1 /* 2 * Generic address resolution entity 3 * 4 * Authors: 5 * Pedro Roque <roque@di.fc.ul.pt> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Fixes: 14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 15 * Harald Welte Add neighbour cache statistics like rtstat 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/socket.h> 22 #include <linux/netdevice.h> 23 #include <linux/proc_fs.h> 24 #ifdef CONFIG_SYSCTL 25 #include <linux/sysctl.h> 26 #endif 27 #include <linux/times.h> 28 #include <net/neighbour.h> 29 #include <net/dst.h> 30 #include <net/sock.h> 31 #include <net/netevent.h> 32 #include <net/netlink.h> 33 #include <linux/rtnetlink.h> 34 #include <linux/random.h> 35 #include <linux/string.h> 36 37 #define NEIGH_DEBUG 1 38 39 #define NEIGH_PRINTK(x...) printk(x) 40 #define NEIGH_NOPRINTK(x...) do { ; } while(0) 41 #define NEIGH_PRINTK0 NEIGH_PRINTK 42 #define NEIGH_PRINTK1 NEIGH_NOPRINTK 43 #define NEIGH_PRINTK2 NEIGH_NOPRINTK 44 45 #if NEIGH_DEBUG >= 1 46 #undef NEIGH_PRINTK1 47 #define NEIGH_PRINTK1 NEIGH_PRINTK 48 #endif 49 #if NEIGH_DEBUG >= 2 50 #undef NEIGH_PRINTK2 51 #define NEIGH_PRINTK2 NEIGH_PRINTK 52 #endif 53 54 #define PNEIGH_HASHMASK 0xF 55 56 static void neigh_timer_handler(unsigned long arg); 57 #ifdef CONFIG_ARPD 58 static void neigh_app_notify(struct neighbour *n); 59 #endif 60 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev); 61 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev); 62 63 static struct neigh_table *neigh_tables; 64 #ifdef CONFIG_PROC_FS 65 static const struct file_operations neigh_stat_seq_fops; 66 #endif 67 68 /* 69 Neighbour hash table buckets are protected with rwlock tbl->lock. 70 71 - All the scans/updates to hash buckets MUST be made under this lock. 72 - NOTHING clever should be made under this lock: no callbacks 73 to protocol backends, no attempts to send something to network. 74 It will result in deadlocks, if backend/driver wants to use neighbour 75 cache. 76 - If the entry requires some non-trivial actions, increase 77 its reference count and release table lock. 78 79 Neighbour entries are protected: 80 - with reference count. 81 - with rwlock neigh->lock 82 83 Reference count prevents destruction. 84 85 neigh->lock mainly serializes ll address data and its validity state. 86 However, the same lock is used to protect another entry fields: 87 - timer 88 - resolution queue 89 90 Again, nothing clever shall be made under neigh->lock, 91 the most complicated procedure, which we allow is dev->hard_header. 92 It is supposed, that dev->hard_header is simplistic and does 93 not make callbacks to neighbour tables. 94 95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting 96 list of neighbour tables. This list is used only in process context, 97 */ 98 99 static DEFINE_RWLOCK(neigh_tbl_lock); 100 101 static int neigh_blackhole(struct sk_buff *skb) 102 { 103 kfree_skb(skb); 104 return -ENETDOWN; 105 } 106 107 /* 108 * It is random distribution in the interval (1/2)*base...(3/2)*base. 109 * It corresponds to default IPv6 settings and is not overridable, 110 * because it is really reasonable choice. 111 */ 112 113 unsigned long neigh_rand_reach_time(unsigned long base) 114 { 115 return (base ? (net_random() % base) + (base >> 1) : 0); 116 } 117 118 119 static int neigh_forced_gc(struct neigh_table *tbl) 120 { 121 int shrunk = 0; 122 int i; 123 124 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 125 126 write_lock_bh(&tbl->lock); 127 for (i = 0; i <= tbl->hash_mask; i++) { 128 struct neighbour *n, **np; 129 130 np = &tbl->hash_buckets[i]; 131 while ((n = *np) != NULL) { 132 /* Neighbour record may be discarded if: 133 * - nobody refers to it. 134 * - it is not permanent 135 */ 136 write_lock(&n->lock); 137 if (atomic_read(&n->refcnt) == 1 && 138 !(n->nud_state & NUD_PERMANENT)) { 139 *np = n->next; 140 n->dead = 1; 141 shrunk = 1; 142 write_unlock(&n->lock); 143 neigh_release(n); 144 continue; 145 } 146 write_unlock(&n->lock); 147 np = &n->next; 148 } 149 } 150 151 tbl->last_flush = jiffies; 152 153 write_unlock_bh(&tbl->lock); 154 155 return shrunk; 156 } 157 158 static int neigh_del_timer(struct neighbour *n) 159 { 160 if ((n->nud_state & NUD_IN_TIMER) && 161 del_timer(&n->timer)) { 162 neigh_release(n); 163 return 1; 164 } 165 return 0; 166 } 167 168 static void pneigh_queue_purge(struct sk_buff_head *list) 169 { 170 struct sk_buff *skb; 171 172 while ((skb = skb_dequeue(list)) != NULL) { 173 dev_put(skb->dev); 174 kfree_skb(skb); 175 } 176 } 177 178 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev) 179 { 180 int i; 181 182 for (i = 0; i <= tbl->hash_mask; i++) { 183 struct neighbour *n, **np = &tbl->hash_buckets[i]; 184 185 while ((n = *np) != NULL) { 186 if (dev && n->dev != dev) { 187 np = &n->next; 188 continue; 189 } 190 *np = n->next; 191 write_lock(&n->lock); 192 neigh_del_timer(n); 193 n->dead = 1; 194 195 if (atomic_read(&n->refcnt) != 1) { 196 /* The most unpleasant situation. 197 We must destroy neighbour entry, 198 but someone still uses it. 199 200 The destroy will be delayed until 201 the last user releases us, but 202 we must kill timers etc. and move 203 it to safe state. 204 */ 205 skb_queue_purge(&n->arp_queue); 206 n->output = neigh_blackhole; 207 if (n->nud_state & NUD_VALID) 208 n->nud_state = NUD_NOARP; 209 else 210 n->nud_state = NUD_NONE; 211 NEIGH_PRINTK2("neigh %p is stray.\n", n); 212 } 213 write_unlock(&n->lock); 214 neigh_release(n); 215 } 216 } 217 } 218 219 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 220 { 221 write_lock_bh(&tbl->lock); 222 neigh_flush_dev(tbl, dev); 223 write_unlock_bh(&tbl->lock); 224 } 225 226 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 227 { 228 write_lock_bh(&tbl->lock); 229 neigh_flush_dev(tbl, dev); 230 pneigh_ifdown(tbl, dev); 231 write_unlock_bh(&tbl->lock); 232 233 del_timer_sync(&tbl->proxy_timer); 234 pneigh_queue_purge(&tbl->proxy_queue); 235 return 0; 236 } 237 238 static struct neighbour *neigh_alloc(struct neigh_table *tbl) 239 { 240 struct neighbour *n = NULL; 241 unsigned long now = jiffies; 242 int entries; 243 244 entries = atomic_inc_return(&tbl->entries) - 1; 245 if (entries >= tbl->gc_thresh3 || 246 (entries >= tbl->gc_thresh2 && 247 time_after(now, tbl->last_flush + 5 * HZ))) { 248 if (!neigh_forced_gc(tbl) && 249 entries >= tbl->gc_thresh3) 250 goto out_entries; 251 } 252 253 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC); 254 if (!n) 255 goto out_entries; 256 257 skb_queue_head_init(&n->arp_queue); 258 rwlock_init(&n->lock); 259 n->updated = n->used = now; 260 n->nud_state = NUD_NONE; 261 n->output = neigh_blackhole; 262 n->parms = neigh_parms_clone(&tbl->parms); 263 init_timer(&n->timer); 264 n->timer.function = neigh_timer_handler; 265 n->timer.data = (unsigned long)n; 266 267 NEIGH_CACHE_STAT_INC(tbl, allocs); 268 n->tbl = tbl; 269 atomic_set(&n->refcnt, 1); 270 n->dead = 1; 271 out: 272 return n; 273 274 out_entries: 275 atomic_dec(&tbl->entries); 276 goto out; 277 } 278 279 static struct neighbour **neigh_hash_alloc(unsigned int entries) 280 { 281 unsigned long size = entries * sizeof(struct neighbour *); 282 struct neighbour **ret; 283 284 if (size <= PAGE_SIZE) { 285 ret = kzalloc(size, GFP_ATOMIC); 286 } else { 287 ret = (struct neighbour **) 288 __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size)); 289 } 290 return ret; 291 } 292 293 static void neigh_hash_free(struct neighbour **hash, unsigned int entries) 294 { 295 unsigned long size = entries * sizeof(struct neighbour *); 296 297 if (size <= PAGE_SIZE) 298 kfree(hash); 299 else 300 free_pages((unsigned long)hash, get_order(size)); 301 } 302 303 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries) 304 { 305 struct neighbour **new_hash, **old_hash; 306 unsigned int i, new_hash_mask, old_entries; 307 308 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 309 310 BUG_ON(new_entries & (new_entries - 1)); 311 new_hash = neigh_hash_alloc(new_entries); 312 if (!new_hash) 313 return; 314 315 old_entries = tbl->hash_mask + 1; 316 new_hash_mask = new_entries - 1; 317 old_hash = tbl->hash_buckets; 318 319 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); 320 for (i = 0; i < old_entries; i++) { 321 struct neighbour *n, *next; 322 323 for (n = old_hash[i]; n; n = next) { 324 unsigned int hash_val = tbl->hash(n->primary_key, n->dev); 325 326 hash_val &= new_hash_mask; 327 next = n->next; 328 329 n->next = new_hash[hash_val]; 330 new_hash[hash_val] = n; 331 } 332 } 333 tbl->hash_buckets = new_hash; 334 tbl->hash_mask = new_hash_mask; 335 336 neigh_hash_free(old_hash, old_entries); 337 } 338 339 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 340 struct net_device *dev) 341 { 342 struct neighbour *n; 343 int key_len = tbl->key_len; 344 u32 hash_val = tbl->hash(pkey, dev); 345 346 NEIGH_CACHE_STAT_INC(tbl, lookups); 347 348 read_lock_bh(&tbl->lock); 349 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) { 350 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) { 351 neigh_hold(n); 352 NEIGH_CACHE_STAT_INC(tbl, hits); 353 break; 354 } 355 } 356 read_unlock_bh(&tbl->lock); 357 return n; 358 } 359 360 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, const void *pkey) 361 { 362 struct neighbour *n; 363 int key_len = tbl->key_len; 364 u32 hash_val = tbl->hash(pkey, NULL); 365 366 NEIGH_CACHE_STAT_INC(tbl, lookups); 367 368 read_lock_bh(&tbl->lock); 369 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) { 370 if (!memcmp(n->primary_key, pkey, key_len)) { 371 neigh_hold(n); 372 NEIGH_CACHE_STAT_INC(tbl, hits); 373 break; 374 } 375 } 376 read_unlock_bh(&tbl->lock); 377 return n; 378 } 379 380 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey, 381 struct net_device *dev) 382 { 383 u32 hash_val; 384 int key_len = tbl->key_len; 385 int error; 386 struct neighbour *n1, *rc, *n = neigh_alloc(tbl); 387 388 if (!n) { 389 rc = ERR_PTR(-ENOBUFS); 390 goto out; 391 } 392 393 memcpy(n->primary_key, pkey, key_len); 394 n->dev = dev; 395 dev_hold(dev); 396 397 /* Protocol specific setup. */ 398 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 399 rc = ERR_PTR(error); 400 goto out_neigh_release; 401 } 402 403 /* Device specific setup. */ 404 if (n->parms->neigh_setup && 405 (error = n->parms->neigh_setup(n)) < 0) { 406 rc = ERR_PTR(error); 407 goto out_neigh_release; 408 } 409 410 n->confirmed = jiffies - (n->parms->base_reachable_time << 1); 411 412 write_lock_bh(&tbl->lock); 413 414 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1)) 415 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1); 416 417 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask; 418 419 if (n->parms->dead) { 420 rc = ERR_PTR(-EINVAL); 421 goto out_tbl_unlock; 422 } 423 424 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) { 425 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) { 426 neigh_hold(n1); 427 rc = n1; 428 goto out_tbl_unlock; 429 } 430 } 431 432 n->next = tbl->hash_buckets[hash_val]; 433 tbl->hash_buckets[hash_val] = n; 434 n->dead = 0; 435 neigh_hold(n); 436 write_unlock_bh(&tbl->lock); 437 NEIGH_PRINTK2("neigh %p is created.\n", n); 438 rc = n; 439 out: 440 return rc; 441 out_tbl_unlock: 442 write_unlock_bh(&tbl->lock); 443 out_neigh_release: 444 neigh_release(n); 445 goto out; 446 } 447 448 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, const void *pkey, 449 struct net_device *dev, int creat) 450 { 451 struct pneigh_entry *n; 452 int key_len = tbl->key_len; 453 u32 hash_val = *(u32 *)(pkey + key_len - 4); 454 455 hash_val ^= (hash_val >> 16); 456 hash_val ^= hash_val >> 8; 457 hash_val ^= hash_val >> 4; 458 hash_val &= PNEIGH_HASHMASK; 459 460 read_lock_bh(&tbl->lock); 461 462 for (n = tbl->phash_buckets[hash_val]; n; n = n->next) { 463 if (!memcmp(n->key, pkey, key_len) && 464 (n->dev == dev || !n->dev)) { 465 read_unlock_bh(&tbl->lock); 466 goto out; 467 } 468 } 469 read_unlock_bh(&tbl->lock); 470 n = NULL; 471 if (!creat) 472 goto out; 473 474 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 475 if (!n) 476 goto out; 477 478 memcpy(n->key, pkey, key_len); 479 n->dev = dev; 480 if (dev) 481 dev_hold(dev); 482 483 if (tbl->pconstructor && tbl->pconstructor(n)) { 484 if (dev) 485 dev_put(dev); 486 kfree(n); 487 n = NULL; 488 goto out; 489 } 490 491 write_lock_bh(&tbl->lock); 492 n->next = tbl->phash_buckets[hash_val]; 493 tbl->phash_buckets[hash_val] = n; 494 write_unlock_bh(&tbl->lock); 495 out: 496 return n; 497 } 498 499 500 int pneigh_delete(struct neigh_table *tbl, const void *pkey, 501 struct net_device *dev) 502 { 503 struct pneigh_entry *n, **np; 504 int key_len = tbl->key_len; 505 u32 hash_val = *(u32 *)(pkey + key_len - 4); 506 507 hash_val ^= (hash_val >> 16); 508 hash_val ^= hash_val >> 8; 509 hash_val ^= hash_val >> 4; 510 hash_val &= PNEIGH_HASHMASK; 511 512 write_lock_bh(&tbl->lock); 513 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 514 np = &n->next) { 515 if (!memcmp(n->key, pkey, key_len) && n->dev == dev) { 516 *np = n->next; 517 write_unlock_bh(&tbl->lock); 518 if (tbl->pdestructor) 519 tbl->pdestructor(n); 520 if (n->dev) 521 dev_put(n->dev); 522 kfree(n); 523 return 0; 524 } 525 } 526 write_unlock_bh(&tbl->lock); 527 return -ENOENT; 528 } 529 530 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 531 { 532 struct pneigh_entry *n, **np; 533 u32 h; 534 535 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 536 np = &tbl->phash_buckets[h]; 537 while ((n = *np) != NULL) { 538 if (!dev || n->dev == dev) { 539 *np = n->next; 540 if (tbl->pdestructor) 541 tbl->pdestructor(n); 542 if (n->dev) 543 dev_put(n->dev); 544 kfree(n); 545 continue; 546 } 547 np = &n->next; 548 } 549 } 550 return -ENOENT; 551 } 552 553 554 /* 555 * neighbour must already be out of the table; 556 * 557 */ 558 void neigh_destroy(struct neighbour *neigh) 559 { 560 struct hh_cache *hh; 561 562 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 563 564 if (!neigh->dead) { 565 printk(KERN_WARNING 566 "Destroying alive neighbour %p\n", neigh); 567 dump_stack(); 568 return; 569 } 570 571 if (neigh_del_timer(neigh)) 572 printk(KERN_WARNING "Impossible event.\n"); 573 574 while ((hh = neigh->hh) != NULL) { 575 neigh->hh = hh->hh_next; 576 hh->hh_next = NULL; 577 578 write_seqlock_bh(&hh->hh_lock); 579 hh->hh_output = neigh_blackhole; 580 write_sequnlock_bh(&hh->hh_lock); 581 if (atomic_dec_and_test(&hh->hh_refcnt)) 582 kfree(hh); 583 } 584 585 if (neigh->parms->neigh_destructor) 586 (neigh->parms->neigh_destructor)(neigh); 587 588 skb_queue_purge(&neigh->arp_queue); 589 590 dev_put(neigh->dev); 591 neigh_parms_put(neigh->parms); 592 593 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh); 594 595 atomic_dec(&neigh->tbl->entries); 596 kmem_cache_free(neigh->tbl->kmem_cachep, neigh); 597 } 598 599 /* Neighbour state is suspicious; 600 disable fast path. 601 602 Called with write_locked neigh. 603 */ 604 static void neigh_suspect(struct neighbour *neigh) 605 { 606 struct hh_cache *hh; 607 608 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 609 610 neigh->output = neigh->ops->output; 611 612 for (hh = neigh->hh; hh; hh = hh->hh_next) 613 hh->hh_output = neigh->ops->output; 614 } 615 616 /* Neighbour state is OK; 617 enable fast path. 618 619 Called with write_locked neigh. 620 */ 621 static void neigh_connect(struct neighbour *neigh) 622 { 623 struct hh_cache *hh; 624 625 NEIGH_PRINTK2("neigh %p is connected.\n", neigh); 626 627 neigh->output = neigh->ops->connected_output; 628 629 for (hh = neigh->hh; hh; hh = hh->hh_next) 630 hh->hh_output = neigh->ops->hh_output; 631 } 632 633 static void neigh_periodic_timer(unsigned long arg) 634 { 635 struct neigh_table *tbl = (struct neigh_table *)arg; 636 struct neighbour *n, **np; 637 unsigned long expire, now = jiffies; 638 639 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 640 641 write_lock(&tbl->lock); 642 643 /* 644 * periodically recompute ReachableTime from random function 645 */ 646 647 if (time_after(now, tbl->last_rand + 300 * HZ)) { 648 struct neigh_parms *p; 649 tbl->last_rand = now; 650 for (p = &tbl->parms; p; p = p->next) 651 p->reachable_time = 652 neigh_rand_reach_time(p->base_reachable_time); 653 } 654 655 np = &tbl->hash_buckets[tbl->hash_chain_gc]; 656 tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask); 657 658 while ((n = *np) != NULL) { 659 unsigned int state; 660 661 write_lock(&n->lock); 662 663 state = n->nud_state; 664 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) { 665 write_unlock(&n->lock); 666 goto next_elt; 667 } 668 669 if (time_before(n->used, n->confirmed)) 670 n->used = n->confirmed; 671 672 if (atomic_read(&n->refcnt) == 1 && 673 (state == NUD_FAILED || 674 time_after(now, n->used + n->parms->gc_staletime))) { 675 *np = n->next; 676 n->dead = 1; 677 write_unlock(&n->lock); 678 neigh_release(n); 679 continue; 680 } 681 write_unlock(&n->lock); 682 683 next_elt: 684 np = &n->next; 685 } 686 687 /* Cycle through all hash buckets every base_reachable_time/2 ticks. 688 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2 689 * base_reachable_time. 690 */ 691 expire = tbl->parms.base_reachable_time >> 1; 692 expire /= (tbl->hash_mask + 1); 693 if (!expire) 694 expire = 1; 695 696 if (expire>HZ) 697 mod_timer(&tbl->gc_timer, round_jiffies(now + expire)); 698 else 699 mod_timer(&tbl->gc_timer, now + expire); 700 701 write_unlock(&tbl->lock); 702 } 703 704 static __inline__ int neigh_max_probes(struct neighbour *n) 705 { 706 struct neigh_parms *p = n->parms; 707 return (n->nud_state & NUD_PROBE ? 708 p->ucast_probes : 709 p->ucast_probes + p->app_probes + p->mcast_probes); 710 } 711 712 static inline void neigh_add_timer(struct neighbour *n, unsigned long when) 713 { 714 if (unlikely(mod_timer(&n->timer, when))) { 715 printk("NEIGH: BUG, double timer add, state is %x\n", 716 n->nud_state); 717 dump_stack(); 718 } 719 } 720 721 /* Called when a timer expires for a neighbour entry. */ 722 723 static void neigh_timer_handler(unsigned long arg) 724 { 725 unsigned long now, next; 726 struct neighbour *neigh = (struct neighbour *)arg; 727 unsigned state; 728 int notify = 0; 729 730 write_lock(&neigh->lock); 731 732 state = neigh->nud_state; 733 now = jiffies; 734 next = now + HZ; 735 736 if (!(state & NUD_IN_TIMER)) { 737 #ifndef CONFIG_SMP 738 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n"); 739 #endif 740 goto out; 741 } 742 743 if (state & NUD_REACHABLE) { 744 if (time_before_eq(now, 745 neigh->confirmed + neigh->parms->reachable_time)) { 746 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh); 747 next = neigh->confirmed + neigh->parms->reachable_time; 748 } else if (time_before_eq(now, 749 neigh->used + neigh->parms->delay_probe_time)) { 750 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 751 neigh->nud_state = NUD_DELAY; 752 neigh->updated = jiffies; 753 neigh_suspect(neigh); 754 next = now + neigh->parms->delay_probe_time; 755 } else { 756 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 757 neigh->nud_state = NUD_STALE; 758 neigh->updated = jiffies; 759 neigh_suspect(neigh); 760 notify = 1; 761 } 762 } else if (state & NUD_DELAY) { 763 if (time_before_eq(now, 764 neigh->confirmed + neigh->parms->delay_probe_time)) { 765 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh); 766 neigh->nud_state = NUD_REACHABLE; 767 neigh->updated = jiffies; 768 neigh_connect(neigh); 769 notify = 1; 770 next = neigh->confirmed + neigh->parms->reachable_time; 771 } else { 772 NEIGH_PRINTK2("neigh %p is probed.\n", neigh); 773 neigh->nud_state = NUD_PROBE; 774 neigh->updated = jiffies; 775 atomic_set(&neigh->probes, 0); 776 next = now + neigh->parms->retrans_time; 777 } 778 } else { 779 /* NUD_PROBE|NUD_INCOMPLETE */ 780 next = now + neigh->parms->retrans_time; 781 } 782 783 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 784 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 785 struct sk_buff *skb; 786 787 neigh->nud_state = NUD_FAILED; 788 neigh->updated = jiffies; 789 notify = 1; 790 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 791 NEIGH_PRINTK2("neigh %p is failed.\n", neigh); 792 793 /* It is very thin place. report_unreachable is very complicated 794 routine. Particularly, it can hit the same neighbour entry! 795 796 So that, we try to be accurate and avoid dead loop. --ANK 797 */ 798 while (neigh->nud_state == NUD_FAILED && 799 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 800 write_unlock(&neigh->lock); 801 neigh->ops->error_report(neigh, skb); 802 write_lock(&neigh->lock); 803 } 804 skb_queue_purge(&neigh->arp_queue); 805 } 806 807 if (neigh->nud_state & NUD_IN_TIMER) { 808 if (time_before(next, jiffies + HZ/2)) 809 next = jiffies + HZ/2; 810 if (!mod_timer(&neigh->timer, next)) 811 neigh_hold(neigh); 812 } 813 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 814 struct sk_buff *skb = skb_peek(&neigh->arp_queue); 815 /* keep skb alive even if arp_queue overflows */ 816 if (skb) 817 skb_get(skb); 818 write_unlock(&neigh->lock); 819 neigh->ops->solicit(neigh, skb); 820 atomic_inc(&neigh->probes); 821 if (skb) 822 kfree_skb(skb); 823 } else { 824 out: 825 write_unlock(&neigh->lock); 826 } 827 if (notify) 828 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 829 830 #ifdef CONFIG_ARPD 831 if (notify && neigh->parms->app_probes) 832 neigh_app_notify(neigh); 833 #endif 834 neigh_release(neigh); 835 } 836 837 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 838 { 839 int rc; 840 unsigned long now; 841 842 write_lock_bh(&neigh->lock); 843 844 rc = 0; 845 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 846 goto out_unlock_bh; 847 848 now = jiffies; 849 850 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 851 if (neigh->parms->mcast_probes + neigh->parms->app_probes) { 852 atomic_set(&neigh->probes, neigh->parms->ucast_probes); 853 neigh->nud_state = NUD_INCOMPLETE; 854 neigh->updated = jiffies; 855 neigh_hold(neigh); 856 neigh_add_timer(neigh, now + 1); 857 } else { 858 neigh->nud_state = NUD_FAILED; 859 neigh->updated = jiffies; 860 write_unlock_bh(&neigh->lock); 861 862 if (skb) 863 kfree_skb(skb); 864 return 1; 865 } 866 } else if (neigh->nud_state & NUD_STALE) { 867 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 868 neigh_hold(neigh); 869 neigh->nud_state = NUD_DELAY; 870 neigh->updated = jiffies; 871 neigh_add_timer(neigh, 872 jiffies + neigh->parms->delay_probe_time); 873 } 874 875 if (neigh->nud_state == NUD_INCOMPLETE) { 876 if (skb) { 877 if (skb_queue_len(&neigh->arp_queue) >= 878 neigh->parms->queue_len) { 879 struct sk_buff *buff; 880 buff = neigh->arp_queue.next; 881 __skb_unlink(buff, &neigh->arp_queue); 882 kfree_skb(buff); 883 } 884 __skb_queue_tail(&neigh->arp_queue, skb); 885 } 886 rc = 1; 887 } 888 out_unlock_bh: 889 write_unlock_bh(&neigh->lock); 890 return rc; 891 } 892 893 static void neigh_update_hhs(struct neighbour *neigh) 894 { 895 struct hh_cache *hh; 896 void (*update)(struct hh_cache*, struct net_device*, unsigned char *) = 897 neigh->dev->header_cache_update; 898 899 if (update) { 900 for (hh = neigh->hh; hh; hh = hh->hh_next) { 901 write_seqlock_bh(&hh->hh_lock); 902 update(hh, neigh->dev, neigh->ha); 903 write_sequnlock_bh(&hh->hh_lock); 904 } 905 } 906 } 907 908 909 910 /* Generic update routine. 911 -- lladdr is new lladdr or NULL, if it is not supplied. 912 -- new is new state. 913 -- flags 914 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 915 if it is different. 916 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 917 lladdr instead of overriding it 918 if it is different. 919 It also allows to retain current state 920 if lladdr is unchanged. 921 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 922 923 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 924 NTF_ROUTER flag. 925 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 926 a router. 927 928 Caller MUST hold reference count on the entry. 929 */ 930 931 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 932 u32 flags) 933 { 934 u8 old; 935 int err; 936 int notify = 0; 937 struct net_device *dev; 938 int update_isrouter = 0; 939 940 write_lock_bh(&neigh->lock); 941 942 dev = neigh->dev; 943 old = neigh->nud_state; 944 err = -EPERM; 945 946 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 947 (old & (NUD_NOARP | NUD_PERMANENT))) 948 goto out; 949 950 if (!(new & NUD_VALID)) { 951 neigh_del_timer(neigh); 952 if (old & NUD_CONNECTED) 953 neigh_suspect(neigh); 954 neigh->nud_state = new; 955 err = 0; 956 notify = old & NUD_VALID; 957 goto out; 958 } 959 960 /* Compare new lladdr with cached one */ 961 if (!dev->addr_len) { 962 /* First case: device needs no address. */ 963 lladdr = neigh->ha; 964 } else if (lladdr) { 965 /* The second case: if something is already cached 966 and a new address is proposed: 967 - compare new & old 968 - if they are different, check override flag 969 */ 970 if ((old & NUD_VALID) && 971 !memcmp(lladdr, neigh->ha, dev->addr_len)) 972 lladdr = neigh->ha; 973 } else { 974 /* No address is supplied; if we know something, 975 use it, otherwise discard the request. 976 */ 977 err = -EINVAL; 978 if (!(old & NUD_VALID)) 979 goto out; 980 lladdr = neigh->ha; 981 } 982 983 if (new & NUD_CONNECTED) 984 neigh->confirmed = jiffies; 985 neigh->updated = jiffies; 986 987 /* If entry was valid and address is not changed, 988 do not change entry state, if new one is STALE. 989 */ 990 err = 0; 991 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 992 if (old & NUD_VALID) { 993 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 994 update_isrouter = 0; 995 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 996 (old & NUD_CONNECTED)) { 997 lladdr = neigh->ha; 998 new = NUD_STALE; 999 } else 1000 goto out; 1001 } else { 1002 if (lladdr == neigh->ha && new == NUD_STALE && 1003 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) || 1004 (old & NUD_CONNECTED)) 1005 ) 1006 new = old; 1007 } 1008 } 1009 1010 if (new != old) { 1011 neigh_del_timer(neigh); 1012 if (new & NUD_IN_TIMER) { 1013 neigh_hold(neigh); 1014 neigh_add_timer(neigh, (jiffies + 1015 ((new & NUD_REACHABLE) ? 1016 neigh->parms->reachable_time : 1017 0))); 1018 } 1019 neigh->nud_state = new; 1020 } 1021 1022 if (lladdr != neigh->ha) { 1023 memcpy(&neigh->ha, lladdr, dev->addr_len); 1024 neigh_update_hhs(neigh); 1025 if (!(new & NUD_CONNECTED)) 1026 neigh->confirmed = jiffies - 1027 (neigh->parms->base_reachable_time << 1); 1028 notify = 1; 1029 } 1030 if (new == old) 1031 goto out; 1032 if (new & NUD_CONNECTED) 1033 neigh_connect(neigh); 1034 else 1035 neigh_suspect(neigh); 1036 if (!(old & NUD_VALID)) { 1037 struct sk_buff *skb; 1038 1039 /* Again: avoid dead loop if something went wrong */ 1040 1041 while (neigh->nud_state & NUD_VALID && 1042 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1043 struct neighbour *n1 = neigh; 1044 write_unlock_bh(&neigh->lock); 1045 /* On shaper/eql skb->dst->neighbour != neigh :( */ 1046 if (skb->dst && skb->dst->neighbour) 1047 n1 = skb->dst->neighbour; 1048 n1->output(skb); 1049 write_lock_bh(&neigh->lock); 1050 } 1051 skb_queue_purge(&neigh->arp_queue); 1052 } 1053 out: 1054 if (update_isrouter) { 1055 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ? 1056 (neigh->flags | NTF_ROUTER) : 1057 (neigh->flags & ~NTF_ROUTER); 1058 } 1059 write_unlock_bh(&neigh->lock); 1060 1061 if (notify) 1062 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 1063 #ifdef CONFIG_ARPD 1064 if (notify && neigh->parms->app_probes) 1065 neigh_app_notify(neigh); 1066 #endif 1067 return err; 1068 } 1069 1070 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1071 u8 *lladdr, void *saddr, 1072 struct net_device *dev) 1073 { 1074 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1075 lladdr || !dev->addr_len); 1076 if (neigh) 1077 neigh_update(neigh, lladdr, NUD_STALE, 1078 NEIGH_UPDATE_F_OVERRIDE); 1079 return neigh; 1080 } 1081 1082 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst, 1083 __be16 protocol) 1084 { 1085 struct hh_cache *hh; 1086 struct net_device *dev = dst->dev; 1087 1088 for (hh = n->hh; hh; hh = hh->hh_next) 1089 if (hh->hh_type == protocol) 1090 break; 1091 1092 if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) { 1093 seqlock_init(&hh->hh_lock); 1094 hh->hh_type = protocol; 1095 atomic_set(&hh->hh_refcnt, 0); 1096 hh->hh_next = NULL; 1097 if (dev->hard_header_cache(n, hh)) { 1098 kfree(hh); 1099 hh = NULL; 1100 } else { 1101 atomic_inc(&hh->hh_refcnt); 1102 hh->hh_next = n->hh; 1103 n->hh = hh; 1104 if (n->nud_state & NUD_CONNECTED) 1105 hh->hh_output = n->ops->hh_output; 1106 else 1107 hh->hh_output = n->ops->output; 1108 } 1109 } 1110 if (hh) { 1111 atomic_inc(&hh->hh_refcnt); 1112 dst->hh = hh; 1113 } 1114 } 1115 1116 /* This function can be used in contexts, where only old dev_queue_xmit 1117 worked, f.e. if you want to override normal output path (eql, shaper), 1118 but resolution is not made yet. 1119 */ 1120 1121 int neigh_compat_output(struct sk_buff *skb) 1122 { 1123 struct net_device *dev = skb->dev; 1124 1125 __skb_pull(skb, skb->nh.raw - skb->data); 1126 1127 if (dev->hard_header && 1128 dev->hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL, 1129 skb->len) < 0 && 1130 dev->rebuild_header(skb)) 1131 return 0; 1132 1133 return dev_queue_xmit(skb); 1134 } 1135 1136 /* Slow and careful. */ 1137 1138 int neigh_resolve_output(struct sk_buff *skb) 1139 { 1140 struct dst_entry *dst = skb->dst; 1141 struct neighbour *neigh; 1142 int rc = 0; 1143 1144 if (!dst || !(neigh = dst->neighbour)) 1145 goto discard; 1146 1147 __skb_pull(skb, skb->nh.raw - skb->data); 1148 1149 if (!neigh_event_send(neigh, skb)) { 1150 int err; 1151 struct net_device *dev = neigh->dev; 1152 if (dev->hard_header_cache && !dst->hh) { 1153 write_lock_bh(&neigh->lock); 1154 if (!dst->hh) 1155 neigh_hh_init(neigh, dst, dst->ops->protocol); 1156 err = dev->hard_header(skb, dev, ntohs(skb->protocol), 1157 neigh->ha, NULL, skb->len); 1158 write_unlock_bh(&neigh->lock); 1159 } else { 1160 read_lock_bh(&neigh->lock); 1161 err = dev->hard_header(skb, dev, ntohs(skb->protocol), 1162 neigh->ha, NULL, skb->len); 1163 read_unlock_bh(&neigh->lock); 1164 } 1165 if (err >= 0) 1166 rc = neigh->ops->queue_xmit(skb); 1167 else 1168 goto out_kfree_skb; 1169 } 1170 out: 1171 return rc; 1172 discard: 1173 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n", 1174 dst, dst ? dst->neighbour : NULL); 1175 out_kfree_skb: 1176 rc = -EINVAL; 1177 kfree_skb(skb); 1178 goto out; 1179 } 1180 1181 /* As fast as possible without hh cache */ 1182 1183 int neigh_connected_output(struct sk_buff *skb) 1184 { 1185 int err; 1186 struct dst_entry *dst = skb->dst; 1187 struct neighbour *neigh = dst->neighbour; 1188 struct net_device *dev = neigh->dev; 1189 1190 __skb_pull(skb, skb->nh.raw - skb->data); 1191 1192 read_lock_bh(&neigh->lock); 1193 err = dev->hard_header(skb, dev, ntohs(skb->protocol), 1194 neigh->ha, NULL, skb->len); 1195 read_unlock_bh(&neigh->lock); 1196 if (err >= 0) 1197 err = neigh->ops->queue_xmit(skb); 1198 else { 1199 err = -EINVAL; 1200 kfree_skb(skb); 1201 } 1202 return err; 1203 } 1204 1205 static void neigh_proxy_process(unsigned long arg) 1206 { 1207 struct neigh_table *tbl = (struct neigh_table *)arg; 1208 long sched_next = 0; 1209 unsigned long now = jiffies; 1210 struct sk_buff *skb; 1211 1212 spin_lock(&tbl->proxy_queue.lock); 1213 1214 skb = tbl->proxy_queue.next; 1215 1216 while (skb != (struct sk_buff *)&tbl->proxy_queue) { 1217 struct sk_buff *back = skb; 1218 long tdif = NEIGH_CB(back)->sched_next - now; 1219 1220 skb = skb->next; 1221 if (tdif <= 0) { 1222 struct net_device *dev = back->dev; 1223 __skb_unlink(back, &tbl->proxy_queue); 1224 if (tbl->proxy_redo && netif_running(dev)) 1225 tbl->proxy_redo(back); 1226 else 1227 kfree_skb(back); 1228 1229 dev_put(dev); 1230 } else if (!sched_next || tdif < sched_next) 1231 sched_next = tdif; 1232 } 1233 del_timer(&tbl->proxy_timer); 1234 if (sched_next) 1235 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1236 spin_unlock(&tbl->proxy_queue.lock); 1237 } 1238 1239 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1240 struct sk_buff *skb) 1241 { 1242 unsigned long now = jiffies; 1243 unsigned long sched_next = now + (net_random() % p->proxy_delay); 1244 1245 if (tbl->proxy_queue.qlen > p->proxy_qlen) { 1246 kfree_skb(skb); 1247 return; 1248 } 1249 1250 NEIGH_CB(skb)->sched_next = sched_next; 1251 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1252 1253 spin_lock(&tbl->proxy_queue.lock); 1254 if (del_timer(&tbl->proxy_timer)) { 1255 if (time_before(tbl->proxy_timer.expires, sched_next)) 1256 sched_next = tbl->proxy_timer.expires; 1257 } 1258 dst_release(skb->dst); 1259 skb->dst = NULL; 1260 dev_hold(skb->dev); 1261 __skb_queue_tail(&tbl->proxy_queue, skb); 1262 mod_timer(&tbl->proxy_timer, sched_next); 1263 spin_unlock(&tbl->proxy_queue.lock); 1264 } 1265 1266 1267 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1268 struct neigh_table *tbl) 1269 { 1270 struct neigh_parms *p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL); 1271 1272 if (p) { 1273 p->tbl = tbl; 1274 atomic_set(&p->refcnt, 1); 1275 INIT_RCU_HEAD(&p->rcu_head); 1276 p->reachable_time = 1277 neigh_rand_reach_time(p->base_reachable_time); 1278 if (dev) { 1279 if (dev->neigh_setup && dev->neigh_setup(dev, p)) { 1280 kfree(p); 1281 return NULL; 1282 } 1283 1284 dev_hold(dev); 1285 p->dev = dev; 1286 } 1287 p->sysctl_table = NULL; 1288 write_lock_bh(&tbl->lock); 1289 p->next = tbl->parms.next; 1290 tbl->parms.next = p; 1291 write_unlock_bh(&tbl->lock); 1292 } 1293 return p; 1294 } 1295 1296 static void neigh_rcu_free_parms(struct rcu_head *head) 1297 { 1298 struct neigh_parms *parms = 1299 container_of(head, struct neigh_parms, rcu_head); 1300 1301 neigh_parms_put(parms); 1302 } 1303 1304 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1305 { 1306 struct neigh_parms **p; 1307 1308 if (!parms || parms == &tbl->parms) 1309 return; 1310 write_lock_bh(&tbl->lock); 1311 for (p = &tbl->parms.next; *p; p = &(*p)->next) { 1312 if (*p == parms) { 1313 *p = parms->next; 1314 parms->dead = 1; 1315 write_unlock_bh(&tbl->lock); 1316 if (parms->dev) 1317 dev_put(parms->dev); 1318 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1319 return; 1320 } 1321 } 1322 write_unlock_bh(&tbl->lock); 1323 NEIGH_PRINTK1("neigh_parms_release: not found\n"); 1324 } 1325 1326 void neigh_parms_destroy(struct neigh_parms *parms) 1327 { 1328 kfree(parms); 1329 } 1330 1331 void neigh_table_init_no_netlink(struct neigh_table *tbl) 1332 { 1333 unsigned long now = jiffies; 1334 unsigned long phsize; 1335 1336 atomic_set(&tbl->parms.refcnt, 1); 1337 INIT_RCU_HEAD(&tbl->parms.rcu_head); 1338 tbl->parms.reachable_time = 1339 neigh_rand_reach_time(tbl->parms.base_reachable_time); 1340 1341 if (!tbl->kmem_cachep) 1342 tbl->kmem_cachep = 1343 kmem_cache_create(tbl->id, tbl->entry_size, 0, 1344 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1345 NULL, NULL); 1346 tbl->stats = alloc_percpu(struct neigh_statistics); 1347 if (!tbl->stats) 1348 panic("cannot create neighbour cache statistics"); 1349 1350 #ifdef CONFIG_PROC_FS 1351 tbl->pde = create_proc_entry(tbl->id, 0, proc_net_stat); 1352 if (!tbl->pde) 1353 panic("cannot create neighbour proc dir entry"); 1354 tbl->pde->proc_fops = &neigh_stat_seq_fops; 1355 tbl->pde->data = tbl; 1356 #endif 1357 1358 tbl->hash_mask = 1; 1359 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1); 1360 1361 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1362 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1363 1364 if (!tbl->hash_buckets || !tbl->phash_buckets) 1365 panic("cannot allocate neighbour cache hashes"); 1366 1367 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); 1368 1369 rwlock_init(&tbl->lock); 1370 init_timer(&tbl->gc_timer); 1371 tbl->gc_timer.data = (unsigned long)tbl; 1372 tbl->gc_timer.function = neigh_periodic_timer; 1373 tbl->gc_timer.expires = now + 1; 1374 add_timer(&tbl->gc_timer); 1375 1376 init_timer(&tbl->proxy_timer); 1377 tbl->proxy_timer.data = (unsigned long)tbl; 1378 tbl->proxy_timer.function = neigh_proxy_process; 1379 skb_queue_head_init(&tbl->proxy_queue); 1380 1381 tbl->last_flush = now; 1382 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1383 } 1384 1385 void neigh_table_init(struct neigh_table *tbl) 1386 { 1387 struct neigh_table *tmp; 1388 1389 neigh_table_init_no_netlink(tbl); 1390 write_lock(&neigh_tbl_lock); 1391 for (tmp = neigh_tables; tmp; tmp = tmp->next) { 1392 if (tmp->family == tbl->family) 1393 break; 1394 } 1395 tbl->next = neigh_tables; 1396 neigh_tables = tbl; 1397 write_unlock(&neigh_tbl_lock); 1398 1399 if (unlikely(tmp)) { 1400 printk(KERN_ERR "NEIGH: Registering multiple tables for " 1401 "family %d\n", tbl->family); 1402 dump_stack(); 1403 } 1404 } 1405 1406 int neigh_table_clear(struct neigh_table *tbl) 1407 { 1408 struct neigh_table **tp; 1409 1410 /* It is not clean... Fix it to unload IPv6 module safely */ 1411 del_timer_sync(&tbl->gc_timer); 1412 del_timer_sync(&tbl->proxy_timer); 1413 pneigh_queue_purge(&tbl->proxy_queue); 1414 neigh_ifdown(tbl, NULL); 1415 if (atomic_read(&tbl->entries)) 1416 printk(KERN_CRIT "neighbour leakage\n"); 1417 write_lock(&neigh_tbl_lock); 1418 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) { 1419 if (*tp == tbl) { 1420 *tp = tbl->next; 1421 break; 1422 } 1423 } 1424 write_unlock(&neigh_tbl_lock); 1425 1426 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1); 1427 tbl->hash_buckets = NULL; 1428 1429 kfree(tbl->phash_buckets); 1430 tbl->phash_buckets = NULL; 1431 1432 free_percpu(tbl->stats); 1433 tbl->stats = NULL; 1434 1435 return 0; 1436 } 1437 1438 int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1439 { 1440 struct ndmsg *ndm; 1441 struct nlattr *dst_attr; 1442 struct neigh_table *tbl; 1443 struct net_device *dev = NULL; 1444 int err = -EINVAL; 1445 1446 if (nlmsg_len(nlh) < sizeof(*ndm)) 1447 goto out; 1448 1449 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1450 if (dst_attr == NULL) 1451 goto out; 1452 1453 ndm = nlmsg_data(nlh); 1454 if (ndm->ndm_ifindex) { 1455 dev = dev_get_by_index(ndm->ndm_ifindex); 1456 if (dev == NULL) { 1457 err = -ENODEV; 1458 goto out; 1459 } 1460 } 1461 1462 read_lock(&neigh_tbl_lock); 1463 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1464 struct neighbour *neigh; 1465 1466 if (tbl->family != ndm->ndm_family) 1467 continue; 1468 read_unlock(&neigh_tbl_lock); 1469 1470 if (nla_len(dst_attr) < tbl->key_len) 1471 goto out_dev_put; 1472 1473 if (ndm->ndm_flags & NTF_PROXY) { 1474 err = pneigh_delete(tbl, nla_data(dst_attr), dev); 1475 goto out_dev_put; 1476 } 1477 1478 if (dev == NULL) 1479 goto out_dev_put; 1480 1481 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1482 if (neigh == NULL) { 1483 err = -ENOENT; 1484 goto out_dev_put; 1485 } 1486 1487 err = neigh_update(neigh, NULL, NUD_FAILED, 1488 NEIGH_UPDATE_F_OVERRIDE | 1489 NEIGH_UPDATE_F_ADMIN); 1490 neigh_release(neigh); 1491 goto out_dev_put; 1492 } 1493 read_unlock(&neigh_tbl_lock); 1494 err = -EAFNOSUPPORT; 1495 1496 out_dev_put: 1497 if (dev) 1498 dev_put(dev); 1499 out: 1500 return err; 1501 } 1502 1503 int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1504 { 1505 struct ndmsg *ndm; 1506 struct nlattr *tb[NDA_MAX+1]; 1507 struct neigh_table *tbl; 1508 struct net_device *dev = NULL; 1509 int err; 1510 1511 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL); 1512 if (err < 0) 1513 goto out; 1514 1515 err = -EINVAL; 1516 if (tb[NDA_DST] == NULL) 1517 goto out; 1518 1519 ndm = nlmsg_data(nlh); 1520 if (ndm->ndm_ifindex) { 1521 dev = dev_get_by_index(ndm->ndm_ifindex); 1522 if (dev == NULL) { 1523 err = -ENODEV; 1524 goto out; 1525 } 1526 1527 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) 1528 goto out_dev_put; 1529 } 1530 1531 read_lock(&neigh_tbl_lock); 1532 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1533 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE; 1534 struct neighbour *neigh; 1535 void *dst, *lladdr; 1536 1537 if (tbl->family != ndm->ndm_family) 1538 continue; 1539 read_unlock(&neigh_tbl_lock); 1540 1541 if (nla_len(tb[NDA_DST]) < tbl->key_len) 1542 goto out_dev_put; 1543 dst = nla_data(tb[NDA_DST]); 1544 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 1545 1546 if (ndm->ndm_flags & NTF_PROXY) { 1547 struct pneigh_entry *pn; 1548 1549 err = -ENOBUFS; 1550 pn = pneigh_lookup(tbl, dst, dev, 1); 1551 if (pn) { 1552 pn->flags = ndm->ndm_flags; 1553 err = 0; 1554 } 1555 goto out_dev_put; 1556 } 1557 1558 if (dev == NULL) 1559 goto out_dev_put; 1560 1561 neigh = neigh_lookup(tbl, dst, dev); 1562 if (neigh == NULL) { 1563 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 1564 err = -ENOENT; 1565 goto out_dev_put; 1566 } 1567 1568 neigh = __neigh_lookup_errno(tbl, dst, dev); 1569 if (IS_ERR(neigh)) { 1570 err = PTR_ERR(neigh); 1571 goto out_dev_put; 1572 } 1573 } else { 1574 if (nlh->nlmsg_flags & NLM_F_EXCL) { 1575 err = -EEXIST; 1576 neigh_release(neigh); 1577 goto out_dev_put; 1578 } 1579 1580 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 1581 flags &= ~NEIGH_UPDATE_F_OVERRIDE; 1582 } 1583 1584 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags); 1585 neigh_release(neigh); 1586 goto out_dev_put; 1587 } 1588 1589 read_unlock(&neigh_tbl_lock); 1590 err = -EAFNOSUPPORT; 1591 1592 out_dev_put: 1593 if (dev) 1594 dev_put(dev); 1595 out: 1596 return err; 1597 } 1598 1599 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 1600 { 1601 struct nlattr *nest; 1602 1603 nest = nla_nest_start(skb, NDTA_PARMS); 1604 if (nest == NULL) 1605 return -ENOBUFS; 1606 1607 if (parms->dev) 1608 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex); 1609 1610 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)); 1611 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len); 1612 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen); 1613 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes); 1614 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes); 1615 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes); 1616 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time); 1617 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME, 1618 parms->base_reachable_time); 1619 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime); 1620 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time); 1621 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time); 1622 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay); 1623 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay); 1624 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime); 1625 1626 return nla_nest_end(skb, nest); 1627 1628 nla_put_failure: 1629 return nla_nest_cancel(skb, nest); 1630 } 1631 1632 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 1633 u32 pid, u32 seq, int type, int flags) 1634 { 1635 struct nlmsghdr *nlh; 1636 struct ndtmsg *ndtmsg; 1637 1638 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1639 if (nlh == NULL) 1640 return -EMSGSIZE; 1641 1642 ndtmsg = nlmsg_data(nlh); 1643 1644 read_lock_bh(&tbl->lock); 1645 ndtmsg->ndtm_family = tbl->family; 1646 ndtmsg->ndtm_pad1 = 0; 1647 ndtmsg->ndtm_pad2 = 0; 1648 1649 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id); 1650 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval); 1651 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1); 1652 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2); 1653 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3); 1654 1655 { 1656 unsigned long now = jiffies; 1657 unsigned int flush_delta = now - tbl->last_flush; 1658 unsigned int rand_delta = now - tbl->last_rand; 1659 1660 struct ndt_config ndc = { 1661 .ndtc_key_len = tbl->key_len, 1662 .ndtc_entry_size = tbl->entry_size, 1663 .ndtc_entries = atomic_read(&tbl->entries), 1664 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 1665 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 1666 .ndtc_hash_rnd = tbl->hash_rnd, 1667 .ndtc_hash_mask = tbl->hash_mask, 1668 .ndtc_hash_chain_gc = tbl->hash_chain_gc, 1669 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 1670 }; 1671 1672 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc); 1673 } 1674 1675 { 1676 int cpu; 1677 struct ndt_stats ndst; 1678 1679 memset(&ndst, 0, sizeof(ndst)); 1680 1681 for_each_possible_cpu(cpu) { 1682 struct neigh_statistics *st; 1683 1684 st = per_cpu_ptr(tbl->stats, cpu); 1685 ndst.ndts_allocs += st->allocs; 1686 ndst.ndts_destroys += st->destroys; 1687 ndst.ndts_hash_grows += st->hash_grows; 1688 ndst.ndts_res_failed += st->res_failed; 1689 ndst.ndts_lookups += st->lookups; 1690 ndst.ndts_hits += st->hits; 1691 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 1692 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 1693 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 1694 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 1695 } 1696 1697 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst); 1698 } 1699 1700 BUG_ON(tbl->parms.dev); 1701 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 1702 goto nla_put_failure; 1703 1704 read_unlock_bh(&tbl->lock); 1705 return nlmsg_end(skb, nlh); 1706 1707 nla_put_failure: 1708 read_unlock_bh(&tbl->lock); 1709 nlmsg_cancel(skb, nlh); 1710 return -EMSGSIZE; 1711 } 1712 1713 static int neightbl_fill_param_info(struct sk_buff *skb, 1714 struct neigh_table *tbl, 1715 struct neigh_parms *parms, 1716 u32 pid, u32 seq, int type, 1717 unsigned int flags) 1718 { 1719 struct ndtmsg *ndtmsg; 1720 struct nlmsghdr *nlh; 1721 1722 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1723 if (nlh == NULL) 1724 return -EMSGSIZE; 1725 1726 ndtmsg = nlmsg_data(nlh); 1727 1728 read_lock_bh(&tbl->lock); 1729 ndtmsg->ndtm_family = tbl->family; 1730 ndtmsg->ndtm_pad1 = 0; 1731 ndtmsg->ndtm_pad2 = 0; 1732 1733 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 1734 neightbl_fill_parms(skb, parms) < 0) 1735 goto errout; 1736 1737 read_unlock_bh(&tbl->lock); 1738 return nlmsg_end(skb, nlh); 1739 errout: 1740 read_unlock_bh(&tbl->lock); 1741 nlmsg_cancel(skb, nlh); 1742 return -EMSGSIZE; 1743 } 1744 1745 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl, 1746 int ifindex) 1747 { 1748 struct neigh_parms *p; 1749 1750 for (p = &tbl->parms; p; p = p->next) 1751 if ((p->dev && p->dev->ifindex == ifindex) || 1752 (!p->dev && !ifindex)) 1753 return p; 1754 1755 return NULL; 1756 } 1757 1758 static struct nla_policy nl_neightbl_policy[NDTA_MAX+1] __read_mostly = { 1759 [NDTA_NAME] = { .type = NLA_STRING }, 1760 [NDTA_THRESH1] = { .type = NLA_U32 }, 1761 [NDTA_THRESH2] = { .type = NLA_U32 }, 1762 [NDTA_THRESH3] = { .type = NLA_U32 }, 1763 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 1764 [NDTA_PARMS] = { .type = NLA_NESTED }, 1765 }; 1766 1767 static struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] __read_mostly = { 1768 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 1769 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 1770 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 1771 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 1772 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 1773 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 1774 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 1775 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 1776 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 1777 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 1778 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 1779 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 1780 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 1781 }; 1782 1783 int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1784 { 1785 struct neigh_table *tbl; 1786 struct ndtmsg *ndtmsg; 1787 struct nlattr *tb[NDTA_MAX+1]; 1788 int err; 1789 1790 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 1791 nl_neightbl_policy); 1792 if (err < 0) 1793 goto errout; 1794 1795 if (tb[NDTA_NAME] == NULL) { 1796 err = -EINVAL; 1797 goto errout; 1798 } 1799 1800 ndtmsg = nlmsg_data(nlh); 1801 read_lock(&neigh_tbl_lock); 1802 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1803 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 1804 continue; 1805 1806 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) 1807 break; 1808 } 1809 1810 if (tbl == NULL) { 1811 err = -ENOENT; 1812 goto errout_locked; 1813 } 1814 1815 /* 1816 * We acquire tbl->lock to be nice to the periodic timers and 1817 * make sure they always see a consistent set of values. 1818 */ 1819 write_lock_bh(&tbl->lock); 1820 1821 if (tb[NDTA_PARMS]) { 1822 struct nlattr *tbp[NDTPA_MAX+1]; 1823 struct neigh_parms *p; 1824 int i, ifindex = 0; 1825 1826 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS], 1827 nl_ntbl_parm_policy); 1828 if (err < 0) 1829 goto errout_tbl_lock; 1830 1831 if (tbp[NDTPA_IFINDEX]) 1832 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 1833 1834 p = lookup_neigh_params(tbl, ifindex); 1835 if (p == NULL) { 1836 err = -ENOENT; 1837 goto errout_tbl_lock; 1838 } 1839 1840 for (i = 1; i <= NDTPA_MAX; i++) { 1841 if (tbp[i] == NULL) 1842 continue; 1843 1844 switch (i) { 1845 case NDTPA_QUEUE_LEN: 1846 p->queue_len = nla_get_u32(tbp[i]); 1847 break; 1848 case NDTPA_PROXY_QLEN: 1849 p->proxy_qlen = nla_get_u32(tbp[i]); 1850 break; 1851 case NDTPA_APP_PROBES: 1852 p->app_probes = nla_get_u32(tbp[i]); 1853 break; 1854 case NDTPA_UCAST_PROBES: 1855 p->ucast_probes = nla_get_u32(tbp[i]); 1856 break; 1857 case NDTPA_MCAST_PROBES: 1858 p->mcast_probes = nla_get_u32(tbp[i]); 1859 break; 1860 case NDTPA_BASE_REACHABLE_TIME: 1861 p->base_reachable_time = nla_get_msecs(tbp[i]); 1862 break; 1863 case NDTPA_GC_STALETIME: 1864 p->gc_staletime = nla_get_msecs(tbp[i]); 1865 break; 1866 case NDTPA_DELAY_PROBE_TIME: 1867 p->delay_probe_time = nla_get_msecs(tbp[i]); 1868 break; 1869 case NDTPA_RETRANS_TIME: 1870 p->retrans_time = nla_get_msecs(tbp[i]); 1871 break; 1872 case NDTPA_ANYCAST_DELAY: 1873 p->anycast_delay = nla_get_msecs(tbp[i]); 1874 break; 1875 case NDTPA_PROXY_DELAY: 1876 p->proxy_delay = nla_get_msecs(tbp[i]); 1877 break; 1878 case NDTPA_LOCKTIME: 1879 p->locktime = nla_get_msecs(tbp[i]); 1880 break; 1881 } 1882 } 1883 } 1884 1885 if (tb[NDTA_THRESH1]) 1886 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 1887 1888 if (tb[NDTA_THRESH2]) 1889 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 1890 1891 if (tb[NDTA_THRESH3]) 1892 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 1893 1894 if (tb[NDTA_GC_INTERVAL]) 1895 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 1896 1897 err = 0; 1898 1899 errout_tbl_lock: 1900 write_unlock_bh(&tbl->lock); 1901 errout_locked: 1902 read_unlock(&neigh_tbl_lock); 1903 errout: 1904 return err; 1905 } 1906 1907 int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 1908 { 1909 int family, tidx, nidx = 0; 1910 int tbl_skip = cb->args[0]; 1911 int neigh_skip = cb->args[1]; 1912 struct neigh_table *tbl; 1913 1914 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 1915 1916 read_lock(&neigh_tbl_lock); 1917 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) { 1918 struct neigh_parms *p; 1919 1920 if (tidx < tbl_skip || (family && tbl->family != family)) 1921 continue; 1922 1923 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid, 1924 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 1925 NLM_F_MULTI) <= 0) 1926 break; 1927 1928 for (nidx = 0, p = tbl->parms.next; p; p = p->next, nidx++) { 1929 if (nidx < neigh_skip) 1930 continue; 1931 1932 if (neightbl_fill_param_info(skb, tbl, p, 1933 NETLINK_CB(cb->skb).pid, 1934 cb->nlh->nlmsg_seq, 1935 RTM_NEWNEIGHTBL, 1936 NLM_F_MULTI) <= 0) 1937 goto out; 1938 } 1939 1940 neigh_skip = 0; 1941 } 1942 out: 1943 read_unlock(&neigh_tbl_lock); 1944 cb->args[0] = tidx; 1945 cb->args[1] = nidx; 1946 1947 return skb->len; 1948 } 1949 1950 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 1951 u32 pid, u32 seq, int type, unsigned int flags) 1952 { 1953 unsigned long now = jiffies; 1954 struct nda_cacheinfo ci; 1955 struct nlmsghdr *nlh; 1956 struct ndmsg *ndm; 1957 1958 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 1959 if (nlh == NULL) 1960 return -EMSGSIZE; 1961 1962 ndm = nlmsg_data(nlh); 1963 ndm->ndm_family = neigh->ops->family; 1964 ndm->ndm_pad1 = 0; 1965 ndm->ndm_pad2 = 0; 1966 ndm->ndm_flags = neigh->flags; 1967 ndm->ndm_type = neigh->type; 1968 ndm->ndm_ifindex = neigh->dev->ifindex; 1969 1970 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key); 1971 1972 read_lock_bh(&neigh->lock); 1973 ndm->ndm_state = neigh->nud_state; 1974 if ((neigh->nud_state & NUD_VALID) && 1975 nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) { 1976 read_unlock_bh(&neigh->lock); 1977 goto nla_put_failure; 1978 } 1979 1980 ci.ndm_used = now - neigh->used; 1981 ci.ndm_confirmed = now - neigh->confirmed; 1982 ci.ndm_updated = now - neigh->updated; 1983 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1; 1984 read_unlock_bh(&neigh->lock); 1985 1986 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes)); 1987 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci); 1988 1989 return nlmsg_end(skb, nlh); 1990 1991 nla_put_failure: 1992 nlmsg_cancel(skb, nlh); 1993 return -EMSGSIZE; 1994 } 1995 1996 1997 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 1998 struct netlink_callback *cb) 1999 { 2000 struct neighbour *n; 2001 int rc, h, s_h = cb->args[1]; 2002 int idx, s_idx = idx = cb->args[2]; 2003 2004 read_lock_bh(&tbl->lock); 2005 for (h = 0; h <= tbl->hash_mask; h++) { 2006 if (h < s_h) 2007 continue; 2008 if (h > s_h) 2009 s_idx = 0; 2010 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next, idx++) { 2011 if (idx < s_idx) 2012 continue; 2013 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid, 2014 cb->nlh->nlmsg_seq, 2015 RTM_NEWNEIGH, 2016 NLM_F_MULTI) <= 0) { 2017 read_unlock_bh(&tbl->lock); 2018 rc = -1; 2019 goto out; 2020 } 2021 } 2022 } 2023 read_unlock_bh(&tbl->lock); 2024 rc = skb->len; 2025 out: 2026 cb->args[1] = h; 2027 cb->args[2] = idx; 2028 return rc; 2029 } 2030 2031 int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2032 { 2033 struct neigh_table *tbl; 2034 int t, family, s_t; 2035 2036 read_lock(&neigh_tbl_lock); 2037 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 2038 s_t = cb->args[0]; 2039 2040 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) { 2041 if (t < s_t || (family && tbl->family != family)) 2042 continue; 2043 if (t > s_t) 2044 memset(&cb->args[1], 0, sizeof(cb->args) - 2045 sizeof(cb->args[0])); 2046 if (neigh_dump_table(tbl, skb, cb) < 0) 2047 break; 2048 } 2049 read_unlock(&neigh_tbl_lock); 2050 2051 cb->args[0] = t; 2052 return skb->len; 2053 } 2054 2055 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 2056 { 2057 int chain; 2058 2059 read_lock_bh(&tbl->lock); 2060 for (chain = 0; chain <= tbl->hash_mask; chain++) { 2061 struct neighbour *n; 2062 2063 for (n = tbl->hash_buckets[chain]; n; n = n->next) 2064 cb(n, cookie); 2065 } 2066 read_unlock_bh(&tbl->lock); 2067 } 2068 EXPORT_SYMBOL(neigh_for_each); 2069 2070 /* The tbl->lock must be held as a writer and BH disabled. */ 2071 void __neigh_for_each_release(struct neigh_table *tbl, 2072 int (*cb)(struct neighbour *)) 2073 { 2074 int chain; 2075 2076 for (chain = 0; chain <= tbl->hash_mask; chain++) { 2077 struct neighbour *n, **np; 2078 2079 np = &tbl->hash_buckets[chain]; 2080 while ((n = *np) != NULL) { 2081 int release; 2082 2083 write_lock(&n->lock); 2084 release = cb(n); 2085 if (release) { 2086 *np = n->next; 2087 n->dead = 1; 2088 } else 2089 np = &n->next; 2090 write_unlock(&n->lock); 2091 if (release) 2092 neigh_release(n); 2093 } 2094 } 2095 } 2096 EXPORT_SYMBOL(__neigh_for_each_release); 2097 2098 #ifdef CONFIG_PROC_FS 2099 2100 static struct neighbour *neigh_get_first(struct seq_file *seq) 2101 { 2102 struct neigh_seq_state *state = seq->private; 2103 struct neigh_table *tbl = state->tbl; 2104 struct neighbour *n = NULL; 2105 int bucket = state->bucket; 2106 2107 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 2108 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) { 2109 n = tbl->hash_buckets[bucket]; 2110 2111 while (n) { 2112 if (state->neigh_sub_iter) { 2113 loff_t fakep = 0; 2114 void *v; 2115 2116 v = state->neigh_sub_iter(state, n, &fakep); 2117 if (!v) 2118 goto next; 2119 } 2120 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2121 break; 2122 if (n->nud_state & ~NUD_NOARP) 2123 break; 2124 next: 2125 n = n->next; 2126 } 2127 2128 if (n) 2129 break; 2130 } 2131 state->bucket = bucket; 2132 2133 return n; 2134 } 2135 2136 static struct neighbour *neigh_get_next(struct seq_file *seq, 2137 struct neighbour *n, 2138 loff_t *pos) 2139 { 2140 struct neigh_seq_state *state = seq->private; 2141 struct neigh_table *tbl = state->tbl; 2142 2143 if (state->neigh_sub_iter) { 2144 void *v = state->neigh_sub_iter(state, n, pos); 2145 if (v) 2146 return n; 2147 } 2148 n = n->next; 2149 2150 while (1) { 2151 while (n) { 2152 if (state->neigh_sub_iter) { 2153 void *v = state->neigh_sub_iter(state, n, pos); 2154 if (v) 2155 return n; 2156 goto next; 2157 } 2158 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2159 break; 2160 2161 if (n->nud_state & ~NUD_NOARP) 2162 break; 2163 next: 2164 n = n->next; 2165 } 2166 2167 if (n) 2168 break; 2169 2170 if (++state->bucket > tbl->hash_mask) 2171 break; 2172 2173 n = tbl->hash_buckets[state->bucket]; 2174 } 2175 2176 if (n && pos) 2177 --(*pos); 2178 return n; 2179 } 2180 2181 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 2182 { 2183 struct neighbour *n = neigh_get_first(seq); 2184 2185 if (n) { 2186 while (*pos) { 2187 n = neigh_get_next(seq, n, pos); 2188 if (!n) 2189 break; 2190 } 2191 } 2192 return *pos ? NULL : n; 2193 } 2194 2195 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 2196 { 2197 struct neigh_seq_state *state = seq->private; 2198 struct neigh_table *tbl = state->tbl; 2199 struct pneigh_entry *pn = NULL; 2200 int bucket = state->bucket; 2201 2202 state->flags |= NEIGH_SEQ_IS_PNEIGH; 2203 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 2204 pn = tbl->phash_buckets[bucket]; 2205 if (pn) 2206 break; 2207 } 2208 state->bucket = bucket; 2209 2210 return pn; 2211 } 2212 2213 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 2214 struct pneigh_entry *pn, 2215 loff_t *pos) 2216 { 2217 struct neigh_seq_state *state = seq->private; 2218 struct neigh_table *tbl = state->tbl; 2219 2220 pn = pn->next; 2221 while (!pn) { 2222 if (++state->bucket > PNEIGH_HASHMASK) 2223 break; 2224 pn = tbl->phash_buckets[state->bucket]; 2225 if (pn) 2226 break; 2227 } 2228 2229 if (pn && pos) 2230 --(*pos); 2231 2232 return pn; 2233 } 2234 2235 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 2236 { 2237 struct pneigh_entry *pn = pneigh_get_first(seq); 2238 2239 if (pn) { 2240 while (*pos) { 2241 pn = pneigh_get_next(seq, pn, pos); 2242 if (!pn) 2243 break; 2244 } 2245 } 2246 return *pos ? NULL : pn; 2247 } 2248 2249 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 2250 { 2251 struct neigh_seq_state *state = seq->private; 2252 void *rc; 2253 2254 rc = neigh_get_idx(seq, pos); 2255 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2256 rc = pneigh_get_idx(seq, pos); 2257 2258 return rc; 2259 } 2260 2261 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 2262 { 2263 struct neigh_seq_state *state = seq->private; 2264 loff_t pos_minus_one; 2265 2266 state->tbl = tbl; 2267 state->bucket = 0; 2268 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 2269 2270 read_lock_bh(&tbl->lock); 2271 2272 pos_minus_one = *pos - 1; 2273 return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN; 2274 } 2275 EXPORT_SYMBOL(neigh_seq_start); 2276 2277 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2278 { 2279 struct neigh_seq_state *state; 2280 void *rc; 2281 2282 if (v == SEQ_START_TOKEN) { 2283 rc = neigh_get_idx(seq, pos); 2284 goto out; 2285 } 2286 2287 state = seq->private; 2288 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 2289 rc = neigh_get_next(seq, v, NULL); 2290 if (rc) 2291 goto out; 2292 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2293 rc = pneigh_get_first(seq); 2294 } else { 2295 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 2296 rc = pneigh_get_next(seq, v, NULL); 2297 } 2298 out: 2299 ++(*pos); 2300 return rc; 2301 } 2302 EXPORT_SYMBOL(neigh_seq_next); 2303 2304 void neigh_seq_stop(struct seq_file *seq, void *v) 2305 { 2306 struct neigh_seq_state *state = seq->private; 2307 struct neigh_table *tbl = state->tbl; 2308 2309 read_unlock_bh(&tbl->lock); 2310 } 2311 EXPORT_SYMBOL(neigh_seq_stop); 2312 2313 /* statistics via seq_file */ 2314 2315 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 2316 { 2317 struct proc_dir_entry *pde = seq->private; 2318 struct neigh_table *tbl = pde->data; 2319 int cpu; 2320 2321 if (*pos == 0) 2322 return SEQ_START_TOKEN; 2323 2324 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) { 2325 if (!cpu_possible(cpu)) 2326 continue; 2327 *pos = cpu+1; 2328 return per_cpu_ptr(tbl->stats, cpu); 2329 } 2330 return NULL; 2331 } 2332 2333 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2334 { 2335 struct proc_dir_entry *pde = seq->private; 2336 struct neigh_table *tbl = pde->data; 2337 int cpu; 2338 2339 for (cpu = *pos; cpu < NR_CPUS; ++cpu) { 2340 if (!cpu_possible(cpu)) 2341 continue; 2342 *pos = cpu+1; 2343 return per_cpu_ptr(tbl->stats, cpu); 2344 } 2345 return NULL; 2346 } 2347 2348 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 2349 { 2350 2351 } 2352 2353 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 2354 { 2355 struct proc_dir_entry *pde = seq->private; 2356 struct neigh_table *tbl = pde->data; 2357 struct neigh_statistics *st = v; 2358 2359 if (v == SEQ_START_TOKEN) { 2360 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n"); 2361 return 0; 2362 } 2363 2364 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 2365 "%08lx %08lx %08lx %08lx\n", 2366 atomic_read(&tbl->entries), 2367 2368 st->allocs, 2369 st->destroys, 2370 st->hash_grows, 2371 2372 st->lookups, 2373 st->hits, 2374 2375 st->res_failed, 2376 2377 st->rcv_probes_mcast, 2378 st->rcv_probes_ucast, 2379 2380 st->periodic_gc_runs, 2381 st->forced_gc_runs 2382 ); 2383 2384 return 0; 2385 } 2386 2387 static struct seq_operations neigh_stat_seq_ops = { 2388 .start = neigh_stat_seq_start, 2389 .next = neigh_stat_seq_next, 2390 .stop = neigh_stat_seq_stop, 2391 .show = neigh_stat_seq_show, 2392 }; 2393 2394 static int neigh_stat_seq_open(struct inode *inode, struct file *file) 2395 { 2396 int ret = seq_open(file, &neigh_stat_seq_ops); 2397 2398 if (!ret) { 2399 struct seq_file *sf = file->private_data; 2400 sf->private = PDE(inode); 2401 } 2402 return ret; 2403 }; 2404 2405 static const struct file_operations neigh_stat_seq_fops = { 2406 .owner = THIS_MODULE, 2407 .open = neigh_stat_seq_open, 2408 .read = seq_read, 2409 .llseek = seq_lseek, 2410 .release = seq_release, 2411 }; 2412 2413 #endif /* CONFIG_PROC_FS */ 2414 2415 #ifdef CONFIG_ARPD 2416 static inline size_t neigh_nlmsg_size(void) 2417 { 2418 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2419 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2420 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2421 + nla_total_size(sizeof(struct nda_cacheinfo)) 2422 + nla_total_size(4); /* NDA_PROBES */ 2423 } 2424 2425 static void __neigh_notify(struct neighbour *n, int type, int flags) 2426 { 2427 struct sk_buff *skb; 2428 int err = -ENOBUFS; 2429 2430 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 2431 if (skb == NULL) 2432 goto errout; 2433 2434 err = neigh_fill_info(skb, n, 0, 0, type, flags); 2435 if (err < 0) { 2436 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 2437 WARN_ON(err == -EMSGSIZE); 2438 kfree_skb(skb); 2439 goto errout; 2440 } 2441 err = rtnl_notify(skb, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 2442 errout: 2443 if (err < 0) 2444 rtnl_set_sk_err(RTNLGRP_NEIGH, err); 2445 } 2446 2447 void neigh_app_ns(struct neighbour *n) 2448 { 2449 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST); 2450 } 2451 2452 static void neigh_app_notify(struct neighbour *n) 2453 { 2454 __neigh_notify(n, RTM_NEWNEIGH, 0); 2455 } 2456 2457 #endif /* CONFIG_ARPD */ 2458 2459 #ifdef CONFIG_SYSCTL 2460 2461 static struct neigh_sysctl_table { 2462 struct ctl_table_header *sysctl_header; 2463 ctl_table neigh_vars[__NET_NEIGH_MAX]; 2464 ctl_table neigh_dev[2]; 2465 ctl_table neigh_neigh_dir[2]; 2466 ctl_table neigh_proto_dir[2]; 2467 ctl_table neigh_root_dir[2]; 2468 } neigh_sysctl_template __read_mostly = { 2469 .neigh_vars = { 2470 { 2471 .ctl_name = NET_NEIGH_MCAST_SOLICIT, 2472 .procname = "mcast_solicit", 2473 .maxlen = sizeof(int), 2474 .mode = 0644, 2475 .proc_handler = &proc_dointvec, 2476 }, 2477 { 2478 .ctl_name = NET_NEIGH_UCAST_SOLICIT, 2479 .procname = "ucast_solicit", 2480 .maxlen = sizeof(int), 2481 .mode = 0644, 2482 .proc_handler = &proc_dointvec, 2483 }, 2484 { 2485 .ctl_name = NET_NEIGH_APP_SOLICIT, 2486 .procname = "app_solicit", 2487 .maxlen = sizeof(int), 2488 .mode = 0644, 2489 .proc_handler = &proc_dointvec, 2490 }, 2491 { 2492 .ctl_name = NET_NEIGH_RETRANS_TIME, 2493 .procname = "retrans_time", 2494 .maxlen = sizeof(int), 2495 .mode = 0644, 2496 .proc_handler = &proc_dointvec_userhz_jiffies, 2497 }, 2498 { 2499 .ctl_name = NET_NEIGH_REACHABLE_TIME, 2500 .procname = "base_reachable_time", 2501 .maxlen = sizeof(int), 2502 .mode = 0644, 2503 .proc_handler = &proc_dointvec_jiffies, 2504 .strategy = &sysctl_jiffies, 2505 }, 2506 { 2507 .ctl_name = NET_NEIGH_DELAY_PROBE_TIME, 2508 .procname = "delay_first_probe_time", 2509 .maxlen = sizeof(int), 2510 .mode = 0644, 2511 .proc_handler = &proc_dointvec_jiffies, 2512 .strategy = &sysctl_jiffies, 2513 }, 2514 { 2515 .ctl_name = NET_NEIGH_GC_STALE_TIME, 2516 .procname = "gc_stale_time", 2517 .maxlen = sizeof(int), 2518 .mode = 0644, 2519 .proc_handler = &proc_dointvec_jiffies, 2520 .strategy = &sysctl_jiffies, 2521 }, 2522 { 2523 .ctl_name = NET_NEIGH_UNRES_QLEN, 2524 .procname = "unres_qlen", 2525 .maxlen = sizeof(int), 2526 .mode = 0644, 2527 .proc_handler = &proc_dointvec, 2528 }, 2529 { 2530 .ctl_name = NET_NEIGH_PROXY_QLEN, 2531 .procname = "proxy_qlen", 2532 .maxlen = sizeof(int), 2533 .mode = 0644, 2534 .proc_handler = &proc_dointvec, 2535 }, 2536 { 2537 .ctl_name = NET_NEIGH_ANYCAST_DELAY, 2538 .procname = "anycast_delay", 2539 .maxlen = sizeof(int), 2540 .mode = 0644, 2541 .proc_handler = &proc_dointvec_userhz_jiffies, 2542 }, 2543 { 2544 .ctl_name = NET_NEIGH_PROXY_DELAY, 2545 .procname = "proxy_delay", 2546 .maxlen = sizeof(int), 2547 .mode = 0644, 2548 .proc_handler = &proc_dointvec_userhz_jiffies, 2549 }, 2550 { 2551 .ctl_name = NET_NEIGH_LOCKTIME, 2552 .procname = "locktime", 2553 .maxlen = sizeof(int), 2554 .mode = 0644, 2555 .proc_handler = &proc_dointvec_userhz_jiffies, 2556 }, 2557 { 2558 .ctl_name = NET_NEIGH_GC_INTERVAL, 2559 .procname = "gc_interval", 2560 .maxlen = sizeof(int), 2561 .mode = 0644, 2562 .proc_handler = &proc_dointvec_jiffies, 2563 .strategy = &sysctl_jiffies, 2564 }, 2565 { 2566 .ctl_name = NET_NEIGH_GC_THRESH1, 2567 .procname = "gc_thresh1", 2568 .maxlen = sizeof(int), 2569 .mode = 0644, 2570 .proc_handler = &proc_dointvec, 2571 }, 2572 { 2573 .ctl_name = NET_NEIGH_GC_THRESH2, 2574 .procname = "gc_thresh2", 2575 .maxlen = sizeof(int), 2576 .mode = 0644, 2577 .proc_handler = &proc_dointvec, 2578 }, 2579 { 2580 .ctl_name = NET_NEIGH_GC_THRESH3, 2581 .procname = "gc_thresh3", 2582 .maxlen = sizeof(int), 2583 .mode = 0644, 2584 .proc_handler = &proc_dointvec, 2585 }, 2586 { 2587 .ctl_name = NET_NEIGH_RETRANS_TIME_MS, 2588 .procname = "retrans_time_ms", 2589 .maxlen = sizeof(int), 2590 .mode = 0644, 2591 .proc_handler = &proc_dointvec_ms_jiffies, 2592 .strategy = &sysctl_ms_jiffies, 2593 }, 2594 { 2595 .ctl_name = NET_NEIGH_REACHABLE_TIME_MS, 2596 .procname = "base_reachable_time_ms", 2597 .maxlen = sizeof(int), 2598 .mode = 0644, 2599 .proc_handler = &proc_dointvec_ms_jiffies, 2600 .strategy = &sysctl_ms_jiffies, 2601 }, 2602 }, 2603 .neigh_dev = { 2604 { 2605 .ctl_name = NET_PROTO_CONF_DEFAULT, 2606 .procname = "default", 2607 .mode = 0555, 2608 }, 2609 }, 2610 .neigh_neigh_dir = { 2611 { 2612 .procname = "neigh", 2613 .mode = 0555, 2614 }, 2615 }, 2616 .neigh_proto_dir = { 2617 { 2618 .mode = 0555, 2619 }, 2620 }, 2621 .neigh_root_dir = { 2622 { 2623 .ctl_name = CTL_NET, 2624 .procname = "net", 2625 .mode = 0555, 2626 }, 2627 }, 2628 }; 2629 2630 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 2631 int p_id, int pdev_id, char *p_name, 2632 proc_handler *handler, ctl_handler *strategy) 2633 { 2634 struct neigh_sysctl_table *t = kmemdup(&neigh_sysctl_template, 2635 sizeof(*t), GFP_KERNEL); 2636 const char *dev_name_source = NULL; 2637 char *dev_name = NULL; 2638 int err = 0; 2639 2640 if (!t) 2641 return -ENOBUFS; 2642 t->neigh_vars[0].data = &p->mcast_probes; 2643 t->neigh_vars[1].data = &p->ucast_probes; 2644 t->neigh_vars[2].data = &p->app_probes; 2645 t->neigh_vars[3].data = &p->retrans_time; 2646 t->neigh_vars[4].data = &p->base_reachable_time; 2647 t->neigh_vars[5].data = &p->delay_probe_time; 2648 t->neigh_vars[6].data = &p->gc_staletime; 2649 t->neigh_vars[7].data = &p->queue_len; 2650 t->neigh_vars[8].data = &p->proxy_qlen; 2651 t->neigh_vars[9].data = &p->anycast_delay; 2652 t->neigh_vars[10].data = &p->proxy_delay; 2653 t->neigh_vars[11].data = &p->locktime; 2654 2655 if (dev) { 2656 dev_name_source = dev->name; 2657 t->neigh_dev[0].ctl_name = dev->ifindex; 2658 t->neigh_vars[12].procname = NULL; 2659 t->neigh_vars[13].procname = NULL; 2660 t->neigh_vars[14].procname = NULL; 2661 t->neigh_vars[15].procname = NULL; 2662 } else { 2663 dev_name_source = t->neigh_dev[0].procname; 2664 t->neigh_vars[12].data = (int *)(p + 1); 2665 t->neigh_vars[13].data = (int *)(p + 1) + 1; 2666 t->neigh_vars[14].data = (int *)(p + 1) + 2; 2667 t->neigh_vars[15].data = (int *)(p + 1) + 3; 2668 } 2669 2670 t->neigh_vars[16].data = &p->retrans_time; 2671 t->neigh_vars[17].data = &p->base_reachable_time; 2672 2673 if (handler || strategy) { 2674 /* RetransTime */ 2675 t->neigh_vars[3].proc_handler = handler; 2676 t->neigh_vars[3].strategy = strategy; 2677 t->neigh_vars[3].extra1 = dev; 2678 /* ReachableTime */ 2679 t->neigh_vars[4].proc_handler = handler; 2680 t->neigh_vars[4].strategy = strategy; 2681 t->neigh_vars[4].extra1 = dev; 2682 /* RetransTime (in milliseconds)*/ 2683 t->neigh_vars[16].proc_handler = handler; 2684 t->neigh_vars[16].strategy = strategy; 2685 t->neigh_vars[16].extra1 = dev; 2686 /* ReachableTime (in milliseconds) */ 2687 t->neigh_vars[17].proc_handler = handler; 2688 t->neigh_vars[17].strategy = strategy; 2689 t->neigh_vars[17].extra1 = dev; 2690 } 2691 2692 dev_name = kstrdup(dev_name_source, GFP_KERNEL); 2693 if (!dev_name) { 2694 err = -ENOBUFS; 2695 goto free; 2696 } 2697 2698 t->neigh_dev[0].procname = dev_name; 2699 2700 t->neigh_neigh_dir[0].ctl_name = pdev_id; 2701 2702 t->neigh_proto_dir[0].procname = p_name; 2703 t->neigh_proto_dir[0].ctl_name = p_id; 2704 2705 t->neigh_dev[0].child = t->neigh_vars; 2706 t->neigh_neigh_dir[0].child = t->neigh_dev; 2707 t->neigh_proto_dir[0].child = t->neigh_neigh_dir; 2708 t->neigh_root_dir[0].child = t->neigh_proto_dir; 2709 2710 t->sysctl_header = register_sysctl_table(t->neigh_root_dir); 2711 if (!t->sysctl_header) { 2712 err = -ENOBUFS; 2713 goto free_procname; 2714 } 2715 p->sysctl_table = t; 2716 return 0; 2717 2718 /* error path */ 2719 free_procname: 2720 kfree(dev_name); 2721 free: 2722 kfree(t); 2723 2724 return err; 2725 } 2726 2727 void neigh_sysctl_unregister(struct neigh_parms *p) 2728 { 2729 if (p->sysctl_table) { 2730 struct neigh_sysctl_table *t = p->sysctl_table; 2731 p->sysctl_table = NULL; 2732 unregister_sysctl_table(t->sysctl_header); 2733 kfree(t->neigh_dev[0].procname); 2734 kfree(t); 2735 } 2736 } 2737 2738 #endif /* CONFIG_SYSCTL */ 2739 2740 EXPORT_SYMBOL(__neigh_event_send); 2741 EXPORT_SYMBOL(neigh_changeaddr); 2742 EXPORT_SYMBOL(neigh_compat_output); 2743 EXPORT_SYMBOL(neigh_connected_output); 2744 EXPORT_SYMBOL(neigh_create); 2745 EXPORT_SYMBOL(neigh_delete); 2746 EXPORT_SYMBOL(neigh_destroy); 2747 EXPORT_SYMBOL(neigh_dump_info); 2748 EXPORT_SYMBOL(neigh_event_ns); 2749 EXPORT_SYMBOL(neigh_ifdown); 2750 EXPORT_SYMBOL(neigh_lookup); 2751 EXPORT_SYMBOL(neigh_lookup_nodev); 2752 EXPORT_SYMBOL(neigh_parms_alloc); 2753 EXPORT_SYMBOL(neigh_parms_release); 2754 EXPORT_SYMBOL(neigh_rand_reach_time); 2755 EXPORT_SYMBOL(neigh_resolve_output); 2756 EXPORT_SYMBOL(neigh_table_clear); 2757 EXPORT_SYMBOL(neigh_table_init); 2758 EXPORT_SYMBOL(neigh_table_init_no_netlink); 2759 EXPORT_SYMBOL(neigh_update); 2760 EXPORT_SYMBOL(pneigh_enqueue); 2761 EXPORT_SYMBOL(pneigh_lookup); 2762 2763 #ifdef CONFIG_ARPD 2764 EXPORT_SYMBOL(neigh_app_ns); 2765 #endif 2766 #ifdef CONFIG_SYSCTL 2767 EXPORT_SYMBOL(neigh_sysctl_register); 2768 EXPORT_SYMBOL(neigh_sysctl_unregister); 2769 #endif 2770