xref: /linux/mm/zsmalloc.c (revision 1c769fc41ac574e4957a6a874334eed1631e5f59)
1 /*
2  * zsmalloc memory allocator
3  *
4  * Copyright (C) 2011  Nitin Gupta
5  * Copyright (C) 2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the license that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  */
13 
14 /*
15  * Following is how we use various fields and flags of underlying
16  * struct page(s) to form a zspage.
17  *
18  * Usage of struct page fields:
19  *	page->private: points to zspage
20  *	page->freelist(index): links together all component pages of a zspage
21  *		For the huge page, this is always 0, so we use this field
22  *		to store handle.
23  *	page->units: first object offset in a subpage of zspage
24  *
25  * Usage of struct page flags:
26  *	PG_private: identifies the first component page
27  *	PG_owner_priv_1: identifies the huge component page
28  *
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/pagemap.h>
57 #include <linux/fs.h>
58 
59 #define ZSPAGE_MAGIC	0x58
60 
61 /*
62  * This must be power of 2 and greater than of equal to sizeof(link_free).
63  * These two conditions ensure that any 'struct link_free' itself doesn't
64  * span more than 1 page which avoids complex case of mapping 2 pages simply
65  * to restore link_free pointer values.
66  */
67 #define ZS_ALIGN		8
68 
69 /*
70  * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71  * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
72  */
73 #define ZS_MAX_ZSPAGE_ORDER 2
74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
75 
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77 
78 /*
79  * Object location (<PFN>, <obj_idx>) is encoded as
80  * as single (unsigned long) handle value.
81  *
82  * Note that object index <obj_idx> starts from 0.
83  *
84  * This is made more complicated by various memory models and PAE.
85  */
86 
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
91 /*
92  * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93  * be PAGE_SHIFT
94  */
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
98 
99 #define _PFN_BITS		(MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
100 
101 /*
102  * Memory for allocating for handle keeps object position by
103  * encoding <page, obj_idx> and the encoded value has a room
104  * in least bit(ie, look at obj_to_location).
105  * We use the bit to synchronize between object access by
106  * user and migration.
107  */
108 #define HANDLE_PIN_BIT	0
109 
110 /*
111  * Head in allocated object should have OBJ_ALLOCATED_TAG
112  * to identify the object was allocated or not.
113  * It's okay to add the status bit in the least bit because
114  * header keeps handle which is 4byte-aligned address so we
115  * have room for two bit at least.
116  */
117 #define OBJ_ALLOCATED_TAG 1
118 #define OBJ_TAG_BITS 1
119 #define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
120 #define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
121 
122 #define FULLNESS_BITS	2
123 #define CLASS_BITS	8
124 #define ISOLATED_BITS	3
125 #define MAGIC_VAL_BITS	8
126 
127 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129 #define ZS_MIN_ALLOC_SIZE \
130 	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131 /* each chunk includes extra space to keep handle */
132 #define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
133 
134 /*
135  * On systems with 4K page size, this gives 255 size classes! There is a
136  * trader-off here:
137  *  - Large number of size classes is potentially wasteful as free page are
138  *    spread across these classes
139  *  - Small number of size classes causes large internal fragmentation
140  *  - Probably its better to use specific size classes (empirically
141  *    determined). NOTE: all those class sizes must be set as multiple of
142  *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143  *
144  *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145  *  (reason above)
146  */
147 #define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> CLASS_BITS)
148 #define ZS_SIZE_CLASSES	(DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 				      ZS_SIZE_CLASS_DELTA) + 1)
150 
151 enum fullness_group {
152 	ZS_EMPTY,
153 	ZS_ALMOST_EMPTY,
154 	ZS_ALMOST_FULL,
155 	ZS_FULL,
156 	NR_ZS_FULLNESS,
157 };
158 
159 enum zs_stat_type {
160 	CLASS_EMPTY,
161 	CLASS_ALMOST_EMPTY,
162 	CLASS_ALMOST_FULL,
163 	CLASS_FULL,
164 	OBJ_ALLOCATED,
165 	OBJ_USED,
166 	NR_ZS_STAT_TYPE,
167 };
168 
169 struct zs_size_stat {
170 	unsigned long objs[NR_ZS_STAT_TYPE];
171 };
172 
173 #ifdef CONFIG_ZSMALLOC_STAT
174 static struct dentry *zs_stat_root;
175 #endif
176 
177 #ifdef CONFIG_COMPACTION
178 static struct vfsmount *zsmalloc_mnt;
179 #endif
180 
181 /*
182  * We assign a page to ZS_ALMOST_EMPTY fullness group when:
183  *	n <= N / f, where
184  * n = number of allocated objects
185  * N = total number of objects zspage can store
186  * f = fullness_threshold_frac
187  *
188  * Similarly, we assign zspage to:
189  *	ZS_ALMOST_FULL	when n > N / f
190  *	ZS_EMPTY	when n == 0
191  *	ZS_FULL		when n == N
192  *
193  * (see: fix_fullness_group())
194  */
195 static const int fullness_threshold_frac = 4;
196 static size_t huge_class_size;
197 
198 struct size_class {
199 	spinlock_t lock;
200 	struct list_head fullness_list[NR_ZS_FULLNESS];
201 	/*
202 	 * Size of objects stored in this class. Must be multiple
203 	 * of ZS_ALIGN.
204 	 */
205 	int size;
206 	int objs_per_zspage;
207 	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
208 	int pages_per_zspage;
209 
210 	unsigned int index;
211 	struct zs_size_stat stats;
212 };
213 
214 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
215 static void SetPageHugeObject(struct page *page)
216 {
217 	SetPageOwnerPriv1(page);
218 }
219 
220 static void ClearPageHugeObject(struct page *page)
221 {
222 	ClearPageOwnerPriv1(page);
223 }
224 
225 static int PageHugeObject(struct page *page)
226 {
227 	return PageOwnerPriv1(page);
228 }
229 
230 /*
231  * Placed within free objects to form a singly linked list.
232  * For every zspage, zspage->freeobj gives head of this list.
233  *
234  * This must be power of 2 and less than or equal to ZS_ALIGN
235  */
236 struct link_free {
237 	union {
238 		/*
239 		 * Free object index;
240 		 * It's valid for non-allocated object
241 		 */
242 		unsigned long next;
243 		/*
244 		 * Handle of allocated object.
245 		 */
246 		unsigned long handle;
247 	};
248 };
249 
250 struct zs_pool {
251 	const char *name;
252 
253 	struct size_class *size_class[ZS_SIZE_CLASSES];
254 	struct kmem_cache *handle_cachep;
255 	struct kmem_cache *zspage_cachep;
256 
257 	atomic_long_t pages_allocated;
258 
259 	struct zs_pool_stats stats;
260 
261 	/* Compact classes */
262 	struct shrinker shrinker;
263 
264 #ifdef CONFIG_ZSMALLOC_STAT
265 	struct dentry *stat_dentry;
266 #endif
267 #ifdef CONFIG_COMPACTION
268 	struct inode *inode;
269 	struct work_struct free_work;
270 #endif
271 };
272 
273 struct zspage {
274 	struct {
275 		unsigned int fullness:FULLNESS_BITS;
276 		unsigned int class:CLASS_BITS + 1;
277 		unsigned int isolated:ISOLATED_BITS;
278 		unsigned int magic:MAGIC_VAL_BITS;
279 	};
280 	unsigned int inuse;
281 	unsigned int freeobj;
282 	struct page *first_page;
283 	struct list_head list; /* fullness list */
284 #ifdef CONFIG_COMPACTION
285 	rwlock_t lock;
286 #endif
287 };
288 
289 struct mapping_area {
290 #ifdef CONFIG_PGTABLE_MAPPING
291 	struct vm_struct *vm; /* vm area for mapping object that span pages */
292 #else
293 	char *vm_buf; /* copy buffer for objects that span pages */
294 #endif
295 	char *vm_addr; /* address of kmap_atomic()'ed pages */
296 	enum zs_mapmode vm_mm; /* mapping mode */
297 };
298 
299 #ifdef CONFIG_COMPACTION
300 static int zs_register_migration(struct zs_pool *pool);
301 static void zs_unregister_migration(struct zs_pool *pool);
302 static void migrate_lock_init(struct zspage *zspage);
303 static void migrate_read_lock(struct zspage *zspage);
304 static void migrate_read_unlock(struct zspage *zspage);
305 static void kick_deferred_free(struct zs_pool *pool);
306 static void init_deferred_free(struct zs_pool *pool);
307 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
308 #else
309 static int zsmalloc_mount(void) { return 0; }
310 static void zsmalloc_unmount(void) {}
311 static int zs_register_migration(struct zs_pool *pool) { return 0; }
312 static void zs_unregister_migration(struct zs_pool *pool) {}
313 static void migrate_lock_init(struct zspage *zspage) {}
314 static void migrate_read_lock(struct zspage *zspage) {}
315 static void migrate_read_unlock(struct zspage *zspage) {}
316 static void kick_deferred_free(struct zs_pool *pool) {}
317 static void init_deferred_free(struct zs_pool *pool) {}
318 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
319 #endif
320 
321 static int create_cache(struct zs_pool *pool)
322 {
323 	pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
324 					0, 0, NULL);
325 	if (!pool->handle_cachep)
326 		return 1;
327 
328 	pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
329 					0, 0, NULL);
330 	if (!pool->zspage_cachep) {
331 		kmem_cache_destroy(pool->handle_cachep);
332 		pool->handle_cachep = NULL;
333 		return 1;
334 	}
335 
336 	return 0;
337 }
338 
339 static void destroy_cache(struct zs_pool *pool)
340 {
341 	kmem_cache_destroy(pool->handle_cachep);
342 	kmem_cache_destroy(pool->zspage_cachep);
343 }
344 
345 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
346 {
347 	return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
348 			gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
349 }
350 
351 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
352 {
353 	kmem_cache_free(pool->handle_cachep, (void *)handle);
354 }
355 
356 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
357 {
358 	return kmem_cache_alloc(pool->zspage_cachep,
359 			flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
360 }
361 
362 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
363 {
364 	kmem_cache_free(pool->zspage_cachep, zspage);
365 }
366 
367 static void record_obj(unsigned long handle, unsigned long obj)
368 {
369 	/*
370 	 * lsb of @obj represents handle lock while other bits
371 	 * represent object value the handle is pointing so
372 	 * updating shouldn't do store tearing.
373 	 */
374 	WRITE_ONCE(*(unsigned long *)handle, obj);
375 }
376 
377 /* zpool driver */
378 
379 #ifdef CONFIG_ZPOOL
380 
381 static void *zs_zpool_create(const char *name, gfp_t gfp,
382 			     const struct zpool_ops *zpool_ops,
383 			     struct zpool *zpool)
384 {
385 	/*
386 	 * Ignore global gfp flags: zs_malloc() may be invoked from
387 	 * different contexts and its caller must provide a valid
388 	 * gfp mask.
389 	 */
390 	return zs_create_pool(name);
391 }
392 
393 static void zs_zpool_destroy(void *pool)
394 {
395 	zs_destroy_pool(pool);
396 }
397 
398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
399 			unsigned long *handle)
400 {
401 	*handle = zs_malloc(pool, size, gfp);
402 	return *handle ? 0 : -1;
403 }
404 static void zs_zpool_free(void *pool, unsigned long handle)
405 {
406 	zs_free(pool, handle);
407 }
408 
409 static void *zs_zpool_map(void *pool, unsigned long handle,
410 			enum zpool_mapmode mm)
411 {
412 	enum zs_mapmode zs_mm;
413 
414 	switch (mm) {
415 	case ZPOOL_MM_RO:
416 		zs_mm = ZS_MM_RO;
417 		break;
418 	case ZPOOL_MM_WO:
419 		zs_mm = ZS_MM_WO;
420 		break;
421 	case ZPOOL_MM_RW: /* fall through */
422 	default:
423 		zs_mm = ZS_MM_RW;
424 		break;
425 	}
426 
427 	return zs_map_object(pool, handle, zs_mm);
428 }
429 static void zs_zpool_unmap(void *pool, unsigned long handle)
430 {
431 	zs_unmap_object(pool, handle);
432 }
433 
434 static u64 zs_zpool_total_size(void *pool)
435 {
436 	return zs_get_total_pages(pool) << PAGE_SHIFT;
437 }
438 
439 static struct zpool_driver zs_zpool_driver = {
440 	.type =		"zsmalloc",
441 	.owner =	THIS_MODULE,
442 	.create =	zs_zpool_create,
443 	.destroy =	zs_zpool_destroy,
444 	.malloc =	zs_zpool_malloc,
445 	.free =		zs_zpool_free,
446 	.map =		zs_zpool_map,
447 	.unmap =	zs_zpool_unmap,
448 	.total_size =	zs_zpool_total_size,
449 };
450 
451 MODULE_ALIAS("zpool-zsmalloc");
452 #endif /* CONFIG_ZPOOL */
453 
454 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
455 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
456 
457 static bool is_zspage_isolated(struct zspage *zspage)
458 {
459 	return zspage->isolated;
460 }
461 
462 static __maybe_unused int is_first_page(struct page *page)
463 {
464 	return PagePrivate(page);
465 }
466 
467 /* Protected by class->lock */
468 static inline int get_zspage_inuse(struct zspage *zspage)
469 {
470 	return zspage->inuse;
471 }
472 
473 static inline void set_zspage_inuse(struct zspage *zspage, int val)
474 {
475 	zspage->inuse = val;
476 }
477 
478 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
479 {
480 	zspage->inuse += val;
481 }
482 
483 static inline struct page *get_first_page(struct zspage *zspage)
484 {
485 	struct page *first_page = zspage->first_page;
486 
487 	VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
488 	return first_page;
489 }
490 
491 static inline int get_first_obj_offset(struct page *page)
492 {
493 	return page->units;
494 }
495 
496 static inline void set_first_obj_offset(struct page *page, int offset)
497 {
498 	page->units = offset;
499 }
500 
501 static inline unsigned int get_freeobj(struct zspage *zspage)
502 {
503 	return zspage->freeobj;
504 }
505 
506 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
507 {
508 	zspage->freeobj = obj;
509 }
510 
511 static void get_zspage_mapping(struct zspage *zspage,
512 				unsigned int *class_idx,
513 				enum fullness_group *fullness)
514 {
515 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
516 
517 	*fullness = zspage->fullness;
518 	*class_idx = zspage->class;
519 }
520 
521 static void set_zspage_mapping(struct zspage *zspage,
522 				unsigned int class_idx,
523 				enum fullness_group fullness)
524 {
525 	zspage->class = class_idx;
526 	zspage->fullness = fullness;
527 }
528 
529 /*
530  * zsmalloc divides the pool into various size classes where each
531  * class maintains a list of zspages where each zspage is divided
532  * into equal sized chunks. Each allocation falls into one of these
533  * classes depending on its size. This function returns index of the
534  * size class which has chunk size big enough to hold the give size.
535  */
536 static int get_size_class_index(int size)
537 {
538 	int idx = 0;
539 
540 	if (likely(size > ZS_MIN_ALLOC_SIZE))
541 		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
542 				ZS_SIZE_CLASS_DELTA);
543 
544 	return min_t(int, ZS_SIZE_CLASSES - 1, idx);
545 }
546 
547 /* type can be of enum type zs_stat_type or fullness_group */
548 static inline void zs_stat_inc(struct size_class *class,
549 				int type, unsigned long cnt)
550 {
551 	class->stats.objs[type] += cnt;
552 }
553 
554 /* type can be of enum type zs_stat_type or fullness_group */
555 static inline void zs_stat_dec(struct size_class *class,
556 				int type, unsigned long cnt)
557 {
558 	class->stats.objs[type] -= cnt;
559 }
560 
561 /* type can be of enum type zs_stat_type or fullness_group */
562 static inline unsigned long zs_stat_get(struct size_class *class,
563 				int type)
564 {
565 	return class->stats.objs[type];
566 }
567 
568 #ifdef CONFIG_ZSMALLOC_STAT
569 
570 static void __init zs_stat_init(void)
571 {
572 	if (!debugfs_initialized()) {
573 		pr_warn("debugfs not available, stat dir not created\n");
574 		return;
575 	}
576 
577 	zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
578 }
579 
580 static void __exit zs_stat_exit(void)
581 {
582 	debugfs_remove_recursive(zs_stat_root);
583 }
584 
585 static unsigned long zs_can_compact(struct size_class *class);
586 
587 static int zs_stats_size_show(struct seq_file *s, void *v)
588 {
589 	int i;
590 	struct zs_pool *pool = s->private;
591 	struct size_class *class;
592 	int objs_per_zspage;
593 	unsigned long class_almost_full, class_almost_empty;
594 	unsigned long obj_allocated, obj_used, pages_used, freeable;
595 	unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
596 	unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
597 	unsigned long total_freeable = 0;
598 
599 	seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
600 			"class", "size", "almost_full", "almost_empty",
601 			"obj_allocated", "obj_used", "pages_used",
602 			"pages_per_zspage", "freeable");
603 
604 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
605 		class = pool->size_class[i];
606 
607 		if (class->index != i)
608 			continue;
609 
610 		spin_lock(&class->lock);
611 		class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
612 		class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
613 		obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
614 		obj_used = zs_stat_get(class, OBJ_USED);
615 		freeable = zs_can_compact(class);
616 		spin_unlock(&class->lock);
617 
618 		objs_per_zspage = class->objs_per_zspage;
619 		pages_used = obj_allocated / objs_per_zspage *
620 				class->pages_per_zspage;
621 
622 		seq_printf(s, " %5u %5u %11lu %12lu %13lu"
623 				" %10lu %10lu %16d %8lu\n",
624 			i, class->size, class_almost_full, class_almost_empty,
625 			obj_allocated, obj_used, pages_used,
626 			class->pages_per_zspage, freeable);
627 
628 		total_class_almost_full += class_almost_full;
629 		total_class_almost_empty += class_almost_empty;
630 		total_objs += obj_allocated;
631 		total_used_objs += obj_used;
632 		total_pages += pages_used;
633 		total_freeable += freeable;
634 	}
635 
636 	seq_puts(s, "\n");
637 	seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
638 			"Total", "", total_class_almost_full,
639 			total_class_almost_empty, total_objs,
640 			total_used_objs, total_pages, "", total_freeable);
641 
642 	return 0;
643 }
644 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
645 
646 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
647 {
648 	struct dentry *entry;
649 
650 	if (!zs_stat_root) {
651 		pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
652 		return;
653 	}
654 
655 	pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
656 
657 	debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
658 			    &zs_stats_size_fops);
659 }
660 
661 static void zs_pool_stat_destroy(struct zs_pool *pool)
662 {
663 	debugfs_remove_recursive(pool->stat_dentry);
664 }
665 
666 #else /* CONFIG_ZSMALLOC_STAT */
667 static void __init zs_stat_init(void)
668 {
669 }
670 
671 static void __exit zs_stat_exit(void)
672 {
673 }
674 
675 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
676 {
677 }
678 
679 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
680 {
681 }
682 #endif
683 
684 
685 /*
686  * For each size class, zspages are divided into different groups
687  * depending on how "full" they are. This was done so that we could
688  * easily find empty or nearly empty zspages when we try to shrink
689  * the pool (not yet implemented). This function returns fullness
690  * status of the given page.
691  */
692 static enum fullness_group get_fullness_group(struct size_class *class,
693 						struct zspage *zspage)
694 {
695 	int inuse, objs_per_zspage;
696 	enum fullness_group fg;
697 
698 	inuse = get_zspage_inuse(zspage);
699 	objs_per_zspage = class->objs_per_zspage;
700 
701 	if (inuse == 0)
702 		fg = ZS_EMPTY;
703 	else if (inuse == objs_per_zspage)
704 		fg = ZS_FULL;
705 	else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
706 		fg = ZS_ALMOST_EMPTY;
707 	else
708 		fg = ZS_ALMOST_FULL;
709 
710 	return fg;
711 }
712 
713 /*
714  * Each size class maintains various freelists and zspages are assigned
715  * to one of these freelists based on the number of live objects they
716  * have. This functions inserts the given zspage into the freelist
717  * identified by <class, fullness_group>.
718  */
719 static void insert_zspage(struct size_class *class,
720 				struct zspage *zspage,
721 				enum fullness_group fullness)
722 {
723 	struct zspage *head;
724 
725 	zs_stat_inc(class, fullness, 1);
726 	head = list_first_entry_or_null(&class->fullness_list[fullness],
727 					struct zspage, list);
728 	/*
729 	 * We want to see more ZS_FULL pages and less almost empty/full.
730 	 * Put pages with higher ->inuse first.
731 	 */
732 	if (head) {
733 		if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
734 			list_add(&zspage->list, &head->list);
735 			return;
736 		}
737 	}
738 	list_add(&zspage->list, &class->fullness_list[fullness]);
739 }
740 
741 /*
742  * This function removes the given zspage from the freelist identified
743  * by <class, fullness_group>.
744  */
745 static void remove_zspage(struct size_class *class,
746 				struct zspage *zspage,
747 				enum fullness_group fullness)
748 {
749 	VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
750 	VM_BUG_ON(is_zspage_isolated(zspage));
751 
752 	list_del_init(&zspage->list);
753 	zs_stat_dec(class, fullness, 1);
754 }
755 
756 /*
757  * Each size class maintains zspages in different fullness groups depending
758  * on the number of live objects they contain. When allocating or freeing
759  * objects, the fullness status of the page can change, say, from ALMOST_FULL
760  * to ALMOST_EMPTY when freeing an object. This function checks if such
761  * a status change has occurred for the given page and accordingly moves the
762  * page from the freelist of the old fullness group to that of the new
763  * fullness group.
764  */
765 static enum fullness_group fix_fullness_group(struct size_class *class,
766 						struct zspage *zspage)
767 {
768 	int class_idx;
769 	enum fullness_group currfg, newfg;
770 
771 	get_zspage_mapping(zspage, &class_idx, &currfg);
772 	newfg = get_fullness_group(class, zspage);
773 	if (newfg == currfg)
774 		goto out;
775 
776 	if (!is_zspage_isolated(zspage)) {
777 		remove_zspage(class, zspage, currfg);
778 		insert_zspage(class, zspage, newfg);
779 	}
780 
781 	set_zspage_mapping(zspage, class_idx, newfg);
782 
783 out:
784 	return newfg;
785 }
786 
787 /*
788  * We have to decide on how many pages to link together
789  * to form a zspage for each size class. This is important
790  * to reduce wastage due to unusable space left at end of
791  * each zspage which is given as:
792  *     wastage = Zp % class_size
793  *     usage = Zp - wastage
794  * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
795  *
796  * For example, for size class of 3/8 * PAGE_SIZE, we should
797  * link together 3 PAGE_SIZE sized pages to form a zspage
798  * since then we can perfectly fit in 8 such objects.
799  */
800 static int get_pages_per_zspage(int class_size)
801 {
802 	int i, max_usedpc = 0;
803 	/* zspage order which gives maximum used size per KB */
804 	int max_usedpc_order = 1;
805 
806 	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
807 		int zspage_size;
808 		int waste, usedpc;
809 
810 		zspage_size = i * PAGE_SIZE;
811 		waste = zspage_size % class_size;
812 		usedpc = (zspage_size - waste) * 100 / zspage_size;
813 
814 		if (usedpc > max_usedpc) {
815 			max_usedpc = usedpc;
816 			max_usedpc_order = i;
817 		}
818 	}
819 
820 	return max_usedpc_order;
821 }
822 
823 static struct zspage *get_zspage(struct page *page)
824 {
825 	struct zspage *zspage = (struct zspage *)page->private;
826 
827 	BUG_ON(zspage->magic != ZSPAGE_MAGIC);
828 	return zspage;
829 }
830 
831 static struct page *get_next_page(struct page *page)
832 {
833 	if (unlikely(PageHugeObject(page)))
834 		return NULL;
835 
836 	return page->freelist;
837 }
838 
839 /**
840  * obj_to_location - get (<page>, <obj_idx>) from encoded object value
841  * @obj: the encoded object value
842  * @page: page object resides in zspage
843  * @obj_idx: object index
844  */
845 static void obj_to_location(unsigned long obj, struct page **page,
846 				unsigned int *obj_idx)
847 {
848 	obj >>= OBJ_TAG_BITS;
849 	*page = pfn_to_page(obj >> OBJ_INDEX_BITS);
850 	*obj_idx = (obj & OBJ_INDEX_MASK);
851 }
852 
853 /**
854  * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
855  * @page: page object resides in zspage
856  * @obj_idx: object index
857  */
858 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
859 {
860 	unsigned long obj;
861 
862 	obj = page_to_pfn(page) << OBJ_INDEX_BITS;
863 	obj |= obj_idx & OBJ_INDEX_MASK;
864 	obj <<= OBJ_TAG_BITS;
865 
866 	return obj;
867 }
868 
869 static unsigned long handle_to_obj(unsigned long handle)
870 {
871 	return *(unsigned long *)handle;
872 }
873 
874 static unsigned long obj_to_head(struct page *page, void *obj)
875 {
876 	if (unlikely(PageHugeObject(page))) {
877 		VM_BUG_ON_PAGE(!is_first_page(page), page);
878 		return page->index;
879 	} else
880 		return *(unsigned long *)obj;
881 }
882 
883 static inline int testpin_tag(unsigned long handle)
884 {
885 	return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
886 }
887 
888 static inline int trypin_tag(unsigned long handle)
889 {
890 	return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
891 }
892 
893 static void pin_tag(unsigned long handle)
894 {
895 	bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
896 }
897 
898 static void unpin_tag(unsigned long handle)
899 {
900 	bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
901 }
902 
903 static void reset_page(struct page *page)
904 {
905 	__ClearPageMovable(page);
906 	ClearPagePrivate(page);
907 	set_page_private(page, 0);
908 	page_mapcount_reset(page);
909 	ClearPageHugeObject(page);
910 	page->freelist = NULL;
911 }
912 
913 static int trylock_zspage(struct zspage *zspage)
914 {
915 	struct page *cursor, *fail;
916 
917 	for (cursor = get_first_page(zspage); cursor != NULL; cursor =
918 					get_next_page(cursor)) {
919 		if (!trylock_page(cursor)) {
920 			fail = cursor;
921 			goto unlock;
922 		}
923 	}
924 
925 	return 1;
926 unlock:
927 	for (cursor = get_first_page(zspage); cursor != fail; cursor =
928 					get_next_page(cursor))
929 		unlock_page(cursor);
930 
931 	return 0;
932 }
933 
934 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
935 				struct zspage *zspage)
936 {
937 	struct page *page, *next;
938 	enum fullness_group fg;
939 	unsigned int class_idx;
940 
941 	get_zspage_mapping(zspage, &class_idx, &fg);
942 
943 	assert_spin_locked(&class->lock);
944 
945 	VM_BUG_ON(get_zspage_inuse(zspage));
946 	VM_BUG_ON(fg != ZS_EMPTY);
947 
948 	next = page = get_first_page(zspage);
949 	do {
950 		VM_BUG_ON_PAGE(!PageLocked(page), page);
951 		next = get_next_page(page);
952 		reset_page(page);
953 		unlock_page(page);
954 		dec_zone_page_state(page, NR_ZSPAGES);
955 		put_page(page);
956 		page = next;
957 	} while (page != NULL);
958 
959 	cache_free_zspage(pool, zspage);
960 
961 	zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
962 	atomic_long_sub(class->pages_per_zspage,
963 					&pool->pages_allocated);
964 }
965 
966 static void free_zspage(struct zs_pool *pool, struct size_class *class,
967 				struct zspage *zspage)
968 {
969 	VM_BUG_ON(get_zspage_inuse(zspage));
970 	VM_BUG_ON(list_empty(&zspage->list));
971 
972 	if (!trylock_zspage(zspage)) {
973 		kick_deferred_free(pool);
974 		return;
975 	}
976 
977 	remove_zspage(class, zspage, ZS_EMPTY);
978 	__free_zspage(pool, class, zspage);
979 }
980 
981 /* Initialize a newly allocated zspage */
982 static void init_zspage(struct size_class *class, struct zspage *zspage)
983 {
984 	unsigned int freeobj = 1;
985 	unsigned long off = 0;
986 	struct page *page = get_first_page(zspage);
987 
988 	while (page) {
989 		struct page *next_page;
990 		struct link_free *link;
991 		void *vaddr;
992 
993 		set_first_obj_offset(page, off);
994 
995 		vaddr = kmap_atomic(page);
996 		link = (struct link_free *)vaddr + off / sizeof(*link);
997 
998 		while ((off += class->size) < PAGE_SIZE) {
999 			link->next = freeobj++ << OBJ_TAG_BITS;
1000 			link += class->size / sizeof(*link);
1001 		}
1002 
1003 		/*
1004 		 * We now come to the last (full or partial) object on this
1005 		 * page, which must point to the first object on the next
1006 		 * page (if present)
1007 		 */
1008 		next_page = get_next_page(page);
1009 		if (next_page) {
1010 			link->next = freeobj++ << OBJ_TAG_BITS;
1011 		} else {
1012 			/*
1013 			 * Reset OBJ_TAG_BITS bit to last link to tell
1014 			 * whether it's allocated object or not.
1015 			 */
1016 			link->next = -1UL << OBJ_TAG_BITS;
1017 		}
1018 		kunmap_atomic(vaddr);
1019 		page = next_page;
1020 		off %= PAGE_SIZE;
1021 	}
1022 
1023 	set_freeobj(zspage, 0);
1024 }
1025 
1026 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1027 				struct page *pages[])
1028 {
1029 	int i;
1030 	struct page *page;
1031 	struct page *prev_page = NULL;
1032 	int nr_pages = class->pages_per_zspage;
1033 
1034 	/*
1035 	 * Allocate individual pages and link them together as:
1036 	 * 1. all pages are linked together using page->freelist
1037 	 * 2. each sub-page point to zspage using page->private
1038 	 *
1039 	 * we set PG_private to identify the first page (i.e. no other sub-page
1040 	 * has this flag set).
1041 	 */
1042 	for (i = 0; i < nr_pages; i++) {
1043 		page = pages[i];
1044 		set_page_private(page, (unsigned long)zspage);
1045 		page->freelist = NULL;
1046 		if (i == 0) {
1047 			zspage->first_page = page;
1048 			SetPagePrivate(page);
1049 			if (unlikely(class->objs_per_zspage == 1 &&
1050 					class->pages_per_zspage == 1))
1051 				SetPageHugeObject(page);
1052 		} else {
1053 			prev_page->freelist = page;
1054 		}
1055 		prev_page = page;
1056 	}
1057 }
1058 
1059 /*
1060  * Allocate a zspage for the given size class
1061  */
1062 static struct zspage *alloc_zspage(struct zs_pool *pool,
1063 					struct size_class *class,
1064 					gfp_t gfp)
1065 {
1066 	int i;
1067 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1068 	struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1069 
1070 	if (!zspage)
1071 		return NULL;
1072 
1073 	memset(zspage, 0, sizeof(struct zspage));
1074 	zspage->magic = ZSPAGE_MAGIC;
1075 	migrate_lock_init(zspage);
1076 
1077 	for (i = 0; i < class->pages_per_zspage; i++) {
1078 		struct page *page;
1079 
1080 		page = alloc_page(gfp);
1081 		if (!page) {
1082 			while (--i >= 0) {
1083 				dec_zone_page_state(pages[i], NR_ZSPAGES);
1084 				__free_page(pages[i]);
1085 			}
1086 			cache_free_zspage(pool, zspage);
1087 			return NULL;
1088 		}
1089 
1090 		inc_zone_page_state(page, NR_ZSPAGES);
1091 		pages[i] = page;
1092 	}
1093 
1094 	create_page_chain(class, zspage, pages);
1095 	init_zspage(class, zspage);
1096 
1097 	return zspage;
1098 }
1099 
1100 static struct zspage *find_get_zspage(struct size_class *class)
1101 {
1102 	int i;
1103 	struct zspage *zspage;
1104 
1105 	for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1106 		zspage = list_first_entry_or_null(&class->fullness_list[i],
1107 				struct zspage, list);
1108 		if (zspage)
1109 			break;
1110 	}
1111 
1112 	return zspage;
1113 }
1114 
1115 #ifdef CONFIG_PGTABLE_MAPPING
1116 static inline int __zs_cpu_up(struct mapping_area *area)
1117 {
1118 	/*
1119 	 * Make sure we don't leak memory if a cpu UP notification
1120 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1121 	 */
1122 	if (area->vm)
1123 		return 0;
1124 	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1125 	if (!area->vm)
1126 		return -ENOMEM;
1127 	return 0;
1128 }
1129 
1130 static inline void __zs_cpu_down(struct mapping_area *area)
1131 {
1132 	if (area->vm)
1133 		free_vm_area(area->vm);
1134 	area->vm = NULL;
1135 }
1136 
1137 static inline void *__zs_map_object(struct mapping_area *area,
1138 				struct page *pages[2], int off, int size)
1139 {
1140 	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1141 	area->vm_addr = area->vm->addr;
1142 	return area->vm_addr + off;
1143 }
1144 
1145 static inline void __zs_unmap_object(struct mapping_area *area,
1146 				struct page *pages[2], int off, int size)
1147 {
1148 	unsigned long addr = (unsigned long)area->vm_addr;
1149 
1150 	unmap_kernel_range(addr, PAGE_SIZE * 2);
1151 }
1152 
1153 #else /* CONFIG_PGTABLE_MAPPING */
1154 
1155 static inline int __zs_cpu_up(struct mapping_area *area)
1156 {
1157 	/*
1158 	 * Make sure we don't leak memory if a cpu UP notification
1159 	 * and zs_init() race and both call zs_cpu_up() on the same cpu
1160 	 */
1161 	if (area->vm_buf)
1162 		return 0;
1163 	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1164 	if (!area->vm_buf)
1165 		return -ENOMEM;
1166 	return 0;
1167 }
1168 
1169 static inline void __zs_cpu_down(struct mapping_area *area)
1170 {
1171 	kfree(area->vm_buf);
1172 	area->vm_buf = NULL;
1173 }
1174 
1175 static void *__zs_map_object(struct mapping_area *area,
1176 			struct page *pages[2], int off, int size)
1177 {
1178 	int sizes[2];
1179 	void *addr;
1180 	char *buf = area->vm_buf;
1181 
1182 	/* disable page faults to match kmap_atomic() return conditions */
1183 	pagefault_disable();
1184 
1185 	/* no read fastpath */
1186 	if (area->vm_mm == ZS_MM_WO)
1187 		goto out;
1188 
1189 	sizes[0] = PAGE_SIZE - off;
1190 	sizes[1] = size - sizes[0];
1191 
1192 	/* copy object to per-cpu buffer */
1193 	addr = kmap_atomic(pages[0]);
1194 	memcpy(buf, addr + off, sizes[0]);
1195 	kunmap_atomic(addr);
1196 	addr = kmap_atomic(pages[1]);
1197 	memcpy(buf + sizes[0], addr, sizes[1]);
1198 	kunmap_atomic(addr);
1199 out:
1200 	return area->vm_buf;
1201 }
1202 
1203 static void __zs_unmap_object(struct mapping_area *area,
1204 			struct page *pages[2], int off, int size)
1205 {
1206 	int sizes[2];
1207 	void *addr;
1208 	char *buf;
1209 
1210 	/* no write fastpath */
1211 	if (area->vm_mm == ZS_MM_RO)
1212 		goto out;
1213 
1214 	buf = area->vm_buf;
1215 	buf = buf + ZS_HANDLE_SIZE;
1216 	size -= ZS_HANDLE_SIZE;
1217 	off += ZS_HANDLE_SIZE;
1218 
1219 	sizes[0] = PAGE_SIZE - off;
1220 	sizes[1] = size - sizes[0];
1221 
1222 	/* copy per-cpu buffer to object */
1223 	addr = kmap_atomic(pages[0]);
1224 	memcpy(addr + off, buf, sizes[0]);
1225 	kunmap_atomic(addr);
1226 	addr = kmap_atomic(pages[1]);
1227 	memcpy(addr, buf + sizes[0], sizes[1]);
1228 	kunmap_atomic(addr);
1229 
1230 out:
1231 	/* enable page faults to match kunmap_atomic() return conditions */
1232 	pagefault_enable();
1233 }
1234 
1235 #endif /* CONFIG_PGTABLE_MAPPING */
1236 
1237 static int zs_cpu_prepare(unsigned int cpu)
1238 {
1239 	struct mapping_area *area;
1240 
1241 	area = &per_cpu(zs_map_area, cpu);
1242 	return __zs_cpu_up(area);
1243 }
1244 
1245 static int zs_cpu_dead(unsigned int cpu)
1246 {
1247 	struct mapping_area *area;
1248 
1249 	area = &per_cpu(zs_map_area, cpu);
1250 	__zs_cpu_down(area);
1251 	return 0;
1252 }
1253 
1254 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1255 					int objs_per_zspage)
1256 {
1257 	if (prev->pages_per_zspage == pages_per_zspage &&
1258 		prev->objs_per_zspage == objs_per_zspage)
1259 		return true;
1260 
1261 	return false;
1262 }
1263 
1264 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1265 {
1266 	return get_zspage_inuse(zspage) == class->objs_per_zspage;
1267 }
1268 
1269 unsigned long zs_get_total_pages(struct zs_pool *pool)
1270 {
1271 	return atomic_long_read(&pool->pages_allocated);
1272 }
1273 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1274 
1275 /**
1276  * zs_map_object - get address of allocated object from handle.
1277  * @pool: pool from which the object was allocated
1278  * @handle: handle returned from zs_malloc
1279  * @mm: maping mode to use
1280  *
1281  * Before using an object allocated from zs_malloc, it must be mapped using
1282  * this function. When done with the object, it must be unmapped using
1283  * zs_unmap_object.
1284  *
1285  * Only one object can be mapped per cpu at a time. There is no protection
1286  * against nested mappings.
1287  *
1288  * This function returns with preemption and page faults disabled.
1289  */
1290 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1291 			enum zs_mapmode mm)
1292 {
1293 	struct zspage *zspage;
1294 	struct page *page;
1295 	unsigned long obj, off;
1296 	unsigned int obj_idx;
1297 
1298 	unsigned int class_idx;
1299 	enum fullness_group fg;
1300 	struct size_class *class;
1301 	struct mapping_area *area;
1302 	struct page *pages[2];
1303 	void *ret;
1304 
1305 	/*
1306 	 * Because we use per-cpu mapping areas shared among the
1307 	 * pools/users, we can't allow mapping in interrupt context
1308 	 * because it can corrupt another users mappings.
1309 	 */
1310 	BUG_ON(in_interrupt());
1311 
1312 	/* From now on, migration cannot move the object */
1313 	pin_tag(handle);
1314 
1315 	obj = handle_to_obj(handle);
1316 	obj_to_location(obj, &page, &obj_idx);
1317 	zspage = get_zspage(page);
1318 
1319 	/* migration cannot move any subpage in this zspage */
1320 	migrate_read_lock(zspage);
1321 
1322 	get_zspage_mapping(zspage, &class_idx, &fg);
1323 	class = pool->size_class[class_idx];
1324 	off = (class->size * obj_idx) & ~PAGE_MASK;
1325 
1326 	area = &get_cpu_var(zs_map_area);
1327 	area->vm_mm = mm;
1328 	if (off + class->size <= PAGE_SIZE) {
1329 		/* this object is contained entirely within a page */
1330 		area->vm_addr = kmap_atomic(page);
1331 		ret = area->vm_addr + off;
1332 		goto out;
1333 	}
1334 
1335 	/* this object spans two pages */
1336 	pages[0] = page;
1337 	pages[1] = get_next_page(page);
1338 	BUG_ON(!pages[1]);
1339 
1340 	ret = __zs_map_object(area, pages, off, class->size);
1341 out:
1342 	if (likely(!PageHugeObject(page)))
1343 		ret += ZS_HANDLE_SIZE;
1344 
1345 	return ret;
1346 }
1347 EXPORT_SYMBOL_GPL(zs_map_object);
1348 
1349 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1350 {
1351 	struct zspage *zspage;
1352 	struct page *page;
1353 	unsigned long obj, off;
1354 	unsigned int obj_idx;
1355 
1356 	unsigned int class_idx;
1357 	enum fullness_group fg;
1358 	struct size_class *class;
1359 	struct mapping_area *area;
1360 
1361 	obj = handle_to_obj(handle);
1362 	obj_to_location(obj, &page, &obj_idx);
1363 	zspage = get_zspage(page);
1364 	get_zspage_mapping(zspage, &class_idx, &fg);
1365 	class = pool->size_class[class_idx];
1366 	off = (class->size * obj_idx) & ~PAGE_MASK;
1367 
1368 	area = this_cpu_ptr(&zs_map_area);
1369 	if (off + class->size <= PAGE_SIZE)
1370 		kunmap_atomic(area->vm_addr);
1371 	else {
1372 		struct page *pages[2];
1373 
1374 		pages[0] = page;
1375 		pages[1] = get_next_page(page);
1376 		BUG_ON(!pages[1]);
1377 
1378 		__zs_unmap_object(area, pages, off, class->size);
1379 	}
1380 	put_cpu_var(zs_map_area);
1381 
1382 	migrate_read_unlock(zspage);
1383 	unpin_tag(handle);
1384 }
1385 EXPORT_SYMBOL_GPL(zs_unmap_object);
1386 
1387 /**
1388  * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1389  *                        zsmalloc &size_class.
1390  * @pool: zsmalloc pool to use
1391  *
1392  * The function returns the size of the first huge class - any object of equal
1393  * or bigger size will be stored in zspage consisting of a single physical
1394  * page.
1395  *
1396  * Context: Any context.
1397  *
1398  * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1399  */
1400 size_t zs_huge_class_size(struct zs_pool *pool)
1401 {
1402 	return huge_class_size;
1403 }
1404 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1405 
1406 static unsigned long obj_malloc(struct size_class *class,
1407 				struct zspage *zspage, unsigned long handle)
1408 {
1409 	int i, nr_page, offset;
1410 	unsigned long obj;
1411 	struct link_free *link;
1412 
1413 	struct page *m_page;
1414 	unsigned long m_offset;
1415 	void *vaddr;
1416 
1417 	handle |= OBJ_ALLOCATED_TAG;
1418 	obj = get_freeobj(zspage);
1419 
1420 	offset = obj * class->size;
1421 	nr_page = offset >> PAGE_SHIFT;
1422 	m_offset = offset & ~PAGE_MASK;
1423 	m_page = get_first_page(zspage);
1424 
1425 	for (i = 0; i < nr_page; i++)
1426 		m_page = get_next_page(m_page);
1427 
1428 	vaddr = kmap_atomic(m_page);
1429 	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1430 	set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1431 	if (likely(!PageHugeObject(m_page)))
1432 		/* record handle in the header of allocated chunk */
1433 		link->handle = handle;
1434 	else
1435 		/* record handle to page->index */
1436 		zspage->first_page->index = handle;
1437 
1438 	kunmap_atomic(vaddr);
1439 	mod_zspage_inuse(zspage, 1);
1440 	zs_stat_inc(class, OBJ_USED, 1);
1441 
1442 	obj = location_to_obj(m_page, obj);
1443 
1444 	return obj;
1445 }
1446 
1447 
1448 /**
1449  * zs_malloc - Allocate block of given size from pool.
1450  * @pool: pool to allocate from
1451  * @size: size of block to allocate
1452  * @gfp: gfp flags when allocating object
1453  *
1454  * On success, handle to the allocated object is returned,
1455  * otherwise 0.
1456  * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1457  */
1458 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1459 {
1460 	unsigned long handle, obj;
1461 	struct size_class *class;
1462 	enum fullness_group newfg;
1463 	struct zspage *zspage;
1464 
1465 	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1466 		return 0;
1467 
1468 	handle = cache_alloc_handle(pool, gfp);
1469 	if (!handle)
1470 		return 0;
1471 
1472 	/* extra space in chunk to keep the handle */
1473 	size += ZS_HANDLE_SIZE;
1474 	class = pool->size_class[get_size_class_index(size)];
1475 
1476 	spin_lock(&class->lock);
1477 	zspage = find_get_zspage(class);
1478 	if (likely(zspage)) {
1479 		obj = obj_malloc(class, zspage, handle);
1480 		/* Now move the zspage to another fullness group, if required */
1481 		fix_fullness_group(class, zspage);
1482 		record_obj(handle, obj);
1483 		spin_unlock(&class->lock);
1484 
1485 		return handle;
1486 	}
1487 
1488 	spin_unlock(&class->lock);
1489 
1490 	zspage = alloc_zspage(pool, class, gfp);
1491 	if (!zspage) {
1492 		cache_free_handle(pool, handle);
1493 		return 0;
1494 	}
1495 
1496 	spin_lock(&class->lock);
1497 	obj = obj_malloc(class, zspage, handle);
1498 	newfg = get_fullness_group(class, zspage);
1499 	insert_zspage(class, zspage, newfg);
1500 	set_zspage_mapping(zspage, class->index, newfg);
1501 	record_obj(handle, obj);
1502 	atomic_long_add(class->pages_per_zspage,
1503 				&pool->pages_allocated);
1504 	zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1505 
1506 	/* We completely set up zspage so mark them as movable */
1507 	SetZsPageMovable(pool, zspage);
1508 	spin_unlock(&class->lock);
1509 
1510 	return handle;
1511 }
1512 EXPORT_SYMBOL_GPL(zs_malloc);
1513 
1514 static void obj_free(struct size_class *class, unsigned long obj)
1515 {
1516 	struct link_free *link;
1517 	struct zspage *zspage;
1518 	struct page *f_page;
1519 	unsigned long f_offset;
1520 	unsigned int f_objidx;
1521 	void *vaddr;
1522 
1523 	obj &= ~OBJ_ALLOCATED_TAG;
1524 	obj_to_location(obj, &f_page, &f_objidx);
1525 	f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1526 	zspage = get_zspage(f_page);
1527 
1528 	vaddr = kmap_atomic(f_page);
1529 
1530 	/* Insert this object in containing zspage's freelist */
1531 	link = (struct link_free *)(vaddr + f_offset);
1532 	link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1533 	kunmap_atomic(vaddr);
1534 	set_freeobj(zspage, f_objidx);
1535 	mod_zspage_inuse(zspage, -1);
1536 	zs_stat_dec(class, OBJ_USED, 1);
1537 }
1538 
1539 void zs_free(struct zs_pool *pool, unsigned long handle)
1540 {
1541 	struct zspage *zspage;
1542 	struct page *f_page;
1543 	unsigned long obj;
1544 	unsigned int f_objidx;
1545 	int class_idx;
1546 	struct size_class *class;
1547 	enum fullness_group fullness;
1548 	bool isolated;
1549 
1550 	if (unlikely(!handle))
1551 		return;
1552 
1553 	pin_tag(handle);
1554 	obj = handle_to_obj(handle);
1555 	obj_to_location(obj, &f_page, &f_objidx);
1556 	zspage = get_zspage(f_page);
1557 
1558 	migrate_read_lock(zspage);
1559 
1560 	get_zspage_mapping(zspage, &class_idx, &fullness);
1561 	class = pool->size_class[class_idx];
1562 
1563 	spin_lock(&class->lock);
1564 	obj_free(class, obj);
1565 	fullness = fix_fullness_group(class, zspage);
1566 	if (fullness != ZS_EMPTY) {
1567 		migrate_read_unlock(zspage);
1568 		goto out;
1569 	}
1570 
1571 	isolated = is_zspage_isolated(zspage);
1572 	migrate_read_unlock(zspage);
1573 	/* If zspage is isolated, zs_page_putback will free the zspage */
1574 	if (likely(!isolated))
1575 		free_zspage(pool, class, zspage);
1576 out:
1577 
1578 	spin_unlock(&class->lock);
1579 	unpin_tag(handle);
1580 	cache_free_handle(pool, handle);
1581 }
1582 EXPORT_SYMBOL_GPL(zs_free);
1583 
1584 static void zs_object_copy(struct size_class *class, unsigned long dst,
1585 				unsigned long src)
1586 {
1587 	struct page *s_page, *d_page;
1588 	unsigned int s_objidx, d_objidx;
1589 	unsigned long s_off, d_off;
1590 	void *s_addr, *d_addr;
1591 	int s_size, d_size, size;
1592 	int written = 0;
1593 
1594 	s_size = d_size = class->size;
1595 
1596 	obj_to_location(src, &s_page, &s_objidx);
1597 	obj_to_location(dst, &d_page, &d_objidx);
1598 
1599 	s_off = (class->size * s_objidx) & ~PAGE_MASK;
1600 	d_off = (class->size * d_objidx) & ~PAGE_MASK;
1601 
1602 	if (s_off + class->size > PAGE_SIZE)
1603 		s_size = PAGE_SIZE - s_off;
1604 
1605 	if (d_off + class->size > PAGE_SIZE)
1606 		d_size = PAGE_SIZE - d_off;
1607 
1608 	s_addr = kmap_atomic(s_page);
1609 	d_addr = kmap_atomic(d_page);
1610 
1611 	while (1) {
1612 		size = min(s_size, d_size);
1613 		memcpy(d_addr + d_off, s_addr + s_off, size);
1614 		written += size;
1615 
1616 		if (written == class->size)
1617 			break;
1618 
1619 		s_off += size;
1620 		s_size -= size;
1621 		d_off += size;
1622 		d_size -= size;
1623 
1624 		if (s_off >= PAGE_SIZE) {
1625 			kunmap_atomic(d_addr);
1626 			kunmap_atomic(s_addr);
1627 			s_page = get_next_page(s_page);
1628 			s_addr = kmap_atomic(s_page);
1629 			d_addr = kmap_atomic(d_page);
1630 			s_size = class->size - written;
1631 			s_off = 0;
1632 		}
1633 
1634 		if (d_off >= PAGE_SIZE) {
1635 			kunmap_atomic(d_addr);
1636 			d_page = get_next_page(d_page);
1637 			d_addr = kmap_atomic(d_page);
1638 			d_size = class->size - written;
1639 			d_off = 0;
1640 		}
1641 	}
1642 
1643 	kunmap_atomic(d_addr);
1644 	kunmap_atomic(s_addr);
1645 }
1646 
1647 /*
1648  * Find alloced object in zspage from index object and
1649  * return handle.
1650  */
1651 static unsigned long find_alloced_obj(struct size_class *class,
1652 					struct page *page, int *obj_idx)
1653 {
1654 	unsigned long head;
1655 	int offset = 0;
1656 	int index = *obj_idx;
1657 	unsigned long handle = 0;
1658 	void *addr = kmap_atomic(page);
1659 
1660 	offset = get_first_obj_offset(page);
1661 	offset += class->size * index;
1662 
1663 	while (offset < PAGE_SIZE) {
1664 		head = obj_to_head(page, addr + offset);
1665 		if (head & OBJ_ALLOCATED_TAG) {
1666 			handle = head & ~OBJ_ALLOCATED_TAG;
1667 			if (trypin_tag(handle))
1668 				break;
1669 			handle = 0;
1670 		}
1671 
1672 		offset += class->size;
1673 		index++;
1674 	}
1675 
1676 	kunmap_atomic(addr);
1677 
1678 	*obj_idx = index;
1679 
1680 	return handle;
1681 }
1682 
1683 struct zs_compact_control {
1684 	/* Source spage for migration which could be a subpage of zspage */
1685 	struct page *s_page;
1686 	/* Destination page for migration which should be a first page
1687 	 * of zspage. */
1688 	struct page *d_page;
1689 	 /* Starting object index within @s_page which used for live object
1690 	  * in the subpage. */
1691 	int obj_idx;
1692 };
1693 
1694 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1695 				struct zs_compact_control *cc)
1696 {
1697 	unsigned long used_obj, free_obj;
1698 	unsigned long handle;
1699 	struct page *s_page = cc->s_page;
1700 	struct page *d_page = cc->d_page;
1701 	int obj_idx = cc->obj_idx;
1702 	int ret = 0;
1703 
1704 	while (1) {
1705 		handle = find_alloced_obj(class, s_page, &obj_idx);
1706 		if (!handle) {
1707 			s_page = get_next_page(s_page);
1708 			if (!s_page)
1709 				break;
1710 			obj_idx = 0;
1711 			continue;
1712 		}
1713 
1714 		/* Stop if there is no more space */
1715 		if (zspage_full(class, get_zspage(d_page))) {
1716 			unpin_tag(handle);
1717 			ret = -ENOMEM;
1718 			break;
1719 		}
1720 
1721 		used_obj = handle_to_obj(handle);
1722 		free_obj = obj_malloc(class, get_zspage(d_page), handle);
1723 		zs_object_copy(class, free_obj, used_obj);
1724 		obj_idx++;
1725 		/*
1726 		 * record_obj updates handle's value to free_obj and it will
1727 		 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1728 		 * breaks synchronization using pin_tag(e,g, zs_free) so
1729 		 * let's keep the lock bit.
1730 		 */
1731 		free_obj |= BIT(HANDLE_PIN_BIT);
1732 		record_obj(handle, free_obj);
1733 		unpin_tag(handle);
1734 		obj_free(class, used_obj);
1735 	}
1736 
1737 	/* Remember last position in this iteration */
1738 	cc->s_page = s_page;
1739 	cc->obj_idx = obj_idx;
1740 
1741 	return ret;
1742 }
1743 
1744 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1745 {
1746 	int i;
1747 	struct zspage *zspage;
1748 	enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1749 
1750 	if (!source) {
1751 		fg[0] = ZS_ALMOST_FULL;
1752 		fg[1] = ZS_ALMOST_EMPTY;
1753 	}
1754 
1755 	for (i = 0; i < 2; i++) {
1756 		zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1757 							struct zspage, list);
1758 		if (zspage) {
1759 			VM_BUG_ON(is_zspage_isolated(zspage));
1760 			remove_zspage(class, zspage, fg[i]);
1761 			return zspage;
1762 		}
1763 	}
1764 
1765 	return zspage;
1766 }
1767 
1768 /*
1769  * putback_zspage - add @zspage into right class's fullness list
1770  * @class: destination class
1771  * @zspage: target page
1772  *
1773  * Return @zspage's fullness_group
1774  */
1775 static enum fullness_group putback_zspage(struct size_class *class,
1776 			struct zspage *zspage)
1777 {
1778 	enum fullness_group fullness;
1779 
1780 	VM_BUG_ON(is_zspage_isolated(zspage));
1781 
1782 	fullness = get_fullness_group(class, zspage);
1783 	insert_zspage(class, zspage, fullness);
1784 	set_zspage_mapping(zspage, class->index, fullness);
1785 
1786 	return fullness;
1787 }
1788 
1789 #ifdef CONFIG_COMPACTION
1790 /*
1791  * To prevent zspage destroy during migration, zspage freeing should
1792  * hold locks of all pages in the zspage.
1793  */
1794 static void lock_zspage(struct zspage *zspage)
1795 {
1796 	struct page *page = get_first_page(zspage);
1797 
1798 	do {
1799 		lock_page(page);
1800 	} while ((page = get_next_page(page)) != NULL);
1801 }
1802 
1803 static struct dentry *zs_mount(struct file_system_type *fs_type,
1804 				int flags, const char *dev_name, void *data)
1805 {
1806 	static const struct dentry_operations ops = {
1807 		.d_dname = simple_dname,
1808 	};
1809 
1810 	return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1811 }
1812 
1813 static struct file_system_type zsmalloc_fs = {
1814 	.name		= "zsmalloc",
1815 	.mount		= zs_mount,
1816 	.kill_sb	= kill_anon_super,
1817 };
1818 
1819 static int zsmalloc_mount(void)
1820 {
1821 	int ret = 0;
1822 
1823 	zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1824 	if (IS_ERR(zsmalloc_mnt))
1825 		ret = PTR_ERR(zsmalloc_mnt);
1826 
1827 	return ret;
1828 }
1829 
1830 static void zsmalloc_unmount(void)
1831 {
1832 	kern_unmount(zsmalloc_mnt);
1833 }
1834 
1835 static void migrate_lock_init(struct zspage *zspage)
1836 {
1837 	rwlock_init(&zspage->lock);
1838 }
1839 
1840 static void migrate_read_lock(struct zspage *zspage)
1841 {
1842 	read_lock(&zspage->lock);
1843 }
1844 
1845 static void migrate_read_unlock(struct zspage *zspage)
1846 {
1847 	read_unlock(&zspage->lock);
1848 }
1849 
1850 static void migrate_write_lock(struct zspage *zspage)
1851 {
1852 	write_lock(&zspage->lock);
1853 }
1854 
1855 static void migrate_write_unlock(struct zspage *zspage)
1856 {
1857 	write_unlock(&zspage->lock);
1858 }
1859 
1860 /* Number of isolated subpage for *page migration* in this zspage */
1861 static void inc_zspage_isolation(struct zspage *zspage)
1862 {
1863 	zspage->isolated++;
1864 }
1865 
1866 static void dec_zspage_isolation(struct zspage *zspage)
1867 {
1868 	zspage->isolated--;
1869 }
1870 
1871 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1872 				struct page *newpage, struct page *oldpage)
1873 {
1874 	struct page *page;
1875 	struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1876 	int idx = 0;
1877 
1878 	page = get_first_page(zspage);
1879 	do {
1880 		if (page == oldpage)
1881 			pages[idx] = newpage;
1882 		else
1883 			pages[idx] = page;
1884 		idx++;
1885 	} while ((page = get_next_page(page)) != NULL);
1886 
1887 	create_page_chain(class, zspage, pages);
1888 	set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1889 	if (unlikely(PageHugeObject(oldpage)))
1890 		newpage->index = oldpage->index;
1891 	__SetPageMovable(newpage, page_mapping(oldpage));
1892 }
1893 
1894 static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1895 {
1896 	struct zs_pool *pool;
1897 	struct size_class *class;
1898 	int class_idx;
1899 	enum fullness_group fullness;
1900 	struct zspage *zspage;
1901 	struct address_space *mapping;
1902 
1903 	/*
1904 	 * Page is locked so zspage couldn't be destroyed. For detail, look at
1905 	 * lock_zspage in free_zspage.
1906 	 */
1907 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1908 	VM_BUG_ON_PAGE(PageIsolated(page), page);
1909 
1910 	zspage = get_zspage(page);
1911 
1912 	/*
1913 	 * Without class lock, fullness could be stale while class_idx is okay
1914 	 * because class_idx is constant unless page is freed so we should get
1915 	 * fullness again under class lock.
1916 	 */
1917 	get_zspage_mapping(zspage, &class_idx, &fullness);
1918 	mapping = page_mapping(page);
1919 	pool = mapping->private_data;
1920 	class = pool->size_class[class_idx];
1921 
1922 	spin_lock(&class->lock);
1923 	if (get_zspage_inuse(zspage) == 0) {
1924 		spin_unlock(&class->lock);
1925 		return false;
1926 	}
1927 
1928 	/* zspage is isolated for object migration */
1929 	if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1930 		spin_unlock(&class->lock);
1931 		return false;
1932 	}
1933 
1934 	/*
1935 	 * If this is first time isolation for the zspage, isolate zspage from
1936 	 * size_class to prevent further object allocation from the zspage.
1937 	 */
1938 	if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1939 		get_zspage_mapping(zspage, &class_idx, &fullness);
1940 		remove_zspage(class, zspage, fullness);
1941 	}
1942 
1943 	inc_zspage_isolation(zspage);
1944 	spin_unlock(&class->lock);
1945 
1946 	return true;
1947 }
1948 
1949 static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1950 		struct page *page, enum migrate_mode mode)
1951 {
1952 	struct zs_pool *pool;
1953 	struct size_class *class;
1954 	int class_idx;
1955 	enum fullness_group fullness;
1956 	struct zspage *zspage;
1957 	struct page *dummy;
1958 	void *s_addr, *d_addr, *addr;
1959 	int offset, pos;
1960 	unsigned long handle, head;
1961 	unsigned long old_obj, new_obj;
1962 	unsigned int obj_idx;
1963 	int ret = -EAGAIN;
1964 
1965 	/*
1966 	 * We cannot support the _NO_COPY case here, because copy needs to
1967 	 * happen under the zs lock, which does not work with
1968 	 * MIGRATE_SYNC_NO_COPY workflow.
1969 	 */
1970 	if (mode == MIGRATE_SYNC_NO_COPY)
1971 		return -EINVAL;
1972 
1973 	VM_BUG_ON_PAGE(!PageMovable(page), page);
1974 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
1975 
1976 	zspage = get_zspage(page);
1977 
1978 	/* Concurrent compactor cannot migrate any subpage in zspage */
1979 	migrate_write_lock(zspage);
1980 	get_zspage_mapping(zspage, &class_idx, &fullness);
1981 	pool = mapping->private_data;
1982 	class = pool->size_class[class_idx];
1983 	offset = get_first_obj_offset(page);
1984 
1985 	spin_lock(&class->lock);
1986 	if (!get_zspage_inuse(zspage)) {
1987 		/*
1988 		 * Set "offset" to end of the page so that every loops
1989 		 * skips unnecessary object scanning.
1990 		 */
1991 		offset = PAGE_SIZE;
1992 	}
1993 
1994 	pos = offset;
1995 	s_addr = kmap_atomic(page);
1996 	while (pos < PAGE_SIZE) {
1997 		head = obj_to_head(page, s_addr + pos);
1998 		if (head & OBJ_ALLOCATED_TAG) {
1999 			handle = head & ~OBJ_ALLOCATED_TAG;
2000 			if (!trypin_tag(handle))
2001 				goto unpin_objects;
2002 		}
2003 		pos += class->size;
2004 	}
2005 
2006 	/*
2007 	 * Here, any user cannot access all objects in the zspage so let's move.
2008 	 */
2009 	d_addr = kmap_atomic(newpage);
2010 	memcpy(d_addr, s_addr, PAGE_SIZE);
2011 	kunmap_atomic(d_addr);
2012 
2013 	for (addr = s_addr + offset; addr < s_addr + pos;
2014 					addr += class->size) {
2015 		head = obj_to_head(page, addr);
2016 		if (head & OBJ_ALLOCATED_TAG) {
2017 			handle = head & ~OBJ_ALLOCATED_TAG;
2018 			if (!testpin_tag(handle))
2019 				BUG();
2020 
2021 			old_obj = handle_to_obj(handle);
2022 			obj_to_location(old_obj, &dummy, &obj_idx);
2023 			new_obj = (unsigned long)location_to_obj(newpage,
2024 								obj_idx);
2025 			new_obj |= BIT(HANDLE_PIN_BIT);
2026 			record_obj(handle, new_obj);
2027 		}
2028 	}
2029 
2030 	replace_sub_page(class, zspage, newpage, page);
2031 	get_page(newpage);
2032 
2033 	dec_zspage_isolation(zspage);
2034 
2035 	/*
2036 	 * Page migration is done so let's putback isolated zspage to
2037 	 * the list if @page is final isolated subpage in the zspage.
2038 	 */
2039 	if (!is_zspage_isolated(zspage))
2040 		putback_zspage(class, zspage);
2041 
2042 	reset_page(page);
2043 	put_page(page);
2044 	page = newpage;
2045 
2046 	ret = MIGRATEPAGE_SUCCESS;
2047 unpin_objects:
2048 	for (addr = s_addr + offset; addr < s_addr + pos;
2049 						addr += class->size) {
2050 		head = obj_to_head(page, addr);
2051 		if (head & OBJ_ALLOCATED_TAG) {
2052 			handle = head & ~OBJ_ALLOCATED_TAG;
2053 			if (!testpin_tag(handle))
2054 				BUG();
2055 			unpin_tag(handle);
2056 		}
2057 	}
2058 	kunmap_atomic(s_addr);
2059 	spin_unlock(&class->lock);
2060 	migrate_write_unlock(zspage);
2061 
2062 	return ret;
2063 }
2064 
2065 static void zs_page_putback(struct page *page)
2066 {
2067 	struct zs_pool *pool;
2068 	struct size_class *class;
2069 	int class_idx;
2070 	enum fullness_group fg;
2071 	struct address_space *mapping;
2072 	struct zspage *zspage;
2073 
2074 	VM_BUG_ON_PAGE(!PageMovable(page), page);
2075 	VM_BUG_ON_PAGE(!PageIsolated(page), page);
2076 
2077 	zspage = get_zspage(page);
2078 	get_zspage_mapping(zspage, &class_idx, &fg);
2079 	mapping = page_mapping(page);
2080 	pool = mapping->private_data;
2081 	class = pool->size_class[class_idx];
2082 
2083 	spin_lock(&class->lock);
2084 	dec_zspage_isolation(zspage);
2085 	if (!is_zspage_isolated(zspage)) {
2086 		fg = putback_zspage(class, zspage);
2087 		/*
2088 		 * Due to page_lock, we cannot free zspage immediately
2089 		 * so let's defer.
2090 		 */
2091 		if (fg == ZS_EMPTY)
2092 			schedule_work(&pool->free_work);
2093 	}
2094 	spin_unlock(&class->lock);
2095 }
2096 
2097 static const struct address_space_operations zsmalloc_aops = {
2098 	.isolate_page = zs_page_isolate,
2099 	.migratepage = zs_page_migrate,
2100 	.putback_page = zs_page_putback,
2101 };
2102 
2103 static int zs_register_migration(struct zs_pool *pool)
2104 {
2105 	pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2106 	if (IS_ERR(pool->inode)) {
2107 		pool->inode = NULL;
2108 		return 1;
2109 	}
2110 
2111 	pool->inode->i_mapping->private_data = pool;
2112 	pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2113 	return 0;
2114 }
2115 
2116 static void zs_unregister_migration(struct zs_pool *pool)
2117 {
2118 	flush_work(&pool->free_work);
2119 	iput(pool->inode);
2120 }
2121 
2122 /*
2123  * Caller should hold page_lock of all pages in the zspage
2124  * In here, we cannot use zspage meta data.
2125  */
2126 static void async_free_zspage(struct work_struct *work)
2127 {
2128 	int i;
2129 	struct size_class *class;
2130 	unsigned int class_idx;
2131 	enum fullness_group fullness;
2132 	struct zspage *zspage, *tmp;
2133 	LIST_HEAD(free_pages);
2134 	struct zs_pool *pool = container_of(work, struct zs_pool,
2135 					free_work);
2136 
2137 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2138 		class = pool->size_class[i];
2139 		if (class->index != i)
2140 			continue;
2141 
2142 		spin_lock(&class->lock);
2143 		list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2144 		spin_unlock(&class->lock);
2145 	}
2146 
2147 
2148 	list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2149 		list_del(&zspage->list);
2150 		lock_zspage(zspage);
2151 
2152 		get_zspage_mapping(zspage, &class_idx, &fullness);
2153 		VM_BUG_ON(fullness != ZS_EMPTY);
2154 		class = pool->size_class[class_idx];
2155 		spin_lock(&class->lock);
2156 		__free_zspage(pool, pool->size_class[class_idx], zspage);
2157 		spin_unlock(&class->lock);
2158 	}
2159 };
2160 
2161 static void kick_deferred_free(struct zs_pool *pool)
2162 {
2163 	schedule_work(&pool->free_work);
2164 }
2165 
2166 static void init_deferred_free(struct zs_pool *pool)
2167 {
2168 	INIT_WORK(&pool->free_work, async_free_zspage);
2169 }
2170 
2171 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2172 {
2173 	struct page *page = get_first_page(zspage);
2174 
2175 	do {
2176 		WARN_ON(!trylock_page(page));
2177 		__SetPageMovable(page, pool->inode->i_mapping);
2178 		unlock_page(page);
2179 	} while ((page = get_next_page(page)) != NULL);
2180 }
2181 #endif
2182 
2183 /*
2184  *
2185  * Based on the number of unused allocated objects calculate
2186  * and return the number of pages that we can free.
2187  */
2188 static unsigned long zs_can_compact(struct size_class *class)
2189 {
2190 	unsigned long obj_wasted;
2191 	unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2192 	unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2193 
2194 	if (obj_allocated <= obj_used)
2195 		return 0;
2196 
2197 	obj_wasted = obj_allocated - obj_used;
2198 	obj_wasted /= class->objs_per_zspage;
2199 
2200 	return obj_wasted * class->pages_per_zspage;
2201 }
2202 
2203 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2204 {
2205 	struct zs_compact_control cc;
2206 	struct zspage *src_zspage;
2207 	struct zspage *dst_zspage = NULL;
2208 
2209 	spin_lock(&class->lock);
2210 	while ((src_zspage = isolate_zspage(class, true))) {
2211 
2212 		if (!zs_can_compact(class))
2213 			break;
2214 
2215 		cc.obj_idx = 0;
2216 		cc.s_page = get_first_page(src_zspage);
2217 
2218 		while ((dst_zspage = isolate_zspage(class, false))) {
2219 			cc.d_page = get_first_page(dst_zspage);
2220 			/*
2221 			 * If there is no more space in dst_page, resched
2222 			 * and see if anyone had allocated another zspage.
2223 			 */
2224 			if (!migrate_zspage(pool, class, &cc))
2225 				break;
2226 
2227 			putback_zspage(class, dst_zspage);
2228 		}
2229 
2230 		/* Stop if we couldn't find slot */
2231 		if (dst_zspage == NULL)
2232 			break;
2233 
2234 		putback_zspage(class, dst_zspage);
2235 		if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2236 			free_zspage(pool, class, src_zspage);
2237 			pool->stats.pages_compacted += class->pages_per_zspage;
2238 		}
2239 		spin_unlock(&class->lock);
2240 		cond_resched();
2241 		spin_lock(&class->lock);
2242 	}
2243 
2244 	if (src_zspage)
2245 		putback_zspage(class, src_zspage);
2246 
2247 	spin_unlock(&class->lock);
2248 }
2249 
2250 unsigned long zs_compact(struct zs_pool *pool)
2251 {
2252 	int i;
2253 	struct size_class *class;
2254 
2255 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2256 		class = pool->size_class[i];
2257 		if (!class)
2258 			continue;
2259 		if (class->index != i)
2260 			continue;
2261 		__zs_compact(pool, class);
2262 	}
2263 
2264 	return pool->stats.pages_compacted;
2265 }
2266 EXPORT_SYMBOL_GPL(zs_compact);
2267 
2268 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2269 {
2270 	memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2271 }
2272 EXPORT_SYMBOL_GPL(zs_pool_stats);
2273 
2274 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2275 		struct shrink_control *sc)
2276 {
2277 	unsigned long pages_freed;
2278 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2279 			shrinker);
2280 
2281 	pages_freed = pool->stats.pages_compacted;
2282 	/*
2283 	 * Compact classes and calculate compaction delta.
2284 	 * Can run concurrently with a manually triggered
2285 	 * (by user) compaction.
2286 	 */
2287 	pages_freed = zs_compact(pool) - pages_freed;
2288 
2289 	return pages_freed ? pages_freed : SHRINK_STOP;
2290 }
2291 
2292 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2293 		struct shrink_control *sc)
2294 {
2295 	int i;
2296 	struct size_class *class;
2297 	unsigned long pages_to_free = 0;
2298 	struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2299 			shrinker);
2300 
2301 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2302 		class = pool->size_class[i];
2303 		if (!class)
2304 			continue;
2305 		if (class->index != i)
2306 			continue;
2307 
2308 		pages_to_free += zs_can_compact(class);
2309 	}
2310 
2311 	return pages_to_free;
2312 }
2313 
2314 static void zs_unregister_shrinker(struct zs_pool *pool)
2315 {
2316 	unregister_shrinker(&pool->shrinker);
2317 }
2318 
2319 static int zs_register_shrinker(struct zs_pool *pool)
2320 {
2321 	pool->shrinker.scan_objects = zs_shrinker_scan;
2322 	pool->shrinker.count_objects = zs_shrinker_count;
2323 	pool->shrinker.batch = 0;
2324 	pool->shrinker.seeks = DEFAULT_SEEKS;
2325 
2326 	return register_shrinker(&pool->shrinker);
2327 }
2328 
2329 /**
2330  * zs_create_pool - Creates an allocation pool to work from.
2331  * @name: pool name to be created
2332  *
2333  * This function must be called before anything when using
2334  * the zsmalloc allocator.
2335  *
2336  * On success, a pointer to the newly created pool is returned,
2337  * otherwise NULL.
2338  */
2339 struct zs_pool *zs_create_pool(const char *name)
2340 {
2341 	int i;
2342 	struct zs_pool *pool;
2343 	struct size_class *prev_class = NULL;
2344 
2345 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2346 	if (!pool)
2347 		return NULL;
2348 
2349 	init_deferred_free(pool);
2350 
2351 	pool->name = kstrdup(name, GFP_KERNEL);
2352 	if (!pool->name)
2353 		goto err;
2354 
2355 	if (create_cache(pool))
2356 		goto err;
2357 
2358 	/*
2359 	 * Iterate reversely, because, size of size_class that we want to use
2360 	 * for merging should be larger or equal to current size.
2361 	 */
2362 	for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2363 		int size;
2364 		int pages_per_zspage;
2365 		int objs_per_zspage;
2366 		struct size_class *class;
2367 		int fullness = 0;
2368 
2369 		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2370 		if (size > ZS_MAX_ALLOC_SIZE)
2371 			size = ZS_MAX_ALLOC_SIZE;
2372 		pages_per_zspage = get_pages_per_zspage(size);
2373 		objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2374 
2375 		/*
2376 		 * We iterate from biggest down to smallest classes,
2377 		 * so huge_class_size holds the size of the first huge
2378 		 * class. Any object bigger than or equal to that will
2379 		 * endup in the huge class.
2380 		 */
2381 		if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2382 				!huge_class_size) {
2383 			huge_class_size = size;
2384 			/*
2385 			 * The object uses ZS_HANDLE_SIZE bytes to store the
2386 			 * handle. We need to subtract it, because zs_malloc()
2387 			 * unconditionally adds handle size before it performs
2388 			 * size class search - so object may be smaller than
2389 			 * huge class size, yet it still can end up in the huge
2390 			 * class because it grows by ZS_HANDLE_SIZE extra bytes
2391 			 * right before class lookup.
2392 			 */
2393 			huge_class_size -= (ZS_HANDLE_SIZE - 1);
2394 		}
2395 
2396 		/*
2397 		 * size_class is used for normal zsmalloc operation such
2398 		 * as alloc/free for that size. Although it is natural that we
2399 		 * have one size_class for each size, there is a chance that we
2400 		 * can get more memory utilization if we use one size_class for
2401 		 * many different sizes whose size_class have same
2402 		 * characteristics. So, we makes size_class point to
2403 		 * previous size_class if possible.
2404 		 */
2405 		if (prev_class) {
2406 			if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2407 				pool->size_class[i] = prev_class;
2408 				continue;
2409 			}
2410 		}
2411 
2412 		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2413 		if (!class)
2414 			goto err;
2415 
2416 		class->size = size;
2417 		class->index = i;
2418 		class->pages_per_zspage = pages_per_zspage;
2419 		class->objs_per_zspage = objs_per_zspage;
2420 		spin_lock_init(&class->lock);
2421 		pool->size_class[i] = class;
2422 		for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2423 							fullness++)
2424 			INIT_LIST_HEAD(&class->fullness_list[fullness]);
2425 
2426 		prev_class = class;
2427 	}
2428 
2429 	/* debug only, don't abort if it fails */
2430 	zs_pool_stat_create(pool, name);
2431 
2432 	if (zs_register_migration(pool))
2433 		goto err;
2434 
2435 	/*
2436 	 * Not critical since shrinker is only used to trigger internal
2437 	 * defragmentation of the pool which is pretty optional thing.  If
2438 	 * registration fails we still can use the pool normally and user can
2439 	 * trigger compaction manually. Thus, ignore return code.
2440 	 */
2441 	zs_register_shrinker(pool);
2442 
2443 	return pool;
2444 
2445 err:
2446 	zs_destroy_pool(pool);
2447 	return NULL;
2448 }
2449 EXPORT_SYMBOL_GPL(zs_create_pool);
2450 
2451 void zs_destroy_pool(struct zs_pool *pool)
2452 {
2453 	int i;
2454 
2455 	zs_unregister_shrinker(pool);
2456 	zs_unregister_migration(pool);
2457 	zs_pool_stat_destroy(pool);
2458 
2459 	for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2460 		int fg;
2461 		struct size_class *class = pool->size_class[i];
2462 
2463 		if (!class)
2464 			continue;
2465 
2466 		if (class->index != i)
2467 			continue;
2468 
2469 		for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2470 			if (!list_empty(&class->fullness_list[fg])) {
2471 				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2472 					class->size, fg);
2473 			}
2474 		}
2475 		kfree(class);
2476 	}
2477 
2478 	destroy_cache(pool);
2479 	kfree(pool->name);
2480 	kfree(pool);
2481 }
2482 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2483 
2484 static int __init zs_init(void)
2485 {
2486 	int ret;
2487 
2488 	ret = zsmalloc_mount();
2489 	if (ret)
2490 		goto out;
2491 
2492 	ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2493 				zs_cpu_prepare, zs_cpu_dead);
2494 	if (ret)
2495 		goto hp_setup_fail;
2496 
2497 #ifdef CONFIG_ZPOOL
2498 	zpool_register_driver(&zs_zpool_driver);
2499 #endif
2500 
2501 	zs_stat_init();
2502 
2503 	return 0;
2504 
2505 hp_setup_fail:
2506 	zsmalloc_unmount();
2507 out:
2508 	return ret;
2509 }
2510 
2511 static void __exit zs_exit(void)
2512 {
2513 #ifdef CONFIG_ZPOOL
2514 	zpool_unregister_driver(&zs_zpool_driver);
2515 #endif
2516 	zsmalloc_unmount();
2517 	cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2518 
2519 	zs_stat_exit();
2520 }
2521 
2522 module_init(zs_init);
2523 module_exit(zs_exit);
2524 
2525 MODULE_LICENSE("Dual BSD/GPL");
2526 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2527