1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/config.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/notifier.h> 93 #include <linux/skbuff.h> 94 #include <net/sock.h> 95 #include <linux/rtnetlink.h> 96 #include <linux/proc_fs.h> 97 #include <linux/seq_file.h> 98 #include <linux/stat.h> 99 #include <linux/if_bridge.h> 100 #include <linux/divert.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <linux/highmem.h> 105 #include <linux/init.h> 106 #include <linux/kmod.h> 107 #include <linux/module.h> 108 #include <linux/kallsyms.h> 109 #include <linux/netpoll.h> 110 #include <linux/rcupdate.h> 111 #include <linux/delay.h> 112 #ifdef CONFIG_NET_RADIO 113 #include <linux/wireless.h> /* Note : will define WIRELESS_EXT */ 114 #include <net/iw_handler.h> 115 #endif /* CONFIG_NET_RADIO */ 116 #include <asm/current.h> 117 118 /* 119 * The list of packet types we will receive (as opposed to discard) 120 * and the routines to invoke. 121 * 122 * Why 16. Because with 16 the only overlap we get on a hash of the 123 * low nibble of the protocol value is RARP/SNAP/X.25. 124 * 125 * NOTE: That is no longer true with the addition of VLAN tags. Not 126 * sure which should go first, but I bet it won't make much 127 * difference if we are running VLANs. The good news is that 128 * this protocol won't be in the list unless compiled in, so 129 * the average user (w/out VLANs) will not be adversly affected. 130 * --BLG 131 * 132 * 0800 IP 133 * 8100 802.1Q VLAN 134 * 0001 802.3 135 * 0002 AX.25 136 * 0004 802.2 137 * 8035 RARP 138 * 0005 SNAP 139 * 0805 X.25 140 * 0806 ARP 141 * 8137 IPX 142 * 0009 Localtalk 143 * 86DD IPv6 144 */ 145 146 static DEFINE_SPINLOCK(ptype_lock); 147 static struct list_head ptype_base[16]; /* 16 way hashed list */ 148 static struct list_head ptype_all; /* Taps */ 149 150 /* 151 * The @dev_base list is protected by @dev_base_lock and the rtln 152 * semaphore. 153 * 154 * Pure readers hold dev_base_lock for reading. 155 * 156 * Writers must hold the rtnl semaphore while they loop through the 157 * dev_base list, and hold dev_base_lock for writing when they do the 158 * actual updates. This allows pure readers to access the list even 159 * while a writer is preparing to update it. 160 * 161 * To put it another way, dev_base_lock is held for writing only to 162 * protect against pure readers; the rtnl semaphore provides the 163 * protection against other writers. 164 * 165 * See, for example usages, register_netdevice() and 166 * unregister_netdevice(), which must be called with the rtnl 167 * semaphore held. 168 */ 169 struct net_device *dev_base; 170 static struct net_device **dev_tail = &dev_base; 171 DEFINE_RWLOCK(dev_base_lock); 172 173 EXPORT_SYMBOL(dev_base); 174 EXPORT_SYMBOL(dev_base_lock); 175 176 #define NETDEV_HASHBITS 8 177 static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS]; 178 static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS]; 179 180 static inline struct hlist_head *dev_name_hash(const char *name) 181 { 182 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 183 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)]; 184 } 185 186 static inline struct hlist_head *dev_index_hash(int ifindex) 187 { 188 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)]; 189 } 190 191 /* 192 * Our notifier list 193 */ 194 195 static struct notifier_block *netdev_chain; 196 197 /* 198 * Device drivers call our routines to queue packets here. We empty the 199 * queue in the local softnet handler. 200 */ 201 DEFINE_PER_CPU(struct softnet_data, softnet_data) = { NULL }; 202 203 #ifdef CONFIG_SYSFS 204 extern int netdev_sysfs_init(void); 205 extern int netdev_register_sysfs(struct net_device *); 206 extern void netdev_unregister_sysfs(struct net_device *); 207 #else 208 #define netdev_sysfs_init() (0) 209 #define netdev_register_sysfs(dev) (0) 210 #define netdev_unregister_sysfs(dev) do { } while(0) 211 #endif 212 213 214 /******************************************************************************* 215 216 Protocol management and registration routines 217 218 *******************************************************************************/ 219 220 /* 221 * For efficiency 222 */ 223 224 int netdev_nit; 225 226 /* 227 * Add a protocol ID to the list. Now that the input handler is 228 * smarter we can dispense with all the messy stuff that used to be 229 * here. 230 * 231 * BEWARE!!! Protocol handlers, mangling input packets, 232 * MUST BE last in hash buckets and checking protocol handlers 233 * MUST start from promiscuous ptype_all chain in net_bh. 234 * It is true now, do not change it. 235 * Explanation follows: if protocol handler, mangling packet, will 236 * be the first on list, it is not able to sense, that packet 237 * is cloned and should be copied-on-write, so that it will 238 * change it and subsequent readers will get broken packet. 239 * --ANK (980803) 240 */ 241 242 /** 243 * dev_add_pack - add packet handler 244 * @pt: packet type declaration 245 * 246 * Add a protocol handler to the networking stack. The passed &packet_type 247 * is linked into kernel lists and may not be freed until it has been 248 * removed from the kernel lists. 249 * 250 * This call does not sleep therefore it can not 251 * guarantee all CPU's that are in middle of receiving packets 252 * will see the new packet type (until the next received packet). 253 */ 254 255 void dev_add_pack(struct packet_type *pt) 256 { 257 int hash; 258 259 spin_lock_bh(&ptype_lock); 260 if (pt->type == htons(ETH_P_ALL)) { 261 netdev_nit++; 262 list_add_rcu(&pt->list, &ptype_all); 263 } else { 264 hash = ntohs(pt->type) & 15; 265 list_add_rcu(&pt->list, &ptype_base[hash]); 266 } 267 spin_unlock_bh(&ptype_lock); 268 } 269 270 /** 271 * __dev_remove_pack - remove packet handler 272 * @pt: packet type declaration 273 * 274 * Remove a protocol handler that was previously added to the kernel 275 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 276 * from the kernel lists and can be freed or reused once this function 277 * returns. 278 * 279 * The packet type might still be in use by receivers 280 * and must not be freed until after all the CPU's have gone 281 * through a quiescent state. 282 */ 283 void __dev_remove_pack(struct packet_type *pt) 284 { 285 struct list_head *head; 286 struct packet_type *pt1; 287 288 spin_lock_bh(&ptype_lock); 289 290 if (pt->type == htons(ETH_P_ALL)) { 291 netdev_nit--; 292 head = &ptype_all; 293 } else 294 head = &ptype_base[ntohs(pt->type) & 15]; 295 296 list_for_each_entry(pt1, head, list) { 297 if (pt == pt1) { 298 list_del_rcu(&pt->list); 299 goto out; 300 } 301 } 302 303 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 304 out: 305 spin_unlock_bh(&ptype_lock); 306 } 307 /** 308 * dev_remove_pack - remove packet handler 309 * @pt: packet type declaration 310 * 311 * Remove a protocol handler that was previously added to the kernel 312 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 313 * from the kernel lists and can be freed or reused once this function 314 * returns. 315 * 316 * This call sleeps to guarantee that no CPU is looking at the packet 317 * type after return. 318 */ 319 void dev_remove_pack(struct packet_type *pt) 320 { 321 __dev_remove_pack(pt); 322 323 synchronize_net(); 324 } 325 326 /****************************************************************************** 327 328 Device Boot-time Settings Routines 329 330 *******************************************************************************/ 331 332 /* Boot time configuration table */ 333 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 334 335 /** 336 * netdev_boot_setup_add - add new setup entry 337 * @name: name of the device 338 * @map: configured settings for the device 339 * 340 * Adds new setup entry to the dev_boot_setup list. The function 341 * returns 0 on error and 1 on success. This is a generic routine to 342 * all netdevices. 343 */ 344 static int netdev_boot_setup_add(char *name, struct ifmap *map) 345 { 346 struct netdev_boot_setup *s; 347 int i; 348 349 s = dev_boot_setup; 350 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 351 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 352 memset(s[i].name, 0, sizeof(s[i].name)); 353 strcpy(s[i].name, name); 354 memcpy(&s[i].map, map, sizeof(s[i].map)); 355 break; 356 } 357 } 358 359 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 360 } 361 362 /** 363 * netdev_boot_setup_check - check boot time settings 364 * @dev: the netdevice 365 * 366 * Check boot time settings for the device. 367 * The found settings are set for the device to be used 368 * later in the device probing. 369 * Returns 0 if no settings found, 1 if they are. 370 */ 371 int netdev_boot_setup_check(struct net_device *dev) 372 { 373 struct netdev_boot_setup *s = dev_boot_setup; 374 int i; 375 376 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 377 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 378 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 379 dev->irq = s[i].map.irq; 380 dev->base_addr = s[i].map.base_addr; 381 dev->mem_start = s[i].map.mem_start; 382 dev->mem_end = s[i].map.mem_end; 383 return 1; 384 } 385 } 386 return 0; 387 } 388 389 390 /** 391 * netdev_boot_base - get address from boot time settings 392 * @prefix: prefix for network device 393 * @unit: id for network device 394 * 395 * Check boot time settings for the base address of device. 396 * The found settings are set for the device to be used 397 * later in the device probing. 398 * Returns 0 if no settings found. 399 */ 400 unsigned long netdev_boot_base(const char *prefix, int unit) 401 { 402 const struct netdev_boot_setup *s = dev_boot_setup; 403 char name[IFNAMSIZ]; 404 int i; 405 406 sprintf(name, "%s%d", prefix, unit); 407 408 /* 409 * If device already registered then return base of 1 410 * to indicate not to probe for this interface 411 */ 412 if (__dev_get_by_name(name)) 413 return 1; 414 415 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 416 if (!strcmp(name, s[i].name)) 417 return s[i].map.base_addr; 418 return 0; 419 } 420 421 /* 422 * Saves at boot time configured settings for any netdevice. 423 */ 424 int __init netdev_boot_setup(char *str) 425 { 426 int ints[5]; 427 struct ifmap map; 428 429 str = get_options(str, ARRAY_SIZE(ints), ints); 430 if (!str || !*str) 431 return 0; 432 433 /* Save settings */ 434 memset(&map, 0, sizeof(map)); 435 if (ints[0] > 0) 436 map.irq = ints[1]; 437 if (ints[0] > 1) 438 map.base_addr = ints[2]; 439 if (ints[0] > 2) 440 map.mem_start = ints[3]; 441 if (ints[0] > 3) 442 map.mem_end = ints[4]; 443 444 /* Add new entry to the list */ 445 return netdev_boot_setup_add(str, &map); 446 } 447 448 __setup("netdev=", netdev_boot_setup); 449 450 /******************************************************************************* 451 452 Device Interface Subroutines 453 454 *******************************************************************************/ 455 456 /** 457 * __dev_get_by_name - find a device by its name 458 * @name: name to find 459 * 460 * Find an interface by name. Must be called under RTNL semaphore 461 * or @dev_base_lock. If the name is found a pointer to the device 462 * is returned. If the name is not found then %NULL is returned. The 463 * reference counters are not incremented so the caller must be 464 * careful with locks. 465 */ 466 467 struct net_device *__dev_get_by_name(const char *name) 468 { 469 struct hlist_node *p; 470 471 hlist_for_each(p, dev_name_hash(name)) { 472 struct net_device *dev 473 = hlist_entry(p, struct net_device, name_hlist); 474 if (!strncmp(dev->name, name, IFNAMSIZ)) 475 return dev; 476 } 477 return NULL; 478 } 479 480 /** 481 * dev_get_by_name - find a device by its name 482 * @name: name to find 483 * 484 * Find an interface by name. This can be called from any 485 * context and does its own locking. The returned handle has 486 * the usage count incremented and the caller must use dev_put() to 487 * release it when it is no longer needed. %NULL is returned if no 488 * matching device is found. 489 */ 490 491 struct net_device *dev_get_by_name(const char *name) 492 { 493 struct net_device *dev; 494 495 read_lock(&dev_base_lock); 496 dev = __dev_get_by_name(name); 497 if (dev) 498 dev_hold(dev); 499 read_unlock(&dev_base_lock); 500 return dev; 501 } 502 503 /** 504 * __dev_get_by_index - find a device by its ifindex 505 * @ifindex: index of device 506 * 507 * Search for an interface by index. Returns %NULL if the device 508 * is not found or a pointer to the device. The device has not 509 * had its reference counter increased so the caller must be careful 510 * about locking. The caller must hold either the RTNL semaphore 511 * or @dev_base_lock. 512 */ 513 514 struct net_device *__dev_get_by_index(int ifindex) 515 { 516 struct hlist_node *p; 517 518 hlist_for_each(p, dev_index_hash(ifindex)) { 519 struct net_device *dev 520 = hlist_entry(p, struct net_device, index_hlist); 521 if (dev->ifindex == ifindex) 522 return dev; 523 } 524 return NULL; 525 } 526 527 528 /** 529 * dev_get_by_index - find a device by its ifindex 530 * @ifindex: index of device 531 * 532 * Search for an interface by index. Returns NULL if the device 533 * is not found or a pointer to the device. The device returned has 534 * had a reference added and the pointer is safe until the user calls 535 * dev_put to indicate they have finished with it. 536 */ 537 538 struct net_device *dev_get_by_index(int ifindex) 539 { 540 struct net_device *dev; 541 542 read_lock(&dev_base_lock); 543 dev = __dev_get_by_index(ifindex); 544 if (dev) 545 dev_hold(dev); 546 read_unlock(&dev_base_lock); 547 return dev; 548 } 549 550 /** 551 * dev_getbyhwaddr - find a device by its hardware address 552 * @type: media type of device 553 * @ha: hardware address 554 * 555 * Search for an interface by MAC address. Returns NULL if the device 556 * is not found or a pointer to the device. The caller must hold the 557 * rtnl semaphore. The returned device has not had its ref count increased 558 * and the caller must therefore be careful about locking 559 * 560 * BUGS: 561 * If the API was consistent this would be __dev_get_by_hwaddr 562 */ 563 564 struct net_device *dev_getbyhwaddr(unsigned short type, char *ha) 565 { 566 struct net_device *dev; 567 568 ASSERT_RTNL(); 569 570 for (dev = dev_base; dev; dev = dev->next) 571 if (dev->type == type && 572 !memcmp(dev->dev_addr, ha, dev->addr_len)) 573 break; 574 return dev; 575 } 576 577 EXPORT_SYMBOL(dev_getbyhwaddr); 578 579 struct net_device *dev_getfirstbyhwtype(unsigned short type) 580 { 581 struct net_device *dev; 582 583 rtnl_lock(); 584 for (dev = dev_base; dev; dev = dev->next) { 585 if (dev->type == type) { 586 dev_hold(dev); 587 break; 588 } 589 } 590 rtnl_unlock(); 591 return dev; 592 } 593 594 EXPORT_SYMBOL(dev_getfirstbyhwtype); 595 596 /** 597 * dev_get_by_flags - find any device with given flags 598 * @if_flags: IFF_* values 599 * @mask: bitmask of bits in if_flags to check 600 * 601 * Search for any interface with the given flags. Returns NULL if a device 602 * is not found or a pointer to the device. The device returned has 603 * had a reference added and the pointer is safe until the user calls 604 * dev_put to indicate they have finished with it. 605 */ 606 607 struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask) 608 { 609 struct net_device *dev; 610 611 read_lock(&dev_base_lock); 612 for (dev = dev_base; dev != NULL; dev = dev->next) { 613 if (((dev->flags ^ if_flags) & mask) == 0) { 614 dev_hold(dev); 615 break; 616 } 617 } 618 read_unlock(&dev_base_lock); 619 return dev; 620 } 621 622 /** 623 * dev_valid_name - check if name is okay for network device 624 * @name: name string 625 * 626 * Network device names need to be valid file names to 627 * to allow sysfs to work 628 */ 629 static int dev_valid_name(const char *name) 630 { 631 return !(*name == '\0' 632 || !strcmp(name, ".") 633 || !strcmp(name, "..") 634 || strchr(name, '/')); 635 } 636 637 /** 638 * dev_alloc_name - allocate a name for a device 639 * @dev: device 640 * @name: name format string 641 * 642 * Passed a format string - eg "lt%d" it will try and find a suitable 643 * id. Not efficient for many devices, not called a lot. The caller 644 * must hold the dev_base or rtnl lock while allocating the name and 645 * adding the device in order to avoid duplicates. Returns the number 646 * of the unit assigned or a negative errno code. 647 */ 648 649 int dev_alloc_name(struct net_device *dev, const char *name) 650 { 651 int i = 0; 652 char buf[IFNAMSIZ]; 653 const char *p; 654 const int max_netdevices = 8*PAGE_SIZE; 655 long *inuse; 656 struct net_device *d; 657 658 p = strnchr(name, IFNAMSIZ-1, '%'); 659 if (p) { 660 /* 661 * Verify the string as this thing may have come from 662 * the user. There must be either one "%d" and no other "%" 663 * characters. 664 */ 665 if (p[1] != 'd' || strchr(p + 2, '%')) 666 return -EINVAL; 667 668 /* Use one page as a bit array of possible slots */ 669 inuse = (long *) get_zeroed_page(GFP_ATOMIC); 670 if (!inuse) 671 return -ENOMEM; 672 673 for (d = dev_base; d; d = d->next) { 674 if (!sscanf(d->name, name, &i)) 675 continue; 676 if (i < 0 || i >= max_netdevices) 677 continue; 678 679 /* avoid cases where sscanf is not exact inverse of printf */ 680 snprintf(buf, sizeof(buf), name, i); 681 if (!strncmp(buf, d->name, IFNAMSIZ)) 682 set_bit(i, inuse); 683 } 684 685 i = find_first_zero_bit(inuse, max_netdevices); 686 free_page((unsigned long) inuse); 687 } 688 689 snprintf(buf, sizeof(buf), name, i); 690 if (!__dev_get_by_name(buf)) { 691 strlcpy(dev->name, buf, IFNAMSIZ); 692 return i; 693 } 694 695 /* It is possible to run out of possible slots 696 * when the name is long and there isn't enough space left 697 * for the digits, or if all bits are used. 698 */ 699 return -ENFILE; 700 } 701 702 703 /** 704 * dev_change_name - change name of a device 705 * @dev: device 706 * @newname: name (or format string) must be at least IFNAMSIZ 707 * 708 * Change name of a device, can pass format strings "eth%d". 709 * for wildcarding. 710 */ 711 int dev_change_name(struct net_device *dev, char *newname) 712 { 713 int err = 0; 714 715 ASSERT_RTNL(); 716 717 if (dev->flags & IFF_UP) 718 return -EBUSY; 719 720 if (!dev_valid_name(newname)) 721 return -EINVAL; 722 723 if (strchr(newname, '%')) { 724 err = dev_alloc_name(dev, newname); 725 if (err < 0) 726 return err; 727 strcpy(newname, dev->name); 728 } 729 else if (__dev_get_by_name(newname)) 730 return -EEXIST; 731 else 732 strlcpy(dev->name, newname, IFNAMSIZ); 733 734 err = class_device_rename(&dev->class_dev, dev->name); 735 if (!err) { 736 hlist_del(&dev->name_hlist); 737 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name)); 738 notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev); 739 } 740 741 return err; 742 } 743 744 /** 745 * netdev_features_change - device changes fatures 746 * @dev: device to cause notification 747 * 748 * Called to indicate a device has changed features. 749 */ 750 void netdev_features_change(struct net_device *dev) 751 { 752 notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev); 753 } 754 EXPORT_SYMBOL(netdev_features_change); 755 756 /** 757 * netdev_state_change - device changes state 758 * @dev: device to cause notification 759 * 760 * Called to indicate a device has changed state. This function calls 761 * the notifier chains for netdev_chain and sends a NEWLINK message 762 * to the routing socket. 763 */ 764 void netdev_state_change(struct net_device *dev) 765 { 766 if (dev->flags & IFF_UP) { 767 notifier_call_chain(&netdev_chain, NETDEV_CHANGE, dev); 768 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 769 } 770 } 771 772 /** 773 * dev_load - load a network module 774 * @name: name of interface 775 * 776 * If a network interface is not present and the process has suitable 777 * privileges this function loads the module. If module loading is not 778 * available in this kernel then it becomes a nop. 779 */ 780 781 void dev_load(const char *name) 782 { 783 struct net_device *dev; 784 785 read_lock(&dev_base_lock); 786 dev = __dev_get_by_name(name); 787 read_unlock(&dev_base_lock); 788 789 if (!dev && capable(CAP_SYS_MODULE)) 790 request_module("%s", name); 791 } 792 793 static int default_rebuild_header(struct sk_buff *skb) 794 { 795 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n", 796 skb->dev ? skb->dev->name : "NULL!!!"); 797 kfree_skb(skb); 798 return 1; 799 } 800 801 802 /** 803 * dev_open - prepare an interface for use. 804 * @dev: device to open 805 * 806 * Takes a device from down to up state. The device's private open 807 * function is invoked and then the multicast lists are loaded. Finally 808 * the device is moved into the up state and a %NETDEV_UP message is 809 * sent to the netdev notifier chain. 810 * 811 * Calling this function on an active interface is a nop. On a failure 812 * a negative errno code is returned. 813 */ 814 int dev_open(struct net_device *dev) 815 { 816 int ret = 0; 817 818 /* 819 * Is it already up? 820 */ 821 822 if (dev->flags & IFF_UP) 823 return 0; 824 825 /* 826 * Is it even present? 827 */ 828 if (!netif_device_present(dev)) 829 return -ENODEV; 830 831 /* 832 * Call device private open method 833 */ 834 set_bit(__LINK_STATE_START, &dev->state); 835 if (dev->open) { 836 ret = dev->open(dev); 837 if (ret) 838 clear_bit(__LINK_STATE_START, &dev->state); 839 } 840 841 /* 842 * If it went open OK then: 843 */ 844 845 if (!ret) { 846 /* 847 * Set the flags. 848 */ 849 dev->flags |= IFF_UP; 850 851 /* 852 * Initialize multicasting status 853 */ 854 dev_mc_upload(dev); 855 856 /* 857 * Wakeup transmit queue engine 858 */ 859 dev_activate(dev); 860 861 /* 862 * ... and announce new interface. 863 */ 864 notifier_call_chain(&netdev_chain, NETDEV_UP, dev); 865 } 866 return ret; 867 } 868 869 /** 870 * dev_close - shutdown an interface. 871 * @dev: device to shutdown 872 * 873 * This function moves an active device into down state. A 874 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 875 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 876 * chain. 877 */ 878 int dev_close(struct net_device *dev) 879 { 880 if (!(dev->flags & IFF_UP)) 881 return 0; 882 883 /* 884 * Tell people we are going down, so that they can 885 * prepare to death, when device is still operating. 886 */ 887 notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev); 888 889 dev_deactivate(dev); 890 891 clear_bit(__LINK_STATE_START, &dev->state); 892 893 /* Synchronize to scheduled poll. We cannot touch poll list, 894 * it can be even on different cpu. So just clear netif_running(), 895 * and wait when poll really will happen. Actually, the best place 896 * for this is inside dev->stop() after device stopped its irq 897 * engine, but this requires more changes in devices. */ 898 899 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 900 while (test_bit(__LINK_STATE_RX_SCHED, &dev->state)) { 901 /* No hurry. */ 902 msleep(1); 903 } 904 905 /* 906 * Call the device specific close. This cannot fail. 907 * Only if device is UP 908 * 909 * We allow it to be called even after a DETACH hot-plug 910 * event. 911 */ 912 if (dev->stop) 913 dev->stop(dev); 914 915 /* 916 * Device is now down. 917 */ 918 919 dev->flags &= ~IFF_UP; 920 921 /* 922 * Tell people we are down 923 */ 924 notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev); 925 926 return 0; 927 } 928 929 930 /* 931 * Device change register/unregister. These are not inline or static 932 * as we export them to the world. 933 */ 934 935 /** 936 * register_netdevice_notifier - register a network notifier block 937 * @nb: notifier 938 * 939 * Register a notifier to be called when network device events occur. 940 * The notifier passed is linked into the kernel structures and must 941 * not be reused until it has been unregistered. A negative errno code 942 * is returned on a failure. 943 * 944 * When registered all registration and up events are replayed 945 * to the new notifier to allow device to have a race free 946 * view of the network device list. 947 */ 948 949 int register_netdevice_notifier(struct notifier_block *nb) 950 { 951 struct net_device *dev; 952 int err; 953 954 rtnl_lock(); 955 err = notifier_chain_register(&netdev_chain, nb); 956 if (!err) { 957 for (dev = dev_base; dev; dev = dev->next) { 958 nb->notifier_call(nb, NETDEV_REGISTER, dev); 959 960 if (dev->flags & IFF_UP) 961 nb->notifier_call(nb, NETDEV_UP, dev); 962 } 963 } 964 rtnl_unlock(); 965 return err; 966 } 967 968 /** 969 * unregister_netdevice_notifier - unregister a network notifier block 970 * @nb: notifier 971 * 972 * Unregister a notifier previously registered by 973 * register_netdevice_notifier(). The notifier is unlinked into the 974 * kernel structures and may then be reused. A negative errno code 975 * is returned on a failure. 976 */ 977 978 int unregister_netdevice_notifier(struct notifier_block *nb) 979 { 980 return notifier_chain_unregister(&netdev_chain, nb); 981 } 982 983 /** 984 * call_netdevice_notifiers - call all network notifier blocks 985 * @val: value passed unmodified to notifier function 986 * @v: pointer passed unmodified to notifier function 987 * 988 * Call all network notifier blocks. Parameters and return value 989 * are as for notifier_call_chain(). 990 */ 991 992 int call_netdevice_notifiers(unsigned long val, void *v) 993 { 994 return notifier_call_chain(&netdev_chain, val, v); 995 } 996 997 /* When > 0 there are consumers of rx skb time stamps */ 998 static atomic_t netstamp_needed = ATOMIC_INIT(0); 999 1000 void net_enable_timestamp(void) 1001 { 1002 atomic_inc(&netstamp_needed); 1003 } 1004 1005 void net_disable_timestamp(void) 1006 { 1007 atomic_dec(&netstamp_needed); 1008 } 1009 1010 void __net_timestamp(struct sk_buff *skb) 1011 { 1012 struct timeval tv; 1013 1014 do_gettimeofday(&tv); 1015 skb_set_timestamp(skb, &tv); 1016 } 1017 EXPORT_SYMBOL(__net_timestamp); 1018 1019 static inline void net_timestamp(struct sk_buff *skb) 1020 { 1021 if (atomic_read(&netstamp_needed)) 1022 __net_timestamp(skb); 1023 else { 1024 skb->tstamp.off_sec = 0; 1025 skb->tstamp.off_usec = 0; 1026 } 1027 } 1028 1029 /* 1030 * Support routine. Sends outgoing frames to any network 1031 * taps currently in use. 1032 */ 1033 1034 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1035 { 1036 struct packet_type *ptype; 1037 1038 net_timestamp(skb); 1039 1040 rcu_read_lock(); 1041 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1042 /* Never send packets back to the socket 1043 * they originated from - MvS (miquels@drinkel.ow.org) 1044 */ 1045 if ((ptype->dev == dev || !ptype->dev) && 1046 (ptype->af_packet_priv == NULL || 1047 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1048 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1049 if (!skb2) 1050 break; 1051 1052 /* skb->nh should be correctly 1053 set by sender, so that the second statement is 1054 just protection against buggy protocols. 1055 */ 1056 skb2->mac.raw = skb2->data; 1057 1058 if (skb2->nh.raw < skb2->data || 1059 skb2->nh.raw > skb2->tail) { 1060 if (net_ratelimit()) 1061 printk(KERN_CRIT "protocol %04x is " 1062 "buggy, dev %s\n", 1063 skb2->protocol, dev->name); 1064 skb2->nh.raw = skb2->data; 1065 } 1066 1067 skb2->h.raw = skb2->nh.raw; 1068 skb2->pkt_type = PACKET_OUTGOING; 1069 ptype->func(skb2, skb->dev, ptype, skb->dev); 1070 } 1071 } 1072 rcu_read_unlock(); 1073 } 1074 1075 /* 1076 * Invalidate hardware checksum when packet is to be mangled, and 1077 * complete checksum manually on outgoing path. 1078 */ 1079 int skb_checksum_help(struct sk_buff *skb, int inward) 1080 { 1081 unsigned int csum; 1082 int ret = 0, offset = skb->h.raw - skb->data; 1083 1084 if (inward) { 1085 skb->ip_summed = CHECKSUM_NONE; 1086 goto out; 1087 } 1088 1089 if (skb_cloned(skb)) { 1090 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1091 if (ret) 1092 goto out; 1093 } 1094 1095 if (offset > (int)skb->len) 1096 BUG(); 1097 csum = skb_checksum(skb, offset, skb->len-offset, 0); 1098 1099 offset = skb->tail - skb->h.raw; 1100 if (offset <= 0) 1101 BUG(); 1102 if (skb->csum + 2 > offset) 1103 BUG(); 1104 1105 *(u16*)(skb->h.raw + skb->csum) = csum_fold(csum); 1106 skb->ip_summed = CHECKSUM_NONE; 1107 out: 1108 return ret; 1109 } 1110 1111 /* Take action when hardware reception checksum errors are detected. */ 1112 #ifdef CONFIG_BUG 1113 void netdev_rx_csum_fault(struct net_device *dev) 1114 { 1115 if (net_ratelimit()) { 1116 printk(KERN_ERR "%s: hw csum failure.\n", 1117 dev ? dev->name : "<unknown>"); 1118 dump_stack(); 1119 } 1120 } 1121 EXPORT_SYMBOL(netdev_rx_csum_fault); 1122 #endif 1123 1124 #ifdef CONFIG_HIGHMEM 1125 /* Actually, we should eliminate this check as soon as we know, that: 1126 * 1. IOMMU is present and allows to map all the memory. 1127 * 2. No high memory really exists on this machine. 1128 */ 1129 1130 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1131 { 1132 int i; 1133 1134 if (dev->features & NETIF_F_HIGHDMA) 1135 return 0; 1136 1137 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1138 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1139 return 1; 1140 1141 return 0; 1142 } 1143 #else 1144 #define illegal_highdma(dev, skb) (0) 1145 #endif 1146 1147 /* Keep head the same: replace data */ 1148 int __skb_linearize(struct sk_buff *skb, gfp_t gfp_mask) 1149 { 1150 unsigned int size; 1151 u8 *data; 1152 long offset; 1153 struct skb_shared_info *ninfo; 1154 int headerlen = skb->data - skb->head; 1155 int expand = (skb->tail + skb->data_len) - skb->end; 1156 1157 if (skb_shared(skb)) 1158 BUG(); 1159 1160 if (expand <= 0) 1161 expand = 0; 1162 1163 size = skb->end - skb->head + expand; 1164 size = SKB_DATA_ALIGN(size); 1165 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask); 1166 if (!data) 1167 return -ENOMEM; 1168 1169 /* Copy entire thing */ 1170 if (skb_copy_bits(skb, -headerlen, data, headerlen + skb->len)) 1171 BUG(); 1172 1173 /* Set up shinfo */ 1174 ninfo = (struct skb_shared_info*)(data + size); 1175 atomic_set(&ninfo->dataref, 1); 1176 ninfo->tso_size = skb_shinfo(skb)->tso_size; 1177 ninfo->tso_segs = skb_shinfo(skb)->tso_segs; 1178 ninfo->nr_frags = 0; 1179 ninfo->frag_list = NULL; 1180 1181 /* Offset between the two in bytes */ 1182 offset = data - skb->head; 1183 1184 /* Free old data. */ 1185 skb_release_data(skb); 1186 1187 skb->head = data; 1188 skb->end = data + size; 1189 1190 /* Set up new pointers */ 1191 skb->h.raw += offset; 1192 skb->nh.raw += offset; 1193 skb->mac.raw += offset; 1194 skb->tail += offset; 1195 skb->data += offset; 1196 1197 /* We are no longer a clone, even if we were. */ 1198 skb->cloned = 0; 1199 1200 skb->tail += skb->data_len; 1201 skb->data_len = 0; 1202 return 0; 1203 } 1204 1205 #define HARD_TX_LOCK(dev, cpu) { \ 1206 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1207 spin_lock(&dev->xmit_lock); \ 1208 dev->xmit_lock_owner = cpu; \ 1209 } \ 1210 } 1211 1212 #define HARD_TX_UNLOCK(dev) { \ 1213 if ((dev->features & NETIF_F_LLTX) == 0) { \ 1214 dev->xmit_lock_owner = -1; \ 1215 spin_unlock(&dev->xmit_lock); \ 1216 } \ 1217 } 1218 1219 /** 1220 * dev_queue_xmit - transmit a buffer 1221 * @skb: buffer to transmit 1222 * 1223 * Queue a buffer for transmission to a network device. The caller must 1224 * have set the device and priority and built the buffer before calling 1225 * this function. The function can be called from an interrupt. 1226 * 1227 * A negative errno code is returned on a failure. A success does not 1228 * guarantee the frame will be transmitted as it may be dropped due 1229 * to congestion or traffic shaping. 1230 * 1231 * ----------------------------------------------------------------------------------- 1232 * I notice this method can also return errors from the queue disciplines, 1233 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1234 * be positive. 1235 * 1236 * Regardless of the return value, the skb is consumed, so it is currently 1237 * difficult to retry a send to this method. (You can bump the ref count 1238 * before sending to hold a reference for retry if you are careful.) 1239 * 1240 * When calling this method, interrupts MUST be enabled. This is because 1241 * the BH enable code must have IRQs enabled so that it will not deadlock. 1242 * --BLG 1243 */ 1244 1245 int dev_queue_xmit(struct sk_buff *skb) 1246 { 1247 struct net_device *dev = skb->dev; 1248 struct Qdisc *q; 1249 int rc = -ENOMEM; 1250 1251 if (skb_shinfo(skb)->frag_list && 1252 !(dev->features & NETIF_F_FRAGLIST) && 1253 __skb_linearize(skb, GFP_ATOMIC)) 1254 goto out_kfree_skb; 1255 1256 /* Fragmented skb is linearized if device does not support SG, 1257 * or if at least one of fragments is in highmem and device 1258 * does not support DMA from it. 1259 */ 1260 if (skb_shinfo(skb)->nr_frags && 1261 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1262 __skb_linearize(skb, GFP_ATOMIC)) 1263 goto out_kfree_skb; 1264 1265 /* If packet is not checksummed and device does not support 1266 * checksumming for this protocol, complete checksumming here. 1267 */ 1268 if (skb->ip_summed == CHECKSUM_HW && 1269 (!(dev->features & (NETIF_F_HW_CSUM | NETIF_F_NO_CSUM)) && 1270 (!(dev->features & NETIF_F_IP_CSUM) || 1271 skb->protocol != htons(ETH_P_IP)))) 1272 if (skb_checksum_help(skb, 0)) 1273 goto out_kfree_skb; 1274 1275 spin_lock_prefetch(&dev->queue_lock); 1276 1277 /* Disable soft irqs for various locks below. Also 1278 * stops preemption for RCU. 1279 */ 1280 local_bh_disable(); 1281 1282 /* Updates of qdisc are serialized by queue_lock. 1283 * The struct Qdisc which is pointed to by qdisc is now a 1284 * rcu structure - it may be accessed without acquiring 1285 * a lock (but the structure may be stale.) The freeing of the 1286 * qdisc will be deferred until it's known that there are no 1287 * more references to it. 1288 * 1289 * If the qdisc has an enqueue function, we still need to 1290 * hold the queue_lock before calling it, since queue_lock 1291 * also serializes access to the device queue. 1292 */ 1293 1294 q = rcu_dereference(dev->qdisc); 1295 #ifdef CONFIG_NET_CLS_ACT 1296 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1297 #endif 1298 if (q->enqueue) { 1299 /* Grab device queue */ 1300 spin_lock(&dev->queue_lock); 1301 1302 rc = q->enqueue(skb, q); 1303 1304 qdisc_run(dev); 1305 1306 spin_unlock(&dev->queue_lock); 1307 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1308 goto out; 1309 } 1310 1311 /* The device has no queue. Common case for software devices: 1312 loopback, all the sorts of tunnels... 1313 1314 Really, it is unlikely that xmit_lock protection is necessary here. 1315 (f.e. loopback and IP tunnels are clean ignoring statistics 1316 counters.) 1317 However, it is possible, that they rely on protection 1318 made by us here. 1319 1320 Check this and shot the lock. It is not prone from deadlocks. 1321 Either shot noqueue qdisc, it is even simpler 8) 1322 */ 1323 if (dev->flags & IFF_UP) { 1324 int cpu = smp_processor_id(); /* ok because BHs are off */ 1325 1326 if (dev->xmit_lock_owner != cpu) { 1327 1328 HARD_TX_LOCK(dev, cpu); 1329 1330 if (!netif_queue_stopped(dev)) { 1331 if (netdev_nit) 1332 dev_queue_xmit_nit(skb, dev); 1333 1334 rc = 0; 1335 if (!dev->hard_start_xmit(skb, dev)) { 1336 HARD_TX_UNLOCK(dev); 1337 goto out; 1338 } 1339 } 1340 HARD_TX_UNLOCK(dev); 1341 if (net_ratelimit()) 1342 printk(KERN_CRIT "Virtual device %s asks to " 1343 "queue packet!\n", dev->name); 1344 } else { 1345 /* Recursion is detected! It is possible, 1346 * unfortunately */ 1347 if (net_ratelimit()) 1348 printk(KERN_CRIT "Dead loop on virtual device " 1349 "%s, fix it urgently!\n", dev->name); 1350 } 1351 } 1352 1353 rc = -ENETDOWN; 1354 local_bh_enable(); 1355 1356 out_kfree_skb: 1357 kfree_skb(skb); 1358 return rc; 1359 out: 1360 local_bh_enable(); 1361 return rc; 1362 } 1363 1364 1365 /*======================================================================= 1366 Receiver routines 1367 =======================================================================*/ 1368 1369 int netdev_max_backlog = 1000; 1370 int netdev_budget = 300; 1371 int weight_p = 64; /* old backlog weight */ 1372 1373 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1374 1375 1376 /** 1377 * netif_rx - post buffer to the network code 1378 * @skb: buffer to post 1379 * 1380 * This function receives a packet from a device driver and queues it for 1381 * the upper (protocol) levels to process. It always succeeds. The buffer 1382 * may be dropped during processing for congestion control or by the 1383 * protocol layers. 1384 * 1385 * return values: 1386 * NET_RX_SUCCESS (no congestion) 1387 * NET_RX_CN_LOW (low congestion) 1388 * NET_RX_CN_MOD (moderate congestion) 1389 * NET_RX_CN_HIGH (high congestion) 1390 * NET_RX_DROP (packet was dropped) 1391 * 1392 */ 1393 1394 int netif_rx(struct sk_buff *skb) 1395 { 1396 struct softnet_data *queue; 1397 unsigned long flags; 1398 1399 /* if netpoll wants it, pretend we never saw it */ 1400 if (netpoll_rx(skb)) 1401 return NET_RX_DROP; 1402 1403 if (!skb->tstamp.off_sec) 1404 net_timestamp(skb); 1405 1406 /* 1407 * The code is rearranged so that the path is the most 1408 * short when CPU is congested, but is still operating. 1409 */ 1410 local_irq_save(flags); 1411 queue = &__get_cpu_var(softnet_data); 1412 1413 __get_cpu_var(netdev_rx_stat).total++; 1414 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1415 if (queue->input_pkt_queue.qlen) { 1416 enqueue: 1417 dev_hold(skb->dev); 1418 __skb_queue_tail(&queue->input_pkt_queue, skb); 1419 local_irq_restore(flags); 1420 return NET_RX_SUCCESS; 1421 } 1422 1423 netif_rx_schedule(&queue->backlog_dev); 1424 goto enqueue; 1425 } 1426 1427 __get_cpu_var(netdev_rx_stat).dropped++; 1428 local_irq_restore(flags); 1429 1430 kfree_skb(skb); 1431 return NET_RX_DROP; 1432 } 1433 1434 int netif_rx_ni(struct sk_buff *skb) 1435 { 1436 int err; 1437 1438 preempt_disable(); 1439 err = netif_rx(skb); 1440 if (local_softirq_pending()) 1441 do_softirq(); 1442 preempt_enable(); 1443 1444 return err; 1445 } 1446 1447 EXPORT_SYMBOL(netif_rx_ni); 1448 1449 static inline struct net_device *skb_bond(struct sk_buff *skb) 1450 { 1451 struct net_device *dev = skb->dev; 1452 1453 if (dev->master) 1454 skb->dev = dev->master; 1455 1456 return dev; 1457 } 1458 1459 static void net_tx_action(struct softirq_action *h) 1460 { 1461 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1462 1463 if (sd->completion_queue) { 1464 struct sk_buff *clist; 1465 1466 local_irq_disable(); 1467 clist = sd->completion_queue; 1468 sd->completion_queue = NULL; 1469 local_irq_enable(); 1470 1471 while (clist) { 1472 struct sk_buff *skb = clist; 1473 clist = clist->next; 1474 1475 BUG_TRAP(!atomic_read(&skb->users)); 1476 __kfree_skb(skb); 1477 } 1478 } 1479 1480 if (sd->output_queue) { 1481 struct net_device *head; 1482 1483 local_irq_disable(); 1484 head = sd->output_queue; 1485 sd->output_queue = NULL; 1486 local_irq_enable(); 1487 1488 while (head) { 1489 struct net_device *dev = head; 1490 head = head->next_sched; 1491 1492 smp_mb__before_clear_bit(); 1493 clear_bit(__LINK_STATE_SCHED, &dev->state); 1494 1495 if (spin_trylock(&dev->queue_lock)) { 1496 qdisc_run(dev); 1497 spin_unlock(&dev->queue_lock); 1498 } else { 1499 netif_schedule(dev); 1500 } 1501 } 1502 } 1503 } 1504 1505 static __inline__ int deliver_skb(struct sk_buff *skb, 1506 struct packet_type *pt_prev, 1507 struct net_device *orig_dev) 1508 { 1509 atomic_inc(&skb->users); 1510 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1511 } 1512 1513 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1514 int (*br_handle_frame_hook)(struct net_bridge_port *p, struct sk_buff **pskb); 1515 struct net_bridge; 1516 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1517 unsigned char *addr); 1518 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent); 1519 1520 static __inline__ int handle_bridge(struct sk_buff **pskb, 1521 struct packet_type **pt_prev, int *ret, 1522 struct net_device *orig_dev) 1523 { 1524 struct net_bridge_port *port; 1525 1526 if ((*pskb)->pkt_type == PACKET_LOOPBACK || 1527 (port = rcu_dereference((*pskb)->dev->br_port)) == NULL) 1528 return 0; 1529 1530 if (*pt_prev) { 1531 *ret = deliver_skb(*pskb, *pt_prev, orig_dev); 1532 *pt_prev = NULL; 1533 } 1534 1535 return br_handle_frame_hook(port, pskb); 1536 } 1537 #else 1538 #define handle_bridge(skb, pt_prev, ret, orig_dev) (0) 1539 #endif 1540 1541 #ifdef CONFIG_NET_CLS_ACT 1542 /* TODO: Maybe we should just force sch_ingress to be compiled in 1543 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1544 * a compare and 2 stores extra right now if we dont have it on 1545 * but have CONFIG_NET_CLS_ACT 1546 * NOTE: This doesnt stop any functionality; if you dont have 1547 * the ingress scheduler, you just cant add policies on ingress. 1548 * 1549 */ 1550 static int ing_filter(struct sk_buff *skb) 1551 { 1552 struct Qdisc *q; 1553 struct net_device *dev = skb->dev; 1554 int result = TC_ACT_OK; 1555 1556 if (dev->qdisc_ingress) { 1557 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd); 1558 if (MAX_RED_LOOP < ttl++) { 1559 printk("Redir loop detected Dropping packet (%s->%s)\n", 1560 skb->input_dev->name, skb->dev->name); 1561 return TC_ACT_SHOT; 1562 } 1563 1564 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl); 1565 1566 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS); 1567 1568 spin_lock(&dev->ingress_lock); 1569 if ((q = dev->qdisc_ingress) != NULL) 1570 result = q->enqueue(skb, q); 1571 spin_unlock(&dev->ingress_lock); 1572 1573 } 1574 1575 return result; 1576 } 1577 #endif 1578 1579 int netif_receive_skb(struct sk_buff *skb) 1580 { 1581 struct packet_type *ptype, *pt_prev; 1582 struct net_device *orig_dev; 1583 int ret = NET_RX_DROP; 1584 unsigned short type; 1585 1586 /* if we've gotten here through NAPI, check netpoll */ 1587 if (skb->dev->poll && netpoll_rx(skb)) 1588 return NET_RX_DROP; 1589 1590 if (!skb->tstamp.off_sec) 1591 net_timestamp(skb); 1592 1593 if (!skb->input_dev) 1594 skb->input_dev = skb->dev; 1595 1596 orig_dev = skb_bond(skb); 1597 1598 __get_cpu_var(netdev_rx_stat).total++; 1599 1600 skb->h.raw = skb->nh.raw = skb->data; 1601 skb->mac_len = skb->nh.raw - skb->mac.raw; 1602 1603 pt_prev = NULL; 1604 1605 rcu_read_lock(); 1606 1607 #ifdef CONFIG_NET_CLS_ACT 1608 if (skb->tc_verd & TC_NCLS) { 1609 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 1610 goto ncls; 1611 } 1612 #endif 1613 1614 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1615 if (!ptype->dev || ptype->dev == skb->dev) { 1616 if (pt_prev) 1617 ret = deliver_skb(skb, pt_prev, orig_dev); 1618 pt_prev = ptype; 1619 } 1620 } 1621 1622 #ifdef CONFIG_NET_CLS_ACT 1623 if (pt_prev) { 1624 ret = deliver_skb(skb, pt_prev, orig_dev); 1625 pt_prev = NULL; /* noone else should process this after*/ 1626 } else { 1627 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 1628 } 1629 1630 ret = ing_filter(skb); 1631 1632 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) { 1633 kfree_skb(skb); 1634 goto out; 1635 } 1636 1637 skb->tc_verd = 0; 1638 ncls: 1639 #endif 1640 1641 handle_diverter(skb); 1642 1643 if (handle_bridge(&skb, &pt_prev, &ret, orig_dev)) 1644 goto out; 1645 1646 type = skb->protocol; 1647 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) { 1648 if (ptype->type == type && 1649 (!ptype->dev || ptype->dev == skb->dev)) { 1650 if (pt_prev) 1651 ret = deliver_skb(skb, pt_prev, orig_dev); 1652 pt_prev = ptype; 1653 } 1654 } 1655 1656 if (pt_prev) { 1657 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1658 } else { 1659 kfree_skb(skb); 1660 /* Jamal, now you will not able to escape explaining 1661 * me how you were going to use this. :-) 1662 */ 1663 ret = NET_RX_DROP; 1664 } 1665 1666 out: 1667 rcu_read_unlock(); 1668 return ret; 1669 } 1670 1671 static int process_backlog(struct net_device *backlog_dev, int *budget) 1672 { 1673 int work = 0; 1674 int quota = min(backlog_dev->quota, *budget); 1675 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1676 unsigned long start_time = jiffies; 1677 1678 backlog_dev->weight = weight_p; 1679 for (;;) { 1680 struct sk_buff *skb; 1681 struct net_device *dev; 1682 1683 local_irq_disable(); 1684 skb = __skb_dequeue(&queue->input_pkt_queue); 1685 if (!skb) 1686 goto job_done; 1687 local_irq_enable(); 1688 1689 dev = skb->dev; 1690 1691 netif_receive_skb(skb); 1692 1693 dev_put(dev); 1694 1695 work++; 1696 1697 if (work >= quota || jiffies - start_time > 1) 1698 break; 1699 1700 } 1701 1702 backlog_dev->quota -= work; 1703 *budget -= work; 1704 return -1; 1705 1706 job_done: 1707 backlog_dev->quota -= work; 1708 *budget -= work; 1709 1710 list_del(&backlog_dev->poll_list); 1711 smp_mb__before_clear_bit(); 1712 netif_poll_enable(backlog_dev); 1713 1714 local_irq_enable(); 1715 return 0; 1716 } 1717 1718 static void net_rx_action(struct softirq_action *h) 1719 { 1720 struct softnet_data *queue = &__get_cpu_var(softnet_data); 1721 unsigned long start_time = jiffies; 1722 int budget = netdev_budget; 1723 void *have; 1724 1725 local_irq_disable(); 1726 1727 while (!list_empty(&queue->poll_list)) { 1728 struct net_device *dev; 1729 1730 if (budget <= 0 || jiffies - start_time > 1) 1731 goto softnet_break; 1732 1733 local_irq_enable(); 1734 1735 dev = list_entry(queue->poll_list.next, 1736 struct net_device, poll_list); 1737 have = netpoll_poll_lock(dev); 1738 1739 if (dev->quota <= 0 || dev->poll(dev, &budget)) { 1740 netpoll_poll_unlock(have); 1741 local_irq_disable(); 1742 list_del(&dev->poll_list); 1743 list_add_tail(&dev->poll_list, &queue->poll_list); 1744 if (dev->quota < 0) 1745 dev->quota += dev->weight; 1746 else 1747 dev->quota = dev->weight; 1748 } else { 1749 netpoll_poll_unlock(have); 1750 dev_put(dev); 1751 local_irq_disable(); 1752 } 1753 } 1754 out: 1755 local_irq_enable(); 1756 return; 1757 1758 softnet_break: 1759 __get_cpu_var(netdev_rx_stat).time_squeeze++; 1760 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 1761 goto out; 1762 } 1763 1764 static gifconf_func_t * gifconf_list [NPROTO]; 1765 1766 /** 1767 * register_gifconf - register a SIOCGIF handler 1768 * @family: Address family 1769 * @gifconf: Function handler 1770 * 1771 * Register protocol dependent address dumping routines. The handler 1772 * that is passed must not be freed or reused until it has been replaced 1773 * by another handler. 1774 */ 1775 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 1776 { 1777 if (family >= NPROTO) 1778 return -EINVAL; 1779 gifconf_list[family] = gifconf; 1780 return 0; 1781 } 1782 1783 1784 /* 1785 * Map an interface index to its name (SIOCGIFNAME) 1786 */ 1787 1788 /* 1789 * We need this ioctl for efficient implementation of the 1790 * if_indextoname() function required by the IPv6 API. Without 1791 * it, we would have to search all the interfaces to find a 1792 * match. --pb 1793 */ 1794 1795 static int dev_ifname(struct ifreq __user *arg) 1796 { 1797 struct net_device *dev; 1798 struct ifreq ifr; 1799 1800 /* 1801 * Fetch the caller's info block. 1802 */ 1803 1804 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 1805 return -EFAULT; 1806 1807 read_lock(&dev_base_lock); 1808 dev = __dev_get_by_index(ifr.ifr_ifindex); 1809 if (!dev) { 1810 read_unlock(&dev_base_lock); 1811 return -ENODEV; 1812 } 1813 1814 strcpy(ifr.ifr_name, dev->name); 1815 read_unlock(&dev_base_lock); 1816 1817 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 1818 return -EFAULT; 1819 return 0; 1820 } 1821 1822 /* 1823 * Perform a SIOCGIFCONF call. This structure will change 1824 * size eventually, and there is nothing I can do about it. 1825 * Thus we will need a 'compatibility mode'. 1826 */ 1827 1828 static int dev_ifconf(char __user *arg) 1829 { 1830 struct ifconf ifc; 1831 struct net_device *dev; 1832 char __user *pos; 1833 int len; 1834 int total; 1835 int i; 1836 1837 /* 1838 * Fetch the caller's info block. 1839 */ 1840 1841 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 1842 return -EFAULT; 1843 1844 pos = ifc.ifc_buf; 1845 len = ifc.ifc_len; 1846 1847 /* 1848 * Loop over the interfaces, and write an info block for each. 1849 */ 1850 1851 total = 0; 1852 for (dev = dev_base; dev; dev = dev->next) { 1853 for (i = 0; i < NPROTO; i++) { 1854 if (gifconf_list[i]) { 1855 int done; 1856 if (!pos) 1857 done = gifconf_list[i](dev, NULL, 0); 1858 else 1859 done = gifconf_list[i](dev, pos + total, 1860 len - total); 1861 if (done < 0) 1862 return -EFAULT; 1863 total += done; 1864 } 1865 } 1866 } 1867 1868 /* 1869 * All done. Write the updated control block back to the caller. 1870 */ 1871 ifc.ifc_len = total; 1872 1873 /* 1874 * Both BSD and Solaris return 0 here, so we do too. 1875 */ 1876 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 1877 } 1878 1879 #ifdef CONFIG_PROC_FS 1880 /* 1881 * This is invoked by the /proc filesystem handler to display a device 1882 * in detail. 1883 */ 1884 static __inline__ struct net_device *dev_get_idx(loff_t pos) 1885 { 1886 struct net_device *dev; 1887 loff_t i; 1888 1889 for (i = 0, dev = dev_base; dev && i < pos; ++i, dev = dev->next); 1890 1891 return i == pos ? dev : NULL; 1892 } 1893 1894 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 1895 { 1896 read_lock(&dev_base_lock); 1897 return *pos ? dev_get_idx(*pos - 1) : SEQ_START_TOKEN; 1898 } 1899 1900 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1901 { 1902 ++*pos; 1903 return v == SEQ_START_TOKEN ? dev_base : ((struct net_device *)v)->next; 1904 } 1905 1906 void dev_seq_stop(struct seq_file *seq, void *v) 1907 { 1908 read_unlock(&dev_base_lock); 1909 } 1910 1911 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 1912 { 1913 if (dev->get_stats) { 1914 struct net_device_stats *stats = dev->get_stats(dev); 1915 1916 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 1917 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 1918 dev->name, stats->rx_bytes, stats->rx_packets, 1919 stats->rx_errors, 1920 stats->rx_dropped + stats->rx_missed_errors, 1921 stats->rx_fifo_errors, 1922 stats->rx_length_errors + stats->rx_over_errors + 1923 stats->rx_crc_errors + stats->rx_frame_errors, 1924 stats->rx_compressed, stats->multicast, 1925 stats->tx_bytes, stats->tx_packets, 1926 stats->tx_errors, stats->tx_dropped, 1927 stats->tx_fifo_errors, stats->collisions, 1928 stats->tx_carrier_errors + 1929 stats->tx_aborted_errors + 1930 stats->tx_window_errors + 1931 stats->tx_heartbeat_errors, 1932 stats->tx_compressed); 1933 } else 1934 seq_printf(seq, "%6s: No statistics available.\n", dev->name); 1935 } 1936 1937 /* 1938 * Called from the PROCfs module. This now uses the new arbitrary sized 1939 * /proc/net interface to create /proc/net/dev 1940 */ 1941 static int dev_seq_show(struct seq_file *seq, void *v) 1942 { 1943 if (v == SEQ_START_TOKEN) 1944 seq_puts(seq, "Inter-| Receive " 1945 " | Transmit\n" 1946 " face |bytes packets errs drop fifo frame " 1947 "compressed multicast|bytes packets errs " 1948 "drop fifo colls carrier compressed\n"); 1949 else 1950 dev_seq_printf_stats(seq, v); 1951 return 0; 1952 } 1953 1954 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 1955 { 1956 struct netif_rx_stats *rc = NULL; 1957 1958 while (*pos < NR_CPUS) 1959 if (cpu_online(*pos)) { 1960 rc = &per_cpu(netdev_rx_stat, *pos); 1961 break; 1962 } else 1963 ++*pos; 1964 return rc; 1965 } 1966 1967 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 1968 { 1969 return softnet_get_online(pos); 1970 } 1971 1972 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1973 { 1974 ++*pos; 1975 return softnet_get_online(pos); 1976 } 1977 1978 static void softnet_seq_stop(struct seq_file *seq, void *v) 1979 { 1980 } 1981 1982 static int softnet_seq_show(struct seq_file *seq, void *v) 1983 { 1984 struct netif_rx_stats *s = v; 1985 1986 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 1987 s->total, s->dropped, s->time_squeeze, 0, 1988 0, 0, 0, 0, /* was fastroute */ 1989 s->cpu_collision ); 1990 return 0; 1991 } 1992 1993 static struct seq_operations dev_seq_ops = { 1994 .start = dev_seq_start, 1995 .next = dev_seq_next, 1996 .stop = dev_seq_stop, 1997 .show = dev_seq_show, 1998 }; 1999 2000 static int dev_seq_open(struct inode *inode, struct file *file) 2001 { 2002 return seq_open(file, &dev_seq_ops); 2003 } 2004 2005 static struct file_operations dev_seq_fops = { 2006 .owner = THIS_MODULE, 2007 .open = dev_seq_open, 2008 .read = seq_read, 2009 .llseek = seq_lseek, 2010 .release = seq_release, 2011 }; 2012 2013 static struct seq_operations softnet_seq_ops = { 2014 .start = softnet_seq_start, 2015 .next = softnet_seq_next, 2016 .stop = softnet_seq_stop, 2017 .show = softnet_seq_show, 2018 }; 2019 2020 static int softnet_seq_open(struct inode *inode, struct file *file) 2021 { 2022 return seq_open(file, &softnet_seq_ops); 2023 } 2024 2025 static struct file_operations softnet_seq_fops = { 2026 .owner = THIS_MODULE, 2027 .open = softnet_seq_open, 2028 .read = seq_read, 2029 .llseek = seq_lseek, 2030 .release = seq_release, 2031 }; 2032 2033 #ifdef WIRELESS_EXT 2034 extern int wireless_proc_init(void); 2035 #else 2036 #define wireless_proc_init() 0 2037 #endif 2038 2039 static int __init dev_proc_init(void) 2040 { 2041 int rc = -ENOMEM; 2042 2043 if (!proc_net_fops_create("dev", S_IRUGO, &dev_seq_fops)) 2044 goto out; 2045 if (!proc_net_fops_create("softnet_stat", S_IRUGO, &softnet_seq_fops)) 2046 goto out_dev; 2047 if (wireless_proc_init()) 2048 goto out_softnet; 2049 rc = 0; 2050 out: 2051 return rc; 2052 out_softnet: 2053 proc_net_remove("softnet_stat"); 2054 out_dev: 2055 proc_net_remove("dev"); 2056 goto out; 2057 } 2058 #else 2059 #define dev_proc_init() 0 2060 #endif /* CONFIG_PROC_FS */ 2061 2062 2063 /** 2064 * netdev_set_master - set up master/slave pair 2065 * @slave: slave device 2066 * @master: new master device 2067 * 2068 * Changes the master device of the slave. Pass %NULL to break the 2069 * bonding. The caller must hold the RTNL semaphore. On a failure 2070 * a negative errno code is returned. On success the reference counts 2071 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2072 * function returns zero. 2073 */ 2074 int netdev_set_master(struct net_device *slave, struct net_device *master) 2075 { 2076 struct net_device *old = slave->master; 2077 2078 ASSERT_RTNL(); 2079 2080 if (master) { 2081 if (old) 2082 return -EBUSY; 2083 dev_hold(master); 2084 } 2085 2086 slave->master = master; 2087 2088 synchronize_net(); 2089 2090 if (old) 2091 dev_put(old); 2092 2093 if (master) 2094 slave->flags |= IFF_SLAVE; 2095 else 2096 slave->flags &= ~IFF_SLAVE; 2097 2098 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2099 return 0; 2100 } 2101 2102 /** 2103 * dev_set_promiscuity - update promiscuity count on a device 2104 * @dev: device 2105 * @inc: modifier 2106 * 2107 * Add or remove promsicuity from a device. While the count in the device 2108 * remains above zero the interface remains promiscuous. Once it hits zero 2109 * the device reverts back to normal filtering operation. A negative inc 2110 * value is used to drop promiscuity on the device. 2111 */ 2112 void dev_set_promiscuity(struct net_device *dev, int inc) 2113 { 2114 unsigned short old_flags = dev->flags; 2115 2116 if ((dev->promiscuity += inc) == 0) 2117 dev->flags &= ~IFF_PROMISC; 2118 else 2119 dev->flags |= IFF_PROMISC; 2120 if (dev->flags != old_flags) { 2121 dev_mc_upload(dev); 2122 printk(KERN_INFO "device %s %s promiscuous mode\n", 2123 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2124 "left"); 2125 } 2126 } 2127 2128 /** 2129 * dev_set_allmulti - update allmulti count on a device 2130 * @dev: device 2131 * @inc: modifier 2132 * 2133 * Add or remove reception of all multicast frames to a device. While the 2134 * count in the device remains above zero the interface remains listening 2135 * to all interfaces. Once it hits zero the device reverts back to normal 2136 * filtering operation. A negative @inc value is used to drop the counter 2137 * when releasing a resource needing all multicasts. 2138 */ 2139 2140 void dev_set_allmulti(struct net_device *dev, int inc) 2141 { 2142 unsigned short old_flags = dev->flags; 2143 2144 dev->flags |= IFF_ALLMULTI; 2145 if ((dev->allmulti += inc) == 0) 2146 dev->flags &= ~IFF_ALLMULTI; 2147 if (dev->flags ^ old_flags) 2148 dev_mc_upload(dev); 2149 } 2150 2151 unsigned dev_get_flags(const struct net_device *dev) 2152 { 2153 unsigned flags; 2154 2155 flags = (dev->flags & ~(IFF_PROMISC | 2156 IFF_ALLMULTI | 2157 IFF_RUNNING)) | 2158 (dev->gflags & (IFF_PROMISC | 2159 IFF_ALLMULTI)); 2160 2161 if (netif_running(dev) && netif_carrier_ok(dev)) 2162 flags |= IFF_RUNNING; 2163 2164 return flags; 2165 } 2166 2167 int dev_change_flags(struct net_device *dev, unsigned flags) 2168 { 2169 int ret; 2170 int old_flags = dev->flags; 2171 2172 /* 2173 * Set the flags on our device. 2174 */ 2175 2176 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 2177 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 2178 IFF_AUTOMEDIA)) | 2179 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 2180 IFF_ALLMULTI)); 2181 2182 /* 2183 * Load in the correct multicast list now the flags have changed. 2184 */ 2185 2186 dev_mc_upload(dev); 2187 2188 /* 2189 * Have we downed the interface. We handle IFF_UP ourselves 2190 * according to user attempts to set it, rather than blindly 2191 * setting it. 2192 */ 2193 2194 ret = 0; 2195 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 2196 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 2197 2198 if (!ret) 2199 dev_mc_upload(dev); 2200 } 2201 2202 if (dev->flags & IFF_UP && 2203 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 2204 IFF_VOLATILE))) 2205 notifier_call_chain(&netdev_chain, NETDEV_CHANGE, dev); 2206 2207 if ((flags ^ dev->gflags) & IFF_PROMISC) { 2208 int inc = (flags & IFF_PROMISC) ? +1 : -1; 2209 dev->gflags ^= IFF_PROMISC; 2210 dev_set_promiscuity(dev, inc); 2211 } 2212 2213 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 2214 is important. Some (broken) drivers set IFF_PROMISC, when 2215 IFF_ALLMULTI is requested not asking us and not reporting. 2216 */ 2217 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 2218 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 2219 dev->gflags ^= IFF_ALLMULTI; 2220 dev_set_allmulti(dev, inc); 2221 } 2222 2223 if (old_flags ^ dev->flags) 2224 rtmsg_ifinfo(RTM_NEWLINK, dev, old_flags ^ dev->flags); 2225 2226 return ret; 2227 } 2228 2229 int dev_set_mtu(struct net_device *dev, int new_mtu) 2230 { 2231 int err; 2232 2233 if (new_mtu == dev->mtu) 2234 return 0; 2235 2236 /* MTU must be positive. */ 2237 if (new_mtu < 0) 2238 return -EINVAL; 2239 2240 if (!netif_device_present(dev)) 2241 return -ENODEV; 2242 2243 err = 0; 2244 if (dev->change_mtu) 2245 err = dev->change_mtu(dev, new_mtu); 2246 else 2247 dev->mtu = new_mtu; 2248 if (!err && dev->flags & IFF_UP) 2249 notifier_call_chain(&netdev_chain, 2250 NETDEV_CHANGEMTU, dev); 2251 return err; 2252 } 2253 2254 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 2255 { 2256 int err; 2257 2258 if (!dev->set_mac_address) 2259 return -EOPNOTSUPP; 2260 if (sa->sa_family != dev->type) 2261 return -EINVAL; 2262 if (!netif_device_present(dev)) 2263 return -ENODEV; 2264 err = dev->set_mac_address(dev, sa); 2265 if (!err) 2266 notifier_call_chain(&netdev_chain, NETDEV_CHANGEADDR, dev); 2267 return err; 2268 } 2269 2270 /* 2271 * Perform the SIOCxIFxxx calls. 2272 */ 2273 static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd) 2274 { 2275 int err; 2276 struct net_device *dev = __dev_get_by_name(ifr->ifr_name); 2277 2278 if (!dev) 2279 return -ENODEV; 2280 2281 switch (cmd) { 2282 case SIOCGIFFLAGS: /* Get interface flags */ 2283 ifr->ifr_flags = dev_get_flags(dev); 2284 return 0; 2285 2286 case SIOCSIFFLAGS: /* Set interface flags */ 2287 return dev_change_flags(dev, ifr->ifr_flags); 2288 2289 case SIOCGIFMETRIC: /* Get the metric on the interface 2290 (currently unused) */ 2291 ifr->ifr_metric = 0; 2292 return 0; 2293 2294 case SIOCSIFMETRIC: /* Set the metric on the interface 2295 (currently unused) */ 2296 return -EOPNOTSUPP; 2297 2298 case SIOCGIFMTU: /* Get the MTU of a device */ 2299 ifr->ifr_mtu = dev->mtu; 2300 return 0; 2301 2302 case SIOCSIFMTU: /* Set the MTU of a device */ 2303 return dev_set_mtu(dev, ifr->ifr_mtu); 2304 2305 case SIOCGIFHWADDR: 2306 if (!dev->addr_len) 2307 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 2308 else 2309 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 2310 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2311 ifr->ifr_hwaddr.sa_family = dev->type; 2312 return 0; 2313 2314 case SIOCSIFHWADDR: 2315 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 2316 2317 case SIOCSIFHWBROADCAST: 2318 if (ifr->ifr_hwaddr.sa_family != dev->type) 2319 return -EINVAL; 2320 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 2321 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 2322 notifier_call_chain(&netdev_chain, 2323 NETDEV_CHANGEADDR, dev); 2324 return 0; 2325 2326 case SIOCGIFMAP: 2327 ifr->ifr_map.mem_start = dev->mem_start; 2328 ifr->ifr_map.mem_end = dev->mem_end; 2329 ifr->ifr_map.base_addr = dev->base_addr; 2330 ifr->ifr_map.irq = dev->irq; 2331 ifr->ifr_map.dma = dev->dma; 2332 ifr->ifr_map.port = dev->if_port; 2333 return 0; 2334 2335 case SIOCSIFMAP: 2336 if (dev->set_config) { 2337 if (!netif_device_present(dev)) 2338 return -ENODEV; 2339 return dev->set_config(dev, &ifr->ifr_map); 2340 } 2341 return -EOPNOTSUPP; 2342 2343 case SIOCADDMULTI: 2344 if (!dev->set_multicast_list || 2345 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2346 return -EINVAL; 2347 if (!netif_device_present(dev)) 2348 return -ENODEV; 2349 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 2350 dev->addr_len, 1); 2351 2352 case SIOCDELMULTI: 2353 if (!dev->set_multicast_list || 2354 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 2355 return -EINVAL; 2356 if (!netif_device_present(dev)) 2357 return -ENODEV; 2358 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 2359 dev->addr_len, 1); 2360 2361 case SIOCGIFINDEX: 2362 ifr->ifr_ifindex = dev->ifindex; 2363 return 0; 2364 2365 case SIOCGIFTXQLEN: 2366 ifr->ifr_qlen = dev->tx_queue_len; 2367 return 0; 2368 2369 case SIOCSIFTXQLEN: 2370 if (ifr->ifr_qlen < 0) 2371 return -EINVAL; 2372 dev->tx_queue_len = ifr->ifr_qlen; 2373 return 0; 2374 2375 case SIOCSIFNAME: 2376 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 2377 return dev_change_name(dev, ifr->ifr_newname); 2378 2379 /* 2380 * Unknown or private ioctl 2381 */ 2382 2383 default: 2384 if ((cmd >= SIOCDEVPRIVATE && 2385 cmd <= SIOCDEVPRIVATE + 15) || 2386 cmd == SIOCBONDENSLAVE || 2387 cmd == SIOCBONDRELEASE || 2388 cmd == SIOCBONDSETHWADDR || 2389 cmd == SIOCBONDSLAVEINFOQUERY || 2390 cmd == SIOCBONDINFOQUERY || 2391 cmd == SIOCBONDCHANGEACTIVE || 2392 cmd == SIOCGMIIPHY || 2393 cmd == SIOCGMIIREG || 2394 cmd == SIOCSMIIREG || 2395 cmd == SIOCBRADDIF || 2396 cmd == SIOCBRDELIF || 2397 cmd == SIOCWANDEV) { 2398 err = -EOPNOTSUPP; 2399 if (dev->do_ioctl) { 2400 if (netif_device_present(dev)) 2401 err = dev->do_ioctl(dev, ifr, 2402 cmd); 2403 else 2404 err = -ENODEV; 2405 } 2406 } else 2407 err = -EINVAL; 2408 2409 } 2410 return err; 2411 } 2412 2413 /* 2414 * This function handles all "interface"-type I/O control requests. The actual 2415 * 'doing' part of this is dev_ifsioc above. 2416 */ 2417 2418 /** 2419 * dev_ioctl - network device ioctl 2420 * @cmd: command to issue 2421 * @arg: pointer to a struct ifreq in user space 2422 * 2423 * Issue ioctl functions to devices. This is normally called by the 2424 * user space syscall interfaces but can sometimes be useful for 2425 * other purposes. The return value is the return from the syscall if 2426 * positive or a negative errno code on error. 2427 */ 2428 2429 int dev_ioctl(unsigned int cmd, void __user *arg) 2430 { 2431 struct ifreq ifr; 2432 int ret; 2433 char *colon; 2434 2435 /* One special case: SIOCGIFCONF takes ifconf argument 2436 and requires shared lock, because it sleeps writing 2437 to user space. 2438 */ 2439 2440 if (cmd == SIOCGIFCONF) { 2441 rtnl_shlock(); 2442 ret = dev_ifconf((char __user *) arg); 2443 rtnl_shunlock(); 2444 return ret; 2445 } 2446 if (cmd == SIOCGIFNAME) 2447 return dev_ifname((struct ifreq __user *)arg); 2448 2449 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2450 return -EFAULT; 2451 2452 ifr.ifr_name[IFNAMSIZ-1] = 0; 2453 2454 colon = strchr(ifr.ifr_name, ':'); 2455 if (colon) 2456 *colon = 0; 2457 2458 /* 2459 * See which interface the caller is talking about. 2460 */ 2461 2462 switch (cmd) { 2463 /* 2464 * These ioctl calls: 2465 * - can be done by all. 2466 * - atomic and do not require locking. 2467 * - return a value 2468 */ 2469 case SIOCGIFFLAGS: 2470 case SIOCGIFMETRIC: 2471 case SIOCGIFMTU: 2472 case SIOCGIFHWADDR: 2473 case SIOCGIFSLAVE: 2474 case SIOCGIFMAP: 2475 case SIOCGIFINDEX: 2476 case SIOCGIFTXQLEN: 2477 dev_load(ifr.ifr_name); 2478 read_lock(&dev_base_lock); 2479 ret = dev_ifsioc(&ifr, cmd); 2480 read_unlock(&dev_base_lock); 2481 if (!ret) { 2482 if (colon) 2483 *colon = ':'; 2484 if (copy_to_user(arg, &ifr, 2485 sizeof(struct ifreq))) 2486 ret = -EFAULT; 2487 } 2488 return ret; 2489 2490 case SIOCETHTOOL: 2491 dev_load(ifr.ifr_name); 2492 rtnl_lock(); 2493 ret = dev_ethtool(&ifr); 2494 rtnl_unlock(); 2495 if (!ret) { 2496 if (colon) 2497 *colon = ':'; 2498 if (copy_to_user(arg, &ifr, 2499 sizeof(struct ifreq))) 2500 ret = -EFAULT; 2501 } 2502 return ret; 2503 2504 /* 2505 * These ioctl calls: 2506 * - require superuser power. 2507 * - require strict serialization. 2508 * - return a value 2509 */ 2510 case SIOCGMIIPHY: 2511 case SIOCGMIIREG: 2512 case SIOCSIFNAME: 2513 if (!capable(CAP_NET_ADMIN)) 2514 return -EPERM; 2515 dev_load(ifr.ifr_name); 2516 rtnl_lock(); 2517 ret = dev_ifsioc(&ifr, cmd); 2518 rtnl_unlock(); 2519 if (!ret) { 2520 if (colon) 2521 *colon = ':'; 2522 if (copy_to_user(arg, &ifr, 2523 sizeof(struct ifreq))) 2524 ret = -EFAULT; 2525 } 2526 return ret; 2527 2528 /* 2529 * These ioctl calls: 2530 * - require superuser power. 2531 * - require strict serialization. 2532 * - do not return a value 2533 */ 2534 case SIOCSIFFLAGS: 2535 case SIOCSIFMETRIC: 2536 case SIOCSIFMTU: 2537 case SIOCSIFMAP: 2538 case SIOCSIFHWADDR: 2539 case SIOCSIFSLAVE: 2540 case SIOCADDMULTI: 2541 case SIOCDELMULTI: 2542 case SIOCSIFHWBROADCAST: 2543 case SIOCSIFTXQLEN: 2544 case SIOCSMIIREG: 2545 case SIOCBONDENSLAVE: 2546 case SIOCBONDRELEASE: 2547 case SIOCBONDSETHWADDR: 2548 case SIOCBONDSLAVEINFOQUERY: 2549 case SIOCBONDINFOQUERY: 2550 case SIOCBONDCHANGEACTIVE: 2551 case SIOCBRADDIF: 2552 case SIOCBRDELIF: 2553 if (!capable(CAP_NET_ADMIN)) 2554 return -EPERM; 2555 dev_load(ifr.ifr_name); 2556 rtnl_lock(); 2557 ret = dev_ifsioc(&ifr, cmd); 2558 rtnl_unlock(); 2559 return ret; 2560 2561 case SIOCGIFMEM: 2562 /* Get the per device memory space. We can add this but 2563 * currently do not support it */ 2564 case SIOCSIFMEM: 2565 /* Set the per device memory buffer space. 2566 * Not applicable in our case */ 2567 case SIOCSIFLINK: 2568 return -EINVAL; 2569 2570 /* 2571 * Unknown or private ioctl. 2572 */ 2573 default: 2574 if (cmd == SIOCWANDEV || 2575 (cmd >= SIOCDEVPRIVATE && 2576 cmd <= SIOCDEVPRIVATE + 15)) { 2577 dev_load(ifr.ifr_name); 2578 rtnl_lock(); 2579 ret = dev_ifsioc(&ifr, cmd); 2580 rtnl_unlock(); 2581 if (!ret && copy_to_user(arg, &ifr, 2582 sizeof(struct ifreq))) 2583 ret = -EFAULT; 2584 return ret; 2585 } 2586 #ifdef WIRELESS_EXT 2587 /* Take care of Wireless Extensions */ 2588 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 2589 /* If command is `set a parameter', or 2590 * `get the encoding parameters', check if 2591 * the user has the right to do it */ 2592 if (IW_IS_SET(cmd) || cmd == SIOCGIWENCODE) { 2593 if (!capable(CAP_NET_ADMIN)) 2594 return -EPERM; 2595 } 2596 dev_load(ifr.ifr_name); 2597 rtnl_lock(); 2598 /* Follow me in net/core/wireless.c */ 2599 ret = wireless_process_ioctl(&ifr, cmd); 2600 rtnl_unlock(); 2601 if (IW_IS_GET(cmd) && 2602 copy_to_user(arg, &ifr, 2603 sizeof(struct ifreq))) 2604 ret = -EFAULT; 2605 return ret; 2606 } 2607 #endif /* WIRELESS_EXT */ 2608 return -EINVAL; 2609 } 2610 } 2611 2612 2613 /** 2614 * dev_new_index - allocate an ifindex 2615 * 2616 * Returns a suitable unique value for a new device interface 2617 * number. The caller must hold the rtnl semaphore or the 2618 * dev_base_lock to be sure it remains unique. 2619 */ 2620 static int dev_new_index(void) 2621 { 2622 static int ifindex; 2623 for (;;) { 2624 if (++ifindex <= 0) 2625 ifindex = 1; 2626 if (!__dev_get_by_index(ifindex)) 2627 return ifindex; 2628 } 2629 } 2630 2631 static int dev_boot_phase = 1; 2632 2633 /* Delayed registration/unregisteration */ 2634 static DEFINE_SPINLOCK(net_todo_list_lock); 2635 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list); 2636 2637 static inline void net_set_todo(struct net_device *dev) 2638 { 2639 spin_lock(&net_todo_list_lock); 2640 list_add_tail(&dev->todo_list, &net_todo_list); 2641 spin_unlock(&net_todo_list_lock); 2642 } 2643 2644 /** 2645 * register_netdevice - register a network device 2646 * @dev: device to register 2647 * 2648 * Take a completed network device structure and add it to the kernel 2649 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 2650 * chain. 0 is returned on success. A negative errno code is returned 2651 * on a failure to set up the device, or if the name is a duplicate. 2652 * 2653 * Callers must hold the rtnl semaphore. You may want 2654 * register_netdev() instead of this. 2655 * 2656 * BUGS: 2657 * The locking appears insufficient to guarantee two parallel registers 2658 * will not get the same name. 2659 */ 2660 2661 int register_netdevice(struct net_device *dev) 2662 { 2663 struct hlist_head *head; 2664 struct hlist_node *p; 2665 int ret; 2666 2667 BUG_ON(dev_boot_phase); 2668 ASSERT_RTNL(); 2669 2670 /* When net_device's are persistent, this will be fatal. */ 2671 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 2672 2673 spin_lock_init(&dev->queue_lock); 2674 spin_lock_init(&dev->xmit_lock); 2675 dev->xmit_lock_owner = -1; 2676 #ifdef CONFIG_NET_CLS_ACT 2677 spin_lock_init(&dev->ingress_lock); 2678 #endif 2679 2680 ret = alloc_divert_blk(dev); 2681 if (ret) 2682 goto out; 2683 2684 dev->iflink = -1; 2685 2686 /* Init, if this function is available */ 2687 if (dev->init) { 2688 ret = dev->init(dev); 2689 if (ret) { 2690 if (ret > 0) 2691 ret = -EIO; 2692 goto out_err; 2693 } 2694 } 2695 2696 if (!dev_valid_name(dev->name)) { 2697 ret = -EINVAL; 2698 goto out_err; 2699 } 2700 2701 dev->ifindex = dev_new_index(); 2702 if (dev->iflink == -1) 2703 dev->iflink = dev->ifindex; 2704 2705 /* Check for existence of name */ 2706 head = dev_name_hash(dev->name); 2707 hlist_for_each(p, head) { 2708 struct net_device *d 2709 = hlist_entry(p, struct net_device, name_hlist); 2710 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 2711 ret = -EEXIST; 2712 goto out_err; 2713 } 2714 } 2715 2716 /* Fix illegal SG+CSUM combinations. */ 2717 if ((dev->features & NETIF_F_SG) && 2718 !(dev->features & (NETIF_F_IP_CSUM | 2719 NETIF_F_NO_CSUM | 2720 NETIF_F_HW_CSUM))) { 2721 printk("%s: Dropping NETIF_F_SG since no checksum feature.\n", 2722 dev->name); 2723 dev->features &= ~NETIF_F_SG; 2724 } 2725 2726 /* TSO requires that SG is present as well. */ 2727 if ((dev->features & NETIF_F_TSO) && 2728 !(dev->features & NETIF_F_SG)) { 2729 printk("%s: Dropping NETIF_F_TSO since no SG feature.\n", 2730 dev->name); 2731 dev->features &= ~NETIF_F_TSO; 2732 } 2733 if (dev->features & NETIF_F_UFO) { 2734 if (!(dev->features & NETIF_F_HW_CSUM)) { 2735 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 2736 "NETIF_F_HW_CSUM feature.\n", 2737 dev->name); 2738 dev->features &= ~NETIF_F_UFO; 2739 } 2740 if (!(dev->features & NETIF_F_SG)) { 2741 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 2742 "NETIF_F_SG feature.\n", 2743 dev->name); 2744 dev->features &= ~NETIF_F_UFO; 2745 } 2746 } 2747 2748 /* 2749 * nil rebuild_header routine, 2750 * that should be never called and used as just bug trap. 2751 */ 2752 2753 if (!dev->rebuild_header) 2754 dev->rebuild_header = default_rebuild_header; 2755 2756 /* 2757 * Default initial state at registry is that the 2758 * device is present. 2759 */ 2760 2761 set_bit(__LINK_STATE_PRESENT, &dev->state); 2762 2763 dev->next = NULL; 2764 dev_init_scheduler(dev); 2765 write_lock_bh(&dev_base_lock); 2766 *dev_tail = dev; 2767 dev_tail = &dev->next; 2768 hlist_add_head(&dev->name_hlist, head); 2769 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex)); 2770 dev_hold(dev); 2771 dev->reg_state = NETREG_REGISTERING; 2772 write_unlock_bh(&dev_base_lock); 2773 2774 /* Notify protocols, that a new device appeared. */ 2775 notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev); 2776 2777 /* Finish registration after unlock */ 2778 net_set_todo(dev); 2779 ret = 0; 2780 2781 out: 2782 return ret; 2783 out_err: 2784 free_divert_blk(dev); 2785 goto out; 2786 } 2787 2788 /** 2789 * register_netdev - register a network device 2790 * @dev: device to register 2791 * 2792 * Take a completed network device structure and add it to the kernel 2793 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 2794 * chain. 0 is returned on success. A negative errno code is returned 2795 * on a failure to set up the device, or if the name is a duplicate. 2796 * 2797 * This is a wrapper around register_netdev that takes the rtnl semaphore 2798 * and expands the device name if you passed a format string to 2799 * alloc_netdev. 2800 */ 2801 int register_netdev(struct net_device *dev) 2802 { 2803 int err; 2804 2805 rtnl_lock(); 2806 2807 /* 2808 * If the name is a format string the caller wants us to do a 2809 * name allocation. 2810 */ 2811 if (strchr(dev->name, '%')) { 2812 err = dev_alloc_name(dev, dev->name); 2813 if (err < 0) 2814 goto out; 2815 } 2816 2817 /* 2818 * Back compatibility hook. Kill this one in 2.5 2819 */ 2820 if (dev->name[0] == 0 || dev->name[0] == ' ') { 2821 err = dev_alloc_name(dev, "eth%d"); 2822 if (err < 0) 2823 goto out; 2824 } 2825 2826 err = register_netdevice(dev); 2827 out: 2828 rtnl_unlock(); 2829 return err; 2830 } 2831 EXPORT_SYMBOL(register_netdev); 2832 2833 /* 2834 * netdev_wait_allrefs - wait until all references are gone. 2835 * 2836 * This is called when unregistering network devices. 2837 * 2838 * Any protocol or device that holds a reference should register 2839 * for netdevice notification, and cleanup and put back the 2840 * reference if they receive an UNREGISTER event. 2841 * We can get stuck here if buggy protocols don't correctly 2842 * call dev_put. 2843 */ 2844 static void netdev_wait_allrefs(struct net_device *dev) 2845 { 2846 unsigned long rebroadcast_time, warning_time; 2847 2848 rebroadcast_time = warning_time = jiffies; 2849 while (atomic_read(&dev->refcnt) != 0) { 2850 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 2851 rtnl_shlock(); 2852 2853 /* Rebroadcast unregister notification */ 2854 notifier_call_chain(&netdev_chain, 2855 NETDEV_UNREGISTER, dev); 2856 2857 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 2858 &dev->state)) { 2859 /* We must not have linkwatch events 2860 * pending on unregister. If this 2861 * happens, we simply run the queue 2862 * unscheduled, resulting in a noop 2863 * for this device. 2864 */ 2865 linkwatch_run_queue(); 2866 } 2867 2868 rtnl_shunlock(); 2869 2870 rebroadcast_time = jiffies; 2871 } 2872 2873 msleep(250); 2874 2875 if (time_after(jiffies, warning_time + 10 * HZ)) { 2876 printk(KERN_EMERG "unregister_netdevice: " 2877 "waiting for %s to become free. Usage " 2878 "count = %d\n", 2879 dev->name, atomic_read(&dev->refcnt)); 2880 warning_time = jiffies; 2881 } 2882 } 2883 } 2884 2885 /* The sequence is: 2886 * 2887 * rtnl_lock(); 2888 * ... 2889 * register_netdevice(x1); 2890 * register_netdevice(x2); 2891 * ... 2892 * unregister_netdevice(y1); 2893 * unregister_netdevice(y2); 2894 * ... 2895 * rtnl_unlock(); 2896 * free_netdev(y1); 2897 * free_netdev(y2); 2898 * 2899 * We are invoked by rtnl_unlock() after it drops the semaphore. 2900 * This allows us to deal with problems: 2901 * 1) We can create/delete sysfs objects which invoke hotplug 2902 * without deadlocking with linkwatch via keventd. 2903 * 2) Since we run with the RTNL semaphore not held, we can sleep 2904 * safely in order to wait for the netdev refcnt to drop to zero. 2905 */ 2906 static DECLARE_MUTEX(net_todo_run_mutex); 2907 void netdev_run_todo(void) 2908 { 2909 struct list_head list = LIST_HEAD_INIT(list); 2910 int err; 2911 2912 2913 /* Need to guard against multiple cpu's getting out of order. */ 2914 down(&net_todo_run_mutex); 2915 2916 /* Not safe to do outside the semaphore. We must not return 2917 * until all unregister events invoked by the local processor 2918 * have been completed (either by this todo run, or one on 2919 * another cpu). 2920 */ 2921 if (list_empty(&net_todo_list)) 2922 goto out; 2923 2924 /* Snapshot list, allow later requests */ 2925 spin_lock(&net_todo_list_lock); 2926 list_splice_init(&net_todo_list, &list); 2927 spin_unlock(&net_todo_list_lock); 2928 2929 while (!list_empty(&list)) { 2930 struct net_device *dev 2931 = list_entry(list.next, struct net_device, todo_list); 2932 list_del(&dev->todo_list); 2933 2934 switch(dev->reg_state) { 2935 case NETREG_REGISTERING: 2936 err = netdev_register_sysfs(dev); 2937 if (err) 2938 printk(KERN_ERR "%s: failed sysfs registration (%d)\n", 2939 dev->name, err); 2940 dev->reg_state = NETREG_REGISTERED; 2941 break; 2942 2943 case NETREG_UNREGISTERING: 2944 netdev_unregister_sysfs(dev); 2945 dev->reg_state = NETREG_UNREGISTERED; 2946 2947 netdev_wait_allrefs(dev); 2948 2949 /* paranoia */ 2950 BUG_ON(atomic_read(&dev->refcnt)); 2951 BUG_TRAP(!dev->ip_ptr); 2952 BUG_TRAP(!dev->ip6_ptr); 2953 BUG_TRAP(!dev->dn_ptr); 2954 2955 2956 /* It must be the very last action, 2957 * after this 'dev' may point to freed up memory. 2958 */ 2959 if (dev->destructor) 2960 dev->destructor(dev); 2961 break; 2962 2963 default: 2964 printk(KERN_ERR "network todo '%s' but state %d\n", 2965 dev->name, dev->reg_state); 2966 break; 2967 } 2968 } 2969 2970 out: 2971 up(&net_todo_run_mutex); 2972 } 2973 2974 /** 2975 * alloc_netdev - allocate network device 2976 * @sizeof_priv: size of private data to allocate space for 2977 * @name: device name format string 2978 * @setup: callback to initialize device 2979 * 2980 * Allocates a struct net_device with private data area for driver use 2981 * and performs basic initialization. 2982 */ 2983 struct net_device *alloc_netdev(int sizeof_priv, const char *name, 2984 void (*setup)(struct net_device *)) 2985 { 2986 void *p; 2987 struct net_device *dev; 2988 int alloc_size; 2989 2990 /* ensure 32-byte alignment of both the device and private area */ 2991 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 2992 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST; 2993 2994 p = kmalloc(alloc_size, GFP_KERNEL); 2995 if (!p) { 2996 printk(KERN_ERR "alloc_dev: Unable to allocate device.\n"); 2997 return NULL; 2998 } 2999 memset(p, 0, alloc_size); 3000 3001 dev = (struct net_device *) 3002 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 3003 dev->padded = (char *)dev - (char *)p; 3004 3005 if (sizeof_priv) 3006 dev->priv = netdev_priv(dev); 3007 3008 setup(dev); 3009 strcpy(dev->name, name); 3010 return dev; 3011 } 3012 EXPORT_SYMBOL(alloc_netdev); 3013 3014 /** 3015 * free_netdev - free network device 3016 * @dev: device 3017 * 3018 * This function does the last stage of destroying an allocated device 3019 * interface. The reference to the device object is released. 3020 * If this is the last reference then it will be freed. 3021 */ 3022 void free_netdev(struct net_device *dev) 3023 { 3024 #ifdef CONFIG_SYSFS 3025 /* Compatiablity with error handling in drivers */ 3026 if (dev->reg_state == NETREG_UNINITIALIZED) { 3027 kfree((char *)dev - dev->padded); 3028 return; 3029 } 3030 3031 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 3032 dev->reg_state = NETREG_RELEASED; 3033 3034 /* will free via class release */ 3035 class_device_put(&dev->class_dev); 3036 #else 3037 kfree((char *)dev - dev->padded); 3038 #endif 3039 } 3040 3041 /* Synchronize with packet receive processing. */ 3042 void synchronize_net(void) 3043 { 3044 might_sleep(); 3045 synchronize_rcu(); 3046 } 3047 3048 /** 3049 * unregister_netdevice - remove device from the kernel 3050 * @dev: device 3051 * 3052 * This function shuts down a device interface and removes it 3053 * from the kernel tables. On success 0 is returned, on a failure 3054 * a negative errno code is returned. 3055 * 3056 * Callers must hold the rtnl semaphore. You may want 3057 * unregister_netdev() instead of this. 3058 */ 3059 3060 int unregister_netdevice(struct net_device *dev) 3061 { 3062 struct net_device *d, **dp; 3063 3064 BUG_ON(dev_boot_phase); 3065 ASSERT_RTNL(); 3066 3067 /* Some devices call without registering for initialization unwind. */ 3068 if (dev->reg_state == NETREG_UNINITIALIZED) { 3069 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3070 "was registered\n", dev->name, dev); 3071 return -ENODEV; 3072 } 3073 3074 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3075 3076 /* If device is running, close it first. */ 3077 if (dev->flags & IFF_UP) 3078 dev_close(dev); 3079 3080 /* And unlink it from device chain. */ 3081 for (dp = &dev_base; (d = *dp) != NULL; dp = &d->next) { 3082 if (d == dev) { 3083 write_lock_bh(&dev_base_lock); 3084 hlist_del(&dev->name_hlist); 3085 hlist_del(&dev->index_hlist); 3086 if (dev_tail == &dev->next) 3087 dev_tail = dp; 3088 *dp = d->next; 3089 write_unlock_bh(&dev_base_lock); 3090 break; 3091 } 3092 } 3093 if (!d) { 3094 printk(KERN_ERR "unregister net_device: '%s' not found\n", 3095 dev->name); 3096 return -ENODEV; 3097 } 3098 3099 dev->reg_state = NETREG_UNREGISTERING; 3100 3101 synchronize_net(); 3102 3103 /* Shutdown queueing discipline. */ 3104 dev_shutdown(dev); 3105 3106 3107 /* Notify protocols, that we are about to destroy 3108 this device. They should clean all the things. 3109 */ 3110 notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev); 3111 3112 /* 3113 * Flush the multicast chain 3114 */ 3115 dev_mc_discard(dev); 3116 3117 if (dev->uninit) 3118 dev->uninit(dev); 3119 3120 /* Notifier chain MUST detach us from master device. */ 3121 BUG_TRAP(!dev->master); 3122 3123 free_divert_blk(dev); 3124 3125 /* Finish processing unregister after unlock */ 3126 net_set_todo(dev); 3127 3128 synchronize_net(); 3129 3130 dev_put(dev); 3131 return 0; 3132 } 3133 3134 /** 3135 * unregister_netdev - remove device from the kernel 3136 * @dev: device 3137 * 3138 * This function shuts down a device interface and removes it 3139 * from the kernel tables. On success 0 is returned, on a failure 3140 * a negative errno code is returned. 3141 * 3142 * This is just a wrapper for unregister_netdevice that takes 3143 * the rtnl semaphore. In general you want to use this and not 3144 * unregister_netdevice. 3145 */ 3146 void unregister_netdev(struct net_device *dev) 3147 { 3148 rtnl_lock(); 3149 unregister_netdevice(dev); 3150 rtnl_unlock(); 3151 } 3152 3153 EXPORT_SYMBOL(unregister_netdev); 3154 3155 #ifdef CONFIG_HOTPLUG_CPU 3156 static int dev_cpu_callback(struct notifier_block *nfb, 3157 unsigned long action, 3158 void *ocpu) 3159 { 3160 struct sk_buff **list_skb; 3161 struct net_device **list_net; 3162 struct sk_buff *skb; 3163 unsigned int cpu, oldcpu = (unsigned long)ocpu; 3164 struct softnet_data *sd, *oldsd; 3165 3166 if (action != CPU_DEAD) 3167 return NOTIFY_OK; 3168 3169 local_irq_disable(); 3170 cpu = smp_processor_id(); 3171 sd = &per_cpu(softnet_data, cpu); 3172 oldsd = &per_cpu(softnet_data, oldcpu); 3173 3174 /* Find end of our completion_queue. */ 3175 list_skb = &sd->completion_queue; 3176 while (*list_skb) 3177 list_skb = &(*list_skb)->next; 3178 /* Append completion queue from offline CPU. */ 3179 *list_skb = oldsd->completion_queue; 3180 oldsd->completion_queue = NULL; 3181 3182 /* Find end of our output_queue. */ 3183 list_net = &sd->output_queue; 3184 while (*list_net) 3185 list_net = &(*list_net)->next_sched; 3186 /* Append output queue from offline CPU. */ 3187 *list_net = oldsd->output_queue; 3188 oldsd->output_queue = NULL; 3189 3190 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3191 local_irq_enable(); 3192 3193 /* Process offline CPU's input_pkt_queue */ 3194 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 3195 netif_rx(skb); 3196 3197 return NOTIFY_OK; 3198 } 3199 #endif /* CONFIG_HOTPLUG_CPU */ 3200 3201 3202 /* 3203 * Initialize the DEV module. At boot time this walks the device list and 3204 * unhooks any devices that fail to initialise (normally hardware not 3205 * present) and leaves us with a valid list of present and active devices. 3206 * 3207 */ 3208 3209 /* 3210 * This is called single threaded during boot, so no need 3211 * to take the rtnl semaphore. 3212 */ 3213 static int __init net_dev_init(void) 3214 { 3215 int i, rc = -ENOMEM; 3216 3217 BUG_ON(!dev_boot_phase); 3218 3219 net_random_init(); 3220 3221 if (dev_proc_init()) 3222 goto out; 3223 3224 if (netdev_sysfs_init()) 3225 goto out; 3226 3227 INIT_LIST_HEAD(&ptype_all); 3228 for (i = 0; i < 16; i++) 3229 INIT_LIST_HEAD(&ptype_base[i]); 3230 3231 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++) 3232 INIT_HLIST_HEAD(&dev_name_head[i]); 3233 3234 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++) 3235 INIT_HLIST_HEAD(&dev_index_head[i]); 3236 3237 /* 3238 * Initialise the packet receive queues. 3239 */ 3240 3241 for (i = 0; i < NR_CPUS; i++) { 3242 struct softnet_data *queue; 3243 3244 queue = &per_cpu(softnet_data, i); 3245 skb_queue_head_init(&queue->input_pkt_queue); 3246 queue->completion_queue = NULL; 3247 INIT_LIST_HEAD(&queue->poll_list); 3248 set_bit(__LINK_STATE_START, &queue->backlog_dev.state); 3249 queue->backlog_dev.weight = weight_p; 3250 queue->backlog_dev.poll = process_backlog; 3251 atomic_set(&queue->backlog_dev.refcnt, 1); 3252 } 3253 3254 dev_boot_phase = 0; 3255 3256 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 3257 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 3258 3259 hotcpu_notifier(dev_cpu_callback, 0); 3260 dst_init(); 3261 dev_mcast_init(); 3262 rc = 0; 3263 out: 3264 return rc; 3265 } 3266 3267 subsys_initcall(net_dev_init); 3268 3269 EXPORT_SYMBOL(__dev_get_by_index); 3270 EXPORT_SYMBOL(__dev_get_by_name); 3271 EXPORT_SYMBOL(__dev_remove_pack); 3272 EXPORT_SYMBOL(__skb_linearize); 3273 EXPORT_SYMBOL(dev_add_pack); 3274 EXPORT_SYMBOL(dev_alloc_name); 3275 EXPORT_SYMBOL(dev_close); 3276 EXPORT_SYMBOL(dev_get_by_flags); 3277 EXPORT_SYMBOL(dev_get_by_index); 3278 EXPORT_SYMBOL(dev_get_by_name); 3279 EXPORT_SYMBOL(dev_ioctl); 3280 EXPORT_SYMBOL(dev_open); 3281 EXPORT_SYMBOL(dev_queue_xmit); 3282 EXPORT_SYMBOL(dev_remove_pack); 3283 EXPORT_SYMBOL(dev_set_allmulti); 3284 EXPORT_SYMBOL(dev_set_promiscuity); 3285 EXPORT_SYMBOL(dev_change_flags); 3286 EXPORT_SYMBOL(dev_set_mtu); 3287 EXPORT_SYMBOL(dev_set_mac_address); 3288 EXPORT_SYMBOL(free_netdev); 3289 EXPORT_SYMBOL(netdev_boot_setup_check); 3290 EXPORT_SYMBOL(netdev_set_master); 3291 EXPORT_SYMBOL(netdev_state_change); 3292 EXPORT_SYMBOL(netif_receive_skb); 3293 EXPORT_SYMBOL(netif_rx); 3294 EXPORT_SYMBOL(register_gifconf); 3295 EXPORT_SYMBOL(register_netdevice); 3296 EXPORT_SYMBOL(register_netdevice_notifier); 3297 EXPORT_SYMBOL(skb_checksum_help); 3298 EXPORT_SYMBOL(synchronize_net); 3299 EXPORT_SYMBOL(unregister_netdevice); 3300 EXPORT_SYMBOL(unregister_netdevice_notifier); 3301 EXPORT_SYMBOL(net_enable_timestamp); 3302 EXPORT_SYMBOL(net_disable_timestamp); 3303 EXPORT_SYMBOL(dev_get_flags); 3304 3305 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 3306 EXPORT_SYMBOL(br_handle_frame_hook); 3307 EXPORT_SYMBOL(br_fdb_get_hook); 3308 EXPORT_SYMBOL(br_fdb_put_hook); 3309 #endif 3310 3311 #ifdef CONFIG_KMOD 3312 EXPORT_SYMBOL(dev_load); 3313 #endif 3314 3315 EXPORT_PER_CPU_SYMBOL(softnet_data); 3316