1 /* 2 * Generic address resolution entity 3 * 4 * Authors: 5 * Pedro Roque <roque@di.fc.ul.pt> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Fixes: 14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 15 * Harald Welte Add neighbour cache statistics like rtstat 16 */ 17 18 #include <linux/config.h> 19 #include <linux/types.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/socket.h> 23 #include <linux/sched.h> 24 #include <linux/netdevice.h> 25 #include <linux/proc_fs.h> 26 #ifdef CONFIG_SYSCTL 27 #include <linux/sysctl.h> 28 #endif 29 #include <linux/times.h> 30 #include <net/neighbour.h> 31 #include <net/dst.h> 32 #include <net/sock.h> 33 #include <linux/rtnetlink.h> 34 #include <linux/random.h> 35 #include <linux/string.h> 36 37 #define NEIGH_DEBUG 1 38 39 #define NEIGH_PRINTK(x...) printk(x) 40 #define NEIGH_NOPRINTK(x...) do { ; } while(0) 41 #define NEIGH_PRINTK0 NEIGH_PRINTK 42 #define NEIGH_PRINTK1 NEIGH_NOPRINTK 43 #define NEIGH_PRINTK2 NEIGH_NOPRINTK 44 45 #if NEIGH_DEBUG >= 1 46 #undef NEIGH_PRINTK1 47 #define NEIGH_PRINTK1 NEIGH_PRINTK 48 #endif 49 #if NEIGH_DEBUG >= 2 50 #undef NEIGH_PRINTK2 51 #define NEIGH_PRINTK2 NEIGH_PRINTK 52 #endif 53 54 #define PNEIGH_HASHMASK 0xF 55 56 static void neigh_timer_handler(unsigned long arg); 57 #ifdef CONFIG_ARPD 58 static void neigh_app_notify(struct neighbour *n); 59 #endif 60 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev); 61 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev); 62 63 static struct neigh_table *neigh_tables; 64 static struct file_operations neigh_stat_seq_fops; 65 66 /* 67 Neighbour hash table buckets are protected with rwlock tbl->lock. 68 69 - All the scans/updates to hash buckets MUST be made under this lock. 70 - NOTHING clever should be made under this lock: no callbacks 71 to protocol backends, no attempts to send something to network. 72 It will result in deadlocks, if backend/driver wants to use neighbour 73 cache. 74 - If the entry requires some non-trivial actions, increase 75 its reference count and release table lock. 76 77 Neighbour entries are protected: 78 - with reference count. 79 - with rwlock neigh->lock 80 81 Reference count prevents destruction. 82 83 neigh->lock mainly serializes ll address data and its validity state. 84 However, the same lock is used to protect another entry fields: 85 - timer 86 - resolution queue 87 88 Again, nothing clever shall be made under neigh->lock, 89 the most complicated procedure, which we allow is dev->hard_header. 90 It is supposed, that dev->hard_header is simplistic and does 91 not make callbacks to neighbour tables. 92 93 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting 94 list of neighbour tables. This list is used only in process context, 95 */ 96 97 static DEFINE_RWLOCK(neigh_tbl_lock); 98 99 static int neigh_blackhole(struct sk_buff *skb) 100 { 101 kfree_skb(skb); 102 return -ENETDOWN; 103 } 104 105 /* 106 * It is random distribution in the interval (1/2)*base...(3/2)*base. 107 * It corresponds to default IPv6 settings and is not overridable, 108 * because it is really reasonable choice. 109 */ 110 111 unsigned long neigh_rand_reach_time(unsigned long base) 112 { 113 return (base ? (net_random() % base) + (base >> 1) : 0); 114 } 115 116 117 static int neigh_forced_gc(struct neigh_table *tbl) 118 { 119 int shrunk = 0; 120 int i; 121 122 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 123 124 write_lock_bh(&tbl->lock); 125 for (i = 0; i <= tbl->hash_mask; i++) { 126 struct neighbour *n, **np; 127 128 np = &tbl->hash_buckets[i]; 129 while ((n = *np) != NULL) { 130 /* Neighbour record may be discarded if: 131 * - nobody refers to it. 132 * - it is not permanent 133 */ 134 write_lock(&n->lock); 135 if (atomic_read(&n->refcnt) == 1 && 136 !(n->nud_state & NUD_PERMANENT)) { 137 *np = n->next; 138 n->dead = 1; 139 shrunk = 1; 140 write_unlock(&n->lock); 141 neigh_release(n); 142 continue; 143 } 144 write_unlock(&n->lock); 145 np = &n->next; 146 } 147 } 148 149 tbl->last_flush = jiffies; 150 151 write_unlock_bh(&tbl->lock); 152 153 return shrunk; 154 } 155 156 static int neigh_del_timer(struct neighbour *n) 157 { 158 if ((n->nud_state & NUD_IN_TIMER) && 159 del_timer(&n->timer)) { 160 neigh_release(n); 161 return 1; 162 } 163 return 0; 164 } 165 166 static void pneigh_queue_purge(struct sk_buff_head *list) 167 { 168 struct sk_buff *skb; 169 170 while ((skb = skb_dequeue(list)) != NULL) { 171 dev_put(skb->dev); 172 kfree_skb(skb); 173 } 174 } 175 176 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 177 { 178 int i; 179 180 write_lock_bh(&tbl->lock); 181 182 for (i=0; i <= tbl->hash_mask; i++) { 183 struct neighbour *n, **np; 184 185 np = &tbl->hash_buckets[i]; 186 while ((n = *np) != NULL) { 187 if (dev && n->dev != dev) { 188 np = &n->next; 189 continue; 190 } 191 *np = n->next; 192 write_lock_bh(&n->lock); 193 n->dead = 1; 194 neigh_del_timer(n); 195 write_unlock_bh(&n->lock); 196 neigh_release(n); 197 } 198 } 199 200 write_unlock_bh(&tbl->lock); 201 } 202 203 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 204 { 205 int i; 206 207 write_lock_bh(&tbl->lock); 208 209 for (i = 0; i <= tbl->hash_mask; i++) { 210 struct neighbour *n, **np = &tbl->hash_buckets[i]; 211 212 while ((n = *np) != NULL) { 213 if (dev && n->dev != dev) { 214 np = &n->next; 215 continue; 216 } 217 *np = n->next; 218 write_lock(&n->lock); 219 neigh_del_timer(n); 220 n->dead = 1; 221 222 if (atomic_read(&n->refcnt) != 1) { 223 /* The most unpleasant situation. 224 We must destroy neighbour entry, 225 but someone still uses it. 226 227 The destroy will be delayed until 228 the last user releases us, but 229 we must kill timers etc. and move 230 it to safe state. 231 */ 232 skb_queue_purge(&n->arp_queue); 233 n->output = neigh_blackhole; 234 if (n->nud_state & NUD_VALID) 235 n->nud_state = NUD_NOARP; 236 else 237 n->nud_state = NUD_NONE; 238 NEIGH_PRINTK2("neigh %p is stray.\n", n); 239 } 240 write_unlock(&n->lock); 241 neigh_release(n); 242 } 243 } 244 245 pneigh_ifdown(tbl, dev); 246 write_unlock_bh(&tbl->lock); 247 248 del_timer_sync(&tbl->proxy_timer); 249 pneigh_queue_purge(&tbl->proxy_queue); 250 return 0; 251 } 252 253 static struct neighbour *neigh_alloc(struct neigh_table *tbl) 254 { 255 struct neighbour *n = NULL; 256 unsigned long now = jiffies; 257 int entries; 258 259 entries = atomic_inc_return(&tbl->entries) - 1; 260 if (entries >= tbl->gc_thresh3 || 261 (entries >= tbl->gc_thresh2 && 262 time_after(now, tbl->last_flush + 5 * HZ))) { 263 if (!neigh_forced_gc(tbl) && 264 entries >= tbl->gc_thresh3) 265 goto out_entries; 266 } 267 268 n = kmem_cache_alloc(tbl->kmem_cachep, SLAB_ATOMIC); 269 if (!n) 270 goto out_entries; 271 272 memset(n, 0, tbl->entry_size); 273 274 skb_queue_head_init(&n->arp_queue); 275 rwlock_init(&n->lock); 276 n->updated = n->used = now; 277 n->nud_state = NUD_NONE; 278 n->output = neigh_blackhole; 279 n->parms = neigh_parms_clone(&tbl->parms); 280 init_timer(&n->timer); 281 n->timer.function = neigh_timer_handler; 282 n->timer.data = (unsigned long)n; 283 284 NEIGH_CACHE_STAT_INC(tbl, allocs); 285 n->tbl = tbl; 286 atomic_set(&n->refcnt, 1); 287 n->dead = 1; 288 out: 289 return n; 290 291 out_entries: 292 atomic_dec(&tbl->entries); 293 goto out; 294 } 295 296 static struct neighbour **neigh_hash_alloc(unsigned int entries) 297 { 298 unsigned long size = entries * sizeof(struct neighbour *); 299 struct neighbour **ret; 300 301 if (size <= PAGE_SIZE) { 302 ret = kmalloc(size, GFP_ATOMIC); 303 } else { 304 ret = (struct neighbour **) 305 __get_free_pages(GFP_ATOMIC, get_order(size)); 306 } 307 if (ret) 308 memset(ret, 0, size); 309 310 return ret; 311 } 312 313 static void neigh_hash_free(struct neighbour **hash, unsigned int entries) 314 { 315 unsigned long size = entries * sizeof(struct neighbour *); 316 317 if (size <= PAGE_SIZE) 318 kfree(hash); 319 else 320 free_pages((unsigned long)hash, get_order(size)); 321 } 322 323 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries) 324 { 325 struct neighbour **new_hash, **old_hash; 326 unsigned int i, new_hash_mask, old_entries; 327 328 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 329 330 BUG_ON(new_entries & (new_entries - 1)); 331 new_hash = neigh_hash_alloc(new_entries); 332 if (!new_hash) 333 return; 334 335 old_entries = tbl->hash_mask + 1; 336 new_hash_mask = new_entries - 1; 337 old_hash = tbl->hash_buckets; 338 339 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); 340 for (i = 0; i < old_entries; i++) { 341 struct neighbour *n, *next; 342 343 for (n = old_hash[i]; n; n = next) { 344 unsigned int hash_val = tbl->hash(n->primary_key, n->dev); 345 346 hash_val &= new_hash_mask; 347 next = n->next; 348 349 n->next = new_hash[hash_val]; 350 new_hash[hash_val] = n; 351 } 352 } 353 tbl->hash_buckets = new_hash; 354 tbl->hash_mask = new_hash_mask; 355 356 neigh_hash_free(old_hash, old_entries); 357 } 358 359 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 360 struct net_device *dev) 361 { 362 struct neighbour *n; 363 int key_len = tbl->key_len; 364 u32 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask; 365 366 NEIGH_CACHE_STAT_INC(tbl, lookups); 367 368 read_lock_bh(&tbl->lock); 369 for (n = tbl->hash_buckets[hash_val]; n; n = n->next) { 370 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) { 371 neigh_hold(n); 372 NEIGH_CACHE_STAT_INC(tbl, hits); 373 break; 374 } 375 } 376 read_unlock_bh(&tbl->lock); 377 return n; 378 } 379 380 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, const void *pkey) 381 { 382 struct neighbour *n; 383 int key_len = tbl->key_len; 384 u32 hash_val = tbl->hash(pkey, NULL) & tbl->hash_mask; 385 386 NEIGH_CACHE_STAT_INC(tbl, lookups); 387 388 read_lock_bh(&tbl->lock); 389 for (n = tbl->hash_buckets[hash_val]; n; n = n->next) { 390 if (!memcmp(n->primary_key, pkey, key_len)) { 391 neigh_hold(n); 392 NEIGH_CACHE_STAT_INC(tbl, hits); 393 break; 394 } 395 } 396 read_unlock_bh(&tbl->lock); 397 return n; 398 } 399 400 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey, 401 struct net_device *dev) 402 { 403 u32 hash_val; 404 int key_len = tbl->key_len; 405 int error; 406 struct neighbour *n1, *rc, *n = neigh_alloc(tbl); 407 408 if (!n) { 409 rc = ERR_PTR(-ENOBUFS); 410 goto out; 411 } 412 413 memcpy(n->primary_key, pkey, key_len); 414 n->dev = dev; 415 dev_hold(dev); 416 417 /* Protocol specific setup. */ 418 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 419 rc = ERR_PTR(error); 420 goto out_neigh_release; 421 } 422 423 /* Device specific setup. */ 424 if (n->parms->neigh_setup && 425 (error = n->parms->neigh_setup(n)) < 0) { 426 rc = ERR_PTR(error); 427 goto out_neigh_release; 428 } 429 430 n->confirmed = jiffies - (n->parms->base_reachable_time << 1); 431 432 write_lock_bh(&tbl->lock); 433 434 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1)) 435 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1); 436 437 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask; 438 439 if (n->parms->dead) { 440 rc = ERR_PTR(-EINVAL); 441 goto out_tbl_unlock; 442 } 443 444 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) { 445 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) { 446 neigh_hold(n1); 447 rc = n1; 448 goto out_tbl_unlock; 449 } 450 } 451 452 n->next = tbl->hash_buckets[hash_val]; 453 tbl->hash_buckets[hash_val] = n; 454 n->dead = 0; 455 neigh_hold(n); 456 write_unlock_bh(&tbl->lock); 457 NEIGH_PRINTK2("neigh %p is created.\n", n); 458 rc = n; 459 out: 460 return rc; 461 out_tbl_unlock: 462 write_unlock_bh(&tbl->lock); 463 out_neigh_release: 464 neigh_release(n); 465 goto out; 466 } 467 468 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, const void *pkey, 469 struct net_device *dev, int creat) 470 { 471 struct pneigh_entry *n; 472 int key_len = tbl->key_len; 473 u32 hash_val = *(u32 *)(pkey + key_len - 4); 474 475 hash_val ^= (hash_val >> 16); 476 hash_val ^= hash_val >> 8; 477 hash_val ^= hash_val >> 4; 478 hash_val &= PNEIGH_HASHMASK; 479 480 read_lock_bh(&tbl->lock); 481 482 for (n = tbl->phash_buckets[hash_val]; n; n = n->next) { 483 if (!memcmp(n->key, pkey, key_len) && 484 (n->dev == dev || !n->dev)) { 485 read_unlock_bh(&tbl->lock); 486 goto out; 487 } 488 } 489 read_unlock_bh(&tbl->lock); 490 n = NULL; 491 if (!creat) 492 goto out; 493 494 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 495 if (!n) 496 goto out; 497 498 memcpy(n->key, pkey, key_len); 499 n->dev = dev; 500 if (dev) 501 dev_hold(dev); 502 503 if (tbl->pconstructor && tbl->pconstructor(n)) { 504 if (dev) 505 dev_put(dev); 506 kfree(n); 507 n = NULL; 508 goto out; 509 } 510 511 write_lock_bh(&tbl->lock); 512 n->next = tbl->phash_buckets[hash_val]; 513 tbl->phash_buckets[hash_val] = n; 514 write_unlock_bh(&tbl->lock); 515 out: 516 return n; 517 } 518 519 520 int pneigh_delete(struct neigh_table *tbl, const void *pkey, 521 struct net_device *dev) 522 { 523 struct pneigh_entry *n, **np; 524 int key_len = tbl->key_len; 525 u32 hash_val = *(u32 *)(pkey + key_len - 4); 526 527 hash_val ^= (hash_val >> 16); 528 hash_val ^= hash_val >> 8; 529 hash_val ^= hash_val >> 4; 530 hash_val &= PNEIGH_HASHMASK; 531 532 write_lock_bh(&tbl->lock); 533 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 534 np = &n->next) { 535 if (!memcmp(n->key, pkey, key_len) && n->dev == dev) { 536 *np = n->next; 537 write_unlock_bh(&tbl->lock); 538 if (tbl->pdestructor) 539 tbl->pdestructor(n); 540 if (n->dev) 541 dev_put(n->dev); 542 kfree(n); 543 return 0; 544 } 545 } 546 write_unlock_bh(&tbl->lock); 547 return -ENOENT; 548 } 549 550 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 551 { 552 struct pneigh_entry *n, **np; 553 u32 h; 554 555 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 556 np = &tbl->phash_buckets[h]; 557 while ((n = *np) != NULL) { 558 if (!dev || n->dev == dev) { 559 *np = n->next; 560 if (tbl->pdestructor) 561 tbl->pdestructor(n); 562 if (n->dev) 563 dev_put(n->dev); 564 kfree(n); 565 continue; 566 } 567 np = &n->next; 568 } 569 } 570 return -ENOENT; 571 } 572 573 574 /* 575 * neighbour must already be out of the table; 576 * 577 */ 578 void neigh_destroy(struct neighbour *neigh) 579 { 580 struct hh_cache *hh; 581 582 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 583 584 if (!neigh->dead) { 585 printk(KERN_WARNING 586 "Destroying alive neighbour %p\n", neigh); 587 dump_stack(); 588 return; 589 } 590 591 if (neigh_del_timer(neigh)) 592 printk(KERN_WARNING "Impossible event.\n"); 593 594 while ((hh = neigh->hh) != NULL) { 595 neigh->hh = hh->hh_next; 596 hh->hh_next = NULL; 597 write_lock_bh(&hh->hh_lock); 598 hh->hh_output = neigh_blackhole; 599 write_unlock_bh(&hh->hh_lock); 600 if (atomic_dec_and_test(&hh->hh_refcnt)) 601 kfree(hh); 602 } 603 604 if (neigh->ops && neigh->ops->destructor) 605 (neigh->ops->destructor)(neigh); 606 607 skb_queue_purge(&neigh->arp_queue); 608 609 dev_put(neigh->dev); 610 neigh_parms_put(neigh->parms); 611 612 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh); 613 614 atomic_dec(&neigh->tbl->entries); 615 kmem_cache_free(neigh->tbl->kmem_cachep, neigh); 616 } 617 618 /* Neighbour state is suspicious; 619 disable fast path. 620 621 Called with write_locked neigh. 622 */ 623 static void neigh_suspect(struct neighbour *neigh) 624 { 625 struct hh_cache *hh; 626 627 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 628 629 neigh->output = neigh->ops->output; 630 631 for (hh = neigh->hh; hh; hh = hh->hh_next) 632 hh->hh_output = neigh->ops->output; 633 } 634 635 /* Neighbour state is OK; 636 enable fast path. 637 638 Called with write_locked neigh. 639 */ 640 static void neigh_connect(struct neighbour *neigh) 641 { 642 struct hh_cache *hh; 643 644 NEIGH_PRINTK2("neigh %p is connected.\n", neigh); 645 646 neigh->output = neigh->ops->connected_output; 647 648 for (hh = neigh->hh; hh; hh = hh->hh_next) 649 hh->hh_output = neigh->ops->hh_output; 650 } 651 652 static void neigh_periodic_timer(unsigned long arg) 653 { 654 struct neigh_table *tbl = (struct neigh_table *)arg; 655 struct neighbour *n, **np; 656 unsigned long expire, now = jiffies; 657 658 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 659 660 write_lock(&tbl->lock); 661 662 /* 663 * periodically recompute ReachableTime from random function 664 */ 665 666 if (time_after(now, tbl->last_rand + 300 * HZ)) { 667 struct neigh_parms *p; 668 tbl->last_rand = now; 669 for (p = &tbl->parms; p; p = p->next) 670 p->reachable_time = 671 neigh_rand_reach_time(p->base_reachable_time); 672 } 673 674 np = &tbl->hash_buckets[tbl->hash_chain_gc]; 675 tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask); 676 677 while ((n = *np) != NULL) { 678 unsigned int state; 679 680 write_lock(&n->lock); 681 682 state = n->nud_state; 683 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) { 684 write_unlock(&n->lock); 685 goto next_elt; 686 } 687 688 if (time_before(n->used, n->confirmed)) 689 n->used = n->confirmed; 690 691 if (atomic_read(&n->refcnt) == 1 && 692 (state == NUD_FAILED || 693 time_after(now, n->used + n->parms->gc_staletime))) { 694 *np = n->next; 695 n->dead = 1; 696 write_unlock(&n->lock); 697 neigh_release(n); 698 continue; 699 } 700 write_unlock(&n->lock); 701 702 next_elt: 703 np = &n->next; 704 } 705 706 /* Cycle through all hash buckets every base_reachable_time/2 ticks. 707 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2 708 * base_reachable_time. 709 */ 710 expire = tbl->parms.base_reachable_time >> 1; 711 expire /= (tbl->hash_mask + 1); 712 if (!expire) 713 expire = 1; 714 715 mod_timer(&tbl->gc_timer, now + expire); 716 717 write_unlock(&tbl->lock); 718 } 719 720 static __inline__ int neigh_max_probes(struct neighbour *n) 721 { 722 struct neigh_parms *p = n->parms; 723 return (n->nud_state & NUD_PROBE ? 724 p->ucast_probes : 725 p->ucast_probes + p->app_probes + p->mcast_probes); 726 } 727 728 729 /* Called when a timer expires for a neighbour entry. */ 730 731 static void neigh_timer_handler(unsigned long arg) 732 { 733 unsigned long now, next; 734 struct neighbour *neigh = (struct neighbour *)arg; 735 unsigned state; 736 int notify = 0; 737 738 write_lock(&neigh->lock); 739 740 state = neigh->nud_state; 741 now = jiffies; 742 next = now + HZ; 743 744 if (!(state & NUD_IN_TIMER)) { 745 #ifndef CONFIG_SMP 746 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n"); 747 #endif 748 goto out; 749 } 750 751 if (state & NUD_REACHABLE) { 752 if (time_before_eq(now, 753 neigh->confirmed + neigh->parms->reachable_time)) { 754 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh); 755 next = neigh->confirmed + neigh->parms->reachable_time; 756 } else if (time_before_eq(now, 757 neigh->used + neigh->parms->delay_probe_time)) { 758 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 759 neigh->nud_state = NUD_DELAY; 760 neigh_suspect(neigh); 761 next = now + neigh->parms->delay_probe_time; 762 } else { 763 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 764 neigh->nud_state = NUD_STALE; 765 neigh_suspect(neigh); 766 } 767 } else if (state & NUD_DELAY) { 768 if (time_before_eq(now, 769 neigh->confirmed + neigh->parms->delay_probe_time)) { 770 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh); 771 neigh->nud_state = NUD_REACHABLE; 772 neigh_connect(neigh); 773 next = neigh->confirmed + neigh->parms->reachable_time; 774 } else { 775 NEIGH_PRINTK2("neigh %p is probed.\n", neigh); 776 neigh->nud_state = NUD_PROBE; 777 atomic_set(&neigh->probes, 0); 778 next = now + neigh->parms->retrans_time; 779 } 780 } else { 781 /* NUD_PROBE|NUD_INCOMPLETE */ 782 next = now + neigh->parms->retrans_time; 783 } 784 785 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 786 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 787 struct sk_buff *skb; 788 789 neigh->nud_state = NUD_FAILED; 790 notify = 1; 791 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 792 NEIGH_PRINTK2("neigh %p is failed.\n", neigh); 793 794 /* It is very thin place. report_unreachable is very complicated 795 routine. Particularly, it can hit the same neighbour entry! 796 797 So that, we try to be accurate and avoid dead loop. --ANK 798 */ 799 while (neigh->nud_state == NUD_FAILED && 800 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 801 write_unlock(&neigh->lock); 802 neigh->ops->error_report(neigh, skb); 803 write_lock(&neigh->lock); 804 } 805 skb_queue_purge(&neigh->arp_queue); 806 } 807 808 if (neigh->nud_state & NUD_IN_TIMER) { 809 neigh_hold(neigh); 810 if (time_before(next, jiffies + HZ/2)) 811 next = jiffies + HZ/2; 812 neigh->timer.expires = next; 813 add_timer(&neigh->timer); 814 } 815 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 816 struct sk_buff *skb = skb_peek(&neigh->arp_queue); 817 /* keep skb alive even if arp_queue overflows */ 818 if (skb) 819 skb_get(skb); 820 write_unlock(&neigh->lock); 821 neigh->ops->solicit(neigh, skb); 822 atomic_inc(&neigh->probes); 823 if (skb) 824 kfree_skb(skb); 825 } else { 826 out: 827 write_unlock(&neigh->lock); 828 } 829 830 #ifdef CONFIG_ARPD 831 if (notify && neigh->parms->app_probes) 832 neigh_app_notify(neigh); 833 #endif 834 neigh_release(neigh); 835 } 836 837 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 838 { 839 int rc; 840 unsigned long now; 841 842 write_lock_bh(&neigh->lock); 843 844 rc = 0; 845 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 846 goto out_unlock_bh; 847 848 now = jiffies; 849 850 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 851 if (neigh->parms->mcast_probes + neigh->parms->app_probes) { 852 atomic_set(&neigh->probes, neigh->parms->ucast_probes); 853 neigh->nud_state = NUD_INCOMPLETE; 854 neigh_hold(neigh); 855 neigh->timer.expires = now + 1; 856 add_timer(&neigh->timer); 857 } else { 858 neigh->nud_state = NUD_FAILED; 859 write_unlock_bh(&neigh->lock); 860 861 if (skb) 862 kfree_skb(skb); 863 return 1; 864 } 865 } else if (neigh->nud_state & NUD_STALE) { 866 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 867 neigh_hold(neigh); 868 neigh->nud_state = NUD_DELAY; 869 neigh->timer.expires = jiffies + neigh->parms->delay_probe_time; 870 add_timer(&neigh->timer); 871 } 872 873 if (neigh->nud_state == NUD_INCOMPLETE) { 874 if (skb) { 875 if (skb_queue_len(&neigh->arp_queue) >= 876 neigh->parms->queue_len) { 877 struct sk_buff *buff; 878 buff = neigh->arp_queue.next; 879 __skb_unlink(buff, &neigh->arp_queue); 880 kfree_skb(buff); 881 } 882 __skb_queue_tail(&neigh->arp_queue, skb); 883 } 884 rc = 1; 885 } 886 out_unlock_bh: 887 write_unlock_bh(&neigh->lock); 888 return rc; 889 } 890 891 static __inline__ void neigh_update_hhs(struct neighbour *neigh) 892 { 893 struct hh_cache *hh; 894 void (*update)(struct hh_cache*, struct net_device*, unsigned char *) = 895 neigh->dev->header_cache_update; 896 897 if (update) { 898 for (hh = neigh->hh; hh; hh = hh->hh_next) { 899 write_lock_bh(&hh->hh_lock); 900 update(hh, neigh->dev, neigh->ha); 901 write_unlock_bh(&hh->hh_lock); 902 } 903 } 904 } 905 906 907 908 /* Generic update routine. 909 -- lladdr is new lladdr or NULL, if it is not supplied. 910 -- new is new state. 911 -- flags 912 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 913 if it is different. 914 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 915 lladdr instead of overriding it 916 if it is different. 917 It also allows to retain current state 918 if lladdr is unchanged. 919 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 920 921 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 922 NTF_ROUTER flag. 923 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 924 a router. 925 926 Caller MUST hold reference count on the entry. 927 */ 928 929 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 930 u32 flags) 931 { 932 u8 old; 933 int err; 934 #ifdef CONFIG_ARPD 935 int notify = 0; 936 #endif 937 struct net_device *dev; 938 int update_isrouter = 0; 939 940 write_lock_bh(&neigh->lock); 941 942 dev = neigh->dev; 943 old = neigh->nud_state; 944 err = -EPERM; 945 946 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 947 (old & (NUD_NOARP | NUD_PERMANENT))) 948 goto out; 949 950 if (!(new & NUD_VALID)) { 951 neigh_del_timer(neigh); 952 if (old & NUD_CONNECTED) 953 neigh_suspect(neigh); 954 neigh->nud_state = new; 955 err = 0; 956 #ifdef CONFIG_ARPD 957 notify = old & NUD_VALID; 958 #endif 959 goto out; 960 } 961 962 /* Compare new lladdr with cached one */ 963 if (!dev->addr_len) { 964 /* First case: device needs no address. */ 965 lladdr = neigh->ha; 966 } else if (lladdr) { 967 /* The second case: if something is already cached 968 and a new address is proposed: 969 - compare new & old 970 - if they are different, check override flag 971 */ 972 if ((old & NUD_VALID) && 973 !memcmp(lladdr, neigh->ha, dev->addr_len)) 974 lladdr = neigh->ha; 975 } else { 976 /* No address is supplied; if we know something, 977 use it, otherwise discard the request. 978 */ 979 err = -EINVAL; 980 if (!(old & NUD_VALID)) 981 goto out; 982 lladdr = neigh->ha; 983 } 984 985 if (new & NUD_CONNECTED) 986 neigh->confirmed = jiffies; 987 neigh->updated = jiffies; 988 989 /* If entry was valid and address is not changed, 990 do not change entry state, if new one is STALE. 991 */ 992 err = 0; 993 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 994 if (old & NUD_VALID) { 995 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 996 update_isrouter = 0; 997 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 998 (old & NUD_CONNECTED)) { 999 lladdr = neigh->ha; 1000 new = NUD_STALE; 1001 } else 1002 goto out; 1003 } else { 1004 if (lladdr == neigh->ha && new == NUD_STALE && 1005 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) || 1006 (old & NUD_CONNECTED)) 1007 ) 1008 new = old; 1009 } 1010 } 1011 1012 if (new != old) { 1013 neigh_del_timer(neigh); 1014 if (new & NUD_IN_TIMER) { 1015 neigh_hold(neigh); 1016 neigh->timer.expires = jiffies + 1017 ((new & NUD_REACHABLE) ? 1018 neigh->parms->reachable_time : 0); 1019 add_timer(&neigh->timer); 1020 } 1021 neigh->nud_state = new; 1022 } 1023 1024 if (lladdr != neigh->ha) { 1025 memcpy(&neigh->ha, lladdr, dev->addr_len); 1026 neigh_update_hhs(neigh); 1027 if (!(new & NUD_CONNECTED)) 1028 neigh->confirmed = jiffies - 1029 (neigh->parms->base_reachable_time << 1); 1030 #ifdef CONFIG_ARPD 1031 notify = 1; 1032 #endif 1033 } 1034 if (new == old) 1035 goto out; 1036 if (new & NUD_CONNECTED) 1037 neigh_connect(neigh); 1038 else 1039 neigh_suspect(neigh); 1040 if (!(old & NUD_VALID)) { 1041 struct sk_buff *skb; 1042 1043 /* Again: avoid dead loop if something went wrong */ 1044 1045 while (neigh->nud_state & NUD_VALID && 1046 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1047 struct neighbour *n1 = neigh; 1048 write_unlock_bh(&neigh->lock); 1049 /* On shaper/eql skb->dst->neighbour != neigh :( */ 1050 if (skb->dst && skb->dst->neighbour) 1051 n1 = skb->dst->neighbour; 1052 n1->output(skb); 1053 write_lock_bh(&neigh->lock); 1054 } 1055 skb_queue_purge(&neigh->arp_queue); 1056 } 1057 out: 1058 if (update_isrouter) { 1059 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ? 1060 (neigh->flags | NTF_ROUTER) : 1061 (neigh->flags & ~NTF_ROUTER); 1062 } 1063 write_unlock_bh(&neigh->lock); 1064 #ifdef CONFIG_ARPD 1065 if (notify && neigh->parms->app_probes) 1066 neigh_app_notify(neigh); 1067 #endif 1068 return err; 1069 } 1070 1071 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1072 u8 *lladdr, void *saddr, 1073 struct net_device *dev) 1074 { 1075 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1076 lladdr || !dev->addr_len); 1077 if (neigh) 1078 neigh_update(neigh, lladdr, NUD_STALE, 1079 NEIGH_UPDATE_F_OVERRIDE); 1080 return neigh; 1081 } 1082 1083 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst, 1084 u16 protocol) 1085 { 1086 struct hh_cache *hh; 1087 struct net_device *dev = dst->dev; 1088 1089 for (hh = n->hh; hh; hh = hh->hh_next) 1090 if (hh->hh_type == protocol) 1091 break; 1092 1093 if (!hh && (hh = kmalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) { 1094 memset(hh, 0, sizeof(struct hh_cache)); 1095 rwlock_init(&hh->hh_lock); 1096 hh->hh_type = protocol; 1097 atomic_set(&hh->hh_refcnt, 0); 1098 hh->hh_next = NULL; 1099 if (dev->hard_header_cache(n, hh)) { 1100 kfree(hh); 1101 hh = NULL; 1102 } else { 1103 atomic_inc(&hh->hh_refcnt); 1104 hh->hh_next = n->hh; 1105 n->hh = hh; 1106 if (n->nud_state & NUD_CONNECTED) 1107 hh->hh_output = n->ops->hh_output; 1108 else 1109 hh->hh_output = n->ops->output; 1110 } 1111 } 1112 if (hh) { 1113 atomic_inc(&hh->hh_refcnt); 1114 dst->hh = hh; 1115 } 1116 } 1117 1118 /* This function can be used in contexts, where only old dev_queue_xmit 1119 worked, f.e. if you want to override normal output path (eql, shaper), 1120 but resolution is not made yet. 1121 */ 1122 1123 int neigh_compat_output(struct sk_buff *skb) 1124 { 1125 struct net_device *dev = skb->dev; 1126 1127 __skb_pull(skb, skb->nh.raw - skb->data); 1128 1129 if (dev->hard_header && 1130 dev->hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL, 1131 skb->len) < 0 && 1132 dev->rebuild_header(skb)) 1133 return 0; 1134 1135 return dev_queue_xmit(skb); 1136 } 1137 1138 /* Slow and careful. */ 1139 1140 int neigh_resolve_output(struct sk_buff *skb) 1141 { 1142 struct dst_entry *dst = skb->dst; 1143 struct neighbour *neigh; 1144 int rc = 0; 1145 1146 if (!dst || !(neigh = dst->neighbour)) 1147 goto discard; 1148 1149 __skb_pull(skb, skb->nh.raw - skb->data); 1150 1151 if (!neigh_event_send(neigh, skb)) { 1152 int err; 1153 struct net_device *dev = neigh->dev; 1154 if (dev->hard_header_cache && !dst->hh) { 1155 write_lock_bh(&neigh->lock); 1156 if (!dst->hh) 1157 neigh_hh_init(neigh, dst, dst->ops->protocol); 1158 err = dev->hard_header(skb, dev, ntohs(skb->protocol), 1159 neigh->ha, NULL, skb->len); 1160 write_unlock_bh(&neigh->lock); 1161 } else { 1162 read_lock_bh(&neigh->lock); 1163 err = dev->hard_header(skb, dev, ntohs(skb->protocol), 1164 neigh->ha, NULL, skb->len); 1165 read_unlock_bh(&neigh->lock); 1166 } 1167 if (err >= 0) 1168 rc = neigh->ops->queue_xmit(skb); 1169 else 1170 goto out_kfree_skb; 1171 } 1172 out: 1173 return rc; 1174 discard: 1175 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n", 1176 dst, dst ? dst->neighbour : NULL); 1177 out_kfree_skb: 1178 rc = -EINVAL; 1179 kfree_skb(skb); 1180 goto out; 1181 } 1182 1183 /* As fast as possible without hh cache */ 1184 1185 int neigh_connected_output(struct sk_buff *skb) 1186 { 1187 int err; 1188 struct dst_entry *dst = skb->dst; 1189 struct neighbour *neigh = dst->neighbour; 1190 struct net_device *dev = neigh->dev; 1191 1192 __skb_pull(skb, skb->nh.raw - skb->data); 1193 1194 read_lock_bh(&neigh->lock); 1195 err = dev->hard_header(skb, dev, ntohs(skb->protocol), 1196 neigh->ha, NULL, skb->len); 1197 read_unlock_bh(&neigh->lock); 1198 if (err >= 0) 1199 err = neigh->ops->queue_xmit(skb); 1200 else { 1201 err = -EINVAL; 1202 kfree_skb(skb); 1203 } 1204 return err; 1205 } 1206 1207 static void neigh_proxy_process(unsigned long arg) 1208 { 1209 struct neigh_table *tbl = (struct neigh_table *)arg; 1210 long sched_next = 0; 1211 unsigned long now = jiffies; 1212 struct sk_buff *skb; 1213 1214 spin_lock(&tbl->proxy_queue.lock); 1215 1216 skb = tbl->proxy_queue.next; 1217 1218 while (skb != (struct sk_buff *)&tbl->proxy_queue) { 1219 struct sk_buff *back = skb; 1220 long tdif = back->stamp.tv_usec - now; 1221 1222 skb = skb->next; 1223 if (tdif <= 0) { 1224 struct net_device *dev = back->dev; 1225 __skb_unlink(back, &tbl->proxy_queue); 1226 if (tbl->proxy_redo && netif_running(dev)) 1227 tbl->proxy_redo(back); 1228 else 1229 kfree_skb(back); 1230 1231 dev_put(dev); 1232 } else if (!sched_next || tdif < sched_next) 1233 sched_next = tdif; 1234 } 1235 del_timer(&tbl->proxy_timer); 1236 if (sched_next) 1237 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1238 spin_unlock(&tbl->proxy_queue.lock); 1239 } 1240 1241 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1242 struct sk_buff *skb) 1243 { 1244 unsigned long now = jiffies; 1245 unsigned long sched_next = now + (net_random() % p->proxy_delay); 1246 1247 if (tbl->proxy_queue.qlen > p->proxy_qlen) { 1248 kfree_skb(skb); 1249 return; 1250 } 1251 skb->stamp.tv_sec = LOCALLY_ENQUEUED; 1252 skb->stamp.tv_usec = sched_next; 1253 1254 spin_lock(&tbl->proxy_queue.lock); 1255 if (del_timer(&tbl->proxy_timer)) { 1256 if (time_before(tbl->proxy_timer.expires, sched_next)) 1257 sched_next = tbl->proxy_timer.expires; 1258 } 1259 dst_release(skb->dst); 1260 skb->dst = NULL; 1261 dev_hold(skb->dev); 1262 __skb_queue_tail(&tbl->proxy_queue, skb); 1263 mod_timer(&tbl->proxy_timer, sched_next); 1264 spin_unlock(&tbl->proxy_queue.lock); 1265 } 1266 1267 1268 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1269 struct neigh_table *tbl) 1270 { 1271 struct neigh_parms *p = kmalloc(sizeof(*p), GFP_KERNEL); 1272 1273 if (p) { 1274 memcpy(p, &tbl->parms, sizeof(*p)); 1275 p->tbl = tbl; 1276 atomic_set(&p->refcnt, 1); 1277 INIT_RCU_HEAD(&p->rcu_head); 1278 p->reachable_time = 1279 neigh_rand_reach_time(p->base_reachable_time); 1280 if (dev) { 1281 if (dev->neigh_setup && dev->neigh_setup(dev, p)) { 1282 kfree(p); 1283 return NULL; 1284 } 1285 1286 dev_hold(dev); 1287 p->dev = dev; 1288 } 1289 p->sysctl_table = NULL; 1290 write_lock_bh(&tbl->lock); 1291 p->next = tbl->parms.next; 1292 tbl->parms.next = p; 1293 write_unlock_bh(&tbl->lock); 1294 } 1295 return p; 1296 } 1297 1298 static void neigh_rcu_free_parms(struct rcu_head *head) 1299 { 1300 struct neigh_parms *parms = 1301 container_of(head, struct neigh_parms, rcu_head); 1302 1303 neigh_parms_put(parms); 1304 } 1305 1306 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1307 { 1308 struct neigh_parms **p; 1309 1310 if (!parms || parms == &tbl->parms) 1311 return; 1312 write_lock_bh(&tbl->lock); 1313 for (p = &tbl->parms.next; *p; p = &(*p)->next) { 1314 if (*p == parms) { 1315 *p = parms->next; 1316 parms->dead = 1; 1317 write_unlock_bh(&tbl->lock); 1318 if (parms->dev) 1319 dev_put(parms->dev); 1320 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1321 return; 1322 } 1323 } 1324 write_unlock_bh(&tbl->lock); 1325 NEIGH_PRINTK1("neigh_parms_release: not found\n"); 1326 } 1327 1328 void neigh_parms_destroy(struct neigh_parms *parms) 1329 { 1330 kfree(parms); 1331 } 1332 1333 1334 void neigh_table_init(struct neigh_table *tbl) 1335 { 1336 unsigned long now = jiffies; 1337 unsigned long phsize; 1338 1339 atomic_set(&tbl->parms.refcnt, 1); 1340 INIT_RCU_HEAD(&tbl->parms.rcu_head); 1341 tbl->parms.reachable_time = 1342 neigh_rand_reach_time(tbl->parms.base_reachable_time); 1343 1344 if (!tbl->kmem_cachep) 1345 tbl->kmem_cachep = kmem_cache_create(tbl->id, 1346 tbl->entry_size, 1347 0, SLAB_HWCACHE_ALIGN, 1348 NULL, NULL); 1349 1350 if (!tbl->kmem_cachep) 1351 panic("cannot create neighbour cache"); 1352 1353 tbl->stats = alloc_percpu(struct neigh_statistics); 1354 if (!tbl->stats) 1355 panic("cannot create neighbour cache statistics"); 1356 1357 #ifdef CONFIG_PROC_FS 1358 tbl->pde = create_proc_entry(tbl->id, 0, proc_net_stat); 1359 if (!tbl->pde) 1360 panic("cannot create neighbour proc dir entry"); 1361 tbl->pde->proc_fops = &neigh_stat_seq_fops; 1362 tbl->pde->data = tbl; 1363 #endif 1364 1365 tbl->hash_mask = 1; 1366 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1); 1367 1368 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1369 tbl->phash_buckets = kmalloc(phsize, GFP_KERNEL); 1370 1371 if (!tbl->hash_buckets || !tbl->phash_buckets) 1372 panic("cannot allocate neighbour cache hashes"); 1373 1374 memset(tbl->phash_buckets, 0, phsize); 1375 1376 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); 1377 1378 rwlock_init(&tbl->lock); 1379 init_timer(&tbl->gc_timer); 1380 tbl->gc_timer.data = (unsigned long)tbl; 1381 tbl->gc_timer.function = neigh_periodic_timer; 1382 tbl->gc_timer.expires = now + 1; 1383 add_timer(&tbl->gc_timer); 1384 1385 init_timer(&tbl->proxy_timer); 1386 tbl->proxy_timer.data = (unsigned long)tbl; 1387 tbl->proxy_timer.function = neigh_proxy_process; 1388 skb_queue_head_init(&tbl->proxy_queue); 1389 1390 tbl->last_flush = now; 1391 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1392 write_lock(&neigh_tbl_lock); 1393 tbl->next = neigh_tables; 1394 neigh_tables = tbl; 1395 write_unlock(&neigh_tbl_lock); 1396 } 1397 1398 int neigh_table_clear(struct neigh_table *tbl) 1399 { 1400 struct neigh_table **tp; 1401 1402 /* It is not clean... Fix it to unload IPv6 module safely */ 1403 del_timer_sync(&tbl->gc_timer); 1404 del_timer_sync(&tbl->proxy_timer); 1405 pneigh_queue_purge(&tbl->proxy_queue); 1406 neigh_ifdown(tbl, NULL); 1407 if (atomic_read(&tbl->entries)) 1408 printk(KERN_CRIT "neighbour leakage\n"); 1409 write_lock(&neigh_tbl_lock); 1410 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) { 1411 if (*tp == tbl) { 1412 *tp = tbl->next; 1413 break; 1414 } 1415 } 1416 write_unlock(&neigh_tbl_lock); 1417 1418 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1); 1419 tbl->hash_buckets = NULL; 1420 1421 kfree(tbl->phash_buckets); 1422 tbl->phash_buckets = NULL; 1423 1424 return 0; 1425 } 1426 1427 int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1428 { 1429 struct ndmsg *ndm = NLMSG_DATA(nlh); 1430 struct rtattr **nda = arg; 1431 struct neigh_table *tbl; 1432 struct net_device *dev = NULL; 1433 int err = -ENODEV; 1434 1435 if (ndm->ndm_ifindex && 1436 (dev = dev_get_by_index(ndm->ndm_ifindex)) == NULL) 1437 goto out; 1438 1439 read_lock(&neigh_tbl_lock); 1440 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1441 struct rtattr *dst_attr = nda[NDA_DST - 1]; 1442 struct neighbour *n; 1443 1444 if (tbl->family != ndm->ndm_family) 1445 continue; 1446 read_unlock(&neigh_tbl_lock); 1447 1448 err = -EINVAL; 1449 if (!dst_attr || RTA_PAYLOAD(dst_attr) < tbl->key_len) 1450 goto out_dev_put; 1451 1452 if (ndm->ndm_flags & NTF_PROXY) { 1453 err = pneigh_delete(tbl, RTA_DATA(dst_attr), dev); 1454 goto out_dev_put; 1455 } 1456 1457 if (!dev) 1458 goto out; 1459 1460 n = neigh_lookup(tbl, RTA_DATA(dst_attr), dev); 1461 if (n) { 1462 err = neigh_update(n, NULL, NUD_FAILED, 1463 NEIGH_UPDATE_F_OVERRIDE| 1464 NEIGH_UPDATE_F_ADMIN); 1465 neigh_release(n); 1466 } 1467 goto out_dev_put; 1468 } 1469 read_unlock(&neigh_tbl_lock); 1470 err = -EADDRNOTAVAIL; 1471 out_dev_put: 1472 if (dev) 1473 dev_put(dev); 1474 out: 1475 return err; 1476 } 1477 1478 int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1479 { 1480 struct ndmsg *ndm = NLMSG_DATA(nlh); 1481 struct rtattr **nda = arg; 1482 struct neigh_table *tbl; 1483 struct net_device *dev = NULL; 1484 int err = -ENODEV; 1485 1486 if (ndm->ndm_ifindex && 1487 (dev = dev_get_by_index(ndm->ndm_ifindex)) == NULL) 1488 goto out; 1489 1490 read_lock(&neigh_tbl_lock); 1491 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1492 struct rtattr *lladdr_attr = nda[NDA_LLADDR - 1]; 1493 struct rtattr *dst_attr = nda[NDA_DST - 1]; 1494 int override = 1; 1495 struct neighbour *n; 1496 1497 if (tbl->family != ndm->ndm_family) 1498 continue; 1499 read_unlock(&neigh_tbl_lock); 1500 1501 err = -EINVAL; 1502 if (!dst_attr || RTA_PAYLOAD(dst_attr) < tbl->key_len) 1503 goto out_dev_put; 1504 1505 if (ndm->ndm_flags & NTF_PROXY) { 1506 err = -ENOBUFS; 1507 if (pneigh_lookup(tbl, RTA_DATA(dst_attr), dev, 1)) 1508 err = 0; 1509 goto out_dev_put; 1510 } 1511 1512 err = -EINVAL; 1513 if (!dev) 1514 goto out; 1515 if (lladdr_attr && RTA_PAYLOAD(lladdr_attr) < dev->addr_len) 1516 goto out_dev_put; 1517 1518 n = neigh_lookup(tbl, RTA_DATA(dst_attr), dev); 1519 if (n) { 1520 if (nlh->nlmsg_flags & NLM_F_EXCL) { 1521 err = -EEXIST; 1522 neigh_release(n); 1523 goto out_dev_put; 1524 } 1525 1526 override = nlh->nlmsg_flags & NLM_F_REPLACE; 1527 } else if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 1528 err = -ENOENT; 1529 goto out_dev_put; 1530 } else { 1531 n = __neigh_lookup_errno(tbl, RTA_DATA(dst_attr), dev); 1532 if (IS_ERR(n)) { 1533 err = PTR_ERR(n); 1534 goto out_dev_put; 1535 } 1536 } 1537 1538 err = neigh_update(n, 1539 lladdr_attr ? RTA_DATA(lladdr_attr) : NULL, 1540 ndm->ndm_state, 1541 (override ? NEIGH_UPDATE_F_OVERRIDE : 0) | 1542 NEIGH_UPDATE_F_ADMIN); 1543 1544 neigh_release(n); 1545 goto out_dev_put; 1546 } 1547 1548 read_unlock(&neigh_tbl_lock); 1549 err = -EADDRNOTAVAIL; 1550 out_dev_put: 1551 if (dev) 1552 dev_put(dev); 1553 out: 1554 return err; 1555 } 1556 1557 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 1558 { 1559 struct rtattr *nest = NULL; 1560 1561 nest = RTA_NEST(skb, NDTA_PARMS); 1562 1563 if (parms->dev) 1564 RTA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex); 1565 1566 RTA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)); 1567 RTA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len); 1568 RTA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen); 1569 RTA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes); 1570 RTA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes); 1571 RTA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes); 1572 RTA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time); 1573 RTA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME, 1574 parms->base_reachable_time); 1575 RTA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime); 1576 RTA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time); 1577 RTA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time); 1578 RTA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay); 1579 RTA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay); 1580 RTA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime); 1581 1582 return RTA_NEST_END(skb, nest); 1583 1584 rtattr_failure: 1585 return RTA_NEST_CANCEL(skb, nest); 1586 } 1587 1588 static int neightbl_fill_info(struct neigh_table *tbl, struct sk_buff *skb, 1589 struct netlink_callback *cb) 1590 { 1591 struct nlmsghdr *nlh; 1592 struct ndtmsg *ndtmsg; 1593 1594 nlh = NLMSG_NEW_ANSWER(skb, cb, RTM_NEWNEIGHTBL, sizeof(struct ndtmsg), 1595 NLM_F_MULTI); 1596 1597 ndtmsg = NLMSG_DATA(nlh); 1598 1599 read_lock_bh(&tbl->lock); 1600 ndtmsg->ndtm_family = tbl->family; 1601 ndtmsg->ndtm_pad1 = 0; 1602 ndtmsg->ndtm_pad2 = 0; 1603 1604 RTA_PUT_STRING(skb, NDTA_NAME, tbl->id); 1605 RTA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval); 1606 RTA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1); 1607 RTA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2); 1608 RTA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3); 1609 1610 { 1611 unsigned long now = jiffies; 1612 unsigned int flush_delta = now - tbl->last_flush; 1613 unsigned int rand_delta = now - tbl->last_rand; 1614 1615 struct ndt_config ndc = { 1616 .ndtc_key_len = tbl->key_len, 1617 .ndtc_entry_size = tbl->entry_size, 1618 .ndtc_entries = atomic_read(&tbl->entries), 1619 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 1620 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 1621 .ndtc_hash_rnd = tbl->hash_rnd, 1622 .ndtc_hash_mask = tbl->hash_mask, 1623 .ndtc_hash_chain_gc = tbl->hash_chain_gc, 1624 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 1625 }; 1626 1627 RTA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc); 1628 } 1629 1630 { 1631 int cpu; 1632 struct ndt_stats ndst; 1633 1634 memset(&ndst, 0, sizeof(ndst)); 1635 1636 for (cpu = 0; cpu < NR_CPUS; cpu++) { 1637 struct neigh_statistics *st; 1638 1639 if (!cpu_possible(cpu)) 1640 continue; 1641 1642 st = per_cpu_ptr(tbl->stats, cpu); 1643 ndst.ndts_allocs += st->allocs; 1644 ndst.ndts_destroys += st->destroys; 1645 ndst.ndts_hash_grows += st->hash_grows; 1646 ndst.ndts_res_failed += st->res_failed; 1647 ndst.ndts_lookups += st->lookups; 1648 ndst.ndts_hits += st->hits; 1649 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 1650 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 1651 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 1652 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 1653 } 1654 1655 RTA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst); 1656 } 1657 1658 BUG_ON(tbl->parms.dev); 1659 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 1660 goto rtattr_failure; 1661 1662 read_unlock_bh(&tbl->lock); 1663 return NLMSG_END(skb, nlh); 1664 1665 rtattr_failure: 1666 read_unlock_bh(&tbl->lock); 1667 return NLMSG_CANCEL(skb, nlh); 1668 1669 nlmsg_failure: 1670 return -1; 1671 } 1672 1673 static int neightbl_fill_param_info(struct neigh_table *tbl, 1674 struct neigh_parms *parms, 1675 struct sk_buff *skb, 1676 struct netlink_callback *cb) 1677 { 1678 struct ndtmsg *ndtmsg; 1679 struct nlmsghdr *nlh; 1680 1681 nlh = NLMSG_NEW_ANSWER(skb, cb, RTM_NEWNEIGHTBL, sizeof(struct ndtmsg), 1682 NLM_F_MULTI); 1683 1684 ndtmsg = NLMSG_DATA(nlh); 1685 1686 read_lock_bh(&tbl->lock); 1687 ndtmsg->ndtm_family = tbl->family; 1688 ndtmsg->ndtm_pad1 = 0; 1689 ndtmsg->ndtm_pad2 = 0; 1690 RTA_PUT_STRING(skb, NDTA_NAME, tbl->id); 1691 1692 if (neightbl_fill_parms(skb, parms) < 0) 1693 goto rtattr_failure; 1694 1695 read_unlock_bh(&tbl->lock); 1696 return NLMSG_END(skb, nlh); 1697 1698 rtattr_failure: 1699 read_unlock_bh(&tbl->lock); 1700 return NLMSG_CANCEL(skb, nlh); 1701 1702 nlmsg_failure: 1703 return -1; 1704 } 1705 1706 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl, 1707 int ifindex) 1708 { 1709 struct neigh_parms *p; 1710 1711 for (p = &tbl->parms; p; p = p->next) 1712 if ((p->dev && p->dev->ifindex == ifindex) || 1713 (!p->dev && !ifindex)) 1714 return p; 1715 1716 return NULL; 1717 } 1718 1719 int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1720 { 1721 struct neigh_table *tbl; 1722 struct ndtmsg *ndtmsg = NLMSG_DATA(nlh); 1723 struct rtattr **tb = arg; 1724 int err = -EINVAL; 1725 1726 if (!tb[NDTA_NAME - 1] || !RTA_PAYLOAD(tb[NDTA_NAME - 1])) 1727 return -EINVAL; 1728 1729 read_lock(&neigh_tbl_lock); 1730 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1731 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 1732 continue; 1733 1734 if (!rtattr_strcmp(tb[NDTA_NAME - 1], tbl->id)) 1735 break; 1736 } 1737 1738 if (tbl == NULL) { 1739 err = -ENOENT; 1740 goto errout; 1741 } 1742 1743 /* 1744 * We acquire tbl->lock to be nice to the periodic timers and 1745 * make sure they always see a consistent set of values. 1746 */ 1747 write_lock_bh(&tbl->lock); 1748 1749 if (tb[NDTA_THRESH1 - 1]) 1750 tbl->gc_thresh1 = RTA_GET_U32(tb[NDTA_THRESH1 - 1]); 1751 1752 if (tb[NDTA_THRESH2 - 1]) 1753 tbl->gc_thresh2 = RTA_GET_U32(tb[NDTA_THRESH2 - 1]); 1754 1755 if (tb[NDTA_THRESH3 - 1]) 1756 tbl->gc_thresh3 = RTA_GET_U32(tb[NDTA_THRESH3 - 1]); 1757 1758 if (tb[NDTA_GC_INTERVAL - 1]) 1759 tbl->gc_interval = RTA_GET_MSECS(tb[NDTA_GC_INTERVAL - 1]); 1760 1761 if (tb[NDTA_PARMS - 1]) { 1762 struct rtattr *tbp[NDTPA_MAX]; 1763 struct neigh_parms *p; 1764 u32 ifindex = 0; 1765 1766 if (rtattr_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS - 1]) < 0) 1767 goto rtattr_failure; 1768 1769 if (tbp[NDTPA_IFINDEX - 1]) 1770 ifindex = RTA_GET_U32(tbp[NDTPA_IFINDEX - 1]); 1771 1772 p = lookup_neigh_params(tbl, ifindex); 1773 if (p == NULL) { 1774 err = -ENOENT; 1775 goto rtattr_failure; 1776 } 1777 1778 if (tbp[NDTPA_QUEUE_LEN - 1]) 1779 p->queue_len = RTA_GET_U32(tbp[NDTPA_QUEUE_LEN - 1]); 1780 1781 if (tbp[NDTPA_PROXY_QLEN - 1]) 1782 p->proxy_qlen = RTA_GET_U32(tbp[NDTPA_PROXY_QLEN - 1]); 1783 1784 if (tbp[NDTPA_APP_PROBES - 1]) 1785 p->app_probes = RTA_GET_U32(tbp[NDTPA_APP_PROBES - 1]); 1786 1787 if (tbp[NDTPA_UCAST_PROBES - 1]) 1788 p->ucast_probes = 1789 RTA_GET_U32(tbp[NDTPA_UCAST_PROBES - 1]); 1790 1791 if (tbp[NDTPA_MCAST_PROBES - 1]) 1792 p->mcast_probes = 1793 RTA_GET_U32(tbp[NDTPA_MCAST_PROBES - 1]); 1794 1795 if (tbp[NDTPA_BASE_REACHABLE_TIME - 1]) 1796 p->base_reachable_time = 1797 RTA_GET_MSECS(tbp[NDTPA_BASE_REACHABLE_TIME - 1]); 1798 1799 if (tbp[NDTPA_GC_STALETIME - 1]) 1800 p->gc_staletime = 1801 RTA_GET_MSECS(tbp[NDTPA_GC_STALETIME - 1]); 1802 1803 if (tbp[NDTPA_DELAY_PROBE_TIME - 1]) 1804 p->delay_probe_time = 1805 RTA_GET_MSECS(tbp[NDTPA_DELAY_PROBE_TIME - 1]); 1806 1807 if (tbp[NDTPA_RETRANS_TIME - 1]) 1808 p->retrans_time = 1809 RTA_GET_MSECS(tbp[NDTPA_RETRANS_TIME - 1]); 1810 1811 if (tbp[NDTPA_ANYCAST_DELAY - 1]) 1812 p->anycast_delay = 1813 RTA_GET_MSECS(tbp[NDTPA_ANYCAST_DELAY - 1]); 1814 1815 if (tbp[NDTPA_PROXY_DELAY - 1]) 1816 p->proxy_delay = 1817 RTA_GET_MSECS(tbp[NDTPA_PROXY_DELAY - 1]); 1818 1819 if (tbp[NDTPA_LOCKTIME - 1]) 1820 p->locktime = RTA_GET_MSECS(tbp[NDTPA_LOCKTIME - 1]); 1821 } 1822 1823 err = 0; 1824 1825 rtattr_failure: 1826 write_unlock_bh(&tbl->lock); 1827 errout: 1828 read_unlock(&neigh_tbl_lock); 1829 return err; 1830 } 1831 1832 int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 1833 { 1834 int idx, family; 1835 int s_idx = cb->args[0]; 1836 struct neigh_table *tbl; 1837 1838 family = ((struct rtgenmsg *)NLMSG_DATA(cb->nlh))->rtgen_family; 1839 1840 read_lock(&neigh_tbl_lock); 1841 for (tbl = neigh_tables, idx = 0; tbl; tbl = tbl->next) { 1842 struct neigh_parms *p; 1843 1844 if (idx < s_idx || (family && tbl->family != family)) 1845 continue; 1846 1847 if (neightbl_fill_info(tbl, skb, cb) <= 0) 1848 break; 1849 1850 for (++idx, p = tbl->parms.next; p; p = p->next, idx++) { 1851 if (idx < s_idx) 1852 continue; 1853 1854 if (neightbl_fill_param_info(tbl, p, skb, cb) <= 0) 1855 goto out; 1856 } 1857 1858 } 1859 out: 1860 read_unlock(&neigh_tbl_lock); 1861 cb->args[0] = idx; 1862 1863 return skb->len; 1864 } 1865 1866 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *n, 1867 u32 pid, u32 seq, int event, unsigned int flags) 1868 { 1869 unsigned long now = jiffies; 1870 unsigned char *b = skb->tail; 1871 struct nda_cacheinfo ci; 1872 int locked = 0; 1873 u32 probes; 1874 struct nlmsghdr *nlh = NLMSG_NEW(skb, pid, seq, event, 1875 sizeof(struct ndmsg), flags); 1876 struct ndmsg *ndm = NLMSG_DATA(nlh); 1877 1878 ndm->ndm_family = n->ops->family; 1879 ndm->ndm_pad1 = 0; 1880 ndm->ndm_pad2 = 0; 1881 ndm->ndm_flags = n->flags; 1882 ndm->ndm_type = n->type; 1883 ndm->ndm_ifindex = n->dev->ifindex; 1884 RTA_PUT(skb, NDA_DST, n->tbl->key_len, n->primary_key); 1885 read_lock_bh(&n->lock); 1886 locked = 1; 1887 ndm->ndm_state = n->nud_state; 1888 if (n->nud_state & NUD_VALID) 1889 RTA_PUT(skb, NDA_LLADDR, n->dev->addr_len, n->ha); 1890 ci.ndm_used = now - n->used; 1891 ci.ndm_confirmed = now - n->confirmed; 1892 ci.ndm_updated = now - n->updated; 1893 ci.ndm_refcnt = atomic_read(&n->refcnt) - 1; 1894 probes = atomic_read(&n->probes); 1895 read_unlock_bh(&n->lock); 1896 locked = 0; 1897 RTA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci); 1898 RTA_PUT(skb, NDA_PROBES, sizeof(probes), &probes); 1899 nlh->nlmsg_len = skb->tail - b; 1900 return skb->len; 1901 1902 nlmsg_failure: 1903 rtattr_failure: 1904 if (locked) 1905 read_unlock_bh(&n->lock); 1906 skb_trim(skb, b - skb->data); 1907 return -1; 1908 } 1909 1910 1911 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 1912 struct netlink_callback *cb) 1913 { 1914 struct neighbour *n; 1915 int rc, h, s_h = cb->args[1]; 1916 int idx, s_idx = idx = cb->args[2]; 1917 1918 for (h = 0; h <= tbl->hash_mask; h++) { 1919 if (h < s_h) 1920 continue; 1921 if (h > s_h) 1922 s_idx = 0; 1923 read_lock_bh(&tbl->lock); 1924 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next, idx++) { 1925 if (idx < s_idx) 1926 continue; 1927 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid, 1928 cb->nlh->nlmsg_seq, 1929 RTM_NEWNEIGH, 1930 NLM_F_MULTI) <= 0) { 1931 read_unlock_bh(&tbl->lock); 1932 rc = -1; 1933 goto out; 1934 } 1935 } 1936 read_unlock_bh(&tbl->lock); 1937 } 1938 rc = skb->len; 1939 out: 1940 cb->args[1] = h; 1941 cb->args[2] = idx; 1942 return rc; 1943 } 1944 1945 int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 1946 { 1947 struct neigh_table *tbl; 1948 int t, family, s_t; 1949 1950 read_lock(&neigh_tbl_lock); 1951 family = ((struct rtgenmsg *)NLMSG_DATA(cb->nlh))->rtgen_family; 1952 s_t = cb->args[0]; 1953 1954 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) { 1955 if (t < s_t || (family && tbl->family != family)) 1956 continue; 1957 if (t > s_t) 1958 memset(&cb->args[1], 0, sizeof(cb->args) - 1959 sizeof(cb->args[0])); 1960 if (neigh_dump_table(tbl, skb, cb) < 0) 1961 break; 1962 } 1963 read_unlock(&neigh_tbl_lock); 1964 1965 cb->args[0] = t; 1966 return skb->len; 1967 } 1968 1969 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 1970 { 1971 int chain; 1972 1973 read_lock_bh(&tbl->lock); 1974 for (chain = 0; chain <= tbl->hash_mask; chain++) { 1975 struct neighbour *n; 1976 1977 for (n = tbl->hash_buckets[chain]; n; n = n->next) 1978 cb(n, cookie); 1979 } 1980 read_unlock_bh(&tbl->lock); 1981 } 1982 EXPORT_SYMBOL(neigh_for_each); 1983 1984 /* The tbl->lock must be held as a writer and BH disabled. */ 1985 void __neigh_for_each_release(struct neigh_table *tbl, 1986 int (*cb)(struct neighbour *)) 1987 { 1988 int chain; 1989 1990 for (chain = 0; chain <= tbl->hash_mask; chain++) { 1991 struct neighbour *n, **np; 1992 1993 np = &tbl->hash_buckets[chain]; 1994 while ((n = *np) != NULL) { 1995 int release; 1996 1997 write_lock(&n->lock); 1998 release = cb(n); 1999 if (release) { 2000 *np = n->next; 2001 n->dead = 1; 2002 } else 2003 np = &n->next; 2004 write_unlock(&n->lock); 2005 if (release) 2006 neigh_release(n); 2007 } 2008 } 2009 } 2010 EXPORT_SYMBOL(__neigh_for_each_release); 2011 2012 #ifdef CONFIG_PROC_FS 2013 2014 static struct neighbour *neigh_get_first(struct seq_file *seq) 2015 { 2016 struct neigh_seq_state *state = seq->private; 2017 struct neigh_table *tbl = state->tbl; 2018 struct neighbour *n = NULL; 2019 int bucket = state->bucket; 2020 2021 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 2022 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) { 2023 n = tbl->hash_buckets[bucket]; 2024 2025 while (n) { 2026 if (state->neigh_sub_iter) { 2027 loff_t fakep = 0; 2028 void *v; 2029 2030 v = state->neigh_sub_iter(state, n, &fakep); 2031 if (!v) 2032 goto next; 2033 } 2034 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2035 break; 2036 if (n->nud_state & ~NUD_NOARP) 2037 break; 2038 next: 2039 n = n->next; 2040 } 2041 2042 if (n) 2043 break; 2044 } 2045 state->bucket = bucket; 2046 2047 return n; 2048 } 2049 2050 static struct neighbour *neigh_get_next(struct seq_file *seq, 2051 struct neighbour *n, 2052 loff_t *pos) 2053 { 2054 struct neigh_seq_state *state = seq->private; 2055 struct neigh_table *tbl = state->tbl; 2056 2057 if (state->neigh_sub_iter) { 2058 void *v = state->neigh_sub_iter(state, n, pos); 2059 if (v) 2060 return n; 2061 } 2062 n = n->next; 2063 2064 while (1) { 2065 while (n) { 2066 if (state->neigh_sub_iter) { 2067 void *v = state->neigh_sub_iter(state, n, pos); 2068 if (v) 2069 return n; 2070 goto next; 2071 } 2072 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2073 break; 2074 2075 if (n->nud_state & ~NUD_NOARP) 2076 break; 2077 next: 2078 n = n->next; 2079 } 2080 2081 if (n) 2082 break; 2083 2084 if (++state->bucket > tbl->hash_mask) 2085 break; 2086 2087 n = tbl->hash_buckets[state->bucket]; 2088 } 2089 2090 if (n && pos) 2091 --(*pos); 2092 return n; 2093 } 2094 2095 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 2096 { 2097 struct neighbour *n = neigh_get_first(seq); 2098 2099 if (n) { 2100 while (*pos) { 2101 n = neigh_get_next(seq, n, pos); 2102 if (!n) 2103 break; 2104 } 2105 } 2106 return *pos ? NULL : n; 2107 } 2108 2109 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 2110 { 2111 struct neigh_seq_state *state = seq->private; 2112 struct neigh_table *tbl = state->tbl; 2113 struct pneigh_entry *pn = NULL; 2114 int bucket = state->bucket; 2115 2116 state->flags |= NEIGH_SEQ_IS_PNEIGH; 2117 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 2118 pn = tbl->phash_buckets[bucket]; 2119 if (pn) 2120 break; 2121 } 2122 state->bucket = bucket; 2123 2124 return pn; 2125 } 2126 2127 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 2128 struct pneigh_entry *pn, 2129 loff_t *pos) 2130 { 2131 struct neigh_seq_state *state = seq->private; 2132 struct neigh_table *tbl = state->tbl; 2133 2134 pn = pn->next; 2135 while (!pn) { 2136 if (++state->bucket > PNEIGH_HASHMASK) 2137 break; 2138 pn = tbl->phash_buckets[state->bucket]; 2139 if (pn) 2140 break; 2141 } 2142 2143 if (pn && pos) 2144 --(*pos); 2145 2146 return pn; 2147 } 2148 2149 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 2150 { 2151 struct pneigh_entry *pn = pneigh_get_first(seq); 2152 2153 if (pn) { 2154 while (*pos) { 2155 pn = pneigh_get_next(seq, pn, pos); 2156 if (!pn) 2157 break; 2158 } 2159 } 2160 return *pos ? NULL : pn; 2161 } 2162 2163 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 2164 { 2165 struct neigh_seq_state *state = seq->private; 2166 void *rc; 2167 2168 rc = neigh_get_idx(seq, pos); 2169 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2170 rc = pneigh_get_idx(seq, pos); 2171 2172 return rc; 2173 } 2174 2175 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 2176 { 2177 struct neigh_seq_state *state = seq->private; 2178 loff_t pos_minus_one; 2179 2180 state->tbl = tbl; 2181 state->bucket = 0; 2182 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 2183 2184 read_lock_bh(&tbl->lock); 2185 2186 pos_minus_one = *pos - 1; 2187 return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN; 2188 } 2189 EXPORT_SYMBOL(neigh_seq_start); 2190 2191 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2192 { 2193 struct neigh_seq_state *state; 2194 void *rc; 2195 2196 if (v == SEQ_START_TOKEN) { 2197 rc = neigh_get_idx(seq, pos); 2198 goto out; 2199 } 2200 2201 state = seq->private; 2202 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 2203 rc = neigh_get_next(seq, v, NULL); 2204 if (rc) 2205 goto out; 2206 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2207 rc = pneigh_get_first(seq); 2208 } else { 2209 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 2210 rc = pneigh_get_next(seq, v, NULL); 2211 } 2212 out: 2213 ++(*pos); 2214 return rc; 2215 } 2216 EXPORT_SYMBOL(neigh_seq_next); 2217 2218 void neigh_seq_stop(struct seq_file *seq, void *v) 2219 { 2220 struct neigh_seq_state *state = seq->private; 2221 struct neigh_table *tbl = state->tbl; 2222 2223 read_unlock_bh(&tbl->lock); 2224 } 2225 EXPORT_SYMBOL(neigh_seq_stop); 2226 2227 /* statistics via seq_file */ 2228 2229 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 2230 { 2231 struct proc_dir_entry *pde = seq->private; 2232 struct neigh_table *tbl = pde->data; 2233 int cpu; 2234 2235 if (*pos == 0) 2236 return SEQ_START_TOKEN; 2237 2238 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) { 2239 if (!cpu_possible(cpu)) 2240 continue; 2241 *pos = cpu+1; 2242 return per_cpu_ptr(tbl->stats, cpu); 2243 } 2244 return NULL; 2245 } 2246 2247 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2248 { 2249 struct proc_dir_entry *pde = seq->private; 2250 struct neigh_table *tbl = pde->data; 2251 int cpu; 2252 2253 for (cpu = *pos; cpu < NR_CPUS; ++cpu) { 2254 if (!cpu_possible(cpu)) 2255 continue; 2256 *pos = cpu+1; 2257 return per_cpu_ptr(tbl->stats, cpu); 2258 } 2259 return NULL; 2260 } 2261 2262 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 2263 { 2264 2265 } 2266 2267 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 2268 { 2269 struct proc_dir_entry *pde = seq->private; 2270 struct neigh_table *tbl = pde->data; 2271 struct neigh_statistics *st = v; 2272 2273 if (v == SEQ_START_TOKEN) { 2274 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n"); 2275 return 0; 2276 } 2277 2278 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 2279 "%08lx %08lx %08lx %08lx\n", 2280 atomic_read(&tbl->entries), 2281 2282 st->allocs, 2283 st->destroys, 2284 st->hash_grows, 2285 2286 st->lookups, 2287 st->hits, 2288 2289 st->res_failed, 2290 2291 st->rcv_probes_mcast, 2292 st->rcv_probes_ucast, 2293 2294 st->periodic_gc_runs, 2295 st->forced_gc_runs 2296 ); 2297 2298 return 0; 2299 } 2300 2301 static struct seq_operations neigh_stat_seq_ops = { 2302 .start = neigh_stat_seq_start, 2303 .next = neigh_stat_seq_next, 2304 .stop = neigh_stat_seq_stop, 2305 .show = neigh_stat_seq_show, 2306 }; 2307 2308 static int neigh_stat_seq_open(struct inode *inode, struct file *file) 2309 { 2310 int ret = seq_open(file, &neigh_stat_seq_ops); 2311 2312 if (!ret) { 2313 struct seq_file *sf = file->private_data; 2314 sf->private = PDE(inode); 2315 } 2316 return ret; 2317 }; 2318 2319 static struct file_operations neigh_stat_seq_fops = { 2320 .owner = THIS_MODULE, 2321 .open = neigh_stat_seq_open, 2322 .read = seq_read, 2323 .llseek = seq_lseek, 2324 .release = seq_release, 2325 }; 2326 2327 #endif /* CONFIG_PROC_FS */ 2328 2329 #ifdef CONFIG_ARPD 2330 void neigh_app_ns(struct neighbour *n) 2331 { 2332 struct nlmsghdr *nlh; 2333 int size = NLMSG_SPACE(sizeof(struct ndmsg) + 256); 2334 struct sk_buff *skb = alloc_skb(size, GFP_ATOMIC); 2335 2336 if (!skb) 2337 return; 2338 2339 if (neigh_fill_info(skb, n, 0, 0, RTM_GETNEIGH, 0) < 0) { 2340 kfree_skb(skb); 2341 return; 2342 } 2343 nlh = (struct nlmsghdr *)skb->data; 2344 nlh->nlmsg_flags = NLM_F_REQUEST; 2345 NETLINK_CB(skb).dst_groups = RTMGRP_NEIGH; 2346 netlink_broadcast(rtnl, skb, 0, RTMGRP_NEIGH, GFP_ATOMIC); 2347 } 2348 2349 static void neigh_app_notify(struct neighbour *n) 2350 { 2351 struct nlmsghdr *nlh; 2352 int size = NLMSG_SPACE(sizeof(struct ndmsg) + 256); 2353 struct sk_buff *skb = alloc_skb(size, GFP_ATOMIC); 2354 2355 if (!skb) 2356 return; 2357 2358 if (neigh_fill_info(skb, n, 0, 0, RTM_NEWNEIGH, 0) < 0) { 2359 kfree_skb(skb); 2360 return; 2361 } 2362 nlh = (struct nlmsghdr *)skb->data; 2363 NETLINK_CB(skb).dst_groups = RTMGRP_NEIGH; 2364 netlink_broadcast(rtnl, skb, 0, RTMGRP_NEIGH, GFP_ATOMIC); 2365 } 2366 2367 #endif /* CONFIG_ARPD */ 2368 2369 #ifdef CONFIG_SYSCTL 2370 2371 static struct neigh_sysctl_table { 2372 struct ctl_table_header *sysctl_header; 2373 ctl_table neigh_vars[__NET_NEIGH_MAX]; 2374 ctl_table neigh_dev[2]; 2375 ctl_table neigh_neigh_dir[2]; 2376 ctl_table neigh_proto_dir[2]; 2377 ctl_table neigh_root_dir[2]; 2378 } neigh_sysctl_template = { 2379 .neigh_vars = { 2380 { 2381 .ctl_name = NET_NEIGH_MCAST_SOLICIT, 2382 .procname = "mcast_solicit", 2383 .maxlen = sizeof(int), 2384 .mode = 0644, 2385 .proc_handler = &proc_dointvec, 2386 }, 2387 { 2388 .ctl_name = NET_NEIGH_UCAST_SOLICIT, 2389 .procname = "ucast_solicit", 2390 .maxlen = sizeof(int), 2391 .mode = 0644, 2392 .proc_handler = &proc_dointvec, 2393 }, 2394 { 2395 .ctl_name = NET_NEIGH_APP_SOLICIT, 2396 .procname = "app_solicit", 2397 .maxlen = sizeof(int), 2398 .mode = 0644, 2399 .proc_handler = &proc_dointvec, 2400 }, 2401 { 2402 .ctl_name = NET_NEIGH_RETRANS_TIME, 2403 .procname = "retrans_time", 2404 .maxlen = sizeof(int), 2405 .mode = 0644, 2406 .proc_handler = &proc_dointvec_userhz_jiffies, 2407 }, 2408 { 2409 .ctl_name = NET_NEIGH_REACHABLE_TIME, 2410 .procname = "base_reachable_time", 2411 .maxlen = sizeof(int), 2412 .mode = 0644, 2413 .proc_handler = &proc_dointvec_jiffies, 2414 .strategy = &sysctl_jiffies, 2415 }, 2416 { 2417 .ctl_name = NET_NEIGH_DELAY_PROBE_TIME, 2418 .procname = "delay_first_probe_time", 2419 .maxlen = sizeof(int), 2420 .mode = 0644, 2421 .proc_handler = &proc_dointvec_jiffies, 2422 .strategy = &sysctl_jiffies, 2423 }, 2424 { 2425 .ctl_name = NET_NEIGH_GC_STALE_TIME, 2426 .procname = "gc_stale_time", 2427 .maxlen = sizeof(int), 2428 .mode = 0644, 2429 .proc_handler = &proc_dointvec_jiffies, 2430 .strategy = &sysctl_jiffies, 2431 }, 2432 { 2433 .ctl_name = NET_NEIGH_UNRES_QLEN, 2434 .procname = "unres_qlen", 2435 .maxlen = sizeof(int), 2436 .mode = 0644, 2437 .proc_handler = &proc_dointvec, 2438 }, 2439 { 2440 .ctl_name = NET_NEIGH_PROXY_QLEN, 2441 .procname = "proxy_qlen", 2442 .maxlen = sizeof(int), 2443 .mode = 0644, 2444 .proc_handler = &proc_dointvec, 2445 }, 2446 { 2447 .ctl_name = NET_NEIGH_ANYCAST_DELAY, 2448 .procname = "anycast_delay", 2449 .maxlen = sizeof(int), 2450 .mode = 0644, 2451 .proc_handler = &proc_dointvec_userhz_jiffies, 2452 }, 2453 { 2454 .ctl_name = NET_NEIGH_PROXY_DELAY, 2455 .procname = "proxy_delay", 2456 .maxlen = sizeof(int), 2457 .mode = 0644, 2458 .proc_handler = &proc_dointvec_userhz_jiffies, 2459 }, 2460 { 2461 .ctl_name = NET_NEIGH_LOCKTIME, 2462 .procname = "locktime", 2463 .maxlen = sizeof(int), 2464 .mode = 0644, 2465 .proc_handler = &proc_dointvec_userhz_jiffies, 2466 }, 2467 { 2468 .ctl_name = NET_NEIGH_GC_INTERVAL, 2469 .procname = "gc_interval", 2470 .maxlen = sizeof(int), 2471 .mode = 0644, 2472 .proc_handler = &proc_dointvec_jiffies, 2473 .strategy = &sysctl_jiffies, 2474 }, 2475 { 2476 .ctl_name = NET_NEIGH_GC_THRESH1, 2477 .procname = "gc_thresh1", 2478 .maxlen = sizeof(int), 2479 .mode = 0644, 2480 .proc_handler = &proc_dointvec, 2481 }, 2482 { 2483 .ctl_name = NET_NEIGH_GC_THRESH2, 2484 .procname = "gc_thresh2", 2485 .maxlen = sizeof(int), 2486 .mode = 0644, 2487 .proc_handler = &proc_dointvec, 2488 }, 2489 { 2490 .ctl_name = NET_NEIGH_GC_THRESH3, 2491 .procname = "gc_thresh3", 2492 .maxlen = sizeof(int), 2493 .mode = 0644, 2494 .proc_handler = &proc_dointvec, 2495 }, 2496 { 2497 .ctl_name = NET_NEIGH_RETRANS_TIME_MS, 2498 .procname = "retrans_time_ms", 2499 .maxlen = sizeof(int), 2500 .mode = 0644, 2501 .proc_handler = &proc_dointvec_ms_jiffies, 2502 .strategy = &sysctl_ms_jiffies, 2503 }, 2504 { 2505 .ctl_name = NET_NEIGH_REACHABLE_TIME_MS, 2506 .procname = "base_reachable_time_ms", 2507 .maxlen = sizeof(int), 2508 .mode = 0644, 2509 .proc_handler = &proc_dointvec_ms_jiffies, 2510 .strategy = &sysctl_ms_jiffies, 2511 }, 2512 }, 2513 .neigh_dev = { 2514 { 2515 .ctl_name = NET_PROTO_CONF_DEFAULT, 2516 .procname = "default", 2517 .mode = 0555, 2518 }, 2519 }, 2520 .neigh_neigh_dir = { 2521 { 2522 .procname = "neigh", 2523 .mode = 0555, 2524 }, 2525 }, 2526 .neigh_proto_dir = { 2527 { 2528 .mode = 0555, 2529 }, 2530 }, 2531 .neigh_root_dir = { 2532 { 2533 .ctl_name = CTL_NET, 2534 .procname = "net", 2535 .mode = 0555, 2536 }, 2537 }, 2538 }; 2539 2540 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 2541 int p_id, int pdev_id, char *p_name, 2542 proc_handler *handler, ctl_handler *strategy) 2543 { 2544 struct neigh_sysctl_table *t = kmalloc(sizeof(*t), GFP_KERNEL); 2545 const char *dev_name_source = NULL; 2546 char *dev_name = NULL; 2547 int err = 0; 2548 2549 if (!t) 2550 return -ENOBUFS; 2551 memcpy(t, &neigh_sysctl_template, sizeof(*t)); 2552 t->neigh_vars[0].data = &p->mcast_probes; 2553 t->neigh_vars[1].data = &p->ucast_probes; 2554 t->neigh_vars[2].data = &p->app_probes; 2555 t->neigh_vars[3].data = &p->retrans_time; 2556 t->neigh_vars[4].data = &p->base_reachable_time; 2557 t->neigh_vars[5].data = &p->delay_probe_time; 2558 t->neigh_vars[6].data = &p->gc_staletime; 2559 t->neigh_vars[7].data = &p->queue_len; 2560 t->neigh_vars[8].data = &p->proxy_qlen; 2561 t->neigh_vars[9].data = &p->anycast_delay; 2562 t->neigh_vars[10].data = &p->proxy_delay; 2563 t->neigh_vars[11].data = &p->locktime; 2564 2565 if (dev) { 2566 dev_name_source = dev->name; 2567 t->neigh_dev[0].ctl_name = dev->ifindex; 2568 t->neigh_vars[12].procname = NULL; 2569 t->neigh_vars[13].procname = NULL; 2570 t->neigh_vars[14].procname = NULL; 2571 t->neigh_vars[15].procname = NULL; 2572 } else { 2573 dev_name_source = t->neigh_dev[0].procname; 2574 t->neigh_vars[12].data = (int *)(p + 1); 2575 t->neigh_vars[13].data = (int *)(p + 1) + 1; 2576 t->neigh_vars[14].data = (int *)(p + 1) + 2; 2577 t->neigh_vars[15].data = (int *)(p + 1) + 3; 2578 } 2579 2580 t->neigh_vars[16].data = &p->retrans_time; 2581 t->neigh_vars[17].data = &p->base_reachable_time; 2582 2583 if (handler || strategy) { 2584 /* RetransTime */ 2585 t->neigh_vars[3].proc_handler = handler; 2586 t->neigh_vars[3].strategy = strategy; 2587 t->neigh_vars[3].extra1 = dev; 2588 /* ReachableTime */ 2589 t->neigh_vars[4].proc_handler = handler; 2590 t->neigh_vars[4].strategy = strategy; 2591 t->neigh_vars[4].extra1 = dev; 2592 /* RetransTime (in milliseconds)*/ 2593 t->neigh_vars[16].proc_handler = handler; 2594 t->neigh_vars[16].strategy = strategy; 2595 t->neigh_vars[16].extra1 = dev; 2596 /* ReachableTime (in milliseconds) */ 2597 t->neigh_vars[17].proc_handler = handler; 2598 t->neigh_vars[17].strategy = strategy; 2599 t->neigh_vars[17].extra1 = dev; 2600 } 2601 2602 dev_name = kstrdup(dev_name_source, GFP_KERNEL); 2603 if (!dev_name) { 2604 err = -ENOBUFS; 2605 goto free; 2606 } 2607 2608 t->neigh_dev[0].procname = dev_name; 2609 2610 t->neigh_neigh_dir[0].ctl_name = pdev_id; 2611 2612 t->neigh_proto_dir[0].procname = p_name; 2613 t->neigh_proto_dir[0].ctl_name = p_id; 2614 2615 t->neigh_dev[0].child = t->neigh_vars; 2616 t->neigh_neigh_dir[0].child = t->neigh_dev; 2617 t->neigh_proto_dir[0].child = t->neigh_neigh_dir; 2618 t->neigh_root_dir[0].child = t->neigh_proto_dir; 2619 2620 t->sysctl_header = register_sysctl_table(t->neigh_root_dir, 0); 2621 if (!t->sysctl_header) { 2622 err = -ENOBUFS; 2623 goto free_procname; 2624 } 2625 p->sysctl_table = t; 2626 return 0; 2627 2628 /* error path */ 2629 free_procname: 2630 kfree(dev_name); 2631 free: 2632 kfree(t); 2633 2634 return err; 2635 } 2636 2637 void neigh_sysctl_unregister(struct neigh_parms *p) 2638 { 2639 if (p->sysctl_table) { 2640 struct neigh_sysctl_table *t = p->sysctl_table; 2641 p->sysctl_table = NULL; 2642 unregister_sysctl_table(t->sysctl_header); 2643 kfree(t->neigh_dev[0].procname); 2644 kfree(t); 2645 } 2646 } 2647 2648 #endif /* CONFIG_SYSCTL */ 2649 2650 EXPORT_SYMBOL(__neigh_event_send); 2651 EXPORT_SYMBOL(neigh_add); 2652 EXPORT_SYMBOL(neigh_changeaddr); 2653 EXPORT_SYMBOL(neigh_compat_output); 2654 EXPORT_SYMBOL(neigh_connected_output); 2655 EXPORT_SYMBOL(neigh_create); 2656 EXPORT_SYMBOL(neigh_delete); 2657 EXPORT_SYMBOL(neigh_destroy); 2658 EXPORT_SYMBOL(neigh_dump_info); 2659 EXPORT_SYMBOL(neigh_event_ns); 2660 EXPORT_SYMBOL(neigh_ifdown); 2661 EXPORT_SYMBOL(neigh_lookup); 2662 EXPORT_SYMBOL(neigh_lookup_nodev); 2663 EXPORT_SYMBOL(neigh_parms_alloc); 2664 EXPORT_SYMBOL(neigh_parms_release); 2665 EXPORT_SYMBOL(neigh_rand_reach_time); 2666 EXPORT_SYMBOL(neigh_resolve_output); 2667 EXPORT_SYMBOL(neigh_table_clear); 2668 EXPORT_SYMBOL(neigh_table_init); 2669 EXPORT_SYMBOL(neigh_update); 2670 EXPORT_SYMBOL(neigh_update_hhs); 2671 EXPORT_SYMBOL(pneigh_enqueue); 2672 EXPORT_SYMBOL(pneigh_lookup); 2673 EXPORT_SYMBOL(neightbl_dump_info); 2674 EXPORT_SYMBOL(neightbl_set); 2675 2676 #ifdef CONFIG_ARPD 2677 EXPORT_SYMBOL(neigh_app_ns); 2678 #endif 2679 #ifdef CONFIG_SYSCTL 2680 EXPORT_SYMBOL(neigh_sysctl_register); 2681 EXPORT_SYMBOL(neigh_sysctl_unregister); 2682 #endif 2683