1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/notifier.h> 94 #include <linux/skbuff.h> 95 #include <net/net_namespace.h> 96 #include <net/sock.h> 97 #include <linux/rtnetlink.h> 98 #include <linux/proc_fs.h> 99 #include <linux/seq_file.h> 100 #include <linux/stat.h> 101 #include <linux/if_bridge.h> 102 #include <linux/if_macvlan.h> 103 #include <net/dst.h> 104 #include <net/pkt_sched.h> 105 #include <net/checksum.h> 106 #include <linux/highmem.h> 107 #include <linux/init.h> 108 #include <linux/kmod.h> 109 #include <linux/module.h> 110 #include <linux/kallsyms.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 123 /* 124 * The list of packet types we will receive (as opposed to discard) 125 * and the routines to invoke. 126 * 127 * Why 16. Because with 16 the only overlap we get on a hash of the 128 * low nibble of the protocol value is RARP/SNAP/X.25. 129 * 130 * NOTE: That is no longer true with the addition of VLAN tags. Not 131 * sure which should go first, but I bet it won't make much 132 * difference if we are running VLANs. The good news is that 133 * this protocol won't be in the list unless compiled in, so 134 * the average user (w/out VLANs) will not be adversely affected. 135 * --BLG 136 * 137 * 0800 IP 138 * 8100 802.1Q VLAN 139 * 0001 802.3 140 * 0002 AX.25 141 * 0004 802.2 142 * 8035 RARP 143 * 0005 SNAP 144 * 0805 X.25 145 * 0806 ARP 146 * 8137 IPX 147 * 0009 Localtalk 148 * 86DD IPv6 149 */ 150 151 static DEFINE_SPINLOCK(ptype_lock); 152 static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */ 153 static struct list_head ptype_all __read_mostly; /* Taps */ 154 155 #ifdef CONFIG_NET_DMA 156 struct net_dma { 157 struct dma_client client; 158 spinlock_t lock; 159 cpumask_t channel_mask; 160 struct dma_chan *channels[NR_CPUS]; 161 }; 162 163 static enum dma_state_client 164 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 165 enum dma_state state); 166 167 static struct net_dma net_dma = { 168 .client = { 169 .event_callback = netdev_dma_event, 170 }, 171 }; 172 #endif 173 174 /* 175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 176 * semaphore. 177 * 178 * Pure readers hold dev_base_lock for reading. 179 * 180 * Writers must hold the rtnl semaphore while they loop through the 181 * dev_base_head list, and hold dev_base_lock for writing when they do the 182 * actual updates. This allows pure readers to access the list even 183 * while a writer is preparing to update it. 184 * 185 * To put it another way, dev_base_lock is held for writing only to 186 * protect against pure readers; the rtnl semaphore provides the 187 * protection against other writers. 188 * 189 * See, for example usages, register_netdevice() and 190 * unregister_netdevice(), which must be called with the rtnl 191 * semaphore held. 192 */ 193 DEFINE_RWLOCK(dev_base_lock); 194 195 EXPORT_SYMBOL(dev_base_lock); 196 197 #define NETDEV_HASHBITS 8 198 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 199 200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 201 { 202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 204 } 205 206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 207 { 208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 209 } 210 211 /* Device list insertion */ 212 static int list_netdevice(struct net_device *dev) 213 { 214 struct net *net = dev->nd_net; 215 216 ASSERT_RTNL(); 217 218 write_lock_bh(&dev_base_lock); 219 list_add_tail(&dev->dev_list, &net->dev_base_head); 220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 222 write_unlock_bh(&dev_base_lock); 223 return 0; 224 } 225 226 /* Device list removal */ 227 static void unlist_netdevice(struct net_device *dev) 228 { 229 ASSERT_RTNL(); 230 231 /* Unlink dev from the device chain */ 232 write_lock_bh(&dev_base_lock); 233 list_del(&dev->dev_list); 234 hlist_del(&dev->name_hlist); 235 hlist_del(&dev->index_hlist); 236 write_unlock_bh(&dev_base_lock); 237 } 238 239 /* 240 * Our notifier list 241 */ 242 243 static RAW_NOTIFIER_HEAD(netdev_chain); 244 245 /* 246 * Device drivers call our routines to queue packets here. We empty the 247 * queue in the local softnet handler. 248 */ 249 250 DEFINE_PER_CPU(struct softnet_data, softnet_data); 251 252 extern int netdev_kobject_init(void); 253 extern int netdev_register_kobject(struct net_device *); 254 extern void netdev_unregister_kobject(struct net_device *); 255 256 #ifdef CONFIG_DEBUG_LOCK_ALLOC 257 /* 258 * register_netdevice() inits dev->_xmit_lock and sets lockdep class 259 * according to dev->type 260 */ 261 static const unsigned short netdev_lock_type[] = 262 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 263 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 264 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 265 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 266 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 267 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 268 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 269 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 270 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 271 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 272 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 273 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 274 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 275 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID, 276 ARPHRD_NONE}; 277 278 static const char *netdev_lock_name[] = 279 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 280 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 281 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 282 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 283 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 284 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 285 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 286 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 287 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 288 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 289 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 290 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 291 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 292 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID", 293 "_xmit_NONE"}; 294 295 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 296 297 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 298 { 299 int i; 300 301 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 302 if (netdev_lock_type[i] == dev_type) 303 return i; 304 /* the last key is used by default */ 305 return ARRAY_SIZE(netdev_lock_type) - 1; 306 } 307 308 static inline void netdev_set_lockdep_class(spinlock_t *lock, 309 unsigned short dev_type) 310 { 311 int i; 312 313 i = netdev_lock_pos(dev_type); 314 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 315 netdev_lock_name[i]); 316 } 317 #else 318 static inline void netdev_set_lockdep_class(spinlock_t *lock, 319 unsigned short dev_type) 320 { 321 } 322 #endif 323 324 /******************************************************************************* 325 326 Protocol management and registration routines 327 328 *******************************************************************************/ 329 330 /* 331 * Add a protocol ID to the list. Now that the input handler is 332 * smarter we can dispense with all the messy stuff that used to be 333 * here. 334 * 335 * BEWARE!!! Protocol handlers, mangling input packets, 336 * MUST BE last in hash buckets and checking protocol handlers 337 * MUST start from promiscuous ptype_all chain in net_bh. 338 * It is true now, do not change it. 339 * Explanation follows: if protocol handler, mangling packet, will 340 * be the first on list, it is not able to sense, that packet 341 * is cloned and should be copied-on-write, so that it will 342 * change it and subsequent readers will get broken packet. 343 * --ANK (980803) 344 */ 345 346 /** 347 * dev_add_pack - add packet handler 348 * @pt: packet type declaration 349 * 350 * Add a protocol handler to the networking stack. The passed &packet_type 351 * is linked into kernel lists and may not be freed until it has been 352 * removed from the kernel lists. 353 * 354 * This call does not sleep therefore it can not 355 * guarantee all CPU's that are in middle of receiving packets 356 * will see the new packet type (until the next received packet). 357 */ 358 359 void dev_add_pack(struct packet_type *pt) 360 { 361 int hash; 362 363 spin_lock_bh(&ptype_lock); 364 if (pt->type == htons(ETH_P_ALL)) 365 list_add_rcu(&pt->list, &ptype_all); 366 else { 367 hash = ntohs(pt->type) & 15; 368 list_add_rcu(&pt->list, &ptype_base[hash]); 369 } 370 spin_unlock_bh(&ptype_lock); 371 } 372 373 /** 374 * __dev_remove_pack - remove packet handler 375 * @pt: packet type declaration 376 * 377 * Remove a protocol handler that was previously added to the kernel 378 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 379 * from the kernel lists and can be freed or reused once this function 380 * returns. 381 * 382 * The packet type might still be in use by receivers 383 * and must not be freed until after all the CPU's have gone 384 * through a quiescent state. 385 */ 386 void __dev_remove_pack(struct packet_type *pt) 387 { 388 struct list_head *head; 389 struct packet_type *pt1; 390 391 spin_lock_bh(&ptype_lock); 392 393 if (pt->type == htons(ETH_P_ALL)) 394 head = &ptype_all; 395 else 396 head = &ptype_base[ntohs(pt->type) & 15]; 397 398 list_for_each_entry(pt1, head, list) { 399 if (pt == pt1) { 400 list_del_rcu(&pt->list); 401 goto out; 402 } 403 } 404 405 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 406 out: 407 spin_unlock_bh(&ptype_lock); 408 } 409 /** 410 * dev_remove_pack - remove packet handler 411 * @pt: packet type declaration 412 * 413 * Remove a protocol handler that was previously added to the kernel 414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 415 * from the kernel lists and can be freed or reused once this function 416 * returns. 417 * 418 * This call sleeps to guarantee that no CPU is looking at the packet 419 * type after return. 420 */ 421 void dev_remove_pack(struct packet_type *pt) 422 { 423 __dev_remove_pack(pt); 424 425 synchronize_net(); 426 } 427 428 /****************************************************************************** 429 430 Device Boot-time Settings Routines 431 432 *******************************************************************************/ 433 434 /* Boot time configuration table */ 435 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 436 437 /** 438 * netdev_boot_setup_add - add new setup entry 439 * @name: name of the device 440 * @map: configured settings for the device 441 * 442 * Adds new setup entry to the dev_boot_setup list. The function 443 * returns 0 on error and 1 on success. This is a generic routine to 444 * all netdevices. 445 */ 446 static int netdev_boot_setup_add(char *name, struct ifmap *map) 447 { 448 struct netdev_boot_setup *s; 449 int i; 450 451 s = dev_boot_setup; 452 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 453 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 454 memset(s[i].name, 0, sizeof(s[i].name)); 455 strcpy(s[i].name, name); 456 memcpy(&s[i].map, map, sizeof(s[i].map)); 457 break; 458 } 459 } 460 461 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 462 } 463 464 /** 465 * netdev_boot_setup_check - check boot time settings 466 * @dev: the netdevice 467 * 468 * Check boot time settings for the device. 469 * The found settings are set for the device to be used 470 * later in the device probing. 471 * Returns 0 if no settings found, 1 if they are. 472 */ 473 int netdev_boot_setup_check(struct net_device *dev) 474 { 475 struct netdev_boot_setup *s = dev_boot_setup; 476 int i; 477 478 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 479 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 480 !strncmp(dev->name, s[i].name, strlen(s[i].name))) { 481 dev->irq = s[i].map.irq; 482 dev->base_addr = s[i].map.base_addr; 483 dev->mem_start = s[i].map.mem_start; 484 dev->mem_end = s[i].map.mem_end; 485 return 1; 486 } 487 } 488 return 0; 489 } 490 491 492 /** 493 * netdev_boot_base - get address from boot time settings 494 * @prefix: prefix for network device 495 * @unit: id for network device 496 * 497 * Check boot time settings for the base address of device. 498 * The found settings are set for the device to be used 499 * later in the device probing. 500 * Returns 0 if no settings found. 501 */ 502 unsigned long netdev_boot_base(const char *prefix, int unit) 503 { 504 const struct netdev_boot_setup *s = dev_boot_setup; 505 char name[IFNAMSIZ]; 506 int i; 507 508 sprintf(name, "%s%d", prefix, unit); 509 510 /* 511 * If device already registered then return base of 1 512 * to indicate not to probe for this interface 513 */ 514 if (__dev_get_by_name(&init_net, name)) 515 return 1; 516 517 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 518 if (!strcmp(name, s[i].name)) 519 return s[i].map.base_addr; 520 return 0; 521 } 522 523 /* 524 * Saves at boot time configured settings for any netdevice. 525 */ 526 int __init netdev_boot_setup(char *str) 527 { 528 int ints[5]; 529 struct ifmap map; 530 531 str = get_options(str, ARRAY_SIZE(ints), ints); 532 if (!str || !*str) 533 return 0; 534 535 /* Save settings */ 536 memset(&map, 0, sizeof(map)); 537 if (ints[0] > 0) 538 map.irq = ints[1]; 539 if (ints[0] > 1) 540 map.base_addr = ints[2]; 541 if (ints[0] > 2) 542 map.mem_start = ints[3]; 543 if (ints[0] > 3) 544 map.mem_end = ints[4]; 545 546 /* Add new entry to the list */ 547 return netdev_boot_setup_add(str, &map); 548 } 549 550 __setup("netdev=", netdev_boot_setup); 551 552 /******************************************************************************* 553 554 Device Interface Subroutines 555 556 *******************************************************************************/ 557 558 /** 559 * __dev_get_by_name - find a device by its name 560 * @net: the applicable net namespace 561 * @name: name to find 562 * 563 * Find an interface by name. Must be called under RTNL semaphore 564 * or @dev_base_lock. If the name is found a pointer to the device 565 * is returned. If the name is not found then %NULL is returned. The 566 * reference counters are not incremented so the caller must be 567 * careful with locks. 568 */ 569 570 struct net_device *__dev_get_by_name(struct net *net, const char *name) 571 { 572 struct hlist_node *p; 573 574 hlist_for_each(p, dev_name_hash(net, name)) { 575 struct net_device *dev 576 = hlist_entry(p, struct net_device, name_hlist); 577 if (!strncmp(dev->name, name, IFNAMSIZ)) 578 return dev; 579 } 580 return NULL; 581 } 582 583 /** 584 * dev_get_by_name - find a device by its name 585 * @net: the applicable net namespace 586 * @name: name to find 587 * 588 * Find an interface by name. This can be called from any 589 * context and does its own locking. The returned handle has 590 * the usage count incremented and the caller must use dev_put() to 591 * release it when it is no longer needed. %NULL is returned if no 592 * matching device is found. 593 */ 594 595 struct net_device *dev_get_by_name(struct net *net, const char *name) 596 { 597 struct net_device *dev; 598 599 read_lock(&dev_base_lock); 600 dev = __dev_get_by_name(net, name); 601 if (dev) 602 dev_hold(dev); 603 read_unlock(&dev_base_lock); 604 return dev; 605 } 606 607 /** 608 * __dev_get_by_index - find a device by its ifindex 609 * @net: the applicable net namespace 610 * @ifindex: index of device 611 * 612 * Search for an interface by index. Returns %NULL if the device 613 * is not found or a pointer to the device. The device has not 614 * had its reference counter increased so the caller must be careful 615 * about locking. The caller must hold either the RTNL semaphore 616 * or @dev_base_lock. 617 */ 618 619 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 620 { 621 struct hlist_node *p; 622 623 hlist_for_each(p, dev_index_hash(net, ifindex)) { 624 struct net_device *dev 625 = hlist_entry(p, struct net_device, index_hlist); 626 if (dev->ifindex == ifindex) 627 return dev; 628 } 629 return NULL; 630 } 631 632 633 /** 634 * dev_get_by_index - find a device by its ifindex 635 * @net: the applicable net namespace 636 * @ifindex: index of device 637 * 638 * Search for an interface by index. Returns NULL if the device 639 * is not found or a pointer to the device. The device returned has 640 * had a reference added and the pointer is safe until the user calls 641 * dev_put to indicate they have finished with it. 642 */ 643 644 struct net_device *dev_get_by_index(struct net *net, int ifindex) 645 { 646 struct net_device *dev; 647 648 read_lock(&dev_base_lock); 649 dev = __dev_get_by_index(net, ifindex); 650 if (dev) 651 dev_hold(dev); 652 read_unlock(&dev_base_lock); 653 return dev; 654 } 655 656 /** 657 * dev_getbyhwaddr - find a device by its hardware address 658 * @net: the applicable net namespace 659 * @type: media type of device 660 * @ha: hardware address 661 * 662 * Search for an interface by MAC address. Returns NULL if the device 663 * is not found or a pointer to the device. The caller must hold the 664 * rtnl semaphore. The returned device has not had its ref count increased 665 * and the caller must therefore be careful about locking 666 * 667 * BUGS: 668 * If the API was consistent this would be __dev_get_by_hwaddr 669 */ 670 671 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 672 { 673 struct net_device *dev; 674 675 ASSERT_RTNL(); 676 677 for_each_netdev(&init_net, dev) 678 if (dev->type == type && 679 !memcmp(dev->dev_addr, ha, dev->addr_len)) 680 return dev; 681 682 return NULL; 683 } 684 685 EXPORT_SYMBOL(dev_getbyhwaddr); 686 687 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 688 { 689 struct net_device *dev; 690 691 ASSERT_RTNL(); 692 for_each_netdev(net, dev) 693 if (dev->type == type) 694 return dev; 695 696 return NULL; 697 } 698 699 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 700 701 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 702 { 703 struct net_device *dev; 704 705 rtnl_lock(); 706 dev = __dev_getfirstbyhwtype(net, type); 707 if (dev) 708 dev_hold(dev); 709 rtnl_unlock(); 710 return dev; 711 } 712 713 EXPORT_SYMBOL(dev_getfirstbyhwtype); 714 715 /** 716 * dev_get_by_flags - find any device with given flags 717 * @net: the applicable net namespace 718 * @if_flags: IFF_* values 719 * @mask: bitmask of bits in if_flags to check 720 * 721 * Search for any interface with the given flags. Returns NULL if a device 722 * is not found or a pointer to the device. The device returned has 723 * had a reference added and the pointer is safe until the user calls 724 * dev_put to indicate they have finished with it. 725 */ 726 727 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 728 { 729 struct net_device *dev, *ret; 730 731 ret = NULL; 732 read_lock(&dev_base_lock); 733 for_each_netdev(net, dev) { 734 if (((dev->flags ^ if_flags) & mask) == 0) { 735 dev_hold(dev); 736 ret = dev; 737 break; 738 } 739 } 740 read_unlock(&dev_base_lock); 741 return ret; 742 } 743 744 /** 745 * dev_valid_name - check if name is okay for network device 746 * @name: name string 747 * 748 * Network device names need to be valid file names to 749 * to allow sysfs to work. We also disallow any kind of 750 * whitespace. 751 */ 752 int dev_valid_name(const char *name) 753 { 754 if (*name == '\0') 755 return 0; 756 if (strlen(name) >= IFNAMSIZ) 757 return 0; 758 if (!strcmp(name, ".") || !strcmp(name, "..")) 759 return 0; 760 761 while (*name) { 762 if (*name == '/' || isspace(*name)) 763 return 0; 764 name++; 765 } 766 return 1; 767 } 768 769 /** 770 * __dev_alloc_name - allocate a name for a device 771 * @net: network namespace to allocate the device name in 772 * @name: name format string 773 * @buf: scratch buffer and result name string 774 * 775 * Passed a format string - eg "lt%d" it will try and find a suitable 776 * id. It scans list of devices to build up a free map, then chooses 777 * the first empty slot. The caller must hold the dev_base or rtnl lock 778 * while allocating the name and adding the device in order to avoid 779 * duplicates. 780 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 781 * Returns the number of the unit assigned or a negative errno code. 782 */ 783 784 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 785 { 786 int i = 0; 787 const char *p; 788 const int max_netdevices = 8*PAGE_SIZE; 789 unsigned long *inuse; 790 struct net_device *d; 791 792 p = strnchr(name, IFNAMSIZ-1, '%'); 793 if (p) { 794 /* 795 * Verify the string as this thing may have come from 796 * the user. There must be either one "%d" and no other "%" 797 * characters. 798 */ 799 if (p[1] != 'd' || strchr(p + 2, '%')) 800 return -EINVAL; 801 802 /* Use one page as a bit array of possible slots */ 803 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 804 if (!inuse) 805 return -ENOMEM; 806 807 for_each_netdev(net, d) { 808 if (!sscanf(d->name, name, &i)) 809 continue; 810 if (i < 0 || i >= max_netdevices) 811 continue; 812 813 /* avoid cases where sscanf is not exact inverse of printf */ 814 snprintf(buf, IFNAMSIZ, name, i); 815 if (!strncmp(buf, d->name, IFNAMSIZ)) 816 set_bit(i, inuse); 817 } 818 819 i = find_first_zero_bit(inuse, max_netdevices); 820 free_page((unsigned long) inuse); 821 } 822 823 snprintf(buf, IFNAMSIZ, name, i); 824 if (!__dev_get_by_name(net, buf)) 825 return i; 826 827 /* It is possible to run out of possible slots 828 * when the name is long and there isn't enough space left 829 * for the digits, or if all bits are used. 830 */ 831 return -ENFILE; 832 } 833 834 /** 835 * dev_alloc_name - allocate a name for a device 836 * @dev: device 837 * @name: name format string 838 * 839 * Passed a format string - eg "lt%d" it will try and find a suitable 840 * id. It scans list of devices to build up a free map, then chooses 841 * the first empty slot. The caller must hold the dev_base or rtnl lock 842 * while allocating the name and adding the device in order to avoid 843 * duplicates. 844 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 845 * Returns the number of the unit assigned or a negative errno code. 846 */ 847 848 int dev_alloc_name(struct net_device *dev, const char *name) 849 { 850 char buf[IFNAMSIZ]; 851 struct net *net; 852 int ret; 853 854 BUG_ON(!dev->nd_net); 855 net = dev->nd_net; 856 ret = __dev_alloc_name(net, name, buf); 857 if (ret >= 0) 858 strlcpy(dev->name, buf, IFNAMSIZ); 859 return ret; 860 } 861 862 863 /** 864 * dev_change_name - change name of a device 865 * @dev: device 866 * @newname: name (or format string) must be at least IFNAMSIZ 867 * 868 * Change name of a device, can pass format strings "eth%d". 869 * for wildcarding. 870 */ 871 int dev_change_name(struct net_device *dev, char *newname) 872 { 873 char oldname[IFNAMSIZ]; 874 int err = 0; 875 int ret; 876 struct net *net; 877 878 ASSERT_RTNL(); 879 BUG_ON(!dev->nd_net); 880 881 net = dev->nd_net; 882 if (dev->flags & IFF_UP) 883 return -EBUSY; 884 885 if (!dev_valid_name(newname)) 886 return -EINVAL; 887 888 memcpy(oldname, dev->name, IFNAMSIZ); 889 890 if (strchr(newname, '%')) { 891 err = dev_alloc_name(dev, newname); 892 if (err < 0) 893 return err; 894 strcpy(newname, dev->name); 895 } 896 else if (__dev_get_by_name(net, newname)) 897 return -EEXIST; 898 else 899 strlcpy(dev->name, newname, IFNAMSIZ); 900 901 rollback: 902 device_rename(&dev->dev, dev->name); 903 904 write_lock_bh(&dev_base_lock); 905 hlist_del(&dev->name_hlist); 906 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 907 write_unlock_bh(&dev_base_lock); 908 909 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 910 ret = notifier_to_errno(ret); 911 912 if (ret) { 913 if (err) { 914 printk(KERN_ERR 915 "%s: name change rollback failed: %d.\n", 916 dev->name, ret); 917 } else { 918 err = ret; 919 memcpy(dev->name, oldname, IFNAMSIZ); 920 goto rollback; 921 } 922 } 923 924 return err; 925 } 926 927 /** 928 * netdev_features_change - device changes features 929 * @dev: device to cause notification 930 * 931 * Called to indicate a device has changed features. 932 */ 933 void netdev_features_change(struct net_device *dev) 934 { 935 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 936 } 937 EXPORT_SYMBOL(netdev_features_change); 938 939 /** 940 * netdev_state_change - device changes state 941 * @dev: device to cause notification 942 * 943 * Called to indicate a device has changed state. This function calls 944 * the notifier chains for netdev_chain and sends a NEWLINK message 945 * to the routing socket. 946 */ 947 void netdev_state_change(struct net_device *dev) 948 { 949 if (dev->flags & IFF_UP) { 950 call_netdevice_notifiers(NETDEV_CHANGE, dev); 951 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 952 } 953 } 954 955 /** 956 * dev_load - load a network module 957 * @net: the applicable net namespace 958 * @name: name of interface 959 * 960 * If a network interface is not present and the process has suitable 961 * privileges this function loads the module. If module loading is not 962 * available in this kernel then it becomes a nop. 963 */ 964 965 void dev_load(struct net *net, const char *name) 966 { 967 struct net_device *dev; 968 969 read_lock(&dev_base_lock); 970 dev = __dev_get_by_name(net, name); 971 read_unlock(&dev_base_lock); 972 973 if (!dev && capable(CAP_SYS_MODULE)) 974 request_module("%s", name); 975 } 976 977 /** 978 * dev_open - prepare an interface for use. 979 * @dev: device to open 980 * 981 * Takes a device from down to up state. The device's private open 982 * function is invoked and then the multicast lists are loaded. Finally 983 * the device is moved into the up state and a %NETDEV_UP message is 984 * sent to the netdev notifier chain. 985 * 986 * Calling this function on an active interface is a nop. On a failure 987 * a negative errno code is returned. 988 */ 989 int dev_open(struct net_device *dev) 990 { 991 int ret = 0; 992 993 /* 994 * Is it already up? 995 */ 996 997 if (dev->flags & IFF_UP) 998 return 0; 999 1000 /* 1001 * Is it even present? 1002 */ 1003 if (!netif_device_present(dev)) 1004 return -ENODEV; 1005 1006 /* 1007 * Call device private open method 1008 */ 1009 set_bit(__LINK_STATE_START, &dev->state); 1010 if (dev->open) { 1011 ret = dev->open(dev); 1012 if (ret) 1013 clear_bit(__LINK_STATE_START, &dev->state); 1014 } 1015 1016 /* 1017 * If it went open OK then: 1018 */ 1019 1020 if (!ret) { 1021 /* 1022 * Set the flags. 1023 */ 1024 dev->flags |= IFF_UP; 1025 1026 /* 1027 * Initialize multicasting status 1028 */ 1029 dev_set_rx_mode(dev); 1030 1031 /* 1032 * Wakeup transmit queue engine 1033 */ 1034 dev_activate(dev); 1035 1036 /* 1037 * ... and announce new interface. 1038 */ 1039 call_netdevice_notifiers(NETDEV_UP, dev); 1040 } 1041 return ret; 1042 } 1043 1044 /** 1045 * dev_close - shutdown an interface. 1046 * @dev: device to shutdown 1047 * 1048 * This function moves an active device into down state. A 1049 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1050 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1051 * chain. 1052 */ 1053 int dev_close(struct net_device *dev) 1054 { 1055 might_sleep(); 1056 1057 if (!(dev->flags & IFF_UP)) 1058 return 0; 1059 1060 /* 1061 * Tell people we are going down, so that they can 1062 * prepare to death, when device is still operating. 1063 */ 1064 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1065 1066 dev_deactivate(dev); 1067 1068 clear_bit(__LINK_STATE_START, &dev->state); 1069 1070 /* Synchronize to scheduled poll. We cannot touch poll list, 1071 * it can be even on different cpu. So just clear netif_running(). 1072 * 1073 * dev->stop() will invoke napi_disable() on all of it's 1074 * napi_struct instances on this device. 1075 */ 1076 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1077 1078 /* 1079 * Call the device specific close. This cannot fail. 1080 * Only if device is UP 1081 * 1082 * We allow it to be called even after a DETACH hot-plug 1083 * event. 1084 */ 1085 if (dev->stop) 1086 dev->stop(dev); 1087 1088 /* 1089 * Device is now down. 1090 */ 1091 1092 dev->flags &= ~IFF_UP; 1093 1094 /* 1095 * Tell people we are down 1096 */ 1097 call_netdevice_notifiers(NETDEV_DOWN, dev); 1098 1099 return 0; 1100 } 1101 1102 1103 static int dev_boot_phase = 1; 1104 1105 /* 1106 * Device change register/unregister. These are not inline or static 1107 * as we export them to the world. 1108 */ 1109 1110 /** 1111 * register_netdevice_notifier - register a network notifier block 1112 * @nb: notifier 1113 * 1114 * Register a notifier to be called when network device events occur. 1115 * The notifier passed is linked into the kernel structures and must 1116 * not be reused until it has been unregistered. A negative errno code 1117 * is returned on a failure. 1118 * 1119 * When registered all registration and up events are replayed 1120 * to the new notifier to allow device to have a race free 1121 * view of the network device list. 1122 */ 1123 1124 int register_netdevice_notifier(struct notifier_block *nb) 1125 { 1126 struct net_device *dev; 1127 struct net_device *last; 1128 struct net *net; 1129 int err; 1130 1131 rtnl_lock(); 1132 err = raw_notifier_chain_register(&netdev_chain, nb); 1133 if (err) 1134 goto unlock; 1135 if (dev_boot_phase) 1136 goto unlock; 1137 for_each_net(net) { 1138 for_each_netdev(net, dev) { 1139 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1140 err = notifier_to_errno(err); 1141 if (err) 1142 goto rollback; 1143 1144 if (!(dev->flags & IFF_UP)) 1145 continue; 1146 1147 nb->notifier_call(nb, NETDEV_UP, dev); 1148 } 1149 } 1150 1151 unlock: 1152 rtnl_unlock(); 1153 return err; 1154 1155 rollback: 1156 last = dev; 1157 for_each_net(net) { 1158 for_each_netdev(net, dev) { 1159 if (dev == last) 1160 break; 1161 1162 if (dev->flags & IFF_UP) { 1163 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1164 nb->notifier_call(nb, NETDEV_DOWN, dev); 1165 } 1166 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1167 } 1168 } 1169 goto unlock; 1170 } 1171 1172 /** 1173 * unregister_netdevice_notifier - unregister a network notifier block 1174 * @nb: notifier 1175 * 1176 * Unregister a notifier previously registered by 1177 * register_netdevice_notifier(). The notifier is unlinked into the 1178 * kernel structures and may then be reused. A negative errno code 1179 * is returned on a failure. 1180 */ 1181 1182 int unregister_netdevice_notifier(struct notifier_block *nb) 1183 { 1184 int err; 1185 1186 rtnl_lock(); 1187 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1188 rtnl_unlock(); 1189 return err; 1190 } 1191 1192 /** 1193 * call_netdevice_notifiers - call all network notifier blocks 1194 * @val: value passed unmodified to notifier function 1195 * @dev: net_device pointer passed unmodified to notifier function 1196 * 1197 * Call all network notifier blocks. Parameters and return value 1198 * are as for raw_notifier_call_chain(). 1199 */ 1200 1201 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1202 { 1203 return raw_notifier_call_chain(&netdev_chain, val, dev); 1204 } 1205 1206 /* When > 0 there are consumers of rx skb time stamps */ 1207 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1208 1209 void net_enable_timestamp(void) 1210 { 1211 atomic_inc(&netstamp_needed); 1212 } 1213 1214 void net_disable_timestamp(void) 1215 { 1216 atomic_dec(&netstamp_needed); 1217 } 1218 1219 static inline void net_timestamp(struct sk_buff *skb) 1220 { 1221 if (atomic_read(&netstamp_needed)) 1222 __net_timestamp(skb); 1223 else 1224 skb->tstamp.tv64 = 0; 1225 } 1226 1227 /* 1228 * Support routine. Sends outgoing frames to any network 1229 * taps currently in use. 1230 */ 1231 1232 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1233 { 1234 struct packet_type *ptype; 1235 1236 net_timestamp(skb); 1237 1238 rcu_read_lock(); 1239 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1240 /* Never send packets back to the socket 1241 * they originated from - MvS (miquels@drinkel.ow.org) 1242 */ 1243 if ((ptype->dev == dev || !ptype->dev) && 1244 (ptype->af_packet_priv == NULL || 1245 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1246 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1247 if (!skb2) 1248 break; 1249 1250 /* skb->nh should be correctly 1251 set by sender, so that the second statement is 1252 just protection against buggy protocols. 1253 */ 1254 skb_reset_mac_header(skb2); 1255 1256 if (skb_network_header(skb2) < skb2->data || 1257 skb2->network_header > skb2->tail) { 1258 if (net_ratelimit()) 1259 printk(KERN_CRIT "protocol %04x is " 1260 "buggy, dev %s\n", 1261 skb2->protocol, dev->name); 1262 skb_reset_network_header(skb2); 1263 } 1264 1265 skb2->transport_header = skb2->network_header; 1266 skb2->pkt_type = PACKET_OUTGOING; 1267 ptype->func(skb2, skb->dev, ptype, skb->dev); 1268 } 1269 } 1270 rcu_read_unlock(); 1271 } 1272 1273 1274 void __netif_schedule(struct net_device *dev) 1275 { 1276 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) { 1277 unsigned long flags; 1278 struct softnet_data *sd; 1279 1280 local_irq_save(flags); 1281 sd = &__get_cpu_var(softnet_data); 1282 dev->next_sched = sd->output_queue; 1283 sd->output_queue = dev; 1284 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1285 local_irq_restore(flags); 1286 } 1287 } 1288 EXPORT_SYMBOL(__netif_schedule); 1289 1290 void dev_kfree_skb_irq(struct sk_buff *skb) 1291 { 1292 if (atomic_dec_and_test(&skb->users)) { 1293 struct softnet_data *sd; 1294 unsigned long flags; 1295 1296 local_irq_save(flags); 1297 sd = &__get_cpu_var(softnet_data); 1298 skb->next = sd->completion_queue; 1299 sd->completion_queue = skb; 1300 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1301 local_irq_restore(flags); 1302 } 1303 } 1304 EXPORT_SYMBOL(dev_kfree_skb_irq); 1305 1306 void dev_kfree_skb_any(struct sk_buff *skb) 1307 { 1308 if (in_irq() || irqs_disabled()) 1309 dev_kfree_skb_irq(skb); 1310 else 1311 dev_kfree_skb(skb); 1312 } 1313 EXPORT_SYMBOL(dev_kfree_skb_any); 1314 1315 1316 /** 1317 * netif_device_detach - mark device as removed 1318 * @dev: network device 1319 * 1320 * Mark device as removed from system and therefore no longer available. 1321 */ 1322 void netif_device_detach(struct net_device *dev) 1323 { 1324 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1325 netif_running(dev)) { 1326 netif_stop_queue(dev); 1327 } 1328 } 1329 EXPORT_SYMBOL(netif_device_detach); 1330 1331 /** 1332 * netif_device_attach - mark device as attached 1333 * @dev: network device 1334 * 1335 * Mark device as attached from system and restart if needed. 1336 */ 1337 void netif_device_attach(struct net_device *dev) 1338 { 1339 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1340 netif_running(dev)) { 1341 netif_wake_queue(dev); 1342 __netdev_watchdog_up(dev); 1343 } 1344 } 1345 EXPORT_SYMBOL(netif_device_attach); 1346 1347 1348 /* 1349 * Invalidate hardware checksum when packet is to be mangled, and 1350 * complete checksum manually on outgoing path. 1351 */ 1352 int skb_checksum_help(struct sk_buff *skb) 1353 { 1354 __wsum csum; 1355 int ret = 0, offset; 1356 1357 if (skb->ip_summed == CHECKSUM_COMPLETE) 1358 goto out_set_summed; 1359 1360 if (unlikely(skb_shinfo(skb)->gso_size)) { 1361 /* Let GSO fix up the checksum. */ 1362 goto out_set_summed; 1363 } 1364 1365 offset = skb->csum_start - skb_headroom(skb); 1366 BUG_ON(offset >= skb_headlen(skb)); 1367 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1368 1369 offset += skb->csum_offset; 1370 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1371 1372 if (skb_cloned(skb) && 1373 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1374 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1375 if (ret) 1376 goto out; 1377 } 1378 1379 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1380 out_set_summed: 1381 skb->ip_summed = CHECKSUM_NONE; 1382 out: 1383 return ret; 1384 } 1385 1386 /** 1387 * skb_gso_segment - Perform segmentation on skb. 1388 * @skb: buffer to segment 1389 * @features: features for the output path (see dev->features) 1390 * 1391 * This function segments the given skb and returns a list of segments. 1392 * 1393 * It may return NULL if the skb requires no segmentation. This is 1394 * only possible when GSO is used for verifying header integrity. 1395 */ 1396 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1397 { 1398 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1399 struct packet_type *ptype; 1400 __be16 type = skb->protocol; 1401 int err; 1402 1403 BUG_ON(skb_shinfo(skb)->frag_list); 1404 1405 skb_reset_mac_header(skb); 1406 skb->mac_len = skb->network_header - skb->mac_header; 1407 __skb_pull(skb, skb->mac_len); 1408 1409 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1410 if (skb_header_cloned(skb) && 1411 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1412 return ERR_PTR(err); 1413 } 1414 1415 rcu_read_lock(); 1416 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) { 1417 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1418 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1419 err = ptype->gso_send_check(skb); 1420 segs = ERR_PTR(err); 1421 if (err || skb_gso_ok(skb, features)) 1422 break; 1423 __skb_push(skb, (skb->data - 1424 skb_network_header(skb))); 1425 } 1426 segs = ptype->gso_segment(skb, features); 1427 break; 1428 } 1429 } 1430 rcu_read_unlock(); 1431 1432 __skb_push(skb, skb->data - skb_mac_header(skb)); 1433 1434 return segs; 1435 } 1436 1437 EXPORT_SYMBOL(skb_gso_segment); 1438 1439 /* Take action when hardware reception checksum errors are detected. */ 1440 #ifdef CONFIG_BUG 1441 void netdev_rx_csum_fault(struct net_device *dev) 1442 { 1443 if (net_ratelimit()) { 1444 printk(KERN_ERR "%s: hw csum failure.\n", 1445 dev ? dev->name : "<unknown>"); 1446 dump_stack(); 1447 } 1448 } 1449 EXPORT_SYMBOL(netdev_rx_csum_fault); 1450 #endif 1451 1452 /* Actually, we should eliminate this check as soon as we know, that: 1453 * 1. IOMMU is present and allows to map all the memory. 1454 * 2. No high memory really exists on this machine. 1455 */ 1456 1457 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1458 { 1459 #ifdef CONFIG_HIGHMEM 1460 int i; 1461 1462 if (dev->features & NETIF_F_HIGHDMA) 1463 return 0; 1464 1465 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1466 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1467 return 1; 1468 1469 #endif 1470 return 0; 1471 } 1472 1473 struct dev_gso_cb { 1474 void (*destructor)(struct sk_buff *skb); 1475 }; 1476 1477 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1478 1479 static void dev_gso_skb_destructor(struct sk_buff *skb) 1480 { 1481 struct dev_gso_cb *cb; 1482 1483 do { 1484 struct sk_buff *nskb = skb->next; 1485 1486 skb->next = nskb->next; 1487 nskb->next = NULL; 1488 kfree_skb(nskb); 1489 } while (skb->next); 1490 1491 cb = DEV_GSO_CB(skb); 1492 if (cb->destructor) 1493 cb->destructor(skb); 1494 } 1495 1496 /** 1497 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1498 * @skb: buffer to segment 1499 * 1500 * This function segments the given skb and stores the list of segments 1501 * in skb->next. 1502 */ 1503 static int dev_gso_segment(struct sk_buff *skb) 1504 { 1505 struct net_device *dev = skb->dev; 1506 struct sk_buff *segs; 1507 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1508 NETIF_F_SG : 0); 1509 1510 segs = skb_gso_segment(skb, features); 1511 1512 /* Verifying header integrity only. */ 1513 if (!segs) 1514 return 0; 1515 1516 if (unlikely(IS_ERR(segs))) 1517 return PTR_ERR(segs); 1518 1519 skb->next = segs; 1520 DEV_GSO_CB(skb)->destructor = skb->destructor; 1521 skb->destructor = dev_gso_skb_destructor; 1522 1523 return 0; 1524 } 1525 1526 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) 1527 { 1528 if (likely(!skb->next)) { 1529 if (!list_empty(&ptype_all)) 1530 dev_queue_xmit_nit(skb, dev); 1531 1532 if (netif_needs_gso(dev, skb)) { 1533 if (unlikely(dev_gso_segment(skb))) 1534 goto out_kfree_skb; 1535 if (skb->next) 1536 goto gso; 1537 } 1538 1539 return dev->hard_start_xmit(skb, dev); 1540 } 1541 1542 gso: 1543 do { 1544 struct sk_buff *nskb = skb->next; 1545 int rc; 1546 1547 skb->next = nskb->next; 1548 nskb->next = NULL; 1549 rc = dev->hard_start_xmit(nskb, dev); 1550 if (unlikely(rc)) { 1551 nskb->next = skb->next; 1552 skb->next = nskb; 1553 return rc; 1554 } 1555 if (unlikely((netif_queue_stopped(dev) || 1556 netif_subqueue_stopped(dev, skb->queue_mapping)) && 1557 skb->next)) 1558 return NETDEV_TX_BUSY; 1559 } while (skb->next); 1560 1561 skb->destructor = DEV_GSO_CB(skb)->destructor; 1562 1563 out_kfree_skb: 1564 kfree_skb(skb); 1565 return 0; 1566 } 1567 1568 /** 1569 * dev_queue_xmit - transmit a buffer 1570 * @skb: buffer to transmit 1571 * 1572 * Queue a buffer for transmission to a network device. The caller must 1573 * have set the device and priority and built the buffer before calling 1574 * this function. The function can be called from an interrupt. 1575 * 1576 * A negative errno code is returned on a failure. A success does not 1577 * guarantee the frame will be transmitted as it may be dropped due 1578 * to congestion or traffic shaping. 1579 * 1580 * ----------------------------------------------------------------------------------- 1581 * I notice this method can also return errors from the queue disciplines, 1582 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1583 * be positive. 1584 * 1585 * Regardless of the return value, the skb is consumed, so it is currently 1586 * difficult to retry a send to this method. (You can bump the ref count 1587 * before sending to hold a reference for retry if you are careful.) 1588 * 1589 * When calling this method, interrupts MUST be enabled. This is because 1590 * the BH enable code must have IRQs enabled so that it will not deadlock. 1591 * --BLG 1592 */ 1593 1594 int dev_queue_xmit(struct sk_buff *skb) 1595 { 1596 struct net_device *dev = skb->dev; 1597 struct Qdisc *q; 1598 int rc = -ENOMEM; 1599 1600 /* GSO will handle the following emulations directly. */ 1601 if (netif_needs_gso(dev, skb)) 1602 goto gso; 1603 1604 if (skb_shinfo(skb)->frag_list && 1605 !(dev->features & NETIF_F_FRAGLIST) && 1606 __skb_linearize(skb)) 1607 goto out_kfree_skb; 1608 1609 /* Fragmented skb is linearized if device does not support SG, 1610 * or if at least one of fragments is in highmem and device 1611 * does not support DMA from it. 1612 */ 1613 if (skb_shinfo(skb)->nr_frags && 1614 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1615 __skb_linearize(skb)) 1616 goto out_kfree_skb; 1617 1618 /* If packet is not checksummed and device does not support 1619 * checksumming for this protocol, complete checksumming here. 1620 */ 1621 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1622 skb_set_transport_header(skb, skb->csum_start - 1623 skb_headroom(skb)); 1624 1625 if (!(dev->features & NETIF_F_GEN_CSUM) && 1626 !((dev->features & NETIF_F_IP_CSUM) && 1627 skb->protocol == htons(ETH_P_IP)) && 1628 !((dev->features & NETIF_F_IPV6_CSUM) && 1629 skb->protocol == htons(ETH_P_IPV6))) 1630 if (skb_checksum_help(skb)) 1631 goto out_kfree_skb; 1632 } 1633 1634 gso: 1635 spin_lock_prefetch(&dev->queue_lock); 1636 1637 /* Disable soft irqs for various locks below. Also 1638 * stops preemption for RCU. 1639 */ 1640 rcu_read_lock_bh(); 1641 1642 /* Updates of qdisc are serialized by queue_lock. 1643 * The struct Qdisc which is pointed to by qdisc is now a 1644 * rcu structure - it may be accessed without acquiring 1645 * a lock (but the structure may be stale.) The freeing of the 1646 * qdisc will be deferred until it's known that there are no 1647 * more references to it. 1648 * 1649 * If the qdisc has an enqueue function, we still need to 1650 * hold the queue_lock before calling it, since queue_lock 1651 * also serializes access to the device queue. 1652 */ 1653 1654 q = rcu_dereference(dev->qdisc); 1655 #ifdef CONFIG_NET_CLS_ACT 1656 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1657 #endif 1658 if (q->enqueue) { 1659 /* Grab device queue */ 1660 spin_lock(&dev->queue_lock); 1661 q = dev->qdisc; 1662 if (q->enqueue) { 1663 /* reset queue_mapping to zero */ 1664 skb->queue_mapping = 0; 1665 rc = q->enqueue(skb, q); 1666 qdisc_run(dev); 1667 spin_unlock(&dev->queue_lock); 1668 1669 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc; 1670 goto out; 1671 } 1672 spin_unlock(&dev->queue_lock); 1673 } 1674 1675 /* The device has no queue. Common case for software devices: 1676 loopback, all the sorts of tunnels... 1677 1678 Really, it is unlikely that netif_tx_lock protection is necessary 1679 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1680 counters.) 1681 However, it is possible, that they rely on protection 1682 made by us here. 1683 1684 Check this and shot the lock. It is not prone from deadlocks. 1685 Either shot noqueue qdisc, it is even simpler 8) 1686 */ 1687 if (dev->flags & IFF_UP) { 1688 int cpu = smp_processor_id(); /* ok because BHs are off */ 1689 1690 if (dev->xmit_lock_owner != cpu) { 1691 1692 HARD_TX_LOCK(dev, cpu); 1693 1694 if (!netif_queue_stopped(dev) && 1695 !netif_subqueue_stopped(dev, skb->queue_mapping)) { 1696 rc = 0; 1697 if (!dev_hard_start_xmit(skb, dev)) { 1698 HARD_TX_UNLOCK(dev); 1699 goto out; 1700 } 1701 } 1702 HARD_TX_UNLOCK(dev); 1703 if (net_ratelimit()) 1704 printk(KERN_CRIT "Virtual device %s asks to " 1705 "queue packet!\n", dev->name); 1706 } else { 1707 /* Recursion is detected! It is possible, 1708 * unfortunately */ 1709 if (net_ratelimit()) 1710 printk(KERN_CRIT "Dead loop on virtual device " 1711 "%s, fix it urgently!\n", dev->name); 1712 } 1713 } 1714 1715 rc = -ENETDOWN; 1716 rcu_read_unlock_bh(); 1717 1718 out_kfree_skb: 1719 kfree_skb(skb); 1720 return rc; 1721 out: 1722 rcu_read_unlock_bh(); 1723 return rc; 1724 } 1725 1726 1727 /*======================================================================= 1728 Receiver routines 1729 =======================================================================*/ 1730 1731 int netdev_max_backlog __read_mostly = 1000; 1732 int netdev_budget __read_mostly = 300; 1733 int weight_p __read_mostly = 64; /* old backlog weight */ 1734 1735 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1736 1737 1738 /** 1739 * netif_rx - post buffer to the network code 1740 * @skb: buffer to post 1741 * 1742 * This function receives a packet from a device driver and queues it for 1743 * the upper (protocol) levels to process. It always succeeds. The buffer 1744 * may be dropped during processing for congestion control or by the 1745 * protocol layers. 1746 * 1747 * return values: 1748 * NET_RX_SUCCESS (no congestion) 1749 * NET_RX_CN_LOW (low congestion) 1750 * NET_RX_CN_MOD (moderate congestion) 1751 * NET_RX_CN_HIGH (high congestion) 1752 * NET_RX_DROP (packet was dropped) 1753 * 1754 */ 1755 1756 int netif_rx(struct sk_buff *skb) 1757 { 1758 struct softnet_data *queue; 1759 unsigned long flags; 1760 1761 /* if netpoll wants it, pretend we never saw it */ 1762 if (netpoll_rx(skb)) 1763 return NET_RX_DROP; 1764 1765 if (!skb->tstamp.tv64) 1766 net_timestamp(skb); 1767 1768 /* 1769 * The code is rearranged so that the path is the most 1770 * short when CPU is congested, but is still operating. 1771 */ 1772 local_irq_save(flags); 1773 queue = &__get_cpu_var(softnet_data); 1774 1775 __get_cpu_var(netdev_rx_stat).total++; 1776 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1777 if (queue->input_pkt_queue.qlen) { 1778 enqueue: 1779 dev_hold(skb->dev); 1780 __skb_queue_tail(&queue->input_pkt_queue, skb); 1781 local_irq_restore(flags); 1782 return NET_RX_SUCCESS; 1783 } 1784 1785 napi_schedule(&queue->backlog); 1786 goto enqueue; 1787 } 1788 1789 __get_cpu_var(netdev_rx_stat).dropped++; 1790 local_irq_restore(flags); 1791 1792 kfree_skb(skb); 1793 return NET_RX_DROP; 1794 } 1795 1796 int netif_rx_ni(struct sk_buff *skb) 1797 { 1798 int err; 1799 1800 preempt_disable(); 1801 err = netif_rx(skb); 1802 if (local_softirq_pending()) 1803 do_softirq(); 1804 preempt_enable(); 1805 1806 return err; 1807 } 1808 1809 EXPORT_SYMBOL(netif_rx_ni); 1810 1811 static inline struct net_device *skb_bond(struct sk_buff *skb) 1812 { 1813 struct net_device *dev = skb->dev; 1814 1815 if (dev->master) { 1816 if (skb_bond_should_drop(skb)) { 1817 kfree_skb(skb); 1818 return NULL; 1819 } 1820 skb->dev = dev->master; 1821 } 1822 1823 return dev; 1824 } 1825 1826 1827 static void net_tx_action(struct softirq_action *h) 1828 { 1829 struct softnet_data *sd = &__get_cpu_var(softnet_data); 1830 1831 if (sd->completion_queue) { 1832 struct sk_buff *clist; 1833 1834 local_irq_disable(); 1835 clist = sd->completion_queue; 1836 sd->completion_queue = NULL; 1837 local_irq_enable(); 1838 1839 while (clist) { 1840 struct sk_buff *skb = clist; 1841 clist = clist->next; 1842 1843 BUG_TRAP(!atomic_read(&skb->users)); 1844 __kfree_skb(skb); 1845 } 1846 } 1847 1848 if (sd->output_queue) { 1849 struct net_device *head; 1850 1851 local_irq_disable(); 1852 head = sd->output_queue; 1853 sd->output_queue = NULL; 1854 local_irq_enable(); 1855 1856 while (head) { 1857 struct net_device *dev = head; 1858 head = head->next_sched; 1859 1860 smp_mb__before_clear_bit(); 1861 clear_bit(__LINK_STATE_SCHED, &dev->state); 1862 1863 if (spin_trylock(&dev->queue_lock)) { 1864 qdisc_run(dev); 1865 spin_unlock(&dev->queue_lock); 1866 } else { 1867 netif_schedule(dev); 1868 } 1869 } 1870 } 1871 } 1872 1873 static inline int deliver_skb(struct sk_buff *skb, 1874 struct packet_type *pt_prev, 1875 struct net_device *orig_dev) 1876 { 1877 atomic_inc(&skb->users); 1878 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1879 } 1880 1881 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 1882 /* These hooks defined here for ATM */ 1883 struct net_bridge; 1884 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 1885 unsigned char *addr); 1886 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 1887 1888 /* 1889 * If bridge module is loaded call bridging hook. 1890 * returns NULL if packet was consumed. 1891 */ 1892 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 1893 struct sk_buff *skb) __read_mostly; 1894 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 1895 struct packet_type **pt_prev, int *ret, 1896 struct net_device *orig_dev) 1897 { 1898 struct net_bridge_port *port; 1899 1900 if (skb->pkt_type == PACKET_LOOPBACK || 1901 (port = rcu_dereference(skb->dev->br_port)) == NULL) 1902 return skb; 1903 1904 if (*pt_prev) { 1905 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1906 *pt_prev = NULL; 1907 } 1908 1909 return br_handle_frame_hook(port, skb); 1910 } 1911 #else 1912 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 1913 #endif 1914 1915 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 1916 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 1917 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 1918 1919 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 1920 struct packet_type **pt_prev, 1921 int *ret, 1922 struct net_device *orig_dev) 1923 { 1924 if (skb->dev->macvlan_port == NULL) 1925 return skb; 1926 1927 if (*pt_prev) { 1928 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1929 *pt_prev = NULL; 1930 } 1931 return macvlan_handle_frame_hook(skb); 1932 } 1933 #else 1934 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 1935 #endif 1936 1937 #ifdef CONFIG_NET_CLS_ACT 1938 /* TODO: Maybe we should just force sch_ingress to be compiled in 1939 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 1940 * a compare and 2 stores extra right now if we dont have it on 1941 * but have CONFIG_NET_CLS_ACT 1942 * NOTE: This doesnt stop any functionality; if you dont have 1943 * the ingress scheduler, you just cant add policies on ingress. 1944 * 1945 */ 1946 static int ing_filter(struct sk_buff *skb) 1947 { 1948 struct Qdisc *q; 1949 struct net_device *dev = skb->dev; 1950 int result = TC_ACT_OK; 1951 u32 ttl = G_TC_RTTL(skb->tc_verd); 1952 1953 if (MAX_RED_LOOP < ttl++) { 1954 printk(KERN_WARNING 1955 "Redir loop detected Dropping packet (%d->%d)\n", 1956 skb->iif, dev->ifindex); 1957 return TC_ACT_SHOT; 1958 } 1959 1960 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 1961 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 1962 1963 spin_lock(&dev->ingress_lock); 1964 if ((q = dev->qdisc_ingress) != NULL) 1965 result = q->enqueue(skb, q); 1966 spin_unlock(&dev->ingress_lock); 1967 1968 return result; 1969 } 1970 1971 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 1972 struct packet_type **pt_prev, 1973 int *ret, struct net_device *orig_dev) 1974 { 1975 if (!skb->dev->qdisc_ingress) 1976 goto out; 1977 1978 if (*pt_prev) { 1979 *ret = deliver_skb(skb, *pt_prev, orig_dev); 1980 *pt_prev = NULL; 1981 } else { 1982 /* Huh? Why does turning on AF_PACKET affect this? */ 1983 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 1984 } 1985 1986 switch (ing_filter(skb)) { 1987 case TC_ACT_SHOT: 1988 case TC_ACT_STOLEN: 1989 kfree_skb(skb); 1990 return NULL; 1991 } 1992 1993 out: 1994 skb->tc_verd = 0; 1995 return skb; 1996 } 1997 #endif 1998 1999 int netif_receive_skb(struct sk_buff *skb) 2000 { 2001 struct packet_type *ptype, *pt_prev; 2002 struct net_device *orig_dev; 2003 int ret = NET_RX_DROP; 2004 __be16 type; 2005 2006 /* if we've gotten here through NAPI, check netpoll */ 2007 if (netpoll_receive_skb(skb)) 2008 return NET_RX_DROP; 2009 2010 if (!skb->tstamp.tv64) 2011 net_timestamp(skb); 2012 2013 if (!skb->iif) 2014 skb->iif = skb->dev->ifindex; 2015 2016 orig_dev = skb_bond(skb); 2017 2018 if (!orig_dev) 2019 return NET_RX_DROP; 2020 2021 __get_cpu_var(netdev_rx_stat).total++; 2022 2023 skb_reset_network_header(skb); 2024 skb_reset_transport_header(skb); 2025 skb->mac_len = skb->network_header - skb->mac_header; 2026 2027 pt_prev = NULL; 2028 2029 rcu_read_lock(); 2030 2031 #ifdef CONFIG_NET_CLS_ACT 2032 if (skb->tc_verd & TC_NCLS) { 2033 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2034 goto ncls; 2035 } 2036 #endif 2037 2038 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2039 if (!ptype->dev || ptype->dev == skb->dev) { 2040 if (pt_prev) 2041 ret = deliver_skb(skb, pt_prev, orig_dev); 2042 pt_prev = ptype; 2043 } 2044 } 2045 2046 #ifdef CONFIG_NET_CLS_ACT 2047 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2048 if (!skb) 2049 goto out; 2050 ncls: 2051 #endif 2052 2053 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2054 if (!skb) 2055 goto out; 2056 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2057 if (!skb) 2058 goto out; 2059 2060 type = skb->protocol; 2061 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) { 2062 if (ptype->type == type && 2063 (!ptype->dev || ptype->dev == skb->dev)) { 2064 if (pt_prev) 2065 ret = deliver_skb(skb, pt_prev, orig_dev); 2066 pt_prev = ptype; 2067 } 2068 } 2069 2070 if (pt_prev) { 2071 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2072 } else { 2073 kfree_skb(skb); 2074 /* Jamal, now you will not able to escape explaining 2075 * me how you were going to use this. :-) 2076 */ 2077 ret = NET_RX_DROP; 2078 } 2079 2080 out: 2081 rcu_read_unlock(); 2082 return ret; 2083 } 2084 2085 static int process_backlog(struct napi_struct *napi, int quota) 2086 { 2087 int work = 0; 2088 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2089 unsigned long start_time = jiffies; 2090 2091 napi->weight = weight_p; 2092 do { 2093 struct sk_buff *skb; 2094 struct net_device *dev; 2095 2096 local_irq_disable(); 2097 skb = __skb_dequeue(&queue->input_pkt_queue); 2098 if (!skb) { 2099 __napi_complete(napi); 2100 local_irq_enable(); 2101 break; 2102 } 2103 2104 local_irq_enable(); 2105 2106 dev = skb->dev; 2107 2108 netif_receive_skb(skb); 2109 2110 dev_put(dev); 2111 } while (++work < quota && jiffies == start_time); 2112 2113 return work; 2114 } 2115 2116 /** 2117 * __napi_schedule - schedule for receive 2118 * @n: entry to schedule 2119 * 2120 * The entry's receive function will be scheduled to run 2121 */ 2122 void fastcall __napi_schedule(struct napi_struct *n) 2123 { 2124 unsigned long flags; 2125 2126 local_irq_save(flags); 2127 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2128 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2129 local_irq_restore(flags); 2130 } 2131 EXPORT_SYMBOL(__napi_schedule); 2132 2133 2134 static void net_rx_action(struct softirq_action *h) 2135 { 2136 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2137 unsigned long start_time = jiffies; 2138 int budget = netdev_budget; 2139 void *have; 2140 2141 local_irq_disable(); 2142 2143 while (!list_empty(list)) { 2144 struct napi_struct *n; 2145 int work, weight; 2146 2147 /* If softirq window is exhuasted then punt. 2148 * 2149 * Note that this is a slight policy change from the 2150 * previous NAPI code, which would allow up to 2 2151 * jiffies to pass before breaking out. The test 2152 * used to be "jiffies - start_time > 1". 2153 */ 2154 if (unlikely(budget <= 0 || jiffies != start_time)) 2155 goto softnet_break; 2156 2157 local_irq_enable(); 2158 2159 /* Even though interrupts have been re-enabled, this 2160 * access is safe because interrupts can only add new 2161 * entries to the tail of this list, and only ->poll() 2162 * calls can remove this head entry from the list. 2163 */ 2164 n = list_entry(list->next, struct napi_struct, poll_list); 2165 2166 have = netpoll_poll_lock(n); 2167 2168 weight = n->weight; 2169 2170 work = n->poll(n, weight); 2171 2172 WARN_ON_ONCE(work > weight); 2173 2174 budget -= work; 2175 2176 local_irq_disable(); 2177 2178 /* Drivers must not modify the NAPI state if they 2179 * consume the entire weight. In such cases this code 2180 * still "owns" the NAPI instance and therefore can 2181 * move the instance around on the list at-will. 2182 */ 2183 if (unlikely(work == weight)) 2184 list_move_tail(&n->poll_list, list); 2185 2186 netpoll_poll_unlock(have); 2187 } 2188 out: 2189 local_irq_enable(); 2190 2191 #ifdef CONFIG_NET_DMA 2192 /* 2193 * There may not be any more sk_buffs coming right now, so push 2194 * any pending DMA copies to hardware 2195 */ 2196 if (!cpus_empty(net_dma.channel_mask)) { 2197 int chan_idx; 2198 for_each_cpu_mask(chan_idx, net_dma.channel_mask) { 2199 struct dma_chan *chan = net_dma.channels[chan_idx]; 2200 if (chan) 2201 dma_async_memcpy_issue_pending(chan); 2202 } 2203 } 2204 #endif 2205 2206 return; 2207 2208 softnet_break: 2209 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2210 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2211 goto out; 2212 } 2213 2214 static gifconf_func_t * gifconf_list [NPROTO]; 2215 2216 /** 2217 * register_gifconf - register a SIOCGIF handler 2218 * @family: Address family 2219 * @gifconf: Function handler 2220 * 2221 * Register protocol dependent address dumping routines. The handler 2222 * that is passed must not be freed or reused until it has been replaced 2223 * by another handler. 2224 */ 2225 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2226 { 2227 if (family >= NPROTO) 2228 return -EINVAL; 2229 gifconf_list[family] = gifconf; 2230 return 0; 2231 } 2232 2233 2234 /* 2235 * Map an interface index to its name (SIOCGIFNAME) 2236 */ 2237 2238 /* 2239 * We need this ioctl for efficient implementation of the 2240 * if_indextoname() function required by the IPv6 API. Without 2241 * it, we would have to search all the interfaces to find a 2242 * match. --pb 2243 */ 2244 2245 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2246 { 2247 struct net_device *dev; 2248 struct ifreq ifr; 2249 2250 /* 2251 * Fetch the caller's info block. 2252 */ 2253 2254 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2255 return -EFAULT; 2256 2257 read_lock(&dev_base_lock); 2258 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2259 if (!dev) { 2260 read_unlock(&dev_base_lock); 2261 return -ENODEV; 2262 } 2263 2264 strcpy(ifr.ifr_name, dev->name); 2265 read_unlock(&dev_base_lock); 2266 2267 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2268 return -EFAULT; 2269 return 0; 2270 } 2271 2272 /* 2273 * Perform a SIOCGIFCONF call. This structure will change 2274 * size eventually, and there is nothing I can do about it. 2275 * Thus we will need a 'compatibility mode'. 2276 */ 2277 2278 static int dev_ifconf(struct net *net, char __user *arg) 2279 { 2280 struct ifconf ifc; 2281 struct net_device *dev; 2282 char __user *pos; 2283 int len; 2284 int total; 2285 int i; 2286 2287 /* 2288 * Fetch the caller's info block. 2289 */ 2290 2291 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2292 return -EFAULT; 2293 2294 pos = ifc.ifc_buf; 2295 len = ifc.ifc_len; 2296 2297 /* 2298 * Loop over the interfaces, and write an info block for each. 2299 */ 2300 2301 total = 0; 2302 for_each_netdev(net, dev) { 2303 for (i = 0; i < NPROTO; i++) { 2304 if (gifconf_list[i]) { 2305 int done; 2306 if (!pos) 2307 done = gifconf_list[i](dev, NULL, 0); 2308 else 2309 done = gifconf_list[i](dev, pos + total, 2310 len - total); 2311 if (done < 0) 2312 return -EFAULT; 2313 total += done; 2314 } 2315 } 2316 } 2317 2318 /* 2319 * All done. Write the updated control block back to the caller. 2320 */ 2321 ifc.ifc_len = total; 2322 2323 /* 2324 * Both BSD and Solaris return 0 here, so we do too. 2325 */ 2326 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2327 } 2328 2329 #ifdef CONFIG_PROC_FS 2330 /* 2331 * This is invoked by the /proc filesystem handler to display a device 2332 * in detail. 2333 */ 2334 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2335 { 2336 struct net *net = seq->private; 2337 loff_t off; 2338 struct net_device *dev; 2339 2340 read_lock(&dev_base_lock); 2341 if (!*pos) 2342 return SEQ_START_TOKEN; 2343 2344 off = 1; 2345 for_each_netdev(net, dev) 2346 if (off++ == *pos) 2347 return dev; 2348 2349 return NULL; 2350 } 2351 2352 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2353 { 2354 struct net *net = seq->private; 2355 ++*pos; 2356 return v == SEQ_START_TOKEN ? 2357 first_net_device(net) : next_net_device((struct net_device *)v); 2358 } 2359 2360 void dev_seq_stop(struct seq_file *seq, void *v) 2361 { 2362 read_unlock(&dev_base_lock); 2363 } 2364 2365 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2366 { 2367 struct net_device_stats *stats = dev->get_stats(dev); 2368 2369 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2370 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2371 dev->name, stats->rx_bytes, stats->rx_packets, 2372 stats->rx_errors, 2373 stats->rx_dropped + stats->rx_missed_errors, 2374 stats->rx_fifo_errors, 2375 stats->rx_length_errors + stats->rx_over_errors + 2376 stats->rx_crc_errors + stats->rx_frame_errors, 2377 stats->rx_compressed, stats->multicast, 2378 stats->tx_bytes, stats->tx_packets, 2379 stats->tx_errors, stats->tx_dropped, 2380 stats->tx_fifo_errors, stats->collisions, 2381 stats->tx_carrier_errors + 2382 stats->tx_aborted_errors + 2383 stats->tx_window_errors + 2384 stats->tx_heartbeat_errors, 2385 stats->tx_compressed); 2386 } 2387 2388 /* 2389 * Called from the PROCfs module. This now uses the new arbitrary sized 2390 * /proc/net interface to create /proc/net/dev 2391 */ 2392 static int dev_seq_show(struct seq_file *seq, void *v) 2393 { 2394 if (v == SEQ_START_TOKEN) 2395 seq_puts(seq, "Inter-| Receive " 2396 " | Transmit\n" 2397 " face |bytes packets errs drop fifo frame " 2398 "compressed multicast|bytes packets errs " 2399 "drop fifo colls carrier compressed\n"); 2400 else 2401 dev_seq_printf_stats(seq, v); 2402 return 0; 2403 } 2404 2405 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2406 { 2407 struct netif_rx_stats *rc = NULL; 2408 2409 while (*pos < NR_CPUS) 2410 if (cpu_online(*pos)) { 2411 rc = &per_cpu(netdev_rx_stat, *pos); 2412 break; 2413 } else 2414 ++*pos; 2415 return rc; 2416 } 2417 2418 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2419 { 2420 return softnet_get_online(pos); 2421 } 2422 2423 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2424 { 2425 ++*pos; 2426 return softnet_get_online(pos); 2427 } 2428 2429 static void softnet_seq_stop(struct seq_file *seq, void *v) 2430 { 2431 } 2432 2433 static int softnet_seq_show(struct seq_file *seq, void *v) 2434 { 2435 struct netif_rx_stats *s = v; 2436 2437 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2438 s->total, s->dropped, s->time_squeeze, 0, 2439 0, 0, 0, 0, /* was fastroute */ 2440 s->cpu_collision ); 2441 return 0; 2442 } 2443 2444 static const struct seq_operations dev_seq_ops = { 2445 .start = dev_seq_start, 2446 .next = dev_seq_next, 2447 .stop = dev_seq_stop, 2448 .show = dev_seq_show, 2449 }; 2450 2451 static int dev_seq_open(struct inode *inode, struct file *file) 2452 { 2453 struct seq_file *seq; 2454 int res; 2455 res = seq_open(file, &dev_seq_ops); 2456 if (!res) { 2457 seq = file->private_data; 2458 seq->private = get_proc_net(inode); 2459 if (!seq->private) { 2460 seq_release(inode, file); 2461 res = -ENXIO; 2462 } 2463 } 2464 return res; 2465 } 2466 2467 static int dev_seq_release(struct inode *inode, struct file *file) 2468 { 2469 struct seq_file *seq = file->private_data; 2470 struct net *net = seq->private; 2471 put_net(net); 2472 return seq_release(inode, file); 2473 } 2474 2475 static const struct file_operations dev_seq_fops = { 2476 .owner = THIS_MODULE, 2477 .open = dev_seq_open, 2478 .read = seq_read, 2479 .llseek = seq_lseek, 2480 .release = dev_seq_release, 2481 }; 2482 2483 static const struct seq_operations softnet_seq_ops = { 2484 .start = softnet_seq_start, 2485 .next = softnet_seq_next, 2486 .stop = softnet_seq_stop, 2487 .show = softnet_seq_show, 2488 }; 2489 2490 static int softnet_seq_open(struct inode *inode, struct file *file) 2491 { 2492 return seq_open(file, &softnet_seq_ops); 2493 } 2494 2495 static const struct file_operations softnet_seq_fops = { 2496 .owner = THIS_MODULE, 2497 .open = softnet_seq_open, 2498 .read = seq_read, 2499 .llseek = seq_lseek, 2500 .release = seq_release, 2501 }; 2502 2503 static void *ptype_get_idx(loff_t pos) 2504 { 2505 struct packet_type *pt = NULL; 2506 loff_t i = 0; 2507 int t; 2508 2509 list_for_each_entry_rcu(pt, &ptype_all, list) { 2510 if (i == pos) 2511 return pt; 2512 ++i; 2513 } 2514 2515 for (t = 0; t < 16; t++) { 2516 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 2517 if (i == pos) 2518 return pt; 2519 ++i; 2520 } 2521 } 2522 return NULL; 2523 } 2524 2525 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 2526 { 2527 rcu_read_lock(); 2528 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 2529 } 2530 2531 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2532 { 2533 struct packet_type *pt; 2534 struct list_head *nxt; 2535 int hash; 2536 2537 ++*pos; 2538 if (v == SEQ_START_TOKEN) 2539 return ptype_get_idx(0); 2540 2541 pt = v; 2542 nxt = pt->list.next; 2543 if (pt->type == htons(ETH_P_ALL)) { 2544 if (nxt != &ptype_all) 2545 goto found; 2546 hash = 0; 2547 nxt = ptype_base[0].next; 2548 } else 2549 hash = ntohs(pt->type) & 15; 2550 2551 while (nxt == &ptype_base[hash]) { 2552 if (++hash >= 16) 2553 return NULL; 2554 nxt = ptype_base[hash].next; 2555 } 2556 found: 2557 return list_entry(nxt, struct packet_type, list); 2558 } 2559 2560 static void ptype_seq_stop(struct seq_file *seq, void *v) 2561 { 2562 rcu_read_unlock(); 2563 } 2564 2565 static void ptype_seq_decode(struct seq_file *seq, void *sym) 2566 { 2567 #ifdef CONFIG_KALLSYMS 2568 unsigned long offset = 0, symsize; 2569 const char *symname; 2570 char *modname; 2571 char namebuf[128]; 2572 2573 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset, 2574 &modname, namebuf); 2575 2576 if (symname) { 2577 char *delim = ":"; 2578 2579 if (!modname) 2580 modname = delim = ""; 2581 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim, 2582 symname, offset); 2583 return; 2584 } 2585 #endif 2586 2587 seq_printf(seq, "[%p]", sym); 2588 } 2589 2590 static int ptype_seq_show(struct seq_file *seq, void *v) 2591 { 2592 struct packet_type *pt = v; 2593 2594 if (v == SEQ_START_TOKEN) 2595 seq_puts(seq, "Type Device Function\n"); 2596 else { 2597 if (pt->type == htons(ETH_P_ALL)) 2598 seq_puts(seq, "ALL "); 2599 else 2600 seq_printf(seq, "%04x", ntohs(pt->type)); 2601 2602 seq_printf(seq, " %-8s ", 2603 pt->dev ? pt->dev->name : ""); 2604 ptype_seq_decode(seq, pt->func); 2605 seq_putc(seq, '\n'); 2606 } 2607 2608 return 0; 2609 } 2610 2611 static const struct seq_operations ptype_seq_ops = { 2612 .start = ptype_seq_start, 2613 .next = ptype_seq_next, 2614 .stop = ptype_seq_stop, 2615 .show = ptype_seq_show, 2616 }; 2617 2618 static int ptype_seq_open(struct inode *inode, struct file *file) 2619 { 2620 return seq_open(file, &ptype_seq_ops); 2621 } 2622 2623 static const struct file_operations ptype_seq_fops = { 2624 .owner = THIS_MODULE, 2625 .open = ptype_seq_open, 2626 .read = seq_read, 2627 .llseek = seq_lseek, 2628 .release = seq_release, 2629 }; 2630 2631 2632 static int __net_init dev_proc_net_init(struct net *net) 2633 { 2634 int rc = -ENOMEM; 2635 2636 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 2637 goto out; 2638 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 2639 goto out_dev; 2640 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 2641 goto out_softnet; 2642 2643 if (wext_proc_init(net)) 2644 goto out_ptype; 2645 rc = 0; 2646 out: 2647 return rc; 2648 out_ptype: 2649 proc_net_remove(net, "ptype"); 2650 out_softnet: 2651 proc_net_remove(net, "softnet_stat"); 2652 out_dev: 2653 proc_net_remove(net, "dev"); 2654 goto out; 2655 } 2656 2657 static void __net_exit dev_proc_net_exit(struct net *net) 2658 { 2659 wext_proc_exit(net); 2660 2661 proc_net_remove(net, "ptype"); 2662 proc_net_remove(net, "softnet_stat"); 2663 proc_net_remove(net, "dev"); 2664 } 2665 2666 static struct pernet_operations __net_initdata dev_proc_ops = { 2667 .init = dev_proc_net_init, 2668 .exit = dev_proc_net_exit, 2669 }; 2670 2671 static int __init dev_proc_init(void) 2672 { 2673 return register_pernet_subsys(&dev_proc_ops); 2674 } 2675 #else 2676 #define dev_proc_init() 0 2677 #endif /* CONFIG_PROC_FS */ 2678 2679 2680 /** 2681 * netdev_set_master - set up master/slave pair 2682 * @slave: slave device 2683 * @master: new master device 2684 * 2685 * Changes the master device of the slave. Pass %NULL to break the 2686 * bonding. The caller must hold the RTNL semaphore. On a failure 2687 * a negative errno code is returned. On success the reference counts 2688 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 2689 * function returns zero. 2690 */ 2691 int netdev_set_master(struct net_device *slave, struct net_device *master) 2692 { 2693 struct net_device *old = slave->master; 2694 2695 ASSERT_RTNL(); 2696 2697 if (master) { 2698 if (old) 2699 return -EBUSY; 2700 dev_hold(master); 2701 } 2702 2703 slave->master = master; 2704 2705 synchronize_net(); 2706 2707 if (old) 2708 dev_put(old); 2709 2710 if (master) 2711 slave->flags |= IFF_SLAVE; 2712 else 2713 slave->flags &= ~IFF_SLAVE; 2714 2715 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 2716 return 0; 2717 } 2718 2719 static void __dev_set_promiscuity(struct net_device *dev, int inc) 2720 { 2721 unsigned short old_flags = dev->flags; 2722 2723 ASSERT_RTNL(); 2724 2725 if ((dev->promiscuity += inc) == 0) 2726 dev->flags &= ~IFF_PROMISC; 2727 else 2728 dev->flags |= IFF_PROMISC; 2729 if (dev->flags != old_flags) { 2730 printk(KERN_INFO "device %s %s promiscuous mode\n", 2731 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 2732 "left"); 2733 audit_log(current->audit_context, GFP_ATOMIC, 2734 AUDIT_ANOM_PROMISCUOUS, 2735 "dev=%s prom=%d old_prom=%d auid=%u", 2736 dev->name, (dev->flags & IFF_PROMISC), 2737 (old_flags & IFF_PROMISC), 2738 audit_get_loginuid(current->audit_context)); 2739 2740 if (dev->change_rx_flags) 2741 dev->change_rx_flags(dev, IFF_PROMISC); 2742 } 2743 } 2744 2745 /** 2746 * dev_set_promiscuity - update promiscuity count on a device 2747 * @dev: device 2748 * @inc: modifier 2749 * 2750 * Add or remove promiscuity from a device. While the count in the device 2751 * remains above zero the interface remains promiscuous. Once it hits zero 2752 * the device reverts back to normal filtering operation. A negative inc 2753 * value is used to drop promiscuity on the device. 2754 */ 2755 void dev_set_promiscuity(struct net_device *dev, int inc) 2756 { 2757 unsigned short old_flags = dev->flags; 2758 2759 __dev_set_promiscuity(dev, inc); 2760 if (dev->flags != old_flags) 2761 dev_set_rx_mode(dev); 2762 } 2763 2764 /** 2765 * dev_set_allmulti - update allmulti count on a device 2766 * @dev: device 2767 * @inc: modifier 2768 * 2769 * Add or remove reception of all multicast frames to a device. While the 2770 * count in the device remains above zero the interface remains listening 2771 * to all interfaces. Once it hits zero the device reverts back to normal 2772 * filtering operation. A negative @inc value is used to drop the counter 2773 * when releasing a resource needing all multicasts. 2774 */ 2775 2776 void dev_set_allmulti(struct net_device *dev, int inc) 2777 { 2778 unsigned short old_flags = dev->flags; 2779 2780 ASSERT_RTNL(); 2781 2782 dev->flags |= IFF_ALLMULTI; 2783 if ((dev->allmulti += inc) == 0) 2784 dev->flags &= ~IFF_ALLMULTI; 2785 if (dev->flags ^ old_flags) { 2786 if (dev->change_rx_flags) 2787 dev->change_rx_flags(dev, IFF_ALLMULTI); 2788 dev_set_rx_mode(dev); 2789 } 2790 } 2791 2792 /* 2793 * Upload unicast and multicast address lists to device and 2794 * configure RX filtering. When the device doesn't support unicast 2795 * filtering it is put in promiscous mode while unicast addresses 2796 * are present. 2797 */ 2798 void __dev_set_rx_mode(struct net_device *dev) 2799 { 2800 /* dev_open will call this function so the list will stay sane. */ 2801 if (!(dev->flags&IFF_UP)) 2802 return; 2803 2804 if (!netif_device_present(dev)) 2805 return; 2806 2807 if (dev->set_rx_mode) 2808 dev->set_rx_mode(dev); 2809 else { 2810 /* Unicast addresses changes may only happen under the rtnl, 2811 * therefore calling __dev_set_promiscuity here is safe. 2812 */ 2813 if (dev->uc_count > 0 && !dev->uc_promisc) { 2814 __dev_set_promiscuity(dev, 1); 2815 dev->uc_promisc = 1; 2816 } else if (dev->uc_count == 0 && dev->uc_promisc) { 2817 __dev_set_promiscuity(dev, -1); 2818 dev->uc_promisc = 0; 2819 } 2820 2821 if (dev->set_multicast_list) 2822 dev->set_multicast_list(dev); 2823 } 2824 } 2825 2826 void dev_set_rx_mode(struct net_device *dev) 2827 { 2828 netif_tx_lock_bh(dev); 2829 __dev_set_rx_mode(dev); 2830 netif_tx_unlock_bh(dev); 2831 } 2832 2833 int __dev_addr_delete(struct dev_addr_list **list, int *count, 2834 void *addr, int alen, int glbl) 2835 { 2836 struct dev_addr_list *da; 2837 2838 for (; (da = *list) != NULL; list = &da->next) { 2839 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2840 alen == da->da_addrlen) { 2841 if (glbl) { 2842 int old_glbl = da->da_gusers; 2843 da->da_gusers = 0; 2844 if (old_glbl == 0) 2845 break; 2846 } 2847 if (--da->da_users) 2848 return 0; 2849 2850 *list = da->next; 2851 kfree(da); 2852 (*count)--; 2853 return 0; 2854 } 2855 } 2856 return -ENOENT; 2857 } 2858 2859 int __dev_addr_add(struct dev_addr_list **list, int *count, 2860 void *addr, int alen, int glbl) 2861 { 2862 struct dev_addr_list *da; 2863 2864 for (da = *list; da != NULL; da = da->next) { 2865 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 2866 da->da_addrlen == alen) { 2867 if (glbl) { 2868 int old_glbl = da->da_gusers; 2869 da->da_gusers = 1; 2870 if (old_glbl) 2871 return 0; 2872 } 2873 da->da_users++; 2874 return 0; 2875 } 2876 } 2877 2878 da = kmalloc(sizeof(*da), GFP_ATOMIC); 2879 if (da == NULL) 2880 return -ENOMEM; 2881 memcpy(da->da_addr, addr, alen); 2882 da->da_addrlen = alen; 2883 da->da_users = 1; 2884 da->da_gusers = glbl ? 1 : 0; 2885 da->next = *list; 2886 *list = da; 2887 (*count)++; 2888 return 0; 2889 } 2890 2891 /** 2892 * dev_unicast_delete - Release secondary unicast address. 2893 * @dev: device 2894 * @addr: address to delete 2895 * @alen: length of @addr 2896 * 2897 * Release reference to a secondary unicast address and remove it 2898 * from the device if the reference count drops to zero. 2899 * 2900 * The caller must hold the rtnl_mutex. 2901 */ 2902 int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 2903 { 2904 int err; 2905 2906 ASSERT_RTNL(); 2907 2908 netif_tx_lock_bh(dev); 2909 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2910 if (!err) 2911 __dev_set_rx_mode(dev); 2912 netif_tx_unlock_bh(dev); 2913 return err; 2914 } 2915 EXPORT_SYMBOL(dev_unicast_delete); 2916 2917 /** 2918 * dev_unicast_add - add a secondary unicast address 2919 * @dev: device 2920 * @addr: address to delete 2921 * @alen: length of @addr 2922 * 2923 * Add a secondary unicast address to the device or increase 2924 * the reference count if it already exists. 2925 * 2926 * The caller must hold the rtnl_mutex. 2927 */ 2928 int dev_unicast_add(struct net_device *dev, void *addr, int alen) 2929 { 2930 int err; 2931 2932 ASSERT_RTNL(); 2933 2934 netif_tx_lock_bh(dev); 2935 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 2936 if (!err) 2937 __dev_set_rx_mode(dev); 2938 netif_tx_unlock_bh(dev); 2939 return err; 2940 } 2941 EXPORT_SYMBOL(dev_unicast_add); 2942 2943 static void __dev_addr_discard(struct dev_addr_list **list) 2944 { 2945 struct dev_addr_list *tmp; 2946 2947 while (*list != NULL) { 2948 tmp = *list; 2949 *list = tmp->next; 2950 if (tmp->da_users > tmp->da_gusers) 2951 printk("__dev_addr_discard: address leakage! " 2952 "da_users=%d\n", tmp->da_users); 2953 kfree(tmp); 2954 } 2955 } 2956 2957 static void dev_addr_discard(struct net_device *dev) 2958 { 2959 netif_tx_lock_bh(dev); 2960 2961 __dev_addr_discard(&dev->uc_list); 2962 dev->uc_count = 0; 2963 2964 __dev_addr_discard(&dev->mc_list); 2965 dev->mc_count = 0; 2966 2967 netif_tx_unlock_bh(dev); 2968 } 2969 2970 unsigned dev_get_flags(const struct net_device *dev) 2971 { 2972 unsigned flags; 2973 2974 flags = (dev->flags & ~(IFF_PROMISC | 2975 IFF_ALLMULTI | 2976 IFF_RUNNING | 2977 IFF_LOWER_UP | 2978 IFF_DORMANT)) | 2979 (dev->gflags & (IFF_PROMISC | 2980 IFF_ALLMULTI)); 2981 2982 if (netif_running(dev)) { 2983 if (netif_oper_up(dev)) 2984 flags |= IFF_RUNNING; 2985 if (netif_carrier_ok(dev)) 2986 flags |= IFF_LOWER_UP; 2987 if (netif_dormant(dev)) 2988 flags |= IFF_DORMANT; 2989 } 2990 2991 return flags; 2992 } 2993 2994 int dev_change_flags(struct net_device *dev, unsigned flags) 2995 { 2996 int ret, changes; 2997 int old_flags = dev->flags; 2998 2999 ASSERT_RTNL(); 3000 3001 /* 3002 * Set the flags on our device. 3003 */ 3004 3005 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3006 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3007 IFF_AUTOMEDIA)) | 3008 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3009 IFF_ALLMULTI)); 3010 3011 /* 3012 * Load in the correct multicast list now the flags have changed. 3013 */ 3014 3015 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST) 3016 dev->change_rx_flags(dev, IFF_MULTICAST); 3017 3018 dev_set_rx_mode(dev); 3019 3020 /* 3021 * Have we downed the interface. We handle IFF_UP ourselves 3022 * according to user attempts to set it, rather than blindly 3023 * setting it. 3024 */ 3025 3026 ret = 0; 3027 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3028 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3029 3030 if (!ret) 3031 dev_set_rx_mode(dev); 3032 } 3033 3034 if (dev->flags & IFF_UP && 3035 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3036 IFF_VOLATILE))) 3037 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3038 3039 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3040 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3041 dev->gflags ^= IFF_PROMISC; 3042 dev_set_promiscuity(dev, inc); 3043 } 3044 3045 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3046 is important. Some (broken) drivers set IFF_PROMISC, when 3047 IFF_ALLMULTI is requested not asking us and not reporting. 3048 */ 3049 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3050 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3051 dev->gflags ^= IFF_ALLMULTI; 3052 dev_set_allmulti(dev, inc); 3053 } 3054 3055 /* Exclude state transition flags, already notified */ 3056 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3057 if (changes) 3058 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3059 3060 return ret; 3061 } 3062 3063 int dev_set_mtu(struct net_device *dev, int new_mtu) 3064 { 3065 int err; 3066 3067 if (new_mtu == dev->mtu) 3068 return 0; 3069 3070 /* MTU must be positive. */ 3071 if (new_mtu < 0) 3072 return -EINVAL; 3073 3074 if (!netif_device_present(dev)) 3075 return -ENODEV; 3076 3077 err = 0; 3078 if (dev->change_mtu) 3079 err = dev->change_mtu(dev, new_mtu); 3080 else 3081 dev->mtu = new_mtu; 3082 if (!err && dev->flags & IFF_UP) 3083 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3084 return err; 3085 } 3086 3087 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3088 { 3089 int err; 3090 3091 if (!dev->set_mac_address) 3092 return -EOPNOTSUPP; 3093 if (sa->sa_family != dev->type) 3094 return -EINVAL; 3095 if (!netif_device_present(dev)) 3096 return -ENODEV; 3097 err = dev->set_mac_address(dev, sa); 3098 if (!err) 3099 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3100 return err; 3101 } 3102 3103 /* 3104 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3105 */ 3106 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3107 { 3108 int err; 3109 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3110 3111 if (!dev) 3112 return -ENODEV; 3113 3114 switch (cmd) { 3115 case SIOCGIFFLAGS: /* Get interface flags */ 3116 ifr->ifr_flags = dev_get_flags(dev); 3117 return 0; 3118 3119 case SIOCGIFMETRIC: /* Get the metric on the interface 3120 (currently unused) */ 3121 ifr->ifr_metric = 0; 3122 return 0; 3123 3124 case SIOCGIFMTU: /* Get the MTU of a device */ 3125 ifr->ifr_mtu = dev->mtu; 3126 return 0; 3127 3128 case SIOCGIFHWADDR: 3129 if (!dev->addr_len) 3130 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3131 else 3132 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3133 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3134 ifr->ifr_hwaddr.sa_family = dev->type; 3135 return 0; 3136 3137 case SIOCGIFSLAVE: 3138 err = -EINVAL; 3139 break; 3140 3141 case SIOCGIFMAP: 3142 ifr->ifr_map.mem_start = dev->mem_start; 3143 ifr->ifr_map.mem_end = dev->mem_end; 3144 ifr->ifr_map.base_addr = dev->base_addr; 3145 ifr->ifr_map.irq = dev->irq; 3146 ifr->ifr_map.dma = dev->dma; 3147 ifr->ifr_map.port = dev->if_port; 3148 return 0; 3149 3150 case SIOCGIFINDEX: 3151 ifr->ifr_ifindex = dev->ifindex; 3152 return 0; 3153 3154 case SIOCGIFTXQLEN: 3155 ifr->ifr_qlen = dev->tx_queue_len; 3156 return 0; 3157 3158 default: 3159 /* dev_ioctl() should ensure this case 3160 * is never reached 3161 */ 3162 WARN_ON(1); 3163 err = -EINVAL; 3164 break; 3165 3166 } 3167 return err; 3168 } 3169 3170 /* 3171 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3172 */ 3173 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3174 { 3175 int err; 3176 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3177 3178 if (!dev) 3179 return -ENODEV; 3180 3181 switch (cmd) { 3182 case SIOCSIFFLAGS: /* Set interface flags */ 3183 return dev_change_flags(dev, ifr->ifr_flags); 3184 3185 case SIOCSIFMETRIC: /* Set the metric on the interface 3186 (currently unused) */ 3187 return -EOPNOTSUPP; 3188 3189 case SIOCSIFMTU: /* Set the MTU of a device */ 3190 return dev_set_mtu(dev, ifr->ifr_mtu); 3191 3192 case SIOCSIFHWADDR: 3193 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3194 3195 case SIOCSIFHWBROADCAST: 3196 if (ifr->ifr_hwaddr.sa_family != dev->type) 3197 return -EINVAL; 3198 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3199 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3200 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3201 return 0; 3202 3203 case SIOCSIFMAP: 3204 if (dev->set_config) { 3205 if (!netif_device_present(dev)) 3206 return -ENODEV; 3207 return dev->set_config(dev, &ifr->ifr_map); 3208 } 3209 return -EOPNOTSUPP; 3210 3211 case SIOCADDMULTI: 3212 if (!dev->set_multicast_list || 3213 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3214 return -EINVAL; 3215 if (!netif_device_present(dev)) 3216 return -ENODEV; 3217 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3218 dev->addr_len, 1); 3219 3220 case SIOCDELMULTI: 3221 if (!dev->set_multicast_list || 3222 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3223 return -EINVAL; 3224 if (!netif_device_present(dev)) 3225 return -ENODEV; 3226 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3227 dev->addr_len, 1); 3228 3229 case SIOCSIFTXQLEN: 3230 if (ifr->ifr_qlen < 0) 3231 return -EINVAL; 3232 dev->tx_queue_len = ifr->ifr_qlen; 3233 return 0; 3234 3235 case SIOCSIFNAME: 3236 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3237 return dev_change_name(dev, ifr->ifr_newname); 3238 3239 /* 3240 * Unknown or private ioctl 3241 */ 3242 3243 default: 3244 if ((cmd >= SIOCDEVPRIVATE && 3245 cmd <= SIOCDEVPRIVATE + 15) || 3246 cmd == SIOCBONDENSLAVE || 3247 cmd == SIOCBONDRELEASE || 3248 cmd == SIOCBONDSETHWADDR || 3249 cmd == SIOCBONDSLAVEINFOQUERY || 3250 cmd == SIOCBONDINFOQUERY || 3251 cmd == SIOCBONDCHANGEACTIVE || 3252 cmd == SIOCGMIIPHY || 3253 cmd == SIOCGMIIREG || 3254 cmd == SIOCSMIIREG || 3255 cmd == SIOCBRADDIF || 3256 cmd == SIOCBRDELIF || 3257 cmd == SIOCWANDEV) { 3258 err = -EOPNOTSUPP; 3259 if (dev->do_ioctl) { 3260 if (netif_device_present(dev)) 3261 err = dev->do_ioctl(dev, ifr, 3262 cmd); 3263 else 3264 err = -ENODEV; 3265 } 3266 } else 3267 err = -EINVAL; 3268 3269 } 3270 return err; 3271 } 3272 3273 /* 3274 * This function handles all "interface"-type I/O control requests. The actual 3275 * 'doing' part of this is dev_ifsioc above. 3276 */ 3277 3278 /** 3279 * dev_ioctl - network device ioctl 3280 * @net: the applicable net namespace 3281 * @cmd: command to issue 3282 * @arg: pointer to a struct ifreq in user space 3283 * 3284 * Issue ioctl functions to devices. This is normally called by the 3285 * user space syscall interfaces but can sometimes be useful for 3286 * other purposes. The return value is the return from the syscall if 3287 * positive or a negative errno code on error. 3288 */ 3289 3290 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3291 { 3292 struct ifreq ifr; 3293 int ret; 3294 char *colon; 3295 3296 /* One special case: SIOCGIFCONF takes ifconf argument 3297 and requires shared lock, because it sleeps writing 3298 to user space. 3299 */ 3300 3301 if (cmd == SIOCGIFCONF) { 3302 rtnl_lock(); 3303 ret = dev_ifconf(net, (char __user *) arg); 3304 rtnl_unlock(); 3305 return ret; 3306 } 3307 if (cmd == SIOCGIFNAME) 3308 return dev_ifname(net, (struct ifreq __user *)arg); 3309 3310 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3311 return -EFAULT; 3312 3313 ifr.ifr_name[IFNAMSIZ-1] = 0; 3314 3315 colon = strchr(ifr.ifr_name, ':'); 3316 if (colon) 3317 *colon = 0; 3318 3319 /* 3320 * See which interface the caller is talking about. 3321 */ 3322 3323 switch (cmd) { 3324 /* 3325 * These ioctl calls: 3326 * - can be done by all. 3327 * - atomic and do not require locking. 3328 * - return a value 3329 */ 3330 case SIOCGIFFLAGS: 3331 case SIOCGIFMETRIC: 3332 case SIOCGIFMTU: 3333 case SIOCGIFHWADDR: 3334 case SIOCGIFSLAVE: 3335 case SIOCGIFMAP: 3336 case SIOCGIFINDEX: 3337 case SIOCGIFTXQLEN: 3338 dev_load(net, ifr.ifr_name); 3339 read_lock(&dev_base_lock); 3340 ret = dev_ifsioc_locked(net, &ifr, cmd); 3341 read_unlock(&dev_base_lock); 3342 if (!ret) { 3343 if (colon) 3344 *colon = ':'; 3345 if (copy_to_user(arg, &ifr, 3346 sizeof(struct ifreq))) 3347 ret = -EFAULT; 3348 } 3349 return ret; 3350 3351 case SIOCETHTOOL: 3352 dev_load(net, ifr.ifr_name); 3353 rtnl_lock(); 3354 ret = dev_ethtool(net, &ifr); 3355 rtnl_unlock(); 3356 if (!ret) { 3357 if (colon) 3358 *colon = ':'; 3359 if (copy_to_user(arg, &ifr, 3360 sizeof(struct ifreq))) 3361 ret = -EFAULT; 3362 } 3363 return ret; 3364 3365 /* 3366 * These ioctl calls: 3367 * - require superuser power. 3368 * - require strict serialization. 3369 * - return a value 3370 */ 3371 case SIOCGMIIPHY: 3372 case SIOCGMIIREG: 3373 case SIOCSIFNAME: 3374 if (!capable(CAP_NET_ADMIN)) 3375 return -EPERM; 3376 dev_load(net, ifr.ifr_name); 3377 rtnl_lock(); 3378 ret = dev_ifsioc(net, &ifr, cmd); 3379 rtnl_unlock(); 3380 if (!ret) { 3381 if (colon) 3382 *colon = ':'; 3383 if (copy_to_user(arg, &ifr, 3384 sizeof(struct ifreq))) 3385 ret = -EFAULT; 3386 } 3387 return ret; 3388 3389 /* 3390 * These ioctl calls: 3391 * - require superuser power. 3392 * - require strict serialization. 3393 * - do not return a value 3394 */ 3395 case SIOCSIFFLAGS: 3396 case SIOCSIFMETRIC: 3397 case SIOCSIFMTU: 3398 case SIOCSIFMAP: 3399 case SIOCSIFHWADDR: 3400 case SIOCSIFSLAVE: 3401 case SIOCADDMULTI: 3402 case SIOCDELMULTI: 3403 case SIOCSIFHWBROADCAST: 3404 case SIOCSIFTXQLEN: 3405 case SIOCSMIIREG: 3406 case SIOCBONDENSLAVE: 3407 case SIOCBONDRELEASE: 3408 case SIOCBONDSETHWADDR: 3409 case SIOCBONDCHANGEACTIVE: 3410 case SIOCBRADDIF: 3411 case SIOCBRDELIF: 3412 if (!capable(CAP_NET_ADMIN)) 3413 return -EPERM; 3414 /* fall through */ 3415 case SIOCBONDSLAVEINFOQUERY: 3416 case SIOCBONDINFOQUERY: 3417 dev_load(net, ifr.ifr_name); 3418 rtnl_lock(); 3419 ret = dev_ifsioc(net, &ifr, cmd); 3420 rtnl_unlock(); 3421 return ret; 3422 3423 case SIOCGIFMEM: 3424 /* Get the per device memory space. We can add this but 3425 * currently do not support it */ 3426 case SIOCSIFMEM: 3427 /* Set the per device memory buffer space. 3428 * Not applicable in our case */ 3429 case SIOCSIFLINK: 3430 return -EINVAL; 3431 3432 /* 3433 * Unknown or private ioctl. 3434 */ 3435 default: 3436 if (cmd == SIOCWANDEV || 3437 (cmd >= SIOCDEVPRIVATE && 3438 cmd <= SIOCDEVPRIVATE + 15)) { 3439 dev_load(net, ifr.ifr_name); 3440 rtnl_lock(); 3441 ret = dev_ifsioc(net, &ifr, cmd); 3442 rtnl_unlock(); 3443 if (!ret && copy_to_user(arg, &ifr, 3444 sizeof(struct ifreq))) 3445 ret = -EFAULT; 3446 return ret; 3447 } 3448 /* Take care of Wireless Extensions */ 3449 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 3450 return wext_handle_ioctl(net, &ifr, cmd, arg); 3451 return -EINVAL; 3452 } 3453 } 3454 3455 3456 /** 3457 * dev_new_index - allocate an ifindex 3458 * @net: the applicable net namespace 3459 * 3460 * Returns a suitable unique value for a new device interface 3461 * number. The caller must hold the rtnl semaphore or the 3462 * dev_base_lock to be sure it remains unique. 3463 */ 3464 static int dev_new_index(struct net *net) 3465 { 3466 static int ifindex; 3467 for (;;) { 3468 if (++ifindex <= 0) 3469 ifindex = 1; 3470 if (!__dev_get_by_index(net, ifindex)) 3471 return ifindex; 3472 } 3473 } 3474 3475 /* Delayed registration/unregisteration */ 3476 static DEFINE_SPINLOCK(net_todo_list_lock); 3477 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list); 3478 3479 static void net_set_todo(struct net_device *dev) 3480 { 3481 spin_lock(&net_todo_list_lock); 3482 list_add_tail(&dev->todo_list, &net_todo_list); 3483 spin_unlock(&net_todo_list_lock); 3484 } 3485 3486 /** 3487 * register_netdevice - register a network device 3488 * @dev: device to register 3489 * 3490 * Take a completed network device structure and add it to the kernel 3491 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3492 * chain. 0 is returned on success. A negative errno code is returned 3493 * on a failure to set up the device, or if the name is a duplicate. 3494 * 3495 * Callers must hold the rtnl semaphore. You may want 3496 * register_netdev() instead of this. 3497 * 3498 * BUGS: 3499 * The locking appears insufficient to guarantee two parallel registers 3500 * will not get the same name. 3501 */ 3502 3503 int register_netdevice(struct net_device *dev) 3504 { 3505 struct hlist_head *head; 3506 struct hlist_node *p; 3507 int ret; 3508 struct net *net; 3509 3510 BUG_ON(dev_boot_phase); 3511 ASSERT_RTNL(); 3512 3513 might_sleep(); 3514 3515 /* When net_device's are persistent, this will be fatal. */ 3516 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 3517 BUG_ON(!dev->nd_net); 3518 net = dev->nd_net; 3519 3520 spin_lock_init(&dev->queue_lock); 3521 spin_lock_init(&dev->_xmit_lock); 3522 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type); 3523 dev->xmit_lock_owner = -1; 3524 spin_lock_init(&dev->ingress_lock); 3525 3526 dev->iflink = -1; 3527 3528 /* Init, if this function is available */ 3529 if (dev->init) { 3530 ret = dev->init(dev); 3531 if (ret) { 3532 if (ret > 0) 3533 ret = -EIO; 3534 goto out; 3535 } 3536 } 3537 3538 if (!dev_valid_name(dev->name)) { 3539 ret = -EINVAL; 3540 goto err_uninit; 3541 } 3542 3543 dev->ifindex = dev_new_index(net); 3544 if (dev->iflink == -1) 3545 dev->iflink = dev->ifindex; 3546 3547 /* Check for existence of name */ 3548 head = dev_name_hash(net, dev->name); 3549 hlist_for_each(p, head) { 3550 struct net_device *d 3551 = hlist_entry(p, struct net_device, name_hlist); 3552 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 3553 ret = -EEXIST; 3554 goto err_uninit; 3555 } 3556 } 3557 3558 /* Fix illegal checksum combinations */ 3559 if ((dev->features & NETIF_F_HW_CSUM) && 3560 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3561 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 3562 dev->name); 3563 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 3564 } 3565 3566 if ((dev->features & NETIF_F_NO_CSUM) && 3567 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 3568 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 3569 dev->name); 3570 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 3571 } 3572 3573 3574 /* Fix illegal SG+CSUM combinations. */ 3575 if ((dev->features & NETIF_F_SG) && 3576 !(dev->features & NETIF_F_ALL_CSUM)) { 3577 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n", 3578 dev->name); 3579 dev->features &= ~NETIF_F_SG; 3580 } 3581 3582 /* TSO requires that SG is present as well. */ 3583 if ((dev->features & NETIF_F_TSO) && 3584 !(dev->features & NETIF_F_SG)) { 3585 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n", 3586 dev->name); 3587 dev->features &= ~NETIF_F_TSO; 3588 } 3589 if (dev->features & NETIF_F_UFO) { 3590 if (!(dev->features & NETIF_F_HW_CSUM)) { 3591 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3592 "NETIF_F_HW_CSUM feature.\n", 3593 dev->name); 3594 dev->features &= ~NETIF_F_UFO; 3595 } 3596 if (!(dev->features & NETIF_F_SG)) { 3597 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no " 3598 "NETIF_F_SG feature.\n", 3599 dev->name); 3600 dev->features &= ~NETIF_F_UFO; 3601 } 3602 } 3603 3604 ret = netdev_register_kobject(dev); 3605 if (ret) 3606 goto err_uninit; 3607 dev->reg_state = NETREG_REGISTERED; 3608 3609 /* 3610 * Default initial state at registry is that the 3611 * device is present. 3612 */ 3613 3614 set_bit(__LINK_STATE_PRESENT, &dev->state); 3615 3616 dev_init_scheduler(dev); 3617 dev_hold(dev); 3618 list_netdevice(dev); 3619 3620 /* Notify protocols, that a new device appeared. */ 3621 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 3622 ret = notifier_to_errno(ret); 3623 if (ret) 3624 unregister_netdevice(dev); 3625 3626 out: 3627 return ret; 3628 3629 err_uninit: 3630 if (dev->uninit) 3631 dev->uninit(dev); 3632 goto out; 3633 } 3634 3635 /** 3636 * register_netdev - register a network device 3637 * @dev: device to register 3638 * 3639 * Take a completed network device structure and add it to the kernel 3640 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 3641 * chain. 0 is returned on success. A negative errno code is returned 3642 * on a failure to set up the device, or if the name is a duplicate. 3643 * 3644 * This is a wrapper around register_netdevice that takes the rtnl semaphore 3645 * and expands the device name if you passed a format string to 3646 * alloc_netdev. 3647 */ 3648 int register_netdev(struct net_device *dev) 3649 { 3650 int err; 3651 3652 rtnl_lock(); 3653 3654 /* 3655 * If the name is a format string the caller wants us to do a 3656 * name allocation. 3657 */ 3658 if (strchr(dev->name, '%')) { 3659 err = dev_alloc_name(dev, dev->name); 3660 if (err < 0) 3661 goto out; 3662 } 3663 3664 err = register_netdevice(dev); 3665 out: 3666 rtnl_unlock(); 3667 return err; 3668 } 3669 EXPORT_SYMBOL(register_netdev); 3670 3671 /* 3672 * netdev_wait_allrefs - wait until all references are gone. 3673 * 3674 * This is called when unregistering network devices. 3675 * 3676 * Any protocol or device that holds a reference should register 3677 * for netdevice notification, and cleanup and put back the 3678 * reference if they receive an UNREGISTER event. 3679 * We can get stuck here if buggy protocols don't correctly 3680 * call dev_put. 3681 */ 3682 static void netdev_wait_allrefs(struct net_device *dev) 3683 { 3684 unsigned long rebroadcast_time, warning_time; 3685 3686 rebroadcast_time = warning_time = jiffies; 3687 while (atomic_read(&dev->refcnt) != 0) { 3688 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 3689 rtnl_lock(); 3690 3691 /* Rebroadcast unregister notification */ 3692 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3693 3694 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 3695 &dev->state)) { 3696 /* We must not have linkwatch events 3697 * pending on unregister. If this 3698 * happens, we simply run the queue 3699 * unscheduled, resulting in a noop 3700 * for this device. 3701 */ 3702 linkwatch_run_queue(); 3703 } 3704 3705 __rtnl_unlock(); 3706 3707 rebroadcast_time = jiffies; 3708 } 3709 3710 msleep(250); 3711 3712 if (time_after(jiffies, warning_time + 10 * HZ)) { 3713 printk(KERN_EMERG "unregister_netdevice: " 3714 "waiting for %s to become free. Usage " 3715 "count = %d\n", 3716 dev->name, atomic_read(&dev->refcnt)); 3717 warning_time = jiffies; 3718 } 3719 } 3720 } 3721 3722 /* The sequence is: 3723 * 3724 * rtnl_lock(); 3725 * ... 3726 * register_netdevice(x1); 3727 * register_netdevice(x2); 3728 * ... 3729 * unregister_netdevice(y1); 3730 * unregister_netdevice(y2); 3731 * ... 3732 * rtnl_unlock(); 3733 * free_netdev(y1); 3734 * free_netdev(y2); 3735 * 3736 * We are invoked by rtnl_unlock() after it drops the semaphore. 3737 * This allows us to deal with problems: 3738 * 1) We can delete sysfs objects which invoke hotplug 3739 * without deadlocking with linkwatch via keventd. 3740 * 2) Since we run with the RTNL semaphore not held, we can sleep 3741 * safely in order to wait for the netdev refcnt to drop to zero. 3742 */ 3743 static DEFINE_MUTEX(net_todo_run_mutex); 3744 void netdev_run_todo(void) 3745 { 3746 struct list_head list; 3747 3748 /* Need to guard against multiple cpu's getting out of order. */ 3749 mutex_lock(&net_todo_run_mutex); 3750 3751 /* Not safe to do outside the semaphore. We must not return 3752 * until all unregister events invoked by the local processor 3753 * have been completed (either by this todo run, or one on 3754 * another cpu). 3755 */ 3756 if (list_empty(&net_todo_list)) 3757 goto out; 3758 3759 /* Snapshot list, allow later requests */ 3760 spin_lock(&net_todo_list_lock); 3761 list_replace_init(&net_todo_list, &list); 3762 spin_unlock(&net_todo_list_lock); 3763 3764 while (!list_empty(&list)) { 3765 struct net_device *dev 3766 = list_entry(list.next, struct net_device, todo_list); 3767 list_del(&dev->todo_list); 3768 3769 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 3770 printk(KERN_ERR "network todo '%s' but state %d\n", 3771 dev->name, dev->reg_state); 3772 dump_stack(); 3773 continue; 3774 } 3775 3776 dev->reg_state = NETREG_UNREGISTERED; 3777 3778 netdev_wait_allrefs(dev); 3779 3780 /* paranoia */ 3781 BUG_ON(atomic_read(&dev->refcnt)); 3782 BUG_TRAP(!dev->ip_ptr); 3783 BUG_TRAP(!dev->ip6_ptr); 3784 BUG_TRAP(!dev->dn_ptr); 3785 3786 if (dev->destructor) 3787 dev->destructor(dev); 3788 3789 /* Free network device */ 3790 kobject_put(&dev->dev.kobj); 3791 } 3792 3793 out: 3794 mutex_unlock(&net_todo_run_mutex); 3795 } 3796 3797 static struct net_device_stats *internal_stats(struct net_device *dev) 3798 { 3799 return &dev->stats; 3800 } 3801 3802 /** 3803 * alloc_netdev_mq - allocate network device 3804 * @sizeof_priv: size of private data to allocate space for 3805 * @name: device name format string 3806 * @setup: callback to initialize device 3807 * @queue_count: the number of subqueues to allocate 3808 * 3809 * Allocates a struct net_device with private data area for driver use 3810 * and performs basic initialization. Also allocates subquue structs 3811 * for each queue on the device at the end of the netdevice. 3812 */ 3813 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 3814 void (*setup)(struct net_device *), unsigned int queue_count) 3815 { 3816 void *p; 3817 struct net_device *dev; 3818 int alloc_size; 3819 3820 BUG_ON(strlen(name) >= sizeof(dev->name)); 3821 3822 /* ensure 32-byte alignment of both the device and private area */ 3823 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST + 3824 (sizeof(struct net_device_subqueue) * (queue_count - 1))) & 3825 ~NETDEV_ALIGN_CONST; 3826 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST; 3827 3828 p = kzalloc(alloc_size, GFP_KERNEL); 3829 if (!p) { 3830 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 3831 return NULL; 3832 } 3833 3834 dev = (struct net_device *) 3835 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 3836 dev->padded = (char *)dev - (char *)p; 3837 dev->nd_net = &init_net; 3838 3839 if (sizeof_priv) { 3840 dev->priv = ((char *)dev + 3841 ((sizeof(struct net_device) + 3842 (sizeof(struct net_device_subqueue) * 3843 (queue_count - 1)) + NETDEV_ALIGN_CONST) 3844 & ~NETDEV_ALIGN_CONST)); 3845 } 3846 3847 dev->egress_subqueue_count = queue_count; 3848 3849 dev->get_stats = internal_stats; 3850 netpoll_netdev_init(dev); 3851 setup(dev); 3852 strcpy(dev->name, name); 3853 return dev; 3854 } 3855 EXPORT_SYMBOL(alloc_netdev_mq); 3856 3857 /** 3858 * free_netdev - free network device 3859 * @dev: device 3860 * 3861 * This function does the last stage of destroying an allocated device 3862 * interface. The reference to the device object is released. 3863 * If this is the last reference then it will be freed. 3864 */ 3865 void free_netdev(struct net_device *dev) 3866 { 3867 /* Compatibility with error handling in drivers */ 3868 if (dev->reg_state == NETREG_UNINITIALIZED) { 3869 kfree((char *)dev - dev->padded); 3870 return; 3871 } 3872 3873 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 3874 dev->reg_state = NETREG_RELEASED; 3875 3876 /* will free via device release */ 3877 put_device(&dev->dev); 3878 } 3879 3880 /* Synchronize with packet receive processing. */ 3881 void synchronize_net(void) 3882 { 3883 might_sleep(); 3884 synchronize_rcu(); 3885 } 3886 3887 /** 3888 * unregister_netdevice - remove device from the kernel 3889 * @dev: device 3890 * 3891 * This function shuts down a device interface and removes it 3892 * from the kernel tables. On success 0 is returned, on a failure 3893 * a negative errno code is returned. 3894 * 3895 * Callers must hold the rtnl semaphore. You may want 3896 * unregister_netdev() instead of this. 3897 */ 3898 3899 void unregister_netdevice(struct net_device *dev) 3900 { 3901 BUG_ON(dev_boot_phase); 3902 ASSERT_RTNL(); 3903 3904 /* Some devices call without registering for initialization unwind. */ 3905 if (dev->reg_state == NETREG_UNINITIALIZED) { 3906 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 3907 "was registered\n", dev->name, dev); 3908 3909 WARN_ON(1); 3910 return; 3911 } 3912 3913 BUG_ON(dev->reg_state != NETREG_REGISTERED); 3914 3915 /* If device is running, close it first. */ 3916 dev_close(dev); 3917 3918 /* And unlink it from device chain. */ 3919 unlist_netdevice(dev); 3920 3921 dev->reg_state = NETREG_UNREGISTERING; 3922 3923 synchronize_net(); 3924 3925 /* Shutdown queueing discipline. */ 3926 dev_shutdown(dev); 3927 3928 3929 /* Notify protocols, that we are about to destroy 3930 this device. They should clean all the things. 3931 */ 3932 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 3933 3934 /* 3935 * Flush the unicast and multicast chains 3936 */ 3937 dev_addr_discard(dev); 3938 3939 if (dev->uninit) 3940 dev->uninit(dev); 3941 3942 /* Notifier chain MUST detach us from master device. */ 3943 BUG_TRAP(!dev->master); 3944 3945 /* Remove entries from kobject tree */ 3946 netdev_unregister_kobject(dev); 3947 3948 /* Finish processing unregister after unlock */ 3949 net_set_todo(dev); 3950 3951 synchronize_net(); 3952 3953 dev_put(dev); 3954 } 3955 3956 /** 3957 * unregister_netdev - remove device from the kernel 3958 * @dev: device 3959 * 3960 * This function shuts down a device interface and removes it 3961 * from the kernel tables. On success 0 is returned, on a failure 3962 * a negative errno code is returned. 3963 * 3964 * This is just a wrapper for unregister_netdevice that takes 3965 * the rtnl semaphore. In general you want to use this and not 3966 * unregister_netdevice. 3967 */ 3968 void unregister_netdev(struct net_device *dev) 3969 { 3970 rtnl_lock(); 3971 unregister_netdevice(dev); 3972 rtnl_unlock(); 3973 } 3974 3975 EXPORT_SYMBOL(unregister_netdev); 3976 3977 /** 3978 * dev_change_net_namespace - move device to different nethost namespace 3979 * @dev: device 3980 * @net: network namespace 3981 * @pat: If not NULL name pattern to try if the current device name 3982 * is already taken in the destination network namespace. 3983 * 3984 * This function shuts down a device interface and moves it 3985 * to a new network namespace. On success 0 is returned, on 3986 * a failure a netagive errno code is returned. 3987 * 3988 * Callers must hold the rtnl semaphore. 3989 */ 3990 3991 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 3992 { 3993 char buf[IFNAMSIZ]; 3994 const char *destname; 3995 int err; 3996 3997 ASSERT_RTNL(); 3998 3999 /* Don't allow namespace local devices to be moved. */ 4000 err = -EINVAL; 4001 if (dev->features & NETIF_F_NETNS_LOCAL) 4002 goto out; 4003 4004 /* Ensure the device has been registrered */ 4005 err = -EINVAL; 4006 if (dev->reg_state != NETREG_REGISTERED) 4007 goto out; 4008 4009 /* Get out if there is nothing todo */ 4010 err = 0; 4011 if (dev->nd_net == net) 4012 goto out; 4013 4014 /* Pick the destination device name, and ensure 4015 * we can use it in the destination network namespace. 4016 */ 4017 err = -EEXIST; 4018 destname = dev->name; 4019 if (__dev_get_by_name(net, destname)) { 4020 /* We get here if we can't use the current device name */ 4021 if (!pat) 4022 goto out; 4023 if (!dev_valid_name(pat)) 4024 goto out; 4025 if (strchr(pat, '%')) { 4026 if (__dev_alloc_name(net, pat, buf) < 0) 4027 goto out; 4028 destname = buf; 4029 } else 4030 destname = pat; 4031 if (__dev_get_by_name(net, destname)) 4032 goto out; 4033 } 4034 4035 /* 4036 * And now a mini version of register_netdevice unregister_netdevice. 4037 */ 4038 4039 /* If device is running close it first. */ 4040 dev_close(dev); 4041 4042 /* And unlink it from device chain */ 4043 err = -ENODEV; 4044 unlist_netdevice(dev); 4045 4046 synchronize_net(); 4047 4048 /* Shutdown queueing discipline. */ 4049 dev_shutdown(dev); 4050 4051 /* Notify protocols, that we are about to destroy 4052 this device. They should clean all the things. 4053 */ 4054 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4055 4056 /* 4057 * Flush the unicast and multicast chains 4058 */ 4059 dev_addr_discard(dev); 4060 4061 /* Actually switch the network namespace */ 4062 dev->nd_net = net; 4063 4064 /* Assign the new device name */ 4065 if (destname != dev->name) 4066 strcpy(dev->name, destname); 4067 4068 /* If there is an ifindex conflict assign a new one */ 4069 if (__dev_get_by_index(net, dev->ifindex)) { 4070 int iflink = (dev->iflink == dev->ifindex); 4071 dev->ifindex = dev_new_index(net); 4072 if (iflink) 4073 dev->iflink = dev->ifindex; 4074 } 4075 4076 /* Fixup kobjects */ 4077 err = device_rename(&dev->dev, dev->name); 4078 WARN_ON(err); 4079 4080 /* Add the device back in the hashes */ 4081 list_netdevice(dev); 4082 4083 /* Notify protocols, that a new device appeared. */ 4084 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4085 4086 synchronize_net(); 4087 err = 0; 4088 out: 4089 return err; 4090 } 4091 4092 static int dev_cpu_callback(struct notifier_block *nfb, 4093 unsigned long action, 4094 void *ocpu) 4095 { 4096 struct sk_buff **list_skb; 4097 struct net_device **list_net; 4098 struct sk_buff *skb; 4099 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4100 struct softnet_data *sd, *oldsd; 4101 4102 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4103 return NOTIFY_OK; 4104 4105 local_irq_disable(); 4106 cpu = smp_processor_id(); 4107 sd = &per_cpu(softnet_data, cpu); 4108 oldsd = &per_cpu(softnet_data, oldcpu); 4109 4110 /* Find end of our completion_queue. */ 4111 list_skb = &sd->completion_queue; 4112 while (*list_skb) 4113 list_skb = &(*list_skb)->next; 4114 /* Append completion queue from offline CPU. */ 4115 *list_skb = oldsd->completion_queue; 4116 oldsd->completion_queue = NULL; 4117 4118 /* Find end of our output_queue. */ 4119 list_net = &sd->output_queue; 4120 while (*list_net) 4121 list_net = &(*list_net)->next_sched; 4122 /* Append output queue from offline CPU. */ 4123 *list_net = oldsd->output_queue; 4124 oldsd->output_queue = NULL; 4125 4126 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4127 local_irq_enable(); 4128 4129 /* Process offline CPU's input_pkt_queue */ 4130 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4131 netif_rx(skb); 4132 4133 return NOTIFY_OK; 4134 } 4135 4136 #ifdef CONFIG_NET_DMA 4137 /** 4138 * net_dma_rebalance - try to maintain one DMA channel per CPU 4139 * @net_dma: DMA client and associated data (lock, channels, channel_mask) 4140 * 4141 * This is called when the number of channels allocated to the net_dma client 4142 * changes. The net_dma client tries to have one DMA channel per CPU. 4143 */ 4144 4145 static void net_dma_rebalance(struct net_dma *net_dma) 4146 { 4147 unsigned int cpu, i, n, chan_idx; 4148 struct dma_chan *chan; 4149 4150 if (cpus_empty(net_dma->channel_mask)) { 4151 for_each_online_cpu(cpu) 4152 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 4153 return; 4154 } 4155 4156 i = 0; 4157 cpu = first_cpu(cpu_online_map); 4158 4159 for_each_cpu_mask(chan_idx, net_dma->channel_mask) { 4160 chan = net_dma->channels[chan_idx]; 4161 4162 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask)) 4163 + (i < (num_online_cpus() % 4164 cpus_weight(net_dma->channel_mask)) ? 1 : 0)); 4165 4166 while(n) { 4167 per_cpu(softnet_data, cpu).net_dma = chan; 4168 cpu = next_cpu(cpu, cpu_online_map); 4169 n--; 4170 } 4171 i++; 4172 } 4173 } 4174 4175 /** 4176 * netdev_dma_event - event callback for the net_dma_client 4177 * @client: should always be net_dma_client 4178 * @chan: DMA channel for the event 4179 * @state: DMA state to be handled 4180 */ 4181 static enum dma_state_client 4182 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 4183 enum dma_state state) 4184 { 4185 int i, found = 0, pos = -1; 4186 struct net_dma *net_dma = 4187 container_of(client, struct net_dma, client); 4188 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 4189 4190 spin_lock(&net_dma->lock); 4191 switch (state) { 4192 case DMA_RESOURCE_AVAILABLE: 4193 for (i = 0; i < NR_CPUS; i++) 4194 if (net_dma->channels[i] == chan) { 4195 found = 1; 4196 break; 4197 } else if (net_dma->channels[i] == NULL && pos < 0) 4198 pos = i; 4199 4200 if (!found && pos >= 0) { 4201 ack = DMA_ACK; 4202 net_dma->channels[pos] = chan; 4203 cpu_set(pos, net_dma->channel_mask); 4204 net_dma_rebalance(net_dma); 4205 } 4206 break; 4207 case DMA_RESOURCE_REMOVED: 4208 for (i = 0; i < NR_CPUS; i++) 4209 if (net_dma->channels[i] == chan) { 4210 found = 1; 4211 pos = i; 4212 break; 4213 } 4214 4215 if (found) { 4216 ack = DMA_ACK; 4217 cpu_clear(pos, net_dma->channel_mask); 4218 net_dma->channels[i] = NULL; 4219 net_dma_rebalance(net_dma); 4220 } 4221 break; 4222 default: 4223 break; 4224 } 4225 spin_unlock(&net_dma->lock); 4226 4227 return ack; 4228 } 4229 4230 /** 4231 * netdev_dma_regiser - register the networking subsystem as a DMA client 4232 */ 4233 static int __init netdev_dma_register(void) 4234 { 4235 spin_lock_init(&net_dma.lock); 4236 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask); 4237 dma_async_client_register(&net_dma.client); 4238 dma_async_client_chan_request(&net_dma.client); 4239 return 0; 4240 } 4241 4242 #else 4243 static int __init netdev_dma_register(void) { return -ENODEV; } 4244 #endif /* CONFIG_NET_DMA */ 4245 4246 /** 4247 * netdev_compute_feature - compute conjunction of two feature sets 4248 * @all: first feature set 4249 * @one: second feature set 4250 * 4251 * Computes a new feature set after adding a device with feature set 4252 * @one to the master device with current feature set @all. Returns 4253 * the new feature set. 4254 */ 4255 int netdev_compute_features(unsigned long all, unsigned long one) 4256 { 4257 /* if device needs checksumming, downgrade to hw checksumming */ 4258 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 4259 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM; 4260 4261 /* if device can't do all checksum, downgrade to ipv4/ipv6 */ 4262 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM)) 4263 all ^= NETIF_F_HW_CSUM 4264 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 4265 4266 if (one & NETIF_F_GSO) 4267 one |= NETIF_F_GSO_SOFTWARE; 4268 one |= NETIF_F_GSO; 4269 4270 /* If even one device supports robust GSO, enable it for all. */ 4271 if (one & NETIF_F_GSO_ROBUST) 4272 all |= NETIF_F_GSO_ROBUST; 4273 4274 all &= one | NETIF_F_LLTX; 4275 4276 if (!(all & NETIF_F_ALL_CSUM)) 4277 all &= ~NETIF_F_SG; 4278 if (!(all & NETIF_F_SG)) 4279 all &= ~NETIF_F_GSO_MASK; 4280 4281 return all; 4282 } 4283 EXPORT_SYMBOL(netdev_compute_features); 4284 4285 static struct hlist_head *netdev_create_hash(void) 4286 { 4287 int i; 4288 struct hlist_head *hash; 4289 4290 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 4291 if (hash != NULL) 4292 for (i = 0; i < NETDEV_HASHENTRIES; i++) 4293 INIT_HLIST_HEAD(&hash[i]); 4294 4295 return hash; 4296 } 4297 4298 /* Initialize per network namespace state */ 4299 static int __net_init netdev_init(struct net *net) 4300 { 4301 INIT_LIST_HEAD(&net->dev_base_head); 4302 rwlock_init(&dev_base_lock); 4303 4304 net->dev_name_head = netdev_create_hash(); 4305 if (net->dev_name_head == NULL) 4306 goto err_name; 4307 4308 net->dev_index_head = netdev_create_hash(); 4309 if (net->dev_index_head == NULL) 4310 goto err_idx; 4311 4312 return 0; 4313 4314 err_idx: 4315 kfree(net->dev_name_head); 4316 err_name: 4317 return -ENOMEM; 4318 } 4319 4320 static void __net_exit netdev_exit(struct net *net) 4321 { 4322 kfree(net->dev_name_head); 4323 kfree(net->dev_index_head); 4324 } 4325 4326 static struct pernet_operations __net_initdata netdev_net_ops = { 4327 .init = netdev_init, 4328 .exit = netdev_exit, 4329 }; 4330 4331 static void __net_exit default_device_exit(struct net *net) 4332 { 4333 struct net_device *dev, *next; 4334 /* 4335 * Push all migratable of the network devices back to the 4336 * initial network namespace 4337 */ 4338 rtnl_lock(); 4339 for_each_netdev_safe(net, dev, next) { 4340 int err; 4341 4342 /* Ignore unmoveable devices (i.e. loopback) */ 4343 if (dev->features & NETIF_F_NETNS_LOCAL) 4344 continue; 4345 4346 /* Push remaing network devices to init_net */ 4347 err = dev_change_net_namespace(dev, &init_net, "dev%d"); 4348 if (err) { 4349 printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n", 4350 __func__, dev->name, err); 4351 unregister_netdevice(dev); 4352 } 4353 } 4354 rtnl_unlock(); 4355 } 4356 4357 static struct pernet_operations __net_initdata default_device_ops = { 4358 .exit = default_device_exit, 4359 }; 4360 4361 /* 4362 * Initialize the DEV module. At boot time this walks the device list and 4363 * unhooks any devices that fail to initialise (normally hardware not 4364 * present) and leaves us with a valid list of present and active devices. 4365 * 4366 */ 4367 4368 /* 4369 * This is called single threaded during boot, so no need 4370 * to take the rtnl semaphore. 4371 */ 4372 static int __init net_dev_init(void) 4373 { 4374 int i, rc = -ENOMEM; 4375 4376 BUG_ON(!dev_boot_phase); 4377 4378 if (dev_proc_init()) 4379 goto out; 4380 4381 if (netdev_kobject_init()) 4382 goto out; 4383 4384 INIT_LIST_HEAD(&ptype_all); 4385 for (i = 0; i < 16; i++) 4386 INIT_LIST_HEAD(&ptype_base[i]); 4387 4388 if (register_pernet_subsys(&netdev_net_ops)) 4389 goto out; 4390 4391 if (register_pernet_device(&default_device_ops)) 4392 goto out; 4393 4394 /* 4395 * Initialise the packet receive queues. 4396 */ 4397 4398 for_each_possible_cpu(i) { 4399 struct softnet_data *queue; 4400 4401 queue = &per_cpu(softnet_data, i); 4402 skb_queue_head_init(&queue->input_pkt_queue); 4403 queue->completion_queue = NULL; 4404 INIT_LIST_HEAD(&queue->poll_list); 4405 4406 queue->backlog.poll = process_backlog; 4407 queue->backlog.weight = weight_p; 4408 } 4409 4410 netdev_dma_register(); 4411 4412 dev_boot_phase = 0; 4413 4414 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL); 4415 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL); 4416 4417 hotcpu_notifier(dev_cpu_callback, 0); 4418 dst_init(); 4419 dev_mcast_init(); 4420 rc = 0; 4421 out: 4422 return rc; 4423 } 4424 4425 subsys_initcall(net_dev_init); 4426 4427 EXPORT_SYMBOL(__dev_get_by_index); 4428 EXPORT_SYMBOL(__dev_get_by_name); 4429 EXPORT_SYMBOL(__dev_remove_pack); 4430 EXPORT_SYMBOL(dev_valid_name); 4431 EXPORT_SYMBOL(dev_add_pack); 4432 EXPORT_SYMBOL(dev_alloc_name); 4433 EXPORT_SYMBOL(dev_close); 4434 EXPORT_SYMBOL(dev_get_by_flags); 4435 EXPORT_SYMBOL(dev_get_by_index); 4436 EXPORT_SYMBOL(dev_get_by_name); 4437 EXPORT_SYMBOL(dev_open); 4438 EXPORT_SYMBOL(dev_queue_xmit); 4439 EXPORT_SYMBOL(dev_remove_pack); 4440 EXPORT_SYMBOL(dev_set_allmulti); 4441 EXPORT_SYMBOL(dev_set_promiscuity); 4442 EXPORT_SYMBOL(dev_change_flags); 4443 EXPORT_SYMBOL(dev_set_mtu); 4444 EXPORT_SYMBOL(dev_set_mac_address); 4445 EXPORT_SYMBOL(free_netdev); 4446 EXPORT_SYMBOL(netdev_boot_setup_check); 4447 EXPORT_SYMBOL(netdev_set_master); 4448 EXPORT_SYMBOL(netdev_state_change); 4449 EXPORT_SYMBOL(netif_receive_skb); 4450 EXPORT_SYMBOL(netif_rx); 4451 EXPORT_SYMBOL(register_gifconf); 4452 EXPORT_SYMBOL(register_netdevice); 4453 EXPORT_SYMBOL(register_netdevice_notifier); 4454 EXPORT_SYMBOL(skb_checksum_help); 4455 EXPORT_SYMBOL(synchronize_net); 4456 EXPORT_SYMBOL(unregister_netdevice); 4457 EXPORT_SYMBOL(unregister_netdevice_notifier); 4458 EXPORT_SYMBOL(net_enable_timestamp); 4459 EXPORT_SYMBOL(net_disable_timestamp); 4460 EXPORT_SYMBOL(dev_get_flags); 4461 4462 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 4463 EXPORT_SYMBOL(br_handle_frame_hook); 4464 EXPORT_SYMBOL(br_fdb_get_hook); 4465 EXPORT_SYMBOL(br_fdb_put_hook); 4466 #endif 4467 4468 #ifdef CONFIG_KMOD 4469 EXPORT_SYMBOL(dev_load); 4470 #endif 4471 4472 EXPORT_PER_CPU_SYMBOL(softnet_data); 4473