1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/slab.h> 84 #include <linux/sched.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/kmod.h> 111 #include <linux/module.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 #include <trace/events/napi.h> 131 #include <trace/events/net.h> 132 #include <trace/events/skb.h> 133 #include <linux/pci.h> 134 #include <linux/inetdevice.h> 135 #include <linux/cpu_rmap.h> 136 #include <linux/net_tstamp.h> 137 #include <linux/jump_label.h> 138 #include <net/flow_keys.h> 139 140 #include "net-sysfs.h" 141 142 /* Instead of increasing this, you should create a hash table. */ 143 #define MAX_GRO_SKBS 8 144 145 /* This should be increased if a protocol with a bigger head is added. */ 146 #define GRO_MAX_HEAD (MAX_HEADER + 128) 147 148 /* 149 * The list of packet types we will receive (as opposed to discard) 150 * and the routines to invoke. 151 * 152 * Why 16. Because with 16 the only overlap we get on a hash of the 153 * low nibble of the protocol value is RARP/SNAP/X.25. 154 * 155 * NOTE: That is no longer true with the addition of VLAN tags. Not 156 * sure which should go first, but I bet it won't make much 157 * difference if we are running VLANs. The good news is that 158 * this protocol won't be in the list unless compiled in, so 159 * the average user (w/out VLANs) will not be adversely affected. 160 * --BLG 161 * 162 * 0800 IP 163 * 8100 802.1Q VLAN 164 * 0001 802.3 165 * 0002 AX.25 166 * 0004 802.2 167 * 8035 RARP 168 * 0005 SNAP 169 * 0805 X.25 170 * 0806 ARP 171 * 8137 IPX 172 * 0009 Localtalk 173 * 86DD IPv6 174 */ 175 176 #define PTYPE_HASH_SIZE (16) 177 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 178 179 static DEFINE_SPINLOCK(ptype_lock); 180 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 181 static struct list_head ptype_all __read_mostly; /* Taps */ 182 183 /* 184 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 185 * semaphore. 186 * 187 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 188 * 189 * Writers must hold the rtnl semaphore while they loop through the 190 * dev_base_head list, and hold dev_base_lock for writing when they do the 191 * actual updates. This allows pure readers to access the list even 192 * while a writer is preparing to update it. 193 * 194 * To put it another way, dev_base_lock is held for writing only to 195 * protect against pure readers; the rtnl semaphore provides the 196 * protection against other writers. 197 * 198 * See, for example usages, register_netdevice() and 199 * unregister_netdevice(), which must be called with the rtnl 200 * semaphore held. 201 */ 202 DEFINE_RWLOCK(dev_base_lock); 203 EXPORT_SYMBOL(dev_base_lock); 204 205 static inline void dev_base_seq_inc(struct net *net) 206 { 207 while (++net->dev_base_seq == 0); 208 } 209 210 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 211 { 212 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 /* Device list insertion */ 236 static int list_netdevice(struct net_device *dev) 237 { 238 struct net *net = dev_net(dev); 239 240 ASSERT_RTNL(); 241 242 write_lock_bh(&dev_base_lock); 243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 245 hlist_add_head_rcu(&dev->index_hlist, 246 dev_index_hash(net, dev->ifindex)); 247 write_unlock_bh(&dev_base_lock); 248 249 dev_base_seq_inc(net); 250 251 return 0; 252 } 253 254 /* Device list removal 255 * caller must respect a RCU grace period before freeing/reusing dev 256 */ 257 static void unlist_netdevice(struct net_device *dev) 258 { 259 ASSERT_RTNL(); 260 261 /* Unlink dev from the device chain */ 262 write_lock_bh(&dev_base_lock); 263 list_del_rcu(&dev->dev_list); 264 hlist_del_rcu(&dev->name_hlist); 265 hlist_del_rcu(&dev->index_hlist); 266 write_unlock_bh(&dev_base_lock); 267 268 dev_base_seq_inc(dev_net(dev)); 269 } 270 271 /* 272 * Our notifier list 273 */ 274 275 static RAW_NOTIFIER_HEAD(netdev_chain); 276 277 /* 278 * Device drivers call our routines to queue packets here. We empty the 279 * queue in the local softnet handler. 280 */ 281 282 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 283 EXPORT_PER_CPU_SYMBOL(softnet_data); 284 285 #ifdef CONFIG_LOCKDEP 286 /* 287 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 288 * according to dev->type 289 */ 290 static const unsigned short netdev_lock_type[] = 291 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 292 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 293 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 294 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 295 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 296 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 297 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 298 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 299 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 300 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 301 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 302 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 303 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 304 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 305 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 306 ARPHRD_VOID, ARPHRD_NONE}; 307 308 static const char *const netdev_lock_name[] = 309 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 310 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 311 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 312 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 313 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 314 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 315 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 316 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 317 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 318 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 319 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 320 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 321 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 322 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 323 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 324 "_xmit_VOID", "_xmit_NONE"}; 325 326 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 327 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 328 329 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 330 { 331 int i; 332 333 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 334 if (netdev_lock_type[i] == dev_type) 335 return i; 336 /* the last key is used by default */ 337 return ARRAY_SIZE(netdev_lock_type) - 1; 338 } 339 340 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 341 unsigned short dev_type) 342 { 343 int i; 344 345 i = netdev_lock_pos(dev_type); 346 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 347 netdev_lock_name[i]); 348 } 349 350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 351 { 352 int i; 353 354 i = netdev_lock_pos(dev->type); 355 lockdep_set_class_and_name(&dev->addr_list_lock, 356 &netdev_addr_lock_key[i], 357 netdev_lock_name[i]); 358 } 359 #else 360 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 361 unsigned short dev_type) 362 { 363 } 364 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 365 { 366 } 367 #endif 368 369 /******************************************************************************* 370 371 Protocol management and registration routines 372 373 *******************************************************************************/ 374 375 /* 376 * Add a protocol ID to the list. Now that the input handler is 377 * smarter we can dispense with all the messy stuff that used to be 378 * here. 379 * 380 * BEWARE!!! Protocol handlers, mangling input packets, 381 * MUST BE last in hash buckets and checking protocol handlers 382 * MUST start from promiscuous ptype_all chain in net_bh. 383 * It is true now, do not change it. 384 * Explanation follows: if protocol handler, mangling packet, will 385 * be the first on list, it is not able to sense, that packet 386 * is cloned and should be copied-on-write, so that it will 387 * change it and subsequent readers will get broken packet. 388 * --ANK (980803) 389 */ 390 391 static inline struct list_head *ptype_head(const struct packet_type *pt) 392 { 393 if (pt->type == htons(ETH_P_ALL)) 394 return &ptype_all; 395 else 396 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 397 } 398 399 /** 400 * dev_add_pack - add packet handler 401 * @pt: packet type declaration 402 * 403 * Add a protocol handler to the networking stack. The passed &packet_type 404 * is linked into kernel lists and may not be freed until it has been 405 * removed from the kernel lists. 406 * 407 * This call does not sleep therefore it can not 408 * guarantee all CPU's that are in middle of receiving packets 409 * will see the new packet type (until the next received packet). 410 */ 411 412 void dev_add_pack(struct packet_type *pt) 413 { 414 struct list_head *head = ptype_head(pt); 415 416 spin_lock(&ptype_lock); 417 list_add_rcu(&pt->list, head); 418 spin_unlock(&ptype_lock); 419 } 420 EXPORT_SYMBOL(dev_add_pack); 421 422 /** 423 * __dev_remove_pack - remove packet handler 424 * @pt: packet type declaration 425 * 426 * Remove a protocol handler that was previously added to the kernel 427 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 428 * from the kernel lists and can be freed or reused once this function 429 * returns. 430 * 431 * The packet type might still be in use by receivers 432 * and must not be freed until after all the CPU's have gone 433 * through a quiescent state. 434 */ 435 void __dev_remove_pack(struct packet_type *pt) 436 { 437 struct list_head *head = ptype_head(pt); 438 struct packet_type *pt1; 439 440 spin_lock(&ptype_lock); 441 442 list_for_each_entry(pt1, head, list) { 443 if (pt == pt1) { 444 list_del_rcu(&pt->list); 445 goto out; 446 } 447 } 448 449 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 450 out: 451 spin_unlock(&ptype_lock); 452 } 453 EXPORT_SYMBOL(__dev_remove_pack); 454 455 /** 456 * dev_remove_pack - remove packet handler 457 * @pt: packet type declaration 458 * 459 * Remove a protocol handler that was previously added to the kernel 460 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 461 * from the kernel lists and can be freed or reused once this function 462 * returns. 463 * 464 * This call sleeps to guarantee that no CPU is looking at the packet 465 * type after return. 466 */ 467 void dev_remove_pack(struct packet_type *pt) 468 { 469 __dev_remove_pack(pt); 470 471 synchronize_net(); 472 } 473 EXPORT_SYMBOL(dev_remove_pack); 474 475 /****************************************************************************** 476 477 Device Boot-time Settings Routines 478 479 *******************************************************************************/ 480 481 /* Boot time configuration table */ 482 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 483 484 /** 485 * netdev_boot_setup_add - add new setup entry 486 * @name: name of the device 487 * @map: configured settings for the device 488 * 489 * Adds new setup entry to the dev_boot_setup list. The function 490 * returns 0 on error and 1 on success. This is a generic routine to 491 * all netdevices. 492 */ 493 static int netdev_boot_setup_add(char *name, struct ifmap *map) 494 { 495 struct netdev_boot_setup *s; 496 int i; 497 498 s = dev_boot_setup; 499 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 500 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 501 memset(s[i].name, 0, sizeof(s[i].name)); 502 strlcpy(s[i].name, name, IFNAMSIZ); 503 memcpy(&s[i].map, map, sizeof(s[i].map)); 504 break; 505 } 506 } 507 508 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 509 } 510 511 /** 512 * netdev_boot_setup_check - check boot time settings 513 * @dev: the netdevice 514 * 515 * Check boot time settings for the device. 516 * The found settings are set for the device to be used 517 * later in the device probing. 518 * Returns 0 if no settings found, 1 if they are. 519 */ 520 int netdev_boot_setup_check(struct net_device *dev) 521 { 522 struct netdev_boot_setup *s = dev_boot_setup; 523 int i; 524 525 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 526 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 527 !strcmp(dev->name, s[i].name)) { 528 dev->irq = s[i].map.irq; 529 dev->base_addr = s[i].map.base_addr; 530 dev->mem_start = s[i].map.mem_start; 531 dev->mem_end = s[i].map.mem_end; 532 return 1; 533 } 534 } 535 return 0; 536 } 537 EXPORT_SYMBOL(netdev_boot_setup_check); 538 539 540 /** 541 * netdev_boot_base - get address from boot time settings 542 * @prefix: prefix for network device 543 * @unit: id for network device 544 * 545 * Check boot time settings for the base address of device. 546 * The found settings are set for the device to be used 547 * later in the device probing. 548 * Returns 0 if no settings found. 549 */ 550 unsigned long netdev_boot_base(const char *prefix, int unit) 551 { 552 const struct netdev_boot_setup *s = dev_boot_setup; 553 char name[IFNAMSIZ]; 554 int i; 555 556 sprintf(name, "%s%d", prefix, unit); 557 558 /* 559 * If device already registered then return base of 1 560 * to indicate not to probe for this interface 561 */ 562 if (__dev_get_by_name(&init_net, name)) 563 return 1; 564 565 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 566 if (!strcmp(name, s[i].name)) 567 return s[i].map.base_addr; 568 return 0; 569 } 570 571 /* 572 * Saves at boot time configured settings for any netdevice. 573 */ 574 int __init netdev_boot_setup(char *str) 575 { 576 int ints[5]; 577 struct ifmap map; 578 579 str = get_options(str, ARRAY_SIZE(ints), ints); 580 if (!str || !*str) 581 return 0; 582 583 /* Save settings */ 584 memset(&map, 0, sizeof(map)); 585 if (ints[0] > 0) 586 map.irq = ints[1]; 587 if (ints[0] > 1) 588 map.base_addr = ints[2]; 589 if (ints[0] > 2) 590 map.mem_start = ints[3]; 591 if (ints[0] > 3) 592 map.mem_end = ints[4]; 593 594 /* Add new entry to the list */ 595 return netdev_boot_setup_add(str, &map); 596 } 597 598 __setup("netdev=", netdev_boot_setup); 599 600 /******************************************************************************* 601 602 Device Interface Subroutines 603 604 *******************************************************************************/ 605 606 /** 607 * __dev_get_by_name - find a device by its name 608 * @net: the applicable net namespace 609 * @name: name to find 610 * 611 * Find an interface by name. Must be called under RTNL semaphore 612 * or @dev_base_lock. If the name is found a pointer to the device 613 * is returned. If the name is not found then %NULL is returned. The 614 * reference counters are not incremented so the caller must be 615 * careful with locks. 616 */ 617 618 struct net_device *__dev_get_by_name(struct net *net, const char *name) 619 { 620 struct hlist_node *p; 621 struct net_device *dev; 622 struct hlist_head *head = dev_name_hash(net, name); 623 624 hlist_for_each_entry(dev, p, head, name_hlist) 625 if (!strncmp(dev->name, name, IFNAMSIZ)) 626 return dev; 627 628 return NULL; 629 } 630 EXPORT_SYMBOL(__dev_get_by_name); 631 632 /** 633 * dev_get_by_name_rcu - find a device by its name 634 * @net: the applicable net namespace 635 * @name: name to find 636 * 637 * Find an interface by name. 638 * If the name is found a pointer to the device is returned. 639 * If the name is not found then %NULL is returned. 640 * The reference counters are not incremented so the caller must be 641 * careful with locks. The caller must hold RCU lock. 642 */ 643 644 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 645 { 646 struct hlist_node *p; 647 struct net_device *dev; 648 struct hlist_head *head = dev_name_hash(net, name); 649 650 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 651 if (!strncmp(dev->name, name, IFNAMSIZ)) 652 return dev; 653 654 return NULL; 655 } 656 EXPORT_SYMBOL(dev_get_by_name_rcu); 657 658 /** 659 * dev_get_by_name - find a device by its name 660 * @net: the applicable net namespace 661 * @name: name to find 662 * 663 * Find an interface by name. This can be called from any 664 * context and does its own locking. The returned handle has 665 * the usage count incremented and the caller must use dev_put() to 666 * release it when it is no longer needed. %NULL is returned if no 667 * matching device is found. 668 */ 669 670 struct net_device *dev_get_by_name(struct net *net, const char *name) 671 { 672 struct net_device *dev; 673 674 rcu_read_lock(); 675 dev = dev_get_by_name_rcu(net, name); 676 if (dev) 677 dev_hold(dev); 678 rcu_read_unlock(); 679 return dev; 680 } 681 EXPORT_SYMBOL(dev_get_by_name); 682 683 /** 684 * __dev_get_by_index - find a device by its ifindex 685 * @net: the applicable net namespace 686 * @ifindex: index of device 687 * 688 * Search for an interface by index. Returns %NULL if the device 689 * is not found or a pointer to the device. The device has not 690 * had its reference counter increased so the caller must be careful 691 * about locking. The caller must hold either the RTNL semaphore 692 * or @dev_base_lock. 693 */ 694 695 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 696 { 697 struct hlist_node *p; 698 struct net_device *dev; 699 struct hlist_head *head = dev_index_hash(net, ifindex); 700 701 hlist_for_each_entry(dev, p, head, index_hlist) 702 if (dev->ifindex == ifindex) 703 return dev; 704 705 return NULL; 706 } 707 EXPORT_SYMBOL(__dev_get_by_index); 708 709 /** 710 * dev_get_by_index_rcu - find a device by its ifindex 711 * @net: the applicable net namespace 712 * @ifindex: index of device 713 * 714 * Search for an interface by index. Returns %NULL if the device 715 * is not found or a pointer to the device. The device has not 716 * had its reference counter increased so the caller must be careful 717 * about locking. The caller must hold RCU lock. 718 */ 719 720 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 721 { 722 struct hlist_node *p; 723 struct net_device *dev; 724 struct hlist_head *head = dev_index_hash(net, ifindex); 725 726 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 727 if (dev->ifindex == ifindex) 728 return dev; 729 730 return NULL; 731 } 732 EXPORT_SYMBOL(dev_get_by_index_rcu); 733 734 735 /** 736 * dev_get_by_index - find a device by its ifindex 737 * @net: the applicable net namespace 738 * @ifindex: index of device 739 * 740 * Search for an interface by index. Returns NULL if the device 741 * is not found or a pointer to the device. The device returned has 742 * had a reference added and the pointer is safe until the user calls 743 * dev_put to indicate they have finished with it. 744 */ 745 746 struct net_device *dev_get_by_index(struct net *net, int ifindex) 747 { 748 struct net_device *dev; 749 750 rcu_read_lock(); 751 dev = dev_get_by_index_rcu(net, ifindex); 752 if (dev) 753 dev_hold(dev); 754 rcu_read_unlock(); 755 return dev; 756 } 757 EXPORT_SYMBOL(dev_get_by_index); 758 759 /** 760 * dev_getbyhwaddr_rcu - find a device by its hardware address 761 * @net: the applicable net namespace 762 * @type: media type of device 763 * @ha: hardware address 764 * 765 * Search for an interface by MAC address. Returns NULL if the device 766 * is not found or a pointer to the device. 767 * The caller must hold RCU or RTNL. 768 * The returned device has not had its ref count increased 769 * and the caller must therefore be careful about locking 770 * 771 */ 772 773 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 774 const char *ha) 775 { 776 struct net_device *dev; 777 778 for_each_netdev_rcu(net, dev) 779 if (dev->type == type && 780 !memcmp(dev->dev_addr, ha, dev->addr_len)) 781 return dev; 782 783 return NULL; 784 } 785 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 786 787 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 788 { 789 struct net_device *dev; 790 791 ASSERT_RTNL(); 792 for_each_netdev(net, dev) 793 if (dev->type == type) 794 return dev; 795 796 return NULL; 797 } 798 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 799 800 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 801 { 802 struct net_device *dev, *ret = NULL; 803 804 rcu_read_lock(); 805 for_each_netdev_rcu(net, dev) 806 if (dev->type == type) { 807 dev_hold(dev); 808 ret = dev; 809 break; 810 } 811 rcu_read_unlock(); 812 return ret; 813 } 814 EXPORT_SYMBOL(dev_getfirstbyhwtype); 815 816 /** 817 * dev_get_by_flags_rcu - find any device with given flags 818 * @net: the applicable net namespace 819 * @if_flags: IFF_* values 820 * @mask: bitmask of bits in if_flags to check 821 * 822 * Search for any interface with the given flags. Returns NULL if a device 823 * is not found or a pointer to the device. Must be called inside 824 * rcu_read_lock(), and result refcount is unchanged. 825 */ 826 827 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 828 unsigned short mask) 829 { 830 struct net_device *dev, *ret; 831 832 ret = NULL; 833 for_each_netdev_rcu(net, dev) { 834 if (((dev->flags ^ if_flags) & mask) == 0) { 835 ret = dev; 836 break; 837 } 838 } 839 return ret; 840 } 841 EXPORT_SYMBOL(dev_get_by_flags_rcu); 842 843 /** 844 * dev_valid_name - check if name is okay for network device 845 * @name: name string 846 * 847 * Network device names need to be valid file names to 848 * to allow sysfs to work. We also disallow any kind of 849 * whitespace. 850 */ 851 int dev_valid_name(const char *name) 852 { 853 if (*name == '\0') 854 return 0; 855 if (strlen(name) >= IFNAMSIZ) 856 return 0; 857 if (!strcmp(name, ".") || !strcmp(name, "..")) 858 return 0; 859 860 while (*name) { 861 if (*name == '/' || isspace(*name)) 862 return 0; 863 name++; 864 } 865 return 1; 866 } 867 EXPORT_SYMBOL(dev_valid_name); 868 869 /** 870 * __dev_alloc_name - allocate a name for a device 871 * @net: network namespace to allocate the device name in 872 * @name: name format string 873 * @buf: scratch buffer and result name string 874 * 875 * Passed a format string - eg "lt%d" it will try and find a suitable 876 * id. It scans list of devices to build up a free map, then chooses 877 * the first empty slot. The caller must hold the dev_base or rtnl lock 878 * while allocating the name and adding the device in order to avoid 879 * duplicates. 880 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 881 * Returns the number of the unit assigned or a negative errno code. 882 */ 883 884 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 885 { 886 int i = 0; 887 const char *p; 888 const int max_netdevices = 8*PAGE_SIZE; 889 unsigned long *inuse; 890 struct net_device *d; 891 892 p = strnchr(name, IFNAMSIZ-1, '%'); 893 if (p) { 894 /* 895 * Verify the string as this thing may have come from 896 * the user. There must be either one "%d" and no other "%" 897 * characters. 898 */ 899 if (p[1] != 'd' || strchr(p + 2, '%')) 900 return -EINVAL; 901 902 /* Use one page as a bit array of possible slots */ 903 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 904 if (!inuse) 905 return -ENOMEM; 906 907 for_each_netdev(net, d) { 908 if (!sscanf(d->name, name, &i)) 909 continue; 910 if (i < 0 || i >= max_netdevices) 911 continue; 912 913 /* avoid cases where sscanf is not exact inverse of printf */ 914 snprintf(buf, IFNAMSIZ, name, i); 915 if (!strncmp(buf, d->name, IFNAMSIZ)) 916 set_bit(i, inuse); 917 } 918 919 i = find_first_zero_bit(inuse, max_netdevices); 920 free_page((unsigned long) inuse); 921 } 922 923 if (buf != name) 924 snprintf(buf, IFNAMSIZ, name, i); 925 if (!__dev_get_by_name(net, buf)) 926 return i; 927 928 /* It is possible to run out of possible slots 929 * when the name is long and there isn't enough space left 930 * for the digits, or if all bits are used. 931 */ 932 return -ENFILE; 933 } 934 935 /** 936 * dev_alloc_name - allocate a name for a device 937 * @dev: device 938 * @name: name format string 939 * 940 * Passed a format string - eg "lt%d" it will try and find a suitable 941 * id. It scans list of devices to build up a free map, then chooses 942 * the first empty slot. The caller must hold the dev_base or rtnl lock 943 * while allocating the name and adding the device in order to avoid 944 * duplicates. 945 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 946 * Returns the number of the unit assigned or a negative errno code. 947 */ 948 949 int dev_alloc_name(struct net_device *dev, const char *name) 950 { 951 char buf[IFNAMSIZ]; 952 struct net *net; 953 int ret; 954 955 BUG_ON(!dev_net(dev)); 956 net = dev_net(dev); 957 ret = __dev_alloc_name(net, name, buf); 958 if (ret >= 0) 959 strlcpy(dev->name, buf, IFNAMSIZ); 960 return ret; 961 } 962 EXPORT_SYMBOL(dev_alloc_name); 963 964 static int dev_get_valid_name(struct net_device *dev, const char *name) 965 { 966 struct net *net; 967 968 BUG_ON(!dev_net(dev)); 969 net = dev_net(dev); 970 971 if (!dev_valid_name(name)) 972 return -EINVAL; 973 974 if (strchr(name, '%')) 975 return dev_alloc_name(dev, name); 976 else if (__dev_get_by_name(net, name)) 977 return -EEXIST; 978 else if (dev->name != name) 979 strlcpy(dev->name, name, IFNAMSIZ); 980 981 return 0; 982 } 983 984 /** 985 * dev_change_name - change name of a device 986 * @dev: device 987 * @newname: name (or format string) must be at least IFNAMSIZ 988 * 989 * Change name of a device, can pass format strings "eth%d". 990 * for wildcarding. 991 */ 992 int dev_change_name(struct net_device *dev, const char *newname) 993 { 994 char oldname[IFNAMSIZ]; 995 int err = 0; 996 int ret; 997 struct net *net; 998 999 ASSERT_RTNL(); 1000 BUG_ON(!dev_net(dev)); 1001 1002 net = dev_net(dev); 1003 if (dev->flags & IFF_UP) 1004 return -EBUSY; 1005 1006 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 1007 return 0; 1008 1009 memcpy(oldname, dev->name, IFNAMSIZ); 1010 1011 err = dev_get_valid_name(dev, newname); 1012 if (err < 0) 1013 return err; 1014 1015 rollback: 1016 ret = device_rename(&dev->dev, dev->name); 1017 if (ret) { 1018 memcpy(dev->name, oldname, IFNAMSIZ); 1019 return ret; 1020 } 1021 1022 write_lock_bh(&dev_base_lock); 1023 hlist_del_rcu(&dev->name_hlist); 1024 write_unlock_bh(&dev_base_lock); 1025 1026 synchronize_rcu(); 1027 1028 write_lock_bh(&dev_base_lock); 1029 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1030 write_unlock_bh(&dev_base_lock); 1031 1032 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1033 ret = notifier_to_errno(ret); 1034 1035 if (ret) { 1036 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1037 if (err >= 0) { 1038 err = ret; 1039 memcpy(dev->name, oldname, IFNAMSIZ); 1040 goto rollback; 1041 } else { 1042 printk(KERN_ERR 1043 "%s: name change rollback failed: %d.\n", 1044 dev->name, ret); 1045 } 1046 } 1047 1048 return err; 1049 } 1050 1051 /** 1052 * dev_set_alias - change ifalias of a device 1053 * @dev: device 1054 * @alias: name up to IFALIASZ 1055 * @len: limit of bytes to copy from info 1056 * 1057 * Set ifalias for a device, 1058 */ 1059 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1060 { 1061 ASSERT_RTNL(); 1062 1063 if (len >= IFALIASZ) 1064 return -EINVAL; 1065 1066 if (!len) { 1067 if (dev->ifalias) { 1068 kfree(dev->ifalias); 1069 dev->ifalias = NULL; 1070 } 1071 return 0; 1072 } 1073 1074 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1075 if (!dev->ifalias) 1076 return -ENOMEM; 1077 1078 strlcpy(dev->ifalias, alias, len+1); 1079 return len; 1080 } 1081 1082 1083 /** 1084 * netdev_features_change - device changes features 1085 * @dev: device to cause notification 1086 * 1087 * Called to indicate a device has changed features. 1088 */ 1089 void netdev_features_change(struct net_device *dev) 1090 { 1091 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1092 } 1093 EXPORT_SYMBOL(netdev_features_change); 1094 1095 /** 1096 * netdev_state_change - device changes state 1097 * @dev: device to cause notification 1098 * 1099 * Called to indicate a device has changed state. This function calls 1100 * the notifier chains for netdev_chain and sends a NEWLINK message 1101 * to the routing socket. 1102 */ 1103 void netdev_state_change(struct net_device *dev) 1104 { 1105 if (dev->flags & IFF_UP) { 1106 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1107 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1108 } 1109 } 1110 EXPORT_SYMBOL(netdev_state_change); 1111 1112 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1113 { 1114 return call_netdevice_notifiers(event, dev); 1115 } 1116 EXPORT_SYMBOL(netdev_bonding_change); 1117 1118 /** 1119 * dev_load - load a network module 1120 * @net: the applicable net namespace 1121 * @name: name of interface 1122 * 1123 * If a network interface is not present and the process has suitable 1124 * privileges this function loads the module. If module loading is not 1125 * available in this kernel then it becomes a nop. 1126 */ 1127 1128 void dev_load(struct net *net, const char *name) 1129 { 1130 struct net_device *dev; 1131 int no_module; 1132 1133 rcu_read_lock(); 1134 dev = dev_get_by_name_rcu(net, name); 1135 rcu_read_unlock(); 1136 1137 no_module = !dev; 1138 if (no_module && capable(CAP_NET_ADMIN)) 1139 no_module = request_module("netdev-%s", name); 1140 if (no_module && capable(CAP_SYS_MODULE)) { 1141 if (!request_module("%s", name)) 1142 pr_err("Loading kernel module for a network device " 1143 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s " 1144 "instead\n", name); 1145 } 1146 } 1147 EXPORT_SYMBOL(dev_load); 1148 1149 static int __dev_open(struct net_device *dev) 1150 { 1151 const struct net_device_ops *ops = dev->netdev_ops; 1152 int ret; 1153 1154 ASSERT_RTNL(); 1155 1156 if (!netif_device_present(dev)) 1157 return -ENODEV; 1158 1159 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1160 ret = notifier_to_errno(ret); 1161 if (ret) 1162 return ret; 1163 1164 set_bit(__LINK_STATE_START, &dev->state); 1165 1166 if (ops->ndo_validate_addr) 1167 ret = ops->ndo_validate_addr(dev); 1168 1169 if (!ret && ops->ndo_open) 1170 ret = ops->ndo_open(dev); 1171 1172 if (ret) 1173 clear_bit(__LINK_STATE_START, &dev->state); 1174 else { 1175 dev->flags |= IFF_UP; 1176 net_dmaengine_get(); 1177 dev_set_rx_mode(dev); 1178 dev_activate(dev); 1179 } 1180 1181 return ret; 1182 } 1183 1184 /** 1185 * dev_open - prepare an interface for use. 1186 * @dev: device to open 1187 * 1188 * Takes a device from down to up state. The device's private open 1189 * function is invoked and then the multicast lists are loaded. Finally 1190 * the device is moved into the up state and a %NETDEV_UP message is 1191 * sent to the netdev notifier chain. 1192 * 1193 * Calling this function on an active interface is a nop. On a failure 1194 * a negative errno code is returned. 1195 */ 1196 int dev_open(struct net_device *dev) 1197 { 1198 int ret; 1199 1200 if (dev->flags & IFF_UP) 1201 return 0; 1202 1203 ret = __dev_open(dev); 1204 if (ret < 0) 1205 return ret; 1206 1207 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1208 call_netdevice_notifiers(NETDEV_UP, dev); 1209 1210 return ret; 1211 } 1212 EXPORT_SYMBOL(dev_open); 1213 1214 static int __dev_close_many(struct list_head *head) 1215 { 1216 struct net_device *dev; 1217 1218 ASSERT_RTNL(); 1219 might_sleep(); 1220 1221 list_for_each_entry(dev, head, unreg_list) { 1222 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1223 1224 clear_bit(__LINK_STATE_START, &dev->state); 1225 1226 /* Synchronize to scheduled poll. We cannot touch poll list, it 1227 * can be even on different cpu. So just clear netif_running(). 1228 * 1229 * dev->stop() will invoke napi_disable() on all of it's 1230 * napi_struct instances on this device. 1231 */ 1232 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1233 } 1234 1235 dev_deactivate_many(head); 1236 1237 list_for_each_entry(dev, head, unreg_list) { 1238 const struct net_device_ops *ops = dev->netdev_ops; 1239 1240 /* 1241 * Call the device specific close. This cannot fail. 1242 * Only if device is UP 1243 * 1244 * We allow it to be called even after a DETACH hot-plug 1245 * event. 1246 */ 1247 if (ops->ndo_stop) 1248 ops->ndo_stop(dev); 1249 1250 dev->flags &= ~IFF_UP; 1251 net_dmaengine_put(); 1252 } 1253 1254 return 0; 1255 } 1256 1257 static int __dev_close(struct net_device *dev) 1258 { 1259 int retval; 1260 LIST_HEAD(single); 1261 1262 list_add(&dev->unreg_list, &single); 1263 retval = __dev_close_many(&single); 1264 list_del(&single); 1265 return retval; 1266 } 1267 1268 static int dev_close_many(struct list_head *head) 1269 { 1270 struct net_device *dev, *tmp; 1271 LIST_HEAD(tmp_list); 1272 1273 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1274 if (!(dev->flags & IFF_UP)) 1275 list_move(&dev->unreg_list, &tmp_list); 1276 1277 __dev_close_many(head); 1278 1279 list_for_each_entry(dev, head, unreg_list) { 1280 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1281 call_netdevice_notifiers(NETDEV_DOWN, dev); 1282 } 1283 1284 /* rollback_registered_many needs the complete original list */ 1285 list_splice(&tmp_list, head); 1286 return 0; 1287 } 1288 1289 /** 1290 * dev_close - shutdown an interface. 1291 * @dev: device to shutdown 1292 * 1293 * This function moves an active device into down state. A 1294 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1295 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1296 * chain. 1297 */ 1298 int dev_close(struct net_device *dev) 1299 { 1300 if (dev->flags & IFF_UP) { 1301 LIST_HEAD(single); 1302 1303 list_add(&dev->unreg_list, &single); 1304 dev_close_many(&single); 1305 list_del(&single); 1306 } 1307 return 0; 1308 } 1309 EXPORT_SYMBOL(dev_close); 1310 1311 1312 /** 1313 * dev_disable_lro - disable Large Receive Offload on a device 1314 * @dev: device 1315 * 1316 * Disable Large Receive Offload (LRO) on a net device. Must be 1317 * called under RTNL. This is needed if received packets may be 1318 * forwarded to another interface. 1319 */ 1320 void dev_disable_lro(struct net_device *dev) 1321 { 1322 /* 1323 * If we're trying to disable lro on a vlan device 1324 * use the underlying physical device instead 1325 */ 1326 if (is_vlan_dev(dev)) 1327 dev = vlan_dev_real_dev(dev); 1328 1329 dev->wanted_features &= ~NETIF_F_LRO; 1330 netdev_update_features(dev); 1331 1332 if (unlikely(dev->features & NETIF_F_LRO)) 1333 netdev_WARN(dev, "failed to disable LRO!\n"); 1334 } 1335 EXPORT_SYMBOL(dev_disable_lro); 1336 1337 1338 static int dev_boot_phase = 1; 1339 1340 /** 1341 * register_netdevice_notifier - register a network notifier block 1342 * @nb: notifier 1343 * 1344 * Register a notifier to be called when network device events occur. 1345 * The notifier passed is linked into the kernel structures and must 1346 * not be reused until it has been unregistered. A negative errno code 1347 * is returned on a failure. 1348 * 1349 * When registered all registration and up events are replayed 1350 * to the new notifier to allow device to have a race free 1351 * view of the network device list. 1352 */ 1353 1354 int register_netdevice_notifier(struct notifier_block *nb) 1355 { 1356 struct net_device *dev; 1357 struct net_device *last; 1358 struct net *net; 1359 int err; 1360 1361 rtnl_lock(); 1362 err = raw_notifier_chain_register(&netdev_chain, nb); 1363 if (err) 1364 goto unlock; 1365 if (dev_boot_phase) 1366 goto unlock; 1367 for_each_net(net) { 1368 for_each_netdev(net, dev) { 1369 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1370 err = notifier_to_errno(err); 1371 if (err) 1372 goto rollback; 1373 1374 if (!(dev->flags & IFF_UP)) 1375 continue; 1376 1377 nb->notifier_call(nb, NETDEV_UP, dev); 1378 } 1379 } 1380 1381 unlock: 1382 rtnl_unlock(); 1383 return err; 1384 1385 rollback: 1386 last = dev; 1387 for_each_net(net) { 1388 for_each_netdev(net, dev) { 1389 if (dev == last) 1390 goto outroll; 1391 1392 if (dev->flags & IFF_UP) { 1393 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1394 nb->notifier_call(nb, NETDEV_DOWN, dev); 1395 } 1396 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1397 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1398 } 1399 } 1400 1401 outroll: 1402 raw_notifier_chain_unregister(&netdev_chain, nb); 1403 goto unlock; 1404 } 1405 EXPORT_SYMBOL(register_netdevice_notifier); 1406 1407 /** 1408 * unregister_netdevice_notifier - unregister a network notifier block 1409 * @nb: notifier 1410 * 1411 * Unregister a notifier previously registered by 1412 * register_netdevice_notifier(). The notifier is unlinked into the 1413 * kernel structures and may then be reused. A negative errno code 1414 * is returned on a failure. 1415 */ 1416 1417 int unregister_netdevice_notifier(struct notifier_block *nb) 1418 { 1419 int err; 1420 1421 rtnl_lock(); 1422 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1423 rtnl_unlock(); 1424 return err; 1425 } 1426 EXPORT_SYMBOL(unregister_netdevice_notifier); 1427 1428 /** 1429 * call_netdevice_notifiers - call all network notifier blocks 1430 * @val: value passed unmodified to notifier function 1431 * @dev: net_device pointer passed unmodified to notifier function 1432 * 1433 * Call all network notifier blocks. Parameters and return value 1434 * are as for raw_notifier_call_chain(). 1435 */ 1436 1437 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1438 { 1439 ASSERT_RTNL(); 1440 return raw_notifier_call_chain(&netdev_chain, val, dev); 1441 } 1442 EXPORT_SYMBOL(call_netdevice_notifiers); 1443 1444 static struct jump_label_key netstamp_needed __read_mostly; 1445 #ifdef HAVE_JUMP_LABEL 1446 /* We are not allowed to call jump_label_dec() from irq context 1447 * If net_disable_timestamp() is called from irq context, defer the 1448 * jump_label_dec() calls. 1449 */ 1450 static atomic_t netstamp_needed_deferred; 1451 #endif 1452 1453 void net_enable_timestamp(void) 1454 { 1455 #ifdef HAVE_JUMP_LABEL 1456 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1457 1458 if (deferred) { 1459 while (--deferred) 1460 jump_label_dec(&netstamp_needed); 1461 return; 1462 } 1463 #endif 1464 WARN_ON(in_interrupt()); 1465 jump_label_inc(&netstamp_needed); 1466 } 1467 EXPORT_SYMBOL(net_enable_timestamp); 1468 1469 void net_disable_timestamp(void) 1470 { 1471 #ifdef HAVE_JUMP_LABEL 1472 if (in_interrupt()) { 1473 atomic_inc(&netstamp_needed_deferred); 1474 return; 1475 } 1476 #endif 1477 jump_label_dec(&netstamp_needed); 1478 } 1479 EXPORT_SYMBOL(net_disable_timestamp); 1480 1481 static inline void net_timestamp_set(struct sk_buff *skb) 1482 { 1483 skb->tstamp.tv64 = 0; 1484 if (static_branch(&netstamp_needed)) 1485 __net_timestamp(skb); 1486 } 1487 1488 #define net_timestamp_check(COND, SKB) \ 1489 if (static_branch(&netstamp_needed)) { \ 1490 if ((COND) && !(SKB)->tstamp.tv64) \ 1491 __net_timestamp(SKB); \ 1492 } \ 1493 1494 static int net_hwtstamp_validate(struct ifreq *ifr) 1495 { 1496 struct hwtstamp_config cfg; 1497 enum hwtstamp_tx_types tx_type; 1498 enum hwtstamp_rx_filters rx_filter; 1499 int tx_type_valid = 0; 1500 int rx_filter_valid = 0; 1501 1502 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1503 return -EFAULT; 1504 1505 if (cfg.flags) /* reserved for future extensions */ 1506 return -EINVAL; 1507 1508 tx_type = cfg.tx_type; 1509 rx_filter = cfg.rx_filter; 1510 1511 switch (tx_type) { 1512 case HWTSTAMP_TX_OFF: 1513 case HWTSTAMP_TX_ON: 1514 case HWTSTAMP_TX_ONESTEP_SYNC: 1515 tx_type_valid = 1; 1516 break; 1517 } 1518 1519 switch (rx_filter) { 1520 case HWTSTAMP_FILTER_NONE: 1521 case HWTSTAMP_FILTER_ALL: 1522 case HWTSTAMP_FILTER_SOME: 1523 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1524 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1525 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1526 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1527 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1528 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1529 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1530 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1531 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1532 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1533 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1534 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1535 rx_filter_valid = 1; 1536 break; 1537 } 1538 1539 if (!tx_type_valid || !rx_filter_valid) 1540 return -ERANGE; 1541 1542 return 0; 1543 } 1544 1545 static inline bool is_skb_forwardable(struct net_device *dev, 1546 struct sk_buff *skb) 1547 { 1548 unsigned int len; 1549 1550 if (!(dev->flags & IFF_UP)) 1551 return false; 1552 1553 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1554 if (skb->len <= len) 1555 return true; 1556 1557 /* if TSO is enabled, we don't care about the length as the packet 1558 * could be forwarded without being segmented before 1559 */ 1560 if (skb_is_gso(skb)) 1561 return true; 1562 1563 return false; 1564 } 1565 1566 /** 1567 * dev_forward_skb - loopback an skb to another netif 1568 * 1569 * @dev: destination network device 1570 * @skb: buffer to forward 1571 * 1572 * return values: 1573 * NET_RX_SUCCESS (no congestion) 1574 * NET_RX_DROP (packet was dropped, but freed) 1575 * 1576 * dev_forward_skb can be used for injecting an skb from the 1577 * start_xmit function of one device into the receive queue 1578 * of another device. 1579 * 1580 * The receiving device may be in another namespace, so 1581 * we have to clear all information in the skb that could 1582 * impact namespace isolation. 1583 */ 1584 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1585 { 1586 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1587 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1588 atomic_long_inc(&dev->rx_dropped); 1589 kfree_skb(skb); 1590 return NET_RX_DROP; 1591 } 1592 } 1593 1594 skb_orphan(skb); 1595 nf_reset(skb); 1596 1597 if (unlikely(!is_skb_forwardable(dev, skb))) { 1598 atomic_long_inc(&dev->rx_dropped); 1599 kfree_skb(skb); 1600 return NET_RX_DROP; 1601 } 1602 skb_set_dev(skb, dev); 1603 skb->tstamp.tv64 = 0; 1604 skb->pkt_type = PACKET_HOST; 1605 skb->protocol = eth_type_trans(skb, dev); 1606 return netif_rx(skb); 1607 } 1608 EXPORT_SYMBOL_GPL(dev_forward_skb); 1609 1610 static inline int deliver_skb(struct sk_buff *skb, 1611 struct packet_type *pt_prev, 1612 struct net_device *orig_dev) 1613 { 1614 atomic_inc(&skb->users); 1615 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1616 } 1617 1618 /* 1619 * Support routine. Sends outgoing frames to any network 1620 * taps currently in use. 1621 */ 1622 1623 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1624 { 1625 struct packet_type *ptype; 1626 struct sk_buff *skb2 = NULL; 1627 struct packet_type *pt_prev = NULL; 1628 1629 rcu_read_lock(); 1630 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1631 /* Never send packets back to the socket 1632 * they originated from - MvS (miquels@drinkel.ow.org) 1633 */ 1634 if ((ptype->dev == dev || !ptype->dev) && 1635 (ptype->af_packet_priv == NULL || 1636 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1637 if (pt_prev) { 1638 deliver_skb(skb2, pt_prev, skb->dev); 1639 pt_prev = ptype; 1640 continue; 1641 } 1642 1643 skb2 = skb_clone(skb, GFP_ATOMIC); 1644 if (!skb2) 1645 break; 1646 1647 net_timestamp_set(skb2); 1648 1649 /* skb->nh should be correctly 1650 set by sender, so that the second statement is 1651 just protection against buggy protocols. 1652 */ 1653 skb_reset_mac_header(skb2); 1654 1655 if (skb_network_header(skb2) < skb2->data || 1656 skb2->network_header > skb2->tail) { 1657 if (net_ratelimit()) 1658 printk(KERN_CRIT "protocol %04x is " 1659 "buggy, dev %s\n", 1660 ntohs(skb2->protocol), 1661 dev->name); 1662 skb_reset_network_header(skb2); 1663 } 1664 1665 skb2->transport_header = skb2->network_header; 1666 skb2->pkt_type = PACKET_OUTGOING; 1667 pt_prev = ptype; 1668 } 1669 } 1670 if (pt_prev) 1671 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1672 rcu_read_unlock(); 1673 } 1674 1675 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1676 * @dev: Network device 1677 * @txq: number of queues available 1678 * 1679 * If real_num_tx_queues is changed the tc mappings may no longer be 1680 * valid. To resolve this verify the tc mapping remains valid and if 1681 * not NULL the mapping. With no priorities mapping to this 1682 * offset/count pair it will no longer be used. In the worst case TC0 1683 * is invalid nothing can be done so disable priority mappings. If is 1684 * expected that drivers will fix this mapping if they can before 1685 * calling netif_set_real_num_tx_queues. 1686 */ 1687 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1688 { 1689 int i; 1690 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1691 1692 /* If TC0 is invalidated disable TC mapping */ 1693 if (tc->offset + tc->count > txq) { 1694 pr_warning("Number of in use tx queues changed " 1695 "invalidating tc mappings. Priority " 1696 "traffic classification disabled!\n"); 1697 dev->num_tc = 0; 1698 return; 1699 } 1700 1701 /* Invalidated prio to tc mappings set to TC0 */ 1702 for (i = 1; i < TC_BITMASK + 1; i++) { 1703 int q = netdev_get_prio_tc_map(dev, i); 1704 1705 tc = &dev->tc_to_txq[q]; 1706 if (tc->offset + tc->count > txq) { 1707 pr_warning("Number of in use tx queues " 1708 "changed. Priority %i to tc " 1709 "mapping %i is no longer valid " 1710 "setting map to 0\n", 1711 i, q); 1712 netdev_set_prio_tc_map(dev, i, 0); 1713 } 1714 } 1715 } 1716 1717 /* 1718 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1719 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1720 */ 1721 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1722 { 1723 int rc; 1724 1725 if (txq < 1 || txq > dev->num_tx_queues) 1726 return -EINVAL; 1727 1728 if (dev->reg_state == NETREG_REGISTERED || 1729 dev->reg_state == NETREG_UNREGISTERING) { 1730 ASSERT_RTNL(); 1731 1732 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1733 txq); 1734 if (rc) 1735 return rc; 1736 1737 if (dev->num_tc) 1738 netif_setup_tc(dev, txq); 1739 1740 if (txq < dev->real_num_tx_queues) 1741 qdisc_reset_all_tx_gt(dev, txq); 1742 } 1743 1744 dev->real_num_tx_queues = txq; 1745 return 0; 1746 } 1747 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1748 1749 #ifdef CONFIG_RPS 1750 /** 1751 * netif_set_real_num_rx_queues - set actual number of RX queues used 1752 * @dev: Network device 1753 * @rxq: Actual number of RX queues 1754 * 1755 * This must be called either with the rtnl_lock held or before 1756 * registration of the net device. Returns 0 on success, or a 1757 * negative error code. If called before registration, it always 1758 * succeeds. 1759 */ 1760 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1761 { 1762 int rc; 1763 1764 if (rxq < 1 || rxq > dev->num_rx_queues) 1765 return -EINVAL; 1766 1767 if (dev->reg_state == NETREG_REGISTERED) { 1768 ASSERT_RTNL(); 1769 1770 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1771 rxq); 1772 if (rc) 1773 return rc; 1774 } 1775 1776 dev->real_num_rx_queues = rxq; 1777 return 0; 1778 } 1779 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1780 #endif 1781 1782 static inline void __netif_reschedule(struct Qdisc *q) 1783 { 1784 struct softnet_data *sd; 1785 unsigned long flags; 1786 1787 local_irq_save(flags); 1788 sd = &__get_cpu_var(softnet_data); 1789 q->next_sched = NULL; 1790 *sd->output_queue_tailp = q; 1791 sd->output_queue_tailp = &q->next_sched; 1792 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1793 local_irq_restore(flags); 1794 } 1795 1796 void __netif_schedule(struct Qdisc *q) 1797 { 1798 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1799 __netif_reschedule(q); 1800 } 1801 EXPORT_SYMBOL(__netif_schedule); 1802 1803 void dev_kfree_skb_irq(struct sk_buff *skb) 1804 { 1805 if (atomic_dec_and_test(&skb->users)) { 1806 struct softnet_data *sd; 1807 unsigned long flags; 1808 1809 local_irq_save(flags); 1810 sd = &__get_cpu_var(softnet_data); 1811 skb->next = sd->completion_queue; 1812 sd->completion_queue = skb; 1813 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1814 local_irq_restore(flags); 1815 } 1816 } 1817 EXPORT_SYMBOL(dev_kfree_skb_irq); 1818 1819 void dev_kfree_skb_any(struct sk_buff *skb) 1820 { 1821 if (in_irq() || irqs_disabled()) 1822 dev_kfree_skb_irq(skb); 1823 else 1824 dev_kfree_skb(skb); 1825 } 1826 EXPORT_SYMBOL(dev_kfree_skb_any); 1827 1828 1829 /** 1830 * netif_device_detach - mark device as removed 1831 * @dev: network device 1832 * 1833 * Mark device as removed from system and therefore no longer available. 1834 */ 1835 void netif_device_detach(struct net_device *dev) 1836 { 1837 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1838 netif_running(dev)) { 1839 netif_tx_stop_all_queues(dev); 1840 } 1841 } 1842 EXPORT_SYMBOL(netif_device_detach); 1843 1844 /** 1845 * netif_device_attach - mark device as attached 1846 * @dev: network device 1847 * 1848 * Mark device as attached from system and restart if needed. 1849 */ 1850 void netif_device_attach(struct net_device *dev) 1851 { 1852 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1853 netif_running(dev)) { 1854 netif_tx_wake_all_queues(dev); 1855 __netdev_watchdog_up(dev); 1856 } 1857 } 1858 EXPORT_SYMBOL(netif_device_attach); 1859 1860 /** 1861 * skb_dev_set -- assign a new device to a buffer 1862 * @skb: buffer for the new device 1863 * @dev: network device 1864 * 1865 * If an skb is owned by a device already, we have to reset 1866 * all data private to the namespace a device belongs to 1867 * before assigning it a new device. 1868 */ 1869 #ifdef CONFIG_NET_NS 1870 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1871 { 1872 skb_dst_drop(skb); 1873 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1874 secpath_reset(skb); 1875 nf_reset(skb); 1876 skb_init_secmark(skb); 1877 skb->mark = 0; 1878 skb->priority = 0; 1879 skb->nf_trace = 0; 1880 skb->ipvs_property = 0; 1881 #ifdef CONFIG_NET_SCHED 1882 skb->tc_index = 0; 1883 #endif 1884 } 1885 skb->dev = dev; 1886 } 1887 EXPORT_SYMBOL(skb_set_dev); 1888 #endif /* CONFIG_NET_NS */ 1889 1890 static void skb_warn_bad_offload(const struct sk_buff *skb) 1891 { 1892 static const netdev_features_t null_features = 0; 1893 struct net_device *dev = skb->dev; 1894 const char *driver = ""; 1895 1896 if (dev && dev->dev.parent) 1897 driver = dev_driver_string(dev->dev.parent); 1898 1899 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 1900 "gso_type=%d ip_summed=%d\n", 1901 driver, dev ? &dev->features : &null_features, 1902 skb->sk ? &skb->sk->sk_route_caps : &null_features, 1903 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 1904 skb_shinfo(skb)->gso_type, skb->ip_summed); 1905 } 1906 1907 /* 1908 * Invalidate hardware checksum when packet is to be mangled, and 1909 * complete checksum manually on outgoing path. 1910 */ 1911 int skb_checksum_help(struct sk_buff *skb) 1912 { 1913 __wsum csum; 1914 int ret = 0, offset; 1915 1916 if (skb->ip_summed == CHECKSUM_COMPLETE) 1917 goto out_set_summed; 1918 1919 if (unlikely(skb_shinfo(skb)->gso_size)) { 1920 skb_warn_bad_offload(skb); 1921 return -EINVAL; 1922 } 1923 1924 offset = skb_checksum_start_offset(skb); 1925 BUG_ON(offset >= skb_headlen(skb)); 1926 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1927 1928 offset += skb->csum_offset; 1929 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1930 1931 if (skb_cloned(skb) && 1932 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1933 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1934 if (ret) 1935 goto out; 1936 } 1937 1938 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1939 out_set_summed: 1940 skb->ip_summed = CHECKSUM_NONE; 1941 out: 1942 return ret; 1943 } 1944 EXPORT_SYMBOL(skb_checksum_help); 1945 1946 /** 1947 * skb_gso_segment - Perform segmentation on skb. 1948 * @skb: buffer to segment 1949 * @features: features for the output path (see dev->features) 1950 * 1951 * This function segments the given skb and returns a list of segments. 1952 * 1953 * It may return NULL if the skb requires no segmentation. This is 1954 * only possible when GSO is used for verifying header integrity. 1955 */ 1956 struct sk_buff *skb_gso_segment(struct sk_buff *skb, 1957 netdev_features_t features) 1958 { 1959 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1960 struct packet_type *ptype; 1961 __be16 type = skb->protocol; 1962 int vlan_depth = ETH_HLEN; 1963 int err; 1964 1965 while (type == htons(ETH_P_8021Q)) { 1966 struct vlan_hdr *vh; 1967 1968 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1969 return ERR_PTR(-EINVAL); 1970 1971 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1972 type = vh->h_vlan_encapsulated_proto; 1973 vlan_depth += VLAN_HLEN; 1974 } 1975 1976 skb_reset_mac_header(skb); 1977 skb->mac_len = skb->network_header - skb->mac_header; 1978 __skb_pull(skb, skb->mac_len); 1979 1980 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1981 skb_warn_bad_offload(skb); 1982 1983 if (skb_header_cloned(skb) && 1984 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1985 return ERR_PTR(err); 1986 } 1987 1988 rcu_read_lock(); 1989 list_for_each_entry_rcu(ptype, 1990 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1991 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1992 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1993 err = ptype->gso_send_check(skb); 1994 segs = ERR_PTR(err); 1995 if (err || skb_gso_ok(skb, features)) 1996 break; 1997 __skb_push(skb, (skb->data - 1998 skb_network_header(skb))); 1999 } 2000 segs = ptype->gso_segment(skb, features); 2001 break; 2002 } 2003 } 2004 rcu_read_unlock(); 2005 2006 __skb_push(skb, skb->data - skb_mac_header(skb)); 2007 2008 return segs; 2009 } 2010 EXPORT_SYMBOL(skb_gso_segment); 2011 2012 /* Take action when hardware reception checksum errors are detected. */ 2013 #ifdef CONFIG_BUG 2014 void netdev_rx_csum_fault(struct net_device *dev) 2015 { 2016 if (net_ratelimit()) { 2017 printk(KERN_ERR "%s: hw csum failure.\n", 2018 dev ? dev->name : "<unknown>"); 2019 dump_stack(); 2020 } 2021 } 2022 EXPORT_SYMBOL(netdev_rx_csum_fault); 2023 #endif 2024 2025 /* Actually, we should eliminate this check as soon as we know, that: 2026 * 1. IOMMU is present and allows to map all the memory. 2027 * 2. No high memory really exists on this machine. 2028 */ 2029 2030 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2031 { 2032 #ifdef CONFIG_HIGHMEM 2033 int i; 2034 if (!(dev->features & NETIF_F_HIGHDMA)) { 2035 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2036 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2037 if (PageHighMem(skb_frag_page(frag))) 2038 return 1; 2039 } 2040 } 2041 2042 if (PCI_DMA_BUS_IS_PHYS) { 2043 struct device *pdev = dev->dev.parent; 2044 2045 if (!pdev) 2046 return 0; 2047 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2048 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2049 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2050 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2051 return 1; 2052 } 2053 } 2054 #endif 2055 return 0; 2056 } 2057 2058 struct dev_gso_cb { 2059 void (*destructor)(struct sk_buff *skb); 2060 }; 2061 2062 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2063 2064 static void dev_gso_skb_destructor(struct sk_buff *skb) 2065 { 2066 struct dev_gso_cb *cb; 2067 2068 do { 2069 struct sk_buff *nskb = skb->next; 2070 2071 skb->next = nskb->next; 2072 nskb->next = NULL; 2073 kfree_skb(nskb); 2074 } while (skb->next); 2075 2076 cb = DEV_GSO_CB(skb); 2077 if (cb->destructor) 2078 cb->destructor(skb); 2079 } 2080 2081 /** 2082 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2083 * @skb: buffer to segment 2084 * @features: device features as applicable to this skb 2085 * 2086 * This function segments the given skb and stores the list of segments 2087 * in skb->next. 2088 */ 2089 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2090 { 2091 struct sk_buff *segs; 2092 2093 segs = skb_gso_segment(skb, features); 2094 2095 /* Verifying header integrity only. */ 2096 if (!segs) 2097 return 0; 2098 2099 if (IS_ERR(segs)) 2100 return PTR_ERR(segs); 2101 2102 skb->next = segs; 2103 DEV_GSO_CB(skb)->destructor = skb->destructor; 2104 skb->destructor = dev_gso_skb_destructor; 2105 2106 return 0; 2107 } 2108 2109 /* 2110 * Try to orphan skb early, right before transmission by the device. 2111 * We cannot orphan skb if tx timestamp is requested or the sk-reference 2112 * is needed on driver level for other reasons, e.g. see net/can/raw.c 2113 */ 2114 static inline void skb_orphan_try(struct sk_buff *skb) 2115 { 2116 struct sock *sk = skb->sk; 2117 2118 if (sk && !skb_shinfo(skb)->tx_flags) { 2119 /* skb_tx_hash() wont be able to get sk. 2120 * We copy sk_hash into skb->rxhash 2121 */ 2122 if (!skb->rxhash) 2123 skb->rxhash = sk->sk_hash; 2124 skb_orphan(skb); 2125 } 2126 } 2127 2128 static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2129 { 2130 return ((features & NETIF_F_GEN_CSUM) || 2131 ((features & NETIF_F_V4_CSUM) && 2132 protocol == htons(ETH_P_IP)) || 2133 ((features & NETIF_F_V6_CSUM) && 2134 protocol == htons(ETH_P_IPV6)) || 2135 ((features & NETIF_F_FCOE_CRC) && 2136 protocol == htons(ETH_P_FCOE))); 2137 } 2138 2139 static netdev_features_t harmonize_features(struct sk_buff *skb, 2140 __be16 protocol, netdev_features_t features) 2141 { 2142 if (!can_checksum_protocol(features, protocol)) { 2143 features &= ~NETIF_F_ALL_CSUM; 2144 features &= ~NETIF_F_SG; 2145 } else if (illegal_highdma(skb->dev, skb)) { 2146 features &= ~NETIF_F_SG; 2147 } 2148 2149 return features; 2150 } 2151 2152 netdev_features_t netif_skb_features(struct sk_buff *skb) 2153 { 2154 __be16 protocol = skb->protocol; 2155 netdev_features_t features = skb->dev->features; 2156 2157 if (protocol == htons(ETH_P_8021Q)) { 2158 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2159 protocol = veh->h_vlan_encapsulated_proto; 2160 } else if (!vlan_tx_tag_present(skb)) { 2161 return harmonize_features(skb, protocol, features); 2162 } 2163 2164 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2165 2166 if (protocol != htons(ETH_P_8021Q)) { 2167 return harmonize_features(skb, protocol, features); 2168 } else { 2169 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2170 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2171 return harmonize_features(skb, protocol, features); 2172 } 2173 } 2174 EXPORT_SYMBOL(netif_skb_features); 2175 2176 /* 2177 * Returns true if either: 2178 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2179 * 2. skb is fragmented and the device does not support SG, or if 2180 * at least one of fragments is in highmem and device does not 2181 * support DMA from it. 2182 */ 2183 static inline int skb_needs_linearize(struct sk_buff *skb, 2184 int features) 2185 { 2186 return skb_is_nonlinear(skb) && 2187 ((skb_has_frag_list(skb) && 2188 !(features & NETIF_F_FRAGLIST)) || 2189 (skb_shinfo(skb)->nr_frags && 2190 !(features & NETIF_F_SG))); 2191 } 2192 2193 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2194 struct netdev_queue *txq) 2195 { 2196 const struct net_device_ops *ops = dev->netdev_ops; 2197 int rc = NETDEV_TX_OK; 2198 unsigned int skb_len; 2199 2200 if (likely(!skb->next)) { 2201 netdev_features_t features; 2202 2203 /* 2204 * If device doesn't need skb->dst, release it right now while 2205 * its hot in this cpu cache 2206 */ 2207 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2208 skb_dst_drop(skb); 2209 2210 if (!list_empty(&ptype_all)) 2211 dev_queue_xmit_nit(skb, dev); 2212 2213 skb_orphan_try(skb); 2214 2215 features = netif_skb_features(skb); 2216 2217 if (vlan_tx_tag_present(skb) && 2218 !(features & NETIF_F_HW_VLAN_TX)) { 2219 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2220 if (unlikely(!skb)) 2221 goto out; 2222 2223 skb->vlan_tci = 0; 2224 } 2225 2226 if (netif_needs_gso(skb, features)) { 2227 if (unlikely(dev_gso_segment(skb, features))) 2228 goto out_kfree_skb; 2229 if (skb->next) 2230 goto gso; 2231 } else { 2232 if (skb_needs_linearize(skb, features) && 2233 __skb_linearize(skb)) 2234 goto out_kfree_skb; 2235 2236 /* If packet is not checksummed and device does not 2237 * support checksumming for this protocol, complete 2238 * checksumming here. 2239 */ 2240 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2241 skb_set_transport_header(skb, 2242 skb_checksum_start_offset(skb)); 2243 if (!(features & NETIF_F_ALL_CSUM) && 2244 skb_checksum_help(skb)) 2245 goto out_kfree_skb; 2246 } 2247 } 2248 2249 skb_len = skb->len; 2250 rc = ops->ndo_start_xmit(skb, dev); 2251 trace_net_dev_xmit(skb, rc, dev, skb_len); 2252 if (rc == NETDEV_TX_OK) 2253 txq_trans_update(txq); 2254 return rc; 2255 } 2256 2257 gso: 2258 do { 2259 struct sk_buff *nskb = skb->next; 2260 2261 skb->next = nskb->next; 2262 nskb->next = NULL; 2263 2264 /* 2265 * If device doesn't need nskb->dst, release it right now while 2266 * its hot in this cpu cache 2267 */ 2268 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2269 skb_dst_drop(nskb); 2270 2271 skb_len = nskb->len; 2272 rc = ops->ndo_start_xmit(nskb, dev); 2273 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2274 if (unlikely(rc != NETDEV_TX_OK)) { 2275 if (rc & ~NETDEV_TX_MASK) 2276 goto out_kfree_gso_skb; 2277 nskb->next = skb->next; 2278 skb->next = nskb; 2279 return rc; 2280 } 2281 txq_trans_update(txq); 2282 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2283 return NETDEV_TX_BUSY; 2284 } while (skb->next); 2285 2286 out_kfree_gso_skb: 2287 if (likely(skb->next == NULL)) 2288 skb->destructor = DEV_GSO_CB(skb)->destructor; 2289 out_kfree_skb: 2290 kfree_skb(skb); 2291 out: 2292 return rc; 2293 } 2294 2295 static u32 hashrnd __read_mostly; 2296 2297 /* 2298 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2299 * to be used as a distribution range. 2300 */ 2301 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2302 unsigned int num_tx_queues) 2303 { 2304 u32 hash; 2305 u16 qoffset = 0; 2306 u16 qcount = num_tx_queues; 2307 2308 if (skb_rx_queue_recorded(skb)) { 2309 hash = skb_get_rx_queue(skb); 2310 while (unlikely(hash >= num_tx_queues)) 2311 hash -= num_tx_queues; 2312 return hash; 2313 } 2314 2315 if (dev->num_tc) { 2316 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2317 qoffset = dev->tc_to_txq[tc].offset; 2318 qcount = dev->tc_to_txq[tc].count; 2319 } 2320 2321 if (skb->sk && skb->sk->sk_hash) 2322 hash = skb->sk->sk_hash; 2323 else 2324 hash = (__force u16) skb->protocol ^ skb->rxhash; 2325 hash = jhash_1word(hash, hashrnd); 2326 2327 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2328 } 2329 EXPORT_SYMBOL(__skb_tx_hash); 2330 2331 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2332 { 2333 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2334 if (net_ratelimit()) { 2335 pr_warning("%s selects TX queue %d, but " 2336 "real number of TX queues is %d\n", 2337 dev->name, queue_index, dev->real_num_tx_queues); 2338 } 2339 return 0; 2340 } 2341 return queue_index; 2342 } 2343 2344 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2345 { 2346 #ifdef CONFIG_XPS 2347 struct xps_dev_maps *dev_maps; 2348 struct xps_map *map; 2349 int queue_index = -1; 2350 2351 rcu_read_lock(); 2352 dev_maps = rcu_dereference(dev->xps_maps); 2353 if (dev_maps) { 2354 map = rcu_dereference( 2355 dev_maps->cpu_map[raw_smp_processor_id()]); 2356 if (map) { 2357 if (map->len == 1) 2358 queue_index = map->queues[0]; 2359 else { 2360 u32 hash; 2361 if (skb->sk && skb->sk->sk_hash) 2362 hash = skb->sk->sk_hash; 2363 else 2364 hash = (__force u16) skb->protocol ^ 2365 skb->rxhash; 2366 hash = jhash_1word(hash, hashrnd); 2367 queue_index = map->queues[ 2368 ((u64)hash * map->len) >> 32]; 2369 } 2370 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2371 queue_index = -1; 2372 } 2373 } 2374 rcu_read_unlock(); 2375 2376 return queue_index; 2377 #else 2378 return -1; 2379 #endif 2380 } 2381 2382 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2383 struct sk_buff *skb) 2384 { 2385 int queue_index; 2386 const struct net_device_ops *ops = dev->netdev_ops; 2387 2388 if (dev->real_num_tx_queues == 1) 2389 queue_index = 0; 2390 else if (ops->ndo_select_queue) { 2391 queue_index = ops->ndo_select_queue(dev, skb); 2392 queue_index = dev_cap_txqueue(dev, queue_index); 2393 } else { 2394 struct sock *sk = skb->sk; 2395 queue_index = sk_tx_queue_get(sk); 2396 2397 if (queue_index < 0 || skb->ooo_okay || 2398 queue_index >= dev->real_num_tx_queues) { 2399 int old_index = queue_index; 2400 2401 queue_index = get_xps_queue(dev, skb); 2402 if (queue_index < 0) 2403 queue_index = skb_tx_hash(dev, skb); 2404 2405 if (queue_index != old_index && sk) { 2406 struct dst_entry *dst = 2407 rcu_dereference_check(sk->sk_dst_cache, 1); 2408 2409 if (dst && skb_dst(skb) == dst) 2410 sk_tx_queue_set(sk, queue_index); 2411 } 2412 } 2413 } 2414 2415 skb_set_queue_mapping(skb, queue_index); 2416 return netdev_get_tx_queue(dev, queue_index); 2417 } 2418 2419 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2420 struct net_device *dev, 2421 struct netdev_queue *txq) 2422 { 2423 spinlock_t *root_lock = qdisc_lock(q); 2424 bool contended; 2425 int rc; 2426 2427 qdisc_skb_cb(skb)->pkt_len = skb->len; 2428 qdisc_calculate_pkt_len(skb, q); 2429 /* 2430 * Heuristic to force contended enqueues to serialize on a 2431 * separate lock before trying to get qdisc main lock. 2432 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2433 * and dequeue packets faster. 2434 */ 2435 contended = qdisc_is_running(q); 2436 if (unlikely(contended)) 2437 spin_lock(&q->busylock); 2438 2439 spin_lock(root_lock); 2440 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2441 kfree_skb(skb); 2442 rc = NET_XMIT_DROP; 2443 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2444 qdisc_run_begin(q)) { 2445 /* 2446 * This is a work-conserving queue; there are no old skbs 2447 * waiting to be sent out; and the qdisc is not running - 2448 * xmit the skb directly. 2449 */ 2450 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2451 skb_dst_force(skb); 2452 2453 qdisc_bstats_update(q, skb); 2454 2455 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2456 if (unlikely(contended)) { 2457 spin_unlock(&q->busylock); 2458 contended = false; 2459 } 2460 __qdisc_run(q); 2461 } else 2462 qdisc_run_end(q); 2463 2464 rc = NET_XMIT_SUCCESS; 2465 } else { 2466 skb_dst_force(skb); 2467 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2468 if (qdisc_run_begin(q)) { 2469 if (unlikely(contended)) { 2470 spin_unlock(&q->busylock); 2471 contended = false; 2472 } 2473 __qdisc_run(q); 2474 } 2475 } 2476 spin_unlock(root_lock); 2477 if (unlikely(contended)) 2478 spin_unlock(&q->busylock); 2479 return rc; 2480 } 2481 2482 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2483 static void skb_update_prio(struct sk_buff *skb) 2484 { 2485 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2486 2487 if ((!skb->priority) && (skb->sk) && map) 2488 skb->priority = map->priomap[skb->sk->sk_cgrp_prioidx]; 2489 } 2490 #else 2491 #define skb_update_prio(skb) 2492 #endif 2493 2494 static DEFINE_PER_CPU(int, xmit_recursion); 2495 #define RECURSION_LIMIT 10 2496 2497 /** 2498 * dev_queue_xmit - transmit a buffer 2499 * @skb: buffer to transmit 2500 * 2501 * Queue a buffer for transmission to a network device. The caller must 2502 * have set the device and priority and built the buffer before calling 2503 * this function. The function can be called from an interrupt. 2504 * 2505 * A negative errno code is returned on a failure. A success does not 2506 * guarantee the frame will be transmitted as it may be dropped due 2507 * to congestion or traffic shaping. 2508 * 2509 * ----------------------------------------------------------------------------------- 2510 * I notice this method can also return errors from the queue disciplines, 2511 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2512 * be positive. 2513 * 2514 * Regardless of the return value, the skb is consumed, so it is currently 2515 * difficult to retry a send to this method. (You can bump the ref count 2516 * before sending to hold a reference for retry if you are careful.) 2517 * 2518 * When calling this method, interrupts MUST be enabled. This is because 2519 * the BH enable code must have IRQs enabled so that it will not deadlock. 2520 * --BLG 2521 */ 2522 int dev_queue_xmit(struct sk_buff *skb) 2523 { 2524 struct net_device *dev = skb->dev; 2525 struct netdev_queue *txq; 2526 struct Qdisc *q; 2527 int rc = -ENOMEM; 2528 2529 /* Disable soft irqs for various locks below. Also 2530 * stops preemption for RCU. 2531 */ 2532 rcu_read_lock_bh(); 2533 2534 skb_update_prio(skb); 2535 2536 txq = dev_pick_tx(dev, skb); 2537 q = rcu_dereference_bh(txq->qdisc); 2538 2539 #ifdef CONFIG_NET_CLS_ACT 2540 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2541 #endif 2542 trace_net_dev_queue(skb); 2543 if (q->enqueue) { 2544 rc = __dev_xmit_skb(skb, q, dev, txq); 2545 goto out; 2546 } 2547 2548 /* The device has no queue. Common case for software devices: 2549 loopback, all the sorts of tunnels... 2550 2551 Really, it is unlikely that netif_tx_lock protection is necessary 2552 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2553 counters.) 2554 However, it is possible, that they rely on protection 2555 made by us here. 2556 2557 Check this and shot the lock. It is not prone from deadlocks. 2558 Either shot noqueue qdisc, it is even simpler 8) 2559 */ 2560 if (dev->flags & IFF_UP) { 2561 int cpu = smp_processor_id(); /* ok because BHs are off */ 2562 2563 if (txq->xmit_lock_owner != cpu) { 2564 2565 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2566 goto recursion_alert; 2567 2568 HARD_TX_LOCK(dev, txq, cpu); 2569 2570 if (!netif_xmit_stopped(txq)) { 2571 __this_cpu_inc(xmit_recursion); 2572 rc = dev_hard_start_xmit(skb, dev, txq); 2573 __this_cpu_dec(xmit_recursion); 2574 if (dev_xmit_complete(rc)) { 2575 HARD_TX_UNLOCK(dev, txq); 2576 goto out; 2577 } 2578 } 2579 HARD_TX_UNLOCK(dev, txq); 2580 if (net_ratelimit()) 2581 printk(KERN_CRIT "Virtual device %s asks to " 2582 "queue packet!\n", dev->name); 2583 } else { 2584 /* Recursion is detected! It is possible, 2585 * unfortunately 2586 */ 2587 recursion_alert: 2588 if (net_ratelimit()) 2589 printk(KERN_CRIT "Dead loop on virtual device " 2590 "%s, fix it urgently!\n", dev->name); 2591 } 2592 } 2593 2594 rc = -ENETDOWN; 2595 rcu_read_unlock_bh(); 2596 2597 kfree_skb(skb); 2598 return rc; 2599 out: 2600 rcu_read_unlock_bh(); 2601 return rc; 2602 } 2603 EXPORT_SYMBOL(dev_queue_xmit); 2604 2605 2606 /*======================================================================= 2607 Receiver routines 2608 =======================================================================*/ 2609 2610 int netdev_max_backlog __read_mostly = 1000; 2611 int netdev_tstamp_prequeue __read_mostly = 1; 2612 int netdev_budget __read_mostly = 300; 2613 int weight_p __read_mostly = 64; /* old backlog weight */ 2614 2615 /* Called with irq disabled */ 2616 static inline void ____napi_schedule(struct softnet_data *sd, 2617 struct napi_struct *napi) 2618 { 2619 list_add_tail(&napi->poll_list, &sd->poll_list); 2620 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2621 } 2622 2623 /* 2624 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2625 * and src/dst port numbers. Sets rxhash in skb to non-zero hash value 2626 * on success, zero indicates no valid hash. Also, sets l4_rxhash in skb 2627 * if hash is a canonical 4-tuple hash over transport ports. 2628 */ 2629 void __skb_get_rxhash(struct sk_buff *skb) 2630 { 2631 struct flow_keys keys; 2632 u32 hash; 2633 2634 if (!skb_flow_dissect(skb, &keys)) 2635 return; 2636 2637 if (keys.ports) { 2638 if ((__force u16)keys.port16[1] < (__force u16)keys.port16[0]) 2639 swap(keys.port16[0], keys.port16[1]); 2640 skb->l4_rxhash = 1; 2641 } 2642 2643 /* get a consistent hash (same value on both flow directions) */ 2644 if ((__force u32)keys.dst < (__force u32)keys.src) 2645 swap(keys.dst, keys.src); 2646 2647 hash = jhash_3words((__force u32)keys.dst, 2648 (__force u32)keys.src, 2649 (__force u32)keys.ports, hashrnd); 2650 if (!hash) 2651 hash = 1; 2652 2653 skb->rxhash = hash; 2654 } 2655 EXPORT_SYMBOL(__skb_get_rxhash); 2656 2657 #ifdef CONFIG_RPS 2658 2659 /* One global table that all flow-based protocols share. */ 2660 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2661 EXPORT_SYMBOL(rps_sock_flow_table); 2662 2663 struct jump_label_key rps_needed __read_mostly; 2664 2665 static struct rps_dev_flow * 2666 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2667 struct rps_dev_flow *rflow, u16 next_cpu) 2668 { 2669 if (next_cpu != RPS_NO_CPU) { 2670 #ifdef CONFIG_RFS_ACCEL 2671 struct netdev_rx_queue *rxqueue; 2672 struct rps_dev_flow_table *flow_table; 2673 struct rps_dev_flow *old_rflow; 2674 u32 flow_id; 2675 u16 rxq_index; 2676 int rc; 2677 2678 /* Should we steer this flow to a different hardware queue? */ 2679 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2680 !(dev->features & NETIF_F_NTUPLE)) 2681 goto out; 2682 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2683 if (rxq_index == skb_get_rx_queue(skb)) 2684 goto out; 2685 2686 rxqueue = dev->_rx + rxq_index; 2687 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2688 if (!flow_table) 2689 goto out; 2690 flow_id = skb->rxhash & flow_table->mask; 2691 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2692 rxq_index, flow_id); 2693 if (rc < 0) 2694 goto out; 2695 old_rflow = rflow; 2696 rflow = &flow_table->flows[flow_id]; 2697 rflow->filter = rc; 2698 if (old_rflow->filter == rflow->filter) 2699 old_rflow->filter = RPS_NO_FILTER; 2700 out: 2701 #endif 2702 rflow->last_qtail = 2703 per_cpu(softnet_data, next_cpu).input_queue_head; 2704 } 2705 2706 rflow->cpu = next_cpu; 2707 return rflow; 2708 } 2709 2710 /* 2711 * get_rps_cpu is called from netif_receive_skb and returns the target 2712 * CPU from the RPS map of the receiving queue for a given skb. 2713 * rcu_read_lock must be held on entry. 2714 */ 2715 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2716 struct rps_dev_flow **rflowp) 2717 { 2718 struct netdev_rx_queue *rxqueue; 2719 struct rps_map *map; 2720 struct rps_dev_flow_table *flow_table; 2721 struct rps_sock_flow_table *sock_flow_table; 2722 int cpu = -1; 2723 u16 tcpu; 2724 2725 if (skb_rx_queue_recorded(skb)) { 2726 u16 index = skb_get_rx_queue(skb); 2727 if (unlikely(index >= dev->real_num_rx_queues)) { 2728 WARN_ONCE(dev->real_num_rx_queues > 1, 2729 "%s received packet on queue %u, but number " 2730 "of RX queues is %u\n", 2731 dev->name, index, dev->real_num_rx_queues); 2732 goto done; 2733 } 2734 rxqueue = dev->_rx + index; 2735 } else 2736 rxqueue = dev->_rx; 2737 2738 map = rcu_dereference(rxqueue->rps_map); 2739 if (map) { 2740 if (map->len == 1 && 2741 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2742 tcpu = map->cpus[0]; 2743 if (cpu_online(tcpu)) 2744 cpu = tcpu; 2745 goto done; 2746 } 2747 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2748 goto done; 2749 } 2750 2751 skb_reset_network_header(skb); 2752 if (!skb_get_rxhash(skb)) 2753 goto done; 2754 2755 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2756 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2757 if (flow_table && sock_flow_table) { 2758 u16 next_cpu; 2759 struct rps_dev_flow *rflow; 2760 2761 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2762 tcpu = rflow->cpu; 2763 2764 next_cpu = sock_flow_table->ents[skb->rxhash & 2765 sock_flow_table->mask]; 2766 2767 /* 2768 * If the desired CPU (where last recvmsg was done) is 2769 * different from current CPU (one in the rx-queue flow 2770 * table entry), switch if one of the following holds: 2771 * - Current CPU is unset (equal to RPS_NO_CPU). 2772 * - Current CPU is offline. 2773 * - The current CPU's queue tail has advanced beyond the 2774 * last packet that was enqueued using this table entry. 2775 * This guarantees that all previous packets for the flow 2776 * have been dequeued, thus preserving in order delivery. 2777 */ 2778 if (unlikely(tcpu != next_cpu) && 2779 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2780 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2781 rflow->last_qtail)) >= 0)) 2782 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2783 2784 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2785 *rflowp = rflow; 2786 cpu = tcpu; 2787 goto done; 2788 } 2789 } 2790 2791 if (map) { 2792 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2793 2794 if (cpu_online(tcpu)) { 2795 cpu = tcpu; 2796 goto done; 2797 } 2798 } 2799 2800 done: 2801 return cpu; 2802 } 2803 2804 #ifdef CONFIG_RFS_ACCEL 2805 2806 /** 2807 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2808 * @dev: Device on which the filter was set 2809 * @rxq_index: RX queue index 2810 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2811 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2812 * 2813 * Drivers that implement ndo_rx_flow_steer() should periodically call 2814 * this function for each installed filter and remove the filters for 2815 * which it returns %true. 2816 */ 2817 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2818 u32 flow_id, u16 filter_id) 2819 { 2820 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2821 struct rps_dev_flow_table *flow_table; 2822 struct rps_dev_flow *rflow; 2823 bool expire = true; 2824 int cpu; 2825 2826 rcu_read_lock(); 2827 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2828 if (flow_table && flow_id <= flow_table->mask) { 2829 rflow = &flow_table->flows[flow_id]; 2830 cpu = ACCESS_ONCE(rflow->cpu); 2831 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2832 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2833 rflow->last_qtail) < 2834 (int)(10 * flow_table->mask))) 2835 expire = false; 2836 } 2837 rcu_read_unlock(); 2838 return expire; 2839 } 2840 EXPORT_SYMBOL(rps_may_expire_flow); 2841 2842 #endif /* CONFIG_RFS_ACCEL */ 2843 2844 /* Called from hardirq (IPI) context */ 2845 static void rps_trigger_softirq(void *data) 2846 { 2847 struct softnet_data *sd = data; 2848 2849 ____napi_schedule(sd, &sd->backlog); 2850 sd->received_rps++; 2851 } 2852 2853 #endif /* CONFIG_RPS */ 2854 2855 /* 2856 * Check if this softnet_data structure is another cpu one 2857 * If yes, queue it to our IPI list and return 1 2858 * If no, return 0 2859 */ 2860 static int rps_ipi_queued(struct softnet_data *sd) 2861 { 2862 #ifdef CONFIG_RPS 2863 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2864 2865 if (sd != mysd) { 2866 sd->rps_ipi_next = mysd->rps_ipi_list; 2867 mysd->rps_ipi_list = sd; 2868 2869 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2870 return 1; 2871 } 2872 #endif /* CONFIG_RPS */ 2873 return 0; 2874 } 2875 2876 /* 2877 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2878 * queue (may be a remote CPU queue). 2879 */ 2880 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2881 unsigned int *qtail) 2882 { 2883 struct softnet_data *sd; 2884 unsigned long flags; 2885 2886 sd = &per_cpu(softnet_data, cpu); 2887 2888 local_irq_save(flags); 2889 2890 rps_lock(sd); 2891 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2892 if (skb_queue_len(&sd->input_pkt_queue)) { 2893 enqueue: 2894 __skb_queue_tail(&sd->input_pkt_queue, skb); 2895 input_queue_tail_incr_save(sd, qtail); 2896 rps_unlock(sd); 2897 local_irq_restore(flags); 2898 return NET_RX_SUCCESS; 2899 } 2900 2901 /* Schedule NAPI for backlog device 2902 * We can use non atomic operation since we own the queue lock 2903 */ 2904 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2905 if (!rps_ipi_queued(sd)) 2906 ____napi_schedule(sd, &sd->backlog); 2907 } 2908 goto enqueue; 2909 } 2910 2911 sd->dropped++; 2912 rps_unlock(sd); 2913 2914 local_irq_restore(flags); 2915 2916 atomic_long_inc(&skb->dev->rx_dropped); 2917 kfree_skb(skb); 2918 return NET_RX_DROP; 2919 } 2920 2921 /** 2922 * netif_rx - post buffer to the network code 2923 * @skb: buffer to post 2924 * 2925 * This function receives a packet from a device driver and queues it for 2926 * the upper (protocol) levels to process. It always succeeds. The buffer 2927 * may be dropped during processing for congestion control or by the 2928 * protocol layers. 2929 * 2930 * return values: 2931 * NET_RX_SUCCESS (no congestion) 2932 * NET_RX_DROP (packet was dropped) 2933 * 2934 */ 2935 2936 int netif_rx(struct sk_buff *skb) 2937 { 2938 int ret; 2939 2940 /* if netpoll wants it, pretend we never saw it */ 2941 if (netpoll_rx(skb)) 2942 return NET_RX_DROP; 2943 2944 net_timestamp_check(netdev_tstamp_prequeue, skb); 2945 2946 trace_netif_rx(skb); 2947 #ifdef CONFIG_RPS 2948 if (static_branch(&rps_needed)) { 2949 struct rps_dev_flow voidflow, *rflow = &voidflow; 2950 int cpu; 2951 2952 preempt_disable(); 2953 rcu_read_lock(); 2954 2955 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2956 if (cpu < 0) 2957 cpu = smp_processor_id(); 2958 2959 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2960 2961 rcu_read_unlock(); 2962 preempt_enable(); 2963 } else 2964 #endif 2965 { 2966 unsigned int qtail; 2967 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2968 put_cpu(); 2969 } 2970 return ret; 2971 } 2972 EXPORT_SYMBOL(netif_rx); 2973 2974 int netif_rx_ni(struct sk_buff *skb) 2975 { 2976 int err; 2977 2978 preempt_disable(); 2979 err = netif_rx(skb); 2980 if (local_softirq_pending()) 2981 do_softirq(); 2982 preempt_enable(); 2983 2984 return err; 2985 } 2986 EXPORT_SYMBOL(netif_rx_ni); 2987 2988 static void net_tx_action(struct softirq_action *h) 2989 { 2990 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2991 2992 if (sd->completion_queue) { 2993 struct sk_buff *clist; 2994 2995 local_irq_disable(); 2996 clist = sd->completion_queue; 2997 sd->completion_queue = NULL; 2998 local_irq_enable(); 2999 3000 while (clist) { 3001 struct sk_buff *skb = clist; 3002 clist = clist->next; 3003 3004 WARN_ON(atomic_read(&skb->users)); 3005 trace_kfree_skb(skb, net_tx_action); 3006 __kfree_skb(skb); 3007 } 3008 } 3009 3010 if (sd->output_queue) { 3011 struct Qdisc *head; 3012 3013 local_irq_disable(); 3014 head = sd->output_queue; 3015 sd->output_queue = NULL; 3016 sd->output_queue_tailp = &sd->output_queue; 3017 local_irq_enable(); 3018 3019 while (head) { 3020 struct Qdisc *q = head; 3021 spinlock_t *root_lock; 3022 3023 head = head->next_sched; 3024 3025 root_lock = qdisc_lock(q); 3026 if (spin_trylock(root_lock)) { 3027 smp_mb__before_clear_bit(); 3028 clear_bit(__QDISC_STATE_SCHED, 3029 &q->state); 3030 qdisc_run(q); 3031 spin_unlock(root_lock); 3032 } else { 3033 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3034 &q->state)) { 3035 __netif_reschedule(q); 3036 } else { 3037 smp_mb__before_clear_bit(); 3038 clear_bit(__QDISC_STATE_SCHED, 3039 &q->state); 3040 } 3041 } 3042 } 3043 } 3044 } 3045 3046 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3047 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3048 /* This hook is defined here for ATM LANE */ 3049 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3050 unsigned char *addr) __read_mostly; 3051 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3052 #endif 3053 3054 #ifdef CONFIG_NET_CLS_ACT 3055 /* TODO: Maybe we should just force sch_ingress to be compiled in 3056 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3057 * a compare and 2 stores extra right now if we dont have it on 3058 * but have CONFIG_NET_CLS_ACT 3059 * NOTE: This doesn't stop any functionality; if you dont have 3060 * the ingress scheduler, you just can't add policies on ingress. 3061 * 3062 */ 3063 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3064 { 3065 struct net_device *dev = skb->dev; 3066 u32 ttl = G_TC_RTTL(skb->tc_verd); 3067 int result = TC_ACT_OK; 3068 struct Qdisc *q; 3069 3070 if (unlikely(MAX_RED_LOOP < ttl++)) { 3071 if (net_ratelimit()) 3072 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n", 3073 skb->skb_iif, dev->ifindex); 3074 return TC_ACT_SHOT; 3075 } 3076 3077 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3078 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3079 3080 q = rxq->qdisc; 3081 if (q != &noop_qdisc) { 3082 spin_lock(qdisc_lock(q)); 3083 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3084 result = qdisc_enqueue_root(skb, q); 3085 spin_unlock(qdisc_lock(q)); 3086 } 3087 3088 return result; 3089 } 3090 3091 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3092 struct packet_type **pt_prev, 3093 int *ret, struct net_device *orig_dev) 3094 { 3095 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3096 3097 if (!rxq || rxq->qdisc == &noop_qdisc) 3098 goto out; 3099 3100 if (*pt_prev) { 3101 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3102 *pt_prev = NULL; 3103 } 3104 3105 switch (ing_filter(skb, rxq)) { 3106 case TC_ACT_SHOT: 3107 case TC_ACT_STOLEN: 3108 kfree_skb(skb); 3109 return NULL; 3110 } 3111 3112 out: 3113 skb->tc_verd = 0; 3114 return skb; 3115 } 3116 #endif 3117 3118 /** 3119 * netdev_rx_handler_register - register receive handler 3120 * @dev: device to register a handler for 3121 * @rx_handler: receive handler to register 3122 * @rx_handler_data: data pointer that is used by rx handler 3123 * 3124 * Register a receive hander for a device. This handler will then be 3125 * called from __netif_receive_skb. A negative errno code is returned 3126 * on a failure. 3127 * 3128 * The caller must hold the rtnl_mutex. 3129 * 3130 * For a general description of rx_handler, see enum rx_handler_result. 3131 */ 3132 int netdev_rx_handler_register(struct net_device *dev, 3133 rx_handler_func_t *rx_handler, 3134 void *rx_handler_data) 3135 { 3136 ASSERT_RTNL(); 3137 3138 if (dev->rx_handler) 3139 return -EBUSY; 3140 3141 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3142 rcu_assign_pointer(dev->rx_handler, rx_handler); 3143 3144 return 0; 3145 } 3146 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3147 3148 /** 3149 * netdev_rx_handler_unregister - unregister receive handler 3150 * @dev: device to unregister a handler from 3151 * 3152 * Unregister a receive hander from a device. 3153 * 3154 * The caller must hold the rtnl_mutex. 3155 */ 3156 void netdev_rx_handler_unregister(struct net_device *dev) 3157 { 3158 3159 ASSERT_RTNL(); 3160 RCU_INIT_POINTER(dev->rx_handler, NULL); 3161 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3162 } 3163 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3164 3165 static int __netif_receive_skb(struct sk_buff *skb) 3166 { 3167 struct packet_type *ptype, *pt_prev; 3168 rx_handler_func_t *rx_handler; 3169 struct net_device *orig_dev; 3170 struct net_device *null_or_dev; 3171 bool deliver_exact = false; 3172 int ret = NET_RX_DROP; 3173 __be16 type; 3174 3175 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3176 3177 trace_netif_receive_skb(skb); 3178 3179 /* if we've gotten here through NAPI, check netpoll */ 3180 if (netpoll_receive_skb(skb)) 3181 return NET_RX_DROP; 3182 3183 if (!skb->skb_iif) 3184 skb->skb_iif = skb->dev->ifindex; 3185 orig_dev = skb->dev; 3186 3187 skb_reset_network_header(skb); 3188 skb_reset_transport_header(skb); 3189 skb_reset_mac_len(skb); 3190 3191 pt_prev = NULL; 3192 3193 rcu_read_lock(); 3194 3195 another_round: 3196 3197 __this_cpu_inc(softnet_data.processed); 3198 3199 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3200 skb = vlan_untag(skb); 3201 if (unlikely(!skb)) 3202 goto out; 3203 } 3204 3205 #ifdef CONFIG_NET_CLS_ACT 3206 if (skb->tc_verd & TC_NCLS) { 3207 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3208 goto ncls; 3209 } 3210 #endif 3211 3212 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3213 if (!ptype->dev || ptype->dev == skb->dev) { 3214 if (pt_prev) 3215 ret = deliver_skb(skb, pt_prev, orig_dev); 3216 pt_prev = ptype; 3217 } 3218 } 3219 3220 #ifdef CONFIG_NET_CLS_ACT 3221 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3222 if (!skb) 3223 goto out; 3224 ncls: 3225 #endif 3226 3227 rx_handler = rcu_dereference(skb->dev->rx_handler); 3228 if (vlan_tx_tag_present(skb)) { 3229 if (pt_prev) { 3230 ret = deliver_skb(skb, pt_prev, orig_dev); 3231 pt_prev = NULL; 3232 } 3233 if (vlan_do_receive(&skb, !rx_handler)) 3234 goto another_round; 3235 else if (unlikely(!skb)) 3236 goto out; 3237 } 3238 3239 if (rx_handler) { 3240 if (pt_prev) { 3241 ret = deliver_skb(skb, pt_prev, orig_dev); 3242 pt_prev = NULL; 3243 } 3244 switch (rx_handler(&skb)) { 3245 case RX_HANDLER_CONSUMED: 3246 goto out; 3247 case RX_HANDLER_ANOTHER: 3248 goto another_round; 3249 case RX_HANDLER_EXACT: 3250 deliver_exact = true; 3251 case RX_HANDLER_PASS: 3252 break; 3253 default: 3254 BUG(); 3255 } 3256 } 3257 3258 /* deliver only exact match when indicated */ 3259 null_or_dev = deliver_exact ? skb->dev : NULL; 3260 3261 type = skb->protocol; 3262 list_for_each_entry_rcu(ptype, 3263 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3264 if (ptype->type == type && 3265 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3266 ptype->dev == orig_dev)) { 3267 if (pt_prev) 3268 ret = deliver_skb(skb, pt_prev, orig_dev); 3269 pt_prev = ptype; 3270 } 3271 } 3272 3273 if (pt_prev) { 3274 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3275 } else { 3276 atomic_long_inc(&skb->dev->rx_dropped); 3277 kfree_skb(skb); 3278 /* Jamal, now you will not able to escape explaining 3279 * me how you were going to use this. :-) 3280 */ 3281 ret = NET_RX_DROP; 3282 } 3283 3284 out: 3285 rcu_read_unlock(); 3286 return ret; 3287 } 3288 3289 /** 3290 * netif_receive_skb - process receive buffer from network 3291 * @skb: buffer to process 3292 * 3293 * netif_receive_skb() is the main receive data processing function. 3294 * It always succeeds. The buffer may be dropped during processing 3295 * for congestion control or by the protocol layers. 3296 * 3297 * This function may only be called from softirq context and interrupts 3298 * should be enabled. 3299 * 3300 * Return values (usually ignored): 3301 * NET_RX_SUCCESS: no congestion 3302 * NET_RX_DROP: packet was dropped 3303 */ 3304 int netif_receive_skb(struct sk_buff *skb) 3305 { 3306 net_timestamp_check(netdev_tstamp_prequeue, skb); 3307 3308 if (skb_defer_rx_timestamp(skb)) 3309 return NET_RX_SUCCESS; 3310 3311 #ifdef CONFIG_RPS 3312 if (static_branch(&rps_needed)) { 3313 struct rps_dev_flow voidflow, *rflow = &voidflow; 3314 int cpu, ret; 3315 3316 rcu_read_lock(); 3317 3318 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3319 3320 if (cpu >= 0) { 3321 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3322 rcu_read_unlock(); 3323 return ret; 3324 } 3325 rcu_read_unlock(); 3326 } 3327 #endif 3328 return __netif_receive_skb(skb); 3329 } 3330 EXPORT_SYMBOL(netif_receive_skb); 3331 3332 /* Network device is going away, flush any packets still pending 3333 * Called with irqs disabled. 3334 */ 3335 static void flush_backlog(void *arg) 3336 { 3337 struct net_device *dev = arg; 3338 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3339 struct sk_buff *skb, *tmp; 3340 3341 rps_lock(sd); 3342 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3343 if (skb->dev == dev) { 3344 __skb_unlink(skb, &sd->input_pkt_queue); 3345 kfree_skb(skb); 3346 input_queue_head_incr(sd); 3347 } 3348 } 3349 rps_unlock(sd); 3350 3351 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3352 if (skb->dev == dev) { 3353 __skb_unlink(skb, &sd->process_queue); 3354 kfree_skb(skb); 3355 input_queue_head_incr(sd); 3356 } 3357 } 3358 } 3359 3360 static int napi_gro_complete(struct sk_buff *skb) 3361 { 3362 struct packet_type *ptype; 3363 __be16 type = skb->protocol; 3364 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3365 int err = -ENOENT; 3366 3367 if (NAPI_GRO_CB(skb)->count == 1) { 3368 skb_shinfo(skb)->gso_size = 0; 3369 goto out; 3370 } 3371 3372 rcu_read_lock(); 3373 list_for_each_entry_rcu(ptype, head, list) { 3374 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3375 continue; 3376 3377 err = ptype->gro_complete(skb); 3378 break; 3379 } 3380 rcu_read_unlock(); 3381 3382 if (err) { 3383 WARN_ON(&ptype->list == head); 3384 kfree_skb(skb); 3385 return NET_RX_SUCCESS; 3386 } 3387 3388 out: 3389 return netif_receive_skb(skb); 3390 } 3391 3392 inline void napi_gro_flush(struct napi_struct *napi) 3393 { 3394 struct sk_buff *skb, *next; 3395 3396 for (skb = napi->gro_list; skb; skb = next) { 3397 next = skb->next; 3398 skb->next = NULL; 3399 napi_gro_complete(skb); 3400 } 3401 3402 napi->gro_count = 0; 3403 napi->gro_list = NULL; 3404 } 3405 EXPORT_SYMBOL(napi_gro_flush); 3406 3407 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3408 { 3409 struct sk_buff **pp = NULL; 3410 struct packet_type *ptype; 3411 __be16 type = skb->protocol; 3412 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3413 int same_flow; 3414 int mac_len; 3415 enum gro_result ret; 3416 3417 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3418 goto normal; 3419 3420 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3421 goto normal; 3422 3423 rcu_read_lock(); 3424 list_for_each_entry_rcu(ptype, head, list) { 3425 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3426 continue; 3427 3428 skb_set_network_header(skb, skb_gro_offset(skb)); 3429 mac_len = skb->network_header - skb->mac_header; 3430 skb->mac_len = mac_len; 3431 NAPI_GRO_CB(skb)->same_flow = 0; 3432 NAPI_GRO_CB(skb)->flush = 0; 3433 NAPI_GRO_CB(skb)->free = 0; 3434 3435 pp = ptype->gro_receive(&napi->gro_list, skb); 3436 break; 3437 } 3438 rcu_read_unlock(); 3439 3440 if (&ptype->list == head) 3441 goto normal; 3442 3443 same_flow = NAPI_GRO_CB(skb)->same_flow; 3444 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3445 3446 if (pp) { 3447 struct sk_buff *nskb = *pp; 3448 3449 *pp = nskb->next; 3450 nskb->next = NULL; 3451 napi_gro_complete(nskb); 3452 napi->gro_count--; 3453 } 3454 3455 if (same_flow) 3456 goto ok; 3457 3458 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3459 goto normal; 3460 3461 napi->gro_count++; 3462 NAPI_GRO_CB(skb)->count = 1; 3463 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3464 skb->next = napi->gro_list; 3465 napi->gro_list = skb; 3466 ret = GRO_HELD; 3467 3468 pull: 3469 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3470 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3471 3472 BUG_ON(skb->end - skb->tail < grow); 3473 3474 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3475 3476 skb->tail += grow; 3477 skb->data_len -= grow; 3478 3479 skb_shinfo(skb)->frags[0].page_offset += grow; 3480 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3481 3482 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3483 skb_frag_unref(skb, 0); 3484 memmove(skb_shinfo(skb)->frags, 3485 skb_shinfo(skb)->frags + 1, 3486 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3487 } 3488 } 3489 3490 ok: 3491 return ret; 3492 3493 normal: 3494 ret = GRO_NORMAL; 3495 goto pull; 3496 } 3497 EXPORT_SYMBOL(dev_gro_receive); 3498 3499 static inline gro_result_t 3500 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3501 { 3502 struct sk_buff *p; 3503 unsigned int maclen = skb->dev->hard_header_len; 3504 3505 for (p = napi->gro_list; p; p = p->next) { 3506 unsigned long diffs; 3507 3508 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3509 diffs |= p->vlan_tci ^ skb->vlan_tci; 3510 if (maclen == ETH_HLEN) 3511 diffs |= compare_ether_header(skb_mac_header(p), 3512 skb_gro_mac_header(skb)); 3513 else if (!diffs) 3514 diffs = memcmp(skb_mac_header(p), 3515 skb_gro_mac_header(skb), 3516 maclen); 3517 NAPI_GRO_CB(p)->same_flow = !diffs; 3518 NAPI_GRO_CB(p)->flush = 0; 3519 } 3520 3521 return dev_gro_receive(napi, skb); 3522 } 3523 3524 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3525 { 3526 switch (ret) { 3527 case GRO_NORMAL: 3528 if (netif_receive_skb(skb)) 3529 ret = GRO_DROP; 3530 break; 3531 3532 case GRO_DROP: 3533 case GRO_MERGED_FREE: 3534 kfree_skb(skb); 3535 break; 3536 3537 case GRO_HELD: 3538 case GRO_MERGED: 3539 break; 3540 } 3541 3542 return ret; 3543 } 3544 EXPORT_SYMBOL(napi_skb_finish); 3545 3546 void skb_gro_reset_offset(struct sk_buff *skb) 3547 { 3548 NAPI_GRO_CB(skb)->data_offset = 0; 3549 NAPI_GRO_CB(skb)->frag0 = NULL; 3550 NAPI_GRO_CB(skb)->frag0_len = 0; 3551 3552 if (skb->mac_header == skb->tail && 3553 !PageHighMem(skb_frag_page(&skb_shinfo(skb)->frags[0]))) { 3554 NAPI_GRO_CB(skb)->frag0 = 3555 skb_frag_address(&skb_shinfo(skb)->frags[0]); 3556 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(&skb_shinfo(skb)->frags[0]); 3557 } 3558 } 3559 EXPORT_SYMBOL(skb_gro_reset_offset); 3560 3561 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3562 { 3563 skb_gro_reset_offset(skb); 3564 3565 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3566 } 3567 EXPORT_SYMBOL(napi_gro_receive); 3568 3569 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3570 { 3571 __skb_pull(skb, skb_headlen(skb)); 3572 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3573 skb->vlan_tci = 0; 3574 skb->dev = napi->dev; 3575 skb->skb_iif = 0; 3576 3577 napi->skb = skb; 3578 } 3579 3580 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3581 { 3582 struct sk_buff *skb = napi->skb; 3583 3584 if (!skb) { 3585 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3586 if (skb) 3587 napi->skb = skb; 3588 } 3589 return skb; 3590 } 3591 EXPORT_SYMBOL(napi_get_frags); 3592 3593 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3594 gro_result_t ret) 3595 { 3596 switch (ret) { 3597 case GRO_NORMAL: 3598 case GRO_HELD: 3599 skb->protocol = eth_type_trans(skb, skb->dev); 3600 3601 if (ret == GRO_HELD) 3602 skb_gro_pull(skb, -ETH_HLEN); 3603 else if (netif_receive_skb(skb)) 3604 ret = GRO_DROP; 3605 break; 3606 3607 case GRO_DROP: 3608 case GRO_MERGED_FREE: 3609 napi_reuse_skb(napi, skb); 3610 break; 3611 3612 case GRO_MERGED: 3613 break; 3614 } 3615 3616 return ret; 3617 } 3618 EXPORT_SYMBOL(napi_frags_finish); 3619 3620 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3621 { 3622 struct sk_buff *skb = napi->skb; 3623 struct ethhdr *eth; 3624 unsigned int hlen; 3625 unsigned int off; 3626 3627 napi->skb = NULL; 3628 3629 skb_reset_mac_header(skb); 3630 skb_gro_reset_offset(skb); 3631 3632 off = skb_gro_offset(skb); 3633 hlen = off + sizeof(*eth); 3634 eth = skb_gro_header_fast(skb, off); 3635 if (skb_gro_header_hard(skb, hlen)) { 3636 eth = skb_gro_header_slow(skb, hlen, off); 3637 if (unlikely(!eth)) { 3638 napi_reuse_skb(napi, skb); 3639 skb = NULL; 3640 goto out; 3641 } 3642 } 3643 3644 skb_gro_pull(skb, sizeof(*eth)); 3645 3646 /* 3647 * This works because the only protocols we care about don't require 3648 * special handling. We'll fix it up properly at the end. 3649 */ 3650 skb->protocol = eth->h_proto; 3651 3652 out: 3653 return skb; 3654 } 3655 EXPORT_SYMBOL(napi_frags_skb); 3656 3657 gro_result_t napi_gro_frags(struct napi_struct *napi) 3658 { 3659 struct sk_buff *skb = napi_frags_skb(napi); 3660 3661 if (!skb) 3662 return GRO_DROP; 3663 3664 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3665 } 3666 EXPORT_SYMBOL(napi_gro_frags); 3667 3668 /* 3669 * net_rps_action sends any pending IPI's for rps. 3670 * Note: called with local irq disabled, but exits with local irq enabled. 3671 */ 3672 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3673 { 3674 #ifdef CONFIG_RPS 3675 struct softnet_data *remsd = sd->rps_ipi_list; 3676 3677 if (remsd) { 3678 sd->rps_ipi_list = NULL; 3679 3680 local_irq_enable(); 3681 3682 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3683 while (remsd) { 3684 struct softnet_data *next = remsd->rps_ipi_next; 3685 3686 if (cpu_online(remsd->cpu)) 3687 __smp_call_function_single(remsd->cpu, 3688 &remsd->csd, 0); 3689 remsd = next; 3690 } 3691 } else 3692 #endif 3693 local_irq_enable(); 3694 } 3695 3696 static int process_backlog(struct napi_struct *napi, int quota) 3697 { 3698 int work = 0; 3699 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3700 3701 #ifdef CONFIG_RPS 3702 /* Check if we have pending ipi, its better to send them now, 3703 * not waiting net_rx_action() end. 3704 */ 3705 if (sd->rps_ipi_list) { 3706 local_irq_disable(); 3707 net_rps_action_and_irq_enable(sd); 3708 } 3709 #endif 3710 napi->weight = weight_p; 3711 local_irq_disable(); 3712 while (work < quota) { 3713 struct sk_buff *skb; 3714 unsigned int qlen; 3715 3716 while ((skb = __skb_dequeue(&sd->process_queue))) { 3717 local_irq_enable(); 3718 __netif_receive_skb(skb); 3719 local_irq_disable(); 3720 input_queue_head_incr(sd); 3721 if (++work >= quota) { 3722 local_irq_enable(); 3723 return work; 3724 } 3725 } 3726 3727 rps_lock(sd); 3728 qlen = skb_queue_len(&sd->input_pkt_queue); 3729 if (qlen) 3730 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3731 &sd->process_queue); 3732 3733 if (qlen < quota - work) { 3734 /* 3735 * Inline a custom version of __napi_complete(). 3736 * only current cpu owns and manipulates this napi, 3737 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3738 * we can use a plain write instead of clear_bit(), 3739 * and we dont need an smp_mb() memory barrier. 3740 */ 3741 list_del(&napi->poll_list); 3742 napi->state = 0; 3743 3744 quota = work + qlen; 3745 } 3746 rps_unlock(sd); 3747 } 3748 local_irq_enable(); 3749 3750 return work; 3751 } 3752 3753 /** 3754 * __napi_schedule - schedule for receive 3755 * @n: entry to schedule 3756 * 3757 * The entry's receive function will be scheduled to run 3758 */ 3759 void __napi_schedule(struct napi_struct *n) 3760 { 3761 unsigned long flags; 3762 3763 local_irq_save(flags); 3764 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3765 local_irq_restore(flags); 3766 } 3767 EXPORT_SYMBOL(__napi_schedule); 3768 3769 void __napi_complete(struct napi_struct *n) 3770 { 3771 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3772 BUG_ON(n->gro_list); 3773 3774 list_del(&n->poll_list); 3775 smp_mb__before_clear_bit(); 3776 clear_bit(NAPI_STATE_SCHED, &n->state); 3777 } 3778 EXPORT_SYMBOL(__napi_complete); 3779 3780 void napi_complete(struct napi_struct *n) 3781 { 3782 unsigned long flags; 3783 3784 /* 3785 * don't let napi dequeue from the cpu poll list 3786 * just in case its running on a different cpu 3787 */ 3788 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3789 return; 3790 3791 napi_gro_flush(n); 3792 local_irq_save(flags); 3793 __napi_complete(n); 3794 local_irq_restore(flags); 3795 } 3796 EXPORT_SYMBOL(napi_complete); 3797 3798 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3799 int (*poll)(struct napi_struct *, int), int weight) 3800 { 3801 INIT_LIST_HEAD(&napi->poll_list); 3802 napi->gro_count = 0; 3803 napi->gro_list = NULL; 3804 napi->skb = NULL; 3805 napi->poll = poll; 3806 napi->weight = weight; 3807 list_add(&napi->dev_list, &dev->napi_list); 3808 napi->dev = dev; 3809 #ifdef CONFIG_NETPOLL 3810 spin_lock_init(&napi->poll_lock); 3811 napi->poll_owner = -1; 3812 #endif 3813 set_bit(NAPI_STATE_SCHED, &napi->state); 3814 } 3815 EXPORT_SYMBOL(netif_napi_add); 3816 3817 void netif_napi_del(struct napi_struct *napi) 3818 { 3819 struct sk_buff *skb, *next; 3820 3821 list_del_init(&napi->dev_list); 3822 napi_free_frags(napi); 3823 3824 for (skb = napi->gro_list; skb; skb = next) { 3825 next = skb->next; 3826 skb->next = NULL; 3827 kfree_skb(skb); 3828 } 3829 3830 napi->gro_list = NULL; 3831 napi->gro_count = 0; 3832 } 3833 EXPORT_SYMBOL(netif_napi_del); 3834 3835 static void net_rx_action(struct softirq_action *h) 3836 { 3837 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3838 unsigned long time_limit = jiffies + 2; 3839 int budget = netdev_budget; 3840 void *have; 3841 3842 local_irq_disable(); 3843 3844 while (!list_empty(&sd->poll_list)) { 3845 struct napi_struct *n; 3846 int work, weight; 3847 3848 /* If softirq window is exhuasted then punt. 3849 * Allow this to run for 2 jiffies since which will allow 3850 * an average latency of 1.5/HZ. 3851 */ 3852 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3853 goto softnet_break; 3854 3855 local_irq_enable(); 3856 3857 /* Even though interrupts have been re-enabled, this 3858 * access is safe because interrupts can only add new 3859 * entries to the tail of this list, and only ->poll() 3860 * calls can remove this head entry from the list. 3861 */ 3862 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3863 3864 have = netpoll_poll_lock(n); 3865 3866 weight = n->weight; 3867 3868 /* This NAPI_STATE_SCHED test is for avoiding a race 3869 * with netpoll's poll_napi(). Only the entity which 3870 * obtains the lock and sees NAPI_STATE_SCHED set will 3871 * actually make the ->poll() call. Therefore we avoid 3872 * accidentally calling ->poll() when NAPI is not scheduled. 3873 */ 3874 work = 0; 3875 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3876 work = n->poll(n, weight); 3877 trace_napi_poll(n); 3878 } 3879 3880 WARN_ON_ONCE(work > weight); 3881 3882 budget -= work; 3883 3884 local_irq_disable(); 3885 3886 /* Drivers must not modify the NAPI state if they 3887 * consume the entire weight. In such cases this code 3888 * still "owns" the NAPI instance and therefore can 3889 * move the instance around on the list at-will. 3890 */ 3891 if (unlikely(work == weight)) { 3892 if (unlikely(napi_disable_pending(n))) { 3893 local_irq_enable(); 3894 napi_complete(n); 3895 local_irq_disable(); 3896 } else 3897 list_move_tail(&n->poll_list, &sd->poll_list); 3898 } 3899 3900 netpoll_poll_unlock(have); 3901 } 3902 out: 3903 net_rps_action_and_irq_enable(sd); 3904 3905 #ifdef CONFIG_NET_DMA 3906 /* 3907 * There may not be any more sk_buffs coming right now, so push 3908 * any pending DMA copies to hardware 3909 */ 3910 dma_issue_pending_all(); 3911 #endif 3912 3913 return; 3914 3915 softnet_break: 3916 sd->time_squeeze++; 3917 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3918 goto out; 3919 } 3920 3921 static gifconf_func_t *gifconf_list[NPROTO]; 3922 3923 /** 3924 * register_gifconf - register a SIOCGIF handler 3925 * @family: Address family 3926 * @gifconf: Function handler 3927 * 3928 * Register protocol dependent address dumping routines. The handler 3929 * that is passed must not be freed or reused until it has been replaced 3930 * by another handler. 3931 */ 3932 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3933 { 3934 if (family >= NPROTO) 3935 return -EINVAL; 3936 gifconf_list[family] = gifconf; 3937 return 0; 3938 } 3939 EXPORT_SYMBOL(register_gifconf); 3940 3941 3942 /* 3943 * Map an interface index to its name (SIOCGIFNAME) 3944 */ 3945 3946 /* 3947 * We need this ioctl for efficient implementation of the 3948 * if_indextoname() function required by the IPv6 API. Without 3949 * it, we would have to search all the interfaces to find a 3950 * match. --pb 3951 */ 3952 3953 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3954 { 3955 struct net_device *dev; 3956 struct ifreq ifr; 3957 3958 /* 3959 * Fetch the caller's info block. 3960 */ 3961 3962 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3963 return -EFAULT; 3964 3965 rcu_read_lock(); 3966 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3967 if (!dev) { 3968 rcu_read_unlock(); 3969 return -ENODEV; 3970 } 3971 3972 strcpy(ifr.ifr_name, dev->name); 3973 rcu_read_unlock(); 3974 3975 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3976 return -EFAULT; 3977 return 0; 3978 } 3979 3980 /* 3981 * Perform a SIOCGIFCONF call. This structure will change 3982 * size eventually, and there is nothing I can do about it. 3983 * Thus we will need a 'compatibility mode'. 3984 */ 3985 3986 static int dev_ifconf(struct net *net, char __user *arg) 3987 { 3988 struct ifconf ifc; 3989 struct net_device *dev; 3990 char __user *pos; 3991 int len; 3992 int total; 3993 int i; 3994 3995 /* 3996 * Fetch the caller's info block. 3997 */ 3998 3999 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 4000 return -EFAULT; 4001 4002 pos = ifc.ifc_buf; 4003 len = ifc.ifc_len; 4004 4005 /* 4006 * Loop over the interfaces, and write an info block for each. 4007 */ 4008 4009 total = 0; 4010 for_each_netdev(net, dev) { 4011 for (i = 0; i < NPROTO; i++) { 4012 if (gifconf_list[i]) { 4013 int done; 4014 if (!pos) 4015 done = gifconf_list[i](dev, NULL, 0); 4016 else 4017 done = gifconf_list[i](dev, pos + total, 4018 len - total); 4019 if (done < 0) 4020 return -EFAULT; 4021 total += done; 4022 } 4023 } 4024 } 4025 4026 /* 4027 * All done. Write the updated control block back to the caller. 4028 */ 4029 ifc.ifc_len = total; 4030 4031 /* 4032 * Both BSD and Solaris return 0 here, so we do too. 4033 */ 4034 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 4035 } 4036 4037 #ifdef CONFIG_PROC_FS 4038 4039 #define BUCKET_SPACE (32 - NETDEV_HASHBITS) 4040 4041 struct dev_iter_state { 4042 struct seq_net_private p; 4043 unsigned int pos; /* bucket << BUCKET_SPACE + offset */ 4044 }; 4045 4046 #define get_bucket(x) ((x) >> BUCKET_SPACE) 4047 #define get_offset(x) ((x) & ((1 << BUCKET_SPACE) - 1)) 4048 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o)) 4049 4050 static inline struct net_device *dev_from_same_bucket(struct seq_file *seq) 4051 { 4052 struct dev_iter_state *state = seq->private; 4053 struct net *net = seq_file_net(seq); 4054 struct net_device *dev; 4055 struct hlist_node *p; 4056 struct hlist_head *h; 4057 unsigned int count, bucket, offset; 4058 4059 bucket = get_bucket(state->pos); 4060 offset = get_offset(state->pos); 4061 h = &net->dev_name_head[bucket]; 4062 count = 0; 4063 hlist_for_each_entry_rcu(dev, p, h, name_hlist) { 4064 if (count++ == offset) { 4065 state->pos = set_bucket_offset(bucket, count); 4066 return dev; 4067 } 4068 } 4069 4070 return NULL; 4071 } 4072 4073 static inline struct net_device *dev_from_new_bucket(struct seq_file *seq) 4074 { 4075 struct dev_iter_state *state = seq->private; 4076 struct net_device *dev; 4077 unsigned int bucket; 4078 4079 bucket = get_bucket(state->pos); 4080 do { 4081 dev = dev_from_same_bucket(seq); 4082 if (dev) 4083 return dev; 4084 4085 bucket++; 4086 state->pos = set_bucket_offset(bucket, 0); 4087 } while (bucket < NETDEV_HASHENTRIES); 4088 4089 return NULL; 4090 } 4091 4092 /* 4093 * This is invoked by the /proc filesystem handler to display a device 4094 * in detail. 4095 */ 4096 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 4097 __acquires(RCU) 4098 { 4099 struct dev_iter_state *state = seq->private; 4100 4101 rcu_read_lock(); 4102 if (!*pos) 4103 return SEQ_START_TOKEN; 4104 4105 /* check for end of the hash */ 4106 if (state->pos == 0 && *pos > 1) 4107 return NULL; 4108 4109 return dev_from_new_bucket(seq); 4110 } 4111 4112 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4113 { 4114 struct net_device *dev; 4115 4116 ++*pos; 4117 4118 if (v == SEQ_START_TOKEN) 4119 return dev_from_new_bucket(seq); 4120 4121 dev = dev_from_same_bucket(seq); 4122 if (dev) 4123 return dev; 4124 4125 return dev_from_new_bucket(seq); 4126 } 4127 4128 void dev_seq_stop(struct seq_file *seq, void *v) 4129 __releases(RCU) 4130 { 4131 rcu_read_unlock(); 4132 } 4133 4134 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4135 { 4136 struct rtnl_link_stats64 temp; 4137 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4138 4139 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4140 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4141 dev->name, stats->rx_bytes, stats->rx_packets, 4142 stats->rx_errors, 4143 stats->rx_dropped + stats->rx_missed_errors, 4144 stats->rx_fifo_errors, 4145 stats->rx_length_errors + stats->rx_over_errors + 4146 stats->rx_crc_errors + stats->rx_frame_errors, 4147 stats->rx_compressed, stats->multicast, 4148 stats->tx_bytes, stats->tx_packets, 4149 stats->tx_errors, stats->tx_dropped, 4150 stats->tx_fifo_errors, stats->collisions, 4151 stats->tx_carrier_errors + 4152 stats->tx_aborted_errors + 4153 stats->tx_window_errors + 4154 stats->tx_heartbeat_errors, 4155 stats->tx_compressed); 4156 } 4157 4158 /* 4159 * Called from the PROCfs module. This now uses the new arbitrary sized 4160 * /proc/net interface to create /proc/net/dev 4161 */ 4162 static int dev_seq_show(struct seq_file *seq, void *v) 4163 { 4164 if (v == SEQ_START_TOKEN) 4165 seq_puts(seq, "Inter-| Receive " 4166 " | Transmit\n" 4167 " face |bytes packets errs drop fifo frame " 4168 "compressed multicast|bytes packets errs " 4169 "drop fifo colls carrier compressed\n"); 4170 else 4171 dev_seq_printf_stats(seq, v); 4172 return 0; 4173 } 4174 4175 static struct softnet_data *softnet_get_online(loff_t *pos) 4176 { 4177 struct softnet_data *sd = NULL; 4178 4179 while (*pos < nr_cpu_ids) 4180 if (cpu_online(*pos)) { 4181 sd = &per_cpu(softnet_data, *pos); 4182 break; 4183 } else 4184 ++*pos; 4185 return sd; 4186 } 4187 4188 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4189 { 4190 return softnet_get_online(pos); 4191 } 4192 4193 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4194 { 4195 ++*pos; 4196 return softnet_get_online(pos); 4197 } 4198 4199 static void softnet_seq_stop(struct seq_file *seq, void *v) 4200 { 4201 } 4202 4203 static int softnet_seq_show(struct seq_file *seq, void *v) 4204 { 4205 struct softnet_data *sd = v; 4206 4207 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4208 sd->processed, sd->dropped, sd->time_squeeze, 0, 4209 0, 0, 0, 0, /* was fastroute */ 4210 sd->cpu_collision, sd->received_rps); 4211 return 0; 4212 } 4213 4214 static const struct seq_operations dev_seq_ops = { 4215 .start = dev_seq_start, 4216 .next = dev_seq_next, 4217 .stop = dev_seq_stop, 4218 .show = dev_seq_show, 4219 }; 4220 4221 static int dev_seq_open(struct inode *inode, struct file *file) 4222 { 4223 return seq_open_net(inode, file, &dev_seq_ops, 4224 sizeof(struct dev_iter_state)); 4225 } 4226 4227 int dev_seq_open_ops(struct inode *inode, struct file *file, 4228 const struct seq_operations *ops) 4229 { 4230 return seq_open_net(inode, file, ops, sizeof(struct dev_iter_state)); 4231 } 4232 4233 static const struct file_operations dev_seq_fops = { 4234 .owner = THIS_MODULE, 4235 .open = dev_seq_open, 4236 .read = seq_read, 4237 .llseek = seq_lseek, 4238 .release = seq_release_net, 4239 }; 4240 4241 static const struct seq_operations softnet_seq_ops = { 4242 .start = softnet_seq_start, 4243 .next = softnet_seq_next, 4244 .stop = softnet_seq_stop, 4245 .show = softnet_seq_show, 4246 }; 4247 4248 static int softnet_seq_open(struct inode *inode, struct file *file) 4249 { 4250 return seq_open(file, &softnet_seq_ops); 4251 } 4252 4253 static const struct file_operations softnet_seq_fops = { 4254 .owner = THIS_MODULE, 4255 .open = softnet_seq_open, 4256 .read = seq_read, 4257 .llseek = seq_lseek, 4258 .release = seq_release, 4259 }; 4260 4261 static void *ptype_get_idx(loff_t pos) 4262 { 4263 struct packet_type *pt = NULL; 4264 loff_t i = 0; 4265 int t; 4266 4267 list_for_each_entry_rcu(pt, &ptype_all, list) { 4268 if (i == pos) 4269 return pt; 4270 ++i; 4271 } 4272 4273 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4274 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4275 if (i == pos) 4276 return pt; 4277 ++i; 4278 } 4279 } 4280 return NULL; 4281 } 4282 4283 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4284 __acquires(RCU) 4285 { 4286 rcu_read_lock(); 4287 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4288 } 4289 4290 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4291 { 4292 struct packet_type *pt; 4293 struct list_head *nxt; 4294 int hash; 4295 4296 ++*pos; 4297 if (v == SEQ_START_TOKEN) 4298 return ptype_get_idx(0); 4299 4300 pt = v; 4301 nxt = pt->list.next; 4302 if (pt->type == htons(ETH_P_ALL)) { 4303 if (nxt != &ptype_all) 4304 goto found; 4305 hash = 0; 4306 nxt = ptype_base[0].next; 4307 } else 4308 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4309 4310 while (nxt == &ptype_base[hash]) { 4311 if (++hash >= PTYPE_HASH_SIZE) 4312 return NULL; 4313 nxt = ptype_base[hash].next; 4314 } 4315 found: 4316 return list_entry(nxt, struct packet_type, list); 4317 } 4318 4319 static void ptype_seq_stop(struct seq_file *seq, void *v) 4320 __releases(RCU) 4321 { 4322 rcu_read_unlock(); 4323 } 4324 4325 static int ptype_seq_show(struct seq_file *seq, void *v) 4326 { 4327 struct packet_type *pt = v; 4328 4329 if (v == SEQ_START_TOKEN) 4330 seq_puts(seq, "Type Device Function\n"); 4331 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4332 if (pt->type == htons(ETH_P_ALL)) 4333 seq_puts(seq, "ALL "); 4334 else 4335 seq_printf(seq, "%04x", ntohs(pt->type)); 4336 4337 seq_printf(seq, " %-8s %pF\n", 4338 pt->dev ? pt->dev->name : "", pt->func); 4339 } 4340 4341 return 0; 4342 } 4343 4344 static const struct seq_operations ptype_seq_ops = { 4345 .start = ptype_seq_start, 4346 .next = ptype_seq_next, 4347 .stop = ptype_seq_stop, 4348 .show = ptype_seq_show, 4349 }; 4350 4351 static int ptype_seq_open(struct inode *inode, struct file *file) 4352 { 4353 return seq_open_net(inode, file, &ptype_seq_ops, 4354 sizeof(struct seq_net_private)); 4355 } 4356 4357 static const struct file_operations ptype_seq_fops = { 4358 .owner = THIS_MODULE, 4359 .open = ptype_seq_open, 4360 .read = seq_read, 4361 .llseek = seq_lseek, 4362 .release = seq_release_net, 4363 }; 4364 4365 4366 static int __net_init dev_proc_net_init(struct net *net) 4367 { 4368 int rc = -ENOMEM; 4369 4370 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4371 goto out; 4372 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4373 goto out_dev; 4374 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4375 goto out_softnet; 4376 4377 if (wext_proc_init(net)) 4378 goto out_ptype; 4379 rc = 0; 4380 out: 4381 return rc; 4382 out_ptype: 4383 proc_net_remove(net, "ptype"); 4384 out_softnet: 4385 proc_net_remove(net, "softnet_stat"); 4386 out_dev: 4387 proc_net_remove(net, "dev"); 4388 goto out; 4389 } 4390 4391 static void __net_exit dev_proc_net_exit(struct net *net) 4392 { 4393 wext_proc_exit(net); 4394 4395 proc_net_remove(net, "ptype"); 4396 proc_net_remove(net, "softnet_stat"); 4397 proc_net_remove(net, "dev"); 4398 } 4399 4400 static struct pernet_operations __net_initdata dev_proc_ops = { 4401 .init = dev_proc_net_init, 4402 .exit = dev_proc_net_exit, 4403 }; 4404 4405 static int __init dev_proc_init(void) 4406 { 4407 return register_pernet_subsys(&dev_proc_ops); 4408 } 4409 #else 4410 #define dev_proc_init() 0 4411 #endif /* CONFIG_PROC_FS */ 4412 4413 4414 /** 4415 * netdev_set_master - set up master pointer 4416 * @slave: slave device 4417 * @master: new master device 4418 * 4419 * Changes the master device of the slave. Pass %NULL to break the 4420 * bonding. The caller must hold the RTNL semaphore. On a failure 4421 * a negative errno code is returned. On success the reference counts 4422 * are adjusted and the function returns zero. 4423 */ 4424 int netdev_set_master(struct net_device *slave, struct net_device *master) 4425 { 4426 struct net_device *old = slave->master; 4427 4428 ASSERT_RTNL(); 4429 4430 if (master) { 4431 if (old) 4432 return -EBUSY; 4433 dev_hold(master); 4434 } 4435 4436 slave->master = master; 4437 4438 if (old) 4439 dev_put(old); 4440 return 0; 4441 } 4442 EXPORT_SYMBOL(netdev_set_master); 4443 4444 /** 4445 * netdev_set_bond_master - set up bonding master/slave pair 4446 * @slave: slave device 4447 * @master: new master device 4448 * 4449 * Changes the master device of the slave. Pass %NULL to break the 4450 * bonding. The caller must hold the RTNL semaphore. On a failure 4451 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4452 * to the routing socket and the function returns zero. 4453 */ 4454 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4455 { 4456 int err; 4457 4458 ASSERT_RTNL(); 4459 4460 err = netdev_set_master(slave, master); 4461 if (err) 4462 return err; 4463 if (master) 4464 slave->flags |= IFF_SLAVE; 4465 else 4466 slave->flags &= ~IFF_SLAVE; 4467 4468 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4469 return 0; 4470 } 4471 EXPORT_SYMBOL(netdev_set_bond_master); 4472 4473 static void dev_change_rx_flags(struct net_device *dev, int flags) 4474 { 4475 const struct net_device_ops *ops = dev->netdev_ops; 4476 4477 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4478 ops->ndo_change_rx_flags(dev, flags); 4479 } 4480 4481 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4482 { 4483 unsigned int old_flags = dev->flags; 4484 uid_t uid; 4485 gid_t gid; 4486 4487 ASSERT_RTNL(); 4488 4489 dev->flags |= IFF_PROMISC; 4490 dev->promiscuity += inc; 4491 if (dev->promiscuity == 0) { 4492 /* 4493 * Avoid overflow. 4494 * If inc causes overflow, untouch promisc and return error. 4495 */ 4496 if (inc < 0) 4497 dev->flags &= ~IFF_PROMISC; 4498 else { 4499 dev->promiscuity -= inc; 4500 printk(KERN_WARNING "%s: promiscuity touches roof, " 4501 "set promiscuity failed, promiscuity feature " 4502 "of device might be broken.\n", dev->name); 4503 return -EOVERFLOW; 4504 } 4505 } 4506 if (dev->flags != old_flags) { 4507 printk(KERN_INFO "device %s %s promiscuous mode\n", 4508 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4509 "left"); 4510 if (audit_enabled) { 4511 current_uid_gid(&uid, &gid); 4512 audit_log(current->audit_context, GFP_ATOMIC, 4513 AUDIT_ANOM_PROMISCUOUS, 4514 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4515 dev->name, (dev->flags & IFF_PROMISC), 4516 (old_flags & IFF_PROMISC), 4517 audit_get_loginuid(current), 4518 uid, gid, 4519 audit_get_sessionid(current)); 4520 } 4521 4522 dev_change_rx_flags(dev, IFF_PROMISC); 4523 } 4524 return 0; 4525 } 4526 4527 /** 4528 * dev_set_promiscuity - update promiscuity count on a device 4529 * @dev: device 4530 * @inc: modifier 4531 * 4532 * Add or remove promiscuity from a device. While the count in the device 4533 * remains above zero the interface remains promiscuous. Once it hits zero 4534 * the device reverts back to normal filtering operation. A negative inc 4535 * value is used to drop promiscuity on the device. 4536 * Return 0 if successful or a negative errno code on error. 4537 */ 4538 int dev_set_promiscuity(struct net_device *dev, int inc) 4539 { 4540 unsigned int old_flags = dev->flags; 4541 int err; 4542 4543 err = __dev_set_promiscuity(dev, inc); 4544 if (err < 0) 4545 return err; 4546 if (dev->flags != old_flags) 4547 dev_set_rx_mode(dev); 4548 return err; 4549 } 4550 EXPORT_SYMBOL(dev_set_promiscuity); 4551 4552 /** 4553 * dev_set_allmulti - update allmulti count on a device 4554 * @dev: device 4555 * @inc: modifier 4556 * 4557 * Add or remove reception of all multicast frames to a device. While the 4558 * count in the device remains above zero the interface remains listening 4559 * to all interfaces. Once it hits zero the device reverts back to normal 4560 * filtering operation. A negative @inc value is used to drop the counter 4561 * when releasing a resource needing all multicasts. 4562 * Return 0 if successful or a negative errno code on error. 4563 */ 4564 4565 int dev_set_allmulti(struct net_device *dev, int inc) 4566 { 4567 unsigned int old_flags = dev->flags; 4568 4569 ASSERT_RTNL(); 4570 4571 dev->flags |= IFF_ALLMULTI; 4572 dev->allmulti += inc; 4573 if (dev->allmulti == 0) { 4574 /* 4575 * Avoid overflow. 4576 * If inc causes overflow, untouch allmulti and return error. 4577 */ 4578 if (inc < 0) 4579 dev->flags &= ~IFF_ALLMULTI; 4580 else { 4581 dev->allmulti -= inc; 4582 printk(KERN_WARNING "%s: allmulti touches roof, " 4583 "set allmulti failed, allmulti feature of " 4584 "device might be broken.\n", dev->name); 4585 return -EOVERFLOW; 4586 } 4587 } 4588 if (dev->flags ^ old_flags) { 4589 dev_change_rx_flags(dev, IFF_ALLMULTI); 4590 dev_set_rx_mode(dev); 4591 } 4592 return 0; 4593 } 4594 EXPORT_SYMBOL(dev_set_allmulti); 4595 4596 /* 4597 * Upload unicast and multicast address lists to device and 4598 * configure RX filtering. When the device doesn't support unicast 4599 * filtering it is put in promiscuous mode while unicast addresses 4600 * are present. 4601 */ 4602 void __dev_set_rx_mode(struct net_device *dev) 4603 { 4604 const struct net_device_ops *ops = dev->netdev_ops; 4605 4606 /* dev_open will call this function so the list will stay sane. */ 4607 if (!(dev->flags&IFF_UP)) 4608 return; 4609 4610 if (!netif_device_present(dev)) 4611 return; 4612 4613 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4614 /* Unicast addresses changes may only happen under the rtnl, 4615 * therefore calling __dev_set_promiscuity here is safe. 4616 */ 4617 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4618 __dev_set_promiscuity(dev, 1); 4619 dev->uc_promisc = true; 4620 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4621 __dev_set_promiscuity(dev, -1); 4622 dev->uc_promisc = false; 4623 } 4624 } 4625 4626 if (ops->ndo_set_rx_mode) 4627 ops->ndo_set_rx_mode(dev); 4628 } 4629 4630 void dev_set_rx_mode(struct net_device *dev) 4631 { 4632 netif_addr_lock_bh(dev); 4633 __dev_set_rx_mode(dev); 4634 netif_addr_unlock_bh(dev); 4635 } 4636 4637 /** 4638 * dev_get_flags - get flags reported to userspace 4639 * @dev: device 4640 * 4641 * Get the combination of flag bits exported through APIs to userspace. 4642 */ 4643 unsigned dev_get_flags(const struct net_device *dev) 4644 { 4645 unsigned flags; 4646 4647 flags = (dev->flags & ~(IFF_PROMISC | 4648 IFF_ALLMULTI | 4649 IFF_RUNNING | 4650 IFF_LOWER_UP | 4651 IFF_DORMANT)) | 4652 (dev->gflags & (IFF_PROMISC | 4653 IFF_ALLMULTI)); 4654 4655 if (netif_running(dev)) { 4656 if (netif_oper_up(dev)) 4657 flags |= IFF_RUNNING; 4658 if (netif_carrier_ok(dev)) 4659 flags |= IFF_LOWER_UP; 4660 if (netif_dormant(dev)) 4661 flags |= IFF_DORMANT; 4662 } 4663 4664 return flags; 4665 } 4666 EXPORT_SYMBOL(dev_get_flags); 4667 4668 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4669 { 4670 unsigned int old_flags = dev->flags; 4671 int ret; 4672 4673 ASSERT_RTNL(); 4674 4675 /* 4676 * Set the flags on our device. 4677 */ 4678 4679 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4680 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4681 IFF_AUTOMEDIA)) | 4682 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4683 IFF_ALLMULTI)); 4684 4685 /* 4686 * Load in the correct multicast list now the flags have changed. 4687 */ 4688 4689 if ((old_flags ^ flags) & IFF_MULTICAST) 4690 dev_change_rx_flags(dev, IFF_MULTICAST); 4691 4692 dev_set_rx_mode(dev); 4693 4694 /* 4695 * Have we downed the interface. We handle IFF_UP ourselves 4696 * according to user attempts to set it, rather than blindly 4697 * setting it. 4698 */ 4699 4700 ret = 0; 4701 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4702 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4703 4704 if (!ret) 4705 dev_set_rx_mode(dev); 4706 } 4707 4708 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4709 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4710 4711 dev->gflags ^= IFF_PROMISC; 4712 dev_set_promiscuity(dev, inc); 4713 } 4714 4715 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4716 is important. Some (broken) drivers set IFF_PROMISC, when 4717 IFF_ALLMULTI is requested not asking us and not reporting. 4718 */ 4719 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4720 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4721 4722 dev->gflags ^= IFF_ALLMULTI; 4723 dev_set_allmulti(dev, inc); 4724 } 4725 4726 return ret; 4727 } 4728 4729 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4730 { 4731 unsigned int changes = dev->flags ^ old_flags; 4732 4733 if (changes & IFF_UP) { 4734 if (dev->flags & IFF_UP) 4735 call_netdevice_notifiers(NETDEV_UP, dev); 4736 else 4737 call_netdevice_notifiers(NETDEV_DOWN, dev); 4738 } 4739 4740 if (dev->flags & IFF_UP && 4741 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4742 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4743 } 4744 4745 /** 4746 * dev_change_flags - change device settings 4747 * @dev: device 4748 * @flags: device state flags 4749 * 4750 * Change settings on device based state flags. The flags are 4751 * in the userspace exported format. 4752 */ 4753 int dev_change_flags(struct net_device *dev, unsigned int flags) 4754 { 4755 int ret; 4756 unsigned int changes, old_flags = dev->flags; 4757 4758 ret = __dev_change_flags(dev, flags); 4759 if (ret < 0) 4760 return ret; 4761 4762 changes = old_flags ^ dev->flags; 4763 if (changes) 4764 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4765 4766 __dev_notify_flags(dev, old_flags); 4767 return ret; 4768 } 4769 EXPORT_SYMBOL(dev_change_flags); 4770 4771 /** 4772 * dev_set_mtu - Change maximum transfer unit 4773 * @dev: device 4774 * @new_mtu: new transfer unit 4775 * 4776 * Change the maximum transfer size of the network device. 4777 */ 4778 int dev_set_mtu(struct net_device *dev, int new_mtu) 4779 { 4780 const struct net_device_ops *ops = dev->netdev_ops; 4781 int err; 4782 4783 if (new_mtu == dev->mtu) 4784 return 0; 4785 4786 /* MTU must be positive. */ 4787 if (new_mtu < 0) 4788 return -EINVAL; 4789 4790 if (!netif_device_present(dev)) 4791 return -ENODEV; 4792 4793 err = 0; 4794 if (ops->ndo_change_mtu) 4795 err = ops->ndo_change_mtu(dev, new_mtu); 4796 else 4797 dev->mtu = new_mtu; 4798 4799 if (!err && dev->flags & IFF_UP) 4800 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4801 return err; 4802 } 4803 EXPORT_SYMBOL(dev_set_mtu); 4804 4805 /** 4806 * dev_set_group - Change group this device belongs to 4807 * @dev: device 4808 * @new_group: group this device should belong to 4809 */ 4810 void dev_set_group(struct net_device *dev, int new_group) 4811 { 4812 dev->group = new_group; 4813 } 4814 EXPORT_SYMBOL(dev_set_group); 4815 4816 /** 4817 * dev_set_mac_address - Change Media Access Control Address 4818 * @dev: device 4819 * @sa: new address 4820 * 4821 * Change the hardware (MAC) address of the device 4822 */ 4823 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4824 { 4825 const struct net_device_ops *ops = dev->netdev_ops; 4826 int err; 4827 4828 if (!ops->ndo_set_mac_address) 4829 return -EOPNOTSUPP; 4830 if (sa->sa_family != dev->type) 4831 return -EINVAL; 4832 if (!netif_device_present(dev)) 4833 return -ENODEV; 4834 err = ops->ndo_set_mac_address(dev, sa); 4835 if (!err) 4836 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4837 return err; 4838 } 4839 EXPORT_SYMBOL(dev_set_mac_address); 4840 4841 /* 4842 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4843 */ 4844 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4845 { 4846 int err; 4847 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4848 4849 if (!dev) 4850 return -ENODEV; 4851 4852 switch (cmd) { 4853 case SIOCGIFFLAGS: /* Get interface flags */ 4854 ifr->ifr_flags = (short) dev_get_flags(dev); 4855 return 0; 4856 4857 case SIOCGIFMETRIC: /* Get the metric on the interface 4858 (currently unused) */ 4859 ifr->ifr_metric = 0; 4860 return 0; 4861 4862 case SIOCGIFMTU: /* Get the MTU of a device */ 4863 ifr->ifr_mtu = dev->mtu; 4864 return 0; 4865 4866 case SIOCGIFHWADDR: 4867 if (!dev->addr_len) 4868 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4869 else 4870 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4871 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4872 ifr->ifr_hwaddr.sa_family = dev->type; 4873 return 0; 4874 4875 case SIOCGIFSLAVE: 4876 err = -EINVAL; 4877 break; 4878 4879 case SIOCGIFMAP: 4880 ifr->ifr_map.mem_start = dev->mem_start; 4881 ifr->ifr_map.mem_end = dev->mem_end; 4882 ifr->ifr_map.base_addr = dev->base_addr; 4883 ifr->ifr_map.irq = dev->irq; 4884 ifr->ifr_map.dma = dev->dma; 4885 ifr->ifr_map.port = dev->if_port; 4886 return 0; 4887 4888 case SIOCGIFINDEX: 4889 ifr->ifr_ifindex = dev->ifindex; 4890 return 0; 4891 4892 case SIOCGIFTXQLEN: 4893 ifr->ifr_qlen = dev->tx_queue_len; 4894 return 0; 4895 4896 default: 4897 /* dev_ioctl() should ensure this case 4898 * is never reached 4899 */ 4900 WARN_ON(1); 4901 err = -ENOTTY; 4902 break; 4903 4904 } 4905 return err; 4906 } 4907 4908 /* 4909 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4910 */ 4911 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4912 { 4913 int err; 4914 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4915 const struct net_device_ops *ops; 4916 4917 if (!dev) 4918 return -ENODEV; 4919 4920 ops = dev->netdev_ops; 4921 4922 switch (cmd) { 4923 case SIOCSIFFLAGS: /* Set interface flags */ 4924 return dev_change_flags(dev, ifr->ifr_flags); 4925 4926 case SIOCSIFMETRIC: /* Set the metric on the interface 4927 (currently unused) */ 4928 return -EOPNOTSUPP; 4929 4930 case SIOCSIFMTU: /* Set the MTU of a device */ 4931 return dev_set_mtu(dev, ifr->ifr_mtu); 4932 4933 case SIOCSIFHWADDR: 4934 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4935 4936 case SIOCSIFHWBROADCAST: 4937 if (ifr->ifr_hwaddr.sa_family != dev->type) 4938 return -EINVAL; 4939 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4940 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4941 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4942 return 0; 4943 4944 case SIOCSIFMAP: 4945 if (ops->ndo_set_config) { 4946 if (!netif_device_present(dev)) 4947 return -ENODEV; 4948 return ops->ndo_set_config(dev, &ifr->ifr_map); 4949 } 4950 return -EOPNOTSUPP; 4951 4952 case SIOCADDMULTI: 4953 if (!ops->ndo_set_rx_mode || 4954 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4955 return -EINVAL; 4956 if (!netif_device_present(dev)) 4957 return -ENODEV; 4958 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4959 4960 case SIOCDELMULTI: 4961 if (!ops->ndo_set_rx_mode || 4962 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4963 return -EINVAL; 4964 if (!netif_device_present(dev)) 4965 return -ENODEV; 4966 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4967 4968 case SIOCSIFTXQLEN: 4969 if (ifr->ifr_qlen < 0) 4970 return -EINVAL; 4971 dev->tx_queue_len = ifr->ifr_qlen; 4972 return 0; 4973 4974 case SIOCSIFNAME: 4975 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4976 return dev_change_name(dev, ifr->ifr_newname); 4977 4978 case SIOCSHWTSTAMP: 4979 err = net_hwtstamp_validate(ifr); 4980 if (err) 4981 return err; 4982 /* fall through */ 4983 4984 /* 4985 * Unknown or private ioctl 4986 */ 4987 default: 4988 if ((cmd >= SIOCDEVPRIVATE && 4989 cmd <= SIOCDEVPRIVATE + 15) || 4990 cmd == SIOCBONDENSLAVE || 4991 cmd == SIOCBONDRELEASE || 4992 cmd == SIOCBONDSETHWADDR || 4993 cmd == SIOCBONDSLAVEINFOQUERY || 4994 cmd == SIOCBONDINFOQUERY || 4995 cmd == SIOCBONDCHANGEACTIVE || 4996 cmd == SIOCGMIIPHY || 4997 cmd == SIOCGMIIREG || 4998 cmd == SIOCSMIIREG || 4999 cmd == SIOCBRADDIF || 5000 cmd == SIOCBRDELIF || 5001 cmd == SIOCSHWTSTAMP || 5002 cmd == SIOCWANDEV) { 5003 err = -EOPNOTSUPP; 5004 if (ops->ndo_do_ioctl) { 5005 if (netif_device_present(dev)) 5006 err = ops->ndo_do_ioctl(dev, ifr, cmd); 5007 else 5008 err = -ENODEV; 5009 } 5010 } else 5011 err = -EINVAL; 5012 5013 } 5014 return err; 5015 } 5016 5017 /* 5018 * This function handles all "interface"-type I/O control requests. The actual 5019 * 'doing' part of this is dev_ifsioc above. 5020 */ 5021 5022 /** 5023 * dev_ioctl - network device ioctl 5024 * @net: the applicable net namespace 5025 * @cmd: command to issue 5026 * @arg: pointer to a struct ifreq in user space 5027 * 5028 * Issue ioctl functions to devices. This is normally called by the 5029 * user space syscall interfaces but can sometimes be useful for 5030 * other purposes. The return value is the return from the syscall if 5031 * positive or a negative errno code on error. 5032 */ 5033 5034 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 5035 { 5036 struct ifreq ifr; 5037 int ret; 5038 char *colon; 5039 5040 /* One special case: SIOCGIFCONF takes ifconf argument 5041 and requires shared lock, because it sleeps writing 5042 to user space. 5043 */ 5044 5045 if (cmd == SIOCGIFCONF) { 5046 rtnl_lock(); 5047 ret = dev_ifconf(net, (char __user *) arg); 5048 rtnl_unlock(); 5049 return ret; 5050 } 5051 if (cmd == SIOCGIFNAME) 5052 return dev_ifname(net, (struct ifreq __user *)arg); 5053 5054 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 5055 return -EFAULT; 5056 5057 ifr.ifr_name[IFNAMSIZ-1] = 0; 5058 5059 colon = strchr(ifr.ifr_name, ':'); 5060 if (colon) 5061 *colon = 0; 5062 5063 /* 5064 * See which interface the caller is talking about. 5065 */ 5066 5067 switch (cmd) { 5068 /* 5069 * These ioctl calls: 5070 * - can be done by all. 5071 * - atomic and do not require locking. 5072 * - return a value 5073 */ 5074 case SIOCGIFFLAGS: 5075 case SIOCGIFMETRIC: 5076 case SIOCGIFMTU: 5077 case SIOCGIFHWADDR: 5078 case SIOCGIFSLAVE: 5079 case SIOCGIFMAP: 5080 case SIOCGIFINDEX: 5081 case SIOCGIFTXQLEN: 5082 dev_load(net, ifr.ifr_name); 5083 rcu_read_lock(); 5084 ret = dev_ifsioc_locked(net, &ifr, cmd); 5085 rcu_read_unlock(); 5086 if (!ret) { 5087 if (colon) 5088 *colon = ':'; 5089 if (copy_to_user(arg, &ifr, 5090 sizeof(struct ifreq))) 5091 ret = -EFAULT; 5092 } 5093 return ret; 5094 5095 case SIOCETHTOOL: 5096 dev_load(net, ifr.ifr_name); 5097 rtnl_lock(); 5098 ret = dev_ethtool(net, &ifr); 5099 rtnl_unlock(); 5100 if (!ret) { 5101 if (colon) 5102 *colon = ':'; 5103 if (copy_to_user(arg, &ifr, 5104 sizeof(struct ifreq))) 5105 ret = -EFAULT; 5106 } 5107 return ret; 5108 5109 /* 5110 * These ioctl calls: 5111 * - require superuser power. 5112 * - require strict serialization. 5113 * - return a value 5114 */ 5115 case SIOCGMIIPHY: 5116 case SIOCGMIIREG: 5117 case SIOCSIFNAME: 5118 if (!capable(CAP_NET_ADMIN)) 5119 return -EPERM; 5120 dev_load(net, ifr.ifr_name); 5121 rtnl_lock(); 5122 ret = dev_ifsioc(net, &ifr, cmd); 5123 rtnl_unlock(); 5124 if (!ret) { 5125 if (colon) 5126 *colon = ':'; 5127 if (copy_to_user(arg, &ifr, 5128 sizeof(struct ifreq))) 5129 ret = -EFAULT; 5130 } 5131 return ret; 5132 5133 /* 5134 * These ioctl calls: 5135 * - require superuser power. 5136 * - require strict serialization. 5137 * - do not return a value 5138 */ 5139 case SIOCSIFFLAGS: 5140 case SIOCSIFMETRIC: 5141 case SIOCSIFMTU: 5142 case SIOCSIFMAP: 5143 case SIOCSIFHWADDR: 5144 case SIOCSIFSLAVE: 5145 case SIOCADDMULTI: 5146 case SIOCDELMULTI: 5147 case SIOCSIFHWBROADCAST: 5148 case SIOCSIFTXQLEN: 5149 case SIOCSMIIREG: 5150 case SIOCBONDENSLAVE: 5151 case SIOCBONDRELEASE: 5152 case SIOCBONDSETHWADDR: 5153 case SIOCBONDCHANGEACTIVE: 5154 case SIOCBRADDIF: 5155 case SIOCBRDELIF: 5156 case SIOCSHWTSTAMP: 5157 if (!capable(CAP_NET_ADMIN)) 5158 return -EPERM; 5159 /* fall through */ 5160 case SIOCBONDSLAVEINFOQUERY: 5161 case SIOCBONDINFOQUERY: 5162 dev_load(net, ifr.ifr_name); 5163 rtnl_lock(); 5164 ret = dev_ifsioc(net, &ifr, cmd); 5165 rtnl_unlock(); 5166 return ret; 5167 5168 case SIOCGIFMEM: 5169 /* Get the per device memory space. We can add this but 5170 * currently do not support it */ 5171 case SIOCSIFMEM: 5172 /* Set the per device memory buffer space. 5173 * Not applicable in our case */ 5174 case SIOCSIFLINK: 5175 return -ENOTTY; 5176 5177 /* 5178 * Unknown or private ioctl. 5179 */ 5180 default: 5181 if (cmd == SIOCWANDEV || 5182 (cmd >= SIOCDEVPRIVATE && 5183 cmd <= SIOCDEVPRIVATE + 15)) { 5184 dev_load(net, ifr.ifr_name); 5185 rtnl_lock(); 5186 ret = dev_ifsioc(net, &ifr, cmd); 5187 rtnl_unlock(); 5188 if (!ret && copy_to_user(arg, &ifr, 5189 sizeof(struct ifreq))) 5190 ret = -EFAULT; 5191 return ret; 5192 } 5193 /* Take care of Wireless Extensions */ 5194 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5195 return wext_handle_ioctl(net, &ifr, cmd, arg); 5196 return -ENOTTY; 5197 } 5198 } 5199 5200 5201 /** 5202 * dev_new_index - allocate an ifindex 5203 * @net: the applicable net namespace 5204 * 5205 * Returns a suitable unique value for a new device interface 5206 * number. The caller must hold the rtnl semaphore or the 5207 * dev_base_lock to be sure it remains unique. 5208 */ 5209 static int dev_new_index(struct net *net) 5210 { 5211 static int ifindex; 5212 for (;;) { 5213 if (++ifindex <= 0) 5214 ifindex = 1; 5215 if (!__dev_get_by_index(net, ifindex)) 5216 return ifindex; 5217 } 5218 } 5219 5220 /* Delayed registration/unregisteration */ 5221 static LIST_HEAD(net_todo_list); 5222 5223 static void net_set_todo(struct net_device *dev) 5224 { 5225 list_add_tail(&dev->todo_list, &net_todo_list); 5226 } 5227 5228 static void rollback_registered_many(struct list_head *head) 5229 { 5230 struct net_device *dev, *tmp; 5231 5232 BUG_ON(dev_boot_phase); 5233 ASSERT_RTNL(); 5234 5235 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5236 /* Some devices call without registering 5237 * for initialization unwind. Remove those 5238 * devices and proceed with the remaining. 5239 */ 5240 if (dev->reg_state == NETREG_UNINITIALIZED) { 5241 pr_debug("unregister_netdevice: device %s/%p never " 5242 "was registered\n", dev->name, dev); 5243 5244 WARN_ON(1); 5245 list_del(&dev->unreg_list); 5246 continue; 5247 } 5248 dev->dismantle = true; 5249 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5250 } 5251 5252 /* If device is running, close it first. */ 5253 dev_close_many(head); 5254 5255 list_for_each_entry(dev, head, unreg_list) { 5256 /* And unlink it from device chain. */ 5257 unlist_netdevice(dev); 5258 5259 dev->reg_state = NETREG_UNREGISTERING; 5260 } 5261 5262 synchronize_net(); 5263 5264 list_for_each_entry(dev, head, unreg_list) { 5265 /* Shutdown queueing discipline. */ 5266 dev_shutdown(dev); 5267 5268 5269 /* Notify protocols, that we are about to destroy 5270 this device. They should clean all the things. 5271 */ 5272 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5273 5274 if (!dev->rtnl_link_ops || 5275 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5276 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5277 5278 /* 5279 * Flush the unicast and multicast chains 5280 */ 5281 dev_uc_flush(dev); 5282 dev_mc_flush(dev); 5283 5284 if (dev->netdev_ops->ndo_uninit) 5285 dev->netdev_ops->ndo_uninit(dev); 5286 5287 /* Notifier chain MUST detach us from master device. */ 5288 WARN_ON(dev->master); 5289 5290 /* Remove entries from kobject tree */ 5291 netdev_unregister_kobject(dev); 5292 } 5293 5294 /* Process any work delayed until the end of the batch */ 5295 dev = list_first_entry(head, struct net_device, unreg_list); 5296 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5297 5298 synchronize_net(); 5299 5300 list_for_each_entry(dev, head, unreg_list) 5301 dev_put(dev); 5302 } 5303 5304 static void rollback_registered(struct net_device *dev) 5305 { 5306 LIST_HEAD(single); 5307 5308 list_add(&dev->unreg_list, &single); 5309 rollback_registered_many(&single); 5310 list_del(&single); 5311 } 5312 5313 static netdev_features_t netdev_fix_features(struct net_device *dev, 5314 netdev_features_t features) 5315 { 5316 /* Fix illegal checksum combinations */ 5317 if ((features & NETIF_F_HW_CSUM) && 5318 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5319 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5320 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5321 } 5322 5323 /* Fix illegal SG+CSUM combinations. */ 5324 if ((features & NETIF_F_SG) && 5325 !(features & NETIF_F_ALL_CSUM)) { 5326 netdev_dbg(dev, 5327 "Dropping NETIF_F_SG since no checksum feature.\n"); 5328 features &= ~NETIF_F_SG; 5329 } 5330 5331 /* TSO requires that SG is present as well. */ 5332 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5333 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5334 features &= ~NETIF_F_ALL_TSO; 5335 } 5336 5337 /* TSO ECN requires that TSO is present as well. */ 5338 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5339 features &= ~NETIF_F_TSO_ECN; 5340 5341 /* Software GSO depends on SG. */ 5342 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5343 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5344 features &= ~NETIF_F_GSO; 5345 } 5346 5347 /* UFO needs SG and checksumming */ 5348 if (features & NETIF_F_UFO) { 5349 /* maybe split UFO into V4 and V6? */ 5350 if (!((features & NETIF_F_GEN_CSUM) || 5351 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5352 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5353 netdev_dbg(dev, 5354 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5355 features &= ~NETIF_F_UFO; 5356 } 5357 5358 if (!(features & NETIF_F_SG)) { 5359 netdev_dbg(dev, 5360 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5361 features &= ~NETIF_F_UFO; 5362 } 5363 } 5364 5365 return features; 5366 } 5367 5368 int __netdev_update_features(struct net_device *dev) 5369 { 5370 netdev_features_t features; 5371 int err = 0; 5372 5373 ASSERT_RTNL(); 5374 5375 features = netdev_get_wanted_features(dev); 5376 5377 if (dev->netdev_ops->ndo_fix_features) 5378 features = dev->netdev_ops->ndo_fix_features(dev, features); 5379 5380 /* driver might be less strict about feature dependencies */ 5381 features = netdev_fix_features(dev, features); 5382 5383 if (dev->features == features) 5384 return 0; 5385 5386 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5387 &dev->features, &features); 5388 5389 if (dev->netdev_ops->ndo_set_features) 5390 err = dev->netdev_ops->ndo_set_features(dev, features); 5391 5392 if (unlikely(err < 0)) { 5393 netdev_err(dev, 5394 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5395 err, &features, &dev->features); 5396 return -1; 5397 } 5398 5399 if (!err) 5400 dev->features = features; 5401 5402 return 1; 5403 } 5404 5405 /** 5406 * netdev_update_features - recalculate device features 5407 * @dev: the device to check 5408 * 5409 * Recalculate dev->features set and send notifications if it 5410 * has changed. Should be called after driver or hardware dependent 5411 * conditions might have changed that influence the features. 5412 */ 5413 void netdev_update_features(struct net_device *dev) 5414 { 5415 if (__netdev_update_features(dev)) 5416 netdev_features_change(dev); 5417 } 5418 EXPORT_SYMBOL(netdev_update_features); 5419 5420 /** 5421 * netdev_change_features - recalculate device features 5422 * @dev: the device to check 5423 * 5424 * Recalculate dev->features set and send notifications even 5425 * if they have not changed. Should be called instead of 5426 * netdev_update_features() if also dev->vlan_features might 5427 * have changed to allow the changes to be propagated to stacked 5428 * VLAN devices. 5429 */ 5430 void netdev_change_features(struct net_device *dev) 5431 { 5432 __netdev_update_features(dev); 5433 netdev_features_change(dev); 5434 } 5435 EXPORT_SYMBOL(netdev_change_features); 5436 5437 /** 5438 * netif_stacked_transfer_operstate - transfer operstate 5439 * @rootdev: the root or lower level device to transfer state from 5440 * @dev: the device to transfer operstate to 5441 * 5442 * Transfer operational state from root to device. This is normally 5443 * called when a stacking relationship exists between the root 5444 * device and the device(a leaf device). 5445 */ 5446 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5447 struct net_device *dev) 5448 { 5449 if (rootdev->operstate == IF_OPER_DORMANT) 5450 netif_dormant_on(dev); 5451 else 5452 netif_dormant_off(dev); 5453 5454 if (netif_carrier_ok(rootdev)) { 5455 if (!netif_carrier_ok(dev)) 5456 netif_carrier_on(dev); 5457 } else { 5458 if (netif_carrier_ok(dev)) 5459 netif_carrier_off(dev); 5460 } 5461 } 5462 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5463 5464 #ifdef CONFIG_RPS 5465 static int netif_alloc_rx_queues(struct net_device *dev) 5466 { 5467 unsigned int i, count = dev->num_rx_queues; 5468 struct netdev_rx_queue *rx; 5469 5470 BUG_ON(count < 1); 5471 5472 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5473 if (!rx) { 5474 pr_err("netdev: Unable to allocate %u rx queues.\n", count); 5475 return -ENOMEM; 5476 } 5477 dev->_rx = rx; 5478 5479 for (i = 0; i < count; i++) 5480 rx[i].dev = dev; 5481 return 0; 5482 } 5483 #endif 5484 5485 static void netdev_init_one_queue(struct net_device *dev, 5486 struct netdev_queue *queue, void *_unused) 5487 { 5488 /* Initialize queue lock */ 5489 spin_lock_init(&queue->_xmit_lock); 5490 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5491 queue->xmit_lock_owner = -1; 5492 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5493 queue->dev = dev; 5494 #ifdef CONFIG_BQL 5495 dql_init(&queue->dql, HZ); 5496 #endif 5497 } 5498 5499 static int netif_alloc_netdev_queues(struct net_device *dev) 5500 { 5501 unsigned int count = dev->num_tx_queues; 5502 struct netdev_queue *tx; 5503 5504 BUG_ON(count < 1); 5505 5506 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5507 if (!tx) { 5508 pr_err("netdev: Unable to allocate %u tx queues.\n", 5509 count); 5510 return -ENOMEM; 5511 } 5512 dev->_tx = tx; 5513 5514 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5515 spin_lock_init(&dev->tx_global_lock); 5516 5517 return 0; 5518 } 5519 5520 /** 5521 * register_netdevice - register a network device 5522 * @dev: device to register 5523 * 5524 * Take a completed network device structure and add it to the kernel 5525 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5526 * chain. 0 is returned on success. A negative errno code is returned 5527 * on a failure to set up the device, or if the name is a duplicate. 5528 * 5529 * Callers must hold the rtnl semaphore. You may want 5530 * register_netdev() instead of this. 5531 * 5532 * BUGS: 5533 * The locking appears insufficient to guarantee two parallel registers 5534 * will not get the same name. 5535 */ 5536 5537 int register_netdevice(struct net_device *dev) 5538 { 5539 int ret; 5540 struct net *net = dev_net(dev); 5541 5542 BUG_ON(dev_boot_phase); 5543 ASSERT_RTNL(); 5544 5545 might_sleep(); 5546 5547 /* When net_device's are persistent, this will be fatal. */ 5548 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5549 BUG_ON(!net); 5550 5551 spin_lock_init(&dev->addr_list_lock); 5552 netdev_set_addr_lockdep_class(dev); 5553 5554 dev->iflink = -1; 5555 5556 ret = dev_get_valid_name(dev, dev->name); 5557 if (ret < 0) 5558 goto out; 5559 5560 /* Init, if this function is available */ 5561 if (dev->netdev_ops->ndo_init) { 5562 ret = dev->netdev_ops->ndo_init(dev); 5563 if (ret) { 5564 if (ret > 0) 5565 ret = -EIO; 5566 goto out; 5567 } 5568 } 5569 5570 dev->ifindex = dev_new_index(net); 5571 if (dev->iflink == -1) 5572 dev->iflink = dev->ifindex; 5573 5574 /* Transfer changeable features to wanted_features and enable 5575 * software offloads (GSO and GRO). 5576 */ 5577 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5578 dev->features |= NETIF_F_SOFT_FEATURES; 5579 dev->wanted_features = dev->features & dev->hw_features; 5580 5581 /* Turn on no cache copy if HW is doing checksum */ 5582 if (!(dev->flags & IFF_LOOPBACK)) { 5583 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5584 if (dev->features & NETIF_F_ALL_CSUM) { 5585 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5586 dev->features |= NETIF_F_NOCACHE_COPY; 5587 } 5588 } 5589 5590 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5591 */ 5592 dev->vlan_features |= NETIF_F_HIGHDMA; 5593 5594 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5595 ret = notifier_to_errno(ret); 5596 if (ret) 5597 goto err_uninit; 5598 5599 ret = netdev_register_kobject(dev); 5600 if (ret) 5601 goto err_uninit; 5602 dev->reg_state = NETREG_REGISTERED; 5603 5604 __netdev_update_features(dev); 5605 5606 /* 5607 * Default initial state at registry is that the 5608 * device is present. 5609 */ 5610 5611 set_bit(__LINK_STATE_PRESENT, &dev->state); 5612 5613 dev_init_scheduler(dev); 5614 dev_hold(dev); 5615 list_netdevice(dev); 5616 5617 /* Notify protocols, that a new device appeared. */ 5618 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5619 ret = notifier_to_errno(ret); 5620 if (ret) { 5621 rollback_registered(dev); 5622 dev->reg_state = NETREG_UNREGISTERED; 5623 } 5624 /* 5625 * Prevent userspace races by waiting until the network 5626 * device is fully setup before sending notifications. 5627 */ 5628 if (!dev->rtnl_link_ops || 5629 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5630 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5631 5632 out: 5633 return ret; 5634 5635 err_uninit: 5636 if (dev->netdev_ops->ndo_uninit) 5637 dev->netdev_ops->ndo_uninit(dev); 5638 goto out; 5639 } 5640 EXPORT_SYMBOL(register_netdevice); 5641 5642 /** 5643 * init_dummy_netdev - init a dummy network device for NAPI 5644 * @dev: device to init 5645 * 5646 * This takes a network device structure and initialize the minimum 5647 * amount of fields so it can be used to schedule NAPI polls without 5648 * registering a full blown interface. This is to be used by drivers 5649 * that need to tie several hardware interfaces to a single NAPI 5650 * poll scheduler due to HW limitations. 5651 */ 5652 int init_dummy_netdev(struct net_device *dev) 5653 { 5654 /* Clear everything. Note we don't initialize spinlocks 5655 * are they aren't supposed to be taken by any of the 5656 * NAPI code and this dummy netdev is supposed to be 5657 * only ever used for NAPI polls 5658 */ 5659 memset(dev, 0, sizeof(struct net_device)); 5660 5661 /* make sure we BUG if trying to hit standard 5662 * register/unregister code path 5663 */ 5664 dev->reg_state = NETREG_DUMMY; 5665 5666 /* NAPI wants this */ 5667 INIT_LIST_HEAD(&dev->napi_list); 5668 5669 /* a dummy interface is started by default */ 5670 set_bit(__LINK_STATE_PRESENT, &dev->state); 5671 set_bit(__LINK_STATE_START, &dev->state); 5672 5673 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5674 * because users of this 'device' dont need to change 5675 * its refcount. 5676 */ 5677 5678 return 0; 5679 } 5680 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5681 5682 5683 /** 5684 * register_netdev - register a network device 5685 * @dev: device to register 5686 * 5687 * Take a completed network device structure and add it to the kernel 5688 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5689 * chain. 0 is returned on success. A negative errno code is returned 5690 * on a failure to set up the device, or if the name is a duplicate. 5691 * 5692 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5693 * and expands the device name if you passed a format string to 5694 * alloc_netdev. 5695 */ 5696 int register_netdev(struct net_device *dev) 5697 { 5698 int err; 5699 5700 rtnl_lock(); 5701 err = register_netdevice(dev); 5702 rtnl_unlock(); 5703 return err; 5704 } 5705 EXPORT_SYMBOL(register_netdev); 5706 5707 int netdev_refcnt_read(const struct net_device *dev) 5708 { 5709 int i, refcnt = 0; 5710 5711 for_each_possible_cpu(i) 5712 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5713 return refcnt; 5714 } 5715 EXPORT_SYMBOL(netdev_refcnt_read); 5716 5717 /* 5718 * netdev_wait_allrefs - wait until all references are gone. 5719 * 5720 * This is called when unregistering network devices. 5721 * 5722 * Any protocol or device that holds a reference should register 5723 * for netdevice notification, and cleanup and put back the 5724 * reference if they receive an UNREGISTER event. 5725 * We can get stuck here if buggy protocols don't correctly 5726 * call dev_put. 5727 */ 5728 static void netdev_wait_allrefs(struct net_device *dev) 5729 { 5730 unsigned long rebroadcast_time, warning_time; 5731 int refcnt; 5732 5733 linkwatch_forget_dev(dev); 5734 5735 rebroadcast_time = warning_time = jiffies; 5736 refcnt = netdev_refcnt_read(dev); 5737 5738 while (refcnt != 0) { 5739 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5740 rtnl_lock(); 5741 5742 /* Rebroadcast unregister notification */ 5743 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5744 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5745 * should have already handle it the first time */ 5746 5747 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5748 &dev->state)) { 5749 /* We must not have linkwatch events 5750 * pending on unregister. If this 5751 * happens, we simply run the queue 5752 * unscheduled, resulting in a noop 5753 * for this device. 5754 */ 5755 linkwatch_run_queue(); 5756 } 5757 5758 __rtnl_unlock(); 5759 5760 rebroadcast_time = jiffies; 5761 } 5762 5763 msleep(250); 5764 5765 refcnt = netdev_refcnt_read(dev); 5766 5767 if (time_after(jiffies, warning_time + 10 * HZ)) { 5768 printk(KERN_EMERG "unregister_netdevice: " 5769 "waiting for %s to become free. Usage " 5770 "count = %d\n", 5771 dev->name, refcnt); 5772 warning_time = jiffies; 5773 } 5774 } 5775 } 5776 5777 /* The sequence is: 5778 * 5779 * rtnl_lock(); 5780 * ... 5781 * register_netdevice(x1); 5782 * register_netdevice(x2); 5783 * ... 5784 * unregister_netdevice(y1); 5785 * unregister_netdevice(y2); 5786 * ... 5787 * rtnl_unlock(); 5788 * free_netdev(y1); 5789 * free_netdev(y2); 5790 * 5791 * We are invoked by rtnl_unlock(). 5792 * This allows us to deal with problems: 5793 * 1) We can delete sysfs objects which invoke hotplug 5794 * without deadlocking with linkwatch via keventd. 5795 * 2) Since we run with the RTNL semaphore not held, we can sleep 5796 * safely in order to wait for the netdev refcnt to drop to zero. 5797 * 5798 * We must not return until all unregister events added during 5799 * the interval the lock was held have been completed. 5800 */ 5801 void netdev_run_todo(void) 5802 { 5803 struct list_head list; 5804 5805 /* Snapshot list, allow later requests */ 5806 list_replace_init(&net_todo_list, &list); 5807 5808 __rtnl_unlock(); 5809 5810 /* Wait for rcu callbacks to finish before attempting to drain 5811 * the device list. This usually avoids a 250ms wait. 5812 */ 5813 if (!list_empty(&list)) 5814 rcu_barrier(); 5815 5816 while (!list_empty(&list)) { 5817 struct net_device *dev 5818 = list_first_entry(&list, struct net_device, todo_list); 5819 list_del(&dev->todo_list); 5820 5821 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5822 printk(KERN_ERR "network todo '%s' but state %d\n", 5823 dev->name, dev->reg_state); 5824 dump_stack(); 5825 continue; 5826 } 5827 5828 dev->reg_state = NETREG_UNREGISTERED; 5829 5830 on_each_cpu(flush_backlog, dev, 1); 5831 5832 netdev_wait_allrefs(dev); 5833 5834 /* paranoia */ 5835 BUG_ON(netdev_refcnt_read(dev)); 5836 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5837 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5838 WARN_ON(dev->dn_ptr); 5839 5840 if (dev->destructor) 5841 dev->destructor(dev); 5842 5843 /* Free network device */ 5844 kobject_put(&dev->dev.kobj); 5845 } 5846 } 5847 5848 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5849 * fields in the same order, with only the type differing. 5850 */ 5851 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5852 const struct net_device_stats *netdev_stats) 5853 { 5854 #if BITS_PER_LONG == 64 5855 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5856 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5857 #else 5858 size_t i, n = sizeof(*stats64) / sizeof(u64); 5859 const unsigned long *src = (const unsigned long *)netdev_stats; 5860 u64 *dst = (u64 *)stats64; 5861 5862 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5863 sizeof(*stats64) / sizeof(u64)); 5864 for (i = 0; i < n; i++) 5865 dst[i] = src[i]; 5866 #endif 5867 } 5868 5869 /** 5870 * dev_get_stats - get network device statistics 5871 * @dev: device to get statistics from 5872 * @storage: place to store stats 5873 * 5874 * Get network statistics from device. Return @storage. 5875 * The device driver may provide its own method by setting 5876 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5877 * otherwise the internal statistics structure is used. 5878 */ 5879 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5880 struct rtnl_link_stats64 *storage) 5881 { 5882 const struct net_device_ops *ops = dev->netdev_ops; 5883 5884 if (ops->ndo_get_stats64) { 5885 memset(storage, 0, sizeof(*storage)); 5886 ops->ndo_get_stats64(dev, storage); 5887 } else if (ops->ndo_get_stats) { 5888 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5889 } else { 5890 netdev_stats_to_stats64(storage, &dev->stats); 5891 } 5892 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5893 return storage; 5894 } 5895 EXPORT_SYMBOL(dev_get_stats); 5896 5897 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5898 { 5899 struct netdev_queue *queue = dev_ingress_queue(dev); 5900 5901 #ifdef CONFIG_NET_CLS_ACT 5902 if (queue) 5903 return queue; 5904 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5905 if (!queue) 5906 return NULL; 5907 netdev_init_one_queue(dev, queue, NULL); 5908 queue->qdisc = &noop_qdisc; 5909 queue->qdisc_sleeping = &noop_qdisc; 5910 rcu_assign_pointer(dev->ingress_queue, queue); 5911 #endif 5912 return queue; 5913 } 5914 5915 /** 5916 * alloc_netdev_mqs - allocate network device 5917 * @sizeof_priv: size of private data to allocate space for 5918 * @name: device name format string 5919 * @setup: callback to initialize device 5920 * @txqs: the number of TX subqueues to allocate 5921 * @rxqs: the number of RX subqueues to allocate 5922 * 5923 * Allocates a struct net_device with private data area for driver use 5924 * and performs basic initialization. Also allocates subquue structs 5925 * for each queue on the device. 5926 */ 5927 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5928 void (*setup)(struct net_device *), 5929 unsigned int txqs, unsigned int rxqs) 5930 { 5931 struct net_device *dev; 5932 size_t alloc_size; 5933 struct net_device *p; 5934 5935 BUG_ON(strlen(name) >= sizeof(dev->name)); 5936 5937 if (txqs < 1) { 5938 pr_err("alloc_netdev: Unable to allocate device " 5939 "with zero queues.\n"); 5940 return NULL; 5941 } 5942 5943 #ifdef CONFIG_RPS 5944 if (rxqs < 1) { 5945 pr_err("alloc_netdev: Unable to allocate device " 5946 "with zero RX queues.\n"); 5947 return NULL; 5948 } 5949 #endif 5950 5951 alloc_size = sizeof(struct net_device); 5952 if (sizeof_priv) { 5953 /* ensure 32-byte alignment of private area */ 5954 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5955 alloc_size += sizeof_priv; 5956 } 5957 /* ensure 32-byte alignment of whole construct */ 5958 alloc_size += NETDEV_ALIGN - 1; 5959 5960 p = kzalloc(alloc_size, GFP_KERNEL); 5961 if (!p) { 5962 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5963 return NULL; 5964 } 5965 5966 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5967 dev->padded = (char *)dev - (char *)p; 5968 5969 dev->pcpu_refcnt = alloc_percpu(int); 5970 if (!dev->pcpu_refcnt) 5971 goto free_p; 5972 5973 if (dev_addr_init(dev)) 5974 goto free_pcpu; 5975 5976 dev_mc_init(dev); 5977 dev_uc_init(dev); 5978 5979 dev_net_set(dev, &init_net); 5980 5981 dev->gso_max_size = GSO_MAX_SIZE; 5982 5983 INIT_LIST_HEAD(&dev->napi_list); 5984 INIT_LIST_HEAD(&dev->unreg_list); 5985 INIT_LIST_HEAD(&dev->link_watch_list); 5986 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5987 setup(dev); 5988 5989 dev->num_tx_queues = txqs; 5990 dev->real_num_tx_queues = txqs; 5991 if (netif_alloc_netdev_queues(dev)) 5992 goto free_all; 5993 5994 #ifdef CONFIG_RPS 5995 dev->num_rx_queues = rxqs; 5996 dev->real_num_rx_queues = rxqs; 5997 if (netif_alloc_rx_queues(dev)) 5998 goto free_all; 5999 #endif 6000 6001 strcpy(dev->name, name); 6002 dev->group = INIT_NETDEV_GROUP; 6003 return dev; 6004 6005 free_all: 6006 free_netdev(dev); 6007 return NULL; 6008 6009 free_pcpu: 6010 free_percpu(dev->pcpu_refcnt); 6011 kfree(dev->_tx); 6012 #ifdef CONFIG_RPS 6013 kfree(dev->_rx); 6014 #endif 6015 6016 free_p: 6017 kfree(p); 6018 return NULL; 6019 } 6020 EXPORT_SYMBOL(alloc_netdev_mqs); 6021 6022 /** 6023 * free_netdev - free network device 6024 * @dev: device 6025 * 6026 * This function does the last stage of destroying an allocated device 6027 * interface. The reference to the device object is released. 6028 * If this is the last reference then it will be freed. 6029 */ 6030 void free_netdev(struct net_device *dev) 6031 { 6032 struct napi_struct *p, *n; 6033 6034 release_net(dev_net(dev)); 6035 6036 kfree(dev->_tx); 6037 #ifdef CONFIG_RPS 6038 kfree(dev->_rx); 6039 #endif 6040 6041 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6042 6043 /* Flush device addresses */ 6044 dev_addr_flush(dev); 6045 6046 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6047 netif_napi_del(p); 6048 6049 free_percpu(dev->pcpu_refcnt); 6050 dev->pcpu_refcnt = NULL; 6051 6052 /* Compatibility with error handling in drivers */ 6053 if (dev->reg_state == NETREG_UNINITIALIZED) { 6054 kfree((char *)dev - dev->padded); 6055 return; 6056 } 6057 6058 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6059 dev->reg_state = NETREG_RELEASED; 6060 6061 /* will free via device release */ 6062 put_device(&dev->dev); 6063 } 6064 EXPORT_SYMBOL(free_netdev); 6065 6066 /** 6067 * synchronize_net - Synchronize with packet receive processing 6068 * 6069 * Wait for packets currently being received to be done. 6070 * Does not block later packets from starting. 6071 */ 6072 void synchronize_net(void) 6073 { 6074 might_sleep(); 6075 if (rtnl_is_locked()) 6076 synchronize_rcu_expedited(); 6077 else 6078 synchronize_rcu(); 6079 } 6080 EXPORT_SYMBOL(synchronize_net); 6081 6082 /** 6083 * unregister_netdevice_queue - remove device from the kernel 6084 * @dev: device 6085 * @head: list 6086 * 6087 * This function shuts down a device interface and removes it 6088 * from the kernel tables. 6089 * If head not NULL, device is queued to be unregistered later. 6090 * 6091 * Callers must hold the rtnl semaphore. You may want 6092 * unregister_netdev() instead of this. 6093 */ 6094 6095 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6096 { 6097 ASSERT_RTNL(); 6098 6099 if (head) { 6100 list_move_tail(&dev->unreg_list, head); 6101 } else { 6102 rollback_registered(dev); 6103 /* Finish processing unregister after unlock */ 6104 net_set_todo(dev); 6105 } 6106 } 6107 EXPORT_SYMBOL(unregister_netdevice_queue); 6108 6109 /** 6110 * unregister_netdevice_many - unregister many devices 6111 * @head: list of devices 6112 */ 6113 void unregister_netdevice_many(struct list_head *head) 6114 { 6115 struct net_device *dev; 6116 6117 if (!list_empty(head)) { 6118 rollback_registered_many(head); 6119 list_for_each_entry(dev, head, unreg_list) 6120 net_set_todo(dev); 6121 } 6122 } 6123 EXPORT_SYMBOL(unregister_netdevice_many); 6124 6125 /** 6126 * unregister_netdev - remove device from the kernel 6127 * @dev: device 6128 * 6129 * This function shuts down a device interface and removes it 6130 * from the kernel tables. 6131 * 6132 * This is just a wrapper for unregister_netdevice that takes 6133 * the rtnl semaphore. In general you want to use this and not 6134 * unregister_netdevice. 6135 */ 6136 void unregister_netdev(struct net_device *dev) 6137 { 6138 rtnl_lock(); 6139 unregister_netdevice(dev); 6140 rtnl_unlock(); 6141 } 6142 EXPORT_SYMBOL(unregister_netdev); 6143 6144 /** 6145 * dev_change_net_namespace - move device to different nethost namespace 6146 * @dev: device 6147 * @net: network namespace 6148 * @pat: If not NULL name pattern to try if the current device name 6149 * is already taken in the destination network namespace. 6150 * 6151 * This function shuts down a device interface and moves it 6152 * to a new network namespace. On success 0 is returned, on 6153 * a failure a netagive errno code is returned. 6154 * 6155 * Callers must hold the rtnl semaphore. 6156 */ 6157 6158 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6159 { 6160 int err; 6161 6162 ASSERT_RTNL(); 6163 6164 /* Don't allow namespace local devices to be moved. */ 6165 err = -EINVAL; 6166 if (dev->features & NETIF_F_NETNS_LOCAL) 6167 goto out; 6168 6169 /* Ensure the device has been registrered */ 6170 err = -EINVAL; 6171 if (dev->reg_state != NETREG_REGISTERED) 6172 goto out; 6173 6174 /* Get out if there is nothing todo */ 6175 err = 0; 6176 if (net_eq(dev_net(dev), net)) 6177 goto out; 6178 6179 /* Pick the destination device name, and ensure 6180 * we can use it in the destination network namespace. 6181 */ 6182 err = -EEXIST; 6183 if (__dev_get_by_name(net, dev->name)) { 6184 /* We get here if we can't use the current device name */ 6185 if (!pat) 6186 goto out; 6187 if (dev_get_valid_name(dev, pat) < 0) 6188 goto out; 6189 } 6190 6191 /* 6192 * And now a mini version of register_netdevice unregister_netdevice. 6193 */ 6194 6195 /* If device is running close it first. */ 6196 dev_close(dev); 6197 6198 /* And unlink it from device chain */ 6199 err = -ENODEV; 6200 unlist_netdevice(dev); 6201 6202 synchronize_net(); 6203 6204 /* Shutdown queueing discipline. */ 6205 dev_shutdown(dev); 6206 6207 /* Notify protocols, that we are about to destroy 6208 this device. They should clean all the things. 6209 6210 Note that dev->reg_state stays at NETREG_REGISTERED. 6211 This is wanted because this way 8021q and macvlan know 6212 the device is just moving and can keep their slaves up. 6213 */ 6214 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6215 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6216 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 6217 6218 /* 6219 * Flush the unicast and multicast chains 6220 */ 6221 dev_uc_flush(dev); 6222 dev_mc_flush(dev); 6223 6224 /* Actually switch the network namespace */ 6225 dev_net_set(dev, net); 6226 6227 /* If there is an ifindex conflict assign a new one */ 6228 if (__dev_get_by_index(net, dev->ifindex)) { 6229 int iflink = (dev->iflink == dev->ifindex); 6230 dev->ifindex = dev_new_index(net); 6231 if (iflink) 6232 dev->iflink = dev->ifindex; 6233 } 6234 6235 /* Fixup kobjects */ 6236 err = device_rename(&dev->dev, dev->name); 6237 WARN_ON(err); 6238 6239 /* Add the device back in the hashes */ 6240 list_netdevice(dev); 6241 6242 /* Notify protocols, that a new device appeared. */ 6243 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6244 6245 /* 6246 * Prevent userspace races by waiting until the network 6247 * device is fully setup before sending notifications. 6248 */ 6249 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6250 6251 synchronize_net(); 6252 err = 0; 6253 out: 6254 return err; 6255 } 6256 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6257 6258 static int dev_cpu_callback(struct notifier_block *nfb, 6259 unsigned long action, 6260 void *ocpu) 6261 { 6262 struct sk_buff **list_skb; 6263 struct sk_buff *skb; 6264 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6265 struct softnet_data *sd, *oldsd; 6266 6267 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6268 return NOTIFY_OK; 6269 6270 local_irq_disable(); 6271 cpu = smp_processor_id(); 6272 sd = &per_cpu(softnet_data, cpu); 6273 oldsd = &per_cpu(softnet_data, oldcpu); 6274 6275 /* Find end of our completion_queue. */ 6276 list_skb = &sd->completion_queue; 6277 while (*list_skb) 6278 list_skb = &(*list_skb)->next; 6279 /* Append completion queue from offline CPU. */ 6280 *list_skb = oldsd->completion_queue; 6281 oldsd->completion_queue = NULL; 6282 6283 /* Append output queue from offline CPU. */ 6284 if (oldsd->output_queue) { 6285 *sd->output_queue_tailp = oldsd->output_queue; 6286 sd->output_queue_tailp = oldsd->output_queue_tailp; 6287 oldsd->output_queue = NULL; 6288 oldsd->output_queue_tailp = &oldsd->output_queue; 6289 } 6290 /* Append NAPI poll list from offline CPU. */ 6291 if (!list_empty(&oldsd->poll_list)) { 6292 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6293 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6294 } 6295 6296 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6297 local_irq_enable(); 6298 6299 /* Process offline CPU's input_pkt_queue */ 6300 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6301 netif_rx(skb); 6302 input_queue_head_incr(oldsd); 6303 } 6304 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6305 netif_rx(skb); 6306 input_queue_head_incr(oldsd); 6307 } 6308 6309 return NOTIFY_OK; 6310 } 6311 6312 6313 /** 6314 * netdev_increment_features - increment feature set by one 6315 * @all: current feature set 6316 * @one: new feature set 6317 * @mask: mask feature set 6318 * 6319 * Computes a new feature set after adding a device with feature set 6320 * @one to the master device with current feature set @all. Will not 6321 * enable anything that is off in @mask. Returns the new feature set. 6322 */ 6323 netdev_features_t netdev_increment_features(netdev_features_t all, 6324 netdev_features_t one, netdev_features_t mask) 6325 { 6326 if (mask & NETIF_F_GEN_CSUM) 6327 mask |= NETIF_F_ALL_CSUM; 6328 mask |= NETIF_F_VLAN_CHALLENGED; 6329 6330 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6331 all &= one | ~NETIF_F_ALL_FOR_ALL; 6332 6333 /* If one device supports hw checksumming, set for all. */ 6334 if (all & NETIF_F_GEN_CSUM) 6335 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6336 6337 return all; 6338 } 6339 EXPORT_SYMBOL(netdev_increment_features); 6340 6341 static struct hlist_head *netdev_create_hash(void) 6342 { 6343 int i; 6344 struct hlist_head *hash; 6345 6346 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6347 if (hash != NULL) 6348 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6349 INIT_HLIST_HEAD(&hash[i]); 6350 6351 return hash; 6352 } 6353 6354 /* Initialize per network namespace state */ 6355 static int __net_init netdev_init(struct net *net) 6356 { 6357 INIT_LIST_HEAD(&net->dev_base_head); 6358 6359 net->dev_name_head = netdev_create_hash(); 6360 if (net->dev_name_head == NULL) 6361 goto err_name; 6362 6363 net->dev_index_head = netdev_create_hash(); 6364 if (net->dev_index_head == NULL) 6365 goto err_idx; 6366 6367 return 0; 6368 6369 err_idx: 6370 kfree(net->dev_name_head); 6371 err_name: 6372 return -ENOMEM; 6373 } 6374 6375 /** 6376 * netdev_drivername - network driver for the device 6377 * @dev: network device 6378 * 6379 * Determine network driver for device. 6380 */ 6381 const char *netdev_drivername(const struct net_device *dev) 6382 { 6383 const struct device_driver *driver; 6384 const struct device *parent; 6385 const char *empty = ""; 6386 6387 parent = dev->dev.parent; 6388 if (!parent) 6389 return empty; 6390 6391 driver = parent->driver; 6392 if (driver && driver->name) 6393 return driver->name; 6394 return empty; 6395 } 6396 6397 int __netdev_printk(const char *level, const struct net_device *dev, 6398 struct va_format *vaf) 6399 { 6400 int r; 6401 6402 if (dev && dev->dev.parent) 6403 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6404 netdev_name(dev), vaf); 6405 else if (dev) 6406 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6407 else 6408 r = printk("%s(NULL net_device): %pV", level, vaf); 6409 6410 return r; 6411 } 6412 EXPORT_SYMBOL(__netdev_printk); 6413 6414 int netdev_printk(const char *level, const struct net_device *dev, 6415 const char *format, ...) 6416 { 6417 struct va_format vaf; 6418 va_list args; 6419 int r; 6420 6421 va_start(args, format); 6422 6423 vaf.fmt = format; 6424 vaf.va = &args; 6425 6426 r = __netdev_printk(level, dev, &vaf); 6427 va_end(args); 6428 6429 return r; 6430 } 6431 EXPORT_SYMBOL(netdev_printk); 6432 6433 #define define_netdev_printk_level(func, level) \ 6434 int func(const struct net_device *dev, const char *fmt, ...) \ 6435 { \ 6436 int r; \ 6437 struct va_format vaf; \ 6438 va_list args; \ 6439 \ 6440 va_start(args, fmt); \ 6441 \ 6442 vaf.fmt = fmt; \ 6443 vaf.va = &args; \ 6444 \ 6445 r = __netdev_printk(level, dev, &vaf); \ 6446 va_end(args); \ 6447 \ 6448 return r; \ 6449 } \ 6450 EXPORT_SYMBOL(func); 6451 6452 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6453 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6454 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6455 define_netdev_printk_level(netdev_err, KERN_ERR); 6456 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6457 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6458 define_netdev_printk_level(netdev_info, KERN_INFO); 6459 6460 static void __net_exit netdev_exit(struct net *net) 6461 { 6462 kfree(net->dev_name_head); 6463 kfree(net->dev_index_head); 6464 } 6465 6466 static struct pernet_operations __net_initdata netdev_net_ops = { 6467 .init = netdev_init, 6468 .exit = netdev_exit, 6469 }; 6470 6471 static void __net_exit default_device_exit(struct net *net) 6472 { 6473 struct net_device *dev, *aux; 6474 /* 6475 * Push all migratable network devices back to the 6476 * initial network namespace 6477 */ 6478 rtnl_lock(); 6479 for_each_netdev_safe(net, dev, aux) { 6480 int err; 6481 char fb_name[IFNAMSIZ]; 6482 6483 /* Ignore unmoveable devices (i.e. loopback) */ 6484 if (dev->features & NETIF_F_NETNS_LOCAL) 6485 continue; 6486 6487 /* Leave virtual devices for the generic cleanup */ 6488 if (dev->rtnl_link_ops) 6489 continue; 6490 6491 /* Push remaining network devices to init_net */ 6492 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6493 err = dev_change_net_namespace(dev, &init_net, fb_name); 6494 if (err) { 6495 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 6496 __func__, dev->name, err); 6497 BUG(); 6498 } 6499 } 6500 rtnl_unlock(); 6501 } 6502 6503 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6504 { 6505 /* At exit all network devices most be removed from a network 6506 * namespace. Do this in the reverse order of registration. 6507 * Do this across as many network namespaces as possible to 6508 * improve batching efficiency. 6509 */ 6510 struct net_device *dev; 6511 struct net *net; 6512 LIST_HEAD(dev_kill_list); 6513 6514 rtnl_lock(); 6515 list_for_each_entry(net, net_list, exit_list) { 6516 for_each_netdev_reverse(net, dev) { 6517 if (dev->rtnl_link_ops) 6518 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6519 else 6520 unregister_netdevice_queue(dev, &dev_kill_list); 6521 } 6522 } 6523 unregister_netdevice_many(&dev_kill_list); 6524 list_del(&dev_kill_list); 6525 rtnl_unlock(); 6526 } 6527 6528 static struct pernet_operations __net_initdata default_device_ops = { 6529 .exit = default_device_exit, 6530 .exit_batch = default_device_exit_batch, 6531 }; 6532 6533 /* 6534 * Initialize the DEV module. At boot time this walks the device list and 6535 * unhooks any devices that fail to initialise (normally hardware not 6536 * present) and leaves us with a valid list of present and active devices. 6537 * 6538 */ 6539 6540 /* 6541 * This is called single threaded during boot, so no need 6542 * to take the rtnl semaphore. 6543 */ 6544 static int __init net_dev_init(void) 6545 { 6546 int i, rc = -ENOMEM; 6547 6548 BUG_ON(!dev_boot_phase); 6549 6550 if (dev_proc_init()) 6551 goto out; 6552 6553 if (netdev_kobject_init()) 6554 goto out; 6555 6556 INIT_LIST_HEAD(&ptype_all); 6557 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6558 INIT_LIST_HEAD(&ptype_base[i]); 6559 6560 if (register_pernet_subsys(&netdev_net_ops)) 6561 goto out; 6562 6563 /* 6564 * Initialise the packet receive queues. 6565 */ 6566 6567 for_each_possible_cpu(i) { 6568 struct softnet_data *sd = &per_cpu(softnet_data, i); 6569 6570 memset(sd, 0, sizeof(*sd)); 6571 skb_queue_head_init(&sd->input_pkt_queue); 6572 skb_queue_head_init(&sd->process_queue); 6573 sd->completion_queue = NULL; 6574 INIT_LIST_HEAD(&sd->poll_list); 6575 sd->output_queue = NULL; 6576 sd->output_queue_tailp = &sd->output_queue; 6577 #ifdef CONFIG_RPS 6578 sd->csd.func = rps_trigger_softirq; 6579 sd->csd.info = sd; 6580 sd->csd.flags = 0; 6581 sd->cpu = i; 6582 #endif 6583 6584 sd->backlog.poll = process_backlog; 6585 sd->backlog.weight = weight_p; 6586 sd->backlog.gro_list = NULL; 6587 sd->backlog.gro_count = 0; 6588 } 6589 6590 dev_boot_phase = 0; 6591 6592 /* The loopback device is special if any other network devices 6593 * is present in a network namespace the loopback device must 6594 * be present. Since we now dynamically allocate and free the 6595 * loopback device ensure this invariant is maintained by 6596 * keeping the loopback device as the first device on the 6597 * list of network devices. Ensuring the loopback devices 6598 * is the first device that appears and the last network device 6599 * that disappears. 6600 */ 6601 if (register_pernet_device(&loopback_net_ops)) 6602 goto out; 6603 6604 if (register_pernet_device(&default_device_ops)) 6605 goto out; 6606 6607 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6608 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6609 6610 hotcpu_notifier(dev_cpu_callback, 0); 6611 dst_init(); 6612 dev_mcast_init(); 6613 rc = 0; 6614 out: 6615 return rc; 6616 } 6617 6618 subsys_initcall(net_dev_init); 6619 6620 static int __init initialize_hashrnd(void) 6621 { 6622 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6623 return 0; 6624 } 6625 6626 late_initcall_sync(initialize_hashrnd); 6627 6628