xref: /linux/net/core/dev.c (revision 6ae67f115986734bc24dfed5cee1daafb5351623)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	else
237 		local_irq_save(*flags);
238 }
239 
240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 		spin_lock_irq(&sd->input_pkt_queue.lock);
244 	else
245 		local_irq_disable();
246 }
247 
248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 					      unsigned long *flags)
250 {
251 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 	else
254 		local_irq_restore(*flags);
255 }
256 
257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 		spin_unlock_irq(&sd->input_pkt_queue.lock);
261 	else
262 		local_irq_enable();
263 }
264 
265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 						       const char *name)
267 {
268 	struct netdev_name_node *name_node;
269 
270 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 	if (!name_node)
272 		return NULL;
273 	INIT_HLIST_NODE(&name_node->hlist);
274 	name_node->dev = dev;
275 	name_node->name = name;
276 	return name_node;
277 }
278 
279 static struct netdev_name_node *
280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 	struct netdev_name_node *name_node;
283 
284 	name_node = netdev_name_node_alloc(dev, dev->name);
285 	if (!name_node)
286 		return NULL;
287 	INIT_LIST_HEAD(&name_node->list);
288 	return name_node;
289 }
290 
291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 	kfree(name_node);
294 }
295 
296 static void netdev_name_node_add(struct net *net,
297 				 struct netdev_name_node *name_node)
298 {
299 	hlist_add_head_rcu(&name_node->hlist,
300 			   dev_name_hash(net, name_node->name));
301 }
302 
303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 	hlist_del_rcu(&name_node->hlist);
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 							const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 							    const char *name)
322 {
323 	struct hlist_head *head = dev_name_hash(net, name);
324 	struct netdev_name_node *name_node;
325 
326 	hlist_for_each_entry_rcu(name_node, head, hlist)
327 		if (!strcmp(name_node->name, name))
328 			return name_node;
329 	return NULL;
330 }
331 
332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 	return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337 
338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 	struct netdev_name_node *name_node;
341 	struct net *net = dev_net(dev);
342 
343 	name_node = netdev_name_node_lookup(net, name);
344 	if (name_node)
345 		return -EEXIST;
346 	name_node = netdev_name_node_alloc(dev, name);
347 	if (!name_node)
348 		return -ENOMEM;
349 	netdev_name_node_add(net, name_node);
350 	/* The node that holds dev->name acts as a head of per-device list. */
351 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352 
353 	return 0;
354 }
355 
356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 	struct netdev_name_node *name_node =
359 		container_of(head, struct netdev_name_node, rcu);
360 
361 	kfree(name_node->name);
362 	netdev_name_node_free(name_node);
363 }
364 
365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 	netdev_name_node_del(name_node);
368 	list_del(&name_node->list);
369 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371 
372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 	struct netdev_name_node *name_node;
375 	struct net *net = dev_net(dev);
376 
377 	name_node = netdev_name_node_lookup(net, name);
378 	if (!name_node)
379 		return -ENOENT;
380 	/* lookup might have found our primary name or a name belonging
381 	 * to another device.
382 	 */
383 	if (name_node == dev->name_node || name_node->dev != dev)
384 		return -EINVAL;
385 
386 	__netdev_name_node_alt_destroy(name_node);
387 	return 0;
388 }
389 
390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 	struct netdev_name_node *name_node, *tmp;
393 
394 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 		list_del(&name_node->list);
396 		netdev_name_node_alt_free(&name_node->rcu);
397 	}
398 }
399 
400 /* Device list insertion */
401 static void list_netdevice(struct net_device *dev)
402 {
403 	struct netdev_name_node *name_node;
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 	netdev_name_node_add(net, dev->name_node);
410 	hlist_add_head_rcu(&dev->index_hlist,
411 			   dev_index_hash(net, dev->ifindex));
412 
413 	netdev_for_each_altname(dev, name_node)
414 		netdev_name_node_add(net, name_node);
415 
416 	/* We reserved the ifindex, this can't fail */
417 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418 
419 	dev_base_seq_inc(net);
420 }
421 
422 /* Device list removal
423  * caller must respect a RCU grace period before freeing/reusing dev
424  */
425 static void unlist_netdevice(struct net_device *dev)
426 {
427 	struct netdev_name_node *name_node;
428 	struct net *net = dev_net(dev);
429 
430 	ASSERT_RTNL();
431 
432 	xa_erase(&net->dev_by_index, dev->ifindex);
433 
434 	netdev_for_each_altname(dev, name_node)
435 		netdev_name_node_del(name_node);
436 
437 	/* Unlink dev from the device chain */
438 	list_del_rcu(&dev->dev_list);
439 	netdev_name_node_del(dev->name_node);
440 	hlist_del_rcu(&dev->index_hlist);
441 
442 	dev_base_seq_inc(dev_net(dev));
443 }
444 
445 /*
446  *	Our notifier list
447  */
448 
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450 
451 /*
452  *	Device drivers call our routines to queue packets here. We empty the
453  *	queue in the local softnet handler.
454  */
455 
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460 
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462  * PP consumers must pay attention to run APIs in the appropriate context
463  * (e.g. NAPI context).
464  */
465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
466 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
467 };
468 
469 #ifdef CONFIG_LOCKDEP
470 /*
471  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
472  * according to dev->type
473  */
474 static const unsigned short netdev_lock_type[] = {
475 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
476 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
477 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
478 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
479 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
480 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
481 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
482 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
483 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
484 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
485 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
486 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
487 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
488 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
489 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
490 
491 static const char *const netdev_lock_name[] = {
492 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
493 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
494 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
495 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
496 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
497 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
498 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
499 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
500 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
501 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
502 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
503 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
504 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
505 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
506 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
507 
508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
510 
511 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
512 {
513 	int i;
514 
515 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
516 		if (netdev_lock_type[i] == dev_type)
517 			return i;
518 	/* the last key is used by default */
519 	return ARRAY_SIZE(netdev_lock_type) - 1;
520 }
521 
522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
523 						 unsigned short dev_type)
524 {
525 	int i;
526 
527 	i = netdev_lock_pos(dev_type);
528 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
529 				   netdev_lock_name[i]);
530 }
531 
532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
533 {
534 	int i;
535 
536 	i = netdev_lock_pos(dev->type);
537 	lockdep_set_class_and_name(&dev->addr_list_lock,
538 				   &netdev_addr_lock_key[i],
539 				   netdev_lock_name[i]);
540 }
541 #else
542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
543 						 unsigned short dev_type)
544 {
545 }
546 
547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
548 {
549 }
550 #endif
551 
552 /*******************************************************************************
553  *
554  *		Protocol management and registration routines
555  *
556  *******************************************************************************/
557 
558 
559 /*
560  *	Add a protocol ID to the list. Now that the input handler is
561  *	smarter we can dispense with all the messy stuff that used to be
562  *	here.
563  *
564  *	BEWARE!!! Protocol handlers, mangling input packets,
565  *	MUST BE last in hash buckets and checking protocol handlers
566  *	MUST start from promiscuous ptype_all chain in net_bh.
567  *	It is true now, do not change it.
568  *	Explanation follows: if protocol handler, mangling packet, will
569  *	be the first on list, it is not able to sense, that packet
570  *	is cloned and should be copied-on-write, so that it will
571  *	change it and subsequent readers will get broken packet.
572  *							--ANK (980803)
573  */
574 
575 static inline struct list_head *ptype_head(const struct packet_type *pt)
576 {
577 	if (pt->type == htons(ETH_P_ALL)) {
578 		if (!pt->af_packet_net && !pt->dev)
579 			return NULL;
580 
581 		return pt->dev ? &pt->dev->ptype_all :
582 				 &pt->af_packet_net->ptype_all;
583 	}
584 
585 	if (pt->dev)
586 		return &pt->dev->ptype_specific;
587 
588 	return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
589 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
590 }
591 
592 /**
593  *	dev_add_pack - add packet handler
594  *	@pt: packet type declaration
595  *
596  *	Add a protocol handler to the networking stack. The passed &packet_type
597  *	is linked into kernel lists and may not be freed until it has been
598  *	removed from the kernel lists.
599  *
600  *	This call does not sleep therefore it can not
601  *	guarantee all CPU's that are in middle of receiving packets
602  *	will see the new packet type (until the next received packet).
603  */
604 
605 void dev_add_pack(struct packet_type *pt)
606 {
607 	struct list_head *head = ptype_head(pt);
608 
609 	if (WARN_ON_ONCE(!head))
610 		return;
611 
612 	spin_lock(&ptype_lock);
613 	list_add_rcu(&pt->list, head);
614 	spin_unlock(&ptype_lock);
615 }
616 EXPORT_SYMBOL(dev_add_pack);
617 
618 /**
619  *	__dev_remove_pack	 - remove packet handler
620  *	@pt: packet type declaration
621  *
622  *	Remove a protocol handler that was previously added to the kernel
623  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
624  *	from the kernel lists and can be freed or reused once this function
625  *	returns.
626  *
627  *      The packet type might still be in use by receivers
628  *	and must not be freed until after all the CPU's have gone
629  *	through a quiescent state.
630  */
631 void __dev_remove_pack(struct packet_type *pt)
632 {
633 	struct list_head *head = ptype_head(pt);
634 	struct packet_type *pt1;
635 
636 	if (!head)
637 		return;
638 
639 	spin_lock(&ptype_lock);
640 
641 	list_for_each_entry(pt1, head, list) {
642 		if (pt == pt1) {
643 			list_del_rcu(&pt->list);
644 			goto out;
645 		}
646 	}
647 
648 	pr_warn("dev_remove_pack: %p not found\n", pt);
649 out:
650 	spin_unlock(&ptype_lock);
651 }
652 EXPORT_SYMBOL(__dev_remove_pack);
653 
654 /**
655  *	dev_remove_pack	 - remove packet handler
656  *	@pt: packet type declaration
657  *
658  *	Remove a protocol handler that was previously added to the kernel
659  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
660  *	from the kernel lists and can be freed or reused once this function
661  *	returns.
662  *
663  *	This call sleeps to guarantee that no CPU is looking at the packet
664  *	type after return.
665  */
666 void dev_remove_pack(struct packet_type *pt)
667 {
668 	__dev_remove_pack(pt);
669 
670 	synchronize_net();
671 }
672 EXPORT_SYMBOL(dev_remove_pack);
673 
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return READ_ONCE(dev->ifindex);
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
725 {
726 	int k = stack->num_paths++;
727 
728 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
729 		return NULL;
730 
731 	return &stack->path[k];
732 }
733 
734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
735 			  struct net_device_path_stack *stack)
736 {
737 	const struct net_device *last_dev;
738 	struct net_device_path_ctx ctx = {
739 		.dev	= dev,
740 	};
741 	struct net_device_path *path;
742 	int ret = 0;
743 
744 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
745 	stack->num_paths = 0;
746 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
747 		last_dev = ctx.dev;
748 		path = dev_fwd_path(stack);
749 		if (!path)
750 			return -1;
751 
752 		memset(path, 0, sizeof(struct net_device_path));
753 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
754 		if (ret < 0)
755 			return -1;
756 
757 		if (WARN_ON_ONCE(last_dev == ctx.dev))
758 			return -1;
759 	}
760 
761 	if (!ctx.dev)
762 		return ret;
763 
764 	path = dev_fwd_path(stack);
765 	if (!path)
766 		return -1;
767 	path->type = DEV_PATH_ETHERNET;
768 	path->dev = ctx.dev;
769 
770 	return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773 
774 /* must be called under rcu_read_lock(), as we dont take a reference */
775 static struct napi_struct *napi_by_id(unsigned int napi_id)
776 {
777 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
778 	struct napi_struct *napi;
779 
780 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
781 		if (napi->napi_id == napi_id)
782 			return napi;
783 
784 	return NULL;
785 }
786 
787 /* must be called under rcu_read_lock(), as we dont take a reference */
788 static struct napi_struct *
789 netdev_napi_by_id(struct net *net, unsigned int napi_id)
790 {
791 	struct napi_struct *napi;
792 
793 	napi = napi_by_id(napi_id);
794 	if (!napi)
795 		return NULL;
796 
797 	if (WARN_ON_ONCE(!napi->dev))
798 		return NULL;
799 	if (!net_eq(net, dev_net(napi->dev)))
800 		return NULL;
801 
802 	return napi;
803 }
804 
805 /**
806  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
807  *	@net: the applicable net namespace
808  *	@napi_id: ID of a NAPI of a target device
809  *
810  *	Find a NAPI instance with @napi_id. Lock its device.
811  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
812  *	netdev_unlock() must be called to release it.
813  *
814  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
815  */
816 struct napi_struct *
817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
818 {
819 	struct napi_struct *napi;
820 	struct net_device *dev;
821 
822 	rcu_read_lock();
823 	napi = netdev_napi_by_id(net, napi_id);
824 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
825 		rcu_read_unlock();
826 		return NULL;
827 	}
828 
829 	dev = napi->dev;
830 	dev_hold(dev);
831 	rcu_read_unlock();
832 
833 	dev = __netdev_put_lock(dev, net);
834 	if (!dev)
835 		return NULL;
836 
837 	rcu_read_lock();
838 	napi = netdev_napi_by_id(net, napi_id);
839 	if (napi && napi->dev != dev)
840 		napi = NULL;
841 	rcu_read_unlock();
842 
843 	if (!napi)
844 		netdev_unlock(dev);
845 	return napi;
846 }
847 
848 /**
849  *	__dev_get_by_name	- find a device by its name
850  *	@net: the applicable net namespace
851  *	@name: name to find
852  *
853  *	Find an interface by name. Must be called under RTNL semaphore.
854  *	If the name is found a pointer to the device is returned.
855  *	If the name is not found then %NULL is returned. The
856  *	reference counters are not incremented so the caller must be
857  *	careful with locks.
858  */
859 
860 struct net_device *__dev_get_by_name(struct net *net, const char *name)
861 {
862 	struct netdev_name_node *node_name;
863 
864 	node_name = netdev_name_node_lookup(net, name);
865 	return node_name ? node_name->dev : NULL;
866 }
867 EXPORT_SYMBOL(__dev_get_by_name);
868 
869 /**
870  * dev_get_by_name_rcu	- find a device by its name
871  * @net: the applicable net namespace
872  * @name: name to find
873  *
874  * Find an interface by name.
875  * If the name is found a pointer to the device is returned.
876  * If the name is not found then %NULL is returned.
877  * The reference counters are not incremented so the caller must be
878  * careful with locks. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882 {
883 	struct netdev_name_node *node_name;
884 
885 	node_name = netdev_name_node_lookup_rcu(net, name);
886 	return node_name ? node_name->dev : NULL;
887 }
888 EXPORT_SYMBOL(dev_get_by_name_rcu);
889 
890 /* Deprecated for new users, call netdev_get_by_name() instead */
891 struct net_device *dev_get_by_name(struct net *net, const char *name)
892 {
893 	struct net_device *dev;
894 
895 	rcu_read_lock();
896 	dev = dev_get_by_name_rcu(net, name);
897 	dev_hold(dev);
898 	rcu_read_unlock();
899 	return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_name);
902 
903 /**
904  *	netdev_get_by_name() - find a device by its name
905  *	@net: the applicable net namespace
906  *	@name: name to find
907  *	@tracker: tracking object for the acquired reference
908  *	@gfp: allocation flags for the tracker
909  *
910  *	Find an interface by name. This can be called from any
911  *	context and does its own locking. The returned handle has
912  *	the usage count incremented and the caller must use netdev_put() to
913  *	release it when it is no longer needed. %NULL is returned if no
914  *	matching device is found.
915  */
916 struct net_device *netdev_get_by_name(struct net *net, const char *name,
917 				      netdevice_tracker *tracker, gfp_t gfp)
918 {
919 	struct net_device *dev;
920 
921 	dev = dev_get_by_name(net, name);
922 	if (dev)
923 		netdev_tracker_alloc(dev, tracker, gfp);
924 	return dev;
925 }
926 EXPORT_SYMBOL(netdev_get_by_name);
927 
928 /**
929  *	__dev_get_by_index - find a device by its ifindex
930  *	@net: the applicable net namespace
931  *	@ifindex: index of device
932  *
933  *	Search for an interface by index. Returns %NULL if the device
934  *	is not found or a pointer to the device. The device has not
935  *	had its reference counter increased so the caller must be careful
936  *	about locking. The caller must hold the RTNL semaphore.
937  */
938 
939 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
940 {
941 	struct net_device *dev;
942 	struct hlist_head *head = dev_index_hash(net, ifindex);
943 
944 	hlist_for_each_entry(dev, head, index_hlist)
945 		if (dev->ifindex == ifindex)
946 			return dev;
947 
948 	return NULL;
949 }
950 EXPORT_SYMBOL(__dev_get_by_index);
951 
952 /**
953  *	dev_get_by_index_rcu - find a device by its ifindex
954  *	@net: the applicable net namespace
955  *	@ifindex: index of device
956  *
957  *	Search for an interface by index. Returns %NULL if the device
958  *	is not found or a pointer to the device. The device has not
959  *	had its reference counter increased so the caller must be careful
960  *	about locking. The caller must hold RCU lock.
961  */
962 
963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
964 {
965 	struct net_device *dev;
966 	struct hlist_head *head = dev_index_hash(net, ifindex);
967 
968 	hlist_for_each_entry_rcu(dev, head, index_hlist)
969 		if (dev->ifindex == ifindex)
970 			return dev;
971 
972 	return NULL;
973 }
974 EXPORT_SYMBOL(dev_get_by_index_rcu);
975 
976 /* Deprecated for new users, call netdev_get_by_index() instead */
977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	dev_hold(dev);
984 	rcu_read_unlock();
985 	return dev;
986 }
987 EXPORT_SYMBOL(dev_get_by_index);
988 
989 /**
990  *	netdev_get_by_index() - find a device by its ifindex
991  *	@net: the applicable net namespace
992  *	@ifindex: index of device
993  *	@tracker: tracking object for the acquired reference
994  *	@gfp: allocation flags for the tracker
995  *
996  *	Search for an interface by index. Returns NULL if the device
997  *	is not found or a pointer to the device. The device returned has
998  *	had a reference added and the pointer is safe until the user calls
999  *	netdev_put() to indicate they have finished with it.
1000  */
1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1002 				       netdevice_tracker *tracker, gfp_t gfp)
1003 {
1004 	struct net_device *dev;
1005 
1006 	dev = dev_get_by_index(net, ifindex);
1007 	if (dev)
1008 		netdev_tracker_alloc(dev, tracker, gfp);
1009 	return dev;
1010 }
1011 EXPORT_SYMBOL(netdev_get_by_index);
1012 
1013 /**
1014  *	dev_get_by_napi_id - find a device by napi_id
1015  *	@napi_id: ID of the NAPI struct
1016  *
1017  *	Search for an interface by NAPI ID. Returns %NULL if the device
1018  *	is not found or a pointer to the device. The device has not had
1019  *	its reference counter increased so the caller must be careful
1020  *	about locking. The caller must hold RCU lock.
1021  */
1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1023 {
1024 	struct napi_struct *napi;
1025 
1026 	WARN_ON_ONCE(!rcu_read_lock_held());
1027 
1028 	if (!napi_id_valid(napi_id))
1029 		return NULL;
1030 
1031 	napi = napi_by_id(napi_id);
1032 
1033 	return napi ? napi->dev : NULL;
1034 }
1035 
1036 /* Release the held reference on the net_device, and if the net_device
1037  * is still registered try to lock the instance lock. If device is being
1038  * unregistered NULL will be returned (but the reference has been released,
1039  * either way!)
1040  *
1041  * This helper is intended for locking net_device after it has been looked up
1042  * using a lockless lookup helper. Lock prevents the instance from going away.
1043  */
1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1045 {
1046 	netdev_lock(dev);
1047 	if (dev->reg_state > NETREG_REGISTERED ||
1048 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1049 		netdev_unlock(dev);
1050 		dev_put(dev);
1051 		return NULL;
1052 	}
1053 	dev_put(dev);
1054 	return dev;
1055 }
1056 
1057 static struct net_device *
1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1059 {
1060 	netdev_lock_ops_compat(dev);
1061 	if (dev->reg_state > NETREG_REGISTERED ||
1062 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1063 		netdev_unlock_ops_compat(dev);
1064 		dev_put(dev);
1065 		return NULL;
1066 	}
1067 	dev_put(dev);
1068 	return dev;
1069 }
1070 
1071 /**
1072  *	netdev_get_by_index_lock() - find a device by its ifindex
1073  *	@net: the applicable net namespace
1074  *	@ifindex: index of device
1075  *
1076  *	Search for an interface by index. If a valid device
1077  *	with @ifindex is found it will be returned with netdev->lock held.
1078  *	netdev_unlock() must be called to release it.
1079  *
1080  *	Return: pointer to a device with lock held, NULL if not found.
1081  */
1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1083 {
1084 	struct net_device *dev;
1085 
1086 	dev = dev_get_by_index(net, ifindex);
1087 	if (!dev)
1088 		return NULL;
1089 
1090 	return __netdev_put_lock(dev, net);
1091 }
1092 
1093 struct net_device *
1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1095 {
1096 	struct net_device *dev;
1097 
1098 	dev = dev_get_by_index(net, ifindex);
1099 	if (!dev)
1100 		return NULL;
1101 
1102 	return __netdev_put_lock_ops_compat(dev, net);
1103 }
1104 
1105 struct net_device *
1106 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1107 		    unsigned long *index)
1108 {
1109 	if (dev)
1110 		netdev_unlock(dev);
1111 
1112 	do {
1113 		rcu_read_lock();
1114 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1115 		if (!dev) {
1116 			rcu_read_unlock();
1117 			return NULL;
1118 		}
1119 		dev_hold(dev);
1120 		rcu_read_unlock();
1121 
1122 		dev = __netdev_put_lock(dev, net);
1123 		if (dev)
1124 			return dev;
1125 
1126 		(*index)++;
1127 	} while (true);
1128 }
1129 
1130 struct net_device *
1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1132 			       unsigned long *index)
1133 {
1134 	if (dev)
1135 		netdev_unlock_ops_compat(dev);
1136 
1137 	do {
1138 		rcu_read_lock();
1139 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1140 		if (!dev) {
1141 			rcu_read_unlock();
1142 			return NULL;
1143 		}
1144 		dev_hold(dev);
1145 		rcu_read_unlock();
1146 
1147 		dev = __netdev_put_lock_ops_compat(dev, net);
1148 		if (dev)
1149 			return dev;
1150 
1151 		(*index)++;
1152 	} while (true);
1153 }
1154 
1155 static DEFINE_SEQLOCK(netdev_rename_lock);
1156 
1157 void netdev_copy_name(struct net_device *dev, char *name)
1158 {
1159 	unsigned int seq;
1160 
1161 	do {
1162 		seq = read_seqbegin(&netdev_rename_lock);
1163 		strscpy(name, dev->name, IFNAMSIZ);
1164 	} while (read_seqretry(&netdev_rename_lock, seq));
1165 }
1166 EXPORT_IPV6_MOD_GPL(netdev_copy_name);
1167 
1168 /**
1169  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1170  *	@net: network namespace
1171  *	@name: a pointer to the buffer where the name will be stored.
1172  *	@ifindex: the ifindex of the interface to get the name from.
1173  */
1174 int netdev_get_name(struct net *net, char *name, int ifindex)
1175 {
1176 	struct net_device *dev;
1177 	int ret;
1178 
1179 	rcu_read_lock();
1180 
1181 	dev = dev_get_by_index_rcu(net, ifindex);
1182 	if (!dev) {
1183 		ret = -ENODEV;
1184 		goto out;
1185 	}
1186 
1187 	netdev_copy_name(dev, name);
1188 
1189 	ret = 0;
1190 out:
1191 	rcu_read_unlock();
1192 	return ret;
1193 }
1194 
1195 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1196 			 const char *ha)
1197 {
1198 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1199 }
1200 
1201 /**
1202  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1203  *	@net: the applicable net namespace
1204  *	@type: media type of device
1205  *	@ha: hardware address
1206  *
1207  *	Search for an interface by MAC address. Returns NULL if the device
1208  *	is not found or a pointer to the device.
1209  *	The caller must hold RCU.
1210  *	The returned device has not had its ref count increased
1211  *	and the caller must therefore be careful about locking
1212  *
1213  */
1214 
1215 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1216 				       const char *ha)
1217 {
1218 	struct net_device *dev;
1219 
1220 	for_each_netdev_rcu(net, dev)
1221 		if (dev_addr_cmp(dev, type, ha))
1222 			return dev;
1223 
1224 	return NULL;
1225 }
1226 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1227 
1228 /**
1229  * dev_getbyhwaddr() - find a device by its hardware address
1230  * @net: the applicable net namespace
1231  * @type: media type of device
1232  * @ha: hardware address
1233  *
1234  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1235  * rtnl_lock.
1236  *
1237  * Context: rtnl_lock() must be held.
1238  * Return: pointer to the net_device, or NULL if not found
1239  */
1240 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1241 				   const char *ha)
1242 {
1243 	struct net_device *dev;
1244 
1245 	ASSERT_RTNL();
1246 	for_each_netdev(net, dev)
1247 		if (dev_addr_cmp(dev, type, ha))
1248 			return dev;
1249 
1250 	return NULL;
1251 }
1252 EXPORT_SYMBOL(dev_getbyhwaddr);
1253 
1254 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1255 {
1256 	struct net_device *dev, *ret = NULL;
1257 
1258 	rcu_read_lock();
1259 	for_each_netdev_rcu(net, dev)
1260 		if (dev->type == type) {
1261 			dev_hold(dev);
1262 			ret = dev;
1263 			break;
1264 		}
1265 	rcu_read_unlock();
1266 	return ret;
1267 }
1268 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1269 
1270 /**
1271  * netdev_get_by_flags_rcu - find any device with given flags
1272  * @net: the applicable net namespace
1273  * @tracker: tracking object for the acquired reference
1274  * @if_flags: IFF_* values
1275  * @mask: bitmask of bits in if_flags to check
1276  *
1277  * Search for any interface with the given flags.
1278  *
1279  * Context: rcu_read_lock() must be held.
1280  * Returns: NULL if a device is not found or a pointer to the device.
1281  */
1282 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1283 					   unsigned short if_flags, unsigned short mask)
1284 {
1285 	struct net_device *dev;
1286 
1287 	for_each_netdev_rcu(net, dev) {
1288 		if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1289 			netdev_hold(dev, tracker, GFP_ATOMIC);
1290 			return dev;
1291 		}
1292 	}
1293 
1294 	return NULL;
1295 }
1296 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1297 
1298 /**
1299  *	dev_valid_name - check if name is okay for network device
1300  *	@name: name string
1301  *
1302  *	Network device names need to be valid file names to
1303  *	allow sysfs to work.  We also disallow any kind of
1304  *	whitespace.
1305  */
1306 bool dev_valid_name(const char *name)
1307 {
1308 	if (*name == '\0')
1309 		return false;
1310 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1311 		return false;
1312 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1313 		return false;
1314 
1315 	while (*name) {
1316 		if (*name == '/' || *name == ':' || isspace(*name))
1317 			return false;
1318 		name++;
1319 	}
1320 	return true;
1321 }
1322 EXPORT_SYMBOL(dev_valid_name);
1323 
1324 /**
1325  *	__dev_alloc_name - allocate a name for a device
1326  *	@net: network namespace to allocate the device name in
1327  *	@name: name format string
1328  *	@res: result name string
1329  *
1330  *	Passed a format string - eg "lt%d" it will try and find a suitable
1331  *	id. It scans list of devices to build up a free map, then chooses
1332  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1333  *	while allocating the name and adding the device in order to avoid
1334  *	duplicates.
1335  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1336  *	Returns the number of the unit assigned or a negative errno code.
1337  */
1338 
1339 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1340 {
1341 	int i = 0;
1342 	const char *p;
1343 	const int max_netdevices = 8*PAGE_SIZE;
1344 	unsigned long *inuse;
1345 	struct net_device *d;
1346 	char buf[IFNAMSIZ];
1347 
1348 	/* Verify the string as this thing may have come from the user.
1349 	 * There must be one "%d" and no other "%" characters.
1350 	 */
1351 	p = strchr(name, '%');
1352 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1353 		return -EINVAL;
1354 
1355 	/* Use one page as a bit array of possible slots */
1356 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1357 	if (!inuse)
1358 		return -ENOMEM;
1359 
1360 	for_each_netdev(net, d) {
1361 		struct netdev_name_node *name_node;
1362 
1363 		netdev_for_each_altname(d, name_node) {
1364 			if (!sscanf(name_node->name, name, &i))
1365 				continue;
1366 			if (i < 0 || i >= max_netdevices)
1367 				continue;
1368 
1369 			/* avoid cases where sscanf is not exact inverse of printf */
1370 			snprintf(buf, IFNAMSIZ, name, i);
1371 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1372 				__set_bit(i, inuse);
1373 		}
1374 		if (!sscanf(d->name, name, &i))
1375 			continue;
1376 		if (i < 0 || i >= max_netdevices)
1377 			continue;
1378 
1379 		/* avoid cases where sscanf is not exact inverse of printf */
1380 		snprintf(buf, IFNAMSIZ, name, i);
1381 		if (!strncmp(buf, d->name, IFNAMSIZ))
1382 			__set_bit(i, inuse);
1383 	}
1384 
1385 	i = find_first_zero_bit(inuse, max_netdevices);
1386 	bitmap_free(inuse);
1387 	if (i == max_netdevices)
1388 		return -ENFILE;
1389 
1390 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1391 	strscpy(buf, name, IFNAMSIZ);
1392 	snprintf(res, IFNAMSIZ, buf, i);
1393 	return i;
1394 }
1395 
1396 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1397 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1398 			       const char *want_name, char *out_name,
1399 			       int dup_errno)
1400 {
1401 	if (!dev_valid_name(want_name))
1402 		return -EINVAL;
1403 
1404 	if (strchr(want_name, '%'))
1405 		return __dev_alloc_name(net, want_name, out_name);
1406 
1407 	if (netdev_name_in_use(net, want_name))
1408 		return -dup_errno;
1409 	if (out_name != want_name)
1410 		strscpy(out_name, want_name, IFNAMSIZ);
1411 	return 0;
1412 }
1413 
1414 /**
1415  *	dev_alloc_name - allocate a name for a device
1416  *	@dev: device
1417  *	@name: name format string
1418  *
1419  *	Passed a format string - eg "lt%d" it will try and find a suitable
1420  *	id. It scans list of devices to build up a free map, then chooses
1421  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1422  *	while allocating the name and adding the device in order to avoid
1423  *	duplicates.
1424  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1425  *	Returns the number of the unit assigned or a negative errno code.
1426  */
1427 
1428 int dev_alloc_name(struct net_device *dev, const char *name)
1429 {
1430 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1431 }
1432 EXPORT_SYMBOL(dev_alloc_name);
1433 
1434 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1435 			      const char *name)
1436 {
1437 	int ret;
1438 
1439 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1440 	return ret < 0 ? ret : 0;
1441 }
1442 
1443 int netif_change_name(struct net_device *dev, const char *newname)
1444 {
1445 	struct net *net = dev_net(dev);
1446 	unsigned char old_assign_type;
1447 	char oldname[IFNAMSIZ];
1448 	int err = 0;
1449 	int ret;
1450 
1451 	ASSERT_RTNL_NET(net);
1452 
1453 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1454 		return 0;
1455 
1456 	memcpy(oldname, dev->name, IFNAMSIZ);
1457 
1458 	write_seqlock_bh(&netdev_rename_lock);
1459 	err = dev_get_valid_name(net, dev, newname);
1460 	write_sequnlock_bh(&netdev_rename_lock);
1461 
1462 	if (err < 0)
1463 		return err;
1464 
1465 	if (oldname[0] && !strchr(oldname, '%'))
1466 		netdev_info(dev, "renamed from %s%s\n", oldname,
1467 			    dev->flags & IFF_UP ? " (while UP)" : "");
1468 
1469 	old_assign_type = dev->name_assign_type;
1470 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1471 
1472 rollback:
1473 	ret = device_rename(&dev->dev, dev->name);
1474 	if (ret) {
1475 		write_seqlock_bh(&netdev_rename_lock);
1476 		memcpy(dev->name, oldname, IFNAMSIZ);
1477 		write_sequnlock_bh(&netdev_rename_lock);
1478 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1479 		return ret;
1480 	}
1481 
1482 	netdev_adjacent_rename_links(dev, oldname);
1483 
1484 	netdev_name_node_del(dev->name_node);
1485 
1486 	synchronize_net();
1487 
1488 	netdev_name_node_add(net, dev->name_node);
1489 
1490 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1491 	ret = notifier_to_errno(ret);
1492 
1493 	if (ret) {
1494 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1495 		if (err >= 0) {
1496 			err = ret;
1497 			write_seqlock_bh(&netdev_rename_lock);
1498 			memcpy(dev->name, oldname, IFNAMSIZ);
1499 			write_sequnlock_bh(&netdev_rename_lock);
1500 			memcpy(oldname, newname, IFNAMSIZ);
1501 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1502 			old_assign_type = NET_NAME_RENAMED;
1503 			goto rollback;
1504 		} else {
1505 			netdev_err(dev, "name change rollback failed: %d\n",
1506 				   ret);
1507 		}
1508 	}
1509 
1510 	return err;
1511 }
1512 
1513 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1514 {
1515 	struct dev_ifalias *new_alias = NULL;
1516 
1517 	if (len >= IFALIASZ)
1518 		return -EINVAL;
1519 
1520 	if (len) {
1521 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1522 		if (!new_alias)
1523 			return -ENOMEM;
1524 
1525 		memcpy(new_alias->ifalias, alias, len);
1526 		new_alias->ifalias[len] = 0;
1527 	}
1528 
1529 	mutex_lock(&ifalias_mutex);
1530 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1531 					mutex_is_locked(&ifalias_mutex));
1532 	mutex_unlock(&ifalias_mutex);
1533 
1534 	if (new_alias)
1535 		kfree_rcu(new_alias, rcuhead);
1536 
1537 	return len;
1538 }
1539 
1540 /**
1541  *	dev_get_alias - get ifalias of a device
1542  *	@dev: device
1543  *	@name: buffer to store name of ifalias
1544  *	@len: size of buffer
1545  *
1546  *	get ifalias for a device.  Caller must make sure dev cannot go
1547  *	away,  e.g. rcu read lock or own a reference count to device.
1548  */
1549 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1550 {
1551 	const struct dev_ifalias *alias;
1552 	int ret = 0;
1553 
1554 	rcu_read_lock();
1555 	alias = rcu_dereference(dev->ifalias);
1556 	if (alias)
1557 		ret = snprintf(name, len, "%s", alias->ifalias);
1558 	rcu_read_unlock();
1559 
1560 	return ret;
1561 }
1562 
1563 /**
1564  *	netdev_features_change - device changes features
1565  *	@dev: device to cause notification
1566  *
1567  *	Called to indicate a device has changed features.
1568  */
1569 void netdev_features_change(struct net_device *dev)
1570 {
1571 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1572 }
1573 EXPORT_SYMBOL(netdev_features_change);
1574 
1575 void netif_state_change(struct net_device *dev)
1576 {
1577 	netdev_ops_assert_locked_or_invisible(dev);
1578 
1579 	if (dev->flags & IFF_UP) {
1580 		struct netdev_notifier_change_info change_info = {
1581 			.info.dev = dev,
1582 		};
1583 
1584 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1585 					      &change_info.info);
1586 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1587 	}
1588 }
1589 
1590 /**
1591  * __netdev_notify_peers - notify network peers about existence of @dev,
1592  * to be called when rtnl lock is already held.
1593  * @dev: network device
1594  *
1595  * Generate traffic such that interested network peers are aware of
1596  * @dev, such as by generating a gratuitous ARP. This may be used when
1597  * a device wants to inform the rest of the network about some sort of
1598  * reconfiguration such as a failover event or virtual machine
1599  * migration.
1600  */
1601 void __netdev_notify_peers(struct net_device *dev)
1602 {
1603 	ASSERT_RTNL();
1604 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1605 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1606 }
1607 EXPORT_SYMBOL(__netdev_notify_peers);
1608 
1609 /**
1610  * netdev_notify_peers - notify network peers about existence of @dev
1611  * @dev: network device
1612  *
1613  * Generate traffic such that interested network peers are aware of
1614  * @dev, such as by generating a gratuitous ARP. This may be used when
1615  * a device wants to inform the rest of the network about some sort of
1616  * reconfiguration such as a failover event or virtual machine
1617  * migration.
1618  */
1619 void netdev_notify_peers(struct net_device *dev)
1620 {
1621 	rtnl_lock();
1622 	__netdev_notify_peers(dev);
1623 	rtnl_unlock();
1624 }
1625 EXPORT_SYMBOL(netdev_notify_peers);
1626 
1627 static int napi_threaded_poll(void *data);
1628 
1629 static int napi_kthread_create(struct napi_struct *n)
1630 {
1631 	int err = 0;
1632 
1633 	/* Create and wake up the kthread once to put it in
1634 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1635 	 * warning and work with loadavg.
1636 	 */
1637 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1638 				n->dev->name, n->napi_id);
1639 	if (IS_ERR(n->thread)) {
1640 		err = PTR_ERR(n->thread);
1641 		pr_err("kthread_run failed with err %d\n", err);
1642 		n->thread = NULL;
1643 	}
1644 
1645 	return err;
1646 }
1647 
1648 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1649 {
1650 	const struct net_device_ops *ops = dev->netdev_ops;
1651 	int ret;
1652 
1653 	ASSERT_RTNL();
1654 	dev_addr_check(dev);
1655 
1656 	if (!netif_device_present(dev)) {
1657 		/* may be detached because parent is runtime-suspended */
1658 		if (dev->dev.parent)
1659 			pm_runtime_resume(dev->dev.parent);
1660 		if (!netif_device_present(dev))
1661 			return -ENODEV;
1662 	}
1663 
1664 	/* Block netpoll from trying to do any rx path servicing.
1665 	 * If we don't do this there is a chance ndo_poll_controller
1666 	 * or ndo_poll may be running while we open the device
1667 	 */
1668 	netpoll_poll_disable(dev);
1669 
1670 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1671 	ret = notifier_to_errno(ret);
1672 	if (ret)
1673 		return ret;
1674 
1675 	set_bit(__LINK_STATE_START, &dev->state);
1676 
1677 	netdev_ops_assert_locked(dev);
1678 
1679 	if (ops->ndo_validate_addr)
1680 		ret = ops->ndo_validate_addr(dev);
1681 
1682 	if (!ret && ops->ndo_open)
1683 		ret = ops->ndo_open(dev);
1684 
1685 	netpoll_poll_enable(dev);
1686 
1687 	if (ret)
1688 		clear_bit(__LINK_STATE_START, &dev->state);
1689 	else {
1690 		netif_set_up(dev, true);
1691 		dev_set_rx_mode(dev);
1692 		dev_activate(dev);
1693 		add_device_randomness(dev->dev_addr, dev->addr_len);
1694 	}
1695 
1696 	return ret;
1697 }
1698 
1699 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1700 {
1701 	int ret;
1702 
1703 	if (dev->flags & IFF_UP)
1704 		return 0;
1705 
1706 	ret = __dev_open(dev, extack);
1707 	if (ret < 0)
1708 		return ret;
1709 
1710 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1711 	call_netdevice_notifiers(NETDEV_UP, dev);
1712 
1713 	return ret;
1714 }
1715 
1716 static void __dev_close_many(struct list_head *head)
1717 {
1718 	struct net_device *dev;
1719 
1720 	ASSERT_RTNL();
1721 	might_sleep();
1722 
1723 	list_for_each_entry(dev, head, close_list) {
1724 		/* Temporarily disable netpoll until the interface is down */
1725 		netpoll_poll_disable(dev);
1726 
1727 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1728 
1729 		clear_bit(__LINK_STATE_START, &dev->state);
1730 
1731 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1732 		 * can be even on different cpu. So just clear netif_running().
1733 		 *
1734 		 * dev->stop() will invoke napi_disable() on all of it's
1735 		 * napi_struct instances on this device.
1736 		 */
1737 		smp_mb__after_atomic(); /* Commit netif_running(). */
1738 	}
1739 
1740 	dev_deactivate_many(head);
1741 
1742 	list_for_each_entry(dev, head, close_list) {
1743 		const struct net_device_ops *ops = dev->netdev_ops;
1744 
1745 		/*
1746 		 *	Call the device specific close. This cannot fail.
1747 		 *	Only if device is UP
1748 		 *
1749 		 *	We allow it to be called even after a DETACH hot-plug
1750 		 *	event.
1751 		 */
1752 
1753 		netdev_ops_assert_locked(dev);
1754 
1755 		if (ops->ndo_stop)
1756 			ops->ndo_stop(dev);
1757 
1758 		netif_set_up(dev, false);
1759 		netpoll_poll_enable(dev);
1760 	}
1761 }
1762 
1763 static void __dev_close(struct net_device *dev)
1764 {
1765 	LIST_HEAD(single);
1766 
1767 	list_add(&dev->close_list, &single);
1768 	__dev_close_many(&single);
1769 	list_del(&single);
1770 }
1771 
1772 void netif_close_many(struct list_head *head, bool unlink)
1773 {
1774 	struct net_device *dev, *tmp;
1775 
1776 	/* Remove the devices that don't need to be closed */
1777 	list_for_each_entry_safe(dev, tmp, head, close_list)
1778 		if (!(dev->flags & IFF_UP))
1779 			list_del_init(&dev->close_list);
1780 
1781 	__dev_close_many(head);
1782 
1783 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1784 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1785 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1786 		if (unlink)
1787 			list_del_init(&dev->close_list);
1788 	}
1789 }
1790 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1791 
1792 void netif_close(struct net_device *dev)
1793 {
1794 	if (dev->flags & IFF_UP) {
1795 		LIST_HEAD(single);
1796 
1797 		list_add(&dev->close_list, &single);
1798 		netif_close_many(&single, true);
1799 		list_del(&single);
1800 	}
1801 }
1802 EXPORT_SYMBOL(netif_close);
1803 
1804 void netif_disable_lro(struct net_device *dev)
1805 {
1806 	struct net_device *lower_dev;
1807 	struct list_head *iter;
1808 
1809 	dev->wanted_features &= ~NETIF_F_LRO;
1810 	netdev_update_features(dev);
1811 
1812 	if (unlikely(dev->features & NETIF_F_LRO))
1813 		netdev_WARN(dev, "failed to disable LRO!\n");
1814 
1815 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1816 		netdev_lock_ops(lower_dev);
1817 		netif_disable_lro(lower_dev);
1818 		netdev_unlock_ops(lower_dev);
1819 	}
1820 }
1821 EXPORT_IPV6_MOD(netif_disable_lro);
1822 
1823 /**
1824  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1825  *	@dev: device
1826  *
1827  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1828  *	called under RTNL.  This is needed if Generic XDP is installed on
1829  *	the device.
1830  */
1831 static void dev_disable_gro_hw(struct net_device *dev)
1832 {
1833 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1834 	netdev_update_features(dev);
1835 
1836 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1837 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1838 }
1839 
1840 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1841 {
1842 #define N(val) 						\
1843 	case NETDEV_##val:				\
1844 		return "NETDEV_" __stringify(val);
1845 	switch (cmd) {
1846 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1847 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1848 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1849 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1850 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1851 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1852 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1853 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1854 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1855 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1856 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1857 	N(XDP_FEAT_CHANGE)
1858 	}
1859 #undef N
1860 	return "UNKNOWN_NETDEV_EVENT";
1861 }
1862 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1863 
1864 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1865 				   struct net_device *dev)
1866 {
1867 	struct netdev_notifier_info info = {
1868 		.dev = dev,
1869 	};
1870 
1871 	return nb->notifier_call(nb, val, &info);
1872 }
1873 
1874 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1875 					     struct net_device *dev)
1876 {
1877 	int err;
1878 
1879 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1880 	err = notifier_to_errno(err);
1881 	if (err)
1882 		return err;
1883 
1884 	if (!(dev->flags & IFF_UP))
1885 		return 0;
1886 
1887 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1888 	return 0;
1889 }
1890 
1891 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1892 						struct net_device *dev)
1893 {
1894 	if (dev->flags & IFF_UP) {
1895 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1896 					dev);
1897 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1898 	}
1899 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1900 }
1901 
1902 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1903 						 struct net *net)
1904 {
1905 	struct net_device *dev;
1906 	int err;
1907 
1908 	for_each_netdev(net, dev) {
1909 		netdev_lock_ops(dev);
1910 		err = call_netdevice_register_notifiers(nb, dev);
1911 		netdev_unlock_ops(dev);
1912 		if (err)
1913 			goto rollback;
1914 	}
1915 	return 0;
1916 
1917 rollback:
1918 	for_each_netdev_continue_reverse(net, dev)
1919 		call_netdevice_unregister_notifiers(nb, dev);
1920 	return err;
1921 }
1922 
1923 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1924 						    struct net *net)
1925 {
1926 	struct net_device *dev;
1927 
1928 	for_each_netdev(net, dev)
1929 		call_netdevice_unregister_notifiers(nb, dev);
1930 }
1931 
1932 static int dev_boot_phase = 1;
1933 
1934 /**
1935  * register_netdevice_notifier - register a network notifier block
1936  * @nb: notifier
1937  *
1938  * Register a notifier to be called when network device events occur.
1939  * The notifier passed is linked into the kernel structures and must
1940  * not be reused until it has been unregistered. A negative errno code
1941  * is returned on a failure.
1942  *
1943  * When registered all registration and up events are replayed
1944  * to the new notifier to allow device to have a race free
1945  * view of the network device list.
1946  */
1947 
1948 int register_netdevice_notifier(struct notifier_block *nb)
1949 {
1950 	struct net *net;
1951 	int err;
1952 
1953 	/* Close race with setup_net() and cleanup_net() */
1954 	down_write(&pernet_ops_rwsem);
1955 
1956 	/* When RTNL is removed, we need protection for netdev_chain. */
1957 	rtnl_lock();
1958 
1959 	err = raw_notifier_chain_register(&netdev_chain, nb);
1960 	if (err)
1961 		goto unlock;
1962 	if (dev_boot_phase)
1963 		goto unlock;
1964 	for_each_net(net) {
1965 		__rtnl_net_lock(net);
1966 		err = call_netdevice_register_net_notifiers(nb, net);
1967 		__rtnl_net_unlock(net);
1968 		if (err)
1969 			goto rollback;
1970 	}
1971 
1972 unlock:
1973 	rtnl_unlock();
1974 	up_write(&pernet_ops_rwsem);
1975 	return err;
1976 
1977 rollback:
1978 	for_each_net_continue_reverse(net) {
1979 		__rtnl_net_lock(net);
1980 		call_netdevice_unregister_net_notifiers(nb, net);
1981 		__rtnl_net_unlock(net);
1982 	}
1983 
1984 	raw_notifier_chain_unregister(&netdev_chain, nb);
1985 	goto unlock;
1986 }
1987 EXPORT_SYMBOL(register_netdevice_notifier);
1988 
1989 /**
1990  * unregister_netdevice_notifier - unregister a network notifier block
1991  * @nb: notifier
1992  *
1993  * Unregister a notifier previously registered by
1994  * register_netdevice_notifier(). The notifier is unlinked into the
1995  * kernel structures and may then be reused. A negative errno code
1996  * is returned on a failure.
1997  *
1998  * After unregistering unregister and down device events are synthesized
1999  * for all devices on the device list to the removed notifier to remove
2000  * the need for special case cleanup code.
2001  */
2002 
2003 int unregister_netdevice_notifier(struct notifier_block *nb)
2004 {
2005 	struct net *net;
2006 	int err;
2007 
2008 	/* Close race with setup_net() and cleanup_net() */
2009 	down_write(&pernet_ops_rwsem);
2010 	rtnl_lock();
2011 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
2012 	if (err)
2013 		goto unlock;
2014 
2015 	for_each_net(net) {
2016 		__rtnl_net_lock(net);
2017 		call_netdevice_unregister_net_notifiers(nb, net);
2018 		__rtnl_net_unlock(net);
2019 	}
2020 
2021 unlock:
2022 	rtnl_unlock();
2023 	up_write(&pernet_ops_rwsem);
2024 	return err;
2025 }
2026 EXPORT_SYMBOL(unregister_netdevice_notifier);
2027 
2028 static int __register_netdevice_notifier_net(struct net *net,
2029 					     struct notifier_block *nb,
2030 					     bool ignore_call_fail)
2031 {
2032 	int err;
2033 
2034 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
2035 	if (err)
2036 		return err;
2037 	if (dev_boot_phase)
2038 		return 0;
2039 
2040 	err = call_netdevice_register_net_notifiers(nb, net);
2041 	if (err && !ignore_call_fail)
2042 		goto chain_unregister;
2043 
2044 	return 0;
2045 
2046 chain_unregister:
2047 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
2048 	return err;
2049 }
2050 
2051 static int __unregister_netdevice_notifier_net(struct net *net,
2052 					       struct notifier_block *nb)
2053 {
2054 	int err;
2055 
2056 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2057 	if (err)
2058 		return err;
2059 
2060 	call_netdevice_unregister_net_notifiers(nb, net);
2061 	return 0;
2062 }
2063 
2064 /**
2065  * register_netdevice_notifier_net - register a per-netns network notifier block
2066  * @net: network namespace
2067  * @nb: notifier
2068  *
2069  * Register a notifier to be called when network device events occur.
2070  * The notifier passed is linked into the kernel structures and must
2071  * not be reused until it has been unregistered. A negative errno code
2072  * is returned on a failure.
2073  *
2074  * When registered all registration and up events are replayed
2075  * to the new notifier to allow device to have a race free
2076  * view of the network device list.
2077  */
2078 
2079 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2080 {
2081 	int err;
2082 
2083 	rtnl_net_lock(net);
2084 	err = __register_netdevice_notifier_net(net, nb, false);
2085 	rtnl_net_unlock(net);
2086 
2087 	return err;
2088 }
2089 EXPORT_SYMBOL(register_netdevice_notifier_net);
2090 
2091 /**
2092  * unregister_netdevice_notifier_net - unregister a per-netns
2093  *                                     network notifier block
2094  * @net: network namespace
2095  * @nb: notifier
2096  *
2097  * Unregister a notifier previously registered by
2098  * register_netdevice_notifier_net(). The notifier is unlinked from the
2099  * kernel structures and may then be reused. A negative errno code
2100  * is returned on a failure.
2101  *
2102  * After unregistering unregister and down device events are synthesized
2103  * for all devices on the device list to the removed notifier to remove
2104  * the need for special case cleanup code.
2105  */
2106 
2107 int unregister_netdevice_notifier_net(struct net *net,
2108 				      struct notifier_block *nb)
2109 {
2110 	int err;
2111 
2112 	rtnl_net_lock(net);
2113 	err = __unregister_netdevice_notifier_net(net, nb);
2114 	rtnl_net_unlock(net);
2115 
2116 	return err;
2117 }
2118 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2119 
2120 static void __move_netdevice_notifier_net(struct net *src_net,
2121 					  struct net *dst_net,
2122 					  struct notifier_block *nb)
2123 {
2124 	__unregister_netdevice_notifier_net(src_net, nb);
2125 	__register_netdevice_notifier_net(dst_net, nb, true);
2126 }
2127 
2128 static void rtnl_net_dev_lock(struct net_device *dev)
2129 {
2130 	bool again;
2131 
2132 	do {
2133 		struct net *net;
2134 
2135 		again = false;
2136 
2137 		/* netns might be being dismantled. */
2138 		rcu_read_lock();
2139 		net = dev_net_rcu(dev);
2140 		net_passive_inc(net);
2141 		rcu_read_unlock();
2142 
2143 		rtnl_net_lock(net);
2144 
2145 #ifdef CONFIG_NET_NS
2146 		/* dev might have been moved to another netns. */
2147 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2148 			rtnl_net_unlock(net);
2149 			net_passive_dec(net);
2150 			again = true;
2151 		}
2152 #endif
2153 	} while (again);
2154 }
2155 
2156 static void rtnl_net_dev_unlock(struct net_device *dev)
2157 {
2158 	struct net *net = dev_net(dev);
2159 
2160 	rtnl_net_unlock(net);
2161 	net_passive_dec(net);
2162 }
2163 
2164 int register_netdevice_notifier_dev_net(struct net_device *dev,
2165 					struct notifier_block *nb,
2166 					struct netdev_net_notifier *nn)
2167 {
2168 	int err;
2169 
2170 	rtnl_net_dev_lock(dev);
2171 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2172 	if (!err) {
2173 		nn->nb = nb;
2174 		list_add(&nn->list, &dev->net_notifier_list);
2175 	}
2176 	rtnl_net_dev_unlock(dev);
2177 
2178 	return err;
2179 }
2180 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2181 
2182 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2183 					  struct notifier_block *nb,
2184 					  struct netdev_net_notifier *nn)
2185 {
2186 	int err;
2187 
2188 	rtnl_net_dev_lock(dev);
2189 	list_del(&nn->list);
2190 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2191 	rtnl_net_dev_unlock(dev);
2192 
2193 	return err;
2194 }
2195 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2196 
2197 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2198 					     struct net *net)
2199 {
2200 	struct netdev_net_notifier *nn;
2201 
2202 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2203 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2204 }
2205 
2206 /**
2207  *	call_netdevice_notifiers_info - call all network notifier blocks
2208  *	@val: value passed unmodified to notifier function
2209  *	@info: notifier information data
2210  *
2211  *	Call all network notifier blocks.  Parameters and return value
2212  *	are as for raw_notifier_call_chain().
2213  */
2214 
2215 int call_netdevice_notifiers_info(unsigned long val,
2216 				  struct netdev_notifier_info *info)
2217 {
2218 	struct net *net = dev_net(info->dev);
2219 	int ret;
2220 
2221 	ASSERT_RTNL();
2222 
2223 	/* Run per-netns notifier block chain first, then run the global one.
2224 	 * Hopefully, one day, the global one is going to be removed after
2225 	 * all notifier block registrators get converted to be per-netns.
2226 	 */
2227 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2228 	if (ret & NOTIFY_STOP_MASK)
2229 		return ret;
2230 	return raw_notifier_call_chain(&netdev_chain, val, info);
2231 }
2232 
2233 /**
2234  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2235  *	                                       for and rollback on error
2236  *	@val_up: value passed unmodified to notifier function
2237  *	@val_down: value passed unmodified to the notifier function when
2238  *	           recovering from an error on @val_up
2239  *	@info: notifier information data
2240  *
2241  *	Call all per-netns network notifier blocks, but not notifier blocks on
2242  *	the global notifier chain. Parameters and return value are as for
2243  *	raw_notifier_call_chain_robust().
2244  */
2245 
2246 static int
2247 call_netdevice_notifiers_info_robust(unsigned long val_up,
2248 				     unsigned long val_down,
2249 				     struct netdev_notifier_info *info)
2250 {
2251 	struct net *net = dev_net(info->dev);
2252 
2253 	ASSERT_RTNL();
2254 
2255 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2256 					      val_up, val_down, info);
2257 }
2258 
2259 static int call_netdevice_notifiers_extack(unsigned long val,
2260 					   struct net_device *dev,
2261 					   struct netlink_ext_ack *extack)
2262 {
2263 	struct netdev_notifier_info info = {
2264 		.dev = dev,
2265 		.extack = extack,
2266 	};
2267 
2268 	return call_netdevice_notifiers_info(val, &info);
2269 }
2270 
2271 /**
2272  *	call_netdevice_notifiers - call all network notifier blocks
2273  *      @val: value passed unmodified to notifier function
2274  *      @dev: net_device pointer passed unmodified to notifier function
2275  *
2276  *	Call all network notifier blocks.  Parameters and return value
2277  *	are as for raw_notifier_call_chain().
2278  */
2279 
2280 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2281 {
2282 	return call_netdevice_notifiers_extack(val, dev, NULL);
2283 }
2284 EXPORT_SYMBOL(call_netdevice_notifiers);
2285 
2286 /**
2287  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2288  *	@val: value passed unmodified to notifier function
2289  *	@dev: net_device pointer passed unmodified to notifier function
2290  *	@arg: additional u32 argument passed to the notifier function
2291  *
2292  *	Call all network notifier blocks.  Parameters and return value
2293  *	are as for raw_notifier_call_chain().
2294  */
2295 static int call_netdevice_notifiers_mtu(unsigned long val,
2296 					struct net_device *dev, u32 arg)
2297 {
2298 	struct netdev_notifier_info_ext info = {
2299 		.info.dev = dev,
2300 		.ext.mtu = arg,
2301 	};
2302 
2303 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2304 
2305 	return call_netdevice_notifiers_info(val, &info.info);
2306 }
2307 
2308 #ifdef CONFIG_NET_INGRESS
2309 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2310 
2311 void net_inc_ingress_queue(void)
2312 {
2313 	static_branch_inc(&ingress_needed_key);
2314 }
2315 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2316 
2317 void net_dec_ingress_queue(void)
2318 {
2319 	static_branch_dec(&ingress_needed_key);
2320 }
2321 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2322 #endif
2323 
2324 #ifdef CONFIG_NET_EGRESS
2325 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2326 
2327 void net_inc_egress_queue(void)
2328 {
2329 	static_branch_inc(&egress_needed_key);
2330 }
2331 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2332 
2333 void net_dec_egress_queue(void)
2334 {
2335 	static_branch_dec(&egress_needed_key);
2336 }
2337 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2338 #endif
2339 
2340 #ifdef CONFIG_NET_CLS_ACT
2341 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2342 EXPORT_SYMBOL(tcf_sw_enabled_key);
2343 #endif
2344 
2345 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2346 EXPORT_SYMBOL(netstamp_needed_key);
2347 #ifdef CONFIG_JUMP_LABEL
2348 static atomic_t netstamp_needed_deferred;
2349 static atomic_t netstamp_wanted;
2350 static void netstamp_clear(struct work_struct *work)
2351 {
2352 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2353 	int wanted;
2354 
2355 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2356 	if (wanted > 0)
2357 		static_branch_enable(&netstamp_needed_key);
2358 	else
2359 		static_branch_disable(&netstamp_needed_key);
2360 }
2361 static DECLARE_WORK(netstamp_work, netstamp_clear);
2362 #endif
2363 
2364 void net_enable_timestamp(void)
2365 {
2366 #ifdef CONFIG_JUMP_LABEL
2367 	int wanted = atomic_read(&netstamp_wanted);
2368 
2369 	while (wanted > 0) {
2370 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2371 			return;
2372 	}
2373 	atomic_inc(&netstamp_needed_deferred);
2374 	schedule_work(&netstamp_work);
2375 #else
2376 	static_branch_inc(&netstamp_needed_key);
2377 #endif
2378 }
2379 EXPORT_SYMBOL(net_enable_timestamp);
2380 
2381 void net_disable_timestamp(void)
2382 {
2383 #ifdef CONFIG_JUMP_LABEL
2384 	int wanted = atomic_read(&netstamp_wanted);
2385 
2386 	while (wanted > 1) {
2387 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2388 			return;
2389 	}
2390 	atomic_dec(&netstamp_needed_deferred);
2391 	schedule_work(&netstamp_work);
2392 #else
2393 	static_branch_dec(&netstamp_needed_key);
2394 #endif
2395 }
2396 EXPORT_SYMBOL(net_disable_timestamp);
2397 
2398 static inline void net_timestamp_set(struct sk_buff *skb)
2399 {
2400 	skb->tstamp = 0;
2401 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2402 	if (static_branch_unlikely(&netstamp_needed_key))
2403 		skb->tstamp = ktime_get_real();
2404 }
2405 
2406 #define net_timestamp_check(COND, SKB)				\
2407 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2408 		if ((COND) && !(SKB)->tstamp)			\
2409 			(SKB)->tstamp = ktime_get_real();	\
2410 	}							\
2411 
2412 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2413 {
2414 	return __is_skb_forwardable(dev, skb, true);
2415 }
2416 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2417 
2418 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2419 			      bool check_mtu)
2420 {
2421 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2422 
2423 	if (likely(!ret)) {
2424 		skb->protocol = eth_type_trans(skb, dev);
2425 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2426 	}
2427 
2428 	return ret;
2429 }
2430 
2431 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2432 {
2433 	return __dev_forward_skb2(dev, skb, true);
2434 }
2435 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2436 
2437 /**
2438  * dev_forward_skb - loopback an skb to another netif
2439  *
2440  * @dev: destination network device
2441  * @skb: buffer to forward
2442  *
2443  * return values:
2444  *	NET_RX_SUCCESS	(no congestion)
2445  *	NET_RX_DROP     (packet was dropped, but freed)
2446  *
2447  * dev_forward_skb can be used for injecting an skb from the
2448  * start_xmit function of one device into the receive queue
2449  * of another device.
2450  *
2451  * The receiving device may be in another namespace, so
2452  * we have to clear all information in the skb that could
2453  * impact namespace isolation.
2454  */
2455 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2456 {
2457 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2458 }
2459 EXPORT_SYMBOL_GPL(dev_forward_skb);
2460 
2461 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2462 {
2463 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2464 }
2465 
2466 static int deliver_skb(struct sk_buff *skb,
2467 		       struct packet_type *pt_prev,
2468 		       struct net_device *orig_dev)
2469 {
2470 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2471 		return -ENOMEM;
2472 	refcount_inc(&skb->users);
2473 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2474 }
2475 
2476 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2477 					  struct packet_type **pt,
2478 					  struct net_device *orig_dev,
2479 					  __be16 type,
2480 					  struct list_head *ptype_list)
2481 {
2482 	struct packet_type *ptype, *pt_prev = *pt;
2483 
2484 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2485 		if (ptype->type != type)
2486 			continue;
2487 		if (unlikely(pt_prev))
2488 			deliver_skb(skb, pt_prev, orig_dev);
2489 		pt_prev = ptype;
2490 	}
2491 	*pt = pt_prev;
2492 }
2493 
2494 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2495 {
2496 	if (!ptype->af_packet_priv || !skb->sk)
2497 		return false;
2498 
2499 	if (ptype->id_match)
2500 		return ptype->id_match(ptype, skb->sk);
2501 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2502 		return true;
2503 
2504 	return false;
2505 }
2506 
2507 /**
2508  * dev_nit_active_rcu - return true if any network interface taps are in use
2509  *
2510  * The caller must hold the RCU lock
2511  *
2512  * @dev: network device to check for the presence of taps
2513  */
2514 bool dev_nit_active_rcu(const struct net_device *dev)
2515 {
2516 	/* Callers may hold either RCU or RCU BH lock */
2517 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2518 
2519 	return !list_empty(&dev_net(dev)->ptype_all) ||
2520 	       !list_empty(&dev->ptype_all);
2521 }
2522 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2523 
2524 /*
2525  *	Support routine. Sends outgoing frames to any network
2526  *	taps currently in use.
2527  */
2528 
2529 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2530 {
2531 	struct packet_type *ptype, *pt_prev = NULL;
2532 	struct list_head *ptype_list;
2533 	struct sk_buff *skb2 = NULL;
2534 
2535 	rcu_read_lock();
2536 	ptype_list = &dev_net_rcu(dev)->ptype_all;
2537 again:
2538 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2539 		if (READ_ONCE(ptype->ignore_outgoing))
2540 			continue;
2541 
2542 		/* Never send packets back to the socket
2543 		 * they originated from - MvS (miquels@drinkel.ow.org)
2544 		 */
2545 		if (skb_loop_sk(ptype, skb))
2546 			continue;
2547 
2548 		if (unlikely(pt_prev)) {
2549 			deliver_skb(skb2, pt_prev, skb->dev);
2550 			pt_prev = ptype;
2551 			continue;
2552 		}
2553 
2554 		/* need to clone skb, done only once */
2555 		skb2 = skb_clone(skb, GFP_ATOMIC);
2556 		if (!skb2)
2557 			goto out_unlock;
2558 
2559 		net_timestamp_set(skb2);
2560 
2561 		/* skb->nh should be correctly
2562 		 * set by sender, so that the second statement is
2563 		 * just protection against buggy protocols.
2564 		 */
2565 		skb_reset_mac_header(skb2);
2566 
2567 		if (skb_network_header(skb2) < skb2->data ||
2568 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2569 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2570 					     ntohs(skb2->protocol),
2571 					     dev->name);
2572 			skb_reset_network_header(skb2);
2573 		}
2574 
2575 		skb2->transport_header = skb2->network_header;
2576 		skb2->pkt_type = PACKET_OUTGOING;
2577 		pt_prev = ptype;
2578 	}
2579 
2580 	if (ptype_list != &dev->ptype_all) {
2581 		ptype_list = &dev->ptype_all;
2582 		goto again;
2583 	}
2584 out_unlock:
2585 	if (pt_prev) {
2586 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2587 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2588 		else
2589 			kfree_skb(skb2);
2590 	}
2591 	rcu_read_unlock();
2592 }
2593 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2594 
2595 /**
2596  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2597  * @dev: Network device
2598  * @txq: number of queues available
2599  *
2600  * If real_num_tx_queues is changed the tc mappings may no longer be
2601  * valid. To resolve this verify the tc mapping remains valid and if
2602  * not NULL the mapping. With no priorities mapping to this
2603  * offset/count pair it will no longer be used. In the worst case TC0
2604  * is invalid nothing can be done so disable priority mappings. If is
2605  * expected that drivers will fix this mapping if they can before
2606  * calling netif_set_real_num_tx_queues.
2607  */
2608 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2609 {
2610 	int i;
2611 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2612 
2613 	/* If TC0 is invalidated disable TC mapping */
2614 	if (tc->offset + tc->count > txq) {
2615 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2616 		dev->num_tc = 0;
2617 		return;
2618 	}
2619 
2620 	/* Invalidated prio to tc mappings set to TC0 */
2621 	for (i = 1; i < TC_BITMASK + 1; i++) {
2622 		int q = netdev_get_prio_tc_map(dev, i);
2623 
2624 		tc = &dev->tc_to_txq[q];
2625 		if (tc->offset + tc->count > txq) {
2626 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2627 				    i, q);
2628 			netdev_set_prio_tc_map(dev, i, 0);
2629 		}
2630 	}
2631 }
2632 
2633 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2634 {
2635 	if (dev->num_tc) {
2636 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2637 		int i;
2638 
2639 		/* walk through the TCs and see if it falls into any of them */
2640 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2641 			if ((txq - tc->offset) < tc->count)
2642 				return i;
2643 		}
2644 
2645 		/* didn't find it, just return -1 to indicate no match */
2646 		return -1;
2647 	}
2648 
2649 	return 0;
2650 }
2651 EXPORT_SYMBOL(netdev_txq_to_tc);
2652 
2653 #ifdef CONFIG_XPS
2654 static struct static_key xps_needed __read_mostly;
2655 static struct static_key xps_rxqs_needed __read_mostly;
2656 static DEFINE_MUTEX(xps_map_mutex);
2657 #define xmap_dereference(P)		\
2658 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2659 
2660 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2661 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2662 {
2663 	struct xps_map *map = NULL;
2664 	int pos;
2665 
2666 	map = xmap_dereference(dev_maps->attr_map[tci]);
2667 	if (!map)
2668 		return false;
2669 
2670 	for (pos = map->len; pos--;) {
2671 		if (map->queues[pos] != index)
2672 			continue;
2673 
2674 		if (map->len > 1) {
2675 			map->queues[pos] = map->queues[--map->len];
2676 			break;
2677 		}
2678 
2679 		if (old_maps)
2680 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2681 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2682 		kfree_rcu(map, rcu);
2683 		return false;
2684 	}
2685 
2686 	return true;
2687 }
2688 
2689 static bool remove_xps_queue_cpu(struct net_device *dev,
2690 				 struct xps_dev_maps *dev_maps,
2691 				 int cpu, u16 offset, u16 count)
2692 {
2693 	int num_tc = dev_maps->num_tc;
2694 	bool active = false;
2695 	int tci;
2696 
2697 	for (tci = cpu * num_tc; num_tc--; tci++) {
2698 		int i, j;
2699 
2700 		for (i = count, j = offset; i--; j++) {
2701 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2702 				break;
2703 		}
2704 
2705 		active |= i < 0;
2706 	}
2707 
2708 	return active;
2709 }
2710 
2711 static void reset_xps_maps(struct net_device *dev,
2712 			   struct xps_dev_maps *dev_maps,
2713 			   enum xps_map_type type)
2714 {
2715 	static_key_slow_dec_cpuslocked(&xps_needed);
2716 	if (type == XPS_RXQS)
2717 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2718 
2719 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2720 
2721 	kfree_rcu(dev_maps, rcu);
2722 }
2723 
2724 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2725 			   u16 offset, u16 count)
2726 {
2727 	struct xps_dev_maps *dev_maps;
2728 	bool active = false;
2729 	int i, j;
2730 
2731 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2732 	if (!dev_maps)
2733 		return;
2734 
2735 	for (j = 0; j < dev_maps->nr_ids; j++)
2736 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2737 	if (!active)
2738 		reset_xps_maps(dev, dev_maps, type);
2739 
2740 	if (type == XPS_CPUS) {
2741 		for (i = offset + (count - 1); count--; i--)
2742 			netdev_queue_numa_node_write(
2743 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2744 	}
2745 }
2746 
2747 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2748 				   u16 count)
2749 {
2750 	if (!static_key_false(&xps_needed))
2751 		return;
2752 
2753 	cpus_read_lock();
2754 	mutex_lock(&xps_map_mutex);
2755 
2756 	if (static_key_false(&xps_rxqs_needed))
2757 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2758 
2759 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2760 
2761 	mutex_unlock(&xps_map_mutex);
2762 	cpus_read_unlock();
2763 }
2764 
2765 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2766 {
2767 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2768 }
2769 
2770 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2771 				      u16 index, bool is_rxqs_map)
2772 {
2773 	struct xps_map *new_map;
2774 	int alloc_len = XPS_MIN_MAP_ALLOC;
2775 	int i, pos;
2776 
2777 	for (pos = 0; map && pos < map->len; pos++) {
2778 		if (map->queues[pos] != index)
2779 			continue;
2780 		return map;
2781 	}
2782 
2783 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2784 	if (map) {
2785 		if (pos < map->alloc_len)
2786 			return map;
2787 
2788 		alloc_len = map->alloc_len * 2;
2789 	}
2790 
2791 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2792 	 *  map
2793 	 */
2794 	if (is_rxqs_map)
2795 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2796 	else
2797 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2798 				       cpu_to_node(attr_index));
2799 	if (!new_map)
2800 		return NULL;
2801 
2802 	for (i = 0; i < pos; i++)
2803 		new_map->queues[i] = map->queues[i];
2804 	new_map->alloc_len = alloc_len;
2805 	new_map->len = pos;
2806 
2807 	return new_map;
2808 }
2809 
2810 /* Copy xps maps at a given index */
2811 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2812 			      struct xps_dev_maps *new_dev_maps, int index,
2813 			      int tc, bool skip_tc)
2814 {
2815 	int i, tci = index * dev_maps->num_tc;
2816 	struct xps_map *map;
2817 
2818 	/* copy maps belonging to foreign traffic classes */
2819 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2820 		if (i == tc && skip_tc)
2821 			continue;
2822 
2823 		/* fill in the new device map from the old device map */
2824 		map = xmap_dereference(dev_maps->attr_map[tci]);
2825 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2826 	}
2827 }
2828 
2829 /* Must be called under cpus_read_lock */
2830 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2831 			  u16 index, enum xps_map_type type)
2832 {
2833 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2834 	const unsigned long *online_mask = NULL;
2835 	bool active = false, copy = false;
2836 	int i, j, tci, numa_node_id = -2;
2837 	int maps_sz, num_tc = 1, tc = 0;
2838 	struct xps_map *map, *new_map;
2839 	unsigned int nr_ids;
2840 
2841 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2842 
2843 	if (dev->num_tc) {
2844 		/* Do not allow XPS on subordinate device directly */
2845 		num_tc = dev->num_tc;
2846 		if (num_tc < 0)
2847 			return -EINVAL;
2848 
2849 		/* If queue belongs to subordinate dev use its map */
2850 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2851 
2852 		tc = netdev_txq_to_tc(dev, index);
2853 		if (tc < 0)
2854 			return -EINVAL;
2855 	}
2856 
2857 	mutex_lock(&xps_map_mutex);
2858 
2859 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2860 	if (type == XPS_RXQS) {
2861 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2862 		nr_ids = dev->num_rx_queues;
2863 	} else {
2864 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2865 		if (num_possible_cpus() > 1)
2866 			online_mask = cpumask_bits(cpu_online_mask);
2867 		nr_ids = nr_cpu_ids;
2868 	}
2869 
2870 	if (maps_sz < L1_CACHE_BYTES)
2871 		maps_sz = L1_CACHE_BYTES;
2872 
2873 	/* The old dev_maps could be larger or smaller than the one we're
2874 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2875 	 * between. We could try to be smart, but let's be safe instead and only
2876 	 * copy foreign traffic classes if the two map sizes match.
2877 	 */
2878 	if (dev_maps &&
2879 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2880 		copy = true;
2881 
2882 	/* allocate memory for queue storage */
2883 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2884 	     j < nr_ids;) {
2885 		if (!new_dev_maps) {
2886 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2887 			if (!new_dev_maps) {
2888 				mutex_unlock(&xps_map_mutex);
2889 				return -ENOMEM;
2890 			}
2891 
2892 			new_dev_maps->nr_ids = nr_ids;
2893 			new_dev_maps->num_tc = num_tc;
2894 		}
2895 
2896 		tci = j * num_tc + tc;
2897 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2898 
2899 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2900 		if (!map)
2901 			goto error;
2902 
2903 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2904 	}
2905 
2906 	if (!new_dev_maps)
2907 		goto out_no_new_maps;
2908 
2909 	if (!dev_maps) {
2910 		/* Increment static keys at most once per type */
2911 		static_key_slow_inc_cpuslocked(&xps_needed);
2912 		if (type == XPS_RXQS)
2913 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2914 	}
2915 
2916 	for (j = 0; j < nr_ids; j++) {
2917 		bool skip_tc = false;
2918 
2919 		tci = j * num_tc + tc;
2920 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2921 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2922 			/* add tx-queue to CPU/rx-queue maps */
2923 			int pos = 0;
2924 
2925 			skip_tc = true;
2926 
2927 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2928 			while ((pos < map->len) && (map->queues[pos] != index))
2929 				pos++;
2930 
2931 			if (pos == map->len)
2932 				map->queues[map->len++] = index;
2933 #ifdef CONFIG_NUMA
2934 			if (type == XPS_CPUS) {
2935 				if (numa_node_id == -2)
2936 					numa_node_id = cpu_to_node(j);
2937 				else if (numa_node_id != cpu_to_node(j))
2938 					numa_node_id = -1;
2939 			}
2940 #endif
2941 		}
2942 
2943 		if (copy)
2944 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2945 					  skip_tc);
2946 	}
2947 
2948 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2949 
2950 	/* Cleanup old maps */
2951 	if (!dev_maps)
2952 		goto out_no_old_maps;
2953 
2954 	for (j = 0; j < dev_maps->nr_ids; j++) {
2955 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2956 			map = xmap_dereference(dev_maps->attr_map[tci]);
2957 			if (!map)
2958 				continue;
2959 
2960 			if (copy) {
2961 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2962 				if (map == new_map)
2963 					continue;
2964 			}
2965 
2966 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2967 			kfree_rcu(map, rcu);
2968 		}
2969 	}
2970 
2971 	old_dev_maps = dev_maps;
2972 
2973 out_no_old_maps:
2974 	dev_maps = new_dev_maps;
2975 	active = true;
2976 
2977 out_no_new_maps:
2978 	if (type == XPS_CPUS)
2979 		/* update Tx queue numa node */
2980 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2981 					     (numa_node_id >= 0) ?
2982 					     numa_node_id : NUMA_NO_NODE);
2983 
2984 	if (!dev_maps)
2985 		goto out_no_maps;
2986 
2987 	/* removes tx-queue from unused CPUs/rx-queues */
2988 	for (j = 0; j < dev_maps->nr_ids; j++) {
2989 		tci = j * dev_maps->num_tc;
2990 
2991 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2992 			if (i == tc &&
2993 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2994 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2995 				continue;
2996 
2997 			active |= remove_xps_queue(dev_maps,
2998 						   copy ? old_dev_maps : NULL,
2999 						   tci, index);
3000 		}
3001 	}
3002 
3003 	if (old_dev_maps)
3004 		kfree_rcu(old_dev_maps, rcu);
3005 
3006 	/* free map if not active */
3007 	if (!active)
3008 		reset_xps_maps(dev, dev_maps, type);
3009 
3010 out_no_maps:
3011 	mutex_unlock(&xps_map_mutex);
3012 
3013 	return 0;
3014 error:
3015 	/* remove any maps that we added */
3016 	for (j = 0; j < nr_ids; j++) {
3017 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
3018 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3019 			map = copy ?
3020 			      xmap_dereference(dev_maps->attr_map[tci]) :
3021 			      NULL;
3022 			if (new_map && new_map != map)
3023 				kfree(new_map);
3024 		}
3025 	}
3026 
3027 	mutex_unlock(&xps_map_mutex);
3028 
3029 	kfree(new_dev_maps);
3030 	return -ENOMEM;
3031 }
3032 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3033 
3034 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3035 			u16 index)
3036 {
3037 	int ret;
3038 
3039 	cpus_read_lock();
3040 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3041 	cpus_read_unlock();
3042 
3043 	return ret;
3044 }
3045 EXPORT_SYMBOL(netif_set_xps_queue);
3046 
3047 #endif
3048 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3049 {
3050 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3051 
3052 	/* Unbind any subordinate channels */
3053 	while (txq-- != &dev->_tx[0]) {
3054 		if (txq->sb_dev)
3055 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3056 	}
3057 }
3058 
3059 void netdev_reset_tc(struct net_device *dev)
3060 {
3061 #ifdef CONFIG_XPS
3062 	netif_reset_xps_queues_gt(dev, 0);
3063 #endif
3064 	netdev_unbind_all_sb_channels(dev);
3065 
3066 	/* Reset TC configuration of device */
3067 	dev->num_tc = 0;
3068 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3069 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3070 }
3071 EXPORT_SYMBOL(netdev_reset_tc);
3072 
3073 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3074 {
3075 	if (tc >= dev->num_tc)
3076 		return -EINVAL;
3077 
3078 #ifdef CONFIG_XPS
3079 	netif_reset_xps_queues(dev, offset, count);
3080 #endif
3081 	dev->tc_to_txq[tc].count = count;
3082 	dev->tc_to_txq[tc].offset = offset;
3083 	return 0;
3084 }
3085 EXPORT_SYMBOL(netdev_set_tc_queue);
3086 
3087 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3088 {
3089 	if (num_tc > TC_MAX_QUEUE)
3090 		return -EINVAL;
3091 
3092 #ifdef CONFIG_XPS
3093 	netif_reset_xps_queues_gt(dev, 0);
3094 #endif
3095 	netdev_unbind_all_sb_channels(dev);
3096 
3097 	dev->num_tc = num_tc;
3098 	return 0;
3099 }
3100 EXPORT_SYMBOL(netdev_set_num_tc);
3101 
3102 void netdev_unbind_sb_channel(struct net_device *dev,
3103 			      struct net_device *sb_dev)
3104 {
3105 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3106 
3107 #ifdef CONFIG_XPS
3108 	netif_reset_xps_queues_gt(sb_dev, 0);
3109 #endif
3110 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3111 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3112 
3113 	while (txq-- != &dev->_tx[0]) {
3114 		if (txq->sb_dev == sb_dev)
3115 			txq->sb_dev = NULL;
3116 	}
3117 }
3118 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3119 
3120 int netdev_bind_sb_channel_queue(struct net_device *dev,
3121 				 struct net_device *sb_dev,
3122 				 u8 tc, u16 count, u16 offset)
3123 {
3124 	/* Make certain the sb_dev and dev are already configured */
3125 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3126 		return -EINVAL;
3127 
3128 	/* We cannot hand out queues we don't have */
3129 	if ((offset + count) > dev->real_num_tx_queues)
3130 		return -EINVAL;
3131 
3132 	/* Record the mapping */
3133 	sb_dev->tc_to_txq[tc].count = count;
3134 	sb_dev->tc_to_txq[tc].offset = offset;
3135 
3136 	/* Provide a way for Tx queue to find the tc_to_txq map or
3137 	 * XPS map for itself.
3138 	 */
3139 	while (count--)
3140 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3141 
3142 	return 0;
3143 }
3144 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3145 
3146 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3147 {
3148 	/* Do not use a multiqueue device to represent a subordinate channel */
3149 	if (netif_is_multiqueue(dev))
3150 		return -ENODEV;
3151 
3152 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3153 	 * Channel 0 is meant to be "native" mode and used only to represent
3154 	 * the main root device. We allow writing 0 to reset the device back
3155 	 * to normal mode after being used as a subordinate channel.
3156 	 */
3157 	if (channel > S16_MAX)
3158 		return -EINVAL;
3159 
3160 	dev->num_tc = -channel;
3161 
3162 	return 0;
3163 }
3164 EXPORT_SYMBOL(netdev_set_sb_channel);
3165 
3166 /*
3167  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3168  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3169  */
3170 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3171 {
3172 	bool disabling;
3173 	int rc;
3174 
3175 	disabling = txq < dev->real_num_tx_queues;
3176 
3177 	if (txq < 1 || txq > dev->num_tx_queues)
3178 		return -EINVAL;
3179 
3180 	if (dev->reg_state == NETREG_REGISTERED ||
3181 	    dev->reg_state == NETREG_UNREGISTERING) {
3182 		netdev_ops_assert_locked(dev);
3183 
3184 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3185 						  txq);
3186 		if (rc)
3187 			return rc;
3188 
3189 		if (dev->num_tc)
3190 			netif_setup_tc(dev, txq);
3191 
3192 		net_shaper_set_real_num_tx_queues(dev, txq);
3193 
3194 		dev_qdisc_change_real_num_tx(dev, txq);
3195 
3196 		dev->real_num_tx_queues = txq;
3197 
3198 		if (disabling) {
3199 			synchronize_net();
3200 			qdisc_reset_all_tx_gt(dev, txq);
3201 #ifdef CONFIG_XPS
3202 			netif_reset_xps_queues_gt(dev, txq);
3203 #endif
3204 		}
3205 	} else {
3206 		dev->real_num_tx_queues = txq;
3207 	}
3208 
3209 	return 0;
3210 }
3211 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3212 
3213 /**
3214  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3215  *	@dev: Network device
3216  *	@rxq: Actual number of RX queues
3217  *
3218  *	This must be called either with the rtnl_lock held or before
3219  *	registration of the net device.  Returns 0 on success, or a
3220  *	negative error code.  If called before registration, it always
3221  *	succeeds.
3222  */
3223 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3224 {
3225 	int rc;
3226 
3227 	if (rxq < 1 || rxq > dev->num_rx_queues)
3228 		return -EINVAL;
3229 
3230 	if (dev->reg_state == NETREG_REGISTERED) {
3231 		netdev_ops_assert_locked(dev);
3232 
3233 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3234 						  rxq);
3235 		if (rc)
3236 			return rc;
3237 	}
3238 
3239 	dev->real_num_rx_queues = rxq;
3240 	return 0;
3241 }
3242 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3243 
3244 /**
3245  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3246  *	@dev: Network device
3247  *	@txq: Actual number of TX queues
3248  *	@rxq: Actual number of RX queues
3249  *
3250  *	Set the real number of both TX and RX queues.
3251  *	Does nothing if the number of queues is already correct.
3252  */
3253 int netif_set_real_num_queues(struct net_device *dev,
3254 			      unsigned int txq, unsigned int rxq)
3255 {
3256 	unsigned int old_rxq = dev->real_num_rx_queues;
3257 	int err;
3258 
3259 	if (txq < 1 || txq > dev->num_tx_queues ||
3260 	    rxq < 1 || rxq > dev->num_rx_queues)
3261 		return -EINVAL;
3262 
3263 	/* Start from increases, so the error path only does decreases -
3264 	 * decreases can't fail.
3265 	 */
3266 	if (rxq > dev->real_num_rx_queues) {
3267 		err = netif_set_real_num_rx_queues(dev, rxq);
3268 		if (err)
3269 			return err;
3270 	}
3271 	if (txq > dev->real_num_tx_queues) {
3272 		err = netif_set_real_num_tx_queues(dev, txq);
3273 		if (err)
3274 			goto undo_rx;
3275 	}
3276 	if (rxq < dev->real_num_rx_queues)
3277 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3278 	if (txq < dev->real_num_tx_queues)
3279 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3280 
3281 	return 0;
3282 undo_rx:
3283 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3284 	return err;
3285 }
3286 EXPORT_SYMBOL(netif_set_real_num_queues);
3287 
3288 /**
3289  * netif_set_tso_max_size() - set the max size of TSO frames supported
3290  * @dev:	netdev to update
3291  * @size:	max skb->len of a TSO frame
3292  *
3293  * Set the limit on the size of TSO super-frames the device can handle.
3294  * Unless explicitly set the stack will assume the value of
3295  * %GSO_LEGACY_MAX_SIZE.
3296  */
3297 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3298 {
3299 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3300 	if (size < READ_ONCE(dev->gso_max_size))
3301 		netif_set_gso_max_size(dev, size);
3302 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3303 		netif_set_gso_ipv4_max_size(dev, size);
3304 }
3305 EXPORT_SYMBOL(netif_set_tso_max_size);
3306 
3307 /**
3308  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3309  * @dev:	netdev to update
3310  * @segs:	max number of TCP segments
3311  *
3312  * Set the limit on the number of TCP segments the device can generate from
3313  * a single TSO super-frame.
3314  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3315  */
3316 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3317 {
3318 	dev->tso_max_segs = segs;
3319 	if (segs < READ_ONCE(dev->gso_max_segs))
3320 		netif_set_gso_max_segs(dev, segs);
3321 }
3322 EXPORT_SYMBOL(netif_set_tso_max_segs);
3323 
3324 /**
3325  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3326  * @to:		netdev to update
3327  * @from:	netdev from which to copy the limits
3328  */
3329 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3330 {
3331 	netif_set_tso_max_size(to, from->tso_max_size);
3332 	netif_set_tso_max_segs(to, from->tso_max_segs);
3333 }
3334 EXPORT_SYMBOL(netif_inherit_tso_max);
3335 
3336 /**
3337  * netif_get_num_default_rss_queues - default number of RSS queues
3338  *
3339  * Default value is the number of physical cores if there are only 1 or 2, or
3340  * divided by 2 if there are more.
3341  */
3342 int netif_get_num_default_rss_queues(void)
3343 {
3344 	cpumask_var_t cpus;
3345 	int cpu, count = 0;
3346 
3347 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3348 		return 1;
3349 
3350 	cpumask_copy(cpus, cpu_online_mask);
3351 	for_each_cpu(cpu, cpus) {
3352 		++count;
3353 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3354 	}
3355 	free_cpumask_var(cpus);
3356 
3357 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3358 }
3359 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3360 
3361 static void __netif_reschedule(struct Qdisc *q)
3362 {
3363 	struct softnet_data *sd;
3364 	unsigned long flags;
3365 
3366 	local_irq_save(flags);
3367 	sd = this_cpu_ptr(&softnet_data);
3368 	q->next_sched = NULL;
3369 	*sd->output_queue_tailp = q;
3370 	sd->output_queue_tailp = &q->next_sched;
3371 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3372 	local_irq_restore(flags);
3373 }
3374 
3375 void __netif_schedule(struct Qdisc *q)
3376 {
3377 	/* If q->defer_list is not empty, at least one thread is
3378 	 * in __dev_xmit_skb() before llist_del_all(&q->defer_list).
3379 	 * This thread will attempt to run the queue.
3380 	 */
3381 	if (!llist_empty(&q->defer_list))
3382 		return;
3383 
3384 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3385 		__netif_reschedule(q);
3386 }
3387 EXPORT_SYMBOL(__netif_schedule);
3388 
3389 struct dev_kfree_skb_cb {
3390 	enum skb_drop_reason reason;
3391 };
3392 
3393 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3394 {
3395 	return (struct dev_kfree_skb_cb *)skb->cb;
3396 }
3397 
3398 void netif_schedule_queue(struct netdev_queue *txq)
3399 {
3400 	rcu_read_lock();
3401 	if (!netif_xmit_stopped(txq)) {
3402 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3403 
3404 		__netif_schedule(q);
3405 	}
3406 	rcu_read_unlock();
3407 }
3408 EXPORT_SYMBOL(netif_schedule_queue);
3409 
3410 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3411 {
3412 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3413 		struct Qdisc *q;
3414 
3415 		rcu_read_lock();
3416 		q = rcu_dereference(dev_queue->qdisc);
3417 		__netif_schedule(q);
3418 		rcu_read_unlock();
3419 	}
3420 }
3421 EXPORT_SYMBOL(netif_tx_wake_queue);
3422 
3423 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3424 {
3425 	unsigned long flags;
3426 
3427 	if (unlikely(!skb))
3428 		return;
3429 
3430 	if (likely(refcount_read(&skb->users) == 1)) {
3431 		smp_rmb();
3432 		refcount_set(&skb->users, 0);
3433 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3434 		return;
3435 	}
3436 	get_kfree_skb_cb(skb)->reason = reason;
3437 	local_irq_save(flags);
3438 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3439 	__this_cpu_write(softnet_data.completion_queue, skb);
3440 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3441 	local_irq_restore(flags);
3442 }
3443 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3444 
3445 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3446 {
3447 	if (in_hardirq() || irqs_disabled())
3448 		dev_kfree_skb_irq_reason(skb, reason);
3449 	else
3450 		kfree_skb_reason(skb, reason);
3451 }
3452 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3453 
3454 
3455 /**
3456  * netif_device_detach - mark device as removed
3457  * @dev: network device
3458  *
3459  * Mark device as removed from system and therefore no longer available.
3460  */
3461 void netif_device_detach(struct net_device *dev)
3462 {
3463 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3464 	    netif_running(dev)) {
3465 		netif_tx_stop_all_queues(dev);
3466 	}
3467 }
3468 EXPORT_SYMBOL(netif_device_detach);
3469 
3470 /**
3471  * netif_device_attach - mark device as attached
3472  * @dev: network device
3473  *
3474  * Mark device as attached from system and restart if needed.
3475  */
3476 void netif_device_attach(struct net_device *dev)
3477 {
3478 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3479 	    netif_running(dev)) {
3480 		netif_tx_wake_all_queues(dev);
3481 		netdev_watchdog_up(dev);
3482 	}
3483 }
3484 EXPORT_SYMBOL(netif_device_attach);
3485 
3486 /*
3487  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3488  * to be used as a distribution range.
3489  */
3490 static u16 skb_tx_hash(const struct net_device *dev,
3491 		       const struct net_device *sb_dev,
3492 		       struct sk_buff *skb)
3493 {
3494 	u32 hash;
3495 	u16 qoffset = 0;
3496 	u16 qcount = dev->real_num_tx_queues;
3497 
3498 	if (dev->num_tc) {
3499 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3500 
3501 		qoffset = sb_dev->tc_to_txq[tc].offset;
3502 		qcount = sb_dev->tc_to_txq[tc].count;
3503 		if (unlikely(!qcount)) {
3504 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3505 					     sb_dev->name, qoffset, tc);
3506 			qoffset = 0;
3507 			qcount = dev->real_num_tx_queues;
3508 		}
3509 	}
3510 
3511 	if (skb_rx_queue_recorded(skb)) {
3512 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3513 		hash = skb_get_rx_queue(skb);
3514 		if (hash >= qoffset)
3515 			hash -= qoffset;
3516 		while (unlikely(hash >= qcount))
3517 			hash -= qcount;
3518 		return hash + qoffset;
3519 	}
3520 
3521 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3522 }
3523 
3524 void skb_warn_bad_offload(const struct sk_buff *skb)
3525 {
3526 	static const netdev_features_t null_features;
3527 	struct net_device *dev = skb->dev;
3528 	const char *name = "";
3529 
3530 	if (!net_ratelimit())
3531 		return;
3532 
3533 	if (dev) {
3534 		if (dev->dev.parent)
3535 			name = dev_driver_string(dev->dev.parent);
3536 		else
3537 			name = netdev_name(dev);
3538 	}
3539 	skb_dump(KERN_WARNING, skb, false);
3540 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3541 	     name, dev ? &dev->features : &null_features,
3542 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3543 }
3544 
3545 /*
3546  * Invalidate hardware checksum when packet is to be mangled, and
3547  * complete checksum manually on outgoing path.
3548  */
3549 int skb_checksum_help(struct sk_buff *skb)
3550 {
3551 	__wsum csum;
3552 	int ret = 0, offset;
3553 
3554 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3555 		goto out_set_summed;
3556 
3557 	if (unlikely(skb_is_gso(skb))) {
3558 		skb_warn_bad_offload(skb);
3559 		return -EINVAL;
3560 	}
3561 
3562 	if (!skb_frags_readable(skb)) {
3563 		return -EFAULT;
3564 	}
3565 
3566 	/* Before computing a checksum, we should make sure no frag could
3567 	 * be modified by an external entity : checksum could be wrong.
3568 	 */
3569 	if (skb_has_shared_frag(skb)) {
3570 		ret = __skb_linearize(skb);
3571 		if (ret)
3572 			goto out;
3573 	}
3574 
3575 	offset = skb_checksum_start_offset(skb);
3576 	ret = -EINVAL;
3577 	if (unlikely(offset >= skb_headlen(skb))) {
3578 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3579 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3580 			  offset, skb_headlen(skb));
3581 		goto out;
3582 	}
3583 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3584 
3585 	offset += skb->csum_offset;
3586 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3587 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3588 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3589 			  offset + sizeof(__sum16), skb_headlen(skb));
3590 		goto out;
3591 	}
3592 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3593 	if (ret)
3594 		goto out;
3595 
3596 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3597 out_set_summed:
3598 	skb->ip_summed = CHECKSUM_NONE;
3599 out:
3600 	return ret;
3601 }
3602 EXPORT_SYMBOL(skb_checksum_help);
3603 
3604 #ifdef CONFIG_NET_CRC32C
3605 int skb_crc32c_csum_help(struct sk_buff *skb)
3606 {
3607 	u32 crc;
3608 	int ret = 0, offset, start;
3609 
3610 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3611 		goto out;
3612 
3613 	if (unlikely(skb_is_gso(skb)))
3614 		goto out;
3615 
3616 	/* Before computing a checksum, we should make sure no frag could
3617 	 * be modified by an external entity : checksum could be wrong.
3618 	 */
3619 	if (unlikely(skb_has_shared_frag(skb))) {
3620 		ret = __skb_linearize(skb);
3621 		if (ret)
3622 			goto out;
3623 	}
3624 	start = skb_checksum_start_offset(skb);
3625 	offset = start + offsetof(struct sctphdr, checksum);
3626 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3627 		ret = -EINVAL;
3628 		goto out;
3629 	}
3630 
3631 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3632 	if (ret)
3633 		goto out;
3634 
3635 	crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3636 	*(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3637 	skb_reset_csum_not_inet(skb);
3638 out:
3639 	return ret;
3640 }
3641 EXPORT_SYMBOL(skb_crc32c_csum_help);
3642 #endif /* CONFIG_NET_CRC32C */
3643 
3644 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3645 {
3646 	__be16 type = skb->protocol;
3647 
3648 	/* Tunnel gso handlers can set protocol to ethernet. */
3649 	if (type == htons(ETH_P_TEB)) {
3650 		struct ethhdr *eth;
3651 
3652 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3653 			return 0;
3654 
3655 		eth = (struct ethhdr *)skb->data;
3656 		type = eth->h_proto;
3657 	}
3658 
3659 	return vlan_get_protocol_and_depth(skb, type, depth);
3660 }
3661 
3662 
3663 /* Take action when hardware reception checksum errors are detected. */
3664 #ifdef CONFIG_BUG
3665 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3666 {
3667 	netdev_err(dev, "hw csum failure\n");
3668 	skb_dump(KERN_ERR, skb, true);
3669 	dump_stack();
3670 }
3671 
3672 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3673 {
3674 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3675 }
3676 EXPORT_SYMBOL(netdev_rx_csum_fault);
3677 #endif
3678 
3679 /* XXX: check that highmem exists at all on the given machine. */
3680 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3681 {
3682 #ifdef CONFIG_HIGHMEM
3683 	int i;
3684 
3685 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3686 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3687 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3688 			struct page *page = skb_frag_page(frag);
3689 
3690 			if (page && PageHighMem(page))
3691 				return 1;
3692 		}
3693 	}
3694 #endif
3695 	return 0;
3696 }
3697 
3698 /* If MPLS offload request, verify we are testing hardware MPLS features
3699  * instead of standard features for the netdev.
3700  */
3701 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3702 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3703 					   netdev_features_t features,
3704 					   __be16 type)
3705 {
3706 	if (eth_p_mpls(type))
3707 		features &= skb->dev->mpls_features;
3708 
3709 	return features;
3710 }
3711 #else
3712 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3713 					   netdev_features_t features,
3714 					   __be16 type)
3715 {
3716 	return features;
3717 }
3718 #endif
3719 
3720 static netdev_features_t harmonize_features(struct sk_buff *skb,
3721 	netdev_features_t features)
3722 {
3723 	__be16 type;
3724 
3725 	type = skb_network_protocol(skb, NULL);
3726 	features = net_mpls_features(skb, features, type);
3727 
3728 	if (skb->ip_summed != CHECKSUM_NONE &&
3729 	    !can_checksum_protocol(features, type)) {
3730 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3731 	}
3732 	if (illegal_highdma(skb->dev, skb))
3733 		features &= ~NETIF_F_SG;
3734 
3735 	return features;
3736 }
3737 
3738 netdev_features_t passthru_features_check(struct sk_buff *skb,
3739 					  struct net_device *dev,
3740 					  netdev_features_t features)
3741 {
3742 	return features;
3743 }
3744 EXPORT_SYMBOL(passthru_features_check);
3745 
3746 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3747 					     struct net_device *dev,
3748 					     netdev_features_t features)
3749 {
3750 	return vlan_features_check(skb, features);
3751 }
3752 
3753 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3754 					    struct net_device *dev,
3755 					    netdev_features_t features)
3756 {
3757 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3758 
3759 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3760 		return features & ~NETIF_F_GSO_MASK;
3761 
3762 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3763 		return features & ~NETIF_F_GSO_MASK;
3764 
3765 	if (!skb_shinfo(skb)->gso_type) {
3766 		skb_warn_bad_offload(skb);
3767 		return features & ~NETIF_F_GSO_MASK;
3768 	}
3769 
3770 	/* Support for GSO partial features requires software
3771 	 * intervention before we can actually process the packets
3772 	 * so we need to strip support for any partial features now
3773 	 * and we can pull them back in after we have partially
3774 	 * segmented the frame.
3775 	 */
3776 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3777 		features &= ~dev->gso_partial_features;
3778 
3779 	/* Make sure to clear the IPv4 ID mangling feature if the IPv4 header
3780 	 * has the potential to be fragmented so that TSO does not generate
3781 	 * segments with the same ID. For encapsulated packets, the ID mangling
3782 	 * feature is guaranteed not to use the same ID for the outer IPv4
3783 	 * headers of the generated segments if the headers have the potential
3784 	 * to be fragmented, so there is no need to clear the IPv4 ID mangling
3785 	 * feature (see the section about NETIF_F_TSO_MANGLEID in
3786 	 * segmentation-offloads.rst).
3787 	 */
3788 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3789 		struct iphdr *iph = skb->encapsulation ?
3790 				    inner_ip_hdr(skb) : ip_hdr(skb);
3791 
3792 		if (!(iph->frag_off & htons(IP_DF)))
3793 			features &= ~NETIF_F_TSO_MANGLEID;
3794 	}
3795 
3796 	/* NETIF_F_IPV6_CSUM does not support IPv6 extension headers,
3797 	 * so neither does TSO that depends on it.
3798 	 */
3799 	if (features & NETIF_F_IPV6_CSUM &&
3800 	    (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 ||
3801 	     (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 &&
3802 	      vlan_get_protocol(skb) == htons(ETH_P_IPV6))) &&
3803 	    skb_transport_header_was_set(skb) &&
3804 	    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3805 	    !ipv6_has_hopopt_jumbo(skb))
3806 		features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4);
3807 
3808 	return features;
3809 }
3810 
3811 netdev_features_t netif_skb_features(struct sk_buff *skb)
3812 {
3813 	struct net_device *dev = skb->dev;
3814 	netdev_features_t features = dev->features;
3815 
3816 	if (skb_is_gso(skb))
3817 		features = gso_features_check(skb, dev, features);
3818 
3819 	/* If encapsulation offload request, verify we are testing
3820 	 * hardware encapsulation features instead of standard
3821 	 * features for the netdev
3822 	 */
3823 	if (skb->encapsulation)
3824 		features &= dev->hw_enc_features;
3825 
3826 	if (skb_vlan_tagged(skb))
3827 		features = netdev_intersect_features(features,
3828 						     dev->vlan_features |
3829 						     NETIF_F_HW_VLAN_CTAG_TX |
3830 						     NETIF_F_HW_VLAN_STAG_TX);
3831 
3832 	if (dev->netdev_ops->ndo_features_check)
3833 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3834 								features);
3835 	else
3836 		features &= dflt_features_check(skb, dev, features);
3837 
3838 	return harmonize_features(skb, features);
3839 }
3840 EXPORT_SYMBOL(netif_skb_features);
3841 
3842 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3843 		    struct netdev_queue *txq, bool more)
3844 {
3845 	unsigned int len;
3846 	int rc;
3847 
3848 	if (dev_nit_active_rcu(dev))
3849 		dev_queue_xmit_nit(skb, dev);
3850 
3851 	len = skb->len;
3852 	trace_net_dev_start_xmit(skb, dev);
3853 	rc = netdev_start_xmit(skb, dev, txq, more);
3854 	trace_net_dev_xmit(skb, rc, dev, len);
3855 
3856 	return rc;
3857 }
3858 
3859 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3860 				    struct netdev_queue *txq, int *ret)
3861 {
3862 	struct sk_buff *skb = first;
3863 	int rc = NETDEV_TX_OK;
3864 
3865 	while (skb) {
3866 		struct sk_buff *next = skb->next;
3867 
3868 		skb_mark_not_on_list(skb);
3869 		rc = xmit_one(skb, dev, txq, next != NULL);
3870 		if (unlikely(!dev_xmit_complete(rc))) {
3871 			skb->next = next;
3872 			goto out;
3873 		}
3874 
3875 		skb = next;
3876 		if (netif_tx_queue_stopped(txq) && skb) {
3877 			rc = NETDEV_TX_BUSY;
3878 			break;
3879 		}
3880 	}
3881 
3882 out:
3883 	*ret = rc;
3884 	return skb;
3885 }
3886 
3887 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3888 					  netdev_features_t features)
3889 {
3890 	if (skb_vlan_tag_present(skb) &&
3891 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3892 		skb = __vlan_hwaccel_push_inside(skb);
3893 	return skb;
3894 }
3895 
3896 int skb_csum_hwoffload_help(struct sk_buff *skb,
3897 			    const netdev_features_t features)
3898 {
3899 	if (unlikely(skb_csum_is_sctp(skb)))
3900 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3901 			skb_crc32c_csum_help(skb);
3902 
3903 	if (features & NETIF_F_HW_CSUM)
3904 		return 0;
3905 
3906 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3907 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3908 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3909 		    !ipv6_has_hopopt_jumbo(skb))
3910 			goto sw_checksum;
3911 
3912 		switch (skb->csum_offset) {
3913 		case offsetof(struct tcphdr, check):
3914 		case offsetof(struct udphdr, check):
3915 			return 0;
3916 		}
3917 	}
3918 
3919 sw_checksum:
3920 	return skb_checksum_help(skb);
3921 }
3922 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3923 
3924 /* Checks if this SKB belongs to an HW offloaded socket
3925  * and whether any SW fallbacks are required based on dev.
3926  * Check decrypted mark in case skb_orphan() cleared socket.
3927  */
3928 static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
3929 					    struct net_device *dev)
3930 {
3931 #ifdef CONFIG_SOCK_VALIDATE_XMIT
3932 	struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev,
3933 				       struct sk_buff *skb);
3934 	struct sock *sk = skb->sk;
3935 
3936 	sk_validate = NULL;
3937 	if (sk) {
3938 		if (sk_fullsock(sk))
3939 			sk_validate = sk->sk_validate_xmit_skb;
3940 		else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT)
3941 			sk_validate = inet_twsk(sk)->tw_validate_xmit_skb;
3942 	}
3943 
3944 	if (sk_validate) {
3945 		skb = sk_validate(sk, dev, skb);
3946 	} else if (unlikely(skb_is_decrypted(skb))) {
3947 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
3948 		kfree_skb(skb);
3949 		skb = NULL;
3950 	}
3951 #endif
3952 
3953 	return skb;
3954 }
3955 
3956 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3957 						    struct net_device *dev)
3958 {
3959 	struct skb_shared_info *shinfo;
3960 	struct net_iov *niov;
3961 
3962 	if (likely(skb_frags_readable(skb)))
3963 		goto out;
3964 
3965 	if (!dev->netmem_tx)
3966 		goto out_free;
3967 
3968 	shinfo = skb_shinfo(skb);
3969 
3970 	if (shinfo->nr_frags > 0) {
3971 		niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3972 		if (net_is_devmem_iov(niov) &&
3973 		    net_devmem_iov_binding(niov)->dev != dev)
3974 			goto out_free;
3975 	}
3976 
3977 out:
3978 	return skb;
3979 
3980 out_free:
3981 	kfree_skb(skb);
3982 	return NULL;
3983 }
3984 
3985 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3986 {
3987 	netdev_features_t features;
3988 
3989 	skb = validate_xmit_unreadable_skb(skb, dev);
3990 	if (unlikely(!skb))
3991 		goto out_null;
3992 
3993 	features = netif_skb_features(skb);
3994 	skb = validate_xmit_vlan(skb, features);
3995 	if (unlikely(!skb))
3996 		goto out_null;
3997 
3998 	skb = sk_validate_xmit_skb(skb, dev);
3999 	if (unlikely(!skb))
4000 		goto out_null;
4001 
4002 	if (netif_needs_gso(skb, features)) {
4003 		struct sk_buff *segs;
4004 
4005 		segs = skb_gso_segment(skb, features);
4006 		if (IS_ERR(segs)) {
4007 			goto out_kfree_skb;
4008 		} else if (segs) {
4009 			consume_skb(skb);
4010 			skb = segs;
4011 		}
4012 	} else {
4013 		if (skb_needs_linearize(skb, features) &&
4014 		    __skb_linearize(skb))
4015 			goto out_kfree_skb;
4016 
4017 		/* If packet is not checksummed and device does not
4018 		 * support checksumming for this protocol, complete
4019 		 * checksumming here.
4020 		 */
4021 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
4022 			if (skb->encapsulation)
4023 				skb_set_inner_transport_header(skb,
4024 							       skb_checksum_start_offset(skb));
4025 			else
4026 				skb_set_transport_header(skb,
4027 							 skb_checksum_start_offset(skb));
4028 			if (skb_csum_hwoffload_help(skb, features))
4029 				goto out_kfree_skb;
4030 		}
4031 	}
4032 
4033 	skb = validate_xmit_xfrm(skb, features, again);
4034 
4035 	return skb;
4036 
4037 out_kfree_skb:
4038 	kfree_skb(skb);
4039 out_null:
4040 	dev_core_stats_tx_dropped_inc(dev);
4041 	return NULL;
4042 }
4043 
4044 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
4045 {
4046 	struct sk_buff *next, *head = NULL, *tail;
4047 
4048 	for (; skb != NULL; skb = next) {
4049 		next = skb->next;
4050 		skb_mark_not_on_list(skb);
4051 
4052 		/* in case skb won't be segmented, point to itself */
4053 		skb->prev = skb;
4054 
4055 		skb = validate_xmit_skb(skb, dev, again);
4056 		if (!skb)
4057 			continue;
4058 
4059 		if (!head)
4060 			head = skb;
4061 		else
4062 			tail->next = skb;
4063 		/* If skb was segmented, skb->prev points to
4064 		 * the last segment. If not, it still contains skb.
4065 		 */
4066 		tail = skb->prev;
4067 	}
4068 	return head;
4069 }
4070 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4071 
4072 static void qdisc_pkt_len_init(struct sk_buff *skb)
4073 {
4074 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4075 
4076 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4077 
4078 	/* To get more precise estimation of bytes sent on wire,
4079 	 * we add to pkt_len the headers size of all segments
4080 	 */
4081 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
4082 		u16 gso_segs = shinfo->gso_segs;
4083 		unsigned int hdr_len;
4084 
4085 		/* mac layer + network layer */
4086 		if (!skb->encapsulation)
4087 			hdr_len = skb_transport_offset(skb);
4088 		else
4089 			hdr_len = skb_inner_transport_offset(skb);
4090 
4091 		/* + transport layer */
4092 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4093 			const struct tcphdr *th;
4094 			struct tcphdr _tcphdr;
4095 
4096 			th = skb_header_pointer(skb, hdr_len,
4097 						sizeof(_tcphdr), &_tcphdr);
4098 			if (likely(th))
4099 				hdr_len += __tcp_hdrlen(th);
4100 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4101 			struct udphdr _udphdr;
4102 
4103 			if (skb_header_pointer(skb, hdr_len,
4104 					       sizeof(_udphdr), &_udphdr))
4105 				hdr_len += sizeof(struct udphdr);
4106 		}
4107 
4108 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4109 			int payload = skb->len - hdr_len;
4110 
4111 			/* Malicious packet. */
4112 			if (payload <= 0)
4113 				return;
4114 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4115 		}
4116 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4117 	}
4118 }
4119 
4120 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4121 			     struct sk_buff **to_free,
4122 			     struct netdev_queue *txq)
4123 {
4124 	int rc;
4125 
4126 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4127 	if (rc == NET_XMIT_SUCCESS)
4128 		trace_qdisc_enqueue(q, txq, skb);
4129 	return rc;
4130 }
4131 
4132 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4133 				 struct net_device *dev,
4134 				 struct netdev_queue *txq)
4135 {
4136 	struct sk_buff *next, *to_free = NULL;
4137 	spinlock_t *root_lock = qdisc_lock(q);
4138 	struct llist_node *ll_list, *first_n;
4139 	unsigned long defer_count = 0;
4140 	int rc;
4141 
4142 	qdisc_calculate_pkt_len(skb, q);
4143 
4144 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4145 
4146 	if (q->flags & TCQ_F_NOLOCK) {
4147 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4148 		    qdisc_run_begin(q)) {
4149 			/* Retest nolock_qdisc_is_empty() within the protection
4150 			 * of q->seqlock to protect from racing with requeuing.
4151 			 */
4152 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4153 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4154 				__qdisc_run(q);
4155 				qdisc_run_end(q);
4156 
4157 				goto no_lock_out;
4158 			}
4159 
4160 			qdisc_bstats_cpu_update(q, skb);
4161 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4162 			    !nolock_qdisc_is_empty(q))
4163 				__qdisc_run(q);
4164 
4165 			qdisc_run_end(q);
4166 			return NET_XMIT_SUCCESS;
4167 		}
4168 
4169 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4170 		qdisc_run(q);
4171 
4172 no_lock_out:
4173 		if (unlikely(to_free))
4174 			kfree_skb_list_reason(to_free,
4175 					      tcf_get_drop_reason(to_free));
4176 		return rc;
4177 	}
4178 
4179 	/* Open code llist_add(&skb->ll_node, &q->defer_list) + queue limit.
4180 	 * In the try_cmpxchg() loop, we want to increment q->defer_count
4181 	 * at most once to limit the number of skbs in defer_list.
4182 	 * We perform the defer_count increment only if the list is not empty,
4183 	 * because some arches have slow atomic_long_inc_return().
4184 	 */
4185 	first_n = READ_ONCE(q->defer_list.first);
4186 	do {
4187 		if (first_n && !defer_count) {
4188 			defer_count = atomic_long_inc_return(&q->defer_count);
4189 			if (unlikely(defer_count > q->limit)) {
4190 				kfree_skb_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4191 				return NET_XMIT_DROP;
4192 			}
4193 		}
4194 		skb->ll_node.next = first_n;
4195 	} while (!try_cmpxchg(&q->defer_list.first, &first_n, &skb->ll_node));
4196 
4197 	/* If defer_list was not empty, we know the cpu which queued
4198 	 * the first skb will process the whole list for us.
4199 	 */
4200 	if (first_n)
4201 		return NET_XMIT_SUCCESS;
4202 
4203 	spin_lock(root_lock);
4204 
4205 	ll_list = llist_del_all(&q->defer_list);
4206 	/* There is a small race because we clear defer_count not atomically
4207 	 * with the prior llist_del_all(). This means defer_list could grow
4208 	 * over q->limit.
4209 	 */
4210 	atomic_long_set(&q->defer_count, 0);
4211 
4212 	ll_list = llist_reverse_order(ll_list);
4213 
4214 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4215 		llist_for_each_entry_safe(skb, next, ll_list, ll_node)
4216 			__qdisc_drop(skb, &to_free);
4217 		rc = NET_XMIT_DROP;
4218 		goto unlock;
4219 	}
4220 	if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4221 	    !llist_next(ll_list) && qdisc_run_begin(q)) {
4222 		/*
4223 		 * This is a work-conserving queue; there are no old skbs
4224 		 * waiting to be sent out; and the qdisc is not running -
4225 		 * xmit the skb directly.
4226 		 */
4227 
4228 		DEBUG_NET_WARN_ON_ONCE(skb != llist_entry(ll_list,
4229 							  struct sk_buff,
4230 							  ll_node));
4231 		qdisc_bstats_update(q, skb);
4232 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true))
4233 			__qdisc_run(q);
4234 		qdisc_run_end(q);
4235 		rc = NET_XMIT_SUCCESS;
4236 	} else {
4237 		int count = 0;
4238 
4239 		llist_for_each_entry_safe(skb, next, ll_list, ll_node) {
4240 			prefetch(next);
4241 			skb_mark_not_on_list(skb);
4242 			rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4243 			count++;
4244 		}
4245 		qdisc_run(q);
4246 		if (count != 1)
4247 			rc = NET_XMIT_SUCCESS;
4248 	}
4249 unlock:
4250 	spin_unlock(root_lock);
4251 	if (unlikely(to_free))
4252 		kfree_skb_list_reason(to_free,
4253 				      tcf_get_drop_reason(to_free));
4254 	return rc;
4255 }
4256 
4257 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4258 static void skb_update_prio(struct sk_buff *skb)
4259 {
4260 	const struct netprio_map *map;
4261 	const struct sock *sk;
4262 	unsigned int prioidx;
4263 
4264 	if (skb->priority)
4265 		return;
4266 	map = rcu_dereference_bh(skb->dev->priomap);
4267 	if (!map)
4268 		return;
4269 	sk = skb_to_full_sk(skb);
4270 	if (!sk)
4271 		return;
4272 
4273 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4274 
4275 	if (prioidx < map->priomap_len)
4276 		skb->priority = map->priomap[prioidx];
4277 }
4278 #else
4279 #define skb_update_prio(skb)
4280 #endif
4281 
4282 /**
4283  *	dev_loopback_xmit - loop back @skb
4284  *	@net: network namespace this loopback is happening in
4285  *	@sk:  sk needed to be a netfilter okfn
4286  *	@skb: buffer to transmit
4287  */
4288 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4289 {
4290 	skb_reset_mac_header(skb);
4291 	__skb_pull(skb, skb_network_offset(skb));
4292 	skb->pkt_type = PACKET_LOOPBACK;
4293 	if (skb->ip_summed == CHECKSUM_NONE)
4294 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4295 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4296 	skb_dst_force(skb);
4297 	netif_rx(skb);
4298 	return 0;
4299 }
4300 EXPORT_SYMBOL(dev_loopback_xmit);
4301 
4302 #ifdef CONFIG_NET_EGRESS
4303 static struct netdev_queue *
4304 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4305 {
4306 	int qm = skb_get_queue_mapping(skb);
4307 
4308 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4309 }
4310 
4311 #ifndef CONFIG_PREEMPT_RT
4312 static bool netdev_xmit_txqueue_skipped(void)
4313 {
4314 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4315 }
4316 
4317 void netdev_xmit_skip_txqueue(bool skip)
4318 {
4319 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4320 }
4321 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4322 
4323 #else
4324 static bool netdev_xmit_txqueue_skipped(void)
4325 {
4326 	return current->net_xmit.skip_txqueue;
4327 }
4328 
4329 void netdev_xmit_skip_txqueue(bool skip)
4330 {
4331 	current->net_xmit.skip_txqueue = skip;
4332 }
4333 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4334 #endif
4335 #endif /* CONFIG_NET_EGRESS */
4336 
4337 #ifdef CONFIG_NET_XGRESS
4338 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4339 		  enum skb_drop_reason *drop_reason)
4340 {
4341 	int ret = TC_ACT_UNSPEC;
4342 #ifdef CONFIG_NET_CLS_ACT
4343 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4344 	struct tcf_result res;
4345 
4346 	if (!miniq)
4347 		return ret;
4348 
4349 	/* Global bypass */
4350 	if (!static_branch_likely(&tcf_sw_enabled_key))
4351 		return ret;
4352 
4353 	/* Block-wise bypass */
4354 	if (tcf_block_bypass_sw(miniq->block))
4355 		return ret;
4356 
4357 	tc_skb_cb(skb)->mru = 0;
4358 	tc_skb_cb(skb)->post_ct = false;
4359 	tcf_set_drop_reason(skb, *drop_reason);
4360 
4361 	mini_qdisc_bstats_cpu_update(miniq, skb);
4362 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4363 	/* Only tcf related quirks below. */
4364 	switch (ret) {
4365 	case TC_ACT_SHOT:
4366 		*drop_reason = tcf_get_drop_reason(skb);
4367 		mini_qdisc_qstats_cpu_drop(miniq);
4368 		break;
4369 	case TC_ACT_OK:
4370 	case TC_ACT_RECLASSIFY:
4371 		skb->tc_index = TC_H_MIN(res.classid);
4372 		break;
4373 	}
4374 #endif /* CONFIG_NET_CLS_ACT */
4375 	return ret;
4376 }
4377 
4378 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4379 
4380 void tcx_inc(void)
4381 {
4382 	static_branch_inc(&tcx_needed_key);
4383 }
4384 
4385 void tcx_dec(void)
4386 {
4387 	static_branch_dec(&tcx_needed_key);
4388 }
4389 
4390 static __always_inline enum tcx_action_base
4391 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4392 	const bool needs_mac)
4393 {
4394 	const struct bpf_mprog_fp *fp;
4395 	const struct bpf_prog *prog;
4396 	int ret = TCX_NEXT;
4397 
4398 	if (needs_mac)
4399 		__skb_push(skb, skb->mac_len);
4400 	bpf_mprog_foreach_prog(entry, fp, prog) {
4401 		bpf_compute_data_pointers(skb);
4402 		ret = bpf_prog_run(prog, skb);
4403 		if (ret != TCX_NEXT)
4404 			break;
4405 	}
4406 	if (needs_mac)
4407 		__skb_pull(skb, skb->mac_len);
4408 	return tcx_action_code(skb, ret);
4409 }
4410 
4411 static __always_inline struct sk_buff *
4412 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4413 		   struct net_device *orig_dev, bool *another)
4414 {
4415 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4416 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4417 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4418 	int sch_ret;
4419 
4420 	if (!entry)
4421 		return skb;
4422 
4423 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4424 	if (unlikely(*pt_prev)) {
4425 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4426 		*pt_prev = NULL;
4427 	}
4428 
4429 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4430 	tcx_set_ingress(skb, true);
4431 
4432 	if (static_branch_unlikely(&tcx_needed_key)) {
4433 		sch_ret = tcx_run(entry, skb, true);
4434 		if (sch_ret != TC_ACT_UNSPEC)
4435 			goto ingress_verdict;
4436 	}
4437 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4438 ingress_verdict:
4439 	switch (sch_ret) {
4440 	case TC_ACT_REDIRECT:
4441 		/* skb_mac_header check was done by BPF, so we can safely
4442 		 * push the L2 header back before redirecting to another
4443 		 * netdev.
4444 		 */
4445 		__skb_push(skb, skb->mac_len);
4446 		if (skb_do_redirect(skb) == -EAGAIN) {
4447 			__skb_pull(skb, skb->mac_len);
4448 			*another = true;
4449 			break;
4450 		}
4451 		*ret = NET_RX_SUCCESS;
4452 		bpf_net_ctx_clear(bpf_net_ctx);
4453 		return NULL;
4454 	case TC_ACT_SHOT:
4455 		kfree_skb_reason(skb, drop_reason);
4456 		*ret = NET_RX_DROP;
4457 		bpf_net_ctx_clear(bpf_net_ctx);
4458 		return NULL;
4459 	/* used by tc_run */
4460 	case TC_ACT_STOLEN:
4461 	case TC_ACT_QUEUED:
4462 	case TC_ACT_TRAP:
4463 		consume_skb(skb);
4464 		fallthrough;
4465 	case TC_ACT_CONSUMED:
4466 		*ret = NET_RX_SUCCESS;
4467 		bpf_net_ctx_clear(bpf_net_ctx);
4468 		return NULL;
4469 	}
4470 	bpf_net_ctx_clear(bpf_net_ctx);
4471 
4472 	return skb;
4473 }
4474 
4475 static __always_inline struct sk_buff *
4476 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4477 {
4478 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4479 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4480 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4481 	int sch_ret;
4482 
4483 	if (!entry)
4484 		return skb;
4485 
4486 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4487 
4488 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4489 	 * already set by the caller.
4490 	 */
4491 	if (static_branch_unlikely(&tcx_needed_key)) {
4492 		sch_ret = tcx_run(entry, skb, false);
4493 		if (sch_ret != TC_ACT_UNSPEC)
4494 			goto egress_verdict;
4495 	}
4496 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4497 egress_verdict:
4498 	switch (sch_ret) {
4499 	case TC_ACT_REDIRECT:
4500 		/* No need to push/pop skb's mac_header here on egress! */
4501 		skb_do_redirect(skb);
4502 		*ret = NET_XMIT_SUCCESS;
4503 		bpf_net_ctx_clear(bpf_net_ctx);
4504 		return NULL;
4505 	case TC_ACT_SHOT:
4506 		kfree_skb_reason(skb, drop_reason);
4507 		*ret = NET_XMIT_DROP;
4508 		bpf_net_ctx_clear(bpf_net_ctx);
4509 		return NULL;
4510 	/* used by tc_run */
4511 	case TC_ACT_STOLEN:
4512 	case TC_ACT_QUEUED:
4513 	case TC_ACT_TRAP:
4514 		consume_skb(skb);
4515 		fallthrough;
4516 	case TC_ACT_CONSUMED:
4517 		*ret = NET_XMIT_SUCCESS;
4518 		bpf_net_ctx_clear(bpf_net_ctx);
4519 		return NULL;
4520 	}
4521 	bpf_net_ctx_clear(bpf_net_ctx);
4522 
4523 	return skb;
4524 }
4525 #else
4526 static __always_inline struct sk_buff *
4527 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4528 		   struct net_device *orig_dev, bool *another)
4529 {
4530 	return skb;
4531 }
4532 
4533 static __always_inline struct sk_buff *
4534 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4535 {
4536 	return skb;
4537 }
4538 #endif /* CONFIG_NET_XGRESS */
4539 
4540 #ifdef CONFIG_XPS
4541 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4542 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4543 {
4544 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4545 	struct xps_map *map;
4546 	int queue_index = -1;
4547 
4548 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4549 		return queue_index;
4550 
4551 	tci *= dev_maps->num_tc;
4552 	tci += tc;
4553 
4554 	map = rcu_dereference(dev_maps->attr_map[tci]);
4555 	if (map) {
4556 		if (map->len == 1)
4557 			queue_index = map->queues[0];
4558 		else
4559 			queue_index = map->queues[reciprocal_scale(
4560 						skb_get_hash(skb), map->len)];
4561 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4562 			queue_index = -1;
4563 	}
4564 	return queue_index;
4565 }
4566 #endif
4567 
4568 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4569 			 struct sk_buff *skb)
4570 {
4571 #ifdef CONFIG_XPS
4572 	struct xps_dev_maps *dev_maps;
4573 	struct sock *sk = skb->sk;
4574 	int queue_index = -1;
4575 
4576 	if (!static_key_false(&xps_needed))
4577 		return -1;
4578 
4579 	rcu_read_lock();
4580 	if (!static_key_false(&xps_rxqs_needed))
4581 		goto get_cpus_map;
4582 
4583 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4584 	if (dev_maps) {
4585 		int tci = sk_rx_queue_get(sk);
4586 
4587 		if (tci >= 0)
4588 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4589 							  tci);
4590 	}
4591 
4592 get_cpus_map:
4593 	if (queue_index < 0) {
4594 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4595 		if (dev_maps) {
4596 			unsigned int tci = skb->sender_cpu - 1;
4597 
4598 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4599 							  tci);
4600 		}
4601 	}
4602 	rcu_read_unlock();
4603 
4604 	return queue_index;
4605 #else
4606 	return -1;
4607 #endif
4608 }
4609 
4610 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4611 		     struct net_device *sb_dev)
4612 {
4613 	return 0;
4614 }
4615 EXPORT_SYMBOL(dev_pick_tx_zero);
4616 
4617 int sk_tx_queue_get(const struct sock *sk)
4618 {
4619 	int resel, val;
4620 
4621 	if (!sk)
4622 		return -1;
4623 	/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
4624 	 * and sk_tx_queue_set().
4625 	 */
4626 	val = READ_ONCE(sk->sk_tx_queue_mapping);
4627 
4628 	if (val == NO_QUEUE_MAPPING)
4629 		return -1;
4630 
4631 	if (!sk_fullsock(sk))
4632 		return val;
4633 
4634 	resel = READ_ONCE(sock_net(sk)->core.sysctl_txq_reselection);
4635 	if (resel && time_is_before_jiffies(
4636 			READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + resel))
4637 		return -1;
4638 
4639 	return val;
4640 }
4641 EXPORT_SYMBOL(sk_tx_queue_get);
4642 
4643 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4644 		     struct net_device *sb_dev)
4645 {
4646 	struct sock *sk = skb->sk;
4647 	int queue_index = sk_tx_queue_get(sk);
4648 
4649 	sb_dev = sb_dev ? : dev;
4650 
4651 	if (queue_index < 0 || skb->ooo_okay ||
4652 	    queue_index >= dev->real_num_tx_queues) {
4653 		int new_index = get_xps_queue(dev, sb_dev, skb);
4654 
4655 		if (new_index < 0)
4656 			new_index = skb_tx_hash(dev, sb_dev, skb);
4657 
4658 		if (sk && sk_fullsock(sk) &&
4659 		    rcu_access_pointer(sk->sk_dst_cache))
4660 			sk_tx_queue_set(sk, new_index);
4661 
4662 		queue_index = new_index;
4663 	}
4664 
4665 	return queue_index;
4666 }
4667 EXPORT_SYMBOL(netdev_pick_tx);
4668 
4669 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4670 					 struct sk_buff *skb,
4671 					 struct net_device *sb_dev)
4672 {
4673 	int queue_index = 0;
4674 
4675 #ifdef CONFIG_XPS
4676 	u32 sender_cpu = skb->sender_cpu - 1;
4677 
4678 	if (sender_cpu >= (u32)NR_CPUS)
4679 		skb->sender_cpu = raw_smp_processor_id() + 1;
4680 #endif
4681 
4682 	if (dev->real_num_tx_queues != 1) {
4683 		const struct net_device_ops *ops = dev->netdev_ops;
4684 
4685 		if (ops->ndo_select_queue)
4686 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4687 		else
4688 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4689 
4690 		queue_index = netdev_cap_txqueue(dev, queue_index);
4691 	}
4692 
4693 	skb_set_queue_mapping(skb, queue_index);
4694 	return netdev_get_tx_queue(dev, queue_index);
4695 }
4696 
4697 /**
4698  * __dev_queue_xmit() - transmit a buffer
4699  * @skb:	buffer to transmit
4700  * @sb_dev:	suboordinate device used for L2 forwarding offload
4701  *
4702  * Queue a buffer for transmission to a network device. The caller must
4703  * have set the device and priority and built the buffer before calling
4704  * this function. The function can be called from an interrupt.
4705  *
4706  * When calling this method, interrupts MUST be enabled. This is because
4707  * the BH enable code must have IRQs enabled so that it will not deadlock.
4708  *
4709  * Regardless of the return value, the skb is consumed, so it is currently
4710  * difficult to retry a send to this method. (You can bump the ref count
4711  * before sending to hold a reference for retry if you are careful.)
4712  *
4713  * Return:
4714  * * 0				- buffer successfully transmitted
4715  * * positive qdisc return code	- NET_XMIT_DROP etc.
4716  * * negative errno		- other errors
4717  */
4718 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4719 {
4720 	struct net_device *dev = skb->dev;
4721 	struct netdev_queue *txq = NULL;
4722 	struct Qdisc *q;
4723 	int rc = -ENOMEM;
4724 	bool again = false;
4725 
4726 	skb_reset_mac_header(skb);
4727 	skb_assert_len(skb);
4728 
4729 	if (unlikely(skb_shinfo(skb)->tx_flags &
4730 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4731 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4732 
4733 	/* Disable soft irqs for various locks below. Also
4734 	 * stops preemption for RCU.
4735 	 */
4736 	rcu_read_lock_bh();
4737 
4738 	skb_update_prio(skb);
4739 
4740 	qdisc_pkt_len_init(skb);
4741 	tcx_set_ingress(skb, false);
4742 #ifdef CONFIG_NET_EGRESS
4743 	if (static_branch_unlikely(&egress_needed_key)) {
4744 		if (nf_hook_egress_active()) {
4745 			skb = nf_hook_egress(skb, &rc, dev);
4746 			if (!skb)
4747 				goto out;
4748 		}
4749 
4750 		netdev_xmit_skip_txqueue(false);
4751 
4752 		nf_skip_egress(skb, true);
4753 		skb = sch_handle_egress(skb, &rc, dev);
4754 		if (!skb)
4755 			goto out;
4756 		nf_skip_egress(skb, false);
4757 
4758 		if (netdev_xmit_txqueue_skipped())
4759 			txq = netdev_tx_queue_mapping(dev, skb);
4760 	}
4761 #endif
4762 	/* If device/qdisc don't need skb->dst, release it right now while
4763 	 * its hot in this cpu cache.
4764 	 */
4765 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4766 		skb_dst_drop(skb);
4767 	else
4768 		skb_dst_force(skb);
4769 
4770 	if (!txq)
4771 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4772 
4773 	q = rcu_dereference_bh(txq->qdisc);
4774 
4775 	trace_net_dev_queue(skb);
4776 	if (q->enqueue) {
4777 		rc = __dev_xmit_skb(skb, q, dev, txq);
4778 		goto out;
4779 	}
4780 
4781 	/* The device has no queue. Common case for software devices:
4782 	 * loopback, all the sorts of tunnels...
4783 
4784 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4785 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4786 	 * counters.)
4787 	 * However, it is possible, that they rely on protection
4788 	 * made by us here.
4789 
4790 	 * Check this and shot the lock. It is not prone from deadlocks.
4791 	 *Either shot noqueue qdisc, it is even simpler 8)
4792 	 */
4793 	if (dev->flags & IFF_UP) {
4794 		int cpu = smp_processor_id(); /* ok because BHs are off */
4795 
4796 		/* Other cpus might concurrently change txq->xmit_lock_owner
4797 		 * to -1 or to their cpu id, but not to our id.
4798 		 */
4799 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4800 			if (dev_xmit_recursion())
4801 				goto recursion_alert;
4802 
4803 			skb = validate_xmit_skb(skb, dev, &again);
4804 			if (!skb)
4805 				goto out;
4806 
4807 			HARD_TX_LOCK(dev, txq, cpu);
4808 
4809 			if (!netif_xmit_stopped(txq)) {
4810 				dev_xmit_recursion_inc();
4811 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4812 				dev_xmit_recursion_dec();
4813 				if (dev_xmit_complete(rc)) {
4814 					HARD_TX_UNLOCK(dev, txq);
4815 					goto out;
4816 				}
4817 			}
4818 			HARD_TX_UNLOCK(dev, txq);
4819 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4820 					     dev->name);
4821 		} else {
4822 			/* Recursion is detected! It is possible,
4823 			 * unfortunately
4824 			 */
4825 recursion_alert:
4826 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4827 					     dev->name);
4828 		}
4829 	}
4830 
4831 	rc = -ENETDOWN;
4832 	rcu_read_unlock_bh();
4833 
4834 	dev_core_stats_tx_dropped_inc(dev);
4835 	kfree_skb_list(skb);
4836 	return rc;
4837 out:
4838 	rcu_read_unlock_bh();
4839 	return rc;
4840 }
4841 EXPORT_SYMBOL(__dev_queue_xmit);
4842 
4843 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4844 {
4845 	struct net_device *dev = skb->dev;
4846 	struct sk_buff *orig_skb = skb;
4847 	struct netdev_queue *txq;
4848 	int ret = NETDEV_TX_BUSY;
4849 	bool again = false;
4850 
4851 	if (unlikely(!netif_running(dev) ||
4852 		     !netif_carrier_ok(dev)))
4853 		goto drop;
4854 
4855 	skb = validate_xmit_skb_list(skb, dev, &again);
4856 	if (skb != orig_skb)
4857 		goto drop;
4858 
4859 	skb_set_queue_mapping(skb, queue_id);
4860 	txq = skb_get_tx_queue(dev, skb);
4861 
4862 	local_bh_disable();
4863 
4864 	dev_xmit_recursion_inc();
4865 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4866 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4867 		ret = netdev_start_xmit(skb, dev, txq, false);
4868 	HARD_TX_UNLOCK(dev, txq);
4869 	dev_xmit_recursion_dec();
4870 
4871 	local_bh_enable();
4872 	return ret;
4873 drop:
4874 	dev_core_stats_tx_dropped_inc(dev);
4875 	kfree_skb_list(skb);
4876 	return NET_XMIT_DROP;
4877 }
4878 EXPORT_SYMBOL(__dev_direct_xmit);
4879 
4880 /*************************************************************************
4881  *			Receiver routines
4882  *************************************************************************/
4883 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4884 
4885 int weight_p __read_mostly = 64;           /* old backlog weight */
4886 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4887 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4888 
4889 /* Called with irq disabled */
4890 static inline void ____napi_schedule(struct softnet_data *sd,
4891 				     struct napi_struct *napi)
4892 {
4893 	struct task_struct *thread;
4894 
4895 	lockdep_assert_irqs_disabled();
4896 
4897 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4898 		/* Paired with smp_mb__before_atomic() in
4899 		 * napi_enable()/netif_set_threaded().
4900 		 * Use READ_ONCE() to guarantee a complete
4901 		 * read on napi->thread. Only call
4902 		 * wake_up_process() when it's not NULL.
4903 		 */
4904 		thread = READ_ONCE(napi->thread);
4905 		if (thread) {
4906 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4907 				goto use_local_napi;
4908 
4909 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4910 			wake_up_process(thread);
4911 			return;
4912 		}
4913 	}
4914 
4915 use_local_napi:
4916 	DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4917 	list_add_tail(&napi->poll_list, &sd->poll_list);
4918 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4919 	/* If not called from net_rx_action()
4920 	 * we have to raise NET_RX_SOFTIRQ.
4921 	 */
4922 	if (!sd->in_net_rx_action)
4923 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4924 }
4925 
4926 #ifdef CONFIG_RPS
4927 
4928 struct static_key_false rps_needed __read_mostly;
4929 EXPORT_SYMBOL(rps_needed);
4930 struct static_key_false rfs_needed __read_mostly;
4931 EXPORT_SYMBOL(rfs_needed);
4932 
4933 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4934 {
4935 	return hash_32(hash, flow_table->log);
4936 }
4937 
4938 #ifdef CONFIG_RFS_ACCEL
4939 /**
4940  * rps_flow_is_active - check whether the flow is recently active.
4941  * @rflow: Specific flow to check activity.
4942  * @flow_table: per-queue flowtable that @rflow belongs to.
4943  * @cpu: CPU saved in @rflow.
4944  *
4945  * If the CPU has processed many packets since the flow's last activity
4946  * (beyond 10 times the table size), the flow is considered stale.
4947  *
4948  * Return: true if flow was recently active.
4949  */
4950 static bool rps_flow_is_active(struct rps_dev_flow *rflow,
4951 			       struct rps_dev_flow_table *flow_table,
4952 			       unsigned int cpu)
4953 {
4954 	unsigned int flow_last_active;
4955 	unsigned int sd_input_head;
4956 
4957 	if (cpu >= nr_cpu_ids)
4958 		return false;
4959 
4960 	sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head);
4961 	flow_last_active = READ_ONCE(rflow->last_qtail);
4962 
4963 	return (int)(sd_input_head - flow_last_active) <
4964 		(int)(10 << flow_table->log);
4965 }
4966 #endif
4967 
4968 static struct rps_dev_flow *
4969 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4970 	    struct rps_dev_flow *rflow, u16 next_cpu, u32 hash,
4971 	    u32 flow_id)
4972 {
4973 	if (next_cpu < nr_cpu_ids) {
4974 		u32 head;
4975 #ifdef CONFIG_RFS_ACCEL
4976 		struct netdev_rx_queue *rxqueue;
4977 		struct rps_dev_flow_table *flow_table;
4978 		struct rps_dev_flow *old_rflow;
4979 		struct rps_dev_flow *tmp_rflow;
4980 		unsigned int tmp_cpu;
4981 		u16 rxq_index;
4982 		int rc;
4983 
4984 		/* Should we steer this flow to a different hardware queue? */
4985 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4986 		    !(dev->features & NETIF_F_NTUPLE))
4987 			goto out;
4988 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4989 		if (rxq_index == skb_get_rx_queue(skb))
4990 			goto out;
4991 
4992 		rxqueue = dev->_rx + rxq_index;
4993 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4994 		if (!flow_table)
4995 			goto out;
4996 
4997 		tmp_rflow = &flow_table->flows[flow_id];
4998 		tmp_cpu = READ_ONCE(tmp_rflow->cpu);
4999 
5000 		if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) {
5001 			if (rps_flow_is_active(tmp_rflow, flow_table,
5002 					       tmp_cpu)) {
5003 				if (hash != READ_ONCE(tmp_rflow->hash) ||
5004 				    next_cpu == tmp_cpu)
5005 					goto out;
5006 			}
5007 		}
5008 
5009 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
5010 							rxq_index, flow_id);
5011 		if (rc < 0)
5012 			goto out;
5013 
5014 		old_rflow = rflow;
5015 		rflow = tmp_rflow;
5016 		WRITE_ONCE(rflow->filter, rc);
5017 		WRITE_ONCE(rflow->hash, hash);
5018 
5019 		if (old_rflow->filter == rc)
5020 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
5021 	out:
5022 #endif
5023 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
5024 		rps_input_queue_tail_save(&rflow->last_qtail, head);
5025 	}
5026 
5027 	WRITE_ONCE(rflow->cpu, next_cpu);
5028 	return rflow;
5029 }
5030 
5031 /*
5032  * get_rps_cpu is called from netif_receive_skb and returns the target
5033  * CPU from the RPS map of the receiving queue for a given skb.
5034  * rcu_read_lock must be held on entry.
5035  */
5036 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
5037 		       struct rps_dev_flow **rflowp)
5038 {
5039 	const struct rps_sock_flow_table *sock_flow_table;
5040 	struct netdev_rx_queue *rxqueue = dev->_rx;
5041 	struct rps_dev_flow_table *flow_table;
5042 	struct rps_map *map;
5043 	int cpu = -1;
5044 	u32 flow_id;
5045 	u32 tcpu;
5046 	u32 hash;
5047 
5048 	if (skb_rx_queue_recorded(skb)) {
5049 		u16 index = skb_get_rx_queue(skb);
5050 
5051 		if (unlikely(index >= dev->real_num_rx_queues)) {
5052 			WARN_ONCE(dev->real_num_rx_queues > 1,
5053 				  "%s received packet on queue %u, but number "
5054 				  "of RX queues is %u\n",
5055 				  dev->name, index, dev->real_num_rx_queues);
5056 			goto done;
5057 		}
5058 		rxqueue += index;
5059 	}
5060 
5061 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
5062 
5063 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5064 	map = rcu_dereference(rxqueue->rps_map);
5065 	if (!flow_table && !map)
5066 		goto done;
5067 
5068 	skb_reset_network_header(skb);
5069 	hash = skb_get_hash(skb);
5070 	if (!hash)
5071 		goto done;
5072 
5073 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
5074 	if (flow_table && sock_flow_table) {
5075 		struct rps_dev_flow *rflow;
5076 		u32 next_cpu;
5077 		u32 ident;
5078 
5079 		/* First check into global flow table if there is a match.
5080 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
5081 		 */
5082 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
5083 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
5084 			goto try_rps;
5085 
5086 		next_cpu = ident & net_hotdata.rps_cpu_mask;
5087 
5088 		/* OK, now we know there is a match,
5089 		 * we can look at the local (per receive queue) flow table
5090 		 */
5091 		flow_id = rfs_slot(hash, flow_table);
5092 		rflow = &flow_table->flows[flow_id];
5093 		tcpu = rflow->cpu;
5094 
5095 		/*
5096 		 * If the desired CPU (where last recvmsg was done) is
5097 		 * different from current CPU (one in the rx-queue flow
5098 		 * table entry), switch if one of the following holds:
5099 		 *   - Current CPU is unset (>= nr_cpu_ids).
5100 		 *   - Current CPU is offline.
5101 		 *   - The current CPU's queue tail has advanced beyond the
5102 		 *     last packet that was enqueued using this table entry.
5103 		 *     This guarantees that all previous packets for the flow
5104 		 *     have been dequeued, thus preserving in order delivery.
5105 		 */
5106 		if (unlikely(tcpu != next_cpu) &&
5107 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
5108 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
5109 		      rflow->last_qtail)) >= 0)) {
5110 			tcpu = next_cpu;
5111 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash,
5112 					    flow_id);
5113 		}
5114 
5115 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
5116 			*rflowp = rflow;
5117 			cpu = tcpu;
5118 			goto done;
5119 		}
5120 	}
5121 
5122 try_rps:
5123 
5124 	if (map) {
5125 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
5126 		if (cpu_online(tcpu)) {
5127 			cpu = tcpu;
5128 			goto done;
5129 		}
5130 	}
5131 
5132 done:
5133 	return cpu;
5134 }
5135 
5136 #ifdef CONFIG_RFS_ACCEL
5137 
5138 /**
5139  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
5140  * @dev: Device on which the filter was set
5141  * @rxq_index: RX queue index
5142  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
5143  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
5144  *
5145  * Drivers that implement ndo_rx_flow_steer() should periodically call
5146  * this function for each installed filter and remove the filters for
5147  * which it returns %true.
5148  */
5149 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5150 			 u32 flow_id, u16 filter_id)
5151 {
5152 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5153 	struct rps_dev_flow_table *flow_table;
5154 	struct rps_dev_flow *rflow;
5155 	bool expire = true;
5156 
5157 	rcu_read_lock();
5158 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5159 	if (flow_table && flow_id < (1UL << flow_table->log)) {
5160 		unsigned int cpu;
5161 
5162 		rflow = &flow_table->flows[flow_id];
5163 		cpu = READ_ONCE(rflow->cpu);
5164 		if (READ_ONCE(rflow->filter) == filter_id &&
5165 		    rps_flow_is_active(rflow, flow_table, cpu))
5166 			expire = false;
5167 	}
5168 	rcu_read_unlock();
5169 	return expire;
5170 }
5171 EXPORT_SYMBOL(rps_may_expire_flow);
5172 
5173 #endif /* CONFIG_RFS_ACCEL */
5174 
5175 /* Called from hardirq (IPI) context */
5176 static void rps_trigger_softirq(void *data)
5177 {
5178 	struct softnet_data *sd = data;
5179 
5180 	____napi_schedule(sd, &sd->backlog);
5181 	/* Pairs with READ_ONCE() in softnet_seq_show() */
5182 	WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5183 }
5184 
5185 #endif /* CONFIG_RPS */
5186 
5187 /* Called from hardirq (IPI) context */
5188 static void trigger_rx_softirq(void *data)
5189 {
5190 	struct softnet_data *sd = data;
5191 
5192 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5193 	smp_store_release(&sd->defer_ipi_scheduled, 0);
5194 }
5195 
5196 /*
5197  * After we queued a packet into sd->input_pkt_queue,
5198  * we need to make sure this queue is serviced soon.
5199  *
5200  * - If this is another cpu queue, link it to our rps_ipi_list,
5201  *   and make sure we will process rps_ipi_list from net_rx_action().
5202  *
5203  * - If this is our own queue, NAPI schedule our backlog.
5204  *   Note that this also raises NET_RX_SOFTIRQ.
5205  */
5206 static void napi_schedule_rps(struct softnet_data *sd)
5207 {
5208 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5209 
5210 #ifdef CONFIG_RPS
5211 	if (sd != mysd) {
5212 		if (use_backlog_threads()) {
5213 			__napi_schedule_irqoff(&sd->backlog);
5214 			return;
5215 		}
5216 
5217 		sd->rps_ipi_next = mysd->rps_ipi_list;
5218 		mysd->rps_ipi_list = sd;
5219 
5220 		/* If not called from net_rx_action() or napi_threaded_poll()
5221 		 * we have to raise NET_RX_SOFTIRQ.
5222 		 */
5223 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5224 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5225 		return;
5226 	}
5227 #endif /* CONFIG_RPS */
5228 	__napi_schedule_irqoff(&mysd->backlog);
5229 }
5230 
5231 void kick_defer_list_purge(unsigned int cpu)
5232 {
5233 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5234 	unsigned long flags;
5235 
5236 	if (use_backlog_threads()) {
5237 		backlog_lock_irq_save(sd, &flags);
5238 
5239 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5240 			__napi_schedule_irqoff(&sd->backlog);
5241 
5242 		backlog_unlock_irq_restore(sd, &flags);
5243 
5244 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5245 		smp_call_function_single_async(cpu, &sd->defer_csd);
5246 	}
5247 }
5248 
5249 #ifdef CONFIG_NET_FLOW_LIMIT
5250 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5251 #endif
5252 
5253 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen,
5254 			   int max_backlog)
5255 {
5256 #ifdef CONFIG_NET_FLOW_LIMIT
5257 	unsigned int old_flow, new_flow;
5258 	const struct softnet_data *sd;
5259 	struct sd_flow_limit *fl;
5260 
5261 	if (likely(qlen < (max_backlog >> 1)))
5262 		return false;
5263 
5264 	sd = this_cpu_ptr(&softnet_data);
5265 
5266 	rcu_read_lock();
5267 	fl = rcu_dereference(sd->flow_limit);
5268 	if (fl) {
5269 		new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5270 		old_flow = fl->history[fl->history_head];
5271 		fl->history[fl->history_head] = new_flow;
5272 
5273 		fl->history_head++;
5274 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5275 
5276 		if (likely(fl->buckets[old_flow]))
5277 			fl->buckets[old_flow]--;
5278 
5279 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5280 			/* Pairs with READ_ONCE() in softnet_seq_show() */
5281 			WRITE_ONCE(fl->count, fl->count + 1);
5282 			rcu_read_unlock();
5283 			return true;
5284 		}
5285 	}
5286 	rcu_read_unlock();
5287 #endif
5288 	return false;
5289 }
5290 
5291 /*
5292  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5293  * queue (may be a remote CPU queue).
5294  */
5295 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5296 			      unsigned int *qtail)
5297 {
5298 	enum skb_drop_reason reason;
5299 	struct softnet_data *sd;
5300 	unsigned long flags;
5301 	unsigned int qlen;
5302 	int max_backlog;
5303 	u32 tail;
5304 
5305 	reason = SKB_DROP_REASON_DEV_READY;
5306 	if (unlikely(!netif_running(skb->dev)))
5307 		goto bad_dev;
5308 
5309 	sd = &per_cpu(softnet_data, cpu);
5310 
5311 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5312 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5313 	if (unlikely(qlen > max_backlog) ||
5314 	    skb_flow_limit(skb, qlen, max_backlog))
5315 		goto cpu_backlog_drop;
5316 	backlog_lock_irq_save(sd, &flags);
5317 	qlen = skb_queue_len(&sd->input_pkt_queue);
5318 	if (likely(qlen <= max_backlog)) {
5319 		if (!qlen) {
5320 			/* Schedule NAPI for backlog device. We can use
5321 			 * non atomic operation as we own the queue lock.
5322 			 */
5323 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5324 						&sd->backlog.state))
5325 				napi_schedule_rps(sd);
5326 		}
5327 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5328 		tail = rps_input_queue_tail_incr(sd);
5329 		backlog_unlock_irq_restore(sd, &flags);
5330 
5331 		/* save the tail outside of the critical section */
5332 		rps_input_queue_tail_save(qtail, tail);
5333 		return NET_RX_SUCCESS;
5334 	}
5335 
5336 	backlog_unlock_irq_restore(sd, &flags);
5337 
5338 cpu_backlog_drop:
5339 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5340 	numa_drop_add(&sd->drop_counters, 1);
5341 bad_dev:
5342 	dev_core_stats_rx_dropped_inc(skb->dev);
5343 	kfree_skb_reason(skb, reason);
5344 	return NET_RX_DROP;
5345 }
5346 
5347 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5348 {
5349 	struct net_device *dev = skb->dev;
5350 	struct netdev_rx_queue *rxqueue;
5351 
5352 	rxqueue = dev->_rx;
5353 
5354 	if (skb_rx_queue_recorded(skb)) {
5355 		u16 index = skb_get_rx_queue(skb);
5356 
5357 		if (unlikely(index >= dev->real_num_rx_queues)) {
5358 			WARN_ONCE(dev->real_num_rx_queues > 1,
5359 				  "%s received packet on queue %u, but number "
5360 				  "of RX queues is %u\n",
5361 				  dev->name, index, dev->real_num_rx_queues);
5362 
5363 			return rxqueue; /* Return first rxqueue */
5364 		}
5365 		rxqueue += index;
5366 	}
5367 	return rxqueue;
5368 }
5369 
5370 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5371 			     const struct bpf_prog *xdp_prog)
5372 {
5373 	void *orig_data, *orig_data_end, *hard_start;
5374 	struct netdev_rx_queue *rxqueue;
5375 	bool orig_bcast, orig_host;
5376 	u32 mac_len, frame_sz;
5377 	__be16 orig_eth_type;
5378 	struct ethhdr *eth;
5379 	u32 metalen, act;
5380 	int off;
5381 
5382 	/* The XDP program wants to see the packet starting at the MAC
5383 	 * header.
5384 	 */
5385 	mac_len = skb->data - skb_mac_header(skb);
5386 	hard_start = skb->data - skb_headroom(skb);
5387 
5388 	/* SKB "head" area always have tailroom for skb_shared_info */
5389 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5390 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5391 
5392 	rxqueue = netif_get_rxqueue(skb);
5393 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5394 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5395 			 skb_headlen(skb) + mac_len, true);
5396 	if (skb_is_nonlinear(skb)) {
5397 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5398 		xdp_buff_set_frags_flag(xdp);
5399 	} else {
5400 		xdp_buff_clear_frags_flag(xdp);
5401 	}
5402 
5403 	orig_data_end = xdp->data_end;
5404 	orig_data = xdp->data;
5405 	eth = (struct ethhdr *)xdp->data;
5406 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5407 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5408 	orig_eth_type = eth->h_proto;
5409 
5410 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5411 
5412 	/* check if bpf_xdp_adjust_head was used */
5413 	off = xdp->data - orig_data;
5414 	if (off) {
5415 		if (off > 0)
5416 			__skb_pull(skb, off);
5417 		else if (off < 0)
5418 			__skb_push(skb, -off);
5419 
5420 		skb->mac_header += off;
5421 		skb_reset_network_header(skb);
5422 	}
5423 
5424 	/* check if bpf_xdp_adjust_tail was used */
5425 	off = xdp->data_end - orig_data_end;
5426 	if (off != 0) {
5427 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5428 		skb->len += off; /* positive on grow, negative on shrink */
5429 	}
5430 
5431 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5432 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5433 	 */
5434 	if (xdp_buff_has_frags(xdp))
5435 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5436 	else
5437 		skb->data_len = 0;
5438 
5439 	/* check if XDP changed eth hdr such SKB needs update */
5440 	eth = (struct ethhdr *)xdp->data;
5441 	if ((orig_eth_type != eth->h_proto) ||
5442 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5443 						  skb->dev->dev_addr)) ||
5444 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5445 		__skb_push(skb, ETH_HLEN);
5446 		skb->pkt_type = PACKET_HOST;
5447 		skb->protocol = eth_type_trans(skb, skb->dev);
5448 	}
5449 
5450 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5451 	 * before calling us again on redirect path. We do not call do_redirect
5452 	 * as we leave that up to the caller.
5453 	 *
5454 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5455 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5456 	 */
5457 	switch (act) {
5458 	case XDP_REDIRECT:
5459 	case XDP_TX:
5460 		__skb_push(skb, mac_len);
5461 		break;
5462 	case XDP_PASS:
5463 		metalen = xdp->data - xdp->data_meta;
5464 		if (metalen)
5465 			skb_metadata_set(skb, metalen);
5466 		break;
5467 	}
5468 
5469 	return act;
5470 }
5471 
5472 static int
5473 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5474 {
5475 	struct sk_buff *skb = *pskb;
5476 	int err, hroom, troom;
5477 
5478 	local_lock_nested_bh(&system_page_pool.bh_lock);
5479 	err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5480 	local_unlock_nested_bh(&system_page_pool.bh_lock);
5481 	if (!err)
5482 		return 0;
5483 
5484 	/* In case we have to go down the path and also linearize,
5485 	 * then lets do the pskb_expand_head() work just once here.
5486 	 */
5487 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5488 	troom = skb->tail + skb->data_len - skb->end;
5489 	err = pskb_expand_head(skb,
5490 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5491 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5492 	if (err)
5493 		return err;
5494 
5495 	return skb_linearize(skb);
5496 }
5497 
5498 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5499 				     struct xdp_buff *xdp,
5500 				     const struct bpf_prog *xdp_prog)
5501 {
5502 	struct sk_buff *skb = *pskb;
5503 	u32 mac_len, act = XDP_DROP;
5504 
5505 	/* Reinjected packets coming from act_mirred or similar should
5506 	 * not get XDP generic processing.
5507 	 */
5508 	if (skb_is_redirected(skb))
5509 		return XDP_PASS;
5510 
5511 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5512 	 * bytes. This is the guarantee that also native XDP provides,
5513 	 * thus we need to do it here as well.
5514 	 */
5515 	mac_len = skb->data - skb_mac_header(skb);
5516 	__skb_push(skb, mac_len);
5517 
5518 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5519 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5520 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5521 			goto do_drop;
5522 	}
5523 
5524 	__skb_pull(*pskb, mac_len);
5525 
5526 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5527 	switch (act) {
5528 	case XDP_REDIRECT:
5529 	case XDP_TX:
5530 	case XDP_PASS:
5531 		break;
5532 	default:
5533 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5534 		fallthrough;
5535 	case XDP_ABORTED:
5536 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5537 		fallthrough;
5538 	case XDP_DROP:
5539 	do_drop:
5540 		kfree_skb(*pskb);
5541 		break;
5542 	}
5543 
5544 	return act;
5545 }
5546 
5547 /* When doing generic XDP we have to bypass the qdisc layer and the
5548  * network taps in order to match in-driver-XDP behavior. This also means
5549  * that XDP packets are able to starve other packets going through a qdisc,
5550  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5551  * queues, so they do not have this starvation issue.
5552  */
5553 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5554 {
5555 	struct net_device *dev = skb->dev;
5556 	struct netdev_queue *txq;
5557 	bool free_skb = true;
5558 	int cpu, rc;
5559 
5560 	txq = netdev_core_pick_tx(dev, skb, NULL);
5561 	cpu = smp_processor_id();
5562 	HARD_TX_LOCK(dev, txq, cpu);
5563 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5564 		rc = netdev_start_xmit(skb, dev, txq, 0);
5565 		if (dev_xmit_complete(rc))
5566 			free_skb = false;
5567 	}
5568 	HARD_TX_UNLOCK(dev, txq);
5569 	if (free_skb) {
5570 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5571 		dev_core_stats_tx_dropped_inc(dev);
5572 		kfree_skb(skb);
5573 	}
5574 }
5575 
5576 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5577 
5578 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5579 {
5580 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5581 
5582 	if (xdp_prog) {
5583 		struct xdp_buff xdp;
5584 		u32 act;
5585 		int err;
5586 
5587 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5588 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5589 		if (act != XDP_PASS) {
5590 			switch (act) {
5591 			case XDP_REDIRECT:
5592 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5593 							      &xdp, xdp_prog);
5594 				if (err)
5595 					goto out_redir;
5596 				break;
5597 			case XDP_TX:
5598 				generic_xdp_tx(*pskb, xdp_prog);
5599 				break;
5600 			}
5601 			bpf_net_ctx_clear(bpf_net_ctx);
5602 			return XDP_DROP;
5603 		}
5604 		bpf_net_ctx_clear(bpf_net_ctx);
5605 	}
5606 	return XDP_PASS;
5607 out_redir:
5608 	bpf_net_ctx_clear(bpf_net_ctx);
5609 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5610 	return XDP_DROP;
5611 }
5612 EXPORT_SYMBOL_GPL(do_xdp_generic);
5613 
5614 static int netif_rx_internal(struct sk_buff *skb)
5615 {
5616 	int ret;
5617 
5618 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5619 
5620 	trace_netif_rx(skb);
5621 
5622 #ifdef CONFIG_RPS
5623 	if (static_branch_unlikely(&rps_needed)) {
5624 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5625 		int cpu;
5626 
5627 		rcu_read_lock();
5628 
5629 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5630 		if (cpu < 0)
5631 			cpu = smp_processor_id();
5632 
5633 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5634 
5635 		rcu_read_unlock();
5636 	} else
5637 #endif
5638 	{
5639 		unsigned int qtail;
5640 
5641 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5642 	}
5643 	return ret;
5644 }
5645 
5646 /**
5647  *	__netif_rx	-	Slightly optimized version of netif_rx
5648  *	@skb: buffer to post
5649  *
5650  *	This behaves as netif_rx except that it does not disable bottom halves.
5651  *	As a result this function may only be invoked from the interrupt context
5652  *	(either hard or soft interrupt).
5653  */
5654 int __netif_rx(struct sk_buff *skb)
5655 {
5656 	int ret;
5657 
5658 	lockdep_assert_once(hardirq_count() | softirq_count());
5659 
5660 	trace_netif_rx_entry(skb);
5661 	ret = netif_rx_internal(skb);
5662 	trace_netif_rx_exit(ret);
5663 	return ret;
5664 }
5665 EXPORT_SYMBOL(__netif_rx);
5666 
5667 /**
5668  *	netif_rx	-	post buffer to the network code
5669  *	@skb: buffer to post
5670  *
5671  *	This function receives a packet from a device driver and queues it for
5672  *	the upper (protocol) levels to process via the backlog NAPI device. It
5673  *	always succeeds. The buffer may be dropped during processing for
5674  *	congestion control or by the protocol layers.
5675  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5676  *	driver should use NAPI and GRO.
5677  *	This function can used from interrupt and from process context. The
5678  *	caller from process context must not disable interrupts before invoking
5679  *	this function.
5680  *
5681  *	return values:
5682  *	NET_RX_SUCCESS	(no congestion)
5683  *	NET_RX_DROP     (packet was dropped)
5684  *
5685  */
5686 int netif_rx(struct sk_buff *skb)
5687 {
5688 	bool need_bh_off = !(hardirq_count() | softirq_count());
5689 	int ret;
5690 
5691 	if (need_bh_off)
5692 		local_bh_disable();
5693 	trace_netif_rx_entry(skb);
5694 	ret = netif_rx_internal(skb);
5695 	trace_netif_rx_exit(ret);
5696 	if (need_bh_off)
5697 		local_bh_enable();
5698 	return ret;
5699 }
5700 EXPORT_SYMBOL(netif_rx);
5701 
5702 static __latent_entropy void net_tx_action(void)
5703 {
5704 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5705 
5706 	if (sd->completion_queue) {
5707 		struct sk_buff *clist;
5708 
5709 		local_irq_disable();
5710 		clist = sd->completion_queue;
5711 		sd->completion_queue = NULL;
5712 		local_irq_enable();
5713 
5714 		while (clist) {
5715 			struct sk_buff *skb = clist;
5716 
5717 			clist = clist->next;
5718 
5719 			WARN_ON(refcount_read(&skb->users));
5720 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5721 				trace_consume_skb(skb, net_tx_action);
5722 			else
5723 				trace_kfree_skb(skb, net_tx_action,
5724 						get_kfree_skb_cb(skb)->reason, NULL);
5725 
5726 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5727 				__kfree_skb(skb);
5728 			else
5729 				__napi_kfree_skb(skb,
5730 						 get_kfree_skb_cb(skb)->reason);
5731 		}
5732 	}
5733 
5734 	if (sd->output_queue) {
5735 		struct Qdisc *head;
5736 
5737 		local_irq_disable();
5738 		head = sd->output_queue;
5739 		sd->output_queue = NULL;
5740 		sd->output_queue_tailp = &sd->output_queue;
5741 		local_irq_enable();
5742 
5743 		rcu_read_lock();
5744 
5745 		while (head) {
5746 			struct Qdisc *q = head;
5747 			spinlock_t *root_lock = NULL;
5748 
5749 			head = head->next_sched;
5750 
5751 			/* We need to make sure head->next_sched is read
5752 			 * before clearing __QDISC_STATE_SCHED
5753 			 */
5754 			smp_mb__before_atomic();
5755 
5756 			if (!(q->flags & TCQ_F_NOLOCK)) {
5757 				root_lock = qdisc_lock(q);
5758 				spin_lock(root_lock);
5759 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5760 						     &q->state))) {
5761 				/* There is a synchronize_net() between
5762 				 * STATE_DEACTIVATED flag being set and
5763 				 * qdisc_reset()/some_qdisc_is_busy() in
5764 				 * dev_deactivate(), so we can safely bail out
5765 				 * early here to avoid data race between
5766 				 * qdisc_deactivate() and some_qdisc_is_busy()
5767 				 * for lockless qdisc.
5768 				 */
5769 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5770 				continue;
5771 			}
5772 
5773 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5774 			qdisc_run(q);
5775 			if (root_lock)
5776 				spin_unlock(root_lock);
5777 		}
5778 
5779 		rcu_read_unlock();
5780 	}
5781 
5782 	xfrm_dev_backlog(sd);
5783 }
5784 
5785 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5786 /* This hook is defined here for ATM LANE */
5787 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5788 			     unsigned char *addr) __read_mostly;
5789 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5790 #endif
5791 
5792 /**
5793  *	netdev_is_rx_handler_busy - check if receive handler is registered
5794  *	@dev: device to check
5795  *
5796  *	Check if a receive handler is already registered for a given device.
5797  *	Return true if there one.
5798  *
5799  *	The caller must hold the rtnl_mutex.
5800  */
5801 bool netdev_is_rx_handler_busy(struct net_device *dev)
5802 {
5803 	ASSERT_RTNL();
5804 	return dev && rtnl_dereference(dev->rx_handler);
5805 }
5806 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5807 
5808 /**
5809  *	netdev_rx_handler_register - register receive handler
5810  *	@dev: device to register a handler for
5811  *	@rx_handler: receive handler to register
5812  *	@rx_handler_data: data pointer that is used by rx handler
5813  *
5814  *	Register a receive handler for a device. This handler will then be
5815  *	called from __netif_receive_skb. A negative errno code is returned
5816  *	on a failure.
5817  *
5818  *	The caller must hold the rtnl_mutex.
5819  *
5820  *	For a general description of rx_handler, see enum rx_handler_result.
5821  */
5822 int netdev_rx_handler_register(struct net_device *dev,
5823 			       rx_handler_func_t *rx_handler,
5824 			       void *rx_handler_data)
5825 {
5826 	if (netdev_is_rx_handler_busy(dev))
5827 		return -EBUSY;
5828 
5829 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5830 		return -EINVAL;
5831 
5832 	/* Note: rx_handler_data must be set before rx_handler */
5833 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5834 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5835 
5836 	return 0;
5837 }
5838 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5839 
5840 /**
5841  *	netdev_rx_handler_unregister - unregister receive handler
5842  *	@dev: device to unregister a handler from
5843  *
5844  *	Unregister a receive handler from a device.
5845  *
5846  *	The caller must hold the rtnl_mutex.
5847  */
5848 void netdev_rx_handler_unregister(struct net_device *dev)
5849 {
5850 
5851 	ASSERT_RTNL();
5852 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5853 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5854 	 * section has a guarantee to see a non NULL rx_handler_data
5855 	 * as well.
5856 	 */
5857 	synchronize_net();
5858 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5859 }
5860 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5861 
5862 /*
5863  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5864  * the special handling of PFMEMALLOC skbs.
5865  */
5866 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5867 {
5868 	switch (skb->protocol) {
5869 	case htons(ETH_P_ARP):
5870 	case htons(ETH_P_IP):
5871 	case htons(ETH_P_IPV6):
5872 	case htons(ETH_P_8021Q):
5873 	case htons(ETH_P_8021AD):
5874 		return true;
5875 	default:
5876 		return false;
5877 	}
5878 }
5879 
5880 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5881 			     int *ret, struct net_device *orig_dev)
5882 {
5883 	if (nf_hook_ingress_active(skb)) {
5884 		int ingress_retval;
5885 
5886 		if (unlikely(*pt_prev)) {
5887 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5888 			*pt_prev = NULL;
5889 		}
5890 
5891 		rcu_read_lock();
5892 		ingress_retval = nf_hook_ingress(skb);
5893 		rcu_read_unlock();
5894 		return ingress_retval;
5895 	}
5896 	return 0;
5897 }
5898 
5899 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5900 				    struct packet_type **ppt_prev)
5901 {
5902 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5903 	struct packet_type *ptype, *pt_prev;
5904 	rx_handler_func_t *rx_handler;
5905 	struct sk_buff *skb = *pskb;
5906 	struct net_device *orig_dev;
5907 	bool deliver_exact = false;
5908 	int ret = NET_RX_DROP;
5909 	__be16 type;
5910 
5911 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5912 
5913 	trace_netif_receive_skb(skb);
5914 
5915 	orig_dev = skb->dev;
5916 
5917 	skb_reset_network_header(skb);
5918 #if !defined(CONFIG_DEBUG_NET)
5919 	/* We plan to no longer reset the transport header here.
5920 	 * Give some time to fuzzers and dev build to catch bugs
5921 	 * in network stacks.
5922 	 */
5923 	if (!skb_transport_header_was_set(skb))
5924 		skb_reset_transport_header(skb);
5925 #endif
5926 	skb_reset_mac_len(skb);
5927 
5928 	pt_prev = NULL;
5929 
5930 another_round:
5931 	skb->skb_iif = skb->dev->ifindex;
5932 
5933 	__this_cpu_inc(softnet_data.processed);
5934 
5935 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5936 		int ret2;
5937 
5938 		migrate_disable();
5939 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5940 				      &skb);
5941 		migrate_enable();
5942 
5943 		if (ret2 != XDP_PASS) {
5944 			ret = NET_RX_DROP;
5945 			goto out;
5946 		}
5947 	}
5948 
5949 	if (eth_type_vlan(skb->protocol)) {
5950 		skb = skb_vlan_untag(skb);
5951 		if (unlikely(!skb))
5952 			goto out;
5953 	}
5954 
5955 	if (skb_skip_tc_classify(skb))
5956 		goto skip_classify;
5957 
5958 	if (pfmemalloc)
5959 		goto skip_taps;
5960 
5961 	list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5962 				list) {
5963 		if (unlikely(pt_prev))
5964 			ret = deliver_skb(skb, pt_prev, orig_dev);
5965 		pt_prev = ptype;
5966 	}
5967 
5968 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5969 		if (unlikely(pt_prev))
5970 			ret = deliver_skb(skb, pt_prev, orig_dev);
5971 		pt_prev = ptype;
5972 	}
5973 
5974 skip_taps:
5975 #ifdef CONFIG_NET_INGRESS
5976 	if (static_branch_unlikely(&ingress_needed_key)) {
5977 		bool another = false;
5978 
5979 		nf_skip_egress(skb, true);
5980 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5981 					 &another);
5982 		if (another)
5983 			goto another_round;
5984 		if (!skb)
5985 			goto out;
5986 
5987 		nf_skip_egress(skb, false);
5988 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5989 			goto out;
5990 	}
5991 #endif
5992 	skb_reset_redirect(skb);
5993 skip_classify:
5994 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
5995 		drop_reason = SKB_DROP_REASON_PFMEMALLOC;
5996 		goto drop;
5997 	}
5998 
5999 	if (skb_vlan_tag_present(skb)) {
6000 		if (unlikely(pt_prev)) {
6001 			ret = deliver_skb(skb, pt_prev, orig_dev);
6002 			pt_prev = NULL;
6003 		}
6004 		if (vlan_do_receive(&skb))
6005 			goto another_round;
6006 		else if (unlikely(!skb))
6007 			goto out;
6008 	}
6009 
6010 	rx_handler = rcu_dereference(skb->dev->rx_handler);
6011 	if (rx_handler) {
6012 		if (unlikely(pt_prev)) {
6013 			ret = deliver_skb(skb, pt_prev, orig_dev);
6014 			pt_prev = NULL;
6015 		}
6016 		switch (rx_handler(&skb)) {
6017 		case RX_HANDLER_CONSUMED:
6018 			ret = NET_RX_SUCCESS;
6019 			goto out;
6020 		case RX_HANDLER_ANOTHER:
6021 			goto another_round;
6022 		case RX_HANDLER_EXACT:
6023 			deliver_exact = true;
6024 			break;
6025 		case RX_HANDLER_PASS:
6026 			break;
6027 		default:
6028 			BUG();
6029 		}
6030 	}
6031 
6032 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
6033 check_vlan_id:
6034 		if (skb_vlan_tag_get_id(skb)) {
6035 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
6036 			 * find vlan device.
6037 			 */
6038 			skb->pkt_type = PACKET_OTHERHOST;
6039 		} else if (eth_type_vlan(skb->protocol)) {
6040 			/* Outer header is 802.1P with vlan 0, inner header is
6041 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
6042 			 * not find vlan dev for vlan id 0.
6043 			 */
6044 			__vlan_hwaccel_clear_tag(skb);
6045 			skb = skb_vlan_untag(skb);
6046 			if (unlikely(!skb))
6047 				goto out;
6048 			if (vlan_do_receive(&skb))
6049 				/* After stripping off 802.1P header with vlan 0
6050 				 * vlan dev is found for inner header.
6051 				 */
6052 				goto another_round;
6053 			else if (unlikely(!skb))
6054 				goto out;
6055 			else
6056 				/* We have stripped outer 802.1P vlan 0 header.
6057 				 * But could not find vlan dev.
6058 				 * check again for vlan id to set OTHERHOST.
6059 				 */
6060 				goto check_vlan_id;
6061 		}
6062 		/* Note: we might in the future use prio bits
6063 		 * and set skb->priority like in vlan_do_receive()
6064 		 * For the time being, just ignore Priority Code Point
6065 		 */
6066 		__vlan_hwaccel_clear_tag(skb);
6067 	}
6068 
6069 	type = skb->protocol;
6070 
6071 	/* deliver only exact match when indicated */
6072 	if (likely(!deliver_exact)) {
6073 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6074 				       &ptype_base[ntohs(type) &
6075 						   PTYPE_HASH_MASK]);
6076 
6077 		/* orig_dev and skb->dev could belong to different netns;
6078 		 * Even in such case we need to traverse only the list
6079 		 * coming from skb->dev, as the ptype owner (packet socket)
6080 		 * will use dev_net(skb->dev) to do namespace filtering.
6081 		 */
6082 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6083 				       &dev_net_rcu(skb->dev)->ptype_specific);
6084 	}
6085 
6086 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6087 			       &orig_dev->ptype_specific);
6088 
6089 	if (unlikely(skb->dev != orig_dev)) {
6090 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6091 				       &skb->dev->ptype_specific);
6092 	}
6093 
6094 	if (pt_prev) {
6095 		*ppt_prev = pt_prev;
6096 	} else {
6097 drop:
6098 		if (!deliver_exact)
6099 			dev_core_stats_rx_dropped_inc(skb->dev);
6100 		else
6101 			dev_core_stats_rx_nohandler_inc(skb->dev);
6102 
6103 		kfree_skb_reason(skb, drop_reason);
6104 		/* Jamal, now you will not able to escape explaining
6105 		 * me how you were going to use this. :-)
6106 		 */
6107 		ret = NET_RX_DROP;
6108 	}
6109 
6110 out:
6111 	/* The invariant here is that if *ppt_prev is not NULL
6112 	 * then skb should also be non-NULL.
6113 	 *
6114 	 * Apparently *ppt_prev assignment above holds this invariant due to
6115 	 * skb dereferencing near it.
6116 	 */
6117 	*pskb = skb;
6118 	return ret;
6119 }
6120 
6121 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
6122 {
6123 	struct net_device *orig_dev = skb->dev;
6124 	struct packet_type *pt_prev = NULL;
6125 	int ret;
6126 
6127 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6128 	if (pt_prev)
6129 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
6130 					 skb->dev, pt_prev, orig_dev);
6131 	return ret;
6132 }
6133 
6134 /**
6135  *	netif_receive_skb_core - special purpose version of netif_receive_skb
6136  *	@skb: buffer to process
6137  *
6138  *	More direct receive version of netif_receive_skb().  It should
6139  *	only be used by callers that have a need to skip RPS and Generic XDP.
6140  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
6141  *
6142  *	This function may only be called from softirq context and interrupts
6143  *	should be enabled.
6144  *
6145  *	Return values (usually ignored):
6146  *	NET_RX_SUCCESS: no congestion
6147  *	NET_RX_DROP: packet was dropped
6148  */
6149 int netif_receive_skb_core(struct sk_buff *skb)
6150 {
6151 	int ret;
6152 
6153 	rcu_read_lock();
6154 	ret = __netif_receive_skb_one_core(skb, false);
6155 	rcu_read_unlock();
6156 
6157 	return ret;
6158 }
6159 EXPORT_SYMBOL(netif_receive_skb_core);
6160 
6161 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6162 						  struct packet_type *pt_prev,
6163 						  struct net_device *orig_dev)
6164 {
6165 	struct sk_buff *skb, *next;
6166 
6167 	if (!pt_prev)
6168 		return;
6169 	if (list_empty(head))
6170 		return;
6171 	if (pt_prev->list_func != NULL)
6172 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6173 				   ip_list_rcv, head, pt_prev, orig_dev);
6174 	else
6175 		list_for_each_entry_safe(skb, next, head, list) {
6176 			skb_list_del_init(skb);
6177 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6178 		}
6179 }
6180 
6181 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6182 {
6183 	/* Fast-path assumptions:
6184 	 * - There is no RX handler.
6185 	 * - Only one packet_type matches.
6186 	 * If either of these fails, we will end up doing some per-packet
6187 	 * processing in-line, then handling the 'last ptype' for the whole
6188 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
6189 	 * because the 'last ptype' must be constant across the sublist, and all
6190 	 * other ptypes are handled per-packet.
6191 	 */
6192 	/* Current (common) ptype of sublist */
6193 	struct packet_type *pt_curr = NULL;
6194 	/* Current (common) orig_dev of sublist */
6195 	struct net_device *od_curr = NULL;
6196 	struct sk_buff *skb, *next;
6197 	LIST_HEAD(sublist);
6198 
6199 	list_for_each_entry_safe(skb, next, head, list) {
6200 		struct net_device *orig_dev = skb->dev;
6201 		struct packet_type *pt_prev = NULL;
6202 
6203 		skb_list_del_init(skb);
6204 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6205 		if (!pt_prev)
6206 			continue;
6207 		if (pt_curr != pt_prev || od_curr != orig_dev) {
6208 			/* dispatch old sublist */
6209 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6210 			/* start new sublist */
6211 			INIT_LIST_HEAD(&sublist);
6212 			pt_curr = pt_prev;
6213 			od_curr = orig_dev;
6214 		}
6215 		list_add_tail(&skb->list, &sublist);
6216 	}
6217 
6218 	/* dispatch final sublist */
6219 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6220 }
6221 
6222 static int __netif_receive_skb(struct sk_buff *skb)
6223 {
6224 	int ret;
6225 
6226 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6227 		unsigned int noreclaim_flag;
6228 
6229 		/*
6230 		 * PFMEMALLOC skbs are special, they should
6231 		 * - be delivered to SOCK_MEMALLOC sockets only
6232 		 * - stay away from userspace
6233 		 * - have bounded memory usage
6234 		 *
6235 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
6236 		 * context down to all allocation sites.
6237 		 */
6238 		noreclaim_flag = memalloc_noreclaim_save();
6239 		ret = __netif_receive_skb_one_core(skb, true);
6240 		memalloc_noreclaim_restore(noreclaim_flag);
6241 	} else
6242 		ret = __netif_receive_skb_one_core(skb, false);
6243 
6244 	return ret;
6245 }
6246 
6247 static void __netif_receive_skb_list(struct list_head *head)
6248 {
6249 	unsigned long noreclaim_flag = 0;
6250 	struct sk_buff *skb, *next;
6251 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6252 
6253 	list_for_each_entry_safe(skb, next, head, list) {
6254 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6255 			struct list_head sublist;
6256 
6257 			/* Handle the previous sublist */
6258 			list_cut_before(&sublist, head, &skb->list);
6259 			if (!list_empty(&sublist))
6260 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6261 			pfmemalloc = !pfmemalloc;
6262 			/* See comments in __netif_receive_skb */
6263 			if (pfmemalloc)
6264 				noreclaim_flag = memalloc_noreclaim_save();
6265 			else
6266 				memalloc_noreclaim_restore(noreclaim_flag);
6267 		}
6268 	}
6269 	/* Handle the remaining sublist */
6270 	if (!list_empty(head))
6271 		__netif_receive_skb_list_core(head, pfmemalloc);
6272 	/* Restore pflags */
6273 	if (pfmemalloc)
6274 		memalloc_noreclaim_restore(noreclaim_flag);
6275 }
6276 
6277 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6278 {
6279 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6280 	struct bpf_prog *new = xdp->prog;
6281 	int ret = 0;
6282 
6283 	switch (xdp->command) {
6284 	case XDP_SETUP_PROG:
6285 		rcu_assign_pointer(dev->xdp_prog, new);
6286 		if (old)
6287 			bpf_prog_put(old);
6288 
6289 		if (old && !new) {
6290 			static_branch_dec(&generic_xdp_needed_key);
6291 		} else if (new && !old) {
6292 			static_branch_inc(&generic_xdp_needed_key);
6293 			netif_disable_lro(dev);
6294 			dev_disable_gro_hw(dev);
6295 		}
6296 		break;
6297 
6298 	default:
6299 		ret = -EINVAL;
6300 		break;
6301 	}
6302 
6303 	return ret;
6304 }
6305 
6306 static int netif_receive_skb_internal(struct sk_buff *skb)
6307 {
6308 	int ret;
6309 
6310 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6311 
6312 	if (skb_defer_rx_timestamp(skb))
6313 		return NET_RX_SUCCESS;
6314 
6315 	rcu_read_lock();
6316 #ifdef CONFIG_RPS
6317 	if (static_branch_unlikely(&rps_needed)) {
6318 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6319 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6320 
6321 		if (cpu >= 0) {
6322 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6323 			rcu_read_unlock();
6324 			return ret;
6325 		}
6326 	}
6327 #endif
6328 	ret = __netif_receive_skb(skb);
6329 	rcu_read_unlock();
6330 	return ret;
6331 }
6332 
6333 void netif_receive_skb_list_internal(struct list_head *head)
6334 {
6335 	struct sk_buff *skb, *next;
6336 	LIST_HEAD(sublist);
6337 
6338 	list_for_each_entry_safe(skb, next, head, list) {
6339 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6340 				    skb);
6341 		skb_list_del_init(skb);
6342 		if (!skb_defer_rx_timestamp(skb))
6343 			list_add_tail(&skb->list, &sublist);
6344 	}
6345 	list_splice_init(&sublist, head);
6346 
6347 	rcu_read_lock();
6348 #ifdef CONFIG_RPS
6349 	if (static_branch_unlikely(&rps_needed)) {
6350 		list_for_each_entry_safe(skb, next, head, list) {
6351 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6352 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6353 
6354 			if (cpu >= 0) {
6355 				/* Will be handled, remove from list */
6356 				skb_list_del_init(skb);
6357 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6358 			}
6359 		}
6360 	}
6361 #endif
6362 	__netif_receive_skb_list(head);
6363 	rcu_read_unlock();
6364 }
6365 
6366 /**
6367  *	netif_receive_skb - process receive buffer from network
6368  *	@skb: buffer to process
6369  *
6370  *	netif_receive_skb() is the main receive data processing function.
6371  *	It always succeeds. The buffer may be dropped during processing
6372  *	for congestion control or by the protocol layers.
6373  *
6374  *	This function may only be called from softirq context and interrupts
6375  *	should be enabled.
6376  *
6377  *	Return values (usually ignored):
6378  *	NET_RX_SUCCESS: no congestion
6379  *	NET_RX_DROP: packet was dropped
6380  */
6381 int netif_receive_skb(struct sk_buff *skb)
6382 {
6383 	int ret;
6384 
6385 	trace_netif_receive_skb_entry(skb);
6386 
6387 	ret = netif_receive_skb_internal(skb);
6388 	trace_netif_receive_skb_exit(ret);
6389 
6390 	return ret;
6391 }
6392 EXPORT_SYMBOL(netif_receive_skb);
6393 
6394 /**
6395  *	netif_receive_skb_list - process many receive buffers from network
6396  *	@head: list of skbs to process.
6397  *
6398  *	Since return value of netif_receive_skb() is normally ignored, and
6399  *	wouldn't be meaningful for a list, this function returns void.
6400  *
6401  *	This function may only be called from softirq context and interrupts
6402  *	should be enabled.
6403  */
6404 void netif_receive_skb_list(struct list_head *head)
6405 {
6406 	struct sk_buff *skb;
6407 
6408 	if (list_empty(head))
6409 		return;
6410 	if (trace_netif_receive_skb_list_entry_enabled()) {
6411 		list_for_each_entry(skb, head, list)
6412 			trace_netif_receive_skb_list_entry(skb);
6413 	}
6414 	netif_receive_skb_list_internal(head);
6415 	trace_netif_receive_skb_list_exit(0);
6416 }
6417 EXPORT_SYMBOL(netif_receive_skb_list);
6418 
6419 /* Network device is going away, flush any packets still pending */
6420 static void flush_backlog(struct work_struct *work)
6421 {
6422 	struct sk_buff *skb, *tmp;
6423 	struct sk_buff_head list;
6424 	struct softnet_data *sd;
6425 
6426 	__skb_queue_head_init(&list);
6427 	local_bh_disable();
6428 	sd = this_cpu_ptr(&softnet_data);
6429 
6430 	backlog_lock_irq_disable(sd);
6431 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6432 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6433 			__skb_unlink(skb, &sd->input_pkt_queue);
6434 			__skb_queue_tail(&list, skb);
6435 			rps_input_queue_head_incr(sd);
6436 		}
6437 	}
6438 	backlog_unlock_irq_enable(sd);
6439 
6440 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6441 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6442 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6443 			__skb_unlink(skb, &sd->process_queue);
6444 			__skb_queue_tail(&list, skb);
6445 			rps_input_queue_head_incr(sd);
6446 		}
6447 	}
6448 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6449 	local_bh_enable();
6450 
6451 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6452 }
6453 
6454 static bool flush_required(int cpu)
6455 {
6456 #if IS_ENABLED(CONFIG_RPS)
6457 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6458 	bool do_flush;
6459 
6460 	backlog_lock_irq_disable(sd);
6461 
6462 	/* as insertion into process_queue happens with the rps lock held,
6463 	 * process_queue access may race only with dequeue
6464 	 */
6465 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6466 		   !skb_queue_empty_lockless(&sd->process_queue);
6467 	backlog_unlock_irq_enable(sd);
6468 
6469 	return do_flush;
6470 #endif
6471 	/* without RPS we can't safely check input_pkt_queue: during a
6472 	 * concurrent remote skb_queue_splice() we can detect as empty both
6473 	 * input_pkt_queue and process_queue even if the latter could end-up
6474 	 * containing a lot of packets.
6475 	 */
6476 	return true;
6477 }
6478 
6479 struct flush_backlogs {
6480 	cpumask_t		flush_cpus;
6481 	struct work_struct	w[];
6482 };
6483 
6484 static struct flush_backlogs *flush_backlogs_alloc(void)
6485 {
6486 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6487 		       GFP_KERNEL);
6488 }
6489 
6490 static struct flush_backlogs *flush_backlogs_fallback;
6491 static DEFINE_MUTEX(flush_backlogs_mutex);
6492 
6493 static void flush_all_backlogs(void)
6494 {
6495 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6496 	unsigned int cpu;
6497 
6498 	if (!ptr) {
6499 		mutex_lock(&flush_backlogs_mutex);
6500 		ptr = flush_backlogs_fallback;
6501 	}
6502 	cpumask_clear(&ptr->flush_cpus);
6503 
6504 	cpus_read_lock();
6505 
6506 	for_each_online_cpu(cpu) {
6507 		if (flush_required(cpu)) {
6508 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6509 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6510 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6511 		}
6512 	}
6513 
6514 	/* we can have in flight packet[s] on the cpus we are not flushing,
6515 	 * synchronize_net() in unregister_netdevice_many() will take care of
6516 	 * them.
6517 	 */
6518 	for_each_cpu(cpu, &ptr->flush_cpus)
6519 		flush_work(&ptr->w[cpu]);
6520 
6521 	cpus_read_unlock();
6522 
6523 	if (ptr != flush_backlogs_fallback)
6524 		kfree(ptr);
6525 	else
6526 		mutex_unlock(&flush_backlogs_mutex);
6527 }
6528 
6529 static void net_rps_send_ipi(struct softnet_data *remsd)
6530 {
6531 #ifdef CONFIG_RPS
6532 	while (remsd) {
6533 		struct softnet_data *next = remsd->rps_ipi_next;
6534 
6535 		if (cpu_online(remsd->cpu))
6536 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6537 		remsd = next;
6538 	}
6539 #endif
6540 }
6541 
6542 /*
6543  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6544  * Note: called with local irq disabled, but exits with local irq enabled.
6545  */
6546 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6547 {
6548 #ifdef CONFIG_RPS
6549 	struct softnet_data *remsd = sd->rps_ipi_list;
6550 
6551 	if (!use_backlog_threads() && remsd) {
6552 		sd->rps_ipi_list = NULL;
6553 
6554 		local_irq_enable();
6555 
6556 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6557 		net_rps_send_ipi(remsd);
6558 	} else
6559 #endif
6560 		local_irq_enable();
6561 }
6562 
6563 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6564 {
6565 #ifdef CONFIG_RPS
6566 	return !use_backlog_threads() && sd->rps_ipi_list;
6567 #else
6568 	return false;
6569 #endif
6570 }
6571 
6572 static int process_backlog(struct napi_struct *napi, int quota)
6573 {
6574 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6575 	bool again = true;
6576 	int work = 0;
6577 
6578 	/* Check if we have pending ipi, its better to send them now,
6579 	 * not waiting net_rx_action() end.
6580 	 */
6581 	if (sd_has_rps_ipi_waiting(sd)) {
6582 		local_irq_disable();
6583 		net_rps_action_and_irq_enable(sd);
6584 	}
6585 
6586 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6587 	while (again) {
6588 		struct sk_buff *skb;
6589 
6590 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6591 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6592 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6593 			rcu_read_lock();
6594 			__netif_receive_skb(skb);
6595 			rcu_read_unlock();
6596 			if (++work >= quota) {
6597 				rps_input_queue_head_add(sd, work);
6598 				return work;
6599 			}
6600 
6601 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6602 		}
6603 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6604 
6605 		backlog_lock_irq_disable(sd);
6606 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6607 			/*
6608 			 * Inline a custom version of __napi_complete().
6609 			 * only current cpu owns and manipulates this napi,
6610 			 * and NAPI_STATE_SCHED is the only possible flag set
6611 			 * on backlog.
6612 			 * We can use a plain write instead of clear_bit(),
6613 			 * and we dont need an smp_mb() memory barrier.
6614 			 */
6615 			napi->state &= NAPIF_STATE_THREADED;
6616 			again = false;
6617 		} else {
6618 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6619 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6620 						   &sd->process_queue);
6621 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6622 		}
6623 		backlog_unlock_irq_enable(sd);
6624 	}
6625 
6626 	if (work)
6627 		rps_input_queue_head_add(sd, work);
6628 	return work;
6629 }
6630 
6631 /**
6632  * __napi_schedule - schedule for receive
6633  * @n: entry to schedule
6634  *
6635  * The entry's receive function will be scheduled to run.
6636  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6637  */
6638 void __napi_schedule(struct napi_struct *n)
6639 {
6640 	unsigned long flags;
6641 
6642 	local_irq_save(flags);
6643 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6644 	local_irq_restore(flags);
6645 }
6646 EXPORT_SYMBOL(__napi_schedule);
6647 
6648 /**
6649  *	napi_schedule_prep - check if napi can be scheduled
6650  *	@n: napi context
6651  *
6652  * Test if NAPI routine is already running, and if not mark
6653  * it as running.  This is used as a condition variable to
6654  * insure only one NAPI poll instance runs.  We also make
6655  * sure there is no pending NAPI disable.
6656  */
6657 bool napi_schedule_prep(struct napi_struct *n)
6658 {
6659 	unsigned long new, val = READ_ONCE(n->state);
6660 
6661 	do {
6662 		if (unlikely(val & NAPIF_STATE_DISABLE))
6663 			return false;
6664 		new = val | NAPIF_STATE_SCHED;
6665 
6666 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6667 		 * This was suggested by Alexander Duyck, as compiler
6668 		 * emits better code than :
6669 		 * if (val & NAPIF_STATE_SCHED)
6670 		 *     new |= NAPIF_STATE_MISSED;
6671 		 */
6672 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6673 						   NAPIF_STATE_MISSED;
6674 	} while (!try_cmpxchg(&n->state, &val, new));
6675 
6676 	return !(val & NAPIF_STATE_SCHED);
6677 }
6678 EXPORT_SYMBOL(napi_schedule_prep);
6679 
6680 /**
6681  * __napi_schedule_irqoff - schedule for receive
6682  * @n: entry to schedule
6683  *
6684  * Variant of __napi_schedule() assuming hard irqs are masked.
6685  *
6686  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6687  * because the interrupt disabled assumption might not be true
6688  * due to force-threaded interrupts and spinlock substitution.
6689  */
6690 void __napi_schedule_irqoff(struct napi_struct *n)
6691 {
6692 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6693 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6694 	else
6695 		__napi_schedule(n);
6696 }
6697 EXPORT_SYMBOL(__napi_schedule_irqoff);
6698 
6699 bool napi_complete_done(struct napi_struct *n, int work_done)
6700 {
6701 	unsigned long flags, val, new, timeout = 0;
6702 	bool ret = true;
6703 
6704 	/*
6705 	 * 1) Don't let napi dequeue from the cpu poll list
6706 	 *    just in case its running on a different cpu.
6707 	 * 2) If we are busy polling, do nothing here, we have
6708 	 *    the guarantee we will be called later.
6709 	 */
6710 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6711 				 NAPIF_STATE_IN_BUSY_POLL)))
6712 		return false;
6713 
6714 	if (work_done) {
6715 		if (n->gro.bitmask)
6716 			timeout = napi_get_gro_flush_timeout(n);
6717 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6718 	}
6719 	if (n->defer_hard_irqs_count > 0) {
6720 		n->defer_hard_irqs_count--;
6721 		timeout = napi_get_gro_flush_timeout(n);
6722 		if (timeout)
6723 			ret = false;
6724 	}
6725 
6726 	/*
6727 	 * When the NAPI instance uses a timeout and keeps postponing
6728 	 * it, we need to bound somehow the time packets are kept in
6729 	 * the GRO layer.
6730 	 */
6731 	gro_flush_normal(&n->gro, !!timeout);
6732 
6733 	if (unlikely(!list_empty(&n->poll_list))) {
6734 		/* If n->poll_list is not empty, we need to mask irqs */
6735 		local_irq_save(flags);
6736 		list_del_init(&n->poll_list);
6737 		local_irq_restore(flags);
6738 	}
6739 	WRITE_ONCE(n->list_owner, -1);
6740 
6741 	val = READ_ONCE(n->state);
6742 	do {
6743 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6744 
6745 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6746 			      NAPIF_STATE_SCHED_THREADED |
6747 			      NAPIF_STATE_PREFER_BUSY_POLL);
6748 
6749 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6750 		 * because we will call napi->poll() one more time.
6751 		 * This C code was suggested by Alexander Duyck to help gcc.
6752 		 */
6753 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6754 						    NAPIF_STATE_SCHED;
6755 	} while (!try_cmpxchg(&n->state, &val, new));
6756 
6757 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6758 		__napi_schedule(n);
6759 		return false;
6760 	}
6761 
6762 	if (timeout)
6763 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6764 			      HRTIMER_MODE_REL_PINNED);
6765 	return ret;
6766 }
6767 EXPORT_SYMBOL(napi_complete_done);
6768 
6769 static void skb_defer_free_flush(void)
6770 {
6771 	struct llist_node *free_list;
6772 	struct sk_buff *skb, *next;
6773 	struct skb_defer_node *sdn;
6774 	int node;
6775 
6776 	for_each_node(node) {
6777 		sdn = this_cpu_ptr(net_hotdata.skb_defer_nodes) + node;
6778 
6779 		if (llist_empty(&sdn->defer_list))
6780 			continue;
6781 		atomic_long_set(&sdn->defer_count, 0);
6782 		free_list = llist_del_all(&sdn->defer_list);
6783 
6784 		llist_for_each_entry_safe(skb, next, free_list, ll_node) {
6785 			prefetch(next);
6786 			napi_consume_skb(skb, 1);
6787 		}
6788 	}
6789 }
6790 
6791 #if defined(CONFIG_NET_RX_BUSY_POLL)
6792 
6793 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6794 {
6795 	if (!skip_schedule) {
6796 		gro_normal_list(&napi->gro);
6797 		__napi_schedule(napi);
6798 		return;
6799 	}
6800 
6801 	/* Flush too old packets. If HZ < 1000, flush all packets */
6802 	gro_flush_normal(&napi->gro, HZ >= 1000);
6803 
6804 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6805 }
6806 
6807 enum {
6808 	NAPI_F_PREFER_BUSY_POLL	= 1,
6809 	NAPI_F_END_ON_RESCHED	= 2,
6810 };
6811 
6812 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6813 			   unsigned flags, u16 budget)
6814 {
6815 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6816 	bool skip_schedule = false;
6817 	unsigned long timeout;
6818 	int rc;
6819 
6820 	/* Busy polling means there is a high chance device driver hard irq
6821 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6822 	 * set in napi_schedule_prep().
6823 	 * Since we are about to call napi->poll() once more, we can safely
6824 	 * clear NAPI_STATE_MISSED.
6825 	 *
6826 	 * Note: x86 could use a single "lock and ..." instruction
6827 	 * to perform these two clear_bit()
6828 	 */
6829 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6830 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6831 
6832 	local_bh_disable();
6833 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6834 
6835 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6836 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6837 		timeout = napi_get_gro_flush_timeout(napi);
6838 		if (napi->defer_hard_irqs_count && timeout) {
6839 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6840 			skip_schedule = true;
6841 		}
6842 	}
6843 
6844 	/* All we really want here is to re-enable device interrupts.
6845 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6846 	 */
6847 	rc = napi->poll(napi, budget);
6848 	/* We can't gro_normal_list() here, because napi->poll() might have
6849 	 * rearmed the napi (napi_complete_done()) in which case it could
6850 	 * already be running on another CPU.
6851 	 */
6852 	trace_napi_poll(napi, rc, budget);
6853 	netpoll_poll_unlock(have_poll_lock);
6854 	if (rc == budget)
6855 		__busy_poll_stop(napi, skip_schedule);
6856 	bpf_net_ctx_clear(bpf_net_ctx);
6857 	local_bh_enable();
6858 }
6859 
6860 static void __napi_busy_loop(unsigned int napi_id,
6861 		      bool (*loop_end)(void *, unsigned long),
6862 		      void *loop_end_arg, unsigned flags, u16 budget)
6863 {
6864 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6865 	int (*napi_poll)(struct napi_struct *napi, int budget);
6866 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6867 	void *have_poll_lock = NULL;
6868 	struct napi_struct *napi;
6869 
6870 	WARN_ON_ONCE(!rcu_read_lock_held());
6871 
6872 restart:
6873 	napi_poll = NULL;
6874 
6875 	napi = napi_by_id(napi_id);
6876 	if (!napi)
6877 		return;
6878 
6879 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6880 		preempt_disable();
6881 	for (;;) {
6882 		int work = 0;
6883 
6884 		local_bh_disable();
6885 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6886 		if (!napi_poll) {
6887 			unsigned long val = READ_ONCE(napi->state);
6888 
6889 			/* If multiple threads are competing for this napi,
6890 			 * we avoid dirtying napi->state as much as we can.
6891 			 */
6892 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6893 				   NAPIF_STATE_IN_BUSY_POLL)) {
6894 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6895 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6896 				goto count;
6897 			}
6898 			if (cmpxchg(&napi->state, val,
6899 				    val | NAPIF_STATE_IN_BUSY_POLL |
6900 					  NAPIF_STATE_SCHED) != val) {
6901 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6902 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6903 				goto count;
6904 			}
6905 			have_poll_lock = netpoll_poll_lock(napi);
6906 			napi_poll = napi->poll;
6907 		}
6908 		work = napi_poll(napi, budget);
6909 		trace_napi_poll(napi, work, budget);
6910 		gro_normal_list(&napi->gro);
6911 count:
6912 		if (work > 0)
6913 			__NET_ADD_STATS(dev_net(napi->dev),
6914 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6915 		skb_defer_free_flush();
6916 		bpf_net_ctx_clear(bpf_net_ctx);
6917 		local_bh_enable();
6918 
6919 		if (!loop_end || loop_end(loop_end_arg, start_time))
6920 			break;
6921 
6922 		if (unlikely(need_resched())) {
6923 			if (flags & NAPI_F_END_ON_RESCHED)
6924 				break;
6925 			if (napi_poll)
6926 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6927 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6928 				preempt_enable();
6929 			rcu_read_unlock();
6930 			cond_resched();
6931 			rcu_read_lock();
6932 			if (loop_end(loop_end_arg, start_time))
6933 				return;
6934 			goto restart;
6935 		}
6936 		cpu_relax();
6937 	}
6938 	if (napi_poll)
6939 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6940 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6941 		preempt_enable();
6942 }
6943 
6944 void napi_busy_loop_rcu(unsigned int napi_id,
6945 			bool (*loop_end)(void *, unsigned long),
6946 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6947 {
6948 	unsigned flags = NAPI_F_END_ON_RESCHED;
6949 
6950 	if (prefer_busy_poll)
6951 		flags |= NAPI_F_PREFER_BUSY_POLL;
6952 
6953 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6954 }
6955 
6956 void napi_busy_loop(unsigned int napi_id,
6957 		    bool (*loop_end)(void *, unsigned long),
6958 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6959 {
6960 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6961 
6962 	rcu_read_lock();
6963 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6964 	rcu_read_unlock();
6965 }
6966 EXPORT_SYMBOL(napi_busy_loop);
6967 
6968 void napi_suspend_irqs(unsigned int napi_id)
6969 {
6970 	struct napi_struct *napi;
6971 
6972 	rcu_read_lock();
6973 	napi = napi_by_id(napi_id);
6974 	if (napi) {
6975 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6976 
6977 		if (timeout)
6978 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6979 				      HRTIMER_MODE_REL_PINNED);
6980 	}
6981 	rcu_read_unlock();
6982 }
6983 
6984 void napi_resume_irqs(unsigned int napi_id)
6985 {
6986 	struct napi_struct *napi;
6987 
6988 	rcu_read_lock();
6989 	napi = napi_by_id(napi_id);
6990 	if (napi) {
6991 		/* If irq_suspend_timeout is set to 0 between the call to
6992 		 * napi_suspend_irqs and now, the original value still
6993 		 * determines the safety timeout as intended and napi_watchdog
6994 		 * will resume irq processing.
6995 		 */
6996 		if (napi_get_irq_suspend_timeout(napi)) {
6997 			local_bh_disable();
6998 			napi_schedule(napi);
6999 			local_bh_enable();
7000 		}
7001 	}
7002 	rcu_read_unlock();
7003 }
7004 
7005 #endif /* CONFIG_NET_RX_BUSY_POLL */
7006 
7007 static void __napi_hash_add_with_id(struct napi_struct *napi,
7008 				    unsigned int napi_id)
7009 {
7010 	napi->gro.cached_napi_id = napi_id;
7011 
7012 	WRITE_ONCE(napi->napi_id, napi_id);
7013 	hlist_add_head_rcu(&napi->napi_hash_node,
7014 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
7015 }
7016 
7017 static void napi_hash_add_with_id(struct napi_struct *napi,
7018 				  unsigned int napi_id)
7019 {
7020 	unsigned long flags;
7021 
7022 	spin_lock_irqsave(&napi_hash_lock, flags);
7023 	WARN_ON_ONCE(napi_by_id(napi_id));
7024 	__napi_hash_add_with_id(napi, napi_id);
7025 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7026 }
7027 
7028 static void napi_hash_add(struct napi_struct *napi)
7029 {
7030 	unsigned long flags;
7031 
7032 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
7033 		return;
7034 
7035 	spin_lock_irqsave(&napi_hash_lock, flags);
7036 
7037 	/* 0..NR_CPUS range is reserved for sender_cpu use */
7038 	do {
7039 		if (unlikely(!napi_id_valid(++napi_gen_id)))
7040 			napi_gen_id = MIN_NAPI_ID;
7041 	} while (napi_by_id(napi_gen_id));
7042 
7043 	__napi_hash_add_with_id(napi, napi_gen_id);
7044 
7045 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7046 }
7047 
7048 /* Warning : caller is responsible to make sure rcu grace period
7049  * is respected before freeing memory containing @napi
7050  */
7051 static void napi_hash_del(struct napi_struct *napi)
7052 {
7053 	unsigned long flags;
7054 
7055 	spin_lock_irqsave(&napi_hash_lock, flags);
7056 
7057 	hlist_del_init_rcu(&napi->napi_hash_node);
7058 
7059 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7060 }
7061 
7062 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
7063 {
7064 	struct napi_struct *napi;
7065 
7066 	napi = container_of(timer, struct napi_struct, timer);
7067 
7068 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
7069 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
7070 	 */
7071 	if (!napi_disable_pending(napi) &&
7072 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
7073 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
7074 		__napi_schedule_irqoff(napi);
7075 	}
7076 
7077 	return HRTIMER_NORESTART;
7078 }
7079 
7080 static void napi_stop_kthread(struct napi_struct *napi)
7081 {
7082 	unsigned long val, new;
7083 
7084 	/* Wait until the napi STATE_THREADED is unset. */
7085 	while (true) {
7086 		val = READ_ONCE(napi->state);
7087 
7088 		/* If napi kthread own this napi or the napi is idle,
7089 		 * STATE_THREADED can be unset here.
7090 		 */
7091 		if ((val & NAPIF_STATE_SCHED_THREADED) ||
7092 		    !(val & NAPIF_STATE_SCHED)) {
7093 			new = val & (~(NAPIF_STATE_THREADED |
7094 				       NAPIF_STATE_THREADED_BUSY_POLL));
7095 		} else {
7096 			msleep(20);
7097 			continue;
7098 		}
7099 
7100 		if (try_cmpxchg(&napi->state, &val, new))
7101 			break;
7102 	}
7103 
7104 	/* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
7105 	 * the kthread.
7106 	 */
7107 	while (true) {
7108 		if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state))
7109 			break;
7110 
7111 		msleep(20);
7112 	}
7113 
7114 	kthread_stop(napi->thread);
7115 	napi->thread = NULL;
7116 }
7117 
7118 static void napi_set_threaded_state(struct napi_struct *napi,
7119 				    enum netdev_napi_threaded threaded_mode)
7120 {
7121 	bool threaded = threaded_mode != NETDEV_NAPI_THREADED_DISABLED;
7122 	bool busy_poll = threaded_mode == NETDEV_NAPI_THREADED_BUSY_POLL;
7123 
7124 	assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7125 	assign_bit(NAPI_STATE_THREADED_BUSY_POLL, &napi->state, busy_poll);
7126 }
7127 
7128 int napi_set_threaded(struct napi_struct *napi,
7129 		      enum netdev_napi_threaded threaded)
7130 {
7131 	if (threaded) {
7132 		if (!napi->thread) {
7133 			int err = napi_kthread_create(napi);
7134 
7135 			if (err)
7136 				return err;
7137 		}
7138 	}
7139 
7140 	if (napi->config)
7141 		napi->config->threaded = threaded;
7142 
7143 	/* Setting/unsetting threaded mode on a napi might not immediately
7144 	 * take effect, if the current napi instance is actively being
7145 	 * polled. In this case, the switch between threaded mode and
7146 	 * softirq mode will happen in the next round of napi_schedule().
7147 	 * This should not cause hiccups/stalls to the live traffic.
7148 	 */
7149 	if (!threaded && napi->thread) {
7150 		napi_stop_kthread(napi);
7151 	} else {
7152 		/* Make sure kthread is created before THREADED bit is set. */
7153 		smp_mb__before_atomic();
7154 		napi_set_threaded_state(napi, threaded);
7155 	}
7156 
7157 	return 0;
7158 }
7159 
7160 int netif_set_threaded(struct net_device *dev,
7161 		       enum netdev_napi_threaded threaded)
7162 {
7163 	struct napi_struct *napi;
7164 	int i, err = 0;
7165 
7166 	netdev_assert_locked_or_invisible(dev);
7167 
7168 	if (threaded) {
7169 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
7170 			if (!napi->thread) {
7171 				err = napi_kthread_create(napi);
7172 				if (err) {
7173 					threaded = NETDEV_NAPI_THREADED_DISABLED;
7174 					break;
7175 				}
7176 			}
7177 		}
7178 	}
7179 
7180 	WRITE_ONCE(dev->threaded, threaded);
7181 
7182 	/* The error should not occur as the kthreads are already created. */
7183 	list_for_each_entry(napi, &dev->napi_list, dev_list)
7184 		WARN_ON_ONCE(napi_set_threaded(napi, threaded));
7185 
7186 	/* Override the config for all NAPIs even if currently not listed */
7187 	for (i = 0; i < dev->num_napi_configs; i++)
7188 		dev->napi_config[i].threaded = threaded;
7189 
7190 	return err;
7191 }
7192 
7193 /**
7194  * netif_threaded_enable() - enable threaded NAPIs
7195  * @dev: net_device instance
7196  *
7197  * Enable threaded mode for the NAPI instances of the device. This may be useful
7198  * for devices where multiple NAPI instances get scheduled by a single
7199  * interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7200  * than the core where IRQ is mapped.
7201  *
7202  * This function should be called before @dev is registered.
7203  */
7204 void netif_threaded_enable(struct net_device *dev)
7205 {
7206 	WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7207 }
7208 EXPORT_SYMBOL(netif_threaded_enable);
7209 
7210 /**
7211  * netif_queue_set_napi - Associate queue with the napi
7212  * @dev: device to which NAPI and queue belong
7213  * @queue_index: Index of queue
7214  * @type: queue type as RX or TX
7215  * @napi: NAPI context, pass NULL to clear previously set NAPI
7216  *
7217  * Set queue with its corresponding napi context. This should be done after
7218  * registering the NAPI handler for the queue-vector and the queues have been
7219  * mapped to the corresponding interrupt vector.
7220  */
7221 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7222 			  enum netdev_queue_type type, struct napi_struct *napi)
7223 {
7224 	struct netdev_rx_queue *rxq;
7225 	struct netdev_queue *txq;
7226 
7227 	if (WARN_ON_ONCE(napi && !napi->dev))
7228 		return;
7229 	netdev_ops_assert_locked_or_invisible(dev);
7230 
7231 	switch (type) {
7232 	case NETDEV_QUEUE_TYPE_RX:
7233 		rxq = __netif_get_rx_queue(dev, queue_index);
7234 		rxq->napi = napi;
7235 		return;
7236 	case NETDEV_QUEUE_TYPE_TX:
7237 		txq = netdev_get_tx_queue(dev, queue_index);
7238 		txq->napi = napi;
7239 		return;
7240 	default:
7241 		return;
7242 	}
7243 }
7244 EXPORT_SYMBOL(netif_queue_set_napi);
7245 
7246 static void
7247 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7248 		      const cpumask_t *mask)
7249 {
7250 	struct napi_struct *napi =
7251 		container_of(notify, struct napi_struct, notify);
7252 #ifdef CONFIG_RFS_ACCEL
7253 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7254 	int err;
7255 #endif
7256 
7257 	if (napi->config && napi->dev->irq_affinity_auto)
7258 		cpumask_copy(&napi->config->affinity_mask, mask);
7259 
7260 #ifdef CONFIG_RFS_ACCEL
7261 	if (napi->dev->rx_cpu_rmap_auto) {
7262 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7263 		if (err)
7264 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7265 				    err);
7266 	}
7267 #endif
7268 }
7269 
7270 #ifdef CONFIG_RFS_ACCEL
7271 static void netif_napi_affinity_release(struct kref *ref)
7272 {
7273 	struct napi_struct *napi =
7274 		container_of(ref, struct napi_struct, notify.kref);
7275 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7276 
7277 	netdev_assert_locked(napi->dev);
7278 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7279 				   &napi->state));
7280 
7281 	if (!napi->dev->rx_cpu_rmap_auto)
7282 		return;
7283 	rmap->obj[napi->napi_rmap_idx] = NULL;
7284 	napi->napi_rmap_idx = -1;
7285 	cpu_rmap_put(rmap);
7286 }
7287 
7288 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7289 {
7290 	if (dev->rx_cpu_rmap_auto)
7291 		return 0;
7292 
7293 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7294 	if (!dev->rx_cpu_rmap)
7295 		return -ENOMEM;
7296 
7297 	dev->rx_cpu_rmap_auto = true;
7298 	return 0;
7299 }
7300 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7301 
7302 static void netif_del_cpu_rmap(struct net_device *dev)
7303 {
7304 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7305 
7306 	if (!dev->rx_cpu_rmap_auto)
7307 		return;
7308 
7309 	/* Free the rmap */
7310 	cpu_rmap_put(rmap);
7311 	dev->rx_cpu_rmap = NULL;
7312 	dev->rx_cpu_rmap_auto = false;
7313 }
7314 
7315 #else
7316 static void netif_napi_affinity_release(struct kref *ref)
7317 {
7318 }
7319 
7320 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7321 {
7322 	return 0;
7323 }
7324 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7325 
7326 static void netif_del_cpu_rmap(struct net_device *dev)
7327 {
7328 }
7329 #endif
7330 
7331 void netif_set_affinity_auto(struct net_device *dev)
7332 {
7333 	unsigned int i, maxqs, numa;
7334 
7335 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7336 	numa = dev_to_node(&dev->dev);
7337 
7338 	for (i = 0; i < maxqs; i++)
7339 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7340 				&dev->napi_config[i].affinity_mask);
7341 
7342 	dev->irq_affinity_auto = true;
7343 }
7344 EXPORT_SYMBOL(netif_set_affinity_auto);
7345 
7346 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7347 {
7348 	int rc;
7349 
7350 	netdev_assert_locked_or_invisible(napi->dev);
7351 
7352 	if (napi->irq == irq)
7353 		return;
7354 
7355 	/* Remove existing resources */
7356 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7357 		irq_set_affinity_notifier(napi->irq, NULL);
7358 
7359 	napi->irq = irq;
7360 	if (irq < 0 ||
7361 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7362 		return;
7363 
7364 	/* Abort for buggy drivers */
7365 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7366 		return;
7367 
7368 #ifdef CONFIG_RFS_ACCEL
7369 	if (napi->dev->rx_cpu_rmap_auto) {
7370 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7371 		if (rc < 0)
7372 			return;
7373 
7374 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7375 		napi->napi_rmap_idx = rc;
7376 	}
7377 #endif
7378 
7379 	/* Use core IRQ notifier */
7380 	napi->notify.notify = netif_napi_irq_notify;
7381 	napi->notify.release = netif_napi_affinity_release;
7382 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7383 	if (rc) {
7384 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7385 			    rc);
7386 		goto put_rmap;
7387 	}
7388 
7389 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7390 	return;
7391 
7392 put_rmap:
7393 #ifdef CONFIG_RFS_ACCEL
7394 	if (napi->dev->rx_cpu_rmap_auto) {
7395 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7396 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7397 		napi->napi_rmap_idx = -1;
7398 	}
7399 #endif
7400 	napi->notify.notify = NULL;
7401 	napi->notify.release = NULL;
7402 }
7403 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7404 
7405 static void napi_restore_config(struct napi_struct *n)
7406 {
7407 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7408 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7409 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7410 
7411 	if (n->dev->irq_affinity_auto &&
7412 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7413 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7414 
7415 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7416 	 * napi_hash_add to generate one for us.
7417 	 */
7418 	if (n->config->napi_id) {
7419 		napi_hash_add_with_id(n, n->config->napi_id);
7420 	} else {
7421 		napi_hash_add(n);
7422 		n->config->napi_id = n->napi_id;
7423 	}
7424 
7425 	WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7426 }
7427 
7428 static void napi_save_config(struct napi_struct *n)
7429 {
7430 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7431 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7432 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7433 	napi_hash_del(n);
7434 }
7435 
7436 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7437  * inherit an existing ID try to insert it at the right position.
7438  */
7439 static void
7440 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7441 {
7442 	unsigned int new_id, pos_id;
7443 	struct list_head *higher;
7444 	struct napi_struct *pos;
7445 
7446 	new_id = UINT_MAX;
7447 	if (napi->config && napi->config->napi_id)
7448 		new_id = napi->config->napi_id;
7449 
7450 	higher = &dev->napi_list;
7451 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7452 		if (napi_id_valid(pos->napi_id))
7453 			pos_id = pos->napi_id;
7454 		else if (pos->config)
7455 			pos_id = pos->config->napi_id;
7456 		else
7457 			pos_id = UINT_MAX;
7458 
7459 		if (pos_id <= new_id)
7460 			break;
7461 		higher = &pos->dev_list;
7462 	}
7463 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7464 }
7465 
7466 /* Double check that napi_get_frags() allocates skbs with
7467  * skb->head being backed by slab, not a page fragment.
7468  * This is to make sure bug fixed in 3226b158e67c
7469  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7470  * does not accidentally come back.
7471  */
7472 static void napi_get_frags_check(struct napi_struct *napi)
7473 {
7474 	struct sk_buff *skb;
7475 
7476 	local_bh_disable();
7477 	skb = napi_get_frags(napi);
7478 	WARN_ON_ONCE(skb && skb->head_frag);
7479 	napi_free_frags(napi);
7480 	local_bh_enable();
7481 }
7482 
7483 void netif_napi_add_weight_locked(struct net_device *dev,
7484 				  struct napi_struct *napi,
7485 				  int (*poll)(struct napi_struct *, int),
7486 				  int weight)
7487 {
7488 	netdev_assert_locked(dev);
7489 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7490 		return;
7491 
7492 	INIT_LIST_HEAD(&napi->poll_list);
7493 	INIT_HLIST_NODE(&napi->napi_hash_node);
7494 	hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7495 	gro_init(&napi->gro);
7496 	napi->skb = NULL;
7497 	napi->poll = poll;
7498 	if (weight > NAPI_POLL_WEIGHT)
7499 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7500 				weight);
7501 	napi->weight = weight;
7502 	napi->dev = dev;
7503 #ifdef CONFIG_NETPOLL
7504 	napi->poll_owner = -1;
7505 #endif
7506 	napi->list_owner = -1;
7507 	set_bit(NAPI_STATE_SCHED, &napi->state);
7508 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7509 	netif_napi_dev_list_add(dev, napi);
7510 
7511 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7512 	 * configuration will be loaded in napi_enable
7513 	 */
7514 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7515 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7516 
7517 	napi_get_frags_check(napi);
7518 	/* Create kthread for this napi if dev->threaded is set.
7519 	 * Clear dev->threaded if kthread creation failed so that
7520 	 * threaded mode will not be enabled in napi_enable().
7521 	 */
7522 	if (napi_get_threaded_config(dev, napi))
7523 		if (napi_kthread_create(napi))
7524 			dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7525 	netif_napi_set_irq_locked(napi, -1);
7526 }
7527 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7528 
7529 void napi_disable_locked(struct napi_struct *n)
7530 {
7531 	unsigned long val, new;
7532 
7533 	might_sleep();
7534 	netdev_assert_locked(n->dev);
7535 
7536 	set_bit(NAPI_STATE_DISABLE, &n->state);
7537 
7538 	val = READ_ONCE(n->state);
7539 	do {
7540 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7541 			usleep_range(20, 200);
7542 			val = READ_ONCE(n->state);
7543 		}
7544 
7545 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7546 		new &= ~(NAPIF_STATE_THREADED |
7547 			 NAPIF_STATE_THREADED_BUSY_POLL |
7548 			 NAPIF_STATE_PREFER_BUSY_POLL);
7549 	} while (!try_cmpxchg(&n->state, &val, new));
7550 
7551 	hrtimer_cancel(&n->timer);
7552 
7553 	if (n->config)
7554 		napi_save_config(n);
7555 	else
7556 		napi_hash_del(n);
7557 
7558 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7559 }
7560 EXPORT_SYMBOL(napi_disable_locked);
7561 
7562 /**
7563  * napi_disable() - prevent NAPI from scheduling
7564  * @n: NAPI context
7565  *
7566  * Stop NAPI from being scheduled on this context.
7567  * Waits till any outstanding processing completes.
7568  * Takes netdev_lock() for associated net_device.
7569  */
7570 void napi_disable(struct napi_struct *n)
7571 {
7572 	netdev_lock(n->dev);
7573 	napi_disable_locked(n);
7574 	netdev_unlock(n->dev);
7575 }
7576 EXPORT_SYMBOL(napi_disable);
7577 
7578 void napi_enable_locked(struct napi_struct *n)
7579 {
7580 	unsigned long new, val = READ_ONCE(n->state);
7581 
7582 	if (n->config)
7583 		napi_restore_config(n);
7584 	else
7585 		napi_hash_add(n);
7586 
7587 	do {
7588 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7589 
7590 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7591 		if (n->dev->threaded && n->thread)
7592 			new |= NAPIF_STATE_THREADED;
7593 	} while (!try_cmpxchg(&n->state, &val, new));
7594 }
7595 EXPORT_SYMBOL(napi_enable_locked);
7596 
7597 /**
7598  * napi_enable() - enable NAPI scheduling
7599  * @n: NAPI context
7600  *
7601  * Enable scheduling of a NAPI instance.
7602  * Must be paired with napi_disable().
7603  * Takes netdev_lock() for associated net_device.
7604  */
7605 void napi_enable(struct napi_struct *n)
7606 {
7607 	netdev_lock(n->dev);
7608 	napi_enable_locked(n);
7609 	netdev_unlock(n->dev);
7610 }
7611 EXPORT_SYMBOL(napi_enable);
7612 
7613 /* Must be called in process context */
7614 void __netif_napi_del_locked(struct napi_struct *napi)
7615 {
7616 	netdev_assert_locked(napi->dev);
7617 
7618 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7619 		return;
7620 
7621 	/* Make sure NAPI is disabled (or was never enabled). */
7622 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7623 
7624 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7625 		irq_set_affinity_notifier(napi->irq, NULL);
7626 
7627 	if (napi->config) {
7628 		napi->index = -1;
7629 		napi->config = NULL;
7630 	}
7631 
7632 	list_del_rcu(&napi->dev_list);
7633 	napi_free_frags(napi);
7634 
7635 	gro_cleanup(&napi->gro);
7636 
7637 	if (napi->thread) {
7638 		kthread_stop(napi->thread);
7639 		napi->thread = NULL;
7640 	}
7641 }
7642 EXPORT_SYMBOL(__netif_napi_del_locked);
7643 
7644 static int __napi_poll(struct napi_struct *n, bool *repoll)
7645 {
7646 	int work, weight;
7647 
7648 	weight = n->weight;
7649 
7650 	/* This NAPI_STATE_SCHED test is for avoiding a race
7651 	 * with netpoll's poll_napi().  Only the entity which
7652 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7653 	 * actually make the ->poll() call.  Therefore we avoid
7654 	 * accidentally calling ->poll() when NAPI is not scheduled.
7655 	 */
7656 	work = 0;
7657 	if (napi_is_scheduled(n)) {
7658 		work = n->poll(n, weight);
7659 		trace_napi_poll(n, work, weight);
7660 
7661 		xdp_do_check_flushed(n);
7662 	}
7663 
7664 	if (unlikely(work > weight))
7665 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7666 				n->poll, work, weight);
7667 
7668 	if (likely(work < weight))
7669 		return work;
7670 
7671 	/* Drivers must not modify the NAPI state if they
7672 	 * consume the entire weight.  In such cases this code
7673 	 * still "owns" the NAPI instance and therefore can
7674 	 * move the instance around on the list at-will.
7675 	 */
7676 	if (unlikely(napi_disable_pending(n))) {
7677 		napi_complete(n);
7678 		return work;
7679 	}
7680 
7681 	/* The NAPI context has more processing work, but busy-polling
7682 	 * is preferred. Exit early.
7683 	 */
7684 	if (napi_prefer_busy_poll(n)) {
7685 		if (napi_complete_done(n, work)) {
7686 			/* If timeout is not set, we need to make sure
7687 			 * that the NAPI is re-scheduled.
7688 			 */
7689 			napi_schedule(n);
7690 		}
7691 		return work;
7692 	}
7693 
7694 	/* Flush too old packets. If HZ < 1000, flush all packets */
7695 	gro_flush_normal(&n->gro, HZ >= 1000);
7696 
7697 	/* Some drivers may have called napi_schedule
7698 	 * prior to exhausting their budget.
7699 	 */
7700 	if (unlikely(!list_empty(&n->poll_list))) {
7701 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7702 			     n->dev ? n->dev->name : "backlog");
7703 		return work;
7704 	}
7705 
7706 	*repoll = true;
7707 
7708 	return work;
7709 }
7710 
7711 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7712 {
7713 	bool do_repoll = false;
7714 	void *have;
7715 	int work;
7716 
7717 	list_del_init(&n->poll_list);
7718 
7719 	have = netpoll_poll_lock(n);
7720 
7721 	work = __napi_poll(n, &do_repoll);
7722 
7723 	if (do_repoll) {
7724 #if defined(CONFIG_DEBUG_NET)
7725 		if (unlikely(!napi_is_scheduled(n)))
7726 			pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7727 				n->dev->name, n->poll);
7728 #endif
7729 		list_add_tail(&n->poll_list, repoll);
7730 	}
7731 	netpoll_poll_unlock(have);
7732 
7733 	return work;
7734 }
7735 
7736 static int napi_thread_wait(struct napi_struct *napi)
7737 {
7738 	set_current_state(TASK_INTERRUPTIBLE);
7739 
7740 	while (!kthread_should_stop()) {
7741 		/* Testing SCHED_THREADED bit here to make sure the current
7742 		 * kthread owns this napi and could poll on this napi.
7743 		 * Testing SCHED bit is not enough because SCHED bit might be
7744 		 * set by some other busy poll thread or by napi_disable().
7745 		 */
7746 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7747 			WARN_ON(!list_empty(&napi->poll_list));
7748 			__set_current_state(TASK_RUNNING);
7749 			return 0;
7750 		}
7751 
7752 		schedule();
7753 		set_current_state(TASK_INTERRUPTIBLE);
7754 	}
7755 	__set_current_state(TASK_RUNNING);
7756 
7757 	return -1;
7758 }
7759 
7760 static void napi_threaded_poll_loop(struct napi_struct *napi, bool busy_poll)
7761 {
7762 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7763 	struct softnet_data *sd;
7764 	unsigned long last_qs = jiffies;
7765 
7766 	for (;;) {
7767 		bool repoll = false;
7768 		void *have;
7769 
7770 		local_bh_disable();
7771 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7772 
7773 		sd = this_cpu_ptr(&softnet_data);
7774 		sd->in_napi_threaded_poll = true;
7775 
7776 		have = netpoll_poll_lock(napi);
7777 		__napi_poll(napi, &repoll);
7778 		netpoll_poll_unlock(have);
7779 
7780 		sd->in_napi_threaded_poll = false;
7781 		barrier();
7782 
7783 		if (sd_has_rps_ipi_waiting(sd)) {
7784 			local_irq_disable();
7785 			net_rps_action_and_irq_enable(sd);
7786 		}
7787 		skb_defer_free_flush();
7788 		bpf_net_ctx_clear(bpf_net_ctx);
7789 
7790 		/* When busy poll is enabled, the old packets are not flushed in
7791 		 * napi_complete_done. So flush them here.
7792 		 */
7793 		if (busy_poll)
7794 			gro_flush_normal(&napi->gro, HZ >= 1000);
7795 		local_bh_enable();
7796 
7797 		/* Call cond_resched here to avoid watchdog warnings. */
7798 		if (repoll || busy_poll) {
7799 			rcu_softirq_qs_periodic(last_qs);
7800 			cond_resched();
7801 		}
7802 
7803 		if (!repoll)
7804 			break;
7805 	}
7806 }
7807 
7808 static int napi_threaded_poll(void *data)
7809 {
7810 	struct napi_struct *napi = data;
7811 	bool want_busy_poll;
7812 	bool in_busy_poll;
7813 	unsigned long val;
7814 
7815 	while (!napi_thread_wait(napi)) {
7816 		val = READ_ONCE(napi->state);
7817 
7818 		want_busy_poll = val & NAPIF_STATE_THREADED_BUSY_POLL;
7819 		in_busy_poll = val & NAPIF_STATE_IN_BUSY_POLL;
7820 
7821 		if (unlikely(val & NAPIF_STATE_DISABLE))
7822 			want_busy_poll = false;
7823 
7824 		if (want_busy_poll != in_busy_poll)
7825 			assign_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state,
7826 				   want_busy_poll);
7827 
7828 		napi_threaded_poll_loop(napi, want_busy_poll);
7829 	}
7830 
7831 	return 0;
7832 }
7833 
7834 static __latent_entropy void net_rx_action(void)
7835 {
7836 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7837 	unsigned long time_limit = jiffies +
7838 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7839 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7840 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7841 	LIST_HEAD(list);
7842 	LIST_HEAD(repoll);
7843 
7844 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7845 start:
7846 	sd->in_net_rx_action = true;
7847 	local_irq_disable();
7848 	list_splice_init(&sd->poll_list, &list);
7849 	local_irq_enable();
7850 
7851 	for (;;) {
7852 		struct napi_struct *n;
7853 
7854 		skb_defer_free_flush();
7855 
7856 		if (list_empty(&list)) {
7857 			if (list_empty(&repoll)) {
7858 				sd->in_net_rx_action = false;
7859 				barrier();
7860 				/* We need to check if ____napi_schedule()
7861 				 * had refilled poll_list while
7862 				 * sd->in_net_rx_action was true.
7863 				 */
7864 				if (!list_empty(&sd->poll_list))
7865 					goto start;
7866 				if (!sd_has_rps_ipi_waiting(sd))
7867 					goto end;
7868 			}
7869 			break;
7870 		}
7871 
7872 		n = list_first_entry(&list, struct napi_struct, poll_list);
7873 		budget -= napi_poll(n, &repoll);
7874 
7875 		/* If softirq window is exhausted then punt.
7876 		 * Allow this to run for 2 jiffies since which will allow
7877 		 * an average latency of 1.5/HZ.
7878 		 */
7879 		if (unlikely(budget <= 0 ||
7880 			     time_after_eq(jiffies, time_limit))) {
7881 			/* Pairs with READ_ONCE() in softnet_seq_show() */
7882 			WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7883 			break;
7884 		}
7885 	}
7886 
7887 	local_irq_disable();
7888 
7889 	list_splice_tail_init(&sd->poll_list, &list);
7890 	list_splice_tail(&repoll, &list);
7891 	list_splice(&list, &sd->poll_list);
7892 	if (!list_empty(&sd->poll_list))
7893 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7894 	else
7895 		sd->in_net_rx_action = false;
7896 
7897 	net_rps_action_and_irq_enable(sd);
7898 end:
7899 	bpf_net_ctx_clear(bpf_net_ctx);
7900 }
7901 
7902 struct netdev_adjacent {
7903 	struct net_device *dev;
7904 	netdevice_tracker dev_tracker;
7905 
7906 	/* upper master flag, there can only be one master device per list */
7907 	bool master;
7908 
7909 	/* lookup ignore flag */
7910 	bool ignore;
7911 
7912 	/* counter for the number of times this device was added to us */
7913 	u16 ref_nr;
7914 
7915 	/* private field for the users */
7916 	void *private;
7917 
7918 	struct list_head list;
7919 	struct rcu_head rcu;
7920 };
7921 
7922 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7923 						 struct list_head *adj_list)
7924 {
7925 	struct netdev_adjacent *adj;
7926 
7927 	list_for_each_entry(adj, adj_list, list) {
7928 		if (adj->dev == adj_dev)
7929 			return adj;
7930 	}
7931 	return NULL;
7932 }
7933 
7934 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7935 				    struct netdev_nested_priv *priv)
7936 {
7937 	struct net_device *dev = (struct net_device *)priv->data;
7938 
7939 	return upper_dev == dev;
7940 }
7941 
7942 /**
7943  * netdev_has_upper_dev - Check if device is linked to an upper device
7944  * @dev: device
7945  * @upper_dev: upper device to check
7946  *
7947  * Find out if a device is linked to specified upper device and return true
7948  * in case it is. Note that this checks only immediate upper device,
7949  * not through a complete stack of devices. The caller must hold the RTNL lock.
7950  */
7951 bool netdev_has_upper_dev(struct net_device *dev,
7952 			  struct net_device *upper_dev)
7953 {
7954 	struct netdev_nested_priv priv = {
7955 		.data = (void *)upper_dev,
7956 	};
7957 
7958 	ASSERT_RTNL();
7959 
7960 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7961 					     &priv);
7962 }
7963 EXPORT_SYMBOL(netdev_has_upper_dev);
7964 
7965 /**
7966  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7967  * @dev: device
7968  * @upper_dev: upper device to check
7969  *
7970  * Find out if a device is linked to specified upper device and return true
7971  * in case it is. Note that this checks the entire upper device chain.
7972  * The caller must hold rcu lock.
7973  */
7974 
7975 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7976 				  struct net_device *upper_dev)
7977 {
7978 	struct netdev_nested_priv priv = {
7979 		.data = (void *)upper_dev,
7980 	};
7981 
7982 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7983 					       &priv);
7984 }
7985 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7986 
7987 /**
7988  * netdev_has_any_upper_dev - Check if device is linked to some device
7989  * @dev: device
7990  *
7991  * Find out if a device is linked to an upper device and return true in case
7992  * it is. The caller must hold the RTNL lock.
7993  */
7994 bool netdev_has_any_upper_dev(struct net_device *dev)
7995 {
7996 	ASSERT_RTNL();
7997 
7998 	return !list_empty(&dev->adj_list.upper);
7999 }
8000 EXPORT_SYMBOL(netdev_has_any_upper_dev);
8001 
8002 /**
8003  * netdev_master_upper_dev_get - Get master upper device
8004  * @dev: device
8005  *
8006  * Find a master upper device and return pointer to it or NULL in case
8007  * it's not there. The caller must hold the RTNL lock.
8008  */
8009 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
8010 {
8011 	struct netdev_adjacent *upper;
8012 
8013 	ASSERT_RTNL();
8014 
8015 	if (list_empty(&dev->adj_list.upper))
8016 		return NULL;
8017 
8018 	upper = list_first_entry(&dev->adj_list.upper,
8019 				 struct netdev_adjacent, list);
8020 	if (likely(upper->master))
8021 		return upper->dev;
8022 	return NULL;
8023 }
8024 EXPORT_SYMBOL(netdev_master_upper_dev_get);
8025 
8026 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
8027 {
8028 	struct netdev_adjacent *upper;
8029 
8030 	ASSERT_RTNL();
8031 
8032 	if (list_empty(&dev->adj_list.upper))
8033 		return NULL;
8034 
8035 	upper = list_first_entry(&dev->adj_list.upper,
8036 				 struct netdev_adjacent, list);
8037 	if (likely(upper->master) && !upper->ignore)
8038 		return upper->dev;
8039 	return NULL;
8040 }
8041 
8042 /**
8043  * netdev_has_any_lower_dev - Check if device is linked to some device
8044  * @dev: device
8045  *
8046  * Find out if a device is linked to a lower device and return true in case
8047  * it is. The caller must hold the RTNL lock.
8048  */
8049 static bool netdev_has_any_lower_dev(struct net_device *dev)
8050 {
8051 	ASSERT_RTNL();
8052 
8053 	return !list_empty(&dev->adj_list.lower);
8054 }
8055 
8056 void *netdev_adjacent_get_private(struct list_head *adj_list)
8057 {
8058 	struct netdev_adjacent *adj;
8059 
8060 	adj = list_entry(adj_list, struct netdev_adjacent, list);
8061 
8062 	return adj->private;
8063 }
8064 EXPORT_SYMBOL(netdev_adjacent_get_private);
8065 
8066 /**
8067  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
8068  * @dev: device
8069  * @iter: list_head ** of the current position
8070  *
8071  * Gets the next device from the dev's upper list, starting from iter
8072  * position. The caller must hold RCU read lock.
8073  */
8074 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
8075 						 struct list_head **iter)
8076 {
8077 	struct netdev_adjacent *upper;
8078 
8079 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8080 
8081 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8082 
8083 	if (&upper->list == &dev->adj_list.upper)
8084 		return NULL;
8085 
8086 	*iter = &upper->list;
8087 
8088 	return upper->dev;
8089 }
8090 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
8091 
8092 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
8093 						  struct list_head **iter,
8094 						  bool *ignore)
8095 {
8096 	struct netdev_adjacent *upper;
8097 
8098 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
8099 
8100 	if (&upper->list == &dev->adj_list.upper)
8101 		return NULL;
8102 
8103 	*iter = &upper->list;
8104 	*ignore = upper->ignore;
8105 
8106 	return upper->dev;
8107 }
8108 
8109 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
8110 						    struct list_head **iter)
8111 {
8112 	struct netdev_adjacent *upper;
8113 
8114 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8115 
8116 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8117 
8118 	if (&upper->list == &dev->adj_list.upper)
8119 		return NULL;
8120 
8121 	*iter = &upper->list;
8122 
8123 	return upper->dev;
8124 }
8125 
8126 static int __netdev_walk_all_upper_dev(struct net_device *dev,
8127 				       int (*fn)(struct net_device *dev,
8128 					 struct netdev_nested_priv *priv),
8129 				       struct netdev_nested_priv *priv)
8130 {
8131 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8132 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8133 	int ret, cur = 0;
8134 	bool ignore;
8135 
8136 	now = dev;
8137 	iter = &dev->adj_list.upper;
8138 
8139 	while (1) {
8140 		if (now != dev) {
8141 			ret = fn(now, priv);
8142 			if (ret)
8143 				return ret;
8144 		}
8145 
8146 		next = NULL;
8147 		while (1) {
8148 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
8149 			if (!udev)
8150 				break;
8151 			if (ignore)
8152 				continue;
8153 
8154 			next = udev;
8155 			niter = &udev->adj_list.upper;
8156 			dev_stack[cur] = now;
8157 			iter_stack[cur++] = iter;
8158 			break;
8159 		}
8160 
8161 		if (!next) {
8162 			if (!cur)
8163 				return 0;
8164 			next = dev_stack[--cur];
8165 			niter = iter_stack[cur];
8166 		}
8167 
8168 		now = next;
8169 		iter = niter;
8170 	}
8171 
8172 	return 0;
8173 }
8174 
8175 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
8176 				  int (*fn)(struct net_device *dev,
8177 					    struct netdev_nested_priv *priv),
8178 				  struct netdev_nested_priv *priv)
8179 {
8180 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8181 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8182 	int ret, cur = 0;
8183 
8184 	now = dev;
8185 	iter = &dev->adj_list.upper;
8186 
8187 	while (1) {
8188 		if (now != dev) {
8189 			ret = fn(now, priv);
8190 			if (ret)
8191 				return ret;
8192 		}
8193 
8194 		next = NULL;
8195 		while (1) {
8196 			udev = netdev_next_upper_dev_rcu(now, &iter);
8197 			if (!udev)
8198 				break;
8199 
8200 			next = udev;
8201 			niter = &udev->adj_list.upper;
8202 			dev_stack[cur] = now;
8203 			iter_stack[cur++] = iter;
8204 			break;
8205 		}
8206 
8207 		if (!next) {
8208 			if (!cur)
8209 				return 0;
8210 			next = dev_stack[--cur];
8211 			niter = iter_stack[cur];
8212 		}
8213 
8214 		now = next;
8215 		iter = niter;
8216 	}
8217 
8218 	return 0;
8219 }
8220 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8221 
8222 static bool __netdev_has_upper_dev(struct net_device *dev,
8223 				   struct net_device *upper_dev)
8224 {
8225 	struct netdev_nested_priv priv = {
8226 		.flags = 0,
8227 		.data = (void *)upper_dev,
8228 	};
8229 
8230 	ASSERT_RTNL();
8231 
8232 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8233 					   &priv);
8234 }
8235 
8236 /**
8237  * netdev_lower_get_next_private - Get the next ->private from the
8238  *				   lower neighbour list
8239  * @dev: device
8240  * @iter: list_head ** of the current position
8241  *
8242  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8243  * list, starting from iter position. The caller must hold either hold the
8244  * RTNL lock or its own locking that guarantees that the neighbour lower
8245  * list will remain unchanged.
8246  */
8247 void *netdev_lower_get_next_private(struct net_device *dev,
8248 				    struct list_head **iter)
8249 {
8250 	struct netdev_adjacent *lower;
8251 
8252 	lower = list_entry(*iter, struct netdev_adjacent, list);
8253 
8254 	if (&lower->list == &dev->adj_list.lower)
8255 		return NULL;
8256 
8257 	*iter = lower->list.next;
8258 
8259 	return lower->private;
8260 }
8261 EXPORT_SYMBOL(netdev_lower_get_next_private);
8262 
8263 /**
8264  * netdev_lower_get_next_private_rcu - Get the next ->private from the
8265  *				       lower neighbour list, RCU
8266  *				       variant
8267  * @dev: device
8268  * @iter: list_head ** of the current position
8269  *
8270  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8271  * list, starting from iter position. The caller must hold RCU read lock.
8272  */
8273 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8274 					struct list_head **iter)
8275 {
8276 	struct netdev_adjacent *lower;
8277 
8278 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8279 
8280 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8281 
8282 	if (&lower->list == &dev->adj_list.lower)
8283 		return NULL;
8284 
8285 	*iter = &lower->list;
8286 
8287 	return lower->private;
8288 }
8289 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8290 
8291 /**
8292  * netdev_lower_get_next - Get the next device from the lower neighbour
8293  *                         list
8294  * @dev: device
8295  * @iter: list_head ** of the current position
8296  *
8297  * Gets the next netdev_adjacent from the dev's lower neighbour
8298  * list, starting from iter position. The caller must hold RTNL lock or
8299  * its own locking that guarantees that the neighbour lower
8300  * list will remain unchanged.
8301  */
8302 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8303 {
8304 	struct netdev_adjacent *lower;
8305 
8306 	lower = list_entry(*iter, struct netdev_adjacent, list);
8307 
8308 	if (&lower->list == &dev->adj_list.lower)
8309 		return NULL;
8310 
8311 	*iter = lower->list.next;
8312 
8313 	return lower->dev;
8314 }
8315 EXPORT_SYMBOL(netdev_lower_get_next);
8316 
8317 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8318 						struct list_head **iter)
8319 {
8320 	struct netdev_adjacent *lower;
8321 
8322 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8323 
8324 	if (&lower->list == &dev->adj_list.lower)
8325 		return NULL;
8326 
8327 	*iter = &lower->list;
8328 
8329 	return lower->dev;
8330 }
8331 
8332 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8333 						  struct list_head **iter,
8334 						  bool *ignore)
8335 {
8336 	struct netdev_adjacent *lower;
8337 
8338 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8339 
8340 	if (&lower->list == &dev->adj_list.lower)
8341 		return NULL;
8342 
8343 	*iter = &lower->list;
8344 	*ignore = lower->ignore;
8345 
8346 	return lower->dev;
8347 }
8348 
8349 int netdev_walk_all_lower_dev(struct net_device *dev,
8350 			      int (*fn)(struct net_device *dev,
8351 					struct netdev_nested_priv *priv),
8352 			      struct netdev_nested_priv *priv)
8353 {
8354 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8355 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8356 	int ret, cur = 0;
8357 
8358 	now = dev;
8359 	iter = &dev->adj_list.lower;
8360 
8361 	while (1) {
8362 		if (now != dev) {
8363 			ret = fn(now, priv);
8364 			if (ret)
8365 				return ret;
8366 		}
8367 
8368 		next = NULL;
8369 		while (1) {
8370 			ldev = netdev_next_lower_dev(now, &iter);
8371 			if (!ldev)
8372 				break;
8373 
8374 			next = ldev;
8375 			niter = &ldev->adj_list.lower;
8376 			dev_stack[cur] = now;
8377 			iter_stack[cur++] = iter;
8378 			break;
8379 		}
8380 
8381 		if (!next) {
8382 			if (!cur)
8383 				return 0;
8384 			next = dev_stack[--cur];
8385 			niter = iter_stack[cur];
8386 		}
8387 
8388 		now = next;
8389 		iter = niter;
8390 	}
8391 
8392 	return 0;
8393 }
8394 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8395 
8396 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8397 				       int (*fn)(struct net_device *dev,
8398 					 struct netdev_nested_priv *priv),
8399 				       struct netdev_nested_priv *priv)
8400 {
8401 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8402 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8403 	int ret, cur = 0;
8404 	bool ignore;
8405 
8406 	now = dev;
8407 	iter = &dev->adj_list.lower;
8408 
8409 	while (1) {
8410 		if (now != dev) {
8411 			ret = fn(now, priv);
8412 			if (ret)
8413 				return ret;
8414 		}
8415 
8416 		next = NULL;
8417 		while (1) {
8418 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8419 			if (!ldev)
8420 				break;
8421 			if (ignore)
8422 				continue;
8423 
8424 			next = ldev;
8425 			niter = &ldev->adj_list.lower;
8426 			dev_stack[cur] = now;
8427 			iter_stack[cur++] = iter;
8428 			break;
8429 		}
8430 
8431 		if (!next) {
8432 			if (!cur)
8433 				return 0;
8434 			next = dev_stack[--cur];
8435 			niter = iter_stack[cur];
8436 		}
8437 
8438 		now = next;
8439 		iter = niter;
8440 	}
8441 
8442 	return 0;
8443 }
8444 
8445 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8446 					     struct list_head **iter)
8447 {
8448 	struct netdev_adjacent *lower;
8449 
8450 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8451 	if (&lower->list == &dev->adj_list.lower)
8452 		return NULL;
8453 
8454 	*iter = &lower->list;
8455 
8456 	return lower->dev;
8457 }
8458 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8459 
8460 static u8 __netdev_upper_depth(struct net_device *dev)
8461 {
8462 	struct net_device *udev;
8463 	struct list_head *iter;
8464 	u8 max_depth = 0;
8465 	bool ignore;
8466 
8467 	for (iter = &dev->adj_list.upper,
8468 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8469 	     udev;
8470 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8471 		if (ignore)
8472 			continue;
8473 		if (max_depth < udev->upper_level)
8474 			max_depth = udev->upper_level;
8475 	}
8476 
8477 	return max_depth;
8478 }
8479 
8480 static u8 __netdev_lower_depth(struct net_device *dev)
8481 {
8482 	struct net_device *ldev;
8483 	struct list_head *iter;
8484 	u8 max_depth = 0;
8485 	bool ignore;
8486 
8487 	for (iter = &dev->adj_list.lower,
8488 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8489 	     ldev;
8490 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8491 		if (ignore)
8492 			continue;
8493 		if (max_depth < ldev->lower_level)
8494 			max_depth = ldev->lower_level;
8495 	}
8496 
8497 	return max_depth;
8498 }
8499 
8500 static int __netdev_update_upper_level(struct net_device *dev,
8501 				       struct netdev_nested_priv *__unused)
8502 {
8503 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8504 	return 0;
8505 }
8506 
8507 #ifdef CONFIG_LOCKDEP
8508 static LIST_HEAD(net_unlink_list);
8509 
8510 static void net_unlink_todo(struct net_device *dev)
8511 {
8512 	if (list_empty(&dev->unlink_list))
8513 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8514 }
8515 #endif
8516 
8517 static int __netdev_update_lower_level(struct net_device *dev,
8518 				       struct netdev_nested_priv *priv)
8519 {
8520 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8521 
8522 #ifdef CONFIG_LOCKDEP
8523 	if (!priv)
8524 		return 0;
8525 
8526 	if (priv->flags & NESTED_SYNC_IMM)
8527 		dev->nested_level = dev->lower_level - 1;
8528 	if (priv->flags & NESTED_SYNC_TODO)
8529 		net_unlink_todo(dev);
8530 #endif
8531 	return 0;
8532 }
8533 
8534 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8535 				  int (*fn)(struct net_device *dev,
8536 					    struct netdev_nested_priv *priv),
8537 				  struct netdev_nested_priv *priv)
8538 {
8539 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8540 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8541 	int ret, cur = 0;
8542 
8543 	now = dev;
8544 	iter = &dev->adj_list.lower;
8545 
8546 	while (1) {
8547 		if (now != dev) {
8548 			ret = fn(now, priv);
8549 			if (ret)
8550 				return ret;
8551 		}
8552 
8553 		next = NULL;
8554 		while (1) {
8555 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8556 			if (!ldev)
8557 				break;
8558 
8559 			next = ldev;
8560 			niter = &ldev->adj_list.lower;
8561 			dev_stack[cur] = now;
8562 			iter_stack[cur++] = iter;
8563 			break;
8564 		}
8565 
8566 		if (!next) {
8567 			if (!cur)
8568 				return 0;
8569 			next = dev_stack[--cur];
8570 			niter = iter_stack[cur];
8571 		}
8572 
8573 		now = next;
8574 		iter = niter;
8575 	}
8576 
8577 	return 0;
8578 }
8579 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8580 
8581 /**
8582  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8583  *				       lower neighbour list, RCU
8584  *				       variant
8585  * @dev: device
8586  *
8587  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8588  * list. The caller must hold RCU read lock.
8589  */
8590 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8591 {
8592 	struct netdev_adjacent *lower;
8593 
8594 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8595 			struct netdev_adjacent, list);
8596 	if (lower)
8597 		return lower->private;
8598 	return NULL;
8599 }
8600 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8601 
8602 /**
8603  * netdev_master_upper_dev_get_rcu - Get master upper device
8604  * @dev: device
8605  *
8606  * Find a master upper device and return pointer to it or NULL in case
8607  * it's not there. The caller must hold the RCU read lock.
8608  */
8609 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8610 {
8611 	struct netdev_adjacent *upper;
8612 
8613 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8614 				       struct netdev_adjacent, list);
8615 	if (upper && likely(upper->master))
8616 		return upper->dev;
8617 	return NULL;
8618 }
8619 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8620 
8621 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8622 			      struct net_device *adj_dev,
8623 			      struct list_head *dev_list)
8624 {
8625 	char linkname[IFNAMSIZ+7];
8626 
8627 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8628 		"upper_%s" : "lower_%s", adj_dev->name);
8629 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8630 				 linkname);
8631 }
8632 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8633 			       char *name,
8634 			       struct list_head *dev_list)
8635 {
8636 	char linkname[IFNAMSIZ+7];
8637 
8638 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8639 		"upper_%s" : "lower_%s", name);
8640 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8641 }
8642 
8643 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8644 						 struct net_device *adj_dev,
8645 						 struct list_head *dev_list)
8646 {
8647 	return (dev_list == &dev->adj_list.upper ||
8648 		dev_list == &dev->adj_list.lower) &&
8649 		net_eq(dev_net(dev), dev_net(adj_dev));
8650 }
8651 
8652 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8653 					struct net_device *adj_dev,
8654 					struct list_head *dev_list,
8655 					void *private, bool master)
8656 {
8657 	struct netdev_adjacent *adj;
8658 	int ret;
8659 
8660 	adj = __netdev_find_adj(adj_dev, dev_list);
8661 
8662 	if (adj) {
8663 		adj->ref_nr += 1;
8664 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8665 			 dev->name, adj_dev->name, adj->ref_nr);
8666 
8667 		return 0;
8668 	}
8669 
8670 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8671 	if (!adj)
8672 		return -ENOMEM;
8673 
8674 	adj->dev = adj_dev;
8675 	adj->master = master;
8676 	adj->ref_nr = 1;
8677 	adj->private = private;
8678 	adj->ignore = false;
8679 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8680 
8681 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8682 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8683 
8684 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8685 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8686 		if (ret)
8687 			goto free_adj;
8688 	}
8689 
8690 	/* Ensure that master link is always the first item in list. */
8691 	if (master) {
8692 		ret = sysfs_create_link(&(dev->dev.kobj),
8693 					&(adj_dev->dev.kobj), "master");
8694 		if (ret)
8695 			goto remove_symlinks;
8696 
8697 		list_add_rcu(&adj->list, dev_list);
8698 	} else {
8699 		list_add_tail_rcu(&adj->list, dev_list);
8700 	}
8701 
8702 	return 0;
8703 
8704 remove_symlinks:
8705 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8706 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8707 free_adj:
8708 	netdev_put(adj_dev, &adj->dev_tracker);
8709 	kfree(adj);
8710 
8711 	return ret;
8712 }
8713 
8714 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8715 					 struct net_device *adj_dev,
8716 					 u16 ref_nr,
8717 					 struct list_head *dev_list)
8718 {
8719 	struct netdev_adjacent *adj;
8720 
8721 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8722 		 dev->name, adj_dev->name, ref_nr);
8723 
8724 	adj = __netdev_find_adj(adj_dev, dev_list);
8725 
8726 	if (!adj) {
8727 		pr_err("Adjacency does not exist for device %s from %s\n",
8728 		       dev->name, adj_dev->name);
8729 		WARN_ON(1);
8730 		return;
8731 	}
8732 
8733 	if (adj->ref_nr > ref_nr) {
8734 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8735 			 dev->name, adj_dev->name, ref_nr,
8736 			 adj->ref_nr - ref_nr);
8737 		adj->ref_nr -= ref_nr;
8738 		return;
8739 	}
8740 
8741 	if (adj->master)
8742 		sysfs_remove_link(&(dev->dev.kobj), "master");
8743 
8744 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8745 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8746 
8747 	list_del_rcu(&adj->list);
8748 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8749 		 adj_dev->name, dev->name, adj_dev->name);
8750 	netdev_put(adj_dev, &adj->dev_tracker);
8751 	kfree_rcu(adj, rcu);
8752 }
8753 
8754 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8755 					    struct net_device *upper_dev,
8756 					    struct list_head *up_list,
8757 					    struct list_head *down_list,
8758 					    void *private, bool master)
8759 {
8760 	int ret;
8761 
8762 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8763 					   private, master);
8764 	if (ret)
8765 		return ret;
8766 
8767 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8768 					   private, false);
8769 	if (ret) {
8770 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8771 		return ret;
8772 	}
8773 
8774 	return 0;
8775 }
8776 
8777 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8778 					       struct net_device *upper_dev,
8779 					       u16 ref_nr,
8780 					       struct list_head *up_list,
8781 					       struct list_head *down_list)
8782 {
8783 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8784 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8785 }
8786 
8787 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8788 						struct net_device *upper_dev,
8789 						void *private, bool master)
8790 {
8791 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8792 						&dev->adj_list.upper,
8793 						&upper_dev->adj_list.lower,
8794 						private, master);
8795 }
8796 
8797 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8798 						   struct net_device *upper_dev)
8799 {
8800 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8801 					   &dev->adj_list.upper,
8802 					   &upper_dev->adj_list.lower);
8803 }
8804 
8805 static int __netdev_upper_dev_link(struct net_device *dev,
8806 				   struct net_device *upper_dev, bool master,
8807 				   void *upper_priv, void *upper_info,
8808 				   struct netdev_nested_priv *priv,
8809 				   struct netlink_ext_ack *extack)
8810 {
8811 	struct netdev_notifier_changeupper_info changeupper_info = {
8812 		.info = {
8813 			.dev = dev,
8814 			.extack = extack,
8815 		},
8816 		.upper_dev = upper_dev,
8817 		.master = master,
8818 		.linking = true,
8819 		.upper_info = upper_info,
8820 	};
8821 	struct net_device *master_dev;
8822 	int ret = 0;
8823 
8824 	ASSERT_RTNL();
8825 
8826 	if (dev == upper_dev)
8827 		return -EBUSY;
8828 
8829 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8830 	if (__netdev_has_upper_dev(upper_dev, dev))
8831 		return -EBUSY;
8832 
8833 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8834 		return -EMLINK;
8835 
8836 	if (!master) {
8837 		if (__netdev_has_upper_dev(dev, upper_dev))
8838 			return -EEXIST;
8839 	} else {
8840 		master_dev = __netdev_master_upper_dev_get(dev);
8841 		if (master_dev)
8842 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8843 	}
8844 
8845 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8846 					    &changeupper_info.info);
8847 	ret = notifier_to_errno(ret);
8848 	if (ret)
8849 		return ret;
8850 
8851 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8852 						   master);
8853 	if (ret)
8854 		return ret;
8855 
8856 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8857 					    &changeupper_info.info);
8858 	ret = notifier_to_errno(ret);
8859 	if (ret)
8860 		goto rollback;
8861 
8862 	__netdev_update_upper_level(dev, NULL);
8863 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8864 
8865 	__netdev_update_lower_level(upper_dev, priv);
8866 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8867 				    priv);
8868 
8869 	return 0;
8870 
8871 rollback:
8872 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8873 
8874 	return ret;
8875 }
8876 
8877 /**
8878  * netdev_upper_dev_link - Add a link to the upper device
8879  * @dev: device
8880  * @upper_dev: new upper device
8881  * @extack: netlink extended ack
8882  *
8883  * Adds a link to device which is upper to this one. The caller must hold
8884  * the RTNL lock. On a failure a negative errno code is returned.
8885  * On success the reference counts are adjusted and the function
8886  * returns zero.
8887  */
8888 int netdev_upper_dev_link(struct net_device *dev,
8889 			  struct net_device *upper_dev,
8890 			  struct netlink_ext_ack *extack)
8891 {
8892 	struct netdev_nested_priv priv = {
8893 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8894 		.data = NULL,
8895 	};
8896 
8897 	return __netdev_upper_dev_link(dev, upper_dev, false,
8898 				       NULL, NULL, &priv, extack);
8899 }
8900 EXPORT_SYMBOL(netdev_upper_dev_link);
8901 
8902 /**
8903  * netdev_master_upper_dev_link - Add a master link to the upper device
8904  * @dev: device
8905  * @upper_dev: new upper device
8906  * @upper_priv: upper device private
8907  * @upper_info: upper info to be passed down via notifier
8908  * @extack: netlink extended ack
8909  *
8910  * Adds a link to device which is upper to this one. In this case, only
8911  * one master upper device can be linked, although other non-master devices
8912  * might be linked as well. The caller must hold the RTNL lock.
8913  * On a failure a negative errno code is returned. On success the reference
8914  * counts are adjusted and the function returns zero.
8915  */
8916 int netdev_master_upper_dev_link(struct net_device *dev,
8917 				 struct net_device *upper_dev,
8918 				 void *upper_priv, void *upper_info,
8919 				 struct netlink_ext_ack *extack)
8920 {
8921 	struct netdev_nested_priv priv = {
8922 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8923 		.data = NULL,
8924 	};
8925 
8926 	return __netdev_upper_dev_link(dev, upper_dev, true,
8927 				       upper_priv, upper_info, &priv, extack);
8928 }
8929 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8930 
8931 static void __netdev_upper_dev_unlink(struct net_device *dev,
8932 				      struct net_device *upper_dev,
8933 				      struct netdev_nested_priv *priv)
8934 {
8935 	struct netdev_notifier_changeupper_info changeupper_info = {
8936 		.info = {
8937 			.dev = dev,
8938 		},
8939 		.upper_dev = upper_dev,
8940 		.linking = false,
8941 	};
8942 
8943 	ASSERT_RTNL();
8944 
8945 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8946 
8947 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8948 				      &changeupper_info.info);
8949 
8950 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8951 
8952 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8953 				      &changeupper_info.info);
8954 
8955 	__netdev_update_upper_level(dev, NULL);
8956 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8957 
8958 	__netdev_update_lower_level(upper_dev, priv);
8959 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8960 				    priv);
8961 }
8962 
8963 /**
8964  * netdev_upper_dev_unlink - Removes a link to upper device
8965  * @dev: device
8966  * @upper_dev: new upper device
8967  *
8968  * Removes a link to device which is upper to this one. The caller must hold
8969  * the RTNL lock.
8970  */
8971 void netdev_upper_dev_unlink(struct net_device *dev,
8972 			     struct net_device *upper_dev)
8973 {
8974 	struct netdev_nested_priv priv = {
8975 		.flags = NESTED_SYNC_TODO,
8976 		.data = NULL,
8977 	};
8978 
8979 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8980 }
8981 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8982 
8983 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8984 				      struct net_device *lower_dev,
8985 				      bool val)
8986 {
8987 	struct netdev_adjacent *adj;
8988 
8989 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8990 	if (adj)
8991 		adj->ignore = val;
8992 
8993 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8994 	if (adj)
8995 		adj->ignore = val;
8996 }
8997 
8998 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8999 					struct net_device *lower_dev)
9000 {
9001 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
9002 }
9003 
9004 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
9005 				       struct net_device *lower_dev)
9006 {
9007 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
9008 }
9009 
9010 int netdev_adjacent_change_prepare(struct net_device *old_dev,
9011 				   struct net_device *new_dev,
9012 				   struct net_device *dev,
9013 				   struct netlink_ext_ack *extack)
9014 {
9015 	struct netdev_nested_priv priv = {
9016 		.flags = 0,
9017 		.data = NULL,
9018 	};
9019 	int err;
9020 
9021 	if (!new_dev)
9022 		return 0;
9023 
9024 	if (old_dev && new_dev != old_dev)
9025 		netdev_adjacent_dev_disable(dev, old_dev);
9026 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
9027 				      extack);
9028 	if (err) {
9029 		if (old_dev && new_dev != old_dev)
9030 			netdev_adjacent_dev_enable(dev, old_dev);
9031 		return err;
9032 	}
9033 
9034 	return 0;
9035 }
9036 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
9037 
9038 void netdev_adjacent_change_commit(struct net_device *old_dev,
9039 				   struct net_device *new_dev,
9040 				   struct net_device *dev)
9041 {
9042 	struct netdev_nested_priv priv = {
9043 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
9044 		.data = NULL,
9045 	};
9046 
9047 	if (!new_dev || !old_dev)
9048 		return;
9049 
9050 	if (new_dev == old_dev)
9051 		return;
9052 
9053 	netdev_adjacent_dev_enable(dev, old_dev);
9054 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
9055 }
9056 EXPORT_SYMBOL(netdev_adjacent_change_commit);
9057 
9058 void netdev_adjacent_change_abort(struct net_device *old_dev,
9059 				  struct net_device *new_dev,
9060 				  struct net_device *dev)
9061 {
9062 	struct netdev_nested_priv priv = {
9063 		.flags = 0,
9064 		.data = NULL,
9065 	};
9066 
9067 	if (!new_dev)
9068 		return;
9069 
9070 	if (old_dev && new_dev != old_dev)
9071 		netdev_adjacent_dev_enable(dev, old_dev);
9072 
9073 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
9074 }
9075 EXPORT_SYMBOL(netdev_adjacent_change_abort);
9076 
9077 /**
9078  * netdev_bonding_info_change - Dispatch event about slave change
9079  * @dev: device
9080  * @bonding_info: info to dispatch
9081  *
9082  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
9083  * The caller must hold the RTNL lock.
9084  */
9085 void netdev_bonding_info_change(struct net_device *dev,
9086 				struct netdev_bonding_info *bonding_info)
9087 {
9088 	struct netdev_notifier_bonding_info info = {
9089 		.info.dev = dev,
9090 	};
9091 
9092 	memcpy(&info.bonding_info, bonding_info,
9093 	       sizeof(struct netdev_bonding_info));
9094 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
9095 				      &info.info);
9096 }
9097 EXPORT_SYMBOL(netdev_bonding_info_change);
9098 
9099 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
9100 					   struct netlink_ext_ack *extack)
9101 {
9102 	struct netdev_notifier_offload_xstats_info info = {
9103 		.info.dev = dev,
9104 		.info.extack = extack,
9105 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9106 	};
9107 	int err;
9108 	int rc;
9109 
9110 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
9111 					 GFP_KERNEL);
9112 	if (!dev->offload_xstats_l3)
9113 		return -ENOMEM;
9114 
9115 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
9116 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
9117 						  &info.info);
9118 	err = notifier_to_errno(rc);
9119 	if (err)
9120 		goto free_stats;
9121 
9122 	return 0;
9123 
9124 free_stats:
9125 	kfree(dev->offload_xstats_l3);
9126 	dev->offload_xstats_l3 = NULL;
9127 	return err;
9128 }
9129 
9130 int netdev_offload_xstats_enable(struct net_device *dev,
9131 				 enum netdev_offload_xstats_type type,
9132 				 struct netlink_ext_ack *extack)
9133 {
9134 	ASSERT_RTNL();
9135 
9136 	if (netdev_offload_xstats_enabled(dev, type))
9137 		return -EALREADY;
9138 
9139 	switch (type) {
9140 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9141 		return netdev_offload_xstats_enable_l3(dev, extack);
9142 	}
9143 
9144 	WARN_ON(1);
9145 	return -EINVAL;
9146 }
9147 EXPORT_SYMBOL(netdev_offload_xstats_enable);
9148 
9149 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
9150 {
9151 	struct netdev_notifier_offload_xstats_info info = {
9152 		.info.dev = dev,
9153 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9154 	};
9155 
9156 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
9157 				      &info.info);
9158 	kfree(dev->offload_xstats_l3);
9159 	dev->offload_xstats_l3 = NULL;
9160 }
9161 
9162 int netdev_offload_xstats_disable(struct net_device *dev,
9163 				  enum netdev_offload_xstats_type type)
9164 {
9165 	ASSERT_RTNL();
9166 
9167 	if (!netdev_offload_xstats_enabled(dev, type))
9168 		return -EALREADY;
9169 
9170 	switch (type) {
9171 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9172 		netdev_offload_xstats_disable_l3(dev);
9173 		return 0;
9174 	}
9175 
9176 	WARN_ON(1);
9177 	return -EINVAL;
9178 }
9179 EXPORT_SYMBOL(netdev_offload_xstats_disable);
9180 
9181 static void netdev_offload_xstats_disable_all(struct net_device *dev)
9182 {
9183 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
9184 }
9185 
9186 static struct rtnl_hw_stats64 *
9187 netdev_offload_xstats_get_ptr(const struct net_device *dev,
9188 			      enum netdev_offload_xstats_type type)
9189 {
9190 	switch (type) {
9191 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9192 		return dev->offload_xstats_l3;
9193 	}
9194 
9195 	WARN_ON(1);
9196 	return NULL;
9197 }
9198 
9199 bool netdev_offload_xstats_enabled(const struct net_device *dev,
9200 				   enum netdev_offload_xstats_type type)
9201 {
9202 	ASSERT_RTNL();
9203 
9204 	return netdev_offload_xstats_get_ptr(dev, type);
9205 }
9206 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9207 
9208 struct netdev_notifier_offload_xstats_ru {
9209 	bool used;
9210 };
9211 
9212 struct netdev_notifier_offload_xstats_rd {
9213 	struct rtnl_hw_stats64 stats;
9214 	bool used;
9215 };
9216 
9217 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9218 				  const struct rtnl_hw_stats64 *src)
9219 {
9220 	dest->rx_packets	  += src->rx_packets;
9221 	dest->tx_packets	  += src->tx_packets;
9222 	dest->rx_bytes		  += src->rx_bytes;
9223 	dest->tx_bytes		  += src->tx_bytes;
9224 	dest->rx_errors		  += src->rx_errors;
9225 	dest->tx_errors		  += src->tx_errors;
9226 	dest->rx_dropped	  += src->rx_dropped;
9227 	dest->tx_dropped	  += src->tx_dropped;
9228 	dest->multicast		  += src->multicast;
9229 }
9230 
9231 static int netdev_offload_xstats_get_used(struct net_device *dev,
9232 					  enum netdev_offload_xstats_type type,
9233 					  bool *p_used,
9234 					  struct netlink_ext_ack *extack)
9235 {
9236 	struct netdev_notifier_offload_xstats_ru report_used = {};
9237 	struct netdev_notifier_offload_xstats_info info = {
9238 		.info.dev = dev,
9239 		.info.extack = extack,
9240 		.type = type,
9241 		.report_used = &report_used,
9242 	};
9243 	int rc;
9244 
9245 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9246 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9247 					   &info.info);
9248 	*p_used = report_used.used;
9249 	return notifier_to_errno(rc);
9250 }
9251 
9252 static int netdev_offload_xstats_get_stats(struct net_device *dev,
9253 					   enum netdev_offload_xstats_type type,
9254 					   struct rtnl_hw_stats64 *p_stats,
9255 					   bool *p_used,
9256 					   struct netlink_ext_ack *extack)
9257 {
9258 	struct netdev_notifier_offload_xstats_rd report_delta = {};
9259 	struct netdev_notifier_offload_xstats_info info = {
9260 		.info.dev = dev,
9261 		.info.extack = extack,
9262 		.type = type,
9263 		.report_delta = &report_delta,
9264 	};
9265 	struct rtnl_hw_stats64 *stats;
9266 	int rc;
9267 
9268 	stats = netdev_offload_xstats_get_ptr(dev, type);
9269 	if (WARN_ON(!stats))
9270 		return -EINVAL;
9271 
9272 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9273 					   &info.info);
9274 
9275 	/* Cache whatever we got, even if there was an error, otherwise the
9276 	 * successful stats retrievals would get lost.
9277 	 */
9278 	netdev_hw_stats64_add(stats, &report_delta.stats);
9279 
9280 	if (p_stats)
9281 		*p_stats = *stats;
9282 	*p_used = report_delta.used;
9283 
9284 	return notifier_to_errno(rc);
9285 }
9286 
9287 int netdev_offload_xstats_get(struct net_device *dev,
9288 			      enum netdev_offload_xstats_type type,
9289 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
9290 			      struct netlink_ext_ack *extack)
9291 {
9292 	ASSERT_RTNL();
9293 
9294 	if (p_stats)
9295 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
9296 						       p_used, extack);
9297 	else
9298 		return netdev_offload_xstats_get_used(dev, type, p_used,
9299 						      extack);
9300 }
9301 EXPORT_SYMBOL(netdev_offload_xstats_get);
9302 
9303 void
9304 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9305 				   const struct rtnl_hw_stats64 *stats)
9306 {
9307 	report_delta->used = true;
9308 	netdev_hw_stats64_add(&report_delta->stats, stats);
9309 }
9310 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9311 
9312 void
9313 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9314 {
9315 	report_used->used = true;
9316 }
9317 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9318 
9319 void netdev_offload_xstats_push_delta(struct net_device *dev,
9320 				      enum netdev_offload_xstats_type type,
9321 				      const struct rtnl_hw_stats64 *p_stats)
9322 {
9323 	struct rtnl_hw_stats64 *stats;
9324 
9325 	ASSERT_RTNL();
9326 
9327 	stats = netdev_offload_xstats_get_ptr(dev, type);
9328 	if (WARN_ON(!stats))
9329 		return;
9330 
9331 	netdev_hw_stats64_add(stats, p_stats);
9332 }
9333 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9334 
9335 /**
9336  * netdev_get_xmit_slave - Get the xmit slave of master device
9337  * @dev: device
9338  * @skb: The packet
9339  * @all_slaves: assume all the slaves are active
9340  *
9341  * The reference counters are not incremented so the caller must be
9342  * careful with locks. The caller must hold RCU lock.
9343  * %NULL is returned if no slave is found.
9344  */
9345 
9346 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9347 					 struct sk_buff *skb,
9348 					 bool all_slaves)
9349 {
9350 	const struct net_device_ops *ops = dev->netdev_ops;
9351 
9352 	if (!ops->ndo_get_xmit_slave)
9353 		return NULL;
9354 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9355 }
9356 EXPORT_SYMBOL(netdev_get_xmit_slave);
9357 
9358 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9359 						  struct sock *sk)
9360 {
9361 	const struct net_device_ops *ops = dev->netdev_ops;
9362 
9363 	if (!ops->ndo_sk_get_lower_dev)
9364 		return NULL;
9365 	return ops->ndo_sk_get_lower_dev(dev, sk);
9366 }
9367 
9368 /**
9369  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9370  * @dev: device
9371  * @sk: the socket
9372  *
9373  * %NULL is returned if no lower device is found.
9374  */
9375 
9376 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9377 					    struct sock *sk)
9378 {
9379 	struct net_device *lower;
9380 
9381 	lower = netdev_sk_get_lower_dev(dev, sk);
9382 	while (lower) {
9383 		dev = lower;
9384 		lower = netdev_sk_get_lower_dev(dev, sk);
9385 	}
9386 
9387 	return dev;
9388 }
9389 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9390 
9391 static void netdev_adjacent_add_links(struct net_device *dev)
9392 {
9393 	struct netdev_adjacent *iter;
9394 
9395 	struct net *net = dev_net(dev);
9396 
9397 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9398 		if (!net_eq(net, dev_net(iter->dev)))
9399 			continue;
9400 		netdev_adjacent_sysfs_add(iter->dev, dev,
9401 					  &iter->dev->adj_list.lower);
9402 		netdev_adjacent_sysfs_add(dev, iter->dev,
9403 					  &dev->adj_list.upper);
9404 	}
9405 
9406 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9407 		if (!net_eq(net, dev_net(iter->dev)))
9408 			continue;
9409 		netdev_adjacent_sysfs_add(iter->dev, dev,
9410 					  &iter->dev->adj_list.upper);
9411 		netdev_adjacent_sysfs_add(dev, iter->dev,
9412 					  &dev->adj_list.lower);
9413 	}
9414 }
9415 
9416 static void netdev_adjacent_del_links(struct net_device *dev)
9417 {
9418 	struct netdev_adjacent *iter;
9419 
9420 	struct net *net = dev_net(dev);
9421 
9422 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9423 		if (!net_eq(net, dev_net(iter->dev)))
9424 			continue;
9425 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9426 					  &iter->dev->adj_list.lower);
9427 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9428 					  &dev->adj_list.upper);
9429 	}
9430 
9431 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9432 		if (!net_eq(net, dev_net(iter->dev)))
9433 			continue;
9434 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9435 					  &iter->dev->adj_list.upper);
9436 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9437 					  &dev->adj_list.lower);
9438 	}
9439 }
9440 
9441 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9442 {
9443 	struct netdev_adjacent *iter;
9444 
9445 	struct net *net = dev_net(dev);
9446 
9447 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9448 		if (!net_eq(net, dev_net(iter->dev)))
9449 			continue;
9450 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9451 					  &iter->dev->adj_list.lower);
9452 		netdev_adjacent_sysfs_add(iter->dev, dev,
9453 					  &iter->dev->adj_list.lower);
9454 	}
9455 
9456 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9457 		if (!net_eq(net, dev_net(iter->dev)))
9458 			continue;
9459 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9460 					  &iter->dev->adj_list.upper);
9461 		netdev_adjacent_sysfs_add(iter->dev, dev,
9462 					  &iter->dev->adj_list.upper);
9463 	}
9464 }
9465 
9466 void *netdev_lower_dev_get_private(struct net_device *dev,
9467 				   struct net_device *lower_dev)
9468 {
9469 	struct netdev_adjacent *lower;
9470 
9471 	if (!lower_dev)
9472 		return NULL;
9473 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9474 	if (!lower)
9475 		return NULL;
9476 
9477 	return lower->private;
9478 }
9479 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9480 
9481 
9482 /**
9483  * netdev_lower_state_changed - Dispatch event about lower device state change
9484  * @lower_dev: device
9485  * @lower_state_info: state to dispatch
9486  *
9487  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9488  * The caller must hold the RTNL lock.
9489  */
9490 void netdev_lower_state_changed(struct net_device *lower_dev,
9491 				void *lower_state_info)
9492 {
9493 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9494 		.info.dev = lower_dev,
9495 	};
9496 
9497 	ASSERT_RTNL();
9498 	changelowerstate_info.lower_state_info = lower_state_info;
9499 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9500 				      &changelowerstate_info.info);
9501 }
9502 EXPORT_SYMBOL(netdev_lower_state_changed);
9503 
9504 static void dev_change_rx_flags(struct net_device *dev, int flags)
9505 {
9506 	const struct net_device_ops *ops = dev->netdev_ops;
9507 
9508 	if (ops->ndo_change_rx_flags)
9509 		ops->ndo_change_rx_flags(dev, flags);
9510 }
9511 
9512 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9513 {
9514 	unsigned int old_flags = dev->flags;
9515 	unsigned int promiscuity, flags;
9516 	kuid_t uid;
9517 	kgid_t gid;
9518 
9519 	ASSERT_RTNL();
9520 
9521 	promiscuity = dev->promiscuity + inc;
9522 	if (promiscuity == 0) {
9523 		/*
9524 		 * Avoid overflow.
9525 		 * If inc causes overflow, untouch promisc and return error.
9526 		 */
9527 		if (unlikely(inc > 0)) {
9528 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9529 			return -EOVERFLOW;
9530 		}
9531 		flags = old_flags & ~IFF_PROMISC;
9532 	} else {
9533 		flags = old_flags | IFF_PROMISC;
9534 	}
9535 	WRITE_ONCE(dev->promiscuity, promiscuity);
9536 	if (flags != old_flags) {
9537 		WRITE_ONCE(dev->flags, flags);
9538 		netdev_info(dev, "%s promiscuous mode\n",
9539 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9540 		if (audit_enabled) {
9541 			current_uid_gid(&uid, &gid);
9542 			audit_log(audit_context(), GFP_ATOMIC,
9543 				  AUDIT_ANOM_PROMISCUOUS,
9544 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9545 				  dev->name, (dev->flags & IFF_PROMISC),
9546 				  (old_flags & IFF_PROMISC),
9547 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9548 				  from_kuid(&init_user_ns, uid),
9549 				  from_kgid(&init_user_ns, gid),
9550 				  audit_get_sessionid(current));
9551 		}
9552 
9553 		dev_change_rx_flags(dev, IFF_PROMISC);
9554 	}
9555 	if (notify) {
9556 		/* The ops lock is only required to ensure consistent locking
9557 		 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9558 		 * called without the lock, even for devices that are ops
9559 		 * locked, such as in `dev_uc_sync_multiple` when using
9560 		 * bonding or teaming.
9561 		 */
9562 		netdev_ops_assert_locked(dev);
9563 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9564 	}
9565 	return 0;
9566 }
9567 
9568 int netif_set_promiscuity(struct net_device *dev, int inc)
9569 {
9570 	unsigned int old_flags = dev->flags;
9571 	int err;
9572 
9573 	err = __dev_set_promiscuity(dev, inc, true);
9574 	if (err < 0)
9575 		return err;
9576 	if (dev->flags != old_flags)
9577 		dev_set_rx_mode(dev);
9578 	return err;
9579 }
9580 
9581 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9582 {
9583 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9584 	unsigned int allmulti, flags;
9585 
9586 	ASSERT_RTNL();
9587 
9588 	allmulti = dev->allmulti + inc;
9589 	if (allmulti == 0) {
9590 		/*
9591 		 * Avoid overflow.
9592 		 * If inc causes overflow, untouch allmulti and return error.
9593 		 */
9594 		if (unlikely(inc > 0)) {
9595 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9596 			return -EOVERFLOW;
9597 		}
9598 		flags = old_flags & ~IFF_ALLMULTI;
9599 	} else {
9600 		flags = old_flags | IFF_ALLMULTI;
9601 	}
9602 	WRITE_ONCE(dev->allmulti, allmulti);
9603 	if (flags != old_flags) {
9604 		WRITE_ONCE(dev->flags, flags);
9605 		netdev_info(dev, "%s allmulticast mode\n",
9606 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9607 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9608 		dev_set_rx_mode(dev);
9609 		if (notify)
9610 			__dev_notify_flags(dev, old_flags,
9611 					   dev->gflags ^ old_gflags, 0, NULL);
9612 	}
9613 	return 0;
9614 }
9615 
9616 /*
9617  *	Upload unicast and multicast address lists to device and
9618  *	configure RX filtering. When the device doesn't support unicast
9619  *	filtering it is put in promiscuous mode while unicast addresses
9620  *	are present.
9621  */
9622 void __dev_set_rx_mode(struct net_device *dev)
9623 {
9624 	const struct net_device_ops *ops = dev->netdev_ops;
9625 
9626 	/* dev_open will call this function so the list will stay sane. */
9627 	if (!(dev->flags&IFF_UP))
9628 		return;
9629 
9630 	if (!netif_device_present(dev))
9631 		return;
9632 
9633 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9634 		/* Unicast addresses changes may only happen under the rtnl,
9635 		 * therefore calling __dev_set_promiscuity here is safe.
9636 		 */
9637 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9638 			__dev_set_promiscuity(dev, 1, false);
9639 			dev->uc_promisc = true;
9640 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9641 			__dev_set_promiscuity(dev, -1, false);
9642 			dev->uc_promisc = false;
9643 		}
9644 	}
9645 
9646 	if (ops->ndo_set_rx_mode)
9647 		ops->ndo_set_rx_mode(dev);
9648 }
9649 
9650 void dev_set_rx_mode(struct net_device *dev)
9651 {
9652 	netif_addr_lock_bh(dev);
9653 	__dev_set_rx_mode(dev);
9654 	netif_addr_unlock_bh(dev);
9655 }
9656 
9657 /**
9658  * netif_get_flags() - get flags reported to userspace
9659  * @dev: device
9660  *
9661  * Get the combination of flag bits exported through APIs to userspace.
9662  */
9663 unsigned int netif_get_flags(const struct net_device *dev)
9664 {
9665 	unsigned int flags;
9666 
9667 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9668 				IFF_ALLMULTI |
9669 				IFF_RUNNING |
9670 				IFF_LOWER_UP |
9671 				IFF_DORMANT)) |
9672 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9673 				IFF_ALLMULTI));
9674 
9675 	if (netif_running(dev)) {
9676 		if (netif_oper_up(dev))
9677 			flags |= IFF_RUNNING;
9678 		if (netif_carrier_ok(dev))
9679 			flags |= IFF_LOWER_UP;
9680 		if (netif_dormant(dev))
9681 			flags |= IFF_DORMANT;
9682 	}
9683 
9684 	return flags;
9685 }
9686 EXPORT_SYMBOL(netif_get_flags);
9687 
9688 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9689 		       struct netlink_ext_ack *extack)
9690 {
9691 	unsigned int old_flags = dev->flags;
9692 	int ret;
9693 
9694 	ASSERT_RTNL();
9695 
9696 	/*
9697 	 *	Set the flags on our device.
9698 	 */
9699 
9700 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9701 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9702 			       IFF_AUTOMEDIA)) |
9703 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9704 				    IFF_ALLMULTI));
9705 
9706 	/*
9707 	 *	Load in the correct multicast list now the flags have changed.
9708 	 */
9709 
9710 	if ((old_flags ^ flags) & IFF_MULTICAST)
9711 		dev_change_rx_flags(dev, IFF_MULTICAST);
9712 
9713 	dev_set_rx_mode(dev);
9714 
9715 	/*
9716 	 *	Have we downed the interface. We handle IFF_UP ourselves
9717 	 *	according to user attempts to set it, rather than blindly
9718 	 *	setting it.
9719 	 */
9720 
9721 	ret = 0;
9722 	if ((old_flags ^ flags) & IFF_UP) {
9723 		if (old_flags & IFF_UP)
9724 			__dev_close(dev);
9725 		else
9726 			ret = __dev_open(dev, extack);
9727 	}
9728 
9729 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9730 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9731 		old_flags = dev->flags;
9732 
9733 		dev->gflags ^= IFF_PROMISC;
9734 
9735 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9736 			if (dev->flags != old_flags)
9737 				dev_set_rx_mode(dev);
9738 	}
9739 
9740 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9741 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9742 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9743 	 */
9744 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9745 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9746 
9747 		dev->gflags ^= IFF_ALLMULTI;
9748 		netif_set_allmulti(dev, inc, false);
9749 	}
9750 
9751 	return ret;
9752 }
9753 
9754 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9755 			unsigned int gchanges, u32 portid,
9756 			const struct nlmsghdr *nlh)
9757 {
9758 	unsigned int changes = dev->flags ^ old_flags;
9759 
9760 	if (gchanges)
9761 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9762 
9763 	if (changes & IFF_UP) {
9764 		if (dev->flags & IFF_UP)
9765 			call_netdevice_notifiers(NETDEV_UP, dev);
9766 		else
9767 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9768 	}
9769 
9770 	if (dev->flags & IFF_UP &&
9771 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9772 		struct netdev_notifier_change_info change_info = {
9773 			.info = {
9774 				.dev = dev,
9775 			},
9776 			.flags_changed = changes,
9777 		};
9778 
9779 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9780 	}
9781 }
9782 
9783 int netif_change_flags(struct net_device *dev, unsigned int flags,
9784 		       struct netlink_ext_ack *extack)
9785 {
9786 	int ret;
9787 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9788 
9789 	ret = __dev_change_flags(dev, flags, extack);
9790 	if (ret < 0)
9791 		return ret;
9792 
9793 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9794 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9795 	return ret;
9796 }
9797 
9798 int __netif_set_mtu(struct net_device *dev, int new_mtu)
9799 {
9800 	const struct net_device_ops *ops = dev->netdev_ops;
9801 
9802 	if (ops->ndo_change_mtu)
9803 		return ops->ndo_change_mtu(dev, new_mtu);
9804 
9805 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9806 	WRITE_ONCE(dev->mtu, new_mtu);
9807 	return 0;
9808 }
9809 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9810 
9811 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9812 		     struct netlink_ext_ack *extack)
9813 {
9814 	/* MTU must be positive, and in range */
9815 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9816 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9817 		return -EINVAL;
9818 	}
9819 
9820 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9821 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9822 		return -EINVAL;
9823 	}
9824 	return 0;
9825 }
9826 
9827 /**
9828  * netif_set_mtu_ext() - Change maximum transfer unit
9829  * @dev: device
9830  * @new_mtu: new transfer unit
9831  * @extack: netlink extended ack
9832  *
9833  * Change the maximum transfer size of the network device.
9834  *
9835  * Return: 0 on success, -errno on failure.
9836  */
9837 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9838 		      struct netlink_ext_ack *extack)
9839 {
9840 	int err, orig_mtu;
9841 
9842 	netdev_ops_assert_locked(dev);
9843 
9844 	if (new_mtu == dev->mtu)
9845 		return 0;
9846 
9847 	err = dev_validate_mtu(dev, new_mtu, extack);
9848 	if (err)
9849 		return err;
9850 
9851 	if (!netif_device_present(dev))
9852 		return -ENODEV;
9853 
9854 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9855 	err = notifier_to_errno(err);
9856 	if (err)
9857 		return err;
9858 
9859 	orig_mtu = dev->mtu;
9860 	err = __netif_set_mtu(dev, new_mtu);
9861 
9862 	if (!err) {
9863 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9864 						   orig_mtu);
9865 		err = notifier_to_errno(err);
9866 		if (err) {
9867 			/* setting mtu back and notifying everyone again,
9868 			 * so that they have a chance to revert changes.
9869 			 */
9870 			__netif_set_mtu(dev, orig_mtu);
9871 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9872 						     new_mtu);
9873 		}
9874 	}
9875 	return err;
9876 }
9877 
9878 int netif_set_mtu(struct net_device *dev, int new_mtu)
9879 {
9880 	struct netlink_ext_ack extack;
9881 	int err;
9882 
9883 	memset(&extack, 0, sizeof(extack));
9884 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9885 	if (err && extack._msg)
9886 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9887 	return err;
9888 }
9889 EXPORT_SYMBOL(netif_set_mtu);
9890 
9891 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9892 {
9893 	unsigned int orig_len = dev->tx_queue_len;
9894 	int res;
9895 
9896 	if (new_len != (unsigned int)new_len)
9897 		return -ERANGE;
9898 
9899 	if (new_len != orig_len) {
9900 		WRITE_ONCE(dev->tx_queue_len, new_len);
9901 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9902 		res = notifier_to_errno(res);
9903 		if (res)
9904 			goto err_rollback;
9905 		res = dev_qdisc_change_tx_queue_len(dev);
9906 		if (res)
9907 			goto err_rollback;
9908 	}
9909 
9910 	return 0;
9911 
9912 err_rollback:
9913 	netdev_err(dev, "refused to change device tx_queue_len\n");
9914 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9915 	return res;
9916 }
9917 
9918 void netif_set_group(struct net_device *dev, int new_group)
9919 {
9920 	dev->group = new_group;
9921 }
9922 
9923 /**
9924  * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9925  * @dev: device
9926  * @addr: new address
9927  * @extack: netlink extended ack
9928  *
9929  * Return: 0 on success, -errno on failure.
9930  */
9931 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9932 				struct netlink_ext_ack *extack)
9933 {
9934 	struct netdev_notifier_pre_changeaddr_info info = {
9935 		.info.dev = dev,
9936 		.info.extack = extack,
9937 		.dev_addr = addr,
9938 	};
9939 	int rc;
9940 
9941 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9942 	return notifier_to_errno(rc);
9943 }
9944 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9945 
9946 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9947 			  struct netlink_ext_ack *extack)
9948 {
9949 	const struct net_device_ops *ops = dev->netdev_ops;
9950 	int err;
9951 
9952 	if (!ops->ndo_set_mac_address)
9953 		return -EOPNOTSUPP;
9954 	if (ss->ss_family != dev->type)
9955 		return -EINVAL;
9956 	if (!netif_device_present(dev))
9957 		return -ENODEV;
9958 	err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9959 	if (err)
9960 		return err;
9961 	if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9962 		err = ops->ndo_set_mac_address(dev, ss);
9963 		if (err)
9964 			return err;
9965 	}
9966 	dev->addr_assign_type = NET_ADDR_SET;
9967 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9968 	add_device_randomness(dev->dev_addr, dev->addr_len);
9969 	return 0;
9970 }
9971 
9972 DECLARE_RWSEM(dev_addr_sem);
9973 
9974 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
9975 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9976 {
9977 	size_t size = sizeof(sa->sa_data);
9978 	struct net_device *dev;
9979 	int ret = 0;
9980 
9981 	down_read(&dev_addr_sem);
9982 	rcu_read_lock();
9983 
9984 	dev = dev_get_by_name_rcu(net, dev_name);
9985 	if (!dev) {
9986 		ret = -ENODEV;
9987 		goto unlock;
9988 	}
9989 	if (!dev->addr_len)
9990 		memset(sa->sa_data, 0, size);
9991 	else
9992 		memcpy(sa->sa_data, dev->dev_addr,
9993 		       min_t(size_t, size, dev->addr_len));
9994 	sa->sa_family = dev->type;
9995 
9996 unlock:
9997 	rcu_read_unlock();
9998 	up_read(&dev_addr_sem);
9999 	return ret;
10000 }
10001 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
10002 
10003 int netif_change_carrier(struct net_device *dev, bool new_carrier)
10004 {
10005 	const struct net_device_ops *ops = dev->netdev_ops;
10006 
10007 	if (!ops->ndo_change_carrier)
10008 		return -EOPNOTSUPP;
10009 	if (!netif_device_present(dev))
10010 		return -ENODEV;
10011 	return ops->ndo_change_carrier(dev, new_carrier);
10012 }
10013 
10014 /**
10015  *	dev_get_phys_port_id - Get device physical port ID
10016  *	@dev: device
10017  *	@ppid: port ID
10018  *
10019  *	Get device physical port ID
10020  */
10021 int dev_get_phys_port_id(struct net_device *dev,
10022 			 struct netdev_phys_item_id *ppid)
10023 {
10024 	const struct net_device_ops *ops = dev->netdev_ops;
10025 
10026 	if (!ops->ndo_get_phys_port_id)
10027 		return -EOPNOTSUPP;
10028 	return ops->ndo_get_phys_port_id(dev, ppid);
10029 }
10030 
10031 /**
10032  *	dev_get_phys_port_name - Get device physical port name
10033  *	@dev: device
10034  *	@name: port name
10035  *	@len: limit of bytes to copy to name
10036  *
10037  *	Get device physical port name
10038  */
10039 int dev_get_phys_port_name(struct net_device *dev,
10040 			   char *name, size_t len)
10041 {
10042 	const struct net_device_ops *ops = dev->netdev_ops;
10043 	int err;
10044 
10045 	if (ops->ndo_get_phys_port_name) {
10046 		err = ops->ndo_get_phys_port_name(dev, name, len);
10047 		if (err != -EOPNOTSUPP)
10048 			return err;
10049 	}
10050 	return devlink_compat_phys_port_name_get(dev, name, len);
10051 }
10052 
10053 /**
10054  * netif_get_port_parent_id() - Get the device's port parent identifier
10055  * @dev: network device
10056  * @ppid: pointer to a storage for the port's parent identifier
10057  * @recurse: allow/disallow recursion to lower devices
10058  *
10059  * Get the devices's port parent identifier.
10060  *
10061  * Return: 0 on success, -errno on failure.
10062  */
10063 int netif_get_port_parent_id(struct net_device *dev,
10064 			     struct netdev_phys_item_id *ppid, bool recurse)
10065 {
10066 	const struct net_device_ops *ops = dev->netdev_ops;
10067 	struct netdev_phys_item_id first = { };
10068 	struct net_device *lower_dev;
10069 	struct list_head *iter;
10070 	int err;
10071 
10072 	if (ops->ndo_get_port_parent_id) {
10073 		err = ops->ndo_get_port_parent_id(dev, ppid);
10074 		if (err != -EOPNOTSUPP)
10075 			return err;
10076 	}
10077 
10078 	err = devlink_compat_switch_id_get(dev, ppid);
10079 	if (!recurse || err != -EOPNOTSUPP)
10080 		return err;
10081 
10082 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
10083 		err = netif_get_port_parent_id(lower_dev, ppid, true);
10084 		if (err)
10085 			break;
10086 		if (!first.id_len)
10087 			first = *ppid;
10088 		else if (memcmp(&first, ppid, sizeof(*ppid)))
10089 			return -EOPNOTSUPP;
10090 	}
10091 
10092 	return err;
10093 }
10094 EXPORT_SYMBOL(netif_get_port_parent_id);
10095 
10096 /**
10097  *	netdev_port_same_parent_id - Indicate if two network devices have
10098  *	the same port parent identifier
10099  *	@a: first network device
10100  *	@b: second network device
10101  */
10102 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
10103 {
10104 	struct netdev_phys_item_id a_id = { };
10105 	struct netdev_phys_item_id b_id = { };
10106 
10107 	if (netif_get_port_parent_id(a, &a_id, true) ||
10108 	    netif_get_port_parent_id(b, &b_id, true))
10109 		return false;
10110 
10111 	return netdev_phys_item_id_same(&a_id, &b_id);
10112 }
10113 EXPORT_SYMBOL(netdev_port_same_parent_id);
10114 
10115 int netif_change_proto_down(struct net_device *dev, bool proto_down)
10116 {
10117 	if (!dev->change_proto_down)
10118 		return -EOPNOTSUPP;
10119 	if (!netif_device_present(dev))
10120 		return -ENODEV;
10121 	if (proto_down)
10122 		netif_carrier_off(dev);
10123 	else
10124 		netif_carrier_on(dev);
10125 	WRITE_ONCE(dev->proto_down, proto_down);
10126 	return 0;
10127 }
10128 
10129 /**
10130  *	netdev_change_proto_down_reason_locked - proto down reason
10131  *
10132  *	@dev: device
10133  *	@mask: proto down mask
10134  *	@value: proto down value
10135  */
10136 void netdev_change_proto_down_reason_locked(struct net_device *dev,
10137 					    unsigned long mask, u32 value)
10138 {
10139 	u32 proto_down_reason;
10140 	int b;
10141 
10142 	if (!mask) {
10143 		proto_down_reason = value;
10144 	} else {
10145 		proto_down_reason = dev->proto_down_reason;
10146 		for_each_set_bit(b, &mask, 32) {
10147 			if (value & (1 << b))
10148 				proto_down_reason |= BIT(b);
10149 			else
10150 				proto_down_reason &= ~BIT(b);
10151 		}
10152 	}
10153 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
10154 }
10155 
10156 struct bpf_xdp_link {
10157 	struct bpf_link link;
10158 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
10159 	int flags;
10160 };
10161 
10162 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
10163 {
10164 	if (flags & XDP_FLAGS_HW_MODE)
10165 		return XDP_MODE_HW;
10166 	if (flags & XDP_FLAGS_DRV_MODE)
10167 		return XDP_MODE_DRV;
10168 	if (flags & XDP_FLAGS_SKB_MODE)
10169 		return XDP_MODE_SKB;
10170 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
10171 }
10172 
10173 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
10174 {
10175 	switch (mode) {
10176 	case XDP_MODE_SKB:
10177 		return generic_xdp_install;
10178 	case XDP_MODE_DRV:
10179 	case XDP_MODE_HW:
10180 		return dev->netdev_ops->ndo_bpf;
10181 	default:
10182 		return NULL;
10183 	}
10184 }
10185 
10186 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
10187 					 enum bpf_xdp_mode mode)
10188 {
10189 	return dev->xdp_state[mode].link;
10190 }
10191 
10192 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
10193 				     enum bpf_xdp_mode mode)
10194 {
10195 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10196 
10197 	if (link)
10198 		return link->link.prog;
10199 	return dev->xdp_state[mode].prog;
10200 }
10201 
10202 u8 dev_xdp_prog_count(struct net_device *dev)
10203 {
10204 	u8 count = 0;
10205 	int i;
10206 
10207 	for (i = 0; i < __MAX_XDP_MODE; i++)
10208 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10209 			count++;
10210 	return count;
10211 }
10212 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10213 
10214 u8 dev_xdp_sb_prog_count(struct net_device *dev)
10215 {
10216 	u8 count = 0;
10217 	int i;
10218 
10219 	for (i = 0; i < __MAX_XDP_MODE; i++)
10220 		if (dev->xdp_state[i].prog &&
10221 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
10222 			count++;
10223 	return count;
10224 }
10225 
10226 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10227 {
10228 	if (!dev->netdev_ops->ndo_bpf)
10229 		return -EOPNOTSUPP;
10230 
10231 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10232 	    bpf->command == XDP_SETUP_PROG &&
10233 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10234 		NL_SET_ERR_MSG(bpf->extack,
10235 			       "unable to propagate XDP to device using tcp-data-split");
10236 		return -EBUSY;
10237 	}
10238 
10239 	if (dev_get_min_mp_channel_count(dev)) {
10240 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10241 		return -EBUSY;
10242 	}
10243 
10244 	return dev->netdev_ops->ndo_bpf(dev, bpf);
10245 }
10246 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10247 
10248 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10249 {
10250 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10251 
10252 	return prog ? prog->aux->id : 0;
10253 }
10254 
10255 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10256 			     struct bpf_xdp_link *link)
10257 {
10258 	dev->xdp_state[mode].link = link;
10259 	dev->xdp_state[mode].prog = NULL;
10260 }
10261 
10262 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10263 			     struct bpf_prog *prog)
10264 {
10265 	dev->xdp_state[mode].link = NULL;
10266 	dev->xdp_state[mode].prog = prog;
10267 }
10268 
10269 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10270 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10271 			   u32 flags, struct bpf_prog *prog)
10272 {
10273 	struct netdev_bpf xdp;
10274 	int err;
10275 
10276 	netdev_ops_assert_locked(dev);
10277 
10278 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10279 	    prog && !prog->aux->xdp_has_frags) {
10280 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10281 		return -EBUSY;
10282 	}
10283 
10284 	if (dev_get_min_mp_channel_count(dev)) {
10285 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10286 		return -EBUSY;
10287 	}
10288 
10289 	memset(&xdp, 0, sizeof(xdp));
10290 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10291 	xdp.extack = extack;
10292 	xdp.flags = flags;
10293 	xdp.prog = prog;
10294 
10295 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
10296 	 * "moved" into driver), so they don't increment it on their own, but
10297 	 * they do decrement refcnt when program is detached or replaced.
10298 	 * Given net_device also owns link/prog, we need to bump refcnt here
10299 	 * to prevent drivers from underflowing it.
10300 	 */
10301 	if (prog)
10302 		bpf_prog_inc(prog);
10303 	err = bpf_op(dev, &xdp);
10304 	if (err) {
10305 		if (prog)
10306 			bpf_prog_put(prog);
10307 		return err;
10308 	}
10309 
10310 	if (mode != XDP_MODE_HW)
10311 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10312 
10313 	return 0;
10314 }
10315 
10316 static void dev_xdp_uninstall(struct net_device *dev)
10317 {
10318 	struct bpf_xdp_link *link;
10319 	struct bpf_prog *prog;
10320 	enum bpf_xdp_mode mode;
10321 	bpf_op_t bpf_op;
10322 
10323 	ASSERT_RTNL();
10324 
10325 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10326 		prog = dev_xdp_prog(dev, mode);
10327 		if (!prog)
10328 			continue;
10329 
10330 		bpf_op = dev_xdp_bpf_op(dev, mode);
10331 		if (!bpf_op)
10332 			continue;
10333 
10334 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10335 
10336 		/* auto-detach link from net device */
10337 		link = dev_xdp_link(dev, mode);
10338 		if (link)
10339 			link->dev = NULL;
10340 		else
10341 			bpf_prog_put(prog);
10342 
10343 		dev_xdp_set_link(dev, mode, NULL);
10344 	}
10345 }
10346 
10347 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10348 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10349 			  struct bpf_prog *old_prog, u32 flags)
10350 {
10351 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10352 	struct bpf_prog *cur_prog;
10353 	struct net_device *upper;
10354 	struct list_head *iter;
10355 	enum bpf_xdp_mode mode;
10356 	bpf_op_t bpf_op;
10357 	int err;
10358 
10359 	ASSERT_RTNL();
10360 
10361 	/* either link or prog attachment, never both */
10362 	if (link && (new_prog || old_prog))
10363 		return -EINVAL;
10364 	/* link supports only XDP mode flags */
10365 	if (link && (flags & ~XDP_FLAGS_MODES)) {
10366 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10367 		return -EINVAL;
10368 	}
10369 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10370 	if (num_modes > 1) {
10371 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10372 		return -EINVAL;
10373 	}
10374 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10375 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10376 		NL_SET_ERR_MSG(extack,
10377 			       "More than one program loaded, unset mode is ambiguous");
10378 		return -EINVAL;
10379 	}
10380 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10381 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10382 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10383 		return -EINVAL;
10384 	}
10385 
10386 	mode = dev_xdp_mode(dev, flags);
10387 	/* can't replace attached link */
10388 	if (dev_xdp_link(dev, mode)) {
10389 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10390 		return -EBUSY;
10391 	}
10392 
10393 	/* don't allow if an upper device already has a program */
10394 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10395 		if (dev_xdp_prog_count(upper) > 0) {
10396 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10397 			return -EEXIST;
10398 		}
10399 	}
10400 
10401 	cur_prog = dev_xdp_prog(dev, mode);
10402 	/* can't replace attached prog with link */
10403 	if (link && cur_prog) {
10404 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10405 		return -EBUSY;
10406 	}
10407 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10408 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10409 		return -EEXIST;
10410 	}
10411 
10412 	/* put effective new program into new_prog */
10413 	if (link)
10414 		new_prog = link->link.prog;
10415 
10416 	if (new_prog) {
10417 		bool offload = mode == XDP_MODE_HW;
10418 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10419 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10420 
10421 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10422 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10423 			return -EBUSY;
10424 		}
10425 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10426 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10427 			return -EEXIST;
10428 		}
10429 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10430 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10431 			return -EINVAL;
10432 		}
10433 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10434 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10435 			return -EINVAL;
10436 		}
10437 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10438 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10439 			return -EINVAL;
10440 		}
10441 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10442 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10443 			return -EINVAL;
10444 		}
10445 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10446 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10447 			return -EINVAL;
10448 		}
10449 	}
10450 
10451 	/* don't call drivers if the effective program didn't change */
10452 	if (new_prog != cur_prog) {
10453 		bpf_op = dev_xdp_bpf_op(dev, mode);
10454 		if (!bpf_op) {
10455 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10456 			return -EOPNOTSUPP;
10457 		}
10458 
10459 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10460 		if (err)
10461 			return err;
10462 	}
10463 
10464 	if (link)
10465 		dev_xdp_set_link(dev, mode, link);
10466 	else
10467 		dev_xdp_set_prog(dev, mode, new_prog);
10468 	if (cur_prog)
10469 		bpf_prog_put(cur_prog);
10470 
10471 	return 0;
10472 }
10473 
10474 static int dev_xdp_attach_link(struct net_device *dev,
10475 			       struct netlink_ext_ack *extack,
10476 			       struct bpf_xdp_link *link)
10477 {
10478 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10479 }
10480 
10481 static int dev_xdp_detach_link(struct net_device *dev,
10482 			       struct netlink_ext_ack *extack,
10483 			       struct bpf_xdp_link *link)
10484 {
10485 	enum bpf_xdp_mode mode;
10486 	bpf_op_t bpf_op;
10487 
10488 	ASSERT_RTNL();
10489 
10490 	mode = dev_xdp_mode(dev, link->flags);
10491 	if (dev_xdp_link(dev, mode) != link)
10492 		return -EINVAL;
10493 
10494 	bpf_op = dev_xdp_bpf_op(dev, mode);
10495 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10496 	dev_xdp_set_link(dev, mode, NULL);
10497 	return 0;
10498 }
10499 
10500 static void bpf_xdp_link_release(struct bpf_link *link)
10501 {
10502 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10503 
10504 	rtnl_lock();
10505 
10506 	/* if racing with net_device's tear down, xdp_link->dev might be
10507 	 * already NULL, in which case link was already auto-detached
10508 	 */
10509 	if (xdp_link->dev) {
10510 		netdev_lock_ops(xdp_link->dev);
10511 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10512 		netdev_unlock_ops(xdp_link->dev);
10513 		xdp_link->dev = NULL;
10514 	}
10515 
10516 	rtnl_unlock();
10517 }
10518 
10519 static int bpf_xdp_link_detach(struct bpf_link *link)
10520 {
10521 	bpf_xdp_link_release(link);
10522 	return 0;
10523 }
10524 
10525 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10526 {
10527 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10528 
10529 	kfree(xdp_link);
10530 }
10531 
10532 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10533 				     struct seq_file *seq)
10534 {
10535 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10536 	u32 ifindex = 0;
10537 
10538 	rtnl_lock();
10539 	if (xdp_link->dev)
10540 		ifindex = xdp_link->dev->ifindex;
10541 	rtnl_unlock();
10542 
10543 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10544 }
10545 
10546 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10547 				       struct bpf_link_info *info)
10548 {
10549 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10550 	u32 ifindex = 0;
10551 
10552 	rtnl_lock();
10553 	if (xdp_link->dev)
10554 		ifindex = xdp_link->dev->ifindex;
10555 	rtnl_unlock();
10556 
10557 	info->xdp.ifindex = ifindex;
10558 	return 0;
10559 }
10560 
10561 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10562 			       struct bpf_prog *old_prog)
10563 {
10564 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10565 	enum bpf_xdp_mode mode;
10566 	bpf_op_t bpf_op;
10567 	int err = 0;
10568 
10569 	rtnl_lock();
10570 
10571 	/* link might have been auto-released already, so fail */
10572 	if (!xdp_link->dev) {
10573 		err = -ENOLINK;
10574 		goto out_unlock;
10575 	}
10576 
10577 	if (old_prog && link->prog != old_prog) {
10578 		err = -EPERM;
10579 		goto out_unlock;
10580 	}
10581 	old_prog = link->prog;
10582 	if (old_prog->type != new_prog->type ||
10583 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10584 		err = -EINVAL;
10585 		goto out_unlock;
10586 	}
10587 
10588 	if (old_prog == new_prog) {
10589 		/* no-op, don't disturb drivers */
10590 		bpf_prog_put(new_prog);
10591 		goto out_unlock;
10592 	}
10593 
10594 	netdev_lock_ops(xdp_link->dev);
10595 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10596 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10597 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10598 			      xdp_link->flags, new_prog);
10599 	netdev_unlock_ops(xdp_link->dev);
10600 	if (err)
10601 		goto out_unlock;
10602 
10603 	old_prog = xchg(&link->prog, new_prog);
10604 	bpf_prog_put(old_prog);
10605 
10606 out_unlock:
10607 	rtnl_unlock();
10608 	return err;
10609 }
10610 
10611 static const struct bpf_link_ops bpf_xdp_link_lops = {
10612 	.release = bpf_xdp_link_release,
10613 	.dealloc = bpf_xdp_link_dealloc,
10614 	.detach = bpf_xdp_link_detach,
10615 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10616 	.fill_link_info = bpf_xdp_link_fill_link_info,
10617 	.update_prog = bpf_xdp_link_update,
10618 };
10619 
10620 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10621 {
10622 	struct net *net = current->nsproxy->net_ns;
10623 	struct bpf_link_primer link_primer;
10624 	struct netlink_ext_ack extack = {};
10625 	struct bpf_xdp_link *link;
10626 	struct net_device *dev;
10627 	int err, fd;
10628 
10629 	rtnl_lock();
10630 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10631 	if (!dev) {
10632 		rtnl_unlock();
10633 		return -EINVAL;
10634 	}
10635 
10636 	link = kzalloc(sizeof(*link), GFP_USER);
10637 	if (!link) {
10638 		err = -ENOMEM;
10639 		goto unlock;
10640 	}
10641 
10642 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10643 		      attr->link_create.attach_type);
10644 	link->dev = dev;
10645 	link->flags = attr->link_create.flags;
10646 
10647 	err = bpf_link_prime(&link->link, &link_primer);
10648 	if (err) {
10649 		kfree(link);
10650 		goto unlock;
10651 	}
10652 
10653 	netdev_lock_ops(dev);
10654 	err = dev_xdp_attach_link(dev, &extack, link);
10655 	netdev_unlock_ops(dev);
10656 	rtnl_unlock();
10657 
10658 	if (err) {
10659 		link->dev = NULL;
10660 		bpf_link_cleanup(&link_primer);
10661 		trace_bpf_xdp_link_attach_failed(extack._msg);
10662 		goto out_put_dev;
10663 	}
10664 
10665 	fd = bpf_link_settle(&link_primer);
10666 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10667 	dev_put(dev);
10668 	return fd;
10669 
10670 unlock:
10671 	rtnl_unlock();
10672 
10673 out_put_dev:
10674 	dev_put(dev);
10675 	return err;
10676 }
10677 
10678 /**
10679  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10680  *	@dev: device
10681  *	@extack: netlink extended ack
10682  *	@fd: new program fd or negative value to clear
10683  *	@expected_fd: old program fd that userspace expects to replace or clear
10684  *	@flags: xdp-related flags
10685  *
10686  *	Set or clear a bpf program for a device
10687  */
10688 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10689 		      int fd, int expected_fd, u32 flags)
10690 {
10691 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10692 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10693 	int err;
10694 
10695 	ASSERT_RTNL();
10696 
10697 	if (fd >= 0) {
10698 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10699 						 mode != XDP_MODE_SKB);
10700 		if (IS_ERR(new_prog))
10701 			return PTR_ERR(new_prog);
10702 	}
10703 
10704 	if (expected_fd >= 0) {
10705 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10706 						 mode != XDP_MODE_SKB);
10707 		if (IS_ERR(old_prog)) {
10708 			err = PTR_ERR(old_prog);
10709 			old_prog = NULL;
10710 			goto err_out;
10711 		}
10712 	}
10713 
10714 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10715 
10716 err_out:
10717 	if (err && new_prog)
10718 		bpf_prog_put(new_prog);
10719 	if (old_prog)
10720 		bpf_prog_put(old_prog);
10721 	return err;
10722 }
10723 
10724 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10725 {
10726 	int i;
10727 
10728 	netdev_ops_assert_locked(dev);
10729 
10730 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10731 		if (dev->_rx[i].mp_params.mp_priv)
10732 			/* The channel count is the idx plus 1. */
10733 			return i + 1;
10734 
10735 	return 0;
10736 }
10737 
10738 /**
10739  * dev_index_reserve() - allocate an ifindex in a namespace
10740  * @net: the applicable net namespace
10741  * @ifindex: requested ifindex, pass %0 to get one allocated
10742  *
10743  * Allocate a ifindex for a new device. Caller must either use the ifindex
10744  * to store the device (via list_netdevice()) or call dev_index_release()
10745  * to give the index up.
10746  *
10747  * Return: a suitable unique value for a new device interface number or -errno.
10748  */
10749 static int dev_index_reserve(struct net *net, u32 ifindex)
10750 {
10751 	int err;
10752 
10753 	if (ifindex > INT_MAX) {
10754 		DEBUG_NET_WARN_ON_ONCE(1);
10755 		return -EINVAL;
10756 	}
10757 
10758 	if (!ifindex)
10759 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10760 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10761 	else
10762 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10763 	if (err < 0)
10764 		return err;
10765 
10766 	return ifindex;
10767 }
10768 
10769 static void dev_index_release(struct net *net, int ifindex)
10770 {
10771 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10772 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10773 }
10774 
10775 static bool from_cleanup_net(void)
10776 {
10777 #ifdef CONFIG_NET_NS
10778 	return current == READ_ONCE(cleanup_net_task);
10779 #else
10780 	return false;
10781 #endif
10782 }
10783 
10784 /* Delayed registration/unregisteration */
10785 LIST_HEAD(net_todo_list);
10786 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10787 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10788 
10789 static void net_set_todo(struct net_device *dev)
10790 {
10791 	list_add_tail(&dev->todo_list, &net_todo_list);
10792 }
10793 
10794 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10795 	struct net_device *upper, netdev_features_t features)
10796 {
10797 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10798 	netdev_features_t feature;
10799 	int feature_bit;
10800 
10801 	for_each_netdev_feature(upper_disables, feature_bit) {
10802 		feature = __NETIF_F_BIT(feature_bit);
10803 		if (!(upper->wanted_features & feature)
10804 		    && (features & feature)) {
10805 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10806 				   &feature, upper->name);
10807 			features &= ~feature;
10808 		}
10809 	}
10810 
10811 	return features;
10812 }
10813 
10814 static void netdev_sync_lower_features(struct net_device *upper,
10815 	struct net_device *lower, netdev_features_t features)
10816 {
10817 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10818 	netdev_features_t feature;
10819 	int feature_bit;
10820 
10821 	for_each_netdev_feature(upper_disables, feature_bit) {
10822 		feature = __NETIF_F_BIT(feature_bit);
10823 		if (!(features & feature) && (lower->features & feature)) {
10824 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10825 				   &feature, lower->name);
10826 			netdev_lock_ops(lower);
10827 			lower->wanted_features &= ~feature;
10828 			__netdev_update_features(lower);
10829 
10830 			if (unlikely(lower->features & feature))
10831 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10832 					    &feature, lower->name);
10833 			else
10834 				netdev_features_change(lower);
10835 			netdev_unlock_ops(lower);
10836 		}
10837 	}
10838 }
10839 
10840 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10841 {
10842 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10843 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10844 	bool hw_csum = features & NETIF_F_HW_CSUM;
10845 
10846 	return ip_csum || hw_csum;
10847 }
10848 
10849 static netdev_features_t netdev_fix_features(struct net_device *dev,
10850 	netdev_features_t features)
10851 {
10852 	/* Fix illegal checksum combinations */
10853 	if ((features & NETIF_F_HW_CSUM) &&
10854 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10855 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10856 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10857 	}
10858 
10859 	/* TSO requires that SG is present as well. */
10860 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10861 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10862 		features &= ~NETIF_F_ALL_TSO;
10863 	}
10864 
10865 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10866 					!(features & NETIF_F_IP_CSUM)) {
10867 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10868 		features &= ~NETIF_F_TSO;
10869 		features &= ~NETIF_F_TSO_ECN;
10870 	}
10871 
10872 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10873 					 !(features & NETIF_F_IPV6_CSUM)) {
10874 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10875 		features &= ~NETIF_F_TSO6;
10876 	}
10877 
10878 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10879 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10880 		features &= ~NETIF_F_TSO_MANGLEID;
10881 
10882 	/* TSO ECN requires that TSO is present as well. */
10883 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10884 		features &= ~NETIF_F_TSO_ECN;
10885 
10886 	/* Software GSO depends on SG. */
10887 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10888 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10889 		features &= ~NETIF_F_GSO;
10890 	}
10891 
10892 	/* GSO partial features require GSO partial be set */
10893 	if ((features & dev->gso_partial_features) &&
10894 	    !(features & NETIF_F_GSO_PARTIAL)) {
10895 		netdev_dbg(dev,
10896 			   "Dropping partially supported GSO features since no GSO partial.\n");
10897 		features &= ~dev->gso_partial_features;
10898 	}
10899 
10900 	if (!(features & NETIF_F_RXCSUM)) {
10901 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10902 		 * successfully merged by hardware must also have the
10903 		 * checksum verified by hardware.  If the user does not
10904 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10905 		 */
10906 		if (features & NETIF_F_GRO_HW) {
10907 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10908 			features &= ~NETIF_F_GRO_HW;
10909 		}
10910 	}
10911 
10912 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10913 	if (features & NETIF_F_RXFCS) {
10914 		if (features & NETIF_F_LRO) {
10915 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10916 			features &= ~NETIF_F_LRO;
10917 		}
10918 
10919 		if (features & NETIF_F_GRO_HW) {
10920 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10921 			features &= ~NETIF_F_GRO_HW;
10922 		}
10923 	}
10924 
10925 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10926 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10927 		features &= ~NETIF_F_LRO;
10928 	}
10929 
10930 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10931 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10932 		features &= ~NETIF_F_HW_TLS_TX;
10933 	}
10934 
10935 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10936 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10937 		features &= ~NETIF_F_HW_TLS_RX;
10938 	}
10939 
10940 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10941 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10942 		features &= ~NETIF_F_GSO_UDP_L4;
10943 	}
10944 
10945 	return features;
10946 }
10947 
10948 int __netdev_update_features(struct net_device *dev)
10949 {
10950 	struct net_device *upper, *lower;
10951 	netdev_features_t features;
10952 	struct list_head *iter;
10953 	int err = -1;
10954 
10955 	ASSERT_RTNL();
10956 	netdev_ops_assert_locked(dev);
10957 
10958 	features = netdev_get_wanted_features(dev);
10959 
10960 	if (dev->netdev_ops->ndo_fix_features)
10961 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10962 
10963 	/* driver might be less strict about feature dependencies */
10964 	features = netdev_fix_features(dev, features);
10965 
10966 	/* some features can't be enabled if they're off on an upper device */
10967 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10968 		features = netdev_sync_upper_features(dev, upper, features);
10969 
10970 	if (dev->features == features)
10971 		goto sync_lower;
10972 
10973 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10974 		&dev->features, &features);
10975 
10976 	if (dev->netdev_ops->ndo_set_features)
10977 		err = dev->netdev_ops->ndo_set_features(dev, features);
10978 	else
10979 		err = 0;
10980 
10981 	if (unlikely(err < 0)) {
10982 		netdev_err(dev,
10983 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10984 			err, &features, &dev->features);
10985 		/* return non-0 since some features might have changed and
10986 		 * it's better to fire a spurious notification than miss it
10987 		 */
10988 		return -1;
10989 	}
10990 
10991 sync_lower:
10992 	/* some features must be disabled on lower devices when disabled
10993 	 * on an upper device (think: bonding master or bridge)
10994 	 */
10995 	netdev_for_each_lower_dev(dev, lower, iter)
10996 		netdev_sync_lower_features(dev, lower, features);
10997 
10998 	if (!err) {
10999 		netdev_features_t diff = features ^ dev->features;
11000 
11001 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
11002 			/* udp_tunnel_{get,drop}_rx_info both need
11003 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
11004 			 * device, or they won't do anything.
11005 			 * Thus we need to update dev->features
11006 			 * *before* calling udp_tunnel_get_rx_info,
11007 			 * but *after* calling udp_tunnel_drop_rx_info.
11008 			 */
11009 			udp_tunnel_nic_lock(dev);
11010 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
11011 				dev->features = features;
11012 				udp_tunnel_get_rx_info(dev);
11013 			} else {
11014 				udp_tunnel_drop_rx_info(dev);
11015 			}
11016 			udp_tunnel_nic_unlock(dev);
11017 		}
11018 
11019 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
11020 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
11021 				dev->features = features;
11022 				err |= vlan_get_rx_ctag_filter_info(dev);
11023 			} else {
11024 				vlan_drop_rx_ctag_filter_info(dev);
11025 			}
11026 		}
11027 
11028 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
11029 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
11030 				dev->features = features;
11031 				err |= vlan_get_rx_stag_filter_info(dev);
11032 			} else {
11033 				vlan_drop_rx_stag_filter_info(dev);
11034 			}
11035 		}
11036 
11037 		dev->features = features;
11038 	}
11039 
11040 	return err < 0 ? 0 : 1;
11041 }
11042 
11043 /**
11044  *	netdev_update_features - recalculate device features
11045  *	@dev: the device to check
11046  *
11047  *	Recalculate dev->features set and send notifications if it
11048  *	has changed. Should be called after driver or hardware dependent
11049  *	conditions might have changed that influence the features.
11050  */
11051 void netdev_update_features(struct net_device *dev)
11052 {
11053 	if (__netdev_update_features(dev))
11054 		netdev_features_change(dev);
11055 }
11056 EXPORT_SYMBOL(netdev_update_features);
11057 
11058 /**
11059  *	netdev_change_features - recalculate device features
11060  *	@dev: the device to check
11061  *
11062  *	Recalculate dev->features set and send notifications even
11063  *	if they have not changed. Should be called instead of
11064  *	netdev_update_features() if also dev->vlan_features might
11065  *	have changed to allow the changes to be propagated to stacked
11066  *	VLAN devices.
11067  */
11068 void netdev_change_features(struct net_device *dev)
11069 {
11070 	__netdev_update_features(dev);
11071 	netdev_features_change(dev);
11072 }
11073 EXPORT_SYMBOL(netdev_change_features);
11074 
11075 /**
11076  *	netif_stacked_transfer_operstate -	transfer operstate
11077  *	@rootdev: the root or lower level device to transfer state from
11078  *	@dev: the device to transfer operstate to
11079  *
11080  *	Transfer operational state from root to device. This is normally
11081  *	called when a stacking relationship exists between the root
11082  *	device and the device(a leaf device).
11083  */
11084 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
11085 					struct net_device *dev)
11086 {
11087 	if (rootdev->operstate == IF_OPER_DORMANT)
11088 		netif_dormant_on(dev);
11089 	else
11090 		netif_dormant_off(dev);
11091 
11092 	if (rootdev->operstate == IF_OPER_TESTING)
11093 		netif_testing_on(dev);
11094 	else
11095 		netif_testing_off(dev);
11096 
11097 	if (netif_carrier_ok(rootdev))
11098 		netif_carrier_on(dev);
11099 	else
11100 		netif_carrier_off(dev);
11101 }
11102 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
11103 
11104 static int netif_alloc_rx_queues(struct net_device *dev)
11105 {
11106 	unsigned int i, count = dev->num_rx_queues;
11107 	struct netdev_rx_queue *rx;
11108 	size_t sz = count * sizeof(*rx);
11109 	int err = 0;
11110 
11111 	BUG_ON(count < 1);
11112 
11113 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11114 	if (!rx)
11115 		return -ENOMEM;
11116 
11117 	dev->_rx = rx;
11118 
11119 	for (i = 0; i < count; i++) {
11120 		rx[i].dev = dev;
11121 
11122 		/* XDP RX-queue setup */
11123 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
11124 		if (err < 0)
11125 			goto err_rxq_info;
11126 	}
11127 	return 0;
11128 
11129 err_rxq_info:
11130 	/* Rollback successful reg's and free other resources */
11131 	while (i--)
11132 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
11133 	kvfree(dev->_rx);
11134 	dev->_rx = NULL;
11135 	return err;
11136 }
11137 
11138 static void netif_free_rx_queues(struct net_device *dev)
11139 {
11140 	unsigned int i, count = dev->num_rx_queues;
11141 
11142 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
11143 	if (!dev->_rx)
11144 		return;
11145 
11146 	for (i = 0; i < count; i++)
11147 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
11148 
11149 	kvfree(dev->_rx);
11150 }
11151 
11152 static void netdev_init_one_queue(struct net_device *dev,
11153 				  struct netdev_queue *queue, void *_unused)
11154 {
11155 	/* Initialize queue lock */
11156 	spin_lock_init(&queue->_xmit_lock);
11157 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
11158 	queue->xmit_lock_owner = -1;
11159 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
11160 	queue->dev = dev;
11161 #ifdef CONFIG_BQL
11162 	dql_init(&queue->dql, HZ);
11163 #endif
11164 }
11165 
11166 static void netif_free_tx_queues(struct net_device *dev)
11167 {
11168 	kvfree(dev->_tx);
11169 }
11170 
11171 static int netif_alloc_netdev_queues(struct net_device *dev)
11172 {
11173 	unsigned int count = dev->num_tx_queues;
11174 	struct netdev_queue *tx;
11175 	size_t sz = count * sizeof(*tx);
11176 
11177 	if (count < 1 || count > 0xffff)
11178 		return -EINVAL;
11179 
11180 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11181 	if (!tx)
11182 		return -ENOMEM;
11183 
11184 	dev->_tx = tx;
11185 
11186 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
11187 	spin_lock_init(&dev->tx_global_lock);
11188 
11189 	return 0;
11190 }
11191 
11192 void netif_tx_stop_all_queues(struct net_device *dev)
11193 {
11194 	unsigned int i;
11195 
11196 	for (i = 0; i < dev->num_tx_queues; i++) {
11197 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11198 
11199 		netif_tx_stop_queue(txq);
11200 	}
11201 }
11202 EXPORT_SYMBOL(netif_tx_stop_all_queues);
11203 
11204 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11205 {
11206 	void __percpu *v;
11207 
11208 	/* Drivers implementing ndo_get_peer_dev must support tstat
11209 	 * accounting, so that skb_do_redirect() can bump the dev's
11210 	 * RX stats upon network namespace switch.
11211 	 */
11212 	if (dev->netdev_ops->ndo_get_peer_dev &&
11213 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11214 		return -EOPNOTSUPP;
11215 
11216 	switch (dev->pcpu_stat_type) {
11217 	case NETDEV_PCPU_STAT_NONE:
11218 		return 0;
11219 	case NETDEV_PCPU_STAT_LSTATS:
11220 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11221 		break;
11222 	case NETDEV_PCPU_STAT_TSTATS:
11223 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11224 		break;
11225 	case NETDEV_PCPU_STAT_DSTATS:
11226 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11227 		break;
11228 	default:
11229 		return -EINVAL;
11230 	}
11231 
11232 	return v ? 0 : -ENOMEM;
11233 }
11234 
11235 static void netdev_do_free_pcpu_stats(struct net_device *dev)
11236 {
11237 	switch (dev->pcpu_stat_type) {
11238 	case NETDEV_PCPU_STAT_NONE:
11239 		return;
11240 	case NETDEV_PCPU_STAT_LSTATS:
11241 		free_percpu(dev->lstats);
11242 		break;
11243 	case NETDEV_PCPU_STAT_TSTATS:
11244 		free_percpu(dev->tstats);
11245 		break;
11246 	case NETDEV_PCPU_STAT_DSTATS:
11247 		free_percpu(dev->dstats);
11248 		break;
11249 	}
11250 }
11251 
11252 static void netdev_free_phy_link_topology(struct net_device *dev)
11253 {
11254 	struct phy_link_topology *topo = dev->link_topo;
11255 
11256 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11257 		xa_destroy(&topo->phys);
11258 		kfree(topo);
11259 		dev->link_topo = NULL;
11260 	}
11261 }
11262 
11263 /**
11264  * register_netdevice() - register a network device
11265  * @dev: device to register
11266  *
11267  * Take a prepared network device structure and make it externally accessible.
11268  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11269  * Callers must hold the rtnl lock - you may want register_netdev()
11270  * instead of this.
11271  */
11272 int register_netdevice(struct net_device *dev)
11273 {
11274 	int ret;
11275 	struct net *net = dev_net(dev);
11276 
11277 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11278 		     NETDEV_FEATURE_COUNT);
11279 	BUG_ON(dev_boot_phase);
11280 	ASSERT_RTNL();
11281 
11282 	might_sleep();
11283 
11284 	/* When net_device's are persistent, this will be fatal. */
11285 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11286 	BUG_ON(!net);
11287 
11288 	ret = ethtool_check_ops(dev->ethtool_ops);
11289 	if (ret)
11290 		return ret;
11291 
11292 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
11293 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11294 	mutex_init(&dev->ethtool->rss_lock);
11295 
11296 	spin_lock_init(&dev->addr_list_lock);
11297 	netdev_set_addr_lockdep_class(dev);
11298 
11299 	ret = dev_get_valid_name(net, dev, dev->name);
11300 	if (ret < 0)
11301 		goto out;
11302 
11303 	ret = -ENOMEM;
11304 	dev->name_node = netdev_name_node_head_alloc(dev);
11305 	if (!dev->name_node)
11306 		goto out;
11307 
11308 	/* Init, if this function is available */
11309 	if (dev->netdev_ops->ndo_init) {
11310 		ret = dev->netdev_ops->ndo_init(dev);
11311 		if (ret) {
11312 			if (ret > 0)
11313 				ret = -EIO;
11314 			goto err_free_name;
11315 		}
11316 	}
11317 
11318 	if (((dev->hw_features | dev->features) &
11319 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
11320 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11321 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11322 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11323 		ret = -EINVAL;
11324 		goto err_uninit;
11325 	}
11326 
11327 	ret = netdev_do_alloc_pcpu_stats(dev);
11328 	if (ret)
11329 		goto err_uninit;
11330 
11331 	ret = dev_index_reserve(net, dev->ifindex);
11332 	if (ret < 0)
11333 		goto err_free_pcpu;
11334 	dev->ifindex = ret;
11335 
11336 	/* Transfer changeable features to wanted_features and enable
11337 	 * software offloads (GSO and GRO).
11338 	 */
11339 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11340 	dev->features |= NETIF_F_SOFT_FEATURES;
11341 
11342 	if (dev->udp_tunnel_nic_info) {
11343 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11344 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11345 	}
11346 
11347 	dev->wanted_features = dev->features & dev->hw_features;
11348 
11349 	if (!(dev->flags & IFF_LOOPBACK))
11350 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
11351 
11352 	/* If IPv4 TCP segmentation offload is supported we should also
11353 	 * allow the device to enable segmenting the frame with the option
11354 	 * of ignoring a static IP ID value.  This doesn't enable the
11355 	 * feature itself but allows the user to enable it later.
11356 	 */
11357 	if (dev->hw_features & NETIF_F_TSO)
11358 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
11359 	if (dev->vlan_features & NETIF_F_TSO)
11360 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11361 	if (dev->mpls_features & NETIF_F_TSO)
11362 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11363 	if (dev->hw_enc_features & NETIF_F_TSO)
11364 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11365 
11366 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11367 	 */
11368 	dev->vlan_features |= NETIF_F_HIGHDMA;
11369 
11370 	/* Make NETIF_F_SG inheritable to tunnel devices.
11371 	 */
11372 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11373 
11374 	/* Make NETIF_F_SG inheritable to MPLS.
11375 	 */
11376 	dev->mpls_features |= NETIF_F_SG;
11377 
11378 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11379 	ret = notifier_to_errno(ret);
11380 	if (ret)
11381 		goto err_ifindex_release;
11382 
11383 	ret = netdev_register_kobject(dev);
11384 
11385 	netdev_lock(dev);
11386 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11387 	netdev_unlock(dev);
11388 
11389 	if (ret)
11390 		goto err_uninit_notify;
11391 
11392 	netdev_lock_ops(dev);
11393 	__netdev_update_features(dev);
11394 	netdev_unlock_ops(dev);
11395 
11396 	/*
11397 	 *	Default initial state at registry is that the
11398 	 *	device is present.
11399 	 */
11400 
11401 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11402 
11403 	linkwatch_init_dev(dev);
11404 
11405 	dev_init_scheduler(dev);
11406 
11407 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11408 	list_netdevice(dev);
11409 
11410 	add_device_randomness(dev->dev_addr, dev->addr_len);
11411 
11412 	/* If the device has permanent device address, driver should
11413 	 * set dev_addr and also addr_assign_type should be set to
11414 	 * NET_ADDR_PERM (default value).
11415 	 */
11416 	if (dev->addr_assign_type == NET_ADDR_PERM)
11417 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11418 
11419 	/* Notify protocols, that a new device appeared. */
11420 	netdev_lock_ops(dev);
11421 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11422 	netdev_unlock_ops(dev);
11423 	ret = notifier_to_errno(ret);
11424 	if (ret) {
11425 		/* Expect explicit free_netdev() on failure */
11426 		dev->needs_free_netdev = false;
11427 		unregister_netdevice_queue(dev, NULL);
11428 		goto out;
11429 	}
11430 	/*
11431 	 *	Prevent userspace races by waiting until the network
11432 	 *	device is fully setup before sending notifications.
11433 	 */
11434 	if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11435 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11436 
11437 out:
11438 	return ret;
11439 
11440 err_uninit_notify:
11441 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11442 err_ifindex_release:
11443 	dev_index_release(net, dev->ifindex);
11444 err_free_pcpu:
11445 	netdev_do_free_pcpu_stats(dev);
11446 err_uninit:
11447 	if (dev->netdev_ops->ndo_uninit)
11448 		dev->netdev_ops->ndo_uninit(dev);
11449 	if (dev->priv_destructor)
11450 		dev->priv_destructor(dev);
11451 err_free_name:
11452 	netdev_name_node_free(dev->name_node);
11453 	goto out;
11454 }
11455 EXPORT_SYMBOL(register_netdevice);
11456 
11457 /* Initialize the core of a dummy net device.
11458  * The setup steps dummy netdevs need which normal netdevs get by going
11459  * through register_netdevice().
11460  */
11461 static void init_dummy_netdev(struct net_device *dev)
11462 {
11463 	/* make sure we BUG if trying to hit standard
11464 	 * register/unregister code path
11465 	 */
11466 	dev->reg_state = NETREG_DUMMY;
11467 
11468 	/* a dummy interface is started by default */
11469 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11470 	set_bit(__LINK_STATE_START, &dev->state);
11471 
11472 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11473 	 * because users of this 'device' dont need to change
11474 	 * its refcount.
11475 	 */
11476 }
11477 
11478 /**
11479  *	register_netdev	- register a network device
11480  *	@dev: device to register
11481  *
11482  *	Take a completed network device structure and add it to the kernel
11483  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11484  *	chain. 0 is returned on success. A negative errno code is returned
11485  *	on a failure to set up the device, or if the name is a duplicate.
11486  *
11487  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11488  *	and expands the device name if you passed a format string to
11489  *	alloc_netdev.
11490  */
11491 int register_netdev(struct net_device *dev)
11492 {
11493 	struct net *net = dev_net(dev);
11494 	int err;
11495 
11496 	if (rtnl_net_lock_killable(net))
11497 		return -EINTR;
11498 
11499 	err = register_netdevice(dev);
11500 
11501 	rtnl_net_unlock(net);
11502 
11503 	return err;
11504 }
11505 EXPORT_SYMBOL(register_netdev);
11506 
11507 int netdev_refcnt_read(const struct net_device *dev)
11508 {
11509 #ifdef CONFIG_PCPU_DEV_REFCNT
11510 	int i, refcnt = 0;
11511 
11512 	for_each_possible_cpu(i)
11513 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11514 	return refcnt;
11515 #else
11516 	return refcount_read(&dev->dev_refcnt);
11517 #endif
11518 }
11519 EXPORT_SYMBOL(netdev_refcnt_read);
11520 
11521 int netdev_unregister_timeout_secs __read_mostly = 10;
11522 
11523 #define WAIT_REFS_MIN_MSECS 1
11524 #define WAIT_REFS_MAX_MSECS 250
11525 /**
11526  * netdev_wait_allrefs_any - wait until all references are gone.
11527  * @list: list of net_devices to wait on
11528  *
11529  * This is called when unregistering network devices.
11530  *
11531  * Any protocol or device that holds a reference should register
11532  * for netdevice notification, and cleanup and put back the
11533  * reference if they receive an UNREGISTER event.
11534  * We can get stuck here if buggy protocols don't correctly
11535  * call dev_put.
11536  */
11537 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11538 {
11539 	unsigned long rebroadcast_time, warning_time;
11540 	struct net_device *dev;
11541 	int wait = 0;
11542 
11543 	rebroadcast_time = warning_time = jiffies;
11544 
11545 	list_for_each_entry(dev, list, todo_list)
11546 		if (netdev_refcnt_read(dev) == 1)
11547 			return dev;
11548 
11549 	while (true) {
11550 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11551 			rtnl_lock();
11552 
11553 			/* Rebroadcast unregister notification */
11554 			list_for_each_entry(dev, list, todo_list)
11555 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11556 
11557 			__rtnl_unlock();
11558 			rcu_barrier();
11559 			rtnl_lock();
11560 
11561 			list_for_each_entry(dev, list, todo_list)
11562 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11563 					     &dev->state)) {
11564 					/* We must not have linkwatch events
11565 					 * pending on unregister. If this
11566 					 * happens, we simply run the queue
11567 					 * unscheduled, resulting in a noop
11568 					 * for this device.
11569 					 */
11570 					linkwatch_run_queue();
11571 					break;
11572 				}
11573 
11574 			__rtnl_unlock();
11575 
11576 			rebroadcast_time = jiffies;
11577 		}
11578 
11579 		rcu_barrier();
11580 
11581 		if (!wait) {
11582 			wait = WAIT_REFS_MIN_MSECS;
11583 		} else {
11584 			msleep(wait);
11585 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11586 		}
11587 
11588 		list_for_each_entry(dev, list, todo_list)
11589 			if (netdev_refcnt_read(dev) == 1)
11590 				return dev;
11591 
11592 		if (time_after(jiffies, warning_time +
11593 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11594 			list_for_each_entry(dev, list, todo_list) {
11595 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11596 					 dev->name, netdev_refcnt_read(dev));
11597 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11598 			}
11599 
11600 			warning_time = jiffies;
11601 		}
11602 	}
11603 }
11604 
11605 /* The sequence is:
11606  *
11607  *	rtnl_lock();
11608  *	...
11609  *	register_netdevice(x1);
11610  *	register_netdevice(x2);
11611  *	...
11612  *	unregister_netdevice(y1);
11613  *	unregister_netdevice(y2);
11614  *      ...
11615  *	rtnl_unlock();
11616  *	free_netdev(y1);
11617  *	free_netdev(y2);
11618  *
11619  * We are invoked by rtnl_unlock().
11620  * This allows us to deal with problems:
11621  * 1) We can delete sysfs objects which invoke hotplug
11622  *    without deadlocking with linkwatch via keventd.
11623  * 2) Since we run with the RTNL semaphore not held, we can sleep
11624  *    safely in order to wait for the netdev refcnt to drop to zero.
11625  *
11626  * We must not return until all unregister events added during
11627  * the interval the lock was held have been completed.
11628  */
11629 void netdev_run_todo(void)
11630 {
11631 	struct net_device *dev, *tmp;
11632 	struct list_head list;
11633 	int cnt;
11634 #ifdef CONFIG_LOCKDEP
11635 	struct list_head unlink_list;
11636 
11637 	list_replace_init(&net_unlink_list, &unlink_list);
11638 
11639 	while (!list_empty(&unlink_list)) {
11640 		dev = list_first_entry(&unlink_list, struct net_device,
11641 				       unlink_list);
11642 		list_del_init(&dev->unlink_list);
11643 		dev->nested_level = dev->lower_level - 1;
11644 	}
11645 #endif
11646 
11647 	/* Snapshot list, allow later requests */
11648 	list_replace_init(&net_todo_list, &list);
11649 
11650 	__rtnl_unlock();
11651 
11652 	/* Wait for rcu callbacks to finish before next phase */
11653 	if (!list_empty(&list))
11654 		rcu_barrier();
11655 
11656 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11657 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11658 			netdev_WARN(dev, "run_todo but not unregistering\n");
11659 			list_del(&dev->todo_list);
11660 			continue;
11661 		}
11662 
11663 		netdev_lock(dev);
11664 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11665 		netdev_unlock(dev);
11666 		linkwatch_sync_dev(dev);
11667 	}
11668 
11669 	cnt = 0;
11670 	while (!list_empty(&list)) {
11671 		dev = netdev_wait_allrefs_any(&list);
11672 		list_del(&dev->todo_list);
11673 
11674 		/* paranoia */
11675 		BUG_ON(netdev_refcnt_read(dev) != 1);
11676 		BUG_ON(!list_empty(&dev->ptype_all));
11677 		BUG_ON(!list_empty(&dev->ptype_specific));
11678 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11679 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11680 
11681 		netdev_do_free_pcpu_stats(dev);
11682 		if (dev->priv_destructor)
11683 			dev->priv_destructor(dev);
11684 		if (dev->needs_free_netdev)
11685 			free_netdev(dev);
11686 
11687 		cnt++;
11688 
11689 		/* Free network device */
11690 		kobject_put(&dev->dev.kobj);
11691 	}
11692 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11693 		wake_up(&netdev_unregistering_wq);
11694 }
11695 
11696 /* Collate per-cpu network dstats statistics
11697  *
11698  * Read per-cpu network statistics from dev->dstats and populate the related
11699  * fields in @s.
11700  */
11701 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11702 			     const struct pcpu_dstats __percpu *dstats)
11703 {
11704 	int cpu;
11705 
11706 	for_each_possible_cpu(cpu) {
11707 		u64 rx_packets, rx_bytes, rx_drops;
11708 		u64 tx_packets, tx_bytes, tx_drops;
11709 		const struct pcpu_dstats *stats;
11710 		unsigned int start;
11711 
11712 		stats = per_cpu_ptr(dstats, cpu);
11713 		do {
11714 			start = u64_stats_fetch_begin(&stats->syncp);
11715 			rx_packets = u64_stats_read(&stats->rx_packets);
11716 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11717 			rx_drops   = u64_stats_read(&stats->rx_drops);
11718 			tx_packets = u64_stats_read(&stats->tx_packets);
11719 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11720 			tx_drops   = u64_stats_read(&stats->tx_drops);
11721 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11722 
11723 		s->rx_packets += rx_packets;
11724 		s->rx_bytes   += rx_bytes;
11725 		s->rx_dropped += rx_drops;
11726 		s->tx_packets += tx_packets;
11727 		s->tx_bytes   += tx_bytes;
11728 		s->tx_dropped += tx_drops;
11729 	}
11730 }
11731 
11732 /* ndo_get_stats64 implementation for dtstats-based accounting.
11733  *
11734  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11735  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11736  */
11737 static void dev_get_dstats64(const struct net_device *dev,
11738 			     struct rtnl_link_stats64 *s)
11739 {
11740 	netdev_stats_to_stats64(s, &dev->stats);
11741 	dev_fetch_dstats(s, dev->dstats);
11742 }
11743 
11744 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11745  * all the same fields in the same order as net_device_stats, with only
11746  * the type differing, but rtnl_link_stats64 may have additional fields
11747  * at the end for newer counters.
11748  */
11749 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11750 			     const struct net_device_stats *netdev_stats)
11751 {
11752 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11753 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11754 	u64 *dst = (u64 *)stats64;
11755 
11756 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11757 	for (i = 0; i < n; i++)
11758 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11759 	/* zero out counters that only exist in rtnl_link_stats64 */
11760 	memset((char *)stats64 + n * sizeof(u64), 0,
11761 	       sizeof(*stats64) - n * sizeof(u64));
11762 }
11763 EXPORT_SYMBOL(netdev_stats_to_stats64);
11764 
11765 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11766 		struct net_device *dev)
11767 {
11768 	struct net_device_core_stats __percpu *p;
11769 
11770 	p = alloc_percpu_gfp(struct net_device_core_stats,
11771 			     GFP_ATOMIC | __GFP_NOWARN);
11772 
11773 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11774 		free_percpu(p);
11775 
11776 	/* This READ_ONCE() pairs with the cmpxchg() above */
11777 	return READ_ONCE(dev->core_stats);
11778 }
11779 
11780 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11781 {
11782 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11783 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11784 	unsigned long __percpu *field;
11785 
11786 	if (unlikely(!p)) {
11787 		p = netdev_core_stats_alloc(dev);
11788 		if (!p)
11789 			return;
11790 	}
11791 
11792 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11793 	this_cpu_inc(*field);
11794 }
11795 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11796 
11797 /**
11798  *	dev_get_stats	- get network device statistics
11799  *	@dev: device to get statistics from
11800  *	@storage: place to store stats
11801  *
11802  *	Get network statistics from device. Return @storage.
11803  *	The device driver may provide its own method by setting
11804  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11805  *	otherwise the internal statistics structure is used.
11806  */
11807 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11808 					struct rtnl_link_stats64 *storage)
11809 {
11810 	const struct net_device_ops *ops = dev->netdev_ops;
11811 	const struct net_device_core_stats __percpu *p;
11812 
11813 	/*
11814 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11815 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11816 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11817 	 */
11818 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11819 		     offsetof(struct pcpu_dstats, rx_bytes));
11820 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11821 		     offsetof(struct pcpu_dstats, rx_packets));
11822 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11823 		     offsetof(struct pcpu_dstats, tx_bytes));
11824 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11825 		     offsetof(struct pcpu_dstats, tx_packets));
11826 
11827 	if (ops->ndo_get_stats64) {
11828 		memset(storage, 0, sizeof(*storage));
11829 		ops->ndo_get_stats64(dev, storage);
11830 	} else if (ops->ndo_get_stats) {
11831 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11832 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11833 		dev_get_tstats64(dev, storage);
11834 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11835 		dev_get_dstats64(dev, storage);
11836 	} else {
11837 		netdev_stats_to_stats64(storage, &dev->stats);
11838 	}
11839 
11840 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11841 	p = READ_ONCE(dev->core_stats);
11842 	if (p) {
11843 		const struct net_device_core_stats *core_stats;
11844 		int i;
11845 
11846 		for_each_possible_cpu(i) {
11847 			core_stats = per_cpu_ptr(p, i);
11848 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11849 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11850 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11851 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11852 		}
11853 	}
11854 	return storage;
11855 }
11856 EXPORT_SYMBOL(dev_get_stats);
11857 
11858 /**
11859  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11860  *	@s: place to store stats
11861  *	@netstats: per-cpu network stats to read from
11862  *
11863  *	Read per-cpu network statistics and populate the related fields in @s.
11864  */
11865 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11866 			   const struct pcpu_sw_netstats __percpu *netstats)
11867 {
11868 	int cpu;
11869 
11870 	for_each_possible_cpu(cpu) {
11871 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11872 		const struct pcpu_sw_netstats *stats;
11873 		unsigned int start;
11874 
11875 		stats = per_cpu_ptr(netstats, cpu);
11876 		do {
11877 			start = u64_stats_fetch_begin(&stats->syncp);
11878 			rx_packets = u64_stats_read(&stats->rx_packets);
11879 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11880 			tx_packets = u64_stats_read(&stats->tx_packets);
11881 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11882 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11883 
11884 		s->rx_packets += rx_packets;
11885 		s->rx_bytes   += rx_bytes;
11886 		s->tx_packets += tx_packets;
11887 		s->tx_bytes   += tx_bytes;
11888 	}
11889 }
11890 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11891 
11892 /**
11893  *	dev_get_tstats64 - ndo_get_stats64 implementation
11894  *	@dev: device to get statistics from
11895  *	@s: place to store stats
11896  *
11897  *	Populate @s from dev->stats and dev->tstats. Can be used as
11898  *	ndo_get_stats64() callback.
11899  */
11900 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11901 {
11902 	netdev_stats_to_stats64(s, &dev->stats);
11903 	dev_fetch_sw_netstats(s, dev->tstats);
11904 }
11905 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11906 
11907 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11908 {
11909 	struct netdev_queue *queue = dev_ingress_queue(dev);
11910 
11911 #ifdef CONFIG_NET_CLS_ACT
11912 	if (queue)
11913 		return queue;
11914 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11915 	if (!queue)
11916 		return NULL;
11917 	netdev_init_one_queue(dev, queue, NULL);
11918 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11919 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11920 	rcu_assign_pointer(dev->ingress_queue, queue);
11921 #endif
11922 	return queue;
11923 }
11924 
11925 static const struct ethtool_ops default_ethtool_ops;
11926 
11927 void netdev_set_default_ethtool_ops(struct net_device *dev,
11928 				    const struct ethtool_ops *ops)
11929 {
11930 	if (dev->ethtool_ops == &default_ethtool_ops)
11931 		dev->ethtool_ops = ops;
11932 }
11933 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11934 
11935 /**
11936  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11937  * @dev: netdev to enable the IRQ coalescing on
11938  *
11939  * Sets a conservative default for SW IRQ coalescing. Users can use
11940  * sysfs attributes to override the default values.
11941  */
11942 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11943 {
11944 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11945 
11946 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11947 		netdev_set_gro_flush_timeout(dev, 20000);
11948 		netdev_set_defer_hard_irqs(dev, 1);
11949 	}
11950 }
11951 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11952 
11953 /**
11954  * alloc_netdev_mqs - allocate network device
11955  * @sizeof_priv: size of private data to allocate space for
11956  * @name: device name format string
11957  * @name_assign_type: origin of device name
11958  * @setup: callback to initialize device
11959  * @txqs: the number of TX subqueues to allocate
11960  * @rxqs: the number of RX subqueues to allocate
11961  *
11962  * Allocates a struct net_device with private data area for driver use
11963  * and performs basic initialization.  Also allocates subqueue structs
11964  * for each queue on the device.
11965  */
11966 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11967 		unsigned char name_assign_type,
11968 		void (*setup)(struct net_device *),
11969 		unsigned int txqs, unsigned int rxqs)
11970 {
11971 	struct net_device *dev;
11972 	size_t napi_config_sz;
11973 	unsigned int maxqs;
11974 
11975 	BUG_ON(strlen(name) >= sizeof(dev->name));
11976 
11977 	if (txqs < 1) {
11978 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11979 		return NULL;
11980 	}
11981 
11982 	if (rxqs < 1) {
11983 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11984 		return NULL;
11985 	}
11986 
11987 	maxqs = max(txqs, rxqs);
11988 
11989 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11990 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11991 	if (!dev)
11992 		return NULL;
11993 
11994 	dev->priv_len = sizeof_priv;
11995 
11996 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
11997 #ifdef CONFIG_PCPU_DEV_REFCNT
11998 	dev->pcpu_refcnt = alloc_percpu(int);
11999 	if (!dev->pcpu_refcnt)
12000 		goto free_dev;
12001 	__dev_hold(dev);
12002 #else
12003 	refcount_set(&dev->dev_refcnt, 1);
12004 #endif
12005 
12006 	if (dev_addr_init(dev))
12007 		goto free_pcpu;
12008 
12009 	dev_mc_init(dev);
12010 	dev_uc_init(dev);
12011 
12012 	dev_net_set(dev, &init_net);
12013 
12014 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
12015 	dev->xdp_zc_max_segs = 1;
12016 	dev->gso_max_segs = GSO_MAX_SEGS;
12017 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
12018 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
12019 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
12020 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
12021 	dev->tso_max_segs = TSO_MAX_SEGS;
12022 	dev->upper_level = 1;
12023 	dev->lower_level = 1;
12024 #ifdef CONFIG_LOCKDEP
12025 	dev->nested_level = 0;
12026 	INIT_LIST_HEAD(&dev->unlink_list);
12027 #endif
12028 
12029 	INIT_LIST_HEAD(&dev->napi_list);
12030 	INIT_LIST_HEAD(&dev->unreg_list);
12031 	INIT_LIST_HEAD(&dev->close_list);
12032 	INIT_LIST_HEAD(&dev->link_watch_list);
12033 	INIT_LIST_HEAD(&dev->adj_list.upper);
12034 	INIT_LIST_HEAD(&dev->adj_list.lower);
12035 	INIT_LIST_HEAD(&dev->ptype_all);
12036 	INIT_LIST_HEAD(&dev->ptype_specific);
12037 	INIT_LIST_HEAD(&dev->net_notifier_list);
12038 #ifdef CONFIG_NET_SCHED
12039 	hash_init(dev->qdisc_hash);
12040 #endif
12041 
12042 	mutex_init(&dev->lock);
12043 
12044 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
12045 	setup(dev);
12046 
12047 	if (!dev->tx_queue_len) {
12048 		dev->priv_flags |= IFF_NO_QUEUE;
12049 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
12050 	}
12051 
12052 	dev->num_tx_queues = txqs;
12053 	dev->real_num_tx_queues = txqs;
12054 	if (netif_alloc_netdev_queues(dev))
12055 		goto free_all;
12056 
12057 	dev->num_rx_queues = rxqs;
12058 	dev->real_num_rx_queues = rxqs;
12059 	if (netif_alloc_rx_queues(dev))
12060 		goto free_all;
12061 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
12062 	if (!dev->ethtool)
12063 		goto free_all;
12064 
12065 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
12066 	if (!dev->cfg)
12067 		goto free_all;
12068 	dev->cfg_pending = dev->cfg;
12069 
12070 	dev->num_napi_configs = maxqs;
12071 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
12072 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
12073 	if (!dev->napi_config)
12074 		goto free_all;
12075 
12076 	strscpy(dev->name, name);
12077 	dev->name_assign_type = name_assign_type;
12078 	dev->group = INIT_NETDEV_GROUP;
12079 	if (!dev->ethtool_ops)
12080 		dev->ethtool_ops = &default_ethtool_ops;
12081 
12082 	nf_hook_netdev_init(dev);
12083 
12084 	return dev;
12085 
12086 free_all:
12087 	free_netdev(dev);
12088 	return NULL;
12089 
12090 free_pcpu:
12091 #ifdef CONFIG_PCPU_DEV_REFCNT
12092 	free_percpu(dev->pcpu_refcnt);
12093 free_dev:
12094 #endif
12095 	kvfree(dev);
12096 	return NULL;
12097 }
12098 EXPORT_SYMBOL(alloc_netdev_mqs);
12099 
12100 static void netdev_napi_exit(struct net_device *dev)
12101 {
12102 	if (!list_empty(&dev->napi_list)) {
12103 		struct napi_struct *p, *n;
12104 
12105 		netdev_lock(dev);
12106 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
12107 			__netif_napi_del_locked(p);
12108 		netdev_unlock(dev);
12109 
12110 		synchronize_net();
12111 	}
12112 
12113 	kvfree(dev->napi_config);
12114 }
12115 
12116 /**
12117  * free_netdev - free network device
12118  * @dev: device
12119  *
12120  * This function does the last stage of destroying an allocated device
12121  * interface. The reference to the device object is released. If this
12122  * is the last reference then it will be freed.Must be called in process
12123  * context.
12124  */
12125 void free_netdev(struct net_device *dev)
12126 {
12127 	might_sleep();
12128 
12129 	/* When called immediately after register_netdevice() failed the unwind
12130 	 * handling may still be dismantling the device. Handle that case by
12131 	 * deferring the free.
12132 	 */
12133 	if (dev->reg_state == NETREG_UNREGISTERING) {
12134 		ASSERT_RTNL();
12135 		dev->needs_free_netdev = true;
12136 		return;
12137 	}
12138 
12139 	WARN_ON(dev->cfg != dev->cfg_pending);
12140 	kfree(dev->cfg);
12141 	kfree(dev->ethtool);
12142 	netif_free_tx_queues(dev);
12143 	netif_free_rx_queues(dev);
12144 
12145 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
12146 
12147 	/* Flush device addresses */
12148 	dev_addr_flush(dev);
12149 
12150 	netdev_napi_exit(dev);
12151 
12152 	netif_del_cpu_rmap(dev);
12153 
12154 	ref_tracker_dir_exit(&dev->refcnt_tracker);
12155 #ifdef CONFIG_PCPU_DEV_REFCNT
12156 	free_percpu(dev->pcpu_refcnt);
12157 	dev->pcpu_refcnt = NULL;
12158 #endif
12159 	free_percpu(dev->core_stats);
12160 	dev->core_stats = NULL;
12161 	free_percpu(dev->xdp_bulkq);
12162 	dev->xdp_bulkq = NULL;
12163 
12164 	netdev_free_phy_link_topology(dev);
12165 
12166 	mutex_destroy(&dev->lock);
12167 
12168 	/*  Compatibility with error handling in drivers */
12169 	if (dev->reg_state == NETREG_UNINITIALIZED ||
12170 	    dev->reg_state == NETREG_DUMMY) {
12171 		kvfree(dev);
12172 		return;
12173 	}
12174 
12175 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
12176 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
12177 
12178 	/* will free via device release */
12179 	put_device(&dev->dev);
12180 }
12181 EXPORT_SYMBOL(free_netdev);
12182 
12183 /**
12184  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
12185  * @sizeof_priv: size of private data to allocate space for
12186  *
12187  * Return: the allocated net_device on success, NULL otherwise
12188  */
12189 struct net_device *alloc_netdev_dummy(int sizeof_priv)
12190 {
12191 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
12192 			    init_dummy_netdev);
12193 }
12194 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12195 
12196 /**
12197  *	synchronize_net -  Synchronize with packet receive processing
12198  *
12199  *	Wait for packets currently being received to be done.
12200  *	Does not block later packets from starting.
12201  */
12202 void synchronize_net(void)
12203 {
12204 	might_sleep();
12205 	if (from_cleanup_net() || rtnl_is_locked())
12206 		synchronize_rcu_expedited();
12207 	else
12208 		synchronize_rcu();
12209 }
12210 EXPORT_SYMBOL(synchronize_net);
12211 
12212 static void netdev_rss_contexts_free(struct net_device *dev)
12213 {
12214 	struct ethtool_rxfh_context *ctx;
12215 	unsigned long context;
12216 
12217 	mutex_lock(&dev->ethtool->rss_lock);
12218 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12219 		xa_erase(&dev->ethtool->rss_ctx, context);
12220 		dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12221 		kfree(ctx);
12222 	}
12223 	xa_destroy(&dev->ethtool->rss_ctx);
12224 	mutex_unlock(&dev->ethtool->rss_lock);
12225 }
12226 
12227 /**
12228  *	unregister_netdevice_queue - remove device from the kernel
12229  *	@dev: device
12230  *	@head: list
12231  *
12232  *	This function shuts down a device interface and removes it
12233  *	from the kernel tables.
12234  *	If head not NULL, device is queued to be unregistered later.
12235  *
12236  *	Callers must hold the rtnl semaphore.  You may want
12237  *	unregister_netdev() instead of this.
12238  */
12239 
12240 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12241 {
12242 	ASSERT_RTNL();
12243 
12244 	if (head) {
12245 		list_move_tail(&dev->unreg_list, head);
12246 	} else {
12247 		LIST_HEAD(single);
12248 
12249 		list_add(&dev->unreg_list, &single);
12250 		unregister_netdevice_many(&single);
12251 	}
12252 }
12253 EXPORT_SYMBOL(unregister_netdevice_queue);
12254 
12255 static void dev_memory_provider_uninstall(struct net_device *dev)
12256 {
12257 	unsigned int i;
12258 
12259 	for (i = 0; i < dev->real_num_rx_queues; i++) {
12260 		struct netdev_rx_queue *rxq = &dev->_rx[i];
12261 		struct pp_memory_provider_params *p = &rxq->mp_params;
12262 
12263 		if (p->mp_ops && p->mp_ops->uninstall)
12264 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12265 	}
12266 }
12267 
12268 /* devices must be UP and netdev_lock()'d */
12269 static void netif_close_many_and_unlock(struct list_head *close_head)
12270 {
12271 	struct net_device *dev, *tmp;
12272 
12273 	netif_close_many(close_head, false);
12274 
12275 	/* ... now unlock them */
12276 	list_for_each_entry_safe(dev, tmp, close_head, close_list) {
12277 		netdev_unlock(dev);
12278 		list_del_init(&dev->close_list);
12279 	}
12280 }
12281 
12282 static void netif_close_many_and_unlock_cond(struct list_head *close_head)
12283 {
12284 #ifdef CONFIG_LOCKDEP
12285 	/* We can only track up to MAX_LOCK_DEPTH locks per task.
12286 	 *
12287 	 * Reserve half the available slots for additional locks possibly
12288 	 * taken by notifiers and (soft)irqs.
12289 	 */
12290 	unsigned int limit = MAX_LOCK_DEPTH / 2;
12291 
12292 	if (lockdep_depth(current) > limit)
12293 		netif_close_many_and_unlock(close_head);
12294 #endif
12295 }
12296 
12297 void unregister_netdevice_many_notify(struct list_head *head,
12298 				      u32 portid, const struct nlmsghdr *nlh)
12299 {
12300 	struct net_device *dev, *tmp;
12301 	LIST_HEAD(close_head);
12302 	int cnt = 0;
12303 
12304 	BUG_ON(dev_boot_phase);
12305 	ASSERT_RTNL();
12306 
12307 	if (list_empty(head))
12308 		return;
12309 
12310 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12311 		/* Some devices call without registering
12312 		 * for initialization unwind. Remove those
12313 		 * devices and proceed with the remaining.
12314 		 */
12315 		if (dev->reg_state == NETREG_UNINITIALIZED) {
12316 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12317 				 dev->name, dev);
12318 
12319 			WARN_ON(1);
12320 			list_del(&dev->unreg_list);
12321 			continue;
12322 		}
12323 		dev->dismantle = true;
12324 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
12325 	}
12326 
12327 	/* If device is running, close it first. Start with ops locked... */
12328 	list_for_each_entry(dev, head, unreg_list) {
12329 		if (!(dev->flags & IFF_UP))
12330 			continue;
12331 		if (netdev_need_ops_lock(dev)) {
12332 			list_add_tail(&dev->close_list, &close_head);
12333 			netdev_lock(dev);
12334 		}
12335 		netif_close_many_and_unlock_cond(&close_head);
12336 	}
12337 	netif_close_many_and_unlock(&close_head);
12338 	/* ... now go over the rest. */
12339 	list_for_each_entry(dev, head, unreg_list) {
12340 		if (!netdev_need_ops_lock(dev))
12341 			list_add_tail(&dev->close_list, &close_head);
12342 	}
12343 	netif_close_many(&close_head, true);
12344 
12345 	list_for_each_entry(dev, head, unreg_list) {
12346 		/* And unlink it from device chain. */
12347 		unlist_netdevice(dev);
12348 		netdev_lock(dev);
12349 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12350 		netdev_unlock(dev);
12351 	}
12352 	flush_all_backlogs();
12353 
12354 	synchronize_net();
12355 
12356 	list_for_each_entry(dev, head, unreg_list) {
12357 		struct sk_buff *skb = NULL;
12358 
12359 		/* Shutdown queueing discipline. */
12360 		netdev_lock_ops(dev);
12361 		dev_shutdown(dev);
12362 		dev_tcx_uninstall(dev);
12363 		dev_xdp_uninstall(dev);
12364 		dev_memory_provider_uninstall(dev);
12365 		netdev_unlock_ops(dev);
12366 		bpf_dev_bound_netdev_unregister(dev);
12367 
12368 		netdev_offload_xstats_disable_all(dev);
12369 
12370 		/* Notify protocols, that we are about to destroy
12371 		 * this device. They should clean all the things.
12372 		 */
12373 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12374 
12375 		if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12376 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12377 						     GFP_KERNEL, NULL, 0,
12378 						     portid, nlh);
12379 
12380 		/*
12381 		 *	Flush the unicast and multicast chains
12382 		 */
12383 		dev_uc_flush(dev);
12384 		dev_mc_flush(dev);
12385 
12386 		netdev_name_node_alt_flush(dev);
12387 		netdev_name_node_free(dev->name_node);
12388 
12389 		netdev_rss_contexts_free(dev);
12390 
12391 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12392 
12393 		if (dev->netdev_ops->ndo_uninit)
12394 			dev->netdev_ops->ndo_uninit(dev);
12395 
12396 		mutex_destroy(&dev->ethtool->rss_lock);
12397 
12398 		net_shaper_flush_netdev(dev);
12399 
12400 		if (skb)
12401 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12402 
12403 		/* Notifier chain MUST detach us all upper devices. */
12404 		WARN_ON(netdev_has_any_upper_dev(dev));
12405 		WARN_ON(netdev_has_any_lower_dev(dev));
12406 
12407 		/* Remove entries from kobject tree */
12408 		netdev_unregister_kobject(dev);
12409 #ifdef CONFIG_XPS
12410 		/* Remove XPS queueing entries */
12411 		netif_reset_xps_queues_gt(dev, 0);
12412 #endif
12413 	}
12414 
12415 	synchronize_net();
12416 
12417 	list_for_each_entry(dev, head, unreg_list) {
12418 		netdev_put(dev, &dev->dev_registered_tracker);
12419 		net_set_todo(dev);
12420 		cnt++;
12421 	}
12422 	atomic_add(cnt, &dev_unreg_count);
12423 
12424 	list_del(head);
12425 }
12426 
12427 /**
12428  *	unregister_netdevice_many - unregister many devices
12429  *	@head: list of devices
12430  *
12431  *  Note: As most callers use a stack allocated list_head,
12432  *  we force a list_del() to make sure stack won't be corrupted later.
12433  */
12434 void unregister_netdevice_many(struct list_head *head)
12435 {
12436 	unregister_netdevice_many_notify(head, 0, NULL);
12437 }
12438 EXPORT_SYMBOL(unregister_netdevice_many);
12439 
12440 /**
12441  *	unregister_netdev - remove device from the kernel
12442  *	@dev: device
12443  *
12444  *	This function shuts down a device interface and removes it
12445  *	from the kernel tables.
12446  *
12447  *	This is just a wrapper for unregister_netdevice that takes
12448  *	the rtnl semaphore.  In general you want to use this and not
12449  *	unregister_netdevice.
12450  */
12451 void unregister_netdev(struct net_device *dev)
12452 {
12453 	rtnl_net_dev_lock(dev);
12454 	unregister_netdevice(dev);
12455 	rtnl_net_dev_unlock(dev);
12456 }
12457 EXPORT_SYMBOL(unregister_netdev);
12458 
12459 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12460 			       const char *pat, int new_ifindex,
12461 			       struct netlink_ext_ack *extack)
12462 {
12463 	struct netdev_name_node *name_node;
12464 	struct net *net_old = dev_net(dev);
12465 	char new_name[IFNAMSIZ] = {};
12466 	int err, new_nsid;
12467 
12468 	ASSERT_RTNL();
12469 
12470 	/* Don't allow namespace local devices to be moved. */
12471 	err = -EINVAL;
12472 	if (dev->netns_immutable) {
12473 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12474 		goto out;
12475 	}
12476 
12477 	/* Ensure the device has been registered */
12478 	if (dev->reg_state != NETREG_REGISTERED) {
12479 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12480 		goto out;
12481 	}
12482 
12483 	/* Get out if there is nothing todo */
12484 	err = 0;
12485 	if (net_eq(net_old, net))
12486 		goto out;
12487 
12488 	/* Pick the destination device name, and ensure
12489 	 * we can use it in the destination network namespace.
12490 	 */
12491 	err = -EEXIST;
12492 	if (netdev_name_in_use(net, dev->name)) {
12493 		/* We get here if we can't use the current device name */
12494 		if (!pat) {
12495 			NL_SET_ERR_MSG(extack,
12496 				       "An interface with the same name exists in the target netns");
12497 			goto out;
12498 		}
12499 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12500 		if (err < 0) {
12501 			NL_SET_ERR_MSG_FMT(extack,
12502 					   "Unable to use '%s' for the new interface name in the target netns",
12503 					   pat);
12504 			goto out;
12505 		}
12506 	}
12507 	/* Check that none of the altnames conflicts. */
12508 	err = -EEXIST;
12509 	netdev_for_each_altname(dev, name_node) {
12510 		if (netdev_name_in_use(net, name_node->name)) {
12511 			NL_SET_ERR_MSG_FMT(extack,
12512 					   "An interface with the altname %s exists in the target netns",
12513 					   name_node->name);
12514 			goto out;
12515 		}
12516 	}
12517 
12518 	/* Check that new_ifindex isn't used yet. */
12519 	if (new_ifindex) {
12520 		err = dev_index_reserve(net, new_ifindex);
12521 		if (err < 0) {
12522 			NL_SET_ERR_MSG_FMT(extack,
12523 					   "The ifindex %d is not available in the target netns",
12524 					   new_ifindex);
12525 			goto out;
12526 		}
12527 	} else {
12528 		/* If there is an ifindex conflict assign a new one */
12529 		err = dev_index_reserve(net, dev->ifindex);
12530 		if (err == -EBUSY)
12531 			err = dev_index_reserve(net, 0);
12532 		if (err < 0) {
12533 			NL_SET_ERR_MSG(extack,
12534 				       "Unable to allocate a new ifindex in the target netns");
12535 			goto out;
12536 		}
12537 		new_ifindex = err;
12538 	}
12539 
12540 	/*
12541 	 * And now a mini version of register_netdevice unregister_netdevice.
12542 	 */
12543 
12544 	netdev_lock_ops(dev);
12545 	/* If device is running close it first. */
12546 	netif_close(dev);
12547 	/* And unlink it from device chain */
12548 	unlist_netdevice(dev);
12549 
12550 	if (!netdev_need_ops_lock(dev))
12551 		netdev_lock(dev);
12552 	dev->moving_ns = true;
12553 	netdev_unlock(dev);
12554 
12555 	synchronize_net();
12556 
12557 	/* Shutdown queueing discipline. */
12558 	netdev_lock_ops(dev);
12559 	dev_shutdown(dev);
12560 	netdev_unlock_ops(dev);
12561 
12562 	/* Notify protocols, that we are about to destroy
12563 	 * this device. They should clean all the things.
12564 	 *
12565 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12566 	 * This is wanted because this way 8021q and macvlan know
12567 	 * the device is just moving and can keep their slaves up.
12568 	 */
12569 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12570 	rcu_barrier();
12571 
12572 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12573 
12574 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12575 			    new_ifindex);
12576 
12577 	/*
12578 	 *	Flush the unicast and multicast chains
12579 	 */
12580 	dev_uc_flush(dev);
12581 	dev_mc_flush(dev);
12582 
12583 	/* Send a netdev-removed uevent to the old namespace */
12584 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12585 	netdev_adjacent_del_links(dev);
12586 
12587 	/* Move per-net netdevice notifiers that are following the netdevice */
12588 	move_netdevice_notifiers_dev_net(dev, net);
12589 
12590 	/* Actually switch the network namespace */
12591 	netdev_lock(dev);
12592 	dev_net_set(dev, net);
12593 	netdev_unlock(dev);
12594 	dev->ifindex = new_ifindex;
12595 
12596 	if (new_name[0]) {
12597 		/* Rename the netdev to prepared name */
12598 		write_seqlock_bh(&netdev_rename_lock);
12599 		strscpy(dev->name, new_name, IFNAMSIZ);
12600 		write_sequnlock_bh(&netdev_rename_lock);
12601 	}
12602 
12603 	/* Fixup kobjects */
12604 	dev_set_uevent_suppress(&dev->dev, 1);
12605 	err = device_rename(&dev->dev, dev->name);
12606 	dev_set_uevent_suppress(&dev->dev, 0);
12607 	WARN_ON(err);
12608 
12609 	/* Send a netdev-add uevent to the new namespace */
12610 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12611 	netdev_adjacent_add_links(dev);
12612 
12613 	/* Adapt owner in case owning user namespace of target network
12614 	 * namespace is different from the original one.
12615 	 */
12616 	err = netdev_change_owner(dev, net_old, net);
12617 	WARN_ON(err);
12618 
12619 	netdev_lock(dev);
12620 	dev->moving_ns = false;
12621 	if (!netdev_need_ops_lock(dev))
12622 		netdev_unlock(dev);
12623 
12624 	/* Add the device back in the hashes */
12625 	list_netdevice(dev);
12626 	/* Notify protocols, that a new device appeared. */
12627 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12628 	netdev_unlock_ops(dev);
12629 
12630 	/*
12631 	 *	Prevent userspace races by waiting until the network
12632 	 *	device is fully setup before sending notifications.
12633 	 */
12634 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12635 
12636 	synchronize_net();
12637 	err = 0;
12638 out:
12639 	return err;
12640 }
12641 
12642 static int dev_cpu_dead(unsigned int oldcpu)
12643 {
12644 	struct sk_buff **list_skb;
12645 	struct sk_buff *skb;
12646 	unsigned int cpu;
12647 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12648 
12649 	local_irq_disable();
12650 	cpu = smp_processor_id();
12651 	sd = &per_cpu(softnet_data, cpu);
12652 	oldsd = &per_cpu(softnet_data, oldcpu);
12653 
12654 	/* Find end of our completion_queue. */
12655 	list_skb = &sd->completion_queue;
12656 	while (*list_skb)
12657 		list_skb = &(*list_skb)->next;
12658 	/* Append completion queue from offline CPU. */
12659 	*list_skb = oldsd->completion_queue;
12660 	oldsd->completion_queue = NULL;
12661 
12662 	/* Append output queue from offline CPU. */
12663 	if (oldsd->output_queue) {
12664 		*sd->output_queue_tailp = oldsd->output_queue;
12665 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12666 		oldsd->output_queue = NULL;
12667 		oldsd->output_queue_tailp = &oldsd->output_queue;
12668 	}
12669 	/* Append NAPI poll list from offline CPU, with one exception :
12670 	 * process_backlog() must be called by cpu owning percpu backlog.
12671 	 * We properly handle process_queue & input_pkt_queue later.
12672 	 */
12673 	while (!list_empty(&oldsd->poll_list)) {
12674 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12675 							    struct napi_struct,
12676 							    poll_list);
12677 
12678 		list_del_init(&napi->poll_list);
12679 		if (napi->poll == process_backlog)
12680 			napi->state &= NAPIF_STATE_THREADED;
12681 		else
12682 			____napi_schedule(sd, napi);
12683 	}
12684 
12685 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12686 	local_irq_enable();
12687 
12688 	if (!use_backlog_threads()) {
12689 #ifdef CONFIG_RPS
12690 		remsd = oldsd->rps_ipi_list;
12691 		oldsd->rps_ipi_list = NULL;
12692 #endif
12693 		/* send out pending IPI's on offline CPU */
12694 		net_rps_send_ipi(remsd);
12695 	}
12696 
12697 	/* Process offline CPU's input_pkt_queue */
12698 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12699 		netif_rx(skb);
12700 		rps_input_queue_head_incr(oldsd);
12701 	}
12702 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12703 		netif_rx(skb);
12704 		rps_input_queue_head_incr(oldsd);
12705 	}
12706 
12707 	return 0;
12708 }
12709 
12710 /**
12711  *	netdev_increment_features - increment feature set by one
12712  *	@all: current feature set
12713  *	@one: new feature set
12714  *	@mask: mask feature set
12715  *
12716  *	Computes a new feature set after adding a device with feature set
12717  *	@one to the master device with current feature set @all.  Will not
12718  *	enable anything that is off in @mask. Returns the new feature set.
12719  */
12720 netdev_features_t netdev_increment_features(netdev_features_t all,
12721 	netdev_features_t one, netdev_features_t mask)
12722 {
12723 	if (mask & NETIF_F_HW_CSUM)
12724 		mask |= NETIF_F_CSUM_MASK;
12725 	mask |= NETIF_F_VLAN_CHALLENGED;
12726 
12727 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12728 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12729 
12730 	/* If one device supports hw checksumming, set for all. */
12731 	if (all & NETIF_F_HW_CSUM)
12732 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12733 
12734 	return all;
12735 }
12736 EXPORT_SYMBOL(netdev_increment_features);
12737 
12738 /**
12739  *	netdev_compute_master_upper_features - compute feature from lowers
12740  *	@dev: the upper device
12741  *	@update_header: whether to update upper device's header_len/headroom/tailroom
12742  *
12743  *	Recompute the upper device's feature based on all lower devices.
12744  */
12745 void netdev_compute_master_upper_features(struct net_device *dev, bool update_header)
12746 {
12747 	unsigned int dst_release_flag = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
12748 	netdev_features_t gso_partial_features = MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES;
12749 	netdev_features_t xfrm_features = MASTER_UPPER_DEV_XFRM_FEATURES;
12750 	netdev_features_t mpls_features = MASTER_UPPER_DEV_MPLS_FEATURES;
12751 	netdev_features_t vlan_features = MASTER_UPPER_DEV_VLAN_FEATURES;
12752 	netdev_features_t enc_features = MASTER_UPPER_DEV_ENC_FEATURES;
12753 	unsigned short max_header_len = ETH_HLEN;
12754 	unsigned int tso_max_size = TSO_MAX_SIZE;
12755 	unsigned short max_headroom = 0;
12756 	unsigned short max_tailroom = 0;
12757 	u16 tso_max_segs = TSO_MAX_SEGS;
12758 	struct net_device *lower_dev;
12759 	struct list_head *iter;
12760 
12761 	mpls_features = netdev_base_features(mpls_features);
12762 	vlan_features = netdev_base_features(vlan_features);
12763 	enc_features = netdev_base_features(enc_features);
12764 
12765 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
12766 		gso_partial_features = netdev_increment_features(gso_partial_features,
12767 								 lower_dev->gso_partial_features,
12768 								 MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES);
12769 
12770 		vlan_features = netdev_increment_features(vlan_features,
12771 							  lower_dev->vlan_features,
12772 							  MASTER_UPPER_DEV_VLAN_FEATURES);
12773 
12774 		enc_features = netdev_increment_features(enc_features,
12775 							 lower_dev->hw_enc_features,
12776 							 MASTER_UPPER_DEV_ENC_FEATURES);
12777 
12778 		if (IS_ENABLED(CONFIG_XFRM_OFFLOAD))
12779 			xfrm_features = netdev_increment_features(xfrm_features,
12780 								  lower_dev->hw_enc_features,
12781 								  MASTER_UPPER_DEV_XFRM_FEATURES);
12782 
12783 		mpls_features = netdev_increment_features(mpls_features,
12784 							  lower_dev->mpls_features,
12785 							  MASTER_UPPER_DEV_MPLS_FEATURES);
12786 
12787 		dst_release_flag &= lower_dev->priv_flags;
12788 
12789 		if (update_header) {
12790 			max_header_len = max(max_header_len, lower_dev->hard_header_len);
12791 			max_headroom = max(max_headroom, lower_dev->needed_headroom);
12792 			max_tailroom = max(max_tailroom, lower_dev->needed_tailroom);
12793 		}
12794 
12795 		tso_max_size = min(tso_max_size, lower_dev->tso_max_size);
12796 		tso_max_segs = min(tso_max_segs, lower_dev->tso_max_segs);
12797 	}
12798 
12799 	dev->gso_partial_features = gso_partial_features;
12800 	dev->vlan_features = vlan_features;
12801 	dev->hw_enc_features = enc_features | NETIF_F_GSO_ENCAP_ALL |
12802 			       NETIF_F_HW_VLAN_CTAG_TX |
12803 			       NETIF_F_HW_VLAN_STAG_TX;
12804 	if (IS_ENABLED(CONFIG_XFRM_OFFLOAD))
12805 		dev->hw_enc_features |= xfrm_features;
12806 	dev->mpls_features = mpls_features;
12807 
12808 	dev->priv_flags &= ~IFF_XMIT_DST_RELEASE;
12809 	if ((dev->priv_flags & IFF_XMIT_DST_RELEASE_PERM) &&
12810 	    dst_release_flag == (IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM))
12811 		dev->priv_flags |= IFF_XMIT_DST_RELEASE;
12812 
12813 	if (update_header) {
12814 		dev->hard_header_len = max_header_len;
12815 		dev->needed_headroom = max_headroom;
12816 		dev->needed_tailroom = max_tailroom;
12817 	}
12818 
12819 	netif_set_tso_max_segs(dev, tso_max_segs);
12820 	netif_set_tso_max_size(dev, tso_max_size);
12821 
12822 	netdev_change_features(dev);
12823 }
12824 EXPORT_SYMBOL(netdev_compute_master_upper_features);
12825 
12826 static struct hlist_head * __net_init netdev_create_hash(void)
12827 {
12828 	int i;
12829 	struct hlist_head *hash;
12830 
12831 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12832 	if (hash != NULL)
12833 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12834 			INIT_HLIST_HEAD(&hash[i]);
12835 
12836 	return hash;
12837 }
12838 
12839 /* Initialize per network namespace state */
12840 static int __net_init netdev_init(struct net *net)
12841 {
12842 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12843 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12844 
12845 	INIT_LIST_HEAD(&net->dev_base_head);
12846 
12847 	net->dev_name_head = netdev_create_hash();
12848 	if (net->dev_name_head == NULL)
12849 		goto err_name;
12850 
12851 	net->dev_index_head = netdev_create_hash();
12852 	if (net->dev_index_head == NULL)
12853 		goto err_idx;
12854 
12855 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12856 
12857 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12858 
12859 	return 0;
12860 
12861 err_idx:
12862 	kfree(net->dev_name_head);
12863 err_name:
12864 	return -ENOMEM;
12865 }
12866 
12867 /**
12868  *	netdev_drivername - network driver for the device
12869  *	@dev: network device
12870  *
12871  *	Determine network driver for device.
12872  */
12873 const char *netdev_drivername(const struct net_device *dev)
12874 {
12875 	const struct device_driver *driver;
12876 	const struct device *parent;
12877 	const char *empty = "";
12878 
12879 	parent = dev->dev.parent;
12880 	if (!parent)
12881 		return empty;
12882 
12883 	driver = parent->driver;
12884 	if (driver && driver->name)
12885 		return driver->name;
12886 	return empty;
12887 }
12888 
12889 static void __netdev_printk(const char *level, const struct net_device *dev,
12890 			    struct va_format *vaf)
12891 {
12892 	if (dev && dev->dev.parent) {
12893 		dev_printk_emit(level[1] - '0',
12894 				dev->dev.parent,
12895 				"%s %s %s%s: %pV",
12896 				dev_driver_string(dev->dev.parent),
12897 				dev_name(dev->dev.parent),
12898 				netdev_name(dev), netdev_reg_state(dev),
12899 				vaf);
12900 	} else if (dev) {
12901 		printk("%s%s%s: %pV",
12902 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12903 	} else {
12904 		printk("%s(NULL net_device): %pV", level, vaf);
12905 	}
12906 }
12907 
12908 void netdev_printk(const char *level, const struct net_device *dev,
12909 		   const char *format, ...)
12910 {
12911 	struct va_format vaf;
12912 	va_list args;
12913 
12914 	va_start(args, format);
12915 
12916 	vaf.fmt = format;
12917 	vaf.va = &args;
12918 
12919 	__netdev_printk(level, dev, &vaf);
12920 
12921 	va_end(args);
12922 }
12923 EXPORT_SYMBOL(netdev_printk);
12924 
12925 #define define_netdev_printk_level(func, level)			\
12926 void func(const struct net_device *dev, const char *fmt, ...)	\
12927 {								\
12928 	struct va_format vaf;					\
12929 	va_list args;						\
12930 								\
12931 	va_start(args, fmt);					\
12932 								\
12933 	vaf.fmt = fmt;						\
12934 	vaf.va = &args;						\
12935 								\
12936 	__netdev_printk(level, dev, &vaf);			\
12937 								\
12938 	va_end(args);						\
12939 }								\
12940 EXPORT_SYMBOL(func);
12941 
12942 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12943 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12944 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12945 define_netdev_printk_level(netdev_err, KERN_ERR);
12946 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12947 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12948 define_netdev_printk_level(netdev_info, KERN_INFO);
12949 
12950 static void __net_exit netdev_exit(struct net *net)
12951 {
12952 	kfree(net->dev_name_head);
12953 	kfree(net->dev_index_head);
12954 	xa_destroy(&net->dev_by_index);
12955 	if (net != &init_net)
12956 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12957 }
12958 
12959 static struct pernet_operations __net_initdata netdev_net_ops = {
12960 	.init = netdev_init,
12961 	.exit = netdev_exit,
12962 };
12963 
12964 static void __net_exit default_device_exit_net(struct net *net)
12965 {
12966 	struct netdev_name_node *name_node, *tmp;
12967 	struct net_device *dev, *aux;
12968 	/*
12969 	 * Push all migratable network devices back to the
12970 	 * initial network namespace
12971 	 */
12972 	ASSERT_RTNL();
12973 	for_each_netdev_safe(net, dev, aux) {
12974 		int err;
12975 		char fb_name[IFNAMSIZ];
12976 
12977 		/* Ignore unmoveable devices (i.e. loopback) */
12978 		if (dev->netns_immutable)
12979 			continue;
12980 
12981 		/* Leave virtual devices for the generic cleanup */
12982 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12983 			continue;
12984 
12985 		/* Push remaining network devices to init_net */
12986 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12987 		if (netdev_name_in_use(&init_net, fb_name))
12988 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12989 
12990 		netdev_for_each_altname_safe(dev, name_node, tmp)
12991 			if (netdev_name_in_use(&init_net, name_node->name))
12992 				__netdev_name_node_alt_destroy(name_node);
12993 
12994 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12995 		if (err) {
12996 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12997 				 __func__, dev->name, err);
12998 			BUG();
12999 		}
13000 	}
13001 }
13002 
13003 static void __net_exit default_device_exit_batch(struct list_head *net_list)
13004 {
13005 	/* At exit all network devices most be removed from a network
13006 	 * namespace.  Do this in the reverse order of registration.
13007 	 * Do this across as many network namespaces as possible to
13008 	 * improve batching efficiency.
13009 	 */
13010 	struct net_device *dev;
13011 	struct net *net;
13012 	LIST_HEAD(dev_kill_list);
13013 
13014 	rtnl_lock();
13015 	list_for_each_entry(net, net_list, exit_list) {
13016 		default_device_exit_net(net);
13017 		cond_resched();
13018 	}
13019 
13020 	list_for_each_entry(net, net_list, exit_list) {
13021 		for_each_netdev_reverse(net, dev) {
13022 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
13023 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
13024 			else
13025 				unregister_netdevice_queue(dev, &dev_kill_list);
13026 		}
13027 	}
13028 	unregister_netdevice_many(&dev_kill_list);
13029 	rtnl_unlock();
13030 }
13031 
13032 static struct pernet_operations __net_initdata default_device_ops = {
13033 	.exit_batch = default_device_exit_batch,
13034 };
13035 
13036 static void __init net_dev_struct_check(void)
13037 {
13038 	/* TX read-mostly hotpath */
13039 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
13040 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
13041 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
13042 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
13043 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
13044 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
13045 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
13046 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
13047 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
13048 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
13049 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
13050 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
13051 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
13052 #ifdef CONFIG_XPS
13053 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
13054 #endif
13055 #ifdef CONFIG_NETFILTER_EGRESS
13056 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
13057 #endif
13058 #ifdef CONFIG_NET_XGRESS
13059 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
13060 #endif
13061 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
13062 
13063 	/* TXRX read-mostly hotpath */
13064 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
13065 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
13066 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
13067 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
13068 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
13069 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
13070 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
13071 
13072 	/* RX read-mostly hotpath */
13073 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
13074 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
13075 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
13076 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
13077 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
13078 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
13079 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
13080 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
13081 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
13082 #ifdef CONFIG_NETPOLL
13083 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
13084 #endif
13085 #ifdef CONFIG_NET_XGRESS
13086 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
13087 #endif
13088 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
13089 }
13090 
13091 /*
13092  *	Initialize the DEV module. At boot time this walks the device list and
13093  *	unhooks any devices that fail to initialise (normally hardware not
13094  *	present) and leaves us with a valid list of present and active devices.
13095  *
13096  */
13097 
13098 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
13099 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
13100 
13101 static int net_page_pool_create(int cpuid)
13102 {
13103 #if IS_ENABLED(CONFIG_PAGE_POOL)
13104 	struct page_pool_params page_pool_params = {
13105 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
13106 		.flags = PP_FLAG_SYSTEM_POOL,
13107 		.nid = cpu_to_mem(cpuid),
13108 	};
13109 	struct page_pool *pp_ptr;
13110 	int err;
13111 
13112 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
13113 	if (IS_ERR(pp_ptr))
13114 		return -ENOMEM;
13115 
13116 	err = xdp_reg_page_pool(pp_ptr);
13117 	if (err) {
13118 		page_pool_destroy(pp_ptr);
13119 		return err;
13120 	}
13121 
13122 	per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
13123 #endif
13124 	return 0;
13125 }
13126 
13127 static int backlog_napi_should_run(unsigned int cpu)
13128 {
13129 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13130 	struct napi_struct *napi = &sd->backlog;
13131 
13132 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
13133 }
13134 
13135 static void run_backlog_napi(unsigned int cpu)
13136 {
13137 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13138 
13139 	napi_threaded_poll_loop(&sd->backlog, false);
13140 }
13141 
13142 static void backlog_napi_setup(unsigned int cpu)
13143 {
13144 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13145 	struct napi_struct *napi = &sd->backlog;
13146 
13147 	napi->thread = this_cpu_read(backlog_napi);
13148 	set_bit(NAPI_STATE_THREADED, &napi->state);
13149 }
13150 
13151 static struct smp_hotplug_thread backlog_threads = {
13152 	.store			= &backlog_napi,
13153 	.thread_should_run	= backlog_napi_should_run,
13154 	.thread_fn		= run_backlog_napi,
13155 	.thread_comm		= "backlog_napi/%u",
13156 	.setup			= backlog_napi_setup,
13157 };
13158 
13159 /*
13160  *       This is called single threaded during boot, so no need
13161  *       to take the rtnl semaphore.
13162  */
13163 static int __init net_dev_init(void)
13164 {
13165 	int i, rc = -ENOMEM;
13166 
13167 	BUG_ON(!dev_boot_phase);
13168 
13169 	net_dev_struct_check();
13170 
13171 	if (dev_proc_init())
13172 		goto out;
13173 
13174 	if (netdev_kobject_init())
13175 		goto out;
13176 
13177 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
13178 		INIT_LIST_HEAD(&ptype_base[i]);
13179 
13180 	if (register_pernet_subsys(&netdev_net_ops))
13181 		goto out;
13182 
13183 	/*
13184 	 *	Initialise the packet receive queues.
13185 	 */
13186 
13187 	flush_backlogs_fallback = flush_backlogs_alloc();
13188 	if (!flush_backlogs_fallback)
13189 		goto out;
13190 
13191 	for_each_possible_cpu(i) {
13192 		struct softnet_data *sd = &per_cpu(softnet_data, i);
13193 
13194 		skb_queue_head_init(&sd->input_pkt_queue);
13195 		skb_queue_head_init(&sd->process_queue);
13196 #ifdef CONFIG_XFRM_OFFLOAD
13197 		skb_queue_head_init(&sd->xfrm_backlog);
13198 #endif
13199 		INIT_LIST_HEAD(&sd->poll_list);
13200 		sd->output_queue_tailp = &sd->output_queue;
13201 #ifdef CONFIG_RPS
13202 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
13203 		sd->cpu = i;
13204 #endif
13205 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
13206 
13207 		gro_init(&sd->backlog.gro);
13208 		sd->backlog.poll = process_backlog;
13209 		sd->backlog.weight = weight_p;
13210 		INIT_LIST_HEAD(&sd->backlog.poll_list);
13211 
13212 		if (net_page_pool_create(i))
13213 			goto out;
13214 	}
13215 	net_hotdata.skb_defer_nodes =
13216 		 __alloc_percpu(sizeof(struct skb_defer_node) * nr_node_ids,
13217 				__alignof__(struct skb_defer_node));
13218 	if (!net_hotdata.skb_defer_nodes)
13219 		goto out;
13220 	if (use_backlog_threads())
13221 		smpboot_register_percpu_thread(&backlog_threads);
13222 
13223 	dev_boot_phase = 0;
13224 
13225 	/* The loopback device is special if any other network devices
13226 	 * is present in a network namespace the loopback device must
13227 	 * be present. Since we now dynamically allocate and free the
13228 	 * loopback device ensure this invariant is maintained by
13229 	 * keeping the loopback device as the first device on the
13230 	 * list of network devices.  Ensuring the loopback devices
13231 	 * is the first device that appears and the last network device
13232 	 * that disappears.
13233 	 */
13234 	if (register_pernet_device(&loopback_net_ops))
13235 		goto out;
13236 
13237 	if (register_pernet_device(&default_device_ops))
13238 		goto out;
13239 
13240 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
13241 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
13242 
13243 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
13244 				       NULL, dev_cpu_dead);
13245 	WARN_ON(rc < 0);
13246 	rc = 0;
13247 
13248 	/* avoid static key IPIs to isolated CPUs */
13249 	if (housekeeping_enabled(HK_TYPE_MISC))
13250 		net_enable_timestamp();
13251 out:
13252 	if (rc < 0) {
13253 		for_each_possible_cpu(i) {
13254 			struct page_pool *pp_ptr;
13255 
13256 			pp_ptr = per_cpu(system_page_pool.pool, i);
13257 			if (!pp_ptr)
13258 				continue;
13259 
13260 			xdp_unreg_page_pool(pp_ptr);
13261 			page_pool_destroy(pp_ptr);
13262 			per_cpu(system_page_pool.pool, i) = NULL;
13263 		}
13264 	}
13265 
13266 	return rc;
13267 }
13268 
13269 subsys_initcall(net_dev_init);
13270