 }
869 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
870 
871 /**
872  *      register_pernet_device - register a network namespace device
873  *	@ops:  pernet operations structure for the subsystem
874  *
875  *	Register a device which has init and exit functions
876  *	that are called when network namespaces are created and
877  *	destroyed respectively.
878  *
879  *	When registered all network namespace init functions are
880  *	called for every existing network namespace.  Allowing kernel
881  *	modules to have a race free view of the set of network namespaces.
882  *
883  *	When a new network namespace is created all of the init
884  *	methods are called in the order in which they were registered.
885  *
886  *	When a network namespace is destroyed all of the exit methods
887  *	are called in the reverse of the order with which they were
888  *	registered.
889  */
890 int register_pernet_device(struct pernet_operations *ops)
891 {
892 	int error;
893 	mutex_lock(&net_mutex);
894 	error = register_pernet_operations(&pernet_list, ops);
895 	if (!error && (first_device == &pernet_list))
896 		first_device = &ops->list;
897 	mutex_unlock(&net_mutex);
898 	return error;
899 }
900 EXPORT_SYMBOL_GPL(register_pernet_device);
901 
902 /**
903  *      unregister_pernet_device - unregister a network namespace netdevice
904  *	@ops: pernet operations structure to manipulate
905  *
906  *	Remove the pernet operations structure from the list to be
907  *	used when network namespaces are created or destroyed.  In
908  *	addition run the exit method for all existing network
909  *	namespaces.
910  */
911 void unregister_pernet_device(struct pernet_operations *ops)
912 {
913 	mutex_lock(&net_mutex);
914 	if (&ops->list == first_device)
915 		first_device = first_device->next;
916 	unregister_pernet_operations(ops);
917 	mutex_unlock(&net_mutex);
918 }
919 EXPORT_SYMBOL_GPL(unregister_pernet_device);
920 
921 #ifdef CONFIG_NET_NS
922 static struct ns_common *netns_get(struct task_struct *task)
923 {
924 	struct net *net = NULL;
925 	struct nsproxy *nsproxy;
926 
927 	task_lock(task);
928 	nsproxy = task->nsproxy;
929 	if (nsproxy)
930 		net = get_net(nsproxy->net_ns);
931 	task_unlock(task);
932 
933 	return net ? &net->ns : NULL;
934 }
935 
936 static inline struct net *to_net_ns(struct ns_common *ns)
937 {
938 	return container_of(ns, struct net, ns);
939 }
940 
941 static void netns_put(struct ns_common *ns)
942 {
943 	put_net(to_net_ns(ns));
944 }
945 
946 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
947 {
948 	struct net *net = to_net_ns(ns);
949 
950 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
951 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
952 		return -EPERM;
953 
954 	put_net(nsproxy->net_ns);
955 	nsproxy->net_ns = get_net(net);
956 	return 0;
957 }
958 
959 const struct proc_ns_operations netns_operations = {
960 	.name		= "net",
961 	.type		= CLONE_NEWNET,
962 	.get		= netns_get,
963 	.put		= netns_put,
964 	.install	= netns_install,
965 };
966 #endif
967