xref: /linux/net/core/net_namespace.c (revision 930299491825575503ec411ff28473aaa6b8c9ca)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 #include <linux/cookie.h>
23 #include <linux/proc_fs.h>
24 
25 #include <net/sock.h>
26 #include <net/netlink.h>
27 #include <net/net_namespace.h>
28 #include <net/netns/generic.h>
29 
30 /*
31  *	Our network namespace constructor/destructor lists
32  */
33 
34 static LIST_HEAD(pernet_list);
35 static struct list_head *first_device = &pernet_list;
36 
37 LIST_HEAD(net_namespace_list);
38 EXPORT_SYMBOL_GPL(net_namespace_list);
39 
40 /* Protects net_namespace_list. Nests iside rtnl_lock() */
41 DECLARE_RWSEM(net_rwsem);
42 EXPORT_SYMBOL_GPL(net_rwsem);
43 
44 #ifdef CONFIG_KEYS
45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
46 #endif
47 
48 struct net init_net;
49 EXPORT_SYMBOL(init_net);
50 
51 static bool init_net_initialized;
52 /*
53  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
54  * init_net_initialized and first_device pointer.
55  * This is internal net namespace object. Please, don't use it
56  * outside.
57  */
58 DECLARE_RWSEM(pernet_ops_rwsem);
59 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
60 
61 #define MIN_PERNET_OPS_ID	\
62 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
63 
64 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
65 
66 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
67 
68 DEFINE_COOKIE(net_cookie);
69 
70 static struct net_generic *net_alloc_generic(void)
71 {
72 	unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs);
73 	unsigned int generic_size;
74 	struct net_generic *ng;
75 
76 	generic_size = offsetof(struct net_generic, ptr[gen_ptrs]);
77 
78 	ng = kzalloc(generic_size, GFP_KERNEL);
79 	if (ng)
80 		ng->s.len = gen_ptrs;
81 
82 	return ng;
83 }
84 
85 static int net_assign_generic(struct net *net, unsigned int id, void *data)
86 {
87 	struct net_generic *ng, *old_ng;
88 
89 	BUG_ON(id < MIN_PERNET_OPS_ID);
90 
91 	old_ng = rcu_dereference_protected(net->gen,
92 					   lockdep_is_held(&pernet_ops_rwsem));
93 	if (old_ng->s.len > id) {
94 		old_ng->ptr[id] = data;
95 		return 0;
96 	}
97 
98 	ng = net_alloc_generic();
99 	if (!ng)
100 		return -ENOMEM;
101 
102 	/*
103 	 * Some synchronisation notes:
104 	 *
105 	 * The net_generic explores the net->gen array inside rcu
106 	 * read section. Besides once set the net->gen->ptr[x]
107 	 * pointer never changes (see rules in netns/generic.h).
108 	 *
109 	 * That said, we simply duplicate this array and schedule
110 	 * the old copy for kfree after a grace period.
111 	 */
112 
113 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
114 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
115 	ng->ptr[id] = data;
116 
117 	rcu_assign_pointer(net->gen, ng);
118 	kfree_rcu(old_ng, s.rcu);
119 	return 0;
120 }
121 
122 static int ops_init(const struct pernet_operations *ops, struct net *net)
123 {
124 	struct net_generic *ng;
125 	int err = -ENOMEM;
126 	void *data = NULL;
127 
128 	if (ops->id) {
129 		data = kzalloc(ops->size, GFP_KERNEL);
130 		if (!data)
131 			goto out;
132 
133 		err = net_assign_generic(net, *ops->id, data);
134 		if (err)
135 			goto cleanup;
136 	}
137 	err = 0;
138 	if (ops->init)
139 		err = ops->init(net);
140 	if (!err)
141 		return 0;
142 
143 	if (ops->id) {
144 		ng = rcu_dereference_protected(net->gen,
145 					       lockdep_is_held(&pernet_ops_rwsem));
146 		ng->ptr[*ops->id] = NULL;
147 	}
148 
149 cleanup:
150 	kfree(data);
151 
152 out:
153 	return err;
154 }
155 
156 static void ops_pre_exit_list(const struct pernet_operations *ops,
157 			      struct list_head *net_exit_list)
158 {
159 	struct net *net;
160 
161 	if (ops->pre_exit) {
162 		list_for_each_entry(net, net_exit_list, exit_list)
163 			ops->pre_exit(net);
164 	}
165 }
166 
167 static void ops_exit_list(const struct pernet_operations *ops,
168 			  struct list_head *net_exit_list)
169 {
170 	struct net *net;
171 	if (ops->exit) {
172 		list_for_each_entry(net, net_exit_list, exit_list) {
173 			ops->exit(net);
174 			cond_resched();
175 		}
176 	}
177 	if (ops->exit_batch)
178 		ops->exit_batch(net_exit_list);
179 }
180 
181 static void ops_free_list(const struct pernet_operations *ops,
182 			  struct list_head *net_exit_list)
183 {
184 	struct net *net;
185 
186 	if (ops->id) {
187 		list_for_each_entry(net, net_exit_list, exit_list)
188 			kfree(net_generic(net, *ops->id));
189 	}
190 }
191 
192 /* should be called with nsid_lock held */
193 static int alloc_netid(struct net *net, struct net *peer, int reqid)
194 {
195 	int min = 0, max = 0;
196 
197 	if (reqid >= 0) {
198 		min = reqid;
199 		max = reqid + 1;
200 	}
201 
202 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
203 }
204 
205 /* This function is used by idr_for_each(). If net is equal to peer, the
206  * function returns the id so that idr_for_each() stops. Because we cannot
207  * returns the id 0 (idr_for_each() will not stop), we return the magic value
208  * NET_ID_ZERO (-1) for it.
209  */
210 #define NET_ID_ZERO -1
211 static int net_eq_idr(int id, void *net, void *peer)
212 {
213 	if (net_eq(net, peer))
214 		return id ? : NET_ID_ZERO;
215 	return 0;
216 }
217 
218 /* Must be called from RCU-critical section or with nsid_lock held */
219 static int __peernet2id(const struct net *net, struct net *peer)
220 {
221 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
222 
223 	/* Magic value for id 0. */
224 	if (id == NET_ID_ZERO)
225 		return 0;
226 	if (id > 0)
227 		return id;
228 
229 	return NETNSA_NSID_NOT_ASSIGNED;
230 }
231 
232 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
233 			      struct nlmsghdr *nlh, gfp_t gfp);
234 /* This function returns the id of a peer netns. If no id is assigned, one will
235  * be allocated and returned.
236  */
237 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
238 {
239 	int id;
240 
241 	if (refcount_read(&net->ns.count) == 0)
242 		return NETNSA_NSID_NOT_ASSIGNED;
243 
244 	spin_lock_bh(&net->nsid_lock);
245 	id = __peernet2id(net, peer);
246 	if (id >= 0) {
247 		spin_unlock_bh(&net->nsid_lock);
248 		return id;
249 	}
250 
251 	/* When peer is obtained from RCU lists, we may race with
252 	 * its cleanup. Check whether it's alive, and this guarantees
253 	 * we never hash a peer back to net->netns_ids, after it has
254 	 * just been idr_remove()'d from there in cleanup_net().
255 	 */
256 	if (!maybe_get_net(peer)) {
257 		spin_unlock_bh(&net->nsid_lock);
258 		return NETNSA_NSID_NOT_ASSIGNED;
259 	}
260 
261 	id = alloc_netid(net, peer, -1);
262 	spin_unlock_bh(&net->nsid_lock);
263 
264 	put_net(peer);
265 	if (id < 0)
266 		return NETNSA_NSID_NOT_ASSIGNED;
267 
268 	rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
269 
270 	return id;
271 }
272 EXPORT_SYMBOL_GPL(peernet2id_alloc);
273 
274 /* This function returns, if assigned, the id of a peer netns. */
275 int peernet2id(const struct net *net, struct net *peer)
276 {
277 	int id;
278 
279 	rcu_read_lock();
280 	id = __peernet2id(net, peer);
281 	rcu_read_unlock();
282 
283 	return id;
284 }
285 EXPORT_SYMBOL(peernet2id);
286 
287 /* This function returns true is the peer netns has an id assigned into the
288  * current netns.
289  */
290 bool peernet_has_id(const struct net *net, struct net *peer)
291 {
292 	return peernet2id(net, peer) >= 0;
293 }
294 
295 struct net *get_net_ns_by_id(const struct net *net, int id)
296 {
297 	struct net *peer;
298 
299 	if (id < 0)
300 		return NULL;
301 
302 	rcu_read_lock();
303 	peer = idr_find(&net->netns_ids, id);
304 	if (peer)
305 		peer = maybe_get_net(peer);
306 	rcu_read_unlock();
307 
308 	return peer;
309 }
310 EXPORT_SYMBOL_GPL(get_net_ns_by_id);
311 
312 /* init code that must occur even if setup_net() is not called. */
313 static __net_init void preinit_net(struct net *net)
314 {
315 	refcount_set(&net->passive, 1);
316 	ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt");
317 }
318 
319 /*
320  * setup_net runs the initializers for the network namespace object.
321  */
322 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
323 {
324 	/* Must be called with pernet_ops_rwsem held */
325 	const struct pernet_operations *ops, *saved_ops;
326 	LIST_HEAD(net_exit_list);
327 	LIST_HEAD(dev_kill_list);
328 	int error = 0;
329 
330 	refcount_set(&net->ns.count, 1);
331 	ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt");
332 
333 	get_random_bytes(&net->hash_mix, sizeof(u32));
334 	preempt_disable();
335 	net->net_cookie = gen_cookie_next(&net_cookie);
336 	preempt_enable();
337 	net->dev_base_seq = 1;
338 	net->user_ns = user_ns;
339 	idr_init(&net->netns_ids);
340 	spin_lock_init(&net->nsid_lock);
341 	mutex_init(&net->ipv4.ra_mutex);
342 
343 	list_for_each_entry(ops, &pernet_list, list) {
344 		error = ops_init(ops, net);
345 		if (error < 0)
346 			goto out_undo;
347 	}
348 	down_write(&net_rwsem);
349 	list_add_tail_rcu(&net->list, &net_namespace_list);
350 	up_write(&net_rwsem);
351 out:
352 	return error;
353 
354 out_undo:
355 	/* Walk through the list backwards calling the exit functions
356 	 * for the pernet modules whose init functions did not fail.
357 	 */
358 	list_add(&net->exit_list, &net_exit_list);
359 	saved_ops = ops;
360 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
361 		ops_pre_exit_list(ops, &net_exit_list);
362 
363 	synchronize_rcu();
364 
365 	ops = saved_ops;
366 	rtnl_lock();
367 	list_for_each_entry_continue_reverse(ops, &pernet_list, list) {
368 		if (ops->exit_batch_rtnl)
369 			ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list);
370 	}
371 	unregister_netdevice_many(&dev_kill_list);
372 	rtnl_unlock();
373 
374 	ops = saved_ops;
375 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
376 		ops_exit_list(ops, &net_exit_list);
377 
378 	ops = saved_ops;
379 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
380 		ops_free_list(ops, &net_exit_list);
381 
382 	rcu_barrier();
383 	goto out;
384 }
385 
386 static int __net_init net_defaults_init_net(struct net *net)
387 {
388 	net->core.sysctl_somaxconn = SOMAXCONN;
389 	/* Limits per socket sk_omem_alloc usage.
390 	 * TCP zerocopy regular usage needs 128 KB.
391 	 */
392 	net->core.sysctl_optmem_max = 128 * 1024;
393 	net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED;
394 
395 	return 0;
396 }
397 
398 static struct pernet_operations net_defaults_ops = {
399 	.init = net_defaults_init_net,
400 };
401 
402 static __init int net_defaults_init(void)
403 {
404 	if (register_pernet_subsys(&net_defaults_ops))
405 		panic("Cannot initialize net default settings");
406 
407 	return 0;
408 }
409 
410 core_initcall(net_defaults_init);
411 
412 #ifdef CONFIG_NET_NS
413 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
414 {
415 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
416 }
417 
418 static void dec_net_namespaces(struct ucounts *ucounts)
419 {
420 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
421 }
422 
423 static struct kmem_cache *net_cachep __ro_after_init;
424 static struct workqueue_struct *netns_wq;
425 
426 static struct net *net_alloc(void)
427 {
428 	struct net *net = NULL;
429 	struct net_generic *ng;
430 
431 	ng = net_alloc_generic();
432 	if (!ng)
433 		goto out;
434 
435 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
436 	if (!net)
437 		goto out_free;
438 
439 #ifdef CONFIG_KEYS
440 	net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
441 	if (!net->key_domain)
442 		goto out_free_2;
443 	refcount_set(&net->key_domain->usage, 1);
444 #endif
445 
446 	rcu_assign_pointer(net->gen, ng);
447 out:
448 	return net;
449 
450 #ifdef CONFIG_KEYS
451 out_free_2:
452 	kmem_cache_free(net_cachep, net);
453 	net = NULL;
454 #endif
455 out_free:
456 	kfree(ng);
457 	goto out;
458 }
459 
460 static void net_free(struct net *net)
461 {
462 	if (refcount_dec_and_test(&net->passive)) {
463 		kfree(rcu_access_pointer(net->gen));
464 
465 		/* There should not be any trackers left there. */
466 		ref_tracker_dir_exit(&net->notrefcnt_tracker);
467 
468 		kmem_cache_free(net_cachep, net);
469 	}
470 }
471 
472 void net_drop_ns(void *p)
473 {
474 	struct net *net = (struct net *)p;
475 
476 	if (net)
477 		net_free(net);
478 }
479 
480 struct net *copy_net_ns(unsigned long flags,
481 			struct user_namespace *user_ns, struct net *old_net)
482 {
483 	struct ucounts *ucounts;
484 	struct net *net;
485 	int rv;
486 
487 	if (!(flags & CLONE_NEWNET))
488 		return get_net(old_net);
489 
490 	ucounts = inc_net_namespaces(user_ns);
491 	if (!ucounts)
492 		return ERR_PTR(-ENOSPC);
493 
494 	net = net_alloc();
495 	if (!net) {
496 		rv = -ENOMEM;
497 		goto dec_ucounts;
498 	}
499 
500 	preinit_net(net);
501 	net->ucounts = ucounts;
502 	get_user_ns(user_ns);
503 
504 	rv = down_read_killable(&pernet_ops_rwsem);
505 	if (rv < 0)
506 		goto put_userns;
507 
508 	rv = setup_net(net, user_ns);
509 
510 	up_read(&pernet_ops_rwsem);
511 
512 	if (rv < 0) {
513 put_userns:
514 #ifdef CONFIG_KEYS
515 		key_remove_domain(net->key_domain);
516 #endif
517 		put_user_ns(user_ns);
518 		net_free(net);
519 dec_ucounts:
520 		dec_net_namespaces(ucounts);
521 		return ERR_PTR(rv);
522 	}
523 	return net;
524 }
525 
526 /**
527  * net_ns_get_ownership - get sysfs ownership data for @net
528  * @net: network namespace in question (can be NULL)
529  * @uid: kernel user ID for sysfs objects
530  * @gid: kernel group ID for sysfs objects
531  *
532  * Returns the uid/gid pair of root in the user namespace associated with the
533  * given network namespace.
534  */
535 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
536 {
537 	if (net) {
538 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
539 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
540 
541 		if (uid_valid(ns_root_uid))
542 			*uid = ns_root_uid;
543 
544 		if (gid_valid(ns_root_gid))
545 			*gid = ns_root_gid;
546 	} else {
547 		*uid = GLOBAL_ROOT_UID;
548 		*gid = GLOBAL_ROOT_GID;
549 	}
550 }
551 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
552 
553 static void unhash_nsid(struct net *net, struct net *last)
554 {
555 	struct net *tmp;
556 	/* This function is only called from cleanup_net() work,
557 	 * and this work is the only process, that may delete
558 	 * a net from net_namespace_list. So, when the below
559 	 * is executing, the list may only grow. Thus, we do not
560 	 * use for_each_net_rcu() or net_rwsem.
561 	 */
562 	for_each_net(tmp) {
563 		int id;
564 
565 		spin_lock_bh(&tmp->nsid_lock);
566 		id = __peernet2id(tmp, net);
567 		if (id >= 0)
568 			idr_remove(&tmp->netns_ids, id);
569 		spin_unlock_bh(&tmp->nsid_lock);
570 		if (id >= 0)
571 			rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
572 					  GFP_KERNEL);
573 		if (tmp == last)
574 			break;
575 	}
576 	spin_lock_bh(&net->nsid_lock);
577 	idr_destroy(&net->netns_ids);
578 	spin_unlock_bh(&net->nsid_lock);
579 }
580 
581 static LLIST_HEAD(cleanup_list);
582 
583 static void cleanup_net(struct work_struct *work)
584 {
585 	const struct pernet_operations *ops;
586 	struct net *net, *tmp, *last;
587 	struct llist_node *net_kill_list;
588 	LIST_HEAD(net_exit_list);
589 	LIST_HEAD(dev_kill_list);
590 
591 	/* Atomically snapshot the list of namespaces to cleanup */
592 	net_kill_list = llist_del_all(&cleanup_list);
593 
594 	down_read(&pernet_ops_rwsem);
595 
596 	/* Don't let anyone else find us. */
597 	down_write(&net_rwsem);
598 	llist_for_each_entry(net, net_kill_list, cleanup_list)
599 		list_del_rcu(&net->list);
600 	/* Cache last net. After we unlock rtnl, no one new net
601 	 * added to net_namespace_list can assign nsid pointer
602 	 * to a net from net_kill_list (see peernet2id_alloc()).
603 	 * So, we skip them in unhash_nsid().
604 	 *
605 	 * Note, that unhash_nsid() does not delete nsid links
606 	 * between net_kill_list's nets, as they've already
607 	 * deleted from net_namespace_list. But, this would be
608 	 * useless anyway, as netns_ids are destroyed there.
609 	 */
610 	last = list_last_entry(&net_namespace_list, struct net, list);
611 	up_write(&net_rwsem);
612 
613 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
614 		unhash_nsid(net, last);
615 		list_add_tail(&net->exit_list, &net_exit_list);
616 	}
617 
618 	/* Run all of the network namespace pre_exit methods */
619 	list_for_each_entry_reverse(ops, &pernet_list, list)
620 		ops_pre_exit_list(ops, &net_exit_list);
621 
622 	/*
623 	 * Another CPU might be rcu-iterating the list, wait for it.
624 	 * This needs to be before calling the exit() notifiers, so
625 	 * the rcu_barrier() below isn't sufficient alone.
626 	 * Also the pre_exit() and exit() methods need this barrier.
627 	 */
628 	synchronize_rcu_expedited();
629 
630 	rtnl_lock();
631 	list_for_each_entry_reverse(ops, &pernet_list, list) {
632 		if (ops->exit_batch_rtnl)
633 			ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list);
634 	}
635 	unregister_netdevice_many(&dev_kill_list);
636 	rtnl_unlock();
637 
638 	/* Run all of the network namespace exit methods */
639 	list_for_each_entry_reverse(ops, &pernet_list, list)
640 		ops_exit_list(ops, &net_exit_list);
641 
642 	/* Free the net generic variables */
643 	list_for_each_entry_reverse(ops, &pernet_list, list)
644 		ops_free_list(ops, &net_exit_list);
645 
646 	up_read(&pernet_ops_rwsem);
647 
648 	/* Ensure there are no outstanding rcu callbacks using this
649 	 * network namespace.
650 	 */
651 	rcu_barrier();
652 
653 	/* Finally it is safe to free my network namespace structure */
654 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
655 		list_del_init(&net->exit_list);
656 		dec_net_namespaces(net->ucounts);
657 #ifdef CONFIG_KEYS
658 		key_remove_domain(net->key_domain);
659 #endif
660 		put_user_ns(net->user_ns);
661 		net_free(net);
662 	}
663 }
664 
665 /**
666  * net_ns_barrier - wait until concurrent net_cleanup_work is done
667  *
668  * cleanup_net runs from work queue and will first remove namespaces
669  * from the global list, then run net exit functions.
670  *
671  * Call this in module exit path to make sure that all netns
672  * ->exit ops have been invoked before the function is removed.
673  */
674 void net_ns_barrier(void)
675 {
676 	down_write(&pernet_ops_rwsem);
677 	up_write(&pernet_ops_rwsem);
678 }
679 EXPORT_SYMBOL(net_ns_barrier);
680 
681 static DECLARE_WORK(net_cleanup_work, cleanup_net);
682 
683 void __put_net(struct net *net)
684 {
685 	ref_tracker_dir_exit(&net->refcnt_tracker);
686 	/* Cleanup the network namespace in process context */
687 	if (llist_add(&net->cleanup_list, &cleanup_list))
688 		queue_work(netns_wq, &net_cleanup_work);
689 }
690 EXPORT_SYMBOL_GPL(__put_net);
691 
692 /**
693  * get_net_ns - increment the refcount of the network namespace
694  * @ns: common namespace (net)
695  *
696  * Returns the net's common namespace or ERR_PTR() if ref is zero.
697  */
698 struct ns_common *get_net_ns(struct ns_common *ns)
699 {
700 	struct net *net;
701 
702 	net = maybe_get_net(container_of(ns, struct net, ns));
703 	if (net)
704 		return &net->ns;
705 	return ERR_PTR(-EINVAL);
706 }
707 EXPORT_SYMBOL_GPL(get_net_ns);
708 
709 struct net *get_net_ns_by_fd(int fd)
710 {
711 	struct fd f = fdget(fd);
712 	struct net *net = ERR_PTR(-EINVAL);
713 
714 	if (!f.file)
715 		return ERR_PTR(-EBADF);
716 
717 	if (proc_ns_file(f.file)) {
718 		struct ns_common *ns = get_proc_ns(file_inode(f.file));
719 		if (ns->ops == &netns_operations)
720 			net = get_net(container_of(ns, struct net, ns));
721 	}
722 	fdput(f);
723 
724 	return net;
725 }
726 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
727 #endif
728 
729 struct net *get_net_ns_by_pid(pid_t pid)
730 {
731 	struct task_struct *tsk;
732 	struct net *net;
733 
734 	/* Lookup the network namespace */
735 	net = ERR_PTR(-ESRCH);
736 	rcu_read_lock();
737 	tsk = find_task_by_vpid(pid);
738 	if (tsk) {
739 		struct nsproxy *nsproxy;
740 		task_lock(tsk);
741 		nsproxy = tsk->nsproxy;
742 		if (nsproxy)
743 			net = get_net(nsproxy->net_ns);
744 		task_unlock(tsk);
745 	}
746 	rcu_read_unlock();
747 	return net;
748 }
749 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
750 
751 static __net_init int net_ns_net_init(struct net *net)
752 {
753 #ifdef CONFIG_NET_NS
754 	net->ns.ops = &netns_operations;
755 #endif
756 	return ns_alloc_inum(&net->ns);
757 }
758 
759 static __net_exit void net_ns_net_exit(struct net *net)
760 {
761 	ns_free_inum(&net->ns);
762 }
763 
764 static struct pernet_operations __net_initdata net_ns_ops = {
765 	.init = net_ns_net_init,
766 	.exit = net_ns_net_exit,
767 };
768 
769 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
770 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
771 	[NETNSA_NSID]		= { .type = NLA_S32 },
772 	[NETNSA_PID]		= { .type = NLA_U32 },
773 	[NETNSA_FD]		= { .type = NLA_U32 },
774 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
775 };
776 
777 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
778 			  struct netlink_ext_ack *extack)
779 {
780 	struct net *net = sock_net(skb->sk);
781 	struct nlattr *tb[NETNSA_MAX + 1];
782 	struct nlattr *nla;
783 	struct net *peer;
784 	int nsid, err;
785 
786 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
787 				     NETNSA_MAX, rtnl_net_policy, extack);
788 	if (err < 0)
789 		return err;
790 	if (!tb[NETNSA_NSID]) {
791 		NL_SET_ERR_MSG(extack, "nsid is missing");
792 		return -EINVAL;
793 	}
794 	nsid = nla_get_s32(tb[NETNSA_NSID]);
795 
796 	if (tb[NETNSA_PID]) {
797 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
798 		nla = tb[NETNSA_PID];
799 	} else if (tb[NETNSA_FD]) {
800 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
801 		nla = tb[NETNSA_FD];
802 	} else {
803 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
804 		return -EINVAL;
805 	}
806 	if (IS_ERR(peer)) {
807 		NL_SET_BAD_ATTR(extack, nla);
808 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
809 		return PTR_ERR(peer);
810 	}
811 
812 	spin_lock_bh(&net->nsid_lock);
813 	if (__peernet2id(net, peer) >= 0) {
814 		spin_unlock_bh(&net->nsid_lock);
815 		err = -EEXIST;
816 		NL_SET_BAD_ATTR(extack, nla);
817 		NL_SET_ERR_MSG(extack,
818 			       "Peer netns already has a nsid assigned");
819 		goto out;
820 	}
821 
822 	err = alloc_netid(net, peer, nsid);
823 	spin_unlock_bh(&net->nsid_lock);
824 	if (err >= 0) {
825 		rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
826 				  nlh, GFP_KERNEL);
827 		err = 0;
828 	} else if (err == -ENOSPC && nsid >= 0) {
829 		err = -EEXIST;
830 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
831 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
832 	}
833 out:
834 	put_net(peer);
835 	return err;
836 }
837 
838 static int rtnl_net_get_size(void)
839 {
840 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
841 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
842 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
843 	       ;
844 }
845 
846 struct net_fill_args {
847 	u32 portid;
848 	u32 seq;
849 	int flags;
850 	int cmd;
851 	int nsid;
852 	bool add_ref;
853 	int ref_nsid;
854 };
855 
856 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
857 {
858 	struct nlmsghdr *nlh;
859 	struct rtgenmsg *rth;
860 
861 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
862 			args->flags);
863 	if (!nlh)
864 		return -EMSGSIZE;
865 
866 	rth = nlmsg_data(nlh);
867 	rth->rtgen_family = AF_UNSPEC;
868 
869 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
870 		goto nla_put_failure;
871 
872 	if (args->add_ref &&
873 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
874 		goto nla_put_failure;
875 
876 	nlmsg_end(skb, nlh);
877 	return 0;
878 
879 nla_put_failure:
880 	nlmsg_cancel(skb, nlh);
881 	return -EMSGSIZE;
882 }
883 
884 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
885 				    const struct nlmsghdr *nlh,
886 				    struct nlattr **tb,
887 				    struct netlink_ext_ack *extack)
888 {
889 	int i, err;
890 
891 	if (!netlink_strict_get_check(skb))
892 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
893 					      tb, NETNSA_MAX, rtnl_net_policy,
894 					      extack);
895 
896 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
897 					    NETNSA_MAX, rtnl_net_policy,
898 					    extack);
899 	if (err)
900 		return err;
901 
902 	for (i = 0; i <= NETNSA_MAX; i++) {
903 		if (!tb[i])
904 			continue;
905 
906 		switch (i) {
907 		case NETNSA_PID:
908 		case NETNSA_FD:
909 		case NETNSA_NSID:
910 		case NETNSA_TARGET_NSID:
911 			break;
912 		default:
913 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
914 			return -EINVAL;
915 		}
916 	}
917 
918 	return 0;
919 }
920 
921 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
922 			  struct netlink_ext_ack *extack)
923 {
924 	struct net *net = sock_net(skb->sk);
925 	struct nlattr *tb[NETNSA_MAX + 1];
926 	struct net_fill_args fillargs = {
927 		.portid = NETLINK_CB(skb).portid,
928 		.seq = nlh->nlmsg_seq,
929 		.cmd = RTM_NEWNSID,
930 	};
931 	struct net *peer, *target = net;
932 	struct nlattr *nla;
933 	struct sk_buff *msg;
934 	int err;
935 
936 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
937 	if (err < 0)
938 		return err;
939 	if (tb[NETNSA_PID]) {
940 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
941 		nla = tb[NETNSA_PID];
942 	} else if (tb[NETNSA_FD]) {
943 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
944 		nla = tb[NETNSA_FD];
945 	} else if (tb[NETNSA_NSID]) {
946 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
947 		if (!peer)
948 			peer = ERR_PTR(-ENOENT);
949 		nla = tb[NETNSA_NSID];
950 	} else {
951 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
952 		return -EINVAL;
953 	}
954 
955 	if (IS_ERR(peer)) {
956 		NL_SET_BAD_ATTR(extack, nla);
957 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
958 		return PTR_ERR(peer);
959 	}
960 
961 	if (tb[NETNSA_TARGET_NSID]) {
962 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
963 
964 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
965 		if (IS_ERR(target)) {
966 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
967 			NL_SET_ERR_MSG(extack,
968 				       "Target netns reference is invalid");
969 			err = PTR_ERR(target);
970 			goto out;
971 		}
972 		fillargs.add_ref = true;
973 		fillargs.ref_nsid = peernet2id(net, peer);
974 	}
975 
976 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
977 	if (!msg) {
978 		err = -ENOMEM;
979 		goto out;
980 	}
981 
982 	fillargs.nsid = peernet2id(target, peer);
983 	err = rtnl_net_fill(msg, &fillargs);
984 	if (err < 0)
985 		goto err_out;
986 
987 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
988 	goto out;
989 
990 err_out:
991 	nlmsg_free(msg);
992 out:
993 	if (fillargs.add_ref)
994 		put_net(target);
995 	put_net(peer);
996 	return err;
997 }
998 
999 struct rtnl_net_dump_cb {
1000 	struct net *tgt_net;
1001 	struct net *ref_net;
1002 	struct sk_buff *skb;
1003 	struct net_fill_args fillargs;
1004 	int idx;
1005 	int s_idx;
1006 };
1007 
1008 /* Runs in RCU-critical section. */
1009 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
1010 {
1011 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
1012 	int ret;
1013 
1014 	if (net_cb->idx < net_cb->s_idx)
1015 		goto cont;
1016 
1017 	net_cb->fillargs.nsid = id;
1018 	if (net_cb->fillargs.add_ref)
1019 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
1020 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
1021 	if (ret < 0)
1022 		return ret;
1023 
1024 cont:
1025 	net_cb->idx++;
1026 	return 0;
1027 }
1028 
1029 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
1030 				   struct rtnl_net_dump_cb *net_cb,
1031 				   struct netlink_callback *cb)
1032 {
1033 	struct netlink_ext_ack *extack = cb->extack;
1034 	struct nlattr *tb[NETNSA_MAX + 1];
1035 	int err, i;
1036 
1037 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
1038 					    NETNSA_MAX, rtnl_net_policy,
1039 					    extack);
1040 	if (err < 0)
1041 		return err;
1042 
1043 	for (i = 0; i <= NETNSA_MAX; i++) {
1044 		if (!tb[i])
1045 			continue;
1046 
1047 		if (i == NETNSA_TARGET_NSID) {
1048 			struct net *net;
1049 
1050 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
1051 			if (IS_ERR(net)) {
1052 				NL_SET_BAD_ATTR(extack, tb[i]);
1053 				NL_SET_ERR_MSG(extack,
1054 					       "Invalid target network namespace id");
1055 				return PTR_ERR(net);
1056 			}
1057 			net_cb->fillargs.add_ref = true;
1058 			net_cb->ref_net = net_cb->tgt_net;
1059 			net_cb->tgt_net = net;
1060 		} else {
1061 			NL_SET_BAD_ATTR(extack, tb[i]);
1062 			NL_SET_ERR_MSG(extack,
1063 				       "Unsupported attribute in dump request");
1064 			return -EINVAL;
1065 		}
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1072 {
1073 	struct rtnl_net_dump_cb net_cb = {
1074 		.tgt_net = sock_net(skb->sk),
1075 		.skb = skb,
1076 		.fillargs = {
1077 			.portid = NETLINK_CB(cb->skb).portid,
1078 			.seq = cb->nlh->nlmsg_seq,
1079 			.flags = NLM_F_MULTI,
1080 			.cmd = RTM_NEWNSID,
1081 		},
1082 		.idx = 0,
1083 		.s_idx = cb->args[0],
1084 	};
1085 	int err = 0;
1086 
1087 	if (cb->strict_check) {
1088 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1089 		if (err < 0)
1090 			goto end;
1091 	}
1092 
1093 	rcu_read_lock();
1094 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1095 	rcu_read_unlock();
1096 
1097 	cb->args[0] = net_cb.idx;
1098 end:
1099 	if (net_cb.fillargs.add_ref)
1100 		put_net(net_cb.tgt_net);
1101 	return err;
1102 }
1103 
1104 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1105 			      struct nlmsghdr *nlh, gfp_t gfp)
1106 {
1107 	struct net_fill_args fillargs = {
1108 		.portid = portid,
1109 		.seq = nlh ? nlh->nlmsg_seq : 0,
1110 		.cmd = cmd,
1111 		.nsid = id,
1112 	};
1113 	struct sk_buff *msg;
1114 	int err = -ENOMEM;
1115 
1116 	msg = nlmsg_new(rtnl_net_get_size(), gfp);
1117 	if (!msg)
1118 		goto out;
1119 
1120 	err = rtnl_net_fill(msg, &fillargs);
1121 	if (err < 0)
1122 		goto err_out;
1123 
1124 	rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1125 	return;
1126 
1127 err_out:
1128 	nlmsg_free(msg);
1129 out:
1130 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1131 }
1132 
1133 #ifdef CONFIG_NET_NS
1134 static void __init netns_ipv4_struct_check(void)
1135 {
1136 	/* TX readonly hotpath cache lines */
1137 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1138 				      sysctl_tcp_early_retrans);
1139 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1140 				      sysctl_tcp_tso_win_divisor);
1141 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1142 				      sysctl_tcp_tso_rtt_log);
1143 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1144 				      sysctl_tcp_autocorking);
1145 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1146 				      sysctl_tcp_min_snd_mss);
1147 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1148 				      sysctl_tcp_notsent_lowat);
1149 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1150 				      sysctl_tcp_limit_output_bytes);
1151 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1152 				      sysctl_tcp_min_rtt_wlen);
1153 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1154 				      sysctl_tcp_wmem);
1155 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1156 				      sysctl_ip_fwd_use_pmtu);
1157 	CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33);
1158 
1159 	/* TXRX readonly hotpath cache lines */
1160 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx,
1161 				      sysctl_tcp_moderate_rcvbuf);
1162 	CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1);
1163 
1164 	/* RX readonly hotpath cache line */
1165 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1166 				      sysctl_ip_early_demux);
1167 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1168 				      sysctl_tcp_early_demux);
1169 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1170 				      sysctl_tcp_reordering);
1171 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1172 				      sysctl_tcp_rmem);
1173 	CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 18);
1174 }
1175 #endif
1176 
1177 void __init net_ns_init(void)
1178 {
1179 	struct net_generic *ng;
1180 
1181 #ifdef CONFIG_NET_NS
1182 	netns_ipv4_struct_check();
1183 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1184 					SMP_CACHE_BYTES,
1185 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1186 
1187 	/* Create workqueue for cleanup */
1188 	netns_wq = create_singlethread_workqueue("netns");
1189 	if (!netns_wq)
1190 		panic("Could not create netns workq");
1191 #endif
1192 
1193 	ng = net_alloc_generic();
1194 	if (!ng)
1195 		panic("Could not allocate generic netns");
1196 
1197 	rcu_assign_pointer(init_net.gen, ng);
1198 
1199 #ifdef CONFIG_KEYS
1200 	init_net.key_domain = &init_net_key_domain;
1201 #endif
1202 	preinit_net(&init_net);
1203 
1204 	down_write(&pernet_ops_rwsem);
1205 	if (setup_net(&init_net, &init_user_ns))
1206 		panic("Could not setup the initial network namespace");
1207 
1208 	init_net_initialized = true;
1209 	up_write(&pernet_ops_rwsem);
1210 
1211 	if (register_pernet_subsys(&net_ns_ops))
1212 		panic("Could not register network namespace subsystems");
1213 
1214 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1215 		      RTNL_FLAG_DOIT_UNLOCKED);
1216 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1217 		      RTNL_FLAG_DOIT_UNLOCKED |
1218 		      RTNL_FLAG_DUMP_UNLOCKED);
1219 }
1220 
1221 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list)
1222 {
1223 	ops_pre_exit_list(ops, net_exit_list);
1224 	synchronize_rcu();
1225 
1226 	if (ops->exit_batch_rtnl) {
1227 		LIST_HEAD(dev_kill_list);
1228 
1229 		rtnl_lock();
1230 		ops->exit_batch_rtnl(net_exit_list, &dev_kill_list);
1231 		unregister_netdevice_many(&dev_kill_list);
1232 		rtnl_unlock();
1233 	}
1234 	ops_exit_list(ops, net_exit_list);
1235 
1236 	ops_free_list(ops, net_exit_list);
1237 }
1238 
1239 #ifdef CONFIG_NET_NS
1240 static int __register_pernet_operations(struct list_head *list,
1241 					struct pernet_operations *ops)
1242 {
1243 	struct net *net;
1244 	int error;
1245 	LIST_HEAD(net_exit_list);
1246 
1247 	list_add_tail(&ops->list, list);
1248 	if (ops->init || ops->id) {
1249 		/* We held write locked pernet_ops_rwsem, and parallel
1250 		 * setup_net() and cleanup_net() are not possible.
1251 		 */
1252 		for_each_net(net) {
1253 			error = ops_init(ops, net);
1254 			if (error)
1255 				goto out_undo;
1256 			list_add_tail(&net->exit_list, &net_exit_list);
1257 		}
1258 	}
1259 	return 0;
1260 
1261 out_undo:
1262 	/* If I have an error cleanup all namespaces I initialized */
1263 	list_del(&ops->list);
1264 	free_exit_list(ops, &net_exit_list);
1265 	return error;
1266 }
1267 
1268 static void __unregister_pernet_operations(struct pernet_operations *ops)
1269 {
1270 	struct net *net;
1271 	LIST_HEAD(net_exit_list);
1272 
1273 	list_del(&ops->list);
1274 	/* See comment in __register_pernet_operations() */
1275 	for_each_net(net)
1276 		list_add_tail(&net->exit_list, &net_exit_list);
1277 
1278 	free_exit_list(ops, &net_exit_list);
1279 }
1280 
1281 #else
1282 
1283 static int __register_pernet_operations(struct list_head *list,
1284 					struct pernet_operations *ops)
1285 {
1286 	if (!init_net_initialized) {
1287 		list_add_tail(&ops->list, list);
1288 		return 0;
1289 	}
1290 
1291 	return ops_init(ops, &init_net);
1292 }
1293 
1294 static void __unregister_pernet_operations(struct pernet_operations *ops)
1295 {
1296 	if (!init_net_initialized) {
1297 		list_del(&ops->list);
1298 	} else {
1299 		LIST_HEAD(net_exit_list);
1300 		list_add(&init_net.exit_list, &net_exit_list);
1301 		free_exit_list(ops, &net_exit_list);
1302 	}
1303 }
1304 
1305 #endif /* CONFIG_NET_NS */
1306 
1307 static DEFINE_IDA(net_generic_ids);
1308 
1309 static int register_pernet_operations(struct list_head *list,
1310 				      struct pernet_operations *ops)
1311 {
1312 	int error;
1313 
1314 	if (WARN_ON(!!ops->id ^ !!ops->size))
1315 		return -EINVAL;
1316 
1317 	if (ops->id) {
1318 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1319 				GFP_KERNEL);
1320 		if (error < 0)
1321 			return error;
1322 		*ops->id = error;
1323 		/* This does not require READ_ONCE as writers already hold
1324 		 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect
1325 		 * net_alloc_generic.
1326 		 */
1327 		WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1));
1328 	}
1329 	error = __register_pernet_operations(list, ops);
1330 	if (error) {
1331 		rcu_barrier();
1332 		if (ops->id)
1333 			ida_free(&net_generic_ids, *ops->id);
1334 	}
1335 
1336 	return error;
1337 }
1338 
1339 static void unregister_pernet_operations(struct pernet_operations *ops)
1340 {
1341 	__unregister_pernet_operations(ops);
1342 	rcu_barrier();
1343 	if (ops->id)
1344 		ida_free(&net_generic_ids, *ops->id);
1345 }
1346 
1347 /**
1348  *      register_pernet_subsys - register a network namespace subsystem
1349  *	@ops:  pernet operations structure for the subsystem
1350  *
1351  *	Register a subsystem which has init and exit functions
1352  *	that are called when network namespaces are created and
1353  *	destroyed respectively.
1354  *
1355  *	When registered all network namespace init functions are
1356  *	called for every existing network namespace.  Allowing kernel
1357  *	modules to have a race free view of the set of network namespaces.
1358  *
1359  *	When a new network namespace is created all of the init
1360  *	methods are called in the order in which they were registered.
1361  *
1362  *	When a network namespace is destroyed all of the exit methods
1363  *	are called in the reverse of the order with which they were
1364  *	registered.
1365  */
1366 int register_pernet_subsys(struct pernet_operations *ops)
1367 {
1368 	int error;
1369 	down_write(&pernet_ops_rwsem);
1370 	error =  register_pernet_operations(first_device, ops);
1371 	up_write(&pernet_ops_rwsem);
1372 	return error;
1373 }
1374 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1375 
1376 /**
1377  *      unregister_pernet_subsys - unregister a network namespace subsystem
1378  *	@ops: pernet operations structure to manipulate
1379  *
1380  *	Remove the pernet operations structure from the list to be
1381  *	used when network namespaces are created or destroyed.  In
1382  *	addition run the exit method for all existing network
1383  *	namespaces.
1384  */
1385 void unregister_pernet_subsys(struct pernet_operations *ops)
1386 {
1387 	down_write(&pernet_ops_rwsem);
1388 	unregister_pernet_operations(ops);
1389 	up_write(&pernet_ops_rwsem);
1390 }
1391 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1392 
1393 /**
1394  *      register_pernet_device - register a network namespace device
1395  *	@ops:  pernet operations structure for the subsystem
1396  *
1397  *	Register a device which has init and exit functions
1398  *	that are called when network namespaces are created and
1399  *	destroyed respectively.
1400  *
1401  *	When registered all network namespace init functions are
1402  *	called for every existing network namespace.  Allowing kernel
1403  *	modules to have a race free view of the set of network namespaces.
1404  *
1405  *	When a new network namespace is created all of the init
1406  *	methods are called in the order in which they were registered.
1407  *
1408  *	When a network namespace is destroyed all of the exit methods
1409  *	are called in the reverse of the order with which they were
1410  *	registered.
1411  */
1412 int register_pernet_device(struct pernet_operations *ops)
1413 {
1414 	int error;
1415 	down_write(&pernet_ops_rwsem);
1416 	error = register_pernet_operations(&pernet_list, ops);
1417 	if (!error && (first_device == &pernet_list))
1418 		first_device = &ops->list;
1419 	up_write(&pernet_ops_rwsem);
1420 	return error;
1421 }
1422 EXPORT_SYMBOL_GPL(register_pernet_device);
1423 
1424 /**
1425  *      unregister_pernet_device - unregister a network namespace netdevice
1426  *	@ops: pernet operations structure to manipulate
1427  *
1428  *	Remove the pernet operations structure from the list to be
1429  *	used when network namespaces are created or destroyed.  In
1430  *	addition run the exit method for all existing network
1431  *	namespaces.
1432  */
1433 void unregister_pernet_device(struct pernet_operations *ops)
1434 {
1435 	down_write(&pernet_ops_rwsem);
1436 	if (&ops->list == first_device)
1437 		first_device = first_device->next;
1438 	unregister_pernet_operations(ops);
1439 	up_write(&pernet_ops_rwsem);
1440 }
1441 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1442 
1443 #ifdef CONFIG_NET_NS
1444 static struct ns_common *netns_get(struct task_struct *task)
1445 {
1446 	struct net *net = NULL;
1447 	struct nsproxy *nsproxy;
1448 
1449 	task_lock(task);
1450 	nsproxy = task->nsproxy;
1451 	if (nsproxy)
1452 		net = get_net(nsproxy->net_ns);
1453 	task_unlock(task);
1454 
1455 	return net ? &net->ns : NULL;
1456 }
1457 
1458 static inline struct net *to_net_ns(struct ns_common *ns)
1459 {
1460 	return container_of(ns, struct net, ns);
1461 }
1462 
1463 static void netns_put(struct ns_common *ns)
1464 {
1465 	put_net(to_net_ns(ns));
1466 }
1467 
1468 static int netns_install(struct nsset *nsset, struct ns_common *ns)
1469 {
1470 	struct nsproxy *nsproxy = nsset->nsproxy;
1471 	struct net *net = to_net_ns(ns);
1472 
1473 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1474 	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1475 		return -EPERM;
1476 
1477 	put_net(nsproxy->net_ns);
1478 	nsproxy->net_ns = get_net(net);
1479 	return 0;
1480 }
1481 
1482 static struct user_namespace *netns_owner(struct ns_common *ns)
1483 {
1484 	return to_net_ns(ns)->user_ns;
1485 }
1486 
1487 const struct proc_ns_operations netns_operations = {
1488 	.name		= "net",
1489 	.type		= CLONE_NEWNET,
1490 	.get		= netns_get,
1491 	.put		= netns_put,
1492 	.install	= netns_install,
1493 	.owner		= netns_owner,
1494 };
1495 #endif
1496