xref: /linux/net/core/dev.c (revision 42fda66387daa53538ae13a2c858396aaf037158)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <rzsfl@rz.uni-sb.de>
16  *		Alan Cox <gw4pts@gw4pts.ampr.org>
17  *		David Hinds <dahinds@users.sourceforge.net>
18  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *		Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <linux/rtnetlink.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/stat.h>
101 #include <linux/if_bridge.h>
102 #include <linux/if_macvlan.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/kmod.h>
109 #include <linux/module.h>
110 #include <linux/kallsyms.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 
123 /*
124  *	The list of packet types we will receive (as opposed to discard)
125  *	and the routines to invoke.
126  *
127  *	Why 16. Because with 16 the only overlap we get on a hash of the
128  *	low nibble of the protocol value is RARP/SNAP/X.25.
129  *
130  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
131  *             sure which should go first, but I bet it won't make much
132  *             difference if we are running VLANs.  The good news is that
133  *             this protocol won't be in the list unless compiled in, so
134  *             the average user (w/out VLANs) will not be adversely affected.
135  *             --BLG
136  *
137  *		0800	IP
138  *		8100    802.1Q VLAN
139  *		0001	802.3
140  *		0002	AX.25
141  *		0004	802.2
142  *		8035	RARP
143  *		0005	SNAP
144  *		0805	X.25
145  *		0806	ARP
146  *		8137	IPX
147  *		0009	Localtalk
148  *		86DD	IPv6
149  */
150 
151 static DEFINE_SPINLOCK(ptype_lock);
152 static struct list_head ptype_base[16] __read_mostly;	/* 16 way hashed list */
153 static struct list_head ptype_all __read_mostly;	/* Taps */
154 
155 #ifdef CONFIG_NET_DMA
156 struct net_dma {
157 	struct dma_client client;
158 	spinlock_t lock;
159 	cpumask_t channel_mask;
160 	struct dma_chan *channels[NR_CPUS];
161 };
162 
163 static enum dma_state_client
164 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
165 	enum dma_state state);
166 
167 static struct net_dma net_dma = {
168 	.client = {
169 		.event_callback = netdev_dma_event,
170 	},
171 };
172 #endif
173 
174 /*
175  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176  * semaphore.
177  *
178  * Pure readers hold dev_base_lock for reading.
179  *
180  * Writers must hold the rtnl semaphore while they loop through the
181  * dev_base_head list, and hold dev_base_lock for writing when they do the
182  * actual updates.  This allows pure readers to access the list even
183  * while a writer is preparing to update it.
184  *
185  * To put it another way, dev_base_lock is held for writing only to
186  * protect against pure readers; the rtnl semaphore provides the
187  * protection against other writers.
188  *
189  * See, for example usages, register_netdevice() and
190  * unregister_netdevice(), which must be called with the rtnl
191  * semaphore held.
192  */
193 DEFINE_RWLOCK(dev_base_lock);
194 
195 EXPORT_SYMBOL(dev_base_lock);
196 
197 #define NETDEV_HASHBITS	8
198 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
199 
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 	return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
204 }
205 
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 	return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
209 }
210 
211 /* Device list insertion */
212 static int list_netdevice(struct net_device *dev)
213 {
214 	struct net *net = dev->nd_net;
215 
216 	ASSERT_RTNL();
217 
218 	write_lock_bh(&dev_base_lock);
219 	list_add_tail(&dev->dev_list, &net->dev_base_head);
220 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
221 	hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
222 	write_unlock_bh(&dev_base_lock);
223 	return 0;
224 }
225 
226 /* Device list removal */
227 static void unlist_netdevice(struct net_device *dev)
228 {
229 	ASSERT_RTNL();
230 
231 	/* Unlink dev from the device chain */
232 	write_lock_bh(&dev_base_lock);
233 	list_del(&dev->dev_list);
234 	hlist_del(&dev->name_hlist);
235 	hlist_del(&dev->index_hlist);
236 	write_unlock_bh(&dev_base_lock);
237 }
238 
239 /*
240  *	Our notifier list
241  */
242 
243 static RAW_NOTIFIER_HEAD(netdev_chain);
244 
245 /*
246  *	Device drivers call our routines to queue packets here. We empty the
247  *	queue in the local softnet handler.
248  */
249 
250 DEFINE_PER_CPU(struct softnet_data, softnet_data);
251 
252 extern int netdev_kobject_init(void);
253 extern int netdev_register_kobject(struct net_device *);
254 extern void netdev_unregister_kobject(struct net_device *);
255 
256 #ifdef CONFIG_DEBUG_LOCK_ALLOC
257 /*
258  * register_netdevice() inits dev->_xmit_lock and sets lockdep class
259  * according to dev->type
260  */
261 static const unsigned short netdev_lock_type[] =
262 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
263 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
264 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
265 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
266 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
267 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
268 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
269 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
270 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
271 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
272 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
273 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
274 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
275 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
276 	 ARPHRD_NONE};
277 
278 static const char *netdev_lock_name[] =
279 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
280 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
281 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
282 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
283 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
284 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
285 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
286 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
287 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
288 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
289 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
290 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
291 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
292 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
293 	 "_xmit_NONE"};
294 
295 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
296 
297 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
298 {
299 	int i;
300 
301 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
302 		if (netdev_lock_type[i] == dev_type)
303 			return i;
304 	/* the last key is used by default */
305 	return ARRAY_SIZE(netdev_lock_type) - 1;
306 }
307 
308 static inline void netdev_set_lockdep_class(spinlock_t *lock,
309 					    unsigned short dev_type)
310 {
311 	int i;
312 
313 	i = netdev_lock_pos(dev_type);
314 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
315 				   netdev_lock_name[i]);
316 }
317 #else
318 static inline void netdev_set_lockdep_class(spinlock_t *lock,
319 					    unsigned short dev_type)
320 {
321 }
322 #endif
323 
324 /*******************************************************************************
325 
326 		Protocol management and registration routines
327 
328 *******************************************************************************/
329 
330 /*
331  *	Add a protocol ID to the list. Now that the input handler is
332  *	smarter we can dispense with all the messy stuff that used to be
333  *	here.
334  *
335  *	BEWARE!!! Protocol handlers, mangling input packets,
336  *	MUST BE last in hash buckets and checking protocol handlers
337  *	MUST start from promiscuous ptype_all chain in net_bh.
338  *	It is true now, do not change it.
339  *	Explanation follows: if protocol handler, mangling packet, will
340  *	be the first on list, it is not able to sense, that packet
341  *	is cloned and should be copied-on-write, so that it will
342  *	change it and subsequent readers will get broken packet.
343  *							--ANK (980803)
344  */
345 
346 /**
347  *	dev_add_pack - add packet handler
348  *	@pt: packet type declaration
349  *
350  *	Add a protocol handler to the networking stack. The passed &packet_type
351  *	is linked into kernel lists and may not be freed until it has been
352  *	removed from the kernel lists.
353  *
354  *	This call does not sleep therefore it can not
355  *	guarantee all CPU's that are in middle of receiving packets
356  *	will see the new packet type (until the next received packet).
357  */
358 
359 void dev_add_pack(struct packet_type *pt)
360 {
361 	int hash;
362 
363 	spin_lock_bh(&ptype_lock);
364 	if (pt->type == htons(ETH_P_ALL))
365 		list_add_rcu(&pt->list, &ptype_all);
366 	else {
367 		hash = ntohs(pt->type) & 15;
368 		list_add_rcu(&pt->list, &ptype_base[hash]);
369 	}
370 	spin_unlock_bh(&ptype_lock);
371 }
372 
373 /**
374  *	__dev_remove_pack	 - remove packet handler
375  *	@pt: packet type declaration
376  *
377  *	Remove a protocol handler that was previously added to the kernel
378  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
379  *	from the kernel lists and can be freed or reused once this function
380  *	returns.
381  *
382  *      The packet type might still be in use by receivers
383  *	and must not be freed until after all the CPU's have gone
384  *	through a quiescent state.
385  */
386 void __dev_remove_pack(struct packet_type *pt)
387 {
388 	struct list_head *head;
389 	struct packet_type *pt1;
390 
391 	spin_lock_bh(&ptype_lock);
392 
393 	if (pt->type == htons(ETH_P_ALL))
394 		head = &ptype_all;
395 	else
396 		head = &ptype_base[ntohs(pt->type) & 15];
397 
398 	list_for_each_entry(pt1, head, list) {
399 		if (pt == pt1) {
400 			list_del_rcu(&pt->list);
401 			goto out;
402 		}
403 	}
404 
405 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
406 out:
407 	spin_unlock_bh(&ptype_lock);
408 }
409 /**
410  *	dev_remove_pack	 - remove packet handler
411  *	@pt: packet type declaration
412  *
413  *	Remove a protocol handler that was previously added to the kernel
414  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
415  *	from the kernel lists and can be freed or reused once this function
416  *	returns.
417  *
418  *	This call sleeps to guarantee that no CPU is looking at the packet
419  *	type after return.
420  */
421 void dev_remove_pack(struct packet_type *pt)
422 {
423 	__dev_remove_pack(pt);
424 
425 	synchronize_net();
426 }
427 
428 /******************************************************************************
429 
430 		      Device Boot-time Settings Routines
431 
432 *******************************************************************************/
433 
434 /* Boot time configuration table */
435 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
436 
437 /**
438  *	netdev_boot_setup_add	- add new setup entry
439  *	@name: name of the device
440  *	@map: configured settings for the device
441  *
442  *	Adds new setup entry to the dev_boot_setup list.  The function
443  *	returns 0 on error and 1 on success.  This is a generic routine to
444  *	all netdevices.
445  */
446 static int netdev_boot_setup_add(char *name, struct ifmap *map)
447 {
448 	struct netdev_boot_setup *s;
449 	int i;
450 
451 	s = dev_boot_setup;
452 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
453 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
454 			memset(s[i].name, 0, sizeof(s[i].name));
455 			strcpy(s[i].name, name);
456 			memcpy(&s[i].map, map, sizeof(s[i].map));
457 			break;
458 		}
459 	}
460 
461 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
462 }
463 
464 /**
465  *	netdev_boot_setup_check	- check boot time settings
466  *	@dev: the netdevice
467  *
468  * 	Check boot time settings for the device.
469  *	The found settings are set for the device to be used
470  *	later in the device probing.
471  *	Returns 0 if no settings found, 1 if they are.
472  */
473 int netdev_boot_setup_check(struct net_device *dev)
474 {
475 	struct netdev_boot_setup *s = dev_boot_setup;
476 	int i;
477 
478 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
479 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
480 		    !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
481 			dev->irq 	= s[i].map.irq;
482 			dev->base_addr 	= s[i].map.base_addr;
483 			dev->mem_start 	= s[i].map.mem_start;
484 			dev->mem_end 	= s[i].map.mem_end;
485 			return 1;
486 		}
487 	}
488 	return 0;
489 }
490 
491 
492 /**
493  *	netdev_boot_base	- get address from boot time settings
494  *	@prefix: prefix for network device
495  *	@unit: id for network device
496  *
497  * 	Check boot time settings for the base address of device.
498  *	The found settings are set for the device to be used
499  *	later in the device probing.
500  *	Returns 0 if no settings found.
501  */
502 unsigned long netdev_boot_base(const char *prefix, int unit)
503 {
504 	const struct netdev_boot_setup *s = dev_boot_setup;
505 	char name[IFNAMSIZ];
506 	int i;
507 
508 	sprintf(name, "%s%d", prefix, unit);
509 
510 	/*
511 	 * If device already registered then return base of 1
512 	 * to indicate not to probe for this interface
513 	 */
514 	if (__dev_get_by_name(&init_net, name))
515 		return 1;
516 
517 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
518 		if (!strcmp(name, s[i].name))
519 			return s[i].map.base_addr;
520 	return 0;
521 }
522 
523 /*
524  * Saves at boot time configured settings for any netdevice.
525  */
526 int __init netdev_boot_setup(char *str)
527 {
528 	int ints[5];
529 	struct ifmap map;
530 
531 	str = get_options(str, ARRAY_SIZE(ints), ints);
532 	if (!str || !*str)
533 		return 0;
534 
535 	/* Save settings */
536 	memset(&map, 0, sizeof(map));
537 	if (ints[0] > 0)
538 		map.irq = ints[1];
539 	if (ints[0] > 1)
540 		map.base_addr = ints[2];
541 	if (ints[0] > 2)
542 		map.mem_start = ints[3];
543 	if (ints[0] > 3)
544 		map.mem_end = ints[4];
545 
546 	/* Add new entry to the list */
547 	return netdev_boot_setup_add(str, &map);
548 }
549 
550 __setup("netdev=", netdev_boot_setup);
551 
552 /*******************************************************************************
553 
554 			    Device Interface Subroutines
555 
556 *******************************************************************************/
557 
558 /**
559  *	__dev_get_by_name	- find a device by its name
560  *	@net: the applicable net namespace
561  *	@name: name to find
562  *
563  *	Find an interface by name. Must be called under RTNL semaphore
564  *	or @dev_base_lock. If the name is found a pointer to the device
565  *	is returned. If the name is not found then %NULL is returned. The
566  *	reference counters are not incremented so the caller must be
567  *	careful with locks.
568  */
569 
570 struct net_device *__dev_get_by_name(struct net *net, const char *name)
571 {
572 	struct hlist_node *p;
573 
574 	hlist_for_each(p, dev_name_hash(net, name)) {
575 		struct net_device *dev
576 			= hlist_entry(p, struct net_device, name_hlist);
577 		if (!strncmp(dev->name, name, IFNAMSIZ))
578 			return dev;
579 	}
580 	return NULL;
581 }
582 
583 /**
584  *	dev_get_by_name		- find a device by its name
585  *	@net: the applicable net namespace
586  *	@name: name to find
587  *
588  *	Find an interface by name. This can be called from any
589  *	context and does its own locking. The returned handle has
590  *	the usage count incremented and the caller must use dev_put() to
591  *	release it when it is no longer needed. %NULL is returned if no
592  *	matching device is found.
593  */
594 
595 struct net_device *dev_get_by_name(struct net *net, const char *name)
596 {
597 	struct net_device *dev;
598 
599 	read_lock(&dev_base_lock);
600 	dev = __dev_get_by_name(net, name);
601 	if (dev)
602 		dev_hold(dev);
603 	read_unlock(&dev_base_lock);
604 	return dev;
605 }
606 
607 /**
608  *	__dev_get_by_index - find a device by its ifindex
609  *	@net: the applicable net namespace
610  *	@ifindex: index of device
611  *
612  *	Search for an interface by index. Returns %NULL if the device
613  *	is not found or a pointer to the device. The device has not
614  *	had its reference counter increased so the caller must be careful
615  *	about locking. The caller must hold either the RTNL semaphore
616  *	or @dev_base_lock.
617  */
618 
619 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
620 {
621 	struct hlist_node *p;
622 
623 	hlist_for_each(p, dev_index_hash(net, ifindex)) {
624 		struct net_device *dev
625 			= hlist_entry(p, struct net_device, index_hlist);
626 		if (dev->ifindex == ifindex)
627 			return dev;
628 	}
629 	return NULL;
630 }
631 
632 
633 /**
634  *	dev_get_by_index - find a device by its ifindex
635  *	@net: the applicable net namespace
636  *	@ifindex: index of device
637  *
638  *	Search for an interface by index. Returns NULL if the device
639  *	is not found or a pointer to the device. The device returned has
640  *	had a reference added and the pointer is safe until the user calls
641  *	dev_put to indicate they have finished with it.
642  */
643 
644 struct net_device *dev_get_by_index(struct net *net, int ifindex)
645 {
646 	struct net_device *dev;
647 
648 	read_lock(&dev_base_lock);
649 	dev = __dev_get_by_index(net, ifindex);
650 	if (dev)
651 		dev_hold(dev);
652 	read_unlock(&dev_base_lock);
653 	return dev;
654 }
655 
656 /**
657  *	dev_getbyhwaddr - find a device by its hardware address
658  *	@net: the applicable net namespace
659  *	@type: media type of device
660  *	@ha: hardware address
661  *
662  *	Search for an interface by MAC address. Returns NULL if the device
663  *	is not found or a pointer to the device. The caller must hold the
664  *	rtnl semaphore. The returned device has not had its ref count increased
665  *	and the caller must therefore be careful about locking
666  *
667  *	BUGS:
668  *	If the API was consistent this would be __dev_get_by_hwaddr
669  */
670 
671 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
672 {
673 	struct net_device *dev;
674 
675 	ASSERT_RTNL();
676 
677 	for_each_netdev(&init_net, dev)
678 		if (dev->type == type &&
679 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
680 			return dev;
681 
682 	return NULL;
683 }
684 
685 EXPORT_SYMBOL(dev_getbyhwaddr);
686 
687 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
688 {
689 	struct net_device *dev;
690 
691 	ASSERT_RTNL();
692 	for_each_netdev(net, dev)
693 		if (dev->type == type)
694 			return dev;
695 
696 	return NULL;
697 }
698 
699 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
700 
701 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
702 {
703 	struct net_device *dev;
704 
705 	rtnl_lock();
706 	dev = __dev_getfirstbyhwtype(net, type);
707 	if (dev)
708 		dev_hold(dev);
709 	rtnl_unlock();
710 	return dev;
711 }
712 
713 EXPORT_SYMBOL(dev_getfirstbyhwtype);
714 
715 /**
716  *	dev_get_by_flags - find any device with given flags
717  *	@net: the applicable net namespace
718  *	@if_flags: IFF_* values
719  *	@mask: bitmask of bits in if_flags to check
720  *
721  *	Search for any interface with the given flags. Returns NULL if a device
722  *	is not found or a pointer to the device. The device returned has
723  *	had a reference added and the pointer is safe until the user calls
724  *	dev_put to indicate they have finished with it.
725  */
726 
727 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
728 {
729 	struct net_device *dev, *ret;
730 
731 	ret = NULL;
732 	read_lock(&dev_base_lock);
733 	for_each_netdev(net, dev) {
734 		if (((dev->flags ^ if_flags) & mask) == 0) {
735 			dev_hold(dev);
736 			ret = dev;
737 			break;
738 		}
739 	}
740 	read_unlock(&dev_base_lock);
741 	return ret;
742 }
743 
744 /**
745  *	dev_valid_name - check if name is okay for network device
746  *	@name: name string
747  *
748  *	Network device names need to be valid file names to
749  *	to allow sysfs to work.  We also disallow any kind of
750  *	whitespace.
751  */
752 int dev_valid_name(const char *name)
753 {
754 	if (*name == '\0')
755 		return 0;
756 	if (strlen(name) >= IFNAMSIZ)
757 		return 0;
758 	if (!strcmp(name, ".") || !strcmp(name, ".."))
759 		return 0;
760 
761 	while (*name) {
762 		if (*name == '/' || isspace(*name))
763 			return 0;
764 		name++;
765 	}
766 	return 1;
767 }
768 
769 /**
770  *	__dev_alloc_name - allocate a name for a device
771  *	@net: network namespace to allocate the device name in
772  *	@name: name format string
773  *	@buf:  scratch buffer and result name string
774  *
775  *	Passed a format string - eg "lt%d" it will try and find a suitable
776  *	id. It scans list of devices to build up a free map, then chooses
777  *	the first empty slot. The caller must hold the dev_base or rtnl lock
778  *	while allocating the name and adding the device in order to avoid
779  *	duplicates.
780  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
781  *	Returns the number of the unit assigned or a negative errno code.
782  */
783 
784 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
785 {
786 	int i = 0;
787 	const char *p;
788 	const int max_netdevices = 8*PAGE_SIZE;
789 	unsigned long *inuse;
790 	struct net_device *d;
791 
792 	p = strnchr(name, IFNAMSIZ-1, '%');
793 	if (p) {
794 		/*
795 		 * Verify the string as this thing may have come from
796 		 * the user.  There must be either one "%d" and no other "%"
797 		 * characters.
798 		 */
799 		if (p[1] != 'd' || strchr(p + 2, '%'))
800 			return -EINVAL;
801 
802 		/* Use one page as a bit array of possible slots */
803 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
804 		if (!inuse)
805 			return -ENOMEM;
806 
807 		for_each_netdev(net, d) {
808 			if (!sscanf(d->name, name, &i))
809 				continue;
810 			if (i < 0 || i >= max_netdevices)
811 				continue;
812 
813 			/*  avoid cases where sscanf is not exact inverse of printf */
814 			snprintf(buf, IFNAMSIZ, name, i);
815 			if (!strncmp(buf, d->name, IFNAMSIZ))
816 				set_bit(i, inuse);
817 		}
818 
819 		i = find_first_zero_bit(inuse, max_netdevices);
820 		free_page((unsigned long) inuse);
821 	}
822 
823 	snprintf(buf, IFNAMSIZ, name, i);
824 	if (!__dev_get_by_name(net, buf))
825 		return i;
826 
827 	/* It is possible to run out of possible slots
828 	 * when the name is long and there isn't enough space left
829 	 * for the digits, or if all bits are used.
830 	 */
831 	return -ENFILE;
832 }
833 
834 /**
835  *	dev_alloc_name - allocate a name for a device
836  *	@dev: device
837  *	@name: name format string
838  *
839  *	Passed a format string - eg "lt%d" it will try and find a suitable
840  *	id. It scans list of devices to build up a free map, then chooses
841  *	the first empty slot. The caller must hold the dev_base or rtnl lock
842  *	while allocating the name and adding the device in order to avoid
843  *	duplicates.
844  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
845  *	Returns the number of the unit assigned or a negative errno code.
846  */
847 
848 int dev_alloc_name(struct net_device *dev, const char *name)
849 {
850 	char buf[IFNAMSIZ];
851 	struct net *net;
852 	int ret;
853 
854 	BUG_ON(!dev->nd_net);
855 	net = dev->nd_net;
856 	ret = __dev_alloc_name(net, name, buf);
857 	if (ret >= 0)
858 		strlcpy(dev->name, buf, IFNAMSIZ);
859 	return ret;
860 }
861 
862 
863 /**
864  *	dev_change_name - change name of a device
865  *	@dev: device
866  *	@newname: name (or format string) must be at least IFNAMSIZ
867  *
868  *	Change name of a device, can pass format strings "eth%d".
869  *	for wildcarding.
870  */
871 int dev_change_name(struct net_device *dev, char *newname)
872 {
873 	char oldname[IFNAMSIZ];
874 	int err = 0;
875 	int ret;
876 	struct net *net;
877 
878 	ASSERT_RTNL();
879 	BUG_ON(!dev->nd_net);
880 
881 	net = dev->nd_net;
882 	if (dev->flags & IFF_UP)
883 		return -EBUSY;
884 
885 	if (!dev_valid_name(newname))
886 		return -EINVAL;
887 
888 	memcpy(oldname, dev->name, IFNAMSIZ);
889 
890 	if (strchr(newname, '%')) {
891 		err = dev_alloc_name(dev, newname);
892 		if (err < 0)
893 			return err;
894 		strcpy(newname, dev->name);
895 	}
896 	else if (__dev_get_by_name(net, newname))
897 		return -EEXIST;
898 	else
899 		strlcpy(dev->name, newname, IFNAMSIZ);
900 
901 rollback:
902 	device_rename(&dev->dev, dev->name);
903 
904 	write_lock_bh(&dev_base_lock);
905 	hlist_del(&dev->name_hlist);
906 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
907 	write_unlock_bh(&dev_base_lock);
908 
909 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
910 	ret = notifier_to_errno(ret);
911 
912 	if (ret) {
913 		if (err) {
914 			printk(KERN_ERR
915 			       "%s: name change rollback failed: %d.\n",
916 			       dev->name, ret);
917 		} else {
918 			err = ret;
919 			memcpy(dev->name, oldname, IFNAMSIZ);
920 			goto rollback;
921 		}
922 	}
923 
924 	return err;
925 }
926 
927 /**
928  *	netdev_features_change - device changes features
929  *	@dev: device to cause notification
930  *
931  *	Called to indicate a device has changed features.
932  */
933 void netdev_features_change(struct net_device *dev)
934 {
935 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
936 }
937 EXPORT_SYMBOL(netdev_features_change);
938 
939 /**
940  *	netdev_state_change - device changes state
941  *	@dev: device to cause notification
942  *
943  *	Called to indicate a device has changed state. This function calls
944  *	the notifier chains for netdev_chain and sends a NEWLINK message
945  *	to the routing socket.
946  */
947 void netdev_state_change(struct net_device *dev)
948 {
949 	if (dev->flags & IFF_UP) {
950 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
951 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
952 	}
953 }
954 
955 /**
956  *	dev_load 	- load a network module
957  *	@net: the applicable net namespace
958  *	@name: name of interface
959  *
960  *	If a network interface is not present and the process has suitable
961  *	privileges this function loads the module. If module loading is not
962  *	available in this kernel then it becomes a nop.
963  */
964 
965 void dev_load(struct net *net, const char *name)
966 {
967 	struct net_device *dev;
968 
969 	read_lock(&dev_base_lock);
970 	dev = __dev_get_by_name(net, name);
971 	read_unlock(&dev_base_lock);
972 
973 	if (!dev && capable(CAP_SYS_MODULE))
974 		request_module("%s", name);
975 }
976 
977 /**
978  *	dev_open	- prepare an interface for use.
979  *	@dev:	device to open
980  *
981  *	Takes a device from down to up state. The device's private open
982  *	function is invoked and then the multicast lists are loaded. Finally
983  *	the device is moved into the up state and a %NETDEV_UP message is
984  *	sent to the netdev notifier chain.
985  *
986  *	Calling this function on an active interface is a nop. On a failure
987  *	a negative errno code is returned.
988  */
989 int dev_open(struct net_device *dev)
990 {
991 	int ret = 0;
992 
993 	/*
994 	 *	Is it already up?
995 	 */
996 
997 	if (dev->flags & IFF_UP)
998 		return 0;
999 
1000 	/*
1001 	 *	Is it even present?
1002 	 */
1003 	if (!netif_device_present(dev))
1004 		return -ENODEV;
1005 
1006 	/*
1007 	 *	Call device private open method
1008 	 */
1009 	set_bit(__LINK_STATE_START, &dev->state);
1010 	if (dev->open) {
1011 		ret = dev->open(dev);
1012 		if (ret)
1013 			clear_bit(__LINK_STATE_START, &dev->state);
1014 	}
1015 
1016 	/*
1017 	 *	If it went open OK then:
1018 	 */
1019 
1020 	if (!ret) {
1021 		/*
1022 		 *	Set the flags.
1023 		 */
1024 		dev->flags |= IFF_UP;
1025 
1026 		/*
1027 		 *	Initialize multicasting status
1028 		 */
1029 		dev_set_rx_mode(dev);
1030 
1031 		/*
1032 		 *	Wakeup transmit queue engine
1033 		 */
1034 		dev_activate(dev);
1035 
1036 		/*
1037 		 *	... and announce new interface.
1038 		 */
1039 		call_netdevice_notifiers(NETDEV_UP, dev);
1040 	}
1041 	return ret;
1042 }
1043 
1044 /**
1045  *	dev_close - shutdown an interface.
1046  *	@dev: device to shutdown
1047  *
1048  *	This function moves an active device into down state. A
1049  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1050  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1051  *	chain.
1052  */
1053 int dev_close(struct net_device *dev)
1054 {
1055 	might_sleep();
1056 
1057 	if (!(dev->flags & IFF_UP))
1058 		return 0;
1059 
1060 	/*
1061 	 *	Tell people we are going down, so that they can
1062 	 *	prepare to death, when device is still operating.
1063 	 */
1064 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1065 
1066 	dev_deactivate(dev);
1067 
1068 	clear_bit(__LINK_STATE_START, &dev->state);
1069 
1070 	/* Synchronize to scheduled poll. We cannot touch poll list,
1071 	 * it can be even on different cpu. So just clear netif_running().
1072 	 *
1073 	 * dev->stop() will invoke napi_disable() on all of it's
1074 	 * napi_struct instances on this device.
1075 	 */
1076 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1077 
1078 	/*
1079 	 *	Call the device specific close. This cannot fail.
1080 	 *	Only if device is UP
1081 	 *
1082 	 *	We allow it to be called even after a DETACH hot-plug
1083 	 *	event.
1084 	 */
1085 	if (dev->stop)
1086 		dev->stop(dev);
1087 
1088 	/*
1089 	 *	Device is now down.
1090 	 */
1091 
1092 	dev->flags &= ~IFF_UP;
1093 
1094 	/*
1095 	 * Tell people we are down
1096 	 */
1097 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1098 
1099 	return 0;
1100 }
1101 
1102 
1103 static int dev_boot_phase = 1;
1104 
1105 /*
1106  *	Device change register/unregister. These are not inline or static
1107  *	as we export them to the world.
1108  */
1109 
1110 /**
1111  *	register_netdevice_notifier - register a network notifier block
1112  *	@nb: notifier
1113  *
1114  *	Register a notifier to be called when network device events occur.
1115  *	The notifier passed is linked into the kernel structures and must
1116  *	not be reused until it has been unregistered. A negative errno code
1117  *	is returned on a failure.
1118  *
1119  * 	When registered all registration and up events are replayed
1120  *	to the new notifier to allow device to have a race free
1121  *	view of the network device list.
1122  */
1123 
1124 int register_netdevice_notifier(struct notifier_block *nb)
1125 {
1126 	struct net_device *dev;
1127 	struct net_device *last;
1128 	struct net *net;
1129 	int err;
1130 
1131 	rtnl_lock();
1132 	err = raw_notifier_chain_register(&netdev_chain, nb);
1133 	if (err)
1134 		goto unlock;
1135 	if (dev_boot_phase)
1136 		goto unlock;
1137 	for_each_net(net) {
1138 		for_each_netdev(net, dev) {
1139 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1140 			err = notifier_to_errno(err);
1141 			if (err)
1142 				goto rollback;
1143 
1144 			if (!(dev->flags & IFF_UP))
1145 				continue;
1146 
1147 			nb->notifier_call(nb, NETDEV_UP, dev);
1148 		}
1149 	}
1150 
1151 unlock:
1152 	rtnl_unlock();
1153 	return err;
1154 
1155 rollback:
1156 	last = dev;
1157 	for_each_net(net) {
1158 		for_each_netdev(net, dev) {
1159 			if (dev == last)
1160 				break;
1161 
1162 			if (dev->flags & IFF_UP) {
1163 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1164 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1165 			}
1166 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1167 		}
1168 	}
1169 	goto unlock;
1170 }
1171 
1172 /**
1173  *	unregister_netdevice_notifier - unregister a network notifier block
1174  *	@nb: notifier
1175  *
1176  *	Unregister a notifier previously registered by
1177  *	register_netdevice_notifier(). The notifier is unlinked into the
1178  *	kernel structures and may then be reused. A negative errno code
1179  *	is returned on a failure.
1180  */
1181 
1182 int unregister_netdevice_notifier(struct notifier_block *nb)
1183 {
1184 	int err;
1185 
1186 	rtnl_lock();
1187 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1188 	rtnl_unlock();
1189 	return err;
1190 }
1191 
1192 /**
1193  *	call_netdevice_notifiers - call all network notifier blocks
1194  *      @val: value passed unmodified to notifier function
1195  *      @dev: net_device pointer passed unmodified to notifier function
1196  *
1197  *	Call all network notifier blocks.  Parameters and return value
1198  *	are as for raw_notifier_call_chain().
1199  */
1200 
1201 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1202 {
1203 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1204 }
1205 
1206 /* When > 0 there are consumers of rx skb time stamps */
1207 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1208 
1209 void net_enable_timestamp(void)
1210 {
1211 	atomic_inc(&netstamp_needed);
1212 }
1213 
1214 void net_disable_timestamp(void)
1215 {
1216 	atomic_dec(&netstamp_needed);
1217 }
1218 
1219 static inline void net_timestamp(struct sk_buff *skb)
1220 {
1221 	if (atomic_read(&netstamp_needed))
1222 		__net_timestamp(skb);
1223 	else
1224 		skb->tstamp.tv64 = 0;
1225 }
1226 
1227 /*
1228  *	Support routine. Sends outgoing frames to any network
1229  *	taps currently in use.
1230  */
1231 
1232 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1233 {
1234 	struct packet_type *ptype;
1235 
1236 	net_timestamp(skb);
1237 
1238 	rcu_read_lock();
1239 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1240 		/* Never send packets back to the socket
1241 		 * they originated from - MvS (miquels@drinkel.ow.org)
1242 		 */
1243 		if ((ptype->dev == dev || !ptype->dev) &&
1244 		    (ptype->af_packet_priv == NULL ||
1245 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1246 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1247 			if (!skb2)
1248 				break;
1249 
1250 			/* skb->nh should be correctly
1251 			   set by sender, so that the second statement is
1252 			   just protection against buggy protocols.
1253 			 */
1254 			skb_reset_mac_header(skb2);
1255 
1256 			if (skb_network_header(skb2) < skb2->data ||
1257 			    skb2->network_header > skb2->tail) {
1258 				if (net_ratelimit())
1259 					printk(KERN_CRIT "protocol %04x is "
1260 					       "buggy, dev %s\n",
1261 					       skb2->protocol, dev->name);
1262 				skb_reset_network_header(skb2);
1263 			}
1264 
1265 			skb2->transport_header = skb2->network_header;
1266 			skb2->pkt_type = PACKET_OUTGOING;
1267 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1268 		}
1269 	}
1270 	rcu_read_unlock();
1271 }
1272 
1273 
1274 void __netif_schedule(struct net_device *dev)
1275 {
1276 	if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1277 		unsigned long flags;
1278 		struct softnet_data *sd;
1279 
1280 		local_irq_save(flags);
1281 		sd = &__get_cpu_var(softnet_data);
1282 		dev->next_sched = sd->output_queue;
1283 		sd->output_queue = dev;
1284 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1285 		local_irq_restore(flags);
1286 	}
1287 }
1288 EXPORT_SYMBOL(__netif_schedule);
1289 
1290 void dev_kfree_skb_irq(struct sk_buff *skb)
1291 {
1292 	if (atomic_dec_and_test(&skb->users)) {
1293 		struct softnet_data *sd;
1294 		unsigned long flags;
1295 
1296 		local_irq_save(flags);
1297 		sd = &__get_cpu_var(softnet_data);
1298 		skb->next = sd->completion_queue;
1299 		sd->completion_queue = skb;
1300 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1301 		local_irq_restore(flags);
1302 	}
1303 }
1304 EXPORT_SYMBOL(dev_kfree_skb_irq);
1305 
1306 void dev_kfree_skb_any(struct sk_buff *skb)
1307 {
1308 	if (in_irq() || irqs_disabled())
1309 		dev_kfree_skb_irq(skb);
1310 	else
1311 		dev_kfree_skb(skb);
1312 }
1313 EXPORT_SYMBOL(dev_kfree_skb_any);
1314 
1315 
1316 /**
1317  * netif_device_detach - mark device as removed
1318  * @dev: network device
1319  *
1320  * Mark device as removed from system and therefore no longer available.
1321  */
1322 void netif_device_detach(struct net_device *dev)
1323 {
1324 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1325 	    netif_running(dev)) {
1326 		netif_stop_queue(dev);
1327 	}
1328 }
1329 EXPORT_SYMBOL(netif_device_detach);
1330 
1331 /**
1332  * netif_device_attach - mark device as attached
1333  * @dev: network device
1334  *
1335  * Mark device as attached from system and restart if needed.
1336  */
1337 void netif_device_attach(struct net_device *dev)
1338 {
1339 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1340 	    netif_running(dev)) {
1341 		netif_wake_queue(dev);
1342 		__netdev_watchdog_up(dev);
1343 	}
1344 }
1345 EXPORT_SYMBOL(netif_device_attach);
1346 
1347 
1348 /*
1349  * Invalidate hardware checksum when packet is to be mangled, and
1350  * complete checksum manually on outgoing path.
1351  */
1352 int skb_checksum_help(struct sk_buff *skb)
1353 {
1354 	__wsum csum;
1355 	int ret = 0, offset;
1356 
1357 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1358 		goto out_set_summed;
1359 
1360 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1361 		/* Let GSO fix up the checksum. */
1362 		goto out_set_summed;
1363 	}
1364 
1365 	offset = skb->csum_start - skb_headroom(skb);
1366 	BUG_ON(offset >= skb_headlen(skb));
1367 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1368 
1369 	offset += skb->csum_offset;
1370 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1371 
1372 	if (skb_cloned(skb) &&
1373 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1374 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1375 		if (ret)
1376 			goto out;
1377 	}
1378 
1379 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1380 out_set_summed:
1381 	skb->ip_summed = CHECKSUM_NONE;
1382 out:
1383 	return ret;
1384 }
1385 
1386 /**
1387  *	skb_gso_segment - Perform segmentation on skb.
1388  *	@skb: buffer to segment
1389  *	@features: features for the output path (see dev->features)
1390  *
1391  *	This function segments the given skb and returns a list of segments.
1392  *
1393  *	It may return NULL if the skb requires no segmentation.  This is
1394  *	only possible when GSO is used for verifying header integrity.
1395  */
1396 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1397 {
1398 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1399 	struct packet_type *ptype;
1400 	__be16 type = skb->protocol;
1401 	int err;
1402 
1403 	BUG_ON(skb_shinfo(skb)->frag_list);
1404 
1405 	skb_reset_mac_header(skb);
1406 	skb->mac_len = skb->network_header - skb->mac_header;
1407 	__skb_pull(skb, skb->mac_len);
1408 
1409 	if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1410 		if (skb_header_cloned(skb) &&
1411 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1412 			return ERR_PTR(err);
1413 	}
1414 
1415 	rcu_read_lock();
1416 	list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1417 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1418 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1419 				err = ptype->gso_send_check(skb);
1420 				segs = ERR_PTR(err);
1421 				if (err || skb_gso_ok(skb, features))
1422 					break;
1423 				__skb_push(skb, (skb->data -
1424 						 skb_network_header(skb)));
1425 			}
1426 			segs = ptype->gso_segment(skb, features);
1427 			break;
1428 		}
1429 	}
1430 	rcu_read_unlock();
1431 
1432 	__skb_push(skb, skb->data - skb_mac_header(skb));
1433 
1434 	return segs;
1435 }
1436 
1437 EXPORT_SYMBOL(skb_gso_segment);
1438 
1439 /* Take action when hardware reception checksum errors are detected. */
1440 #ifdef CONFIG_BUG
1441 void netdev_rx_csum_fault(struct net_device *dev)
1442 {
1443 	if (net_ratelimit()) {
1444 		printk(KERN_ERR "%s: hw csum failure.\n",
1445 			dev ? dev->name : "<unknown>");
1446 		dump_stack();
1447 	}
1448 }
1449 EXPORT_SYMBOL(netdev_rx_csum_fault);
1450 #endif
1451 
1452 /* Actually, we should eliminate this check as soon as we know, that:
1453  * 1. IOMMU is present and allows to map all the memory.
1454  * 2. No high memory really exists on this machine.
1455  */
1456 
1457 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1458 {
1459 #ifdef CONFIG_HIGHMEM
1460 	int i;
1461 
1462 	if (dev->features & NETIF_F_HIGHDMA)
1463 		return 0;
1464 
1465 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1466 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1467 			return 1;
1468 
1469 #endif
1470 	return 0;
1471 }
1472 
1473 struct dev_gso_cb {
1474 	void (*destructor)(struct sk_buff *skb);
1475 };
1476 
1477 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1478 
1479 static void dev_gso_skb_destructor(struct sk_buff *skb)
1480 {
1481 	struct dev_gso_cb *cb;
1482 
1483 	do {
1484 		struct sk_buff *nskb = skb->next;
1485 
1486 		skb->next = nskb->next;
1487 		nskb->next = NULL;
1488 		kfree_skb(nskb);
1489 	} while (skb->next);
1490 
1491 	cb = DEV_GSO_CB(skb);
1492 	if (cb->destructor)
1493 		cb->destructor(skb);
1494 }
1495 
1496 /**
1497  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1498  *	@skb: buffer to segment
1499  *
1500  *	This function segments the given skb and stores the list of segments
1501  *	in skb->next.
1502  */
1503 static int dev_gso_segment(struct sk_buff *skb)
1504 {
1505 	struct net_device *dev = skb->dev;
1506 	struct sk_buff *segs;
1507 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1508 					 NETIF_F_SG : 0);
1509 
1510 	segs = skb_gso_segment(skb, features);
1511 
1512 	/* Verifying header integrity only. */
1513 	if (!segs)
1514 		return 0;
1515 
1516 	if (unlikely(IS_ERR(segs)))
1517 		return PTR_ERR(segs);
1518 
1519 	skb->next = segs;
1520 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1521 	skb->destructor = dev_gso_skb_destructor;
1522 
1523 	return 0;
1524 }
1525 
1526 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1527 {
1528 	if (likely(!skb->next)) {
1529 		if (!list_empty(&ptype_all))
1530 			dev_queue_xmit_nit(skb, dev);
1531 
1532 		if (netif_needs_gso(dev, skb)) {
1533 			if (unlikely(dev_gso_segment(skb)))
1534 				goto out_kfree_skb;
1535 			if (skb->next)
1536 				goto gso;
1537 		}
1538 
1539 		return dev->hard_start_xmit(skb, dev);
1540 	}
1541 
1542 gso:
1543 	do {
1544 		struct sk_buff *nskb = skb->next;
1545 		int rc;
1546 
1547 		skb->next = nskb->next;
1548 		nskb->next = NULL;
1549 		rc = dev->hard_start_xmit(nskb, dev);
1550 		if (unlikely(rc)) {
1551 			nskb->next = skb->next;
1552 			skb->next = nskb;
1553 			return rc;
1554 		}
1555 		if (unlikely((netif_queue_stopped(dev) ||
1556 			     netif_subqueue_stopped(dev, skb->queue_mapping)) &&
1557 			     skb->next))
1558 			return NETDEV_TX_BUSY;
1559 	} while (skb->next);
1560 
1561 	skb->destructor = DEV_GSO_CB(skb)->destructor;
1562 
1563 out_kfree_skb:
1564 	kfree_skb(skb);
1565 	return 0;
1566 }
1567 
1568 /**
1569  *	dev_queue_xmit - transmit a buffer
1570  *	@skb: buffer to transmit
1571  *
1572  *	Queue a buffer for transmission to a network device. The caller must
1573  *	have set the device and priority and built the buffer before calling
1574  *	this function. The function can be called from an interrupt.
1575  *
1576  *	A negative errno code is returned on a failure. A success does not
1577  *	guarantee the frame will be transmitted as it may be dropped due
1578  *	to congestion or traffic shaping.
1579  *
1580  * -----------------------------------------------------------------------------------
1581  *      I notice this method can also return errors from the queue disciplines,
1582  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1583  *      be positive.
1584  *
1585  *      Regardless of the return value, the skb is consumed, so it is currently
1586  *      difficult to retry a send to this method.  (You can bump the ref count
1587  *      before sending to hold a reference for retry if you are careful.)
1588  *
1589  *      When calling this method, interrupts MUST be enabled.  This is because
1590  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1591  *          --BLG
1592  */
1593 
1594 int dev_queue_xmit(struct sk_buff *skb)
1595 {
1596 	struct net_device *dev = skb->dev;
1597 	struct Qdisc *q;
1598 	int rc = -ENOMEM;
1599 
1600 	/* GSO will handle the following emulations directly. */
1601 	if (netif_needs_gso(dev, skb))
1602 		goto gso;
1603 
1604 	if (skb_shinfo(skb)->frag_list &&
1605 	    !(dev->features & NETIF_F_FRAGLIST) &&
1606 	    __skb_linearize(skb))
1607 		goto out_kfree_skb;
1608 
1609 	/* Fragmented skb is linearized if device does not support SG,
1610 	 * or if at least one of fragments is in highmem and device
1611 	 * does not support DMA from it.
1612 	 */
1613 	if (skb_shinfo(skb)->nr_frags &&
1614 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1615 	    __skb_linearize(skb))
1616 		goto out_kfree_skb;
1617 
1618 	/* If packet is not checksummed and device does not support
1619 	 * checksumming for this protocol, complete checksumming here.
1620 	 */
1621 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1622 		skb_set_transport_header(skb, skb->csum_start -
1623 					      skb_headroom(skb));
1624 
1625 		if (!(dev->features & NETIF_F_GEN_CSUM) &&
1626 		    !((dev->features & NETIF_F_IP_CSUM) &&
1627 		      skb->protocol == htons(ETH_P_IP)) &&
1628 		    !((dev->features & NETIF_F_IPV6_CSUM) &&
1629 		      skb->protocol == htons(ETH_P_IPV6)))
1630 			if (skb_checksum_help(skb))
1631 				goto out_kfree_skb;
1632 	}
1633 
1634 gso:
1635 	spin_lock_prefetch(&dev->queue_lock);
1636 
1637 	/* Disable soft irqs for various locks below. Also
1638 	 * stops preemption for RCU.
1639 	 */
1640 	rcu_read_lock_bh();
1641 
1642 	/* Updates of qdisc are serialized by queue_lock.
1643 	 * The struct Qdisc which is pointed to by qdisc is now a
1644 	 * rcu structure - it may be accessed without acquiring
1645 	 * a lock (but the structure may be stale.) The freeing of the
1646 	 * qdisc will be deferred until it's known that there are no
1647 	 * more references to it.
1648 	 *
1649 	 * If the qdisc has an enqueue function, we still need to
1650 	 * hold the queue_lock before calling it, since queue_lock
1651 	 * also serializes access to the device queue.
1652 	 */
1653 
1654 	q = rcu_dereference(dev->qdisc);
1655 #ifdef CONFIG_NET_CLS_ACT
1656 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1657 #endif
1658 	if (q->enqueue) {
1659 		/* Grab device queue */
1660 		spin_lock(&dev->queue_lock);
1661 		q = dev->qdisc;
1662 		if (q->enqueue) {
1663 			/* reset queue_mapping to zero */
1664 			skb->queue_mapping = 0;
1665 			rc = q->enqueue(skb, q);
1666 			qdisc_run(dev);
1667 			spin_unlock(&dev->queue_lock);
1668 
1669 			rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1670 			goto out;
1671 		}
1672 		spin_unlock(&dev->queue_lock);
1673 	}
1674 
1675 	/* The device has no queue. Common case for software devices:
1676 	   loopback, all the sorts of tunnels...
1677 
1678 	   Really, it is unlikely that netif_tx_lock protection is necessary
1679 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1680 	   counters.)
1681 	   However, it is possible, that they rely on protection
1682 	   made by us here.
1683 
1684 	   Check this and shot the lock. It is not prone from deadlocks.
1685 	   Either shot noqueue qdisc, it is even simpler 8)
1686 	 */
1687 	if (dev->flags & IFF_UP) {
1688 		int cpu = smp_processor_id(); /* ok because BHs are off */
1689 
1690 		if (dev->xmit_lock_owner != cpu) {
1691 
1692 			HARD_TX_LOCK(dev, cpu);
1693 
1694 			if (!netif_queue_stopped(dev) &&
1695 			    !netif_subqueue_stopped(dev, skb->queue_mapping)) {
1696 				rc = 0;
1697 				if (!dev_hard_start_xmit(skb, dev)) {
1698 					HARD_TX_UNLOCK(dev);
1699 					goto out;
1700 				}
1701 			}
1702 			HARD_TX_UNLOCK(dev);
1703 			if (net_ratelimit())
1704 				printk(KERN_CRIT "Virtual device %s asks to "
1705 				       "queue packet!\n", dev->name);
1706 		} else {
1707 			/* Recursion is detected! It is possible,
1708 			 * unfortunately */
1709 			if (net_ratelimit())
1710 				printk(KERN_CRIT "Dead loop on virtual device "
1711 				       "%s, fix it urgently!\n", dev->name);
1712 		}
1713 	}
1714 
1715 	rc = -ENETDOWN;
1716 	rcu_read_unlock_bh();
1717 
1718 out_kfree_skb:
1719 	kfree_skb(skb);
1720 	return rc;
1721 out:
1722 	rcu_read_unlock_bh();
1723 	return rc;
1724 }
1725 
1726 
1727 /*=======================================================================
1728 			Receiver routines
1729   =======================================================================*/
1730 
1731 int netdev_max_backlog __read_mostly = 1000;
1732 int netdev_budget __read_mostly = 300;
1733 int weight_p __read_mostly = 64;            /* old backlog weight */
1734 
1735 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1736 
1737 
1738 /**
1739  *	netif_rx	-	post buffer to the network code
1740  *	@skb: buffer to post
1741  *
1742  *	This function receives a packet from a device driver and queues it for
1743  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1744  *	may be dropped during processing for congestion control or by the
1745  *	protocol layers.
1746  *
1747  *	return values:
1748  *	NET_RX_SUCCESS	(no congestion)
1749  *	NET_RX_CN_LOW   (low congestion)
1750  *	NET_RX_CN_MOD   (moderate congestion)
1751  *	NET_RX_CN_HIGH  (high congestion)
1752  *	NET_RX_DROP     (packet was dropped)
1753  *
1754  */
1755 
1756 int netif_rx(struct sk_buff *skb)
1757 {
1758 	struct softnet_data *queue;
1759 	unsigned long flags;
1760 
1761 	/* if netpoll wants it, pretend we never saw it */
1762 	if (netpoll_rx(skb))
1763 		return NET_RX_DROP;
1764 
1765 	if (!skb->tstamp.tv64)
1766 		net_timestamp(skb);
1767 
1768 	/*
1769 	 * The code is rearranged so that the path is the most
1770 	 * short when CPU is congested, but is still operating.
1771 	 */
1772 	local_irq_save(flags);
1773 	queue = &__get_cpu_var(softnet_data);
1774 
1775 	__get_cpu_var(netdev_rx_stat).total++;
1776 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1777 		if (queue->input_pkt_queue.qlen) {
1778 enqueue:
1779 			dev_hold(skb->dev);
1780 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1781 			local_irq_restore(flags);
1782 			return NET_RX_SUCCESS;
1783 		}
1784 
1785 		napi_schedule(&queue->backlog);
1786 		goto enqueue;
1787 	}
1788 
1789 	__get_cpu_var(netdev_rx_stat).dropped++;
1790 	local_irq_restore(flags);
1791 
1792 	kfree_skb(skb);
1793 	return NET_RX_DROP;
1794 }
1795 
1796 int netif_rx_ni(struct sk_buff *skb)
1797 {
1798 	int err;
1799 
1800 	preempt_disable();
1801 	err = netif_rx(skb);
1802 	if (local_softirq_pending())
1803 		do_softirq();
1804 	preempt_enable();
1805 
1806 	return err;
1807 }
1808 
1809 EXPORT_SYMBOL(netif_rx_ni);
1810 
1811 static inline struct net_device *skb_bond(struct sk_buff *skb)
1812 {
1813 	struct net_device *dev = skb->dev;
1814 
1815 	if (dev->master) {
1816 		if (skb_bond_should_drop(skb)) {
1817 			kfree_skb(skb);
1818 			return NULL;
1819 		}
1820 		skb->dev = dev->master;
1821 	}
1822 
1823 	return dev;
1824 }
1825 
1826 
1827 static void net_tx_action(struct softirq_action *h)
1828 {
1829 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1830 
1831 	if (sd->completion_queue) {
1832 		struct sk_buff *clist;
1833 
1834 		local_irq_disable();
1835 		clist = sd->completion_queue;
1836 		sd->completion_queue = NULL;
1837 		local_irq_enable();
1838 
1839 		while (clist) {
1840 			struct sk_buff *skb = clist;
1841 			clist = clist->next;
1842 
1843 			BUG_TRAP(!atomic_read(&skb->users));
1844 			__kfree_skb(skb);
1845 		}
1846 	}
1847 
1848 	if (sd->output_queue) {
1849 		struct net_device *head;
1850 
1851 		local_irq_disable();
1852 		head = sd->output_queue;
1853 		sd->output_queue = NULL;
1854 		local_irq_enable();
1855 
1856 		while (head) {
1857 			struct net_device *dev = head;
1858 			head = head->next_sched;
1859 
1860 			smp_mb__before_clear_bit();
1861 			clear_bit(__LINK_STATE_SCHED, &dev->state);
1862 
1863 			if (spin_trylock(&dev->queue_lock)) {
1864 				qdisc_run(dev);
1865 				spin_unlock(&dev->queue_lock);
1866 			} else {
1867 				netif_schedule(dev);
1868 			}
1869 		}
1870 	}
1871 }
1872 
1873 static inline int deliver_skb(struct sk_buff *skb,
1874 			      struct packet_type *pt_prev,
1875 			      struct net_device *orig_dev)
1876 {
1877 	atomic_inc(&skb->users);
1878 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1879 }
1880 
1881 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1882 /* These hooks defined here for ATM */
1883 struct net_bridge;
1884 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1885 						unsigned char *addr);
1886 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1887 
1888 /*
1889  * If bridge module is loaded call bridging hook.
1890  *  returns NULL if packet was consumed.
1891  */
1892 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1893 					struct sk_buff *skb) __read_mostly;
1894 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1895 					    struct packet_type **pt_prev, int *ret,
1896 					    struct net_device *orig_dev)
1897 {
1898 	struct net_bridge_port *port;
1899 
1900 	if (skb->pkt_type == PACKET_LOOPBACK ||
1901 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
1902 		return skb;
1903 
1904 	if (*pt_prev) {
1905 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1906 		*pt_prev = NULL;
1907 	}
1908 
1909 	return br_handle_frame_hook(port, skb);
1910 }
1911 #else
1912 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
1913 #endif
1914 
1915 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1916 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1917 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1918 
1919 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1920 					     struct packet_type **pt_prev,
1921 					     int *ret,
1922 					     struct net_device *orig_dev)
1923 {
1924 	if (skb->dev->macvlan_port == NULL)
1925 		return skb;
1926 
1927 	if (*pt_prev) {
1928 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1929 		*pt_prev = NULL;
1930 	}
1931 	return macvlan_handle_frame_hook(skb);
1932 }
1933 #else
1934 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
1935 #endif
1936 
1937 #ifdef CONFIG_NET_CLS_ACT
1938 /* TODO: Maybe we should just force sch_ingress to be compiled in
1939  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1940  * a compare and 2 stores extra right now if we dont have it on
1941  * but have CONFIG_NET_CLS_ACT
1942  * NOTE: This doesnt stop any functionality; if you dont have
1943  * the ingress scheduler, you just cant add policies on ingress.
1944  *
1945  */
1946 static int ing_filter(struct sk_buff *skb)
1947 {
1948 	struct Qdisc *q;
1949 	struct net_device *dev = skb->dev;
1950 	int result = TC_ACT_OK;
1951 	u32 ttl = G_TC_RTTL(skb->tc_verd);
1952 
1953 	if (MAX_RED_LOOP < ttl++) {
1954 		printk(KERN_WARNING
1955 		       "Redir loop detected Dropping packet (%d->%d)\n",
1956 		       skb->iif, dev->ifindex);
1957 		return TC_ACT_SHOT;
1958 	}
1959 
1960 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
1961 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1962 
1963 	spin_lock(&dev->ingress_lock);
1964 	if ((q = dev->qdisc_ingress) != NULL)
1965 		result = q->enqueue(skb, q);
1966 	spin_unlock(&dev->ingress_lock);
1967 
1968 	return result;
1969 }
1970 
1971 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
1972 					 struct packet_type **pt_prev,
1973 					 int *ret, struct net_device *orig_dev)
1974 {
1975 	if (!skb->dev->qdisc_ingress)
1976 		goto out;
1977 
1978 	if (*pt_prev) {
1979 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1980 		*pt_prev = NULL;
1981 	} else {
1982 		/* Huh? Why does turning on AF_PACKET affect this? */
1983 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1984 	}
1985 
1986 	switch (ing_filter(skb)) {
1987 	case TC_ACT_SHOT:
1988 	case TC_ACT_STOLEN:
1989 		kfree_skb(skb);
1990 		return NULL;
1991 	}
1992 
1993 out:
1994 	skb->tc_verd = 0;
1995 	return skb;
1996 }
1997 #endif
1998 
1999 int netif_receive_skb(struct sk_buff *skb)
2000 {
2001 	struct packet_type *ptype, *pt_prev;
2002 	struct net_device *orig_dev;
2003 	int ret = NET_RX_DROP;
2004 	__be16 type;
2005 
2006 	/* if we've gotten here through NAPI, check netpoll */
2007 	if (netpoll_receive_skb(skb))
2008 		return NET_RX_DROP;
2009 
2010 	if (!skb->tstamp.tv64)
2011 		net_timestamp(skb);
2012 
2013 	if (!skb->iif)
2014 		skb->iif = skb->dev->ifindex;
2015 
2016 	orig_dev = skb_bond(skb);
2017 
2018 	if (!orig_dev)
2019 		return NET_RX_DROP;
2020 
2021 	__get_cpu_var(netdev_rx_stat).total++;
2022 
2023 	skb_reset_network_header(skb);
2024 	skb_reset_transport_header(skb);
2025 	skb->mac_len = skb->network_header - skb->mac_header;
2026 
2027 	pt_prev = NULL;
2028 
2029 	rcu_read_lock();
2030 
2031 #ifdef CONFIG_NET_CLS_ACT
2032 	if (skb->tc_verd & TC_NCLS) {
2033 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2034 		goto ncls;
2035 	}
2036 #endif
2037 
2038 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2039 		if (!ptype->dev || ptype->dev == skb->dev) {
2040 			if (pt_prev)
2041 				ret = deliver_skb(skb, pt_prev, orig_dev);
2042 			pt_prev = ptype;
2043 		}
2044 	}
2045 
2046 #ifdef CONFIG_NET_CLS_ACT
2047 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2048 	if (!skb)
2049 		goto out;
2050 ncls:
2051 #endif
2052 
2053 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2054 	if (!skb)
2055 		goto out;
2056 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2057 	if (!skb)
2058 		goto out;
2059 
2060 	type = skb->protocol;
2061 	list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
2062 		if (ptype->type == type &&
2063 		    (!ptype->dev || ptype->dev == skb->dev)) {
2064 			if (pt_prev)
2065 				ret = deliver_skb(skb, pt_prev, orig_dev);
2066 			pt_prev = ptype;
2067 		}
2068 	}
2069 
2070 	if (pt_prev) {
2071 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2072 	} else {
2073 		kfree_skb(skb);
2074 		/* Jamal, now you will not able to escape explaining
2075 		 * me how you were going to use this. :-)
2076 		 */
2077 		ret = NET_RX_DROP;
2078 	}
2079 
2080 out:
2081 	rcu_read_unlock();
2082 	return ret;
2083 }
2084 
2085 static int process_backlog(struct napi_struct *napi, int quota)
2086 {
2087 	int work = 0;
2088 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2089 	unsigned long start_time = jiffies;
2090 
2091 	napi->weight = weight_p;
2092 	do {
2093 		struct sk_buff *skb;
2094 		struct net_device *dev;
2095 
2096 		local_irq_disable();
2097 		skb = __skb_dequeue(&queue->input_pkt_queue);
2098 		if (!skb) {
2099 			__napi_complete(napi);
2100 			local_irq_enable();
2101 			break;
2102 		}
2103 
2104 		local_irq_enable();
2105 
2106 		dev = skb->dev;
2107 
2108 		netif_receive_skb(skb);
2109 
2110 		dev_put(dev);
2111 	} while (++work < quota && jiffies == start_time);
2112 
2113 	return work;
2114 }
2115 
2116 /**
2117  * __napi_schedule - schedule for receive
2118  * @n: entry to schedule
2119  *
2120  * The entry's receive function will be scheduled to run
2121  */
2122 void fastcall __napi_schedule(struct napi_struct *n)
2123 {
2124 	unsigned long flags;
2125 
2126 	local_irq_save(flags);
2127 	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2128 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2129 	local_irq_restore(flags);
2130 }
2131 EXPORT_SYMBOL(__napi_schedule);
2132 
2133 
2134 static void net_rx_action(struct softirq_action *h)
2135 {
2136 	struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2137 	unsigned long start_time = jiffies;
2138 	int budget = netdev_budget;
2139 	void *have;
2140 
2141 	local_irq_disable();
2142 
2143 	while (!list_empty(list)) {
2144 		struct napi_struct *n;
2145 		int work, weight;
2146 
2147 		/* If softirq window is exhuasted then punt.
2148 		 *
2149 		 * Note that this is a slight policy change from the
2150 		 * previous NAPI code, which would allow up to 2
2151 		 * jiffies to pass before breaking out.  The test
2152 		 * used to be "jiffies - start_time > 1".
2153 		 */
2154 		if (unlikely(budget <= 0 || jiffies != start_time))
2155 			goto softnet_break;
2156 
2157 		local_irq_enable();
2158 
2159 		/* Even though interrupts have been re-enabled, this
2160 		 * access is safe because interrupts can only add new
2161 		 * entries to the tail of this list, and only ->poll()
2162 		 * calls can remove this head entry from the list.
2163 		 */
2164 		n = list_entry(list->next, struct napi_struct, poll_list);
2165 
2166 		have = netpoll_poll_lock(n);
2167 
2168 		weight = n->weight;
2169 
2170 		work = n->poll(n, weight);
2171 
2172 		WARN_ON_ONCE(work > weight);
2173 
2174 		budget -= work;
2175 
2176 		local_irq_disable();
2177 
2178 		/* Drivers must not modify the NAPI state if they
2179 		 * consume the entire weight.  In such cases this code
2180 		 * still "owns" the NAPI instance and therefore can
2181 		 * move the instance around on the list at-will.
2182 		 */
2183 		if (unlikely(work == weight))
2184 			list_move_tail(&n->poll_list, list);
2185 
2186 		netpoll_poll_unlock(have);
2187 	}
2188 out:
2189 	local_irq_enable();
2190 
2191 #ifdef CONFIG_NET_DMA
2192 	/*
2193 	 * There may not be any more sk_buffs coming right now, so push
2194 	 * any pending DMA copies to hardware
2195 	 */
2196 	if (!cpus_empty(net_dma.channel_mask)) {
2197 		int chan_idx;
2198 		for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2199 			struct dma_chan *chan = net_dma.channels[chan_idx];
2200 			if (chan)
2201 				dma_async_memcpy_issue_pending(chan);
2202 		}
2203 	}
2204 #endif
2205 
2206 	return;
2207 
2208 softnet_break:
2209 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
2210 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2211 	goto out;
2212 }
2213 
2214 static gifconf_func_t * gifconf_list [NPROTO];
2215 
2216 /**
2217  *	register_gifconf	-	register a SIOCGIF handler
2218  *	@family: Address family
2219  *	@gifconf: Function handler
2220  *
2221  *	Register protocol dependent address dumping routines. The handler
2222  *	that is passed must not be freed or reused until it has been replaced
2223  *	by another handler.
2224  */
2225 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2226 {
2227 	if (family >= NPROTO)
2228 		return -EINVAL;
2229 	gifconf_list[family] = gifconf;
2230 	return 0;
2231 }
2232 
2233 
2234 /*
2235  *	Map an interface index to its name (SIOCGIFNAME)
2236  */
2237 
2238 /*
2239  *	We need this ioctl for efficient implementation of the
2240  *	if_indextoname() function required by the IPv6 API.  Without
2241  *	it, we would have to search all the interfaces to find a
2242  *	match.  --pb
2243  */
2244 
2245 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2246 {
2247 	struct net_device *dev;
2248 	struct ifreq ifr;
2249 
2250 	/*
2251 	 *	Fetch the caller's info block.
2252 	 */
2253 
2254 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2255 		return -EFAULT;
2256 
2257 	read_lock(&dev_base_lock);
2258 	dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2259 	if (!dev) {
2260 		read_unlock(&dev_base_lock);
2261 		return -ENODEV;
2262 	}
2263 
2264 	strcpy(ifr.ifr_name, dev->name);
2265 	read_unlock(&dev_base_lock);
2266 
2267 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2268 		return -EFAULT;
2269 	return 0;
2270 }
2271 
2272 /*
2273  *	Perform a SIOCGIFCONF call. This structure will change
2274  *	size eventually, and there is nothing I can do about it.
2275  *	Thus we will need a 'compatibility mode'.
2276  */
2277 
2278 static int dev_ifconf(struct net *net, char __user *arg)
2279 {
2280 	struct ifconf ifc;
2281 	struct net_device *dev;
2282 	char __user *pos;
2283 	int len;
2284 	int total;
2285 	int i;
2286 
2287 	/*
2288 	 *	Fetch the caller's info block.
2289 	 */
2290 
2291 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2292 		return -EFAULT;
2293 
2294 	pos = ifc.ifc_buf;
2295 	len = ifc.ifc_len;
2296 
2297 	/*
2298 	 *	Loop over the interfaces, and write an info block for each.
2299 	 */
2300 
2301 	total = 0;
2302 	for_each_netdev(net, dev) {
2303 		for (i = 0; i < NPROTO; i++) {
2304 			if (gifconf_list[i]) {
2305 				int done;
2306 				if (!pos)
2307 					done = gifconf_list[i](dev, NULL, 0);
2308 				else
2309 					done = gifconf_list[i](dev, pos + total,
2310 							       len - total);
2311 				if (done < 0)
2312 					return -EFAULT;
2313 				total += done;
2314 			}
2315 		}
2316 	}
2317 
2318 	/*
2319 	 *	All done.  Write the updated control block back to the caller.
2320 	 */
2321 	ifc.ifc_len = total;
2322 
2323 	/*
2324 	 * 	Both BSD and Solaris return 0 here, so we do too.
2325 	 */
2326 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2327 }
2328 
2329 #ifdef CONFIG_PROC_FS
2330 /*
2331  *	This is invoked by the /proc filesystem handler to display a device
2332  *	in detail.
2333  */
2334 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2335 {
2336 	struct net *net = seq->private;
2337 	loff_t off;
2338 	struct net_device *dev;
2339 
2340 	read_lock(&dev_base_lock);
2341 	if (!*pos)
2342 		return SEQ_START_TOKEN;
2343 
2344 	off = 1;
2345 	for_each_netdev(net, dev)
2346 		if (off++ == *pos)
2347 			return dev;
2348 
2349 	return NULL;
2350 }
2351 
2352 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2353 {
2354 	struct net *net = seq->private;
2355 	++*pos;
2356 	return v == SEQ_START_TOKEN ?
2357 		first_net_device(net) : next_net_device((struct net_device *)v);
2358 }
2359 
2360 void dev_seq_stop(struct seq_file *seq, void *v)
2361 {
2362 	read_unlock(&dev_base_lock);
2363 }
2364 
2365 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2366 {
2367 	struct net_device_stats *stats = dev->get_stats(dev);
2368 
2369 	seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2370 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2371 		   dev->name, stats->rx_bytes, stats->rx_packets,
2372 		   stats->rx_errors,
2373 		   stats->rx_dropped + stats->rx_missed_errors,
2374 		   stats->rx_fifo_errors,
2375 		   stats->rx_length_errors + stats->rx_over_errors +
2376 		    stats->rx_crc_errors + stats->rx_frame_errors,
2377 		   stats->rx_compressed, stats->multicast,
2378 		   stats->tx_bytes, stats->tx_packets,
2379 		   stats->tx_errors, stats->tx_dropped,
2380 		   stats->tx_fifo_errors, stats->collisions,
2381 		   stats->tx_carrier_errors +
2382 		    stats->tx_aborted_errors +
2383 		    stats->tx_window_errors +
2384 		    stats->tx_heartbeat_errors,
2385 		   stats->tx_compressed);
2386 }
2387 
2388 /*
2389  *	Called from the PROCfs module. This now uses the new arbitrary sized
2390  *	/proc/net interface to create /proc/net/dev
2391  */
2392 static int dev_seq_show(struct seq_file *seq, void *v)
2393 {
2394 	if (v == SEQ_START_TOKEN)
2395 		seq_puts(seq, "Inter-|   Receive                            "
2396 			      "                    |  Transmit\n"
2397 			      " face |bytes    packets errs drop fifo frame "
2398 			      "compressed multicast|bytes    packets errs "
2399 			      "drop fifo colls carrier compressed\n");
2400 	else
2401 		dev_seq_printf_stats(seq, v);
2402 	return 0;
2403 }
2404 
2405 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2406 {
2407 	struct netif_rx_stats *rc = NULL;
2408 
2409 	while (*pos < NR_CPUS)
2410 		if (cpu_online(*pos)) {
2411 			rc = &per_cpu(netdev_rx_stat, *pos);
2412 			break;
2413 		} else
2414 			++*pos;
2415 	return rc;
2416 }
2417 
2418 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2419 {
2420 	return softnet_get_online(pos);
2421 }
2422 
2423 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2424 {
2425 	++*pos;
2426 	return softnet_get_online(pos);
2427 }
2428 
2429 static void softnet_seq_stop(struct seq_file *seq, void *v)
2430 {
2431 }
2432 
2433 static int softnet_seq_show(struct seq_file *seq, void *v)
2434 {
2435 	struct netif_rx_stats *s = v;
2436 
2437 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2438 		   s->total, s->dropped, s->time_squeeze, 0,
2439 		   0, 0, 0, 0, /* was fastroute */
2440 		   s->cpu_collision );
2441 	return 0;
2442 }
2443 
2444 static const struct seq_operations dev_seq_ops = {
2445 	.start = dev_seq_start,
2446 	.next  = dev_seq_next,
2447 	.stop  = dev_seq_stop,
2448 	.show  = dev_seq_show,
2449 };
2450 
2451 static int dev_seq_open(struct inode *inode, struct file *file)
2452 {
2453 	struct seq_file *seq;
2454 	int res;
2455 	res =  seq_open(file, &dev_seq_ops);
2456 	if (!res) {
2457 		seq = file->private_data;
2458 		seq->private = get_proc_net(inode);
2459 		if (!seq->private) {
2460 			seq_release(inode, file);
2461 			res = -ENXIO;
2462 		}
2463 	}
2464 	return res;
2465 }
2466 
2467 static int dev_seq_release(struct inode *inode, struct file *file)
2468 {
2469 	struct seq_file *seq = file->private_data;
2470 	struct net *net = seq->private;
2471 	put_net(net);
2472 	return seq_release(inode, file);
2473 }
2474 
2475 static const struct file_operations dev_seq_fops = {
2476 	.owner	 = THIS_MODULE,
2477 	.open    = dev_seq_open,
2478 	.read    = seq_read,
2479 	.llseek  = seq_lseek,
2480 	.release = dev_seq_release,
2481 };
2482 
2483 static const struct seq_operations softnet_seq_ops = {
2484 	.start = softnet_seq_start,
2485 	.next  = softnet_seq_next,
2486 	.stop  = softnet_seq_stop,
2487 	.show  = softnet_seq_show,
2488 };
2489 
2490 static int softnet_seq_open(struct inode *inode, struct file *file)
2491 {
2492 	return seq_open(file, &softnet_seq_ops);
2493 }
2494 
2495 static const struct file_operations softnet_seq_fops = {
2496 	.owner	 = THIS_MODULE,
2497 	.open    = softnet_seq_open,
2498 	.read    = seq_read,
2499 	.llseek  = seq_lseek,
2500 	.release = seq_release,
2501 };
2502 
2503 static void *ptype_get_idx(loff_t pos)
2504 {
2505 	struct packet_type *pt = NULL;
2506 	loff_t i = 0;
2507 	int t;
2508 
2509 	list_for_each_entry_rcu(pt, &ptype_all, list) {
2510 		if (i == pos)
2511 			return pt;
2512 		++i;
2513 	}
2514 
2515 	for (t = 0; t < 16; t++) {
2516 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2517 			if (i == pos)
2518 				return pt;
2519 			++i;
2520 		}
2521 	}
2522 	return NULL;
2523 }
2524 
2525 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2526 {
2527 	rcu_read_lock();
2528 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2529 }
2530 
2531 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2532 {
2533 	struct packet_type *pt;
2534 	struct list_head *nxt;
2535 	int hash;
2536 
2537 	++*pos;
2538 	if (v == SEQ_START_TOKEN)
2539 		return ptype_get_idx(0);
2540 
2541 	pt = v;
2542 	nxt = pt->list.next;
2543 	if (pt->type == htons(ETH_P_ALL)) {
2544 		if (nxt != &ptype_all)
2545 			goto found;
2546 		hash = 0;
2547 		nxt = ptype_base[0].next;
2548 	} else
2549 		hash = ntohs(pt->type) & 15;
2550 
2551 	while (nxt == &ptype_base[hash]) {
2552 		if (++hash >= 16)
2553 			return NULL;
2554 		nxt = ptype_base[hash].next;
2555 	}
2556 found:
2557 	return list_entry(nxt, struct packet_type, list);
2558 }
2559 
2560 static void ptype_seq_stop(struct seq_file *seq, void *v)
2561 {
2562 	rcu_read_unlock();
2563 }
2564 
2565 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2566 {
2567 #ifdef CONFIG_KALLSYMS
2568 	unsigned long offset = 0, symsize;
2569 	const char *symname;
2570 	char *modname;
2571 	char namebuf[128];
2572 
2573 	symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2574 				  &modname, namebuf);
2575 
2576 	if (symname) {
2577 		char *delim = ":";
2578 
2579 		if (!modname)
2580 			modname = delim = "";
2581 		seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2582 			   symname, offset);
2583 		return;
2584 	}
2585 #endif
2586 
2587 	seq_printf(seq, "[%p]", sym);
2588 }
2589 
2590 static int ptype_seq_show(struct seq_file *seq, void *v)
2591 {
2592 	struct packet_type *pt = v;
2593 
2594 	if (v == SEQ_START_TOKEN)
2595 		seq_puts(seq, "Type Device      Function\n");
2596 	else {
2597 		if (pt->type == htons(ETH_P_ALL))
2598 			seq_puts(seq, "ALL ");
2599 		else
2600 			seq_printf(seq, "%04x", ntohs(pt->type));
2601 
2602 		seq_printf(seq, " %-8s ",
2603 			   pt->dev ? pt->dev->name : "");
2604 		ptype_seq_decode(seq,  pt->func);
2605 		seq_putc(seq, '\n');
2606 	}
2607 
2608 	return 0;
2609 }
2610 
2611 static const struct seq_operations ptype_seq_ops = {
2612 	.start = ptype_seq_start,
2613 	.next  = ptype_seq_next,
2614 	.stop  = ptype_seq_stop,
2615 	.show  = ptype_seq_show,
2616 };
2617 
2618 static int ptype_seq_open(struct inode *inode, struct file *file)
2619 {
2620 	return seq_open(file, &ptype_seq_ops);
2621 }
2622 
2623 static const struct file_operations ptype_seq_fops = {
2624 	.owner	 = THIS_MODULE,
2625 	.open    = ptype_seq_open,
2626 	.read    = seq_read,
2627 	.llseek  = seq_lseek,
2628 	.release = seq_release,
2629 };
2630 
2631 
2632 static int __net_init dev_proc_net_init(struct net *net)
2633 {
2634 	int rc = -ENOMEM;
2635 
2636 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2637 		goto out;
2638 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2639 		goto out_dev;
2640 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2641 		goto out_softnet;
2642 
2643 	if (wext_proc_init(net))
2644 		goto out_ptype;
2645 	rc = 0;
2646 out:
2647 	return rc;
2648 out_ptype:
2649 	proc_net_remove(net, "ptype");
2650 out_softnet:
2651 	proc_net_remove(net, "softnet_stat");
2652 out_dev:
2653 	proc_net_remove(net, "dev");
2654 	goto out;
2655 }
2656 
2657 static void __net_exit dev_proc_net_exit(struct net *net)
2658 {
2659 	wext_proc_exit(net);
2660 
2661 	proc_net_remove(net, "ptype");
2662 	proc_net_remove(net, "softnet_stat");
2663 	proc_net_remove(net, "dev");
2664 }
2665 
2666 static struct pernet_operations __net_initdata dev_proc_ops = {
2667 	.init = dev_proc_net_init,
2668 	.exit = dev_proc_net_exit,
2669 };
2670 
2671 static int __init dev_proc_init(void)
2672 {
2673 	return register_pernet_subsys(&dev_proc_ops);
2674 }
2675 #else
2676 #define dev_proc_init() 0
2677 #endif	/* CONFIG_PROC_FS */
2678 
2679 
2680 /**
2681  *	netdev_set_master	-	set up master/slave pair
2682  *	@slave: slave device
2683  *	@master: new master device
2684  *
2685  *	Changes the master device of the slave. Pass %NULL to break the
2686  *	bonding. The caller must hold the RTNL semaphore. On a failure
2687  *	a negative errno code is returned. On success the reference counts
2688  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2689  *	function returns zero.
2690  */
2691 int netdev_set_master(struct net_device *slave, struct net_device *master)
2692 {
2693 	struct net_device *old = slave->master;
2694 
2695 	ASSERT_RTNL();
2696 
2697 	if (master) {
2698 		if (old)
2699 			return -EBUSY;
2700 		dev_hold(master);
2701 	}
2702 
2703 	slave->master = master;
2704 
2705 	synchronize_net();
2706 
2707 	if (old)
2708 		dev_put(old);
2709 
2710 	if (master)
2711 		slave->flags |= IFF_SLAVE;
2712 	else
2713 		slave->flags &= ~IFF_SLAVE;
2714 
2715 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2716 	return 0;
2717 }
2718 
2719 static void __dev_set_promiscuity(struct net_device *dev, int inc)
2720 {
2721 	unsigned short old_flags = dev->flags;
2722 
2723 	ASSERT_RTNL();
2724 
2725 	if ((dev->promiscuity += inc) == 0)
2726 		dev->flags &= ~IFF_PROMISC;
2727 	else
2728 		dev->flags |= IFF_PROMISC;
2729 	if (dev->flags != old_flags) {
2730 		printk(KERN_INFO "device %s %s promiscuous mode\n",
2731 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2732 							       "left");
2733 		audit_log(current->audit_context, GFP_ATOMIC,
2734 			AUDIT_ANOM_PROMISCUOUS,
2735 			"dev=%s prom=%d old_prom=%d auid=%u",
2736 			dev->name, (dev->flags & IFF_PROMISC),
2737 			(old_flags & IFF_PROMISC),
2738 			audit_get_loginuid(current->audit_context));
2739 
2740 		if (dev->change_rx_flags)
2741 			dev->change_rx_flags(dev, IFF_PROMISC);
2742 	}
2743 }
2744 
2745 /**
2746  *	dev_set_promiscuity	- update promiscuity count on a device
2747  *	@dev: device
2748  *	@inc: modifier
2749  *
2750  *	Add or remove promiscuity from a device. While the count in the device
2751  *	remains above zero the interface remains promiscuous. Once it hits zero
2752  *	the device reverts back to normal filtering operation. A negative inc
2753  *	value is used to drop promiscuity on the device.
2754  */
2755 void dev_set_promiscuity(struct net_device *dev, int inc)
2756 {
2757 	unsigned short old_flags = dev->flags;
2758 
2759 	__dev_set_promiscuity(dev, inc);
2760 	if (dev->flags != old_flags)
2761 		dev_set_rx_mode(dev);
2762 }
2763 
2764 /**
2765  *	dev_set_allmulti	- update allmulti count on a device
2766  *	@dev: device
2767  *	@inc: modifier
2768  *
2769  *	Add or remove reception of all multicast frames to a device. While the
2770  *	count in the device remains above zero the interface remains listening
2771  *	to all interfaces. Once it hits zero the device reverts back to normal
2772  *	filtering operation. A negative @inc value is used to drop the counter
2773  *	when releasing a resource needing all multicasts.
2774  */
2775 
2776 void dev_set_allmulti(struct net_device *dev, int inc)
2777 {
2778 	unsigned short old_flags = dev->flags;
2779 
2780 	ASSERT_RTNL();
2781 
2782 	dev->flags |= IFF_ALLMULTI;
2783 	if ((dev->allmulti += inc) == 0)
2784 		dev->flags &= ~IFF_ALLMULTI;
2785 	if (dev->flags ^ old_flags) {
2786 		if (dev->change_rx_flags)
2787 			dev->change_rx_flags(dev, IFF_ALLMULTI);
2788 		dev_set_rx_mode(dev);
2789 	}
2790 }
2791 
2792 /*
2793  *	Upload unicast and multicast address lists to device and
2794  *	configure RX filtering. When the device doesn't support unicast
2795  *	filtering it is put in promiscous mode while unicast addresses
2796  *	are present.
2797  */
2798 void __dev_set_rx_mode(struct net_device *dev)
2799 {
2800 	/* dev_open will call this function so the list will stay sane. */
2801 	if (!(dev->flags&IFF_UP))
2802 		return;
2803 
2804 	if (!netif_device_present(dev))
2805 		return;
2806 
2807 	if (dev->set_rx_mode)
2808 		dev->set_rx_mode(dev);
2809 	else {
2810 		/* Unicast addresses changes may only happen under the rtnl,
2811 		 * therefore calling __dev_set_promiscuity here is safe.
2812 		 */
2813 		if (dev->uc_count > 0 && !dev->uc_promisc) {
2814 			__dev_set_promiscuity(dev, 1);
2815 			dev->uc_promisc = 1;
2816 		} else if (dev->uc_count == 0 && dev->uc_promisc) {
2817 			__dev_set_promiscuity(dev, -1);
2818 			dev->uc_promisc = 0;
2819 		}
2820 
2821 		if (dev->set_multicast_list)
2822 			dev->set_multicast_list(dev);
2823 	}
2824 }
2825 
2826 void dev_set_rx_mode(struct net_device *dev)
2827 {
2828 	netif_tx_lock_bh(dev);
2829 	__dev_set_rx_mode(dev);
2830 	netif_tx_unlock_bh(dev);
2831 }
2832 
2833 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2834 		      void *addr, int alen, int glbl)
2835 {
2836 	struct dev_addr_list *da;
2837 
2838 	for (; (da = *list) != NULL; list = &da->next) {
2839 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2840 		    alen == da->da_addrlen) {
2841 			if (glbl) {
2842 				int old_glbl = da->da_gusers;
2843 				da->da_gusers = 0;
2844 				if (old_glbl == 0)
2845 					break;
2846 			}
2847 			if (--da->da_users)
2848 				return 0;
2849 
2850 			*list = da->next;
2851 			kfree(da);
2852 			(*count)--;
2853 			return 0;
2854 		}
2855 	}
2856 	return -ENOENT;
2857 }
2858 
2859 int __dev_addr_add(struct dev_addr_list **list, int *count,
2860 		   void *addr, int alen, int glbl)
2861 {
2862 	struct dev_addr_list *da;
2863 
2864 	for (da = *list; da != NULL; da = da->next) {
2865 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2866 		    da->da_addrlen == alen) {
2867 			if (glbl) {
2868 				int old_glbl = da->da_gusers;
2869 				da->da_gusers = 1;
2870 				if (old_glbl)
2871 					return 0;
2872 			}
2873 			da->da_users++;
2874 			return 0;
2875 		}
2876 	}
2877 
2878 	da = kmalloc(sizeof(*da), GFP_ATOMIC);
2879 	if (da == NULL)
2880 		return -ENOMEM;
2881 	memcpy(da->da_addr, addr, alen);
2882 	da->da_addrlen = alen;
2883 	da->da_users = 1;
2884 	da->da_gusers = glbl ? 1 : 0;
2885 	da->next = *list;
2886 	*list = da;
2887 	(*count)++;
2888 	return 0;
2889 }
2890 
2891 /**
2892  *	dev_unicast_delete	- Release secondary unicast address.
2893  *	@dev: device
2894  *	@addr: address to delete
2895  *	@alen: length of @addr
2896  *
2897  *	Release reference to a secondary unicast address and remove it
2898  *	from the device if the reference count drops to zero.
2899  *
2900  * 	The caller must hold the rtnl_mutex.
2901  */
2902 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2903 {
2904 	int err;
2905 
2906 	ASSERT_RTNL();
2907 
2908 	netif_tx_lock_bh(dev);
2909 	err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2910 	if (!err)
2911 		__dev_set_rx_mode(dev);
2912 	netif_tx_unlock_bh(dev);
2913 	return err;
2914 }
2915 EXPORT_SYMBOL(dev_unicast_delete);
2916 
2917 /**
2918  *	dev_unicast_add		- add a secondary unicast address
2919  *	@dev: device
2920  *	@addr: address to delete
2921  *	@alen: length of @addr
2922  *
2923  *	Add a secondary unicast address to the device or increase
2924  *	the reference count if it already exists.
2925  *
2926  *	The caller must hold the rtnl_mutex.
2927  */
2928 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2929 {
2930 	int err;
2931 
2932 	ASSERT_RTNL();
2933 
2934 	netif_tx_lock_bh(dev);
2935 	err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2936 	if (!err)
2937 		__dev_set_rx_mode(dev);
2938 	netif_tx_unlock_bh(dev);
2939 	return err;
2940 }
2941 EXPORT_SYMBOL(dev_unicast_add);
2942 
2943 static void __dev_addr_discard(struct dev_addr_list **list)
2944 {
2945 	struct dev_addr_list *tmp;
2946 
2947 	while (*list != NULL) {
2948 		tmp = *list;
2949 		*list = tmp->next;
2950 		if (tmp->da_users > tmp->da_gusers)
2951 			printk("__dev_addr_discard: address leakage! "
2952 			       "da_users=%d\n", tmp->da_users);
2953 		kfree(tmp);
2954 	}
2955 }
2956 
2957 static void dev_addr_discard(struct net_device *dev)
2958 {
2959 	netif_tx_lock_bh(dev);
2960 
2961 	__dev_addr_discard(&dev->uc_list);
2962 	dev->uc_count = 0;
2963 
2964 	__dev_addr_discard(&dev->mc_list);
2965 	dev->mc_count = 0;
2966 
2967 	netif_tx_unlock_bh(dev);
2968 }
2969 
2970 unsigned dev_get_flags(const struct net_device *dev)
2971 {
2972 	unsigned flags;
2973 
2974 	flags = (dev->flags & ~(IFF_PROMISC |
2975 				IFF_ALLMULTI |
2976 				IFF_RUNNING |
2977 				IFF_LOWER_UP |
2978 				IFF_DORMANT)) |
2979 		(dev->gflags & (IFF_PROMISC |
2980 				IFF_ALLMULTI));
2981 
2982 	if (netif_running(dev)) {
2983 		if (netif_oper_up(dev))
2984 			flags |= IFF_RUNNING;
2985 		if (netif_carrier_ok(dev))
2986 			flags |= IFF_LOWER_UP;
2987 		if (netif_dormant(dev))
2988 			flags |= IFF_DORMANT;
2989 	}
2990 
2991 	return flags;
2992 }
2993 
2994 int dev_change_flags(struct net_device *dev, unsigned flags)
2995 {
2996 	int ret, changes;
2997 	int old_flags = dev->flags;
2998 
2999 	ASSERT_RTNL();
3000 
3001 	/*
3002 	 *	Set the flags on our device.
3003 	 */
3004 
3005 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3006 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3007 			       IFF_AUTOMEDIA)) |
3008 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3009 				    IFF_ALLMULTI));
3010 
3011 	/*
3012 	 *	Load in the correct multicast list now the flags have changed.
3013 	 */
3014 
3015 	if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST)
3016 		dev->change_rx_flags(dev, IFF_MULTICAST);
3017 
3018 	dev_set_rx_mode(dev);
3019 
3020 	/*
3021 	 *	Have we downed the interface. We handle IFF_UP ourselves
3022 	 *	according to user attempts to set it, rather than blindly
3023 	 *	setting it.
3024 	 */
3025 
3026 	ret = 0;
3027 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
3028 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3029 
3030 		if (!ret)
3031 			dev_set_rx_mode(dev);
3032 	}
3033 
3034 	if (dev->flags & IFF_UP &&
3035 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3036 					  IFF_VOLATILE)))
3037 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
3038 
3039 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
3040 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
3041 		dev->gflags ^= IFF_PROMISC;
3042 		dev_set_promiscuity(dev, inc);
3043 	}
3044 
3045 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3046 	   is important. Some (broken) drivers set IFF_PROMISC, when
3047 	   IFF_ALLMULTI is requested not asking us and not reporting.
3048 	 */
3049 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3050 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3051 		dev->gflags ^= IFF_ALLMULTI;
3052 		dev_set_allmulti(dev, inc);
3053 	}
3054 
3055 	/* Exclude state transition flags, already notified */
3056 	changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3057 	if (changes)
3058 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3059 
3060 	return ret;
3061 }
3062 
3063 int dev_set_mtu(struct net_device *dev, int new_mtu)
3064 {
3065 	int err;
3066 
3067 	if (new_mtu == dev->mtu)
3068 		return 0;
3069 
3070 	/*	MTU must be positive.	 */
3071 	if (new_mtu < 0)
3072 		return -EINVAL;
3073 
3074 	if (!netif_device_present(dev))
3075 		return -ENODEV;
3076 
3077 	err = 0;
3078 	if (dev->change_mtu)
3079 		err = dev->change_mtu(dev, new_mtu);
3080 	else
3081 		dev->mtu = new_mtu;
3082 	if (!err && dev->flags & IFF_UP)
3083 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3084 	return err;
3085 }
3086 
3087 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3088 {
3089 	int err;
3090 
3091 	if (!dev->set_mac_address)
3092 		return -EOPNOTSUPP;
3093 	if (sa->sa_family != dev->type)
3094 		return -EINVAL;
3095 	if (!netif_device_present(dev))
3096 		return -ENODEV;
3097 	err = dev->set_mac_address(dev, sa);
3098 	if (!err)
3099 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3100 	return err;
3101 }
3102 
3103 /*
3104  *	Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3105  */
3106 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3107 {
3108 	int err;
3109 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3110 
3111 	if (!dev)
3112 		return -ENODEV;
3113 
3114 	switch (cmd) {
3115 		case SIOCGIFFLAGS:	/* Get interface flags */
3116 			ifr->ifr_flags = dev_get_flags(dev);
3117 			return 0;
3118 
3119 		case SIOCGIFMETRIC:	/* Get the metric on the interface
3120 					   (currently unused) */
3121 			ifr->ifr_metric = 0;
3122 			return 0;
3123 
3124 		case SIOCGIFMTU:	/* Get the MTU of a device */
3125 			ifr->ifr_mtu = dev->mtu;
3126 			return 0;
3127 
3128 		case SIOCGIFHWADDR:
3129 			if (!dev->addr_len)
3130 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3131 			else
3132 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3133 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3134 			ifr->ifr_hwaddr.sa_family = dev->type;
3135 			return 0;
3136 
3137 		case SIOCGIFSLAVE:
3138 			err = -EINVAL;
3139 			break;
3140 
3141 		case SIOCGIFMAP:
3142 			ifr->ifr_map.mem_start = dev->mem_start;
3143 			ifr->ifr_map.mem_end   = dev->mem_end;
3144 			ifr->ifr_map.base_addr = dev->base_addr;
3145 			ifr->ifr_map.irq       = dev->irq;
3146 			ifr->ifr_map.dma       = dev->dma;
3147 			ifr->ifr_map.port      = dev->if_port;
3148 			return 0;
3149 
3150 		case SIOCGIFINDEX:
3151 			ifr->ifr_ifindex = dev->ifindex;
3152 			return 0;
3153 
3154 		case SIOCGIFTXQLEN:
3155 			ifr->ifr_qlen = dev->tx_queue_len;
3156 			return 0;
3157 
3158 		default:
3159 			/* dev_ioctl() should ensure this case
3160 			 * is never reached
3161 			 */
3162 			WARN_ON(1);
3163 			err = -EINVAL;
3164 			break;
3165 
3166 	}
3167 	return err;
3168 }
3169 
3170 /*
3171  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
3172  */
3173 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3174 {
3175 	int err;
3176 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3177 
3178 	if (!dev)
3179 		return -ENODEV;
3180 
3181 	switch (cmd) {
3182 		case SIOCSIFFLAGS:	/* Set interface flags */
3183 			return dev_change_flags(dev, ifr->ifr_flags);
3184 
3185 		case SIOCSIFMETRIC:	/* Set the metric on the interface
3186 					   (currently unused) */
3187 			return -EOPNOTSUPP;
3188 
3189 		case SIOCSIFMTU:	/* Set the MTU of a device */
3190 			return dev_set_mtu(dev, ifr->ifr_mtu);
3191 
3192 		case SIOCSIFHWADDR:
3193 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3194 
3195 		case SIOCSIFHWBROADCAST:
3196 			if (ifr->ifr_hwaddr.sa_family != dev->type)
3197 				return -EINVAL;
3198 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3199 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3200 			call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3201 			return 0;
3202 
3203 		case SIOCSIFMAP:
3204 			if (dev->set_config) {
3205 				if (!netif_device_present(dev))
3206 					return -ENODEV;
3207 				return dev->set_config(dev, &ifr->ifr_map);
3208 			}
3209 			return -EOPNOTSUPP;
3210 
3211 		case SIOCADDMULTI:
3212 			if (!dev->set_multicast_list ||
3213 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3214 				return -EINVAL;
3215 			if (!netif_device_present(dev))
3216 				return -ENODEV;
3217 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3218 					  dev->addr_len, 1);
3219 
3220 		case SIOCDELMULTI:
3221 			if (!dev->set_multicast_list ||
3222 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3223 				return -EINVAL;
3224 			if (!netif_device_present(dev))
3225 				return -ENODEV;
3226 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3227 					     dev->addr_len, 1);
3228 
3229 		case SIOCSIFTXQLEN:
3230 			if (ifr->ifr_qlen < 0)
3231 				return -EINVAL;
3232 			dev->tx_queue_len = ifr->ifr_qlen;
3233 			return 0;
3234 
3235 		case SIOCSIFNAME:
3236 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3237 			return dev_change_name(dev, ifr->ifr_newname);
3238 
3239 		/*
3240 		 *	Unknown or private ioctl
3241 		 */
3242 
3243 		default:
3244 			if ((cmd >= SIOCDEVPRIVATE &&
3245 			    cmd <= SIOCDEVPRIVATE + 15) ||
3246 			    cmd == SIOCBONDENSLAVE ||
3247 			    cmd == SIOCBONDRELEASE ||
3248 			    cmd == SIOCBONDSETHWADDR ||
3249 			    cmd == SIOCBONDSLAVEINFOQUERY ||
3250 			    cmd == SIOCBONDINFOQUERY ||
3251 			    cmd == SIOCBONDCHANGEACTIVE ||
3252 			    cmd == SIOCGMIIPHY ||
3253 			    cmd == SIOCGMIIREG ||
3254 			    cmd == SIOCSMIIREG ||
3255 			    cmd == SIOCBRADDIF ||
3256 			    cmd == SIOCBRDELIF ||
3257 			    cmd == SIOCWANDEV) {
3258 				err = -EOPNOTSUPP;
3259 				if (dev->do_ioctl) {
3260 					if (netif_device_present(dev))
3261 						err = dev->do_ioctl(dev, ifr,
3262 								    cmd);
3263 					else
3264 						err = -ENODEV;
3265 				}
3266 			} else
3267 				err = -EINVAL;
3268 
3269 	}
3270 	return err;
3271 }
3272 
3273 /*
3274  *	This function handles all "interface"-type I/O control requests. The actual
3275  *	'doing' part of this is dev_ifsioc above.
3276  */
3277 
3278 /**
3279  *	dev_ioctl	-	network device ioctl
3280  *	@net: the applicable net namespace
3281  *	@cmd: command to issue
3282  *	@arg: pointer to a struct ifreq in user space
3283  *
3284  *	Issue ioctl functions to devices. This is normally called by the
3285  *	user space syscall interfaces but can sometimes be useful for
3286  *	other purposes. The return value is the return from the syscall if
3287  *	positive or a negative errno code on error.
3288  */
3289 
3290 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3291 {
3292 	struct ifreq ifr;
3293 	int ret;
3294 	char *colon;
3295 
3296 	/* One special case: SIOCGIFCONF takes ifconf argument
3297 	   and requires shared lock, because it sleeps writing
3298 	   to user space.
3299 	 */
3300 
3301 	if (cmd == SIOCGIFCONF) {
3302 		rtnl_lock();
3303 		ret = dev_ifconf(net, (char __user *) arg);
3304 		rtnl_unlock();
3305 		return ret;
3306 	}
3307 	if (cmd == SIOCGIFNAME)
3308 		return dev_ifname(net, (struct ifreq __user *)arg);
3309 
3310 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3311 		return -EFAULT;
3312 
3313 	ifr.ifr_name[IFNAMSIZ-1] = 0;
3314 
3315 	colon = strchr(ifr.ifr_name, ':');
3316 	if (colon)
3317 		*colon = 0;
3318 
3319 	/*
3320 	 *	See which interface the caller is talking about.
3321 	 */
3322 
3323 	switch (cmd) {
3324 		/*
3325 		 *	These ioctl calls:
3326 		 *	- can be done by all.
3327 		 *	- atomic and do not require locking.
3328 		 *	- return a value
3329 		 */
3330 		case SIOCGIFFLAGS:
3331 		case SIOCGIFMETRIC:
3332 		case SIOCGIFMTU:
3333 		case SIOCGIFHWADDR:
3334 		case SIOCGIFSLAVE:
3335 		case SIOCGIFMAP:
3336 		case SIOCGIFINDEX:
3337 		case SIOCGIFTXQLEN:
3338 			dev_load(net, ifr.ifr_name);
3339 			read_lock(&dev_base_lock);
3340 			ret = dev_ifsioc_locked(net, &ifr, cmd);
3341 			read_unlock(&dev_base_lock);
3342 			if (!ret) {
3343 				if (colon)
3344 					*colon = ':';
3345 				if (copy_to_user(arg, &ifr,
3346 						 sizeof(struct ifreq)))
3347 					ret = -EFAULT;
3348 			}
3349 			return ret;
3350 
3351 		case SIOCETHTOOL:
3352 			dev_load(net, ifr.ifr_name);
3353 			rtnl_lock();
3354 			ret = dev_ethtool(net, &ifr);
3355 			rtnl_unlock();
3356 			if (!ret) {
3357 				if (colon)
3358 					*colon = ':';
3359 				if (copy_to_user(arg, &ifr,
3360 						 sizeof(struct ifreq)))
3361 					ret = -EFAULT;
3362 			}
3363 			return ret;
3364 
3365 		/*
3366 		 *	These ioctl calls:
3367 		 *	- require superuser power.
3368 		 *	- require strict serialization.
3369 		 *	- return a value
3370 		 */
3371 		case SIOCGMIIPHY:
3372 		case SIOCGMIIREG:
3373 		case SIOCSIFNAME:
3374 			if (!capable(CAP_NET_ADMIN))
3375 				return -EPERM;
3376 			dev_load(net, ifr.ifr_name);
3377 			rtnl_lock();
3378 			ret = dev_ifsioc(net, &ifr, cmd);
3379 			rtnl_unlock();
3380 			if (!ret) {
3381 				if (colon)
3382 					*colon = ':';
3383 				if (copy_to_user(arg, &ifr,
3384 						 sizeof(struct ifreq)))
3385 					ret = -EFAULT;
3386 			}
3387 			return ret;
3388 
3389 		/*
3390 		 *	These ioctl calls:
3391 		 *	- require superuser power.
3392 		 *	- require strict serialization.
3393 		 *	- do not return a value
3394 		 */
3395 		case SIOCSIFFLAGS:
3396 		case SIOCSIFMETRIC:
3397 		case SIOCSIFMTU:
3398 		case SIOCSIFMAP:
3399 		case SIOCSIFHWADDR:
3400 		case SIOCSIFSLAVE:
3401 		case SIOCADDMULTI:
3402 		case SIOCDELMULTI:
3403 		case SIOCSIFHWBROADCAST:
3404 		case SIOCSIFTXQLEN:
3405 		case SIOCSMIIREG:
3406 		case SIOCBONDENSLAVE:
3407 		case SIOCBONDRELEASE:
3408 		case SIOCBONDSETHWADDR:
3409 		case SIOCBONDCHANGEACTIVE:
3410 		case SIOCBRADDIF:
3411 		case SIOCBRDELIF:
3412 			if (!capable(CAP_NET_ADMIN))
3413 				return -EPERM;
3414 			/* fall through */
3415 		case SIOCBONDSLAVEINFOQUERY:
3416 		case SIOCBONDINFOQUERY:
3417 			dev_load(net, ifr.ifr_name);
3418 			rtnl_lock();
3419 			ret = dev_ifsioc(net, &ifr, cmd);
3420 			rtnl_unlock();
3421 			return ret;
3422 
3423 		case SIOCGIFMEM:
3424 			/* Get the per device memory space. We can add this but
3425 			 * currently do not support it */
3426 		case SIOCSIFMEM:
3427 			/* Set the per device memory buffer space.
3428 			 * Not applicable in our case */
3429 		case SIOCSIFLINK:
3430 			return -EINVAL;
3431 
3432 		/*
3433 		 *	Unknown or private ioctl.
3434 		 */
3435 		default:
3436 			if (cmd == SIOCWANDEV ||
3437 			    (cmd >= SIOCDEVPRIVATE &&
3438 			     cmd <= SIOCDEVPRIVATE + 15)) {
3439 				dev_load(net, ifr.ifr_name);
3440 				rtnl_lock();
3441 				ret = dev_ifsioc(net, &ifr, cmd);
3442 				rtnl_unlock();
3443 				if (!ret && copy_to_user(arg, &ifr,
3444 							 sizeof(struct ifreq)))
3445 					ret = -EFAULT;
3446 				return ret;
3447 			}
3448 			/* Take care of Wireless Extensions */
3449 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3450 				return wext_handle_ioctl(net, &ifr, cmd, arg);
3451 			return -EINVAL;
3452 	}
3453 }
3454 
3455 
3456 /**
3457  *	dev_new_index	-	allocate an ifindex
3458  *	@net: the applicable net namespace
3459  *
3460  *	Returns a suitable unique value for a new device interface
3461  *	number.  The caller must hold the rtnl semaphore or the
3462  *	dev_base_lock to be sure it remains unique.
3463  */
3464 static int dev_new_index(struct net *net)
3465 {
3466 	static int ifindex;
3467 	for (;;) {
3468 		if (++ifindex <= 0)
3469 			ifindex = 1;
3470 		if (!__dev_get_by_index(net, ifindex))
3471 			return ifindex;
3472 	}
3473 }
3474 
3475 /* Delayed registration/unregisteration */
3476 static DEFINE_SPINLOCK(net_todo_list_lock);
3477 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
3478 
3479 static void net_set_todo(struct net_device *dev)
3480 {
3481 	spin_lock(&net_todo_list_lock);
3482 	list_add_tail(&dev->todo_list, &net_todo_list);
3483 	spin_unlock(&net_todo_list_lock);
3484 }
3485 
3486 /**
3487  *	register_netdevice	- register a network device
3488  *	@dev: device to register
3489  *
3490  *	Take a completed network device structure and add it to the kernel
3491  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3492  *	chain. 0 is returned on success. A negative errno code is returned
3493  *	on a failure to set up the device, or if the name is a duplicate.
3494  *
3495  *	Callers must hold the rtnl semaphore. You may want
3496  *	register_netdev() instead of this.
3497  *
3498  *	BUGS:
3499  *	The locking appears insufficient to guarantee two parallel registers
3500  *	will not get the same name.
3501  */
3502 
3503 int register_netdevice(struct net_device *dev)
3504 {
3505 	struct hlist_head *head;
3506 	struct hlist_node *p;
3507 	int ret;
3508 	struct net *net;
3509 
3510 	BUG_ON(dev_boot_phase);
3511 	ASSERT_RTNL();
3512 
3513 	might_sleep();
3514 
3515 	/* When net_device's are persistent, this will be fatal. */
3516 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3517 	BUG_ON(!dev->nd_net);
3518 	net = dev->nd_net;
3519 
3520 	spin_lock_init(&dev->queue_lock);
3521 	spin_lock_init(&dev->_xmit_lock);
3522 	netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3523 	dev->xmit_lock_owner = -1;
3524 	spin_lock_init(&dev->ingress_lock);
3525 
3526 	dev->iflink = -1;
3527 
3528 	/* Init, if this function is available */
3529 	if (dev->init) {
3530 		ret = dev->init(dev);
3531 		if (ret) {
3532 			if (ret > 0)
3533 				ret = -EIO;
3534 			goto out;
3535 		}
3536 	}
3537 
3538 	if (!dev_valid_name(dev->name)) {
3539 		ret = -EINVAL;
3540 		goto err_uninit;
3541 	}
3542 
3543 	dev->ifindex = dev_new_index(net);
3544 	if (dev->iflink == -1)
3545 		dev->iflink = dev->ifindex;
3546 
3547 	/* Check for existence of name */
3548 	head = dev_name_hash(net, dev->name);
3549 	hlist_for_each(p, head) {
3550 		struct net_device *d
3551 			= hlist_entry(p, struct net_device, name_hlist);
3552 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3553 			ret = -EEXIST;
3554 			goto err_uninit;
3555 		}
3556 	}
3557 
3558 	/* Fix illegal checksum combinations */
3559 	if ((dev->features & NETIF_F_HW_CSUM) &&
3560 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3561 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3562 		       dev->name);
3563 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3564 	}
3565 
3566 	if ((dev->features & NETIF_F_NO_CSUM) &&
3567 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3568 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3569 		       dev->name);
3570 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3571 	}
3572 
3573 
3574 	/* Fix illegal SG+CSUM combinations. */
3575 	if ((dev->features & NETIF_F_SG) &&
3576 	    !(dev->features & NETIF_F_ALL_CSUM)) {
3577 		printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3578 		       dev->name);
3579 		dev->features &= ~NETIF_F_SG;
3580 	}
3581 
3582 	/* TSO requires that SG is present as well. */
3583 	if ((dev->features & NETIF_F_TSO) &&
3584 	    !(dev->features & NETIF_F_SG)) {
3585 		printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3586 		       dev->name);
3587 		dev->features &= ~NETIF_F_TSO;
3588 	}
3589 	if (dev->features & NETIF_F_UFO) {
3590 		if (!(dev->features & NETIF_F_HW_CSUM)) {
3591 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3592 					"NETIF_F_HW_CSUM feature.\n",
3593 							dev->name);
3594 			dev->features &= ~NETIF_F_UFO;
3595 		}
3596 		if (!(dev->features & NETIF_F_SG)) {
3597 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3598 					"NETIF_F_SG feature.\n",
3599 					dev->name);
3600 			dev->features &= ~NETIF_F_UFO;
3601 		}
3602 	}
3603 
3604 	ret = netdev_register_kobject(dev);
3605 	if (ret)
3606 		goto err_uninit;
3607 	dev->reg_state = NETREG_REGISTERED;
3608 
3609 	/*
3610 	 *	Default initial state at registry is that the
3611 	 *	device is present.
3612 	 */
3613 
3614 	set_bit(__LINK_STATE_PRESENT, &dev->state);
3615 
3616 	dev_init_scheduler(dev);
3617 	dev_hold(dev);
3618 	list_netdevice(dev);
3619 
3620 	/* Notify protocols, that a new device appeared. */
3621 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3622 	ret = notifier_to_errno(ret);
3623 	if (ret)
3624 		unregister_netdevice(dev);
3625 
3626 out:
3627 	return ret;
3628 
3629 err_uninit:
3630 	if (dev->uninit)
3631 		dev->uninit(dev);
3632 	goto out;
3633 }
3634 
3635 /**
3636  *	register_netdev	- register a network device
3637  *	@dev: device to register
3638  *
3639  *	Take a completed network device structure and add it to the kernel
3640  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3641  *	chain. 0 is returned on success. A negative errno code is returned
3642  *	on a failure to set up the device, or if the name is a duplicate.
3643  *
3644  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
3645  *	and expands the device name if you passed a format string to
3646  *	alloc_netdev.
3647  */
3648 int register_netdev(struct net_device *dev)
3649 {
3650 	int err;
3651 
3652 	rtnl_lock();
3653 
3654 	/*
3655 	 * If the name is a format string the caller wants us to do a
3656 	 * name allocation.
3657 	 */
3658 	if (strchr(dev->name, '%')) {
3659 		err = dev_alloc_name(dev, dev->name);
3660 		if (err < 0)
3661 			goto out;
3662 	}
3663 
3664 	err = register_netdevice(dev);
3665 out:
3666 	rtnl_unlock();
3667 	return err;
3668 }
3669 EXPORT_SYMBOL(register_netdev);
3670 
3671 /*
3672  * netdev_wait_allrefs - wait until all references are gone.
3673  *
3674  * This is called when unregistering network devices.
3675  *
3676  * Any protocol or device that holds a reference should register
3677  * for netdevice notification, and cleanup and put back the
3678  * reference if they receive an UNREGISTER event.
3679  * We can get stuck here if buggy protocols don't correctly
3680  * call dev_put.
3681  */
3682 static void netdev_wait_allrefs(struct net_device *dev)
3683 {
3684 	unsigned long rebroadcast_time, warning_time;
3685 
3686 	rebroadcast_time = warning_time = jiffies;
3687 	while (atomic_read(&dev->refcnt) != 0) {
3688 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3689 			rtnl_lock();
3690 
3691 			/* Rebroadcast unregister notification */
3692 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3693 
3694 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3695 				     &dev->state)) {
3696 				/* We must not have linkwatch events
3697 				 * pending on unregister. If this
3698 				 * happens, we simply run the queue
3699 				 * unscheduled, resulting in a noop
3700 				 * for this device.
3701 				 */
3702 				linkwatch_run_queue();
3703 			}
3704 
3705 			__rtnl_unlock();
3706 
3707 			rebroadcast_time = jiffies;
3708 		}
3709 
3710 		msleep(250);
3711 
3712 		if (time_after(jiffies, warning_time + 10 * HZ)) {
3713 			printk(KERN_EMERG "unregister_netdevice: "
3714 			       "waiting for %s to become free. Usage "
3715 			       "count = %d\n",
3716 			       dev->name, atomic_read(&dev->refcnt));
3717 			warning_time = jiffies;
3718 		}
3719 	}
3720 }
3721 
3722 /* The sequence is:
3723  *
3724  *	rtnl_lock();
3725  *	...
3726  *	register_netdevice(x1);
3727  *	register_netdevice(x2);
3728  *	...
3729  *	unregister_netdevice(y1);
3730  *	unregister_netdevice(y2);
3731  *      ...
3732  *	rtnl_unlock();
3733  *	free_netdev(y1);
3734  *	free_netdev(y2);
3735  *
3736  * We are invoked by rtnl_unlock() after it drops the semaphore.
3737  * This allows us to deal with problems:
3738  * 1) We can delete sysfs objects which invoke hotplug
3739  *    without deadlocking with linkwatch via keventd.
3740  * 2) Since we run with the RTNL semaphore not held, we can sleep
3741  *    safely in order to wait for the netdev refcnt to drop to zero.
3742  */
3743 static DEFINE_MUTEX(net_todo_run_mutex);
3744 void netdev_run_todo(void)
3745 {
3746 	struct list_head list;
3747 
3748 	/* Need to guard against multiple cpu's getting out of order. */
3749 	mutex_lock(&net_todo_run_mutex);
3750 
3751 	/* Not safe to do outside the semaphore.  We must not return
3752 	 * until all unregister events invoked by the local processor
3753 	 * have been completed (either by this todo run, or one on
3754 	 * another cpu).
3755 	 */
3756 	if (list_empty(&net_todo_list))
3757 		goto out;
3758 
3759 	/* Snapshot list, allow later requests */
3760 	spin_lock(&net_todo_list_lock);
3761 	list_replace_init(&net_todo_list, &list);
3762 	spin_unlock(&net_todo_list_lock);
3763 
3764 	while (!list_empty(&list)) {
3765 		struct net_device *dev
3766 			= list_entry(list.next, struct net_device, todo_list);
3767 		list_del(&dev->todo_list);
3768 
3769 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3770 			printk(KERN_ERR "network todo '%s' but state %d\n",
3771 			       dev->name, dev->reg_state);
3772 			dump_stack();
3773 			continue;
3774 		}
3775 
3776 		dev->reg_state = NETREG_UNREGISTERED;
3777 
3778 		netdev_wait_allrefs(dev);
3779 
3780 		/* paranoia */
3781 		BUG_ON(atomic_read(&dev->refcnt));
3782 		BUG_TRAP(!dev->ip_ptr);
3783 		BUG_TRAP(!dev->ip6_ptr);
3784 		BUG_TRAP(!dev->dn_ptr);
3785 
3786 		if (dev->destructor)
3787 			dev->destructor(dev);
3788 
3789 		/* Free network device */
3790 		kobject_put(&dev->dev.kobj);
3791 	}
3792 
3793 out:
3794 	mutex_unlock(&net_todo_run_mutex);
3795 }
3796 
3797 static struct net_device_stats *internal_stats(struct net_device *dev)
3798 {
3799 	return &dev->stats;
3800 }
3801 
3802 /**
3803  *	alloc_netdev_mq - allocate network device
3804  *	@sizeof_priv:	size of private data to allocate space for
3805  *	@name:		device name format string
3806  *	@setup:		callback to initialize device
3807  *	@queue_count:	the number of subqueues to allocate
3808  *
3809  *	Allocates a struct net_device with private data area for driver use
3810  *	and performs basic initialization.  Also allocates subquue structs
3811  *	for each queue on the device at the end of the netdevice.
3812  */
3813 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3814 		void (*setup)(struct net_device *), unsigned int queue_count)
3815 {
3816 	void *p;
3817 	struct net_device *dev;
3818 	int alloc_size;
3819 
3820 	BUG_ON(strlen(name) >= sizeof(dev->name));
3821 
3822 	/* ensure 32-byte alignment of both the device and private area */
3823 	alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST +
3824 		     (sizeof(struct net_device_subqueue) * (queue_count - 1))) &
3825 		     ~NETDEV_ALIGN_CONST;
3826 	alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3827 
3828 	p = kzalloc(alloc_size, GFP_KERNEL);
3829 	if (!p) {
3830 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
3831 		return NULL;
3832 	}
3833 
3834 	dev = (struct net_device *)
3835 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3836 	dev->padded = (char *)dev - (char *)p;
3837 	dev->nd_net = &init_net;
3838 
3839 	if (sizeof_priv) {
3840 		dev->priv = ((char *)dev +
3841 			     ((sizeof(struct net_device) +
3842 			       (sizeof(struct net_device_subqueue) *
3843 				(queue_count - 1)) + NETDEV_ALIGN_CONST)
3844 			      & ~NETDEV_ALIGN_CONST));
3845 	}
3846 
3847 	dev->egress_subqueue_count = queue_count;
3848 
3849 	dev->get_stats = internal_stats;
3850 	netpoll_netdev_init(dev);
3851 	setup(dev);
3852 	strcpy(dev->name, name);
3853 	return dev;
3854 }
3855 EXPORT_SYMBOL(alloc_netdev_mq);
3856 
3857 /**
3858  *	free_netdev - free network device
3859  *	@dev: device
3860  *
3861  *	This function does the last stage of destroying an allocated device
3862  * 	interface. The reference to the device object is released.
3863  *	If this is the last reference then it will be freed.
3864  */
3865 void free_netdev(struct net_device *dev)
3866 {
3867 	/*  Compatibility with error handling in drivers */
3868 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3869 		kfree((char *)dev - dev->padded);
3870 		return;
3871 	}
3872 
3873 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3874 	dev->reg_state = NETREG_RELEASED;
3875 
3876 	/* will free via device release */
3877 	put_device(&dev->dev);
3878 }
3879 
3880 /* Synchronize with packet receive processing. */
3881 void synchronize_net(void)
3882 {
3883 	might_sleep();
3884 	synchronize_rcu();
3885 }
3886 
3887 /**
3888  *	unregister_netdevice - remove device from the kernel
3889  *	@dev: device
3890  *
3891  *	This function shuts down a device interface and removes it
3892  *	from the kernel tables. On success 0 is returned, on a failure
3893  *	a negative errno code is returned.
3894  *
3895  *	Callers must hold the rtnl semaphore.  You may want
3896  *	unregister_netdev() instead of this.
3897  */
3898 
3899 void unregister_netdevice(struct net_device *dev)
3900 {
3901 	BUG_ON(dev_boot_phase);
3902 	ASSERT_RTNL();
3903 
3904 	/* Some devices call without registering for initialization unwind. */
3905 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3906 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3907 				  "was registered\n", dev->name, dev);
3908 
3909 		WARN_ON(1);
3910 		return;
3911 	}
3912 
3913 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
3914 
3915 	/* If device is running, close it first. */
3916 	dev_close(dev);
3917 
3918 	/* And unlink it from device chain. */
3919 	unlist_netdevice(dev);
3920 
3921 	dev->reg_state = NETREG_UNREGISTERING;
3922 
3923 	synchronize_net();
3924 
3925 	/* Shutdown queueing discipline. */
3926 	dev_shutdown(dev);
3927 
3928 
3929 	/* Notify protocols, that we are about to destroy
3930 	   this device. They should clean all the things.
3931 	*/
3932 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3933 
3934 	/*
3935 	 *	Flush the unicast and multicast chains
3936 	 */
3937 	dev_addr_discard(dev);
3938 
3939 	if (dev->uninit)
3940 		dev->uninit(dev);
3941 
3942 	/* Notifier chain MUST detach us from master device. */
3943 	BUG_TRAP(!dev->master);
3944 
3945 	/* Remove entries from kobject tree */
3946 	netdev_unregister_kobject(dev);
3947 
3948 	/* Finish processing unregister after unlock */
3949 	net_set_todo(dev);
3950 
3951 	synchronize_net();
3952 
3953 	dev_put(dev);
3954 }
3955 
3956 /**
3957  *	unregister_netdev - remove device from the kernel
3958  *	@dev: device
3959  *
3960  *	This function shuts down a device interface and removes it
3961  *	from the kernel tables. On success 0 is returned, on a failure
3962  *	a negative errno code is returned.
3963  *
3964  *	This is just a wrapper for unregister_netdevice that takes
3965  *	the rtnl semaphore.  In general you want to use this and not
3966  *	unregister_netdevice.
3967  */
3968 void unregister_netdev(struct net_device *dev)
3969 {
3970 	rtnl_lock();
3971 	unregister_netdevice(dev);
3972 	rtnl_unlock();
3973 }
3974 
3975 EXPORT_SYMBOL(unregister_netdev);
3976 
3977 /**
3978  *	dev_change_net_namespace - move device to different nethost namespace
3979  *	@dev: device
3980  *	@net: network namespace
3981  *	@pat: If not NULL name pattern to try if the current device name
3982  *	      is already taken in the destination network namespace.
3983  *
3984  *	This function shuts down a device interface and moves it
3985  *	to a new network namespace. On success 0 is returned, on
3986  *	a failure a netagive errno code is returned.
3987  *
3988  *	Callers must hold the rtnl semaphore.
3989  */
3990 
3991 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
3992 {
3993 	char buf[IFNAMSIZ];
3994 	const char *destname;
3995 	int err;
3996 
3997 	ASSERT_RTNL();
3998 
3999 	/* Don't allow namespace local devices to be moved. */
4000 	err = -EINVAL;
4001 	if (dev->features & NETIF_F_NETNS_LOCAL)
4002 		goto out;
4003 
4004 	/* Ensure the device has been registrered */
4005 	err = -EINVAL;
4006 	if (dev->reg_state != NETREG_REGISTERED)
4007 		goto out;
4008 
4009 	/* Get out if there is nothing todo */
4010 	err = 0;
4011 	if (dev->nd_net == net)
4012 		goto out;
4013 
4014 	/* Pick the destination device name, and ensure
4015 	 * we can use it in the destination network namespace.
4016 	 */
4017 	err = -EEXIST;
4018 	destname = dev->name;
4019 	if (__dev_get_by_name(net, destname)) {
4020 		/* We get here if we can't use the current device name */
4021 		if (!pat)
4022 			goto out;
4023 		if (!dev_valid_name(pat))
4024 			goto out;
4025 		if (strchr(pat, '%')) {
4026 			if (__dev_alloc_name(net, pat, buf) < 0)
4027 				goto out;
4028 			destname = buf;
4029 		} else
4030 			destname = pat;
4031 		if (__dev_get_by_name(net, destname))
4032 			goto out;
4033 	}
4034 
4035 	/*
4036 	 * And now a mini version of register_netdevice unregister_netdevice.
4037 	 */
4038 
4039 	/* If device is running close it first. */
4040 	dev_close(dev);
4041 
4042 	/* And unlink it from device chain */
4043 	err = -ENODEV;
4044 	unlist_netdevice(dev);
4045 
4046 	synchronize_net();
4047 
4048 	/* Shutdown queueing discipline. */
4049 	dev_shutdown(dev);
4050 
4051 	/* Notify protocols, that we are about to destroy
4052 	   this device. They should clean all the things.
4053 	*/
4054 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4055 
4056 	/*
4057 	 *	Flush the unicast and multicast chains
4058 	 */
4059 	dev_addr_discard(dev);
4060 
4061 	/* Actually switch the network namespace */
4062 	dev->nd_net = net;
4063 
4064 	/* Assign the new device name */
4065 	if (destname != dev->name)
4066 		strcpy(dev->name, destname);
4067 
4068 	/* If there is an ifindex conflict assign a new one */
4069 	if (__dev_get_by_index(net, dev->ifindex)) {
4070 		int iflink = (dev->iflink == dev->ifindex);
4071 		dev->ifindex = dev_new_index(net);
4072 		if (iflink)
4073 			dev->iflink = dev->ifindex;
4074 	}
4075 
4076 	/* Fixup kobjects */
4077 	err = device_rename(&dev->dev, dev->name);
4078 	WARN_ON(err);
4079 
4080 	/* Add the device back in the hashes */
4081 	list_netdevice(dev);
4082 
4083 	/* Notify protocols, that a new device appeared. */
4084 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
4085 
4086 	synchronize_net();
4087 	err = 0;
4088 out:
4089 	return err;
4090 }
4091 
4092 static int dev_cpu_callback(struct notifier_block *nfb,
4093 			    unsigned long action,
4094 			    void *ocpu)
4095 {
4096 	struct sk_buff **list_skb;
4097 	struct net_device **list_net;
4098 	struct sk_buff *skb;
4099 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
4100 	struct softnet_data *sd, *oldsd;
4101 
4102 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4103 		return NOTIFY_OK;
4104 
4105 	local_irq_disable();
4106 	cpu = smp_processor_id();
4107 	sd = &per_cpu(softnet_data, cpu);
4108 	oldsd = &per_cpu(softnet_data, oldcpu);
4109 
4110 	/* Find end of our completion_queue. */
4111 	list_skb = &sd->completion_queue;
4112 	while (*list_skb)
4113 		list_skb = &(*list_skb)->next;
4114 	/* Append completion queue from offline CPU. */
4115 	*list_skb = oldsd->completion_queue;
4116 	oldsd->completion_queue = NULL;
4117 
4118 	/* Find end of our output_queue. */
4119 	list_net = &sd->output_queue;
4120 	while (*list_net)
4121 		list_net = &(*list_net)->next_sched;
4122 	/* Append output queue from offline CPU. */
4123 	*list_net = oldsd->output_queue;
4124 	oldsd->output_queue = NULL;
4125 
4126 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
4127 	local_irq_enable();
4128 
4129 	/* Process offline CPU's input_pkt_queue */
4130 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4131 		netif_rx(skb);
4132 
4133 	return NOTIFY_OK;
4134 }
4135 
4136 #ifdef CONFIG_NET_DMA
4137 /**
4138  * net_dma_rebalance - try to maintain one DMA channel per CPU
4139  * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4140  *
4141  * This is called when the number of channels allocated to the net_dma client
4142  * changes.  The net_dma client tries to have one DMA channel per CPU.
4143  */
4144 
4145 static void net_dma_rebalance(struct net_dma *net_dma)
4146 {
4147 	unsigned int cpu, i, n, chan_idx;
4148 	struct dma_chan *chan;
4149 
4150 	if (cpus_empty(net_dma->channel_mask)) {
4151 		for_each_online_cpu(cpu)
4152 			rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4153 		return;
4154 	}
4155 
4156 	i = 0;
4157 	cpu = first_cpu(cpu_online_map);
4158 
4159 	for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4160 		chan = net_dma->channels[chan_idx];
4161 
4162 		n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4163 		   + (i < (num_online_cpus() %
4164 			cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4165 
4166 		while(n) {
4167 			per_cpu(softnet_data, cpu).net_dma = chan;
4168 			cpu = next_cpu(cpu, cpu_online_map);
4169 			n--;
4170 		}
4171 		i++;
4172 	}
4173 }
4174 
4175 /**
4176  * netdev_dma_event - event callback for the net_dma_client
4177  * @client: should always be net_dma_client
4178  * @chan: DMA channel for the event
4179  * @state: DMA state to be handled
4180  */
4181 static enum dma_state_client
4182 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4183 	enum dma_state state)
4184 {
4185 	int i, found = 0, pos = -1;
4186 	struct net_dma *net_dma =
4187 		container_of(client, struct net_dma, client);
4188 	enum dma_state_client ack = DMA_DUP; /* default: take no action */
4189 
4190 	spin_lock(&net_dma->lock);
4191 	switch (state) {
4192 	case DMA_RESOURCE_AVAILABLE:
4193 		for (i = 0; i < NR_CPUS; i++)
4194 			if (net_dma->channels[i] == chan) {
4195 				found = 1;
4196 				break;
4197 			} else if (net_dma->channels[i] == NULL && pos < 0)
4198 				pos = i;
4199 
4200 		if (!found && pos >= 0) {
4201 			ack = DMA_ACK;
4202 			net_dma->channels[pos] = chan;
4203 			cpu_set(pos, net_dma->channel_mask);
4204 			net_dma_rebalance(net_dma);
4205 		}
4206 		break;
4207 	case DMA_RESOURCE_REMOVED:
4208 		for (i = 0; i < NR_CPUS; i++)
4209 			if (net_dma->channels[i] == chan) {
4210 				found = 1;
4211 				pos = i;
4212 				break;
4213 			}
4214 
4215 		if (found) {
4216 			ack = DMA_ACK;
4217 			cpu_clear(pos, net_dma->channel_mask);
4218 			net_dma->channels[i] = NULL;
4219 			net_dma_rebalance(net_dma);
4220 		}
4221 		break;
4222 	default:
4223 		break;
4224 	}
4225 	spin_unlock(&net_dma->lock);
4226 
4227 	return ack;
4228 }
4229 
4230 /**
4231  * netdev_dma_regiser - register the networking subsystem as a DMA client
4232  */
4233 static int __init netdev_dma_register(void)
4234 {
4235 	spin_lock_init(&net_dma.lock);
4236 	dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4237 	dma_async_client_register(&net_dma.client);
4238 	dma_async_client_chan_request(&net_dma.client);
4239 	return 0;
4240 }
4241 
4242 #else
4243 static int __init netdev_dma_register(void) { return -ENODEV; }
4244 #endif /* CONFIG_NET_DMA */
4245 
4246 /**
4247  *	netdev_compute_feature - compute conjunction of two feature sets
4248  *	@all: first feature set
4249  *	@one: second feature set
4250  *
4251  *	Computes a new feature set after adding a device with feature set
4252  *	@one to the master device with current feature set @all.  Returns
4253  *	the new feature set.
4254  */
4255 int netdev_compute_features(unsigned long all, unsigned long one)
4256 {
4257 	/* if device needs checksumming, downgrade to hw checksumming */
4258 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4259 		all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4260 
4261 	/* if device can't do all checksum, downgrade to ipv4/ipv6 */
4262 	if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4263 		all ^= NETIF_F_HW_CSUM
4264 			| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4265 
4266 	if (one & NETIF_F_GSO)
4267 		one |= NETIF_F_GSO_SOFTWARE;
4268 	one |= NETIF_F_GSO;
4269 
4270 	/* If even one device supports robust GSO, enable it for all. */
4271 	if (one & NETIF_F_GSO_ROBUST)
4272 		all |= NETIF_F_GSO_ROBUST;
4273 
4274 	all &= one | NETIF_F_LLTX;
4275 
4276 	if (!(all & NETIF_F_ALL_CSUM))
4277 		all &= ~NETIF_F_SG;
4278 	if (!(all & NETIF_F_SG))
4279 		all &= ~NETIF_F_GSO_MASK;
4280 
4281 	return all;
4282 }
4283 EXPORT_SYMBOL(netdev_compute_features);
4284 
4285 static struct hlist_head *netdev_create_hash(void)
4286 {
4287 	int i;
4288 	struct hlist_head *hash;
4289 
4290 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4291 	if (hash != NULL)
4292 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
4293 			INIT_HLIST_HEAD(&hash[i]);
4294 
4295 	return hash;
4296 }
4297 
4298 /* Initialize per network namespace state */
4299 static int __net_init netdev_init(struct net *net)
4300 {
4301 	INIT_LIST_HEAD(&net->dev_base_head);
4302 	rwlock_init(&dev_base_lock);
4303 
4304 	net->dev_name_head = netdev_create_hash();
4305 	if (net->dev_name_head == NULL)
4306 		goto err_name;
4307 
4308 	net->dev_index_head = netdev_create_hash();
4309 	if (net->dev_index_head == NULL)
4310 		goto err_idx;
4311 
4312 	return 0;
4313 
4314 err_idx:
4315 	kfree(net->dev_name_head);
4316 err_name:
4317 	return -ENOMEM;
4318 }
4319 
4320 static void __net_exit netdev_exit(struct net *net)
4321 {
4322 	kfree(net->dev_name_head);
4323 	kfree(net->dev_index_head);
4324 }
4325 
4326 static struct pernet_operations __net_initdata netdev_net_ops = {
4327 	.init = netdev_init,
4328 	.exit = netdev_exit,
4329 };
4330 
4331 static void __net_exit default_device_exit(struct net *net)
4332 {
4333 	struct net_device *dev, *next;
4334 	/*
4335 	 * Push all migratable of the network devices back to the
4336 	 * initial network namespace
4337 	 */
4338 	rtnl_lock();
4339 	for_each_netdev_safe(net, dev, next) {
4340 		int err;
4341 
4342 		/* Ignore unmoveable devices (i.e. loopback) */
4343 		if (dev->features & NETIF_F_NETNS_LOCAL)
4344 			continue;
4345 
4346 		/* Push remaing network devices to init_net */
4347 		err = dev_change_net_namespace(dev, &init_net, "dev%d");
4348 		if (err) {
4349 			printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n",
4350 				__func__, dev->name, err);
4351 			unregister_netdevice(dev);
4352 		}
4353 	}
4354 	rtnl_unlock();
4355 }
4356 
4357 static struct pernet_operations __net_initdata default_device_ops = {
4358 	.exit = default_device_exit,
4359 };
4360 
4361 /*
4362  *	Initialize the DEV module. At boot time this walks the device list and
4363  *	unhooks any devices that fail to initialise (normally hardware not
4364  *	present) and leaves us with a valid list of present and active devices.
4365  *
4366  */
4367 
4368 /*
4369  *       This is called single threaded during boot, so no need
4370  *       to take the rtnl semaphore.
4371  */
4372 static int __init net_dev_init(void)
4373 {
4374 	int i, rc = -ENOMEM;
4375 
4376 	BUG_ON(!dev_boot_phase);
4377 
4378 	if (dev_proc_init())
4379 		goto out;
4380 
4381 	if (netdev_kobject_init())
4382 		goto out;
4383 
4384 	INIT_LIST_HEAD(&ptype_all);
4385 	for (i = 0; i < 16; i++)
4386 		INIT_LIST_HEAD(&ptype_base[i]);
4387 
4388 	if (register_pernet_subsys(&netdev_net_ops))
4389 		goto out;
4390 
4391 	if (register_pernet_device(&default_device_ops))
4392 		goto out;
4393 
4394 	/*
4395 	 *	Initialise the packet receive queues.
4396 	 */
4397 
4398 	for_each_possible_cpu(i) {
4399 		struct softnet_data *queue;
4400 
4401 		queue = &per_cpu(softnet_data, i);
4402 		skb_queue_head_init(&queue->input_pkt_queue);
4403 		queue->completion_queue = NULL;
4404 		INIT_LIST_HEAD(&queue->poll_list);
4405 
4406 		queue->backlog.poll = process_backlog;
4407 		queue->backlog.weight = weight_p;
4408 	}
4409 
4410 	netdev_dma_register();
4411 
4412 	dev_boot_phase = 0;
4413 
4414 	open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4415 	open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4416 
4417 	hotcpu_notifier(dev_cpu_callback, 0);
4418 	dst_init();
4419 	dev_mcast_init();
4420 	rc = 0;
4421 out:
4422 	return rc;
4423 }
4424 
4425 subsys_initcall(net_dev_init);
4426 
4427 EXPORT_SYMBOL(__dev_get_by_index);
4428 EXPORT_SYMBOL(__dev_get_by_name);
4429 EXPORT_SYMBOL(__dev_remove_pack);
4430 EXPORT_SYMBOL(dev_valid_name);
4431 EXPORT_SYMBOL(dev_add_pack);
4432 EXPORT_SYMBOL(dev_alloc_name);
4433 EXPORT_SYMBOL(dev_close);
4434 EXPORT_SYMBOL(dev_get_by_flags);
4435 EXPORT_SYMBOL(dev_get_by_index);
4436 EXPORT_SYMBOL(dev_get_by_name);
4437 EXPORT_SYMBOL(dev_open);
4438 EXPORT_SYMBOL(dev_queue_xmit);
4439 EXPORT_SYMBOL(dev_remove_pack);
4440 EXPORT_SYMBOL(dev_set_allmulti);
4441 EXPORT_SYMBOL(dev_set_promiscuity);
4442 EXPORT_SYMBOL(dev_change_flags);
4443 EXPORT_SYMBOL(dev_set_mtu);
4444 EXPORT_SYMBOL(dev_set_mac_address);
4445 EXPORT_SYMBOL(free_netdev);
4446 EXPORT_SYMBOL(netdev_boot_setup_check);
4447 EXPORT_SYMBOL(netdev_set_master);
4448 EXPORT_SYMBOL(netdev_state_change);
4449 EXPORT_SYMBOL(netif_receive_skb);
4450 EXPORT_SYMBOL(netif_rx);
4451 EXPORT_SYMBOL(register_gifconf);
4452 EXPORT_SYMBOL(register_netdevice);
4453 EXPORT_SYMBOL(register_netdevice_notifier);
4454 EXPORT_SYMBOL(skb_checksum_help);
4455 EXPORT_SYMBOL(synchronize_net);
4456 EXPORT_SYMBOL(unregister_netdevice);
4457 EXPORT_SYMBOL(unregister_netdevice_notifier);
4458 EXPORT_SYMBOL(net_enable_timestamp);
4459 EXPORT_SYMBOL(net_disable_timestamp);
4460 EXPORT_SYMBOL(dev_get_flags);
4461 
4462 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4463 EXPORT_SYMBOL(br_handle_frame_hook);
4464 EXPORT_SYMBOL(br_fdb_get_hook);
4465 EXPORT_SYMBOL(br_fdb_put_hook);
4466 #endif
4467 
4468 #ifdef CONFIG_KMOD
4469 EXPORT_SYMBOL(dev_load);
4470 #endif
4471 
4472 EXPORT_PER_CPU_SYMBOL(softnet_data);
4473