1 /* 2 * zsmalloc memory allocator 3 * 4 * Copyright (C) 2011 Nitin Gupta 5 * Copyright (C) 2012, 2013 Minchan Kim 6 * 7 * This code is released using a dual license strategy: BSD/GPL 8 * You can choose the license that better fits your requirements. 9 * 10 * Released under the terms of 3-clause BSD License 11 * Released under the terms of GNU General Public License Version 2.0 12 */ 13 14 /* 15 * Following is how we use various fields and flags of underlying 16 * struct page(s) to form a zspage. 17 * 18 * Usage of struct page fields: 19 * page->private: points to zspage 20 * page->freelist(index): links together all component pages of a zspage 21 * For the huge page, this is always 0, so we use this field 22 * to store handle. 23 * page->units: first object offset in a subpage of zspage 24 * 25 * Usage of struct page flags: 26 * PG_private: identifies the first component page 27 * PG_owner_priv_1: identifies the huge component page 28 * 29 */ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/module.h> 34 #include <linux/kernel.h> 35 #include <linux/sched.h> 36 #include <linux/magic.h> 37 #include <linux/bitops.h> 38 #include <linux/errno.h> 39 #include <linux/highmem.h> 40 #include <linux/string.h> 41 #include <linux/slab.h> 42 #include <asm/tlbflush.h> 43 #include <asm/pgtable.h> 44 #include <linux/cpumask.h> 45 #include <linux/cpu.h> 46 #include <linux/vmalloc.h> 47 #include <linux/preempt.h> 48 #include <linux/spinlock.h> 49 #include <linux/shrinker.h> 50 #include <linux/types.h> 51 #include <linux/debugfs.h> 52 #include <linux/zsmalloc.h> 53 #include <linux/zpool.h> 54 #include <linux/mount.h> 55 #include <linux/migrate.h> 56 #include <linux/pagemap.h> 57 #include <linux/fs.h> 58 59 #define ZSPAGE_MAGIC 0x58 60 61 /* 62 * This must be power of 2 and greater than of equal to sizeof(link_free). 63 * These two conditions ensure that any 'struct link_free' itself doesn't 64 * span more than 1 page which avoids complex case of mapping 2 pages simply 65 * to restore link_free pointer values. 66 */ 67 #define ZS_ALIGN 8 68 69 /* 70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single) 71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N. 72 */ 73 #define ZS_MAX_ZSPAGE_ORDER 2 74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER) 75 76 #define ZS_HANDLE_SIZE (sizeof(unsigned long)) 77 78 /* 79 * Object location (<PFN>, <obj_idx>) is encoded as 80 * as single (unsigned long) handle value. 81 * 82 * Note that object index <obj_idx> starts from 0. 83 * 84 * This is made more complicated by various memory models and PAE. 85 */ 86 87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS 88 #ifdef MAX_PHYSMEM_BITS 89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS 90 #else 91 /* 92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just 93 * be PAGE_SHIFT 94 */ 95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG 96 #endif 97 #endif 98 99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT) 100 101 /* 102 * Memory for allocating for handle keeps object position by 103 * encoding <page, obj_idx> and the encoded value has a room 104 * in least bit(ie, look at obj_to_location). 105 * We use the bit to synchronize between object access by 106 * user and migration. 107 */ 108 #define HANDLE_PIN_BIT 0 109 110 /* 111 * Head in allocated object should have OBJ_ALLOCATED_TAG 112 * to identify the object was allocated or not. 113 * It's okay to add the status bit in the least bit because 114 * header keeps handle which is 4byte-aligned address so we 115 * have room for two bit at least. 116 */ 117 #define OBJ_ALLOCATED_TAG 1 118 #define OBJ_TAG_BITS 1 119 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS) 120 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1) 121 122 #define FULLNESS_BITS 2 123 #define CLASS_BITS 8 124 #define ISOLATED_BITS 3 125 #define MAGIC_VAL_BITS 8 126 127 #define MAX(a, b) ((a) >= (b) ? (a) : (b)) 128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */ 129 #define ZS_MIN_ALLOC_SIZE \ 130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS)) 131 /* each chunk includes extra space to keep handle */ 132 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE 133 134 /* 135 * On systems with 4K page size, this gives 255 size classes! There is a 136 * trader-off here: 137 * - Large number of size classes is potentially wasteful as free page are 138 * spread across these classes 139 * - Small number of size classes causes large internal fragmentation 140 * - Probably its better to use specific size classes (empirically 141 * determined). NOTE: all those class sizes must be set as multiple of 142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages. 143 * 144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN 145 * (reason above) 146 */ 147 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS) 148 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \ 149 ZS_SIZE_CLASS_DELTA) + 1) 150 151 enum fullness_group { 152 ZS_EMPTY, 153 ZS_ALMOST_EMPTY, 154 ZS_ALMOST_FULL, 155 ZS_FULL, 156 NR_ZS_FULLNESS, 157 }; 158 159 enum zs_stat_type { 160 CLASS_EMPTY, 161 CLASS_ALMOST_EMPTY, 162 CLASS_ALMOST_FULL, 163 CLASS_FULL, 164 OBJ_ALLOCATED, 165 OBJ_USED, 166 NR_ZS_STAT_TYPE, 167 }; 168 169 struct zs_size_stat { 170 unsigned long objs[NR_ZS_STAT_TYPE]; 171 }; 172 173 #ifdef CONFIG_ZSMALLOC_STAT 174 static struct dentry *zs_stat_root; 175 #endif 176 177 #ifdef CONFIG_COMPACTION 178 static struct vfsmount *zsmalloc_mnt; 179 #endif 180 181 /* 182 * We assign a page to ZS_ALMOST_EMPTY fullness group when: 183 * n <= N / f, where 184 * n = number of allocated objects 185 * N = total number of objects zspage can store 186 * f = fullness_threshold_frac 187 * 188 * Similarly, we assign zspage to: 189 * ZS_ALMOST_FULL when n > N / f 190 * ZS_EMPTY when n == 0 191 * ZS_FULL when n == N 192 * 193 * (see: fix_fullness_group()) 194 */ 195 static const int fullness_threshold_frac = 4; 196 static size_t huge_class_size; 197 198 struct size_class { 199 spinlock_t lock; 200 struct list_head fullness_list[NR_ZS_FULLNESS]; 201 /* 202 * Size of objects stored in this class. Must be multiple 203 * of ZS_ALIGN. 204 */ 205 int size; 206 int objs_per_zspage; 207 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */ 208 int pages_per_zspage; 209 210 unsigned int index; 211 struct zs_size_stat stats; 212 }; 213 214 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */ 215 static void SetPageHugeObject(struct page *page) 216 { 217 SetPageOwnerPriv1(page); 218 } 219 220 static void ClearPageHugeObject(struct page *page) 221 { 222 ClearPageOwnerPriv1(page); 223 } 224 225 static int PageHugeObject(struct page *page) 226 { 227 return PageOwnerPriv1(page); 228 } 229 230 /* 231 * Placed within free objects to form a singly linked list. 232 * For every zspage, zspage->freeobj gives head of this list. 233 * 234 * This must be power of 2 and less than or equal to ZS_ALIGN 235 */ 236 struct link_free { 237 union { 238 /* 239 * Free object index; 240 * It's valid for non-allocated object 241 */ 242 unsigned long next; 243 /* 244 * Handle of allocated object. 245 */ 246 unsigned long handle; 247 }; 248 }; 249 250 struct zs_pool { 251 const char *name; 252 253 struct size_class *size_class[ZS_SIZE_CLASSES]; 254 struct kmem_cache *handle_cachep; 255 struct kmem_cache *zspage_cachep; 256 257 atomic_long_t pages_allocated; 258 259 struct zs_pool_stats stats; 260 261 /* Compact classes */ 262 struct shrinker shrinker; 263 264 #ifdef CONFIG_ZSMALLOC_STAT 265 struct dentry *stat_dentry; 266 #endif 267 #ifdef CONFIG_COMPACTION 268 struct inode *inode; 269 struct work_struct free_work; 270 #endif 271 }; 272 273 struct zspage { 274 struct { 275 unsigned int fullness:FULLNESS_BITS; 276 unsigned int class:CLASS_BITS + 1; 277 unsigned int isolated:ISOLATED_BITS; 278 unsigned int magic:MAGIC_VAL_BITS; 279 }; 280 unsigned int inuse; 281 unsigned int freeobj; 282 struct page *first_page; 283 struct list_head list; /* fullness list */ 284 #ifdef CONFIG_COMPACTION 285 rwlock_t lock; 286 #endif 287 }; 288 289 struct mapping_area { 290 #ifdef CONFIG_PGTABLE_MAPPING 291 struct vm_struct *vm; /* vm area for mapping object that span pages */ 292 #else 293 char *vm_buf; /* copy buffer for objects that span pages */ 294 #endif 295 char *vm_addr; /* address of kmap_atomic()'ed pages */ 296 enum zs_mapmode vm_mm; /* mapping mode */ 297 }; 298 299 #ifdef CONFIG_COMPACTION 300 static int zs_register_migration(struct zs_pool *pool); 301 static void zs_unregister_migration(struct zs_pool *pool); 302 static void migrate_lock_init(struct zspage *zspage); 303 static void migrate_read_lock(struct zspage *zspage); 304 static void migrate_read_unlock(struct zspage *zspage); 305 static void kick_deferred_free(struct zs_pool *pool); 306 static void init_deferred_free(struct zs_pool *pool); 307 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage); 308 #else 309 static int zsmalloc_mount(void) { return 0; } 310 static void zsmalloc_unmount(void) {} 311 static int zs_register_migration(struct zs_pool *pool) { return 0; } 312 static void zs_unregister_migration(struct zs_pool *pool) {} 313 static void migrate_lock_init(struct zspage *zspage) {} 314 static void migrate_read_lock(struct zspage *zspage) {} 315 static void migrate_read_unlock(struct zspage *zspage) {} 316 static void kick_deferred_free(struct zs_pool *pool) {} 317 static void init_deferred_free(struct zs_pool *pool) {} 318 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {} 319 #endif 320 321 static int create_cache(struct zs_pool *pool) 322 { 323 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE, 324 0, 0, NULL); 325 if (!pool->handle_cachep) 326 return 1; 327 328 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage), 329 0, 0, NULL); 330 if (!pool->zspage_cachep) { 331 kmem_cache_destroy(pool->handle_cachep); 332 pool->handle_cachep = NULL; 333 return 1; 334 } 335 336 return 0; 337 } 338 339 static void destroy_cache(struct zs_pool *pool) 340 { 341 kmem_cache_destroy(pool->handle_cachep); 342 kmem_cache_destroy(pool->zspage_cachep); 343 } 344 345 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp) 346 { 347 return (unsigned long)kmem_cache_alloc(pool->handle_cachep, 348 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 349 } 350 351 static void cache_free_handle(struct zs_pool *pool, unsigned long handle) 352 { 353 kmem_cache_free(pool->handle_cachep, (void *)handle); 354 } 355 356 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags) 357 { 358 return kmem_cache_alloc(pool->zspage_cachep, 359 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE)); 360 } 361 362 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage) 363 { 364 kmem_cache_free(pool->zspage_cachep, zspage); 365 } 366 367 static void record_obj(unsigned long handle, unsigned long obj) 368 { 369 /* 370 * lsb of @obj represents handle lock while other bits 371 * represent object value the handle is pointing so 372 * updating shouldn't do store tearing. 373 */ 374 WRITE_ONCE(*(unsigned long *)handle, obj); 375 } 376 377 /* zpool driver */ 378 379 #ifdef CONFIG_ZPOOL 380 381 static void *zs_zpool_create(const char *name, gfp_t gfp, 382 const struct zpool_ops *zpool_ops, 383 struct zpool *zpool) 384 { 385 /* 386 * Ignore global gfp flags: zs_malloc() may be invoked from 387 * different contexts and its caller must provide a valid 388 * gfp mask. 389 */ 390 return zs_create_pool(name); 391 } 392 393 static void zs_zpool_destroy(void *pool) 394 { 395 zs_destroy_pool(pool); 396 } 397 398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp, 399 unsigned long *handle) 400 { 401 *handle = zs_malloc(pool, size, gfp); 402 return *handle ? 0 : -1; 403 } 404 static void zs_zpool_free(void *pool, unsigned long handle) 405 { 406 zs_free(pool, handle); 407 } 408 409 static void *zs_zpool_map(void *pool, unsigned long handle, 410 enum zpool_mapmode mm) 411 { 412 enum zs_mapmode zs_mm; 413 414 switch (mm) { 415 case ZPOOL_MM_RO: 416 zs_mm = ZS_MM_RO; 417 break; 418 case ZPOOL_MM_WO: 419 zs_mm = ZS_MM_WO; 420 break; 421 case ZPOOL_MM_RW: /* fall through */ 422 default: 423 zs_mm = ZS_MM_RW; 424 break; 425 } 426 427 return zs_map_object(pool, handle, zs_mm); 428 } 429 static void zs_zpool_unmap(void *pool, unsigned long handle) 430 { 431 zs_unmap_object(pool, handle); 432 } 433 434 static u64 zs_zpool_total_size(void *pool) 435 { 436 return zs_get_total_pages(pool) << PAGE_SHIFT; 437 } 438 439 static struct zpool_driver zs_zpool_driver = { 440 .type = "zsmalloc", 441 .owner = THIS_MODULE, 442 .create = zs_zpool_create, 443 .destroy = zs_zpool_destroy, 444 .malloc = zs_zpool_malloc, 445 .free = zs_zpool_free, 446 .map = zs_zpool_map, 447 .unmap = zs_zpool_unmap, 448 .total_size = zs_zpool_total_size, 449 }; 450 451 MODULE_ALIAS("zpool-zsmalloc"); 452 #endif /* CONFIG_ZPOOL */ 453 454 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */ 455 static DEFINE_PER_CPU(struct mapping_area, zs_map_area); 456 457 static bool is_zspage_isolated(struct zspage *zspage) 458 { 459 return zspage->isolated; 460 } 461 462 static __maybe_unused int is_first_page(struct page *page) 463 { 464 return PagePrivate(page); 465 } 466 467 /* Protected by class->lock */ 468 static inline int get_zspage_inuse(struct zspage *zspage) 469 { 470 return zspage->inuse; 471 } 472 473 static inline void set_zspage_inuse(struct zspage *zspage, int val) 474 { 475 zspage->inuse = val; 476 } 477 478 static inline void mod_zspage_inuse(struct zspage *zspage, int val) 479 { 480 zspage->inuse += val; 481 } 482 483 static inline struct page *get_first_page(struct zspage *zspage) 484 { 485 struct page *first_page = zspage->first_page; 486 487 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page); 488 return first_page; 489 } 490 491 static inline int get_first_obj_offset(struct page *page) 492 { 493 return page->units; 494 } 495 496 static inline void set_first_obj_offset(struct page *page, int offset) 497 { 498 page->units = offset; 499 } 500 501 static inline unsigned int get_freeobj(struct zspage *zspage) 502 { 503 return zspage->freeobj; 504 } 505 506 static inline void set_freeobj(struct zspage *zspage, unsigned int obj) 507 { 508 zspage->freeobj = obj; 509 } 510 511 static void get_zspage_mapping(struct zspage *zspage, 512 unsigned int *class_idx, 513 enum fullness_group *fullness) 514 { 515 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 516 517 *fullness = zspage->fullness; 518 *class_idx = zspage->class; 519 } 520 521 static void set_zspage_mapping(struct zspage *zspage, 522 unsigned int class_idx, 523 enum fullness_group fullness) 524 { 525 zspage->class = class_idx; 526 zspage->fullness = fullness; 527 } 528 529 /* 530 * zsmalloc divides the pool into various size classes where each 531 * class maintains a list of zspages where each zspage is divided 532 * into equal sized chunks. Each allocation falls into one of these 533 * classes depending on its size. This function returns index of the 534 * size class which has chunk size big enough to hold the give size. 535 */ 536 static int get_size_class_index(int size) 537 { 538 int idx = 0; 539 540 if (likely(size > ZS_MIN_ALLOC_SIZE)) 541 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE, 542 ZS_SIZE_CLASS_DELTA); 543 544 return min_t(int, ZS_SIZE_CLASSES - 1, idx); 545 } 546 547 /* type can be of enum type zs_stat_type or fullness_group */ 548 static inline void zs_stat_inc(struct size_class *class, 549 int type, unsigned long cnt) 550 { 551 class->stats.objs[type] += cnt; 552 } 553 554 /* type can be of enum type zs_stat_type or fullness_group */ 555 static inline void zs_stat_dec(struct size_class *class, 556 int type, unsigned long cnt) 557 { 558 class->stats.objs[type] -= cnt; 559 } 560 561 /* type can be of enum type zs_stat_type or fullness_group */ 562 static inline unsigned long zs_stat_get(struct size_class *class, 563 int type) 564 { 565 return class->stats.objs[type]; 566 } 567 568 #ifdef CONFIG_ZSMALLOC_STAT 569 570 static void __init zs_stat_init(void) 571 { 572 if (!debugfs_initialized()) { 573 pr_warn("debugfs not available, stat dir not created\n"); 574 return; 575 } 576 577 zs_stat_root = debugfs_create_dir("zsmalloc", NULL); 578 } 579 580 static void __exit zs_stat_exit(void) 581 { 582 debugfs_remove_recursive(zs_stat_root); 583 } 584 585 static unsigned long zs_can_compact(struct size_class *class); 586 587 static int zs_stats_size_show(struct seq_file *s, void *v) 588 { 589 int i; 590 struct zs_pool *pool = s->private; 591 struct size_class *class; 592 int objs_per_zspage; 593 unsigned long class_almost_full, class_almost_empty; 594 unsigned long obj_allocated, obj_used, pages_used, freeable; 595 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0; 596 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0; 597 unsigned long total_freeable = 0; 598 599 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n", 600 "class", "size", "almost_full", "almost_empty", 601 "obj_allocated", "obj_used", "pages_used", 602 "pages_per_zspage", "freeable"); 603 604 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 605 class = pool->size_class[i]; 606 607 if (class->index != i) 608 continue; 609 610 spin_lock(&class->lock); 611 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL); 612 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY); 613 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 614 obj_used = zs_stat_get(class, OBJ_USED); 615 freeable = zs_can_compact(class); 616 spin_unlock(&class->lock); 617 618 objs_per_zspage = class->objs_per_zspage; 619 pages_used = obj_allocated / objs_per_zspage * 620 class->pages_per_zspage; 621 622 seq_printf(s, " %5u %5u %11lu %12lu %13lu" 623 " %10lu %10lu %16d %8lu\n", 624 i, class->size, class_almost_full, class_almost_empty, 625 obj_allocated, obj_used, pages_used, 626 class->pages_per_zspage, freeable); 627 628 total_class_almost_full += class_almost_full; 629 total_class_almost_empty += class_almost_empty; 630 total_objs += obj_allocated; 631 total_used_objs += obj_used; 632 total_pages += pages_used; 633 total_freeable += freeable; 634 } 635 636 seq_puts(s, "\n"); 637 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n", 638 "Total", "", total_class_almost_full, 639 total_class_almost_empty, total_objs, 640 total_used_objs, total_pages, "", total_freeable); 641 642 return 0; 643 } 644 DEFINE_SHOW_ATTRIBUTE(zs_stats_size); 645 646 static void zs_pool_stat_create(struct zs_pool *pool, const char *name) 647 { 648 struct dentry *entry; 649 650 if (!zs_stat_root) { 651 pr_warn("no root stat dir, not creating <%s> stat dir\n", name); 652 return; 653 } 654 655 pool->stat_dentry = debugfs_create_dir(name, zs_stat_root); 656 657 debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool, 658 &zs_stats_size_fops); 659 } 660 661 static void zs_pool_stat_destroy(struct zs_pool *pool) 662 { 663 debugfs_remove_recursive(pool->stat_dentry); 664 } 665 666 #else /* CONFIG_ZSMALLOC_STAT */ 667 static void __init zs_stat_init(void) 668 { 669 } 670 671 static void __exit zs_stat_exit(void) 672 { 673 } 674 675 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name) 676 { 677 } 678 679 static inline void zs_pool_stat_destroy(struct zs_pool *pool) 680 { 681 } 682 #endif 683 684 685 /* 686 * For each size class, zspages are divided into different groups 687 * depending on how "full" they are. This was done so that we could 688 * easily find empty or nearly empty zspages when we try to shrink 689 * the pool (not yet implemented). This function returns fullness 690 * status of the given page. 691 */ 692 static enum fullness_group get_fullness_group(struct size_class *class, 693 struct zspage *zspage) 694 { 695 int inuse, objs_per_zspage; 696 enum fullness_group fg; 697 698 inuse = get_zspage_inuse(zspage); 699 objs_per_zspage = class->objs_per_zspage; 700 701 if (inuse == 0) 702 fg = ZS_EMPTY; 703 else if (inuse == objs_per_zspage) 704 fg = ZS_FULL; 705 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac) 706 fg = ZS_ALMOST_EMPTY; 707 else 708 fg = ZS_ALMOST_FULL; 709 710 return fg; 711 } 712 713 /* 714 * Each size class maintains various freelists and zspages are assigned 715 * to one of these freelists based on the number of live objects they 716 * have. This functions inserts the given zspage into the freelist 717 * identified by <class, fullness_group>. 718 */ 719 static void insert_zspage(struct size_class *class, 720 struct zspage *zspage, 721 enum fullness_group fullness) 722 { 723 struct zspage *head; 724 725 zs_stat_inc(class, fullness, 1); 726 head = list_first_entry_or_null(&class->fullness_list[fullness], 727 struct zspage, list); 728 /* 729 * We want to see more ZS_FULL pages and less almost empty/full. 730 * Put pages with higher ->inuse first. 731 */ 732 if (head) { 733 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) { 734 list_add(&zspage->list, &head->list); 735 return; 736 } 737 } 738 list_add(&zspage->list, &class->fullness_list[fullness]); 739 } 740 741 /* 742 * This function removes the given zspage from the freelist identified 743 * by <class, fullness_group>. 744 */ 745 static void remove_zspage(struct size_class *class, 746 struct zspage *zspage, 747 enum fullness_group fullness) 748 { 749 VM_BUG_ON(list_empty(&class->fullness_list[fullness])); 750 VM_BUG_ON(is_zspage_isolated(zspage)); 751 752 list_del_init(&zspage->list); 753 zs_stat_dec(class, fullness, 1); 754 } 755 756 /* 757 * Each size class maintains zspages in different fullness groups depending 758 * on the number of live objects they contain. When allocating or freeing 759 * objects, the fullness status of the page can change, say, from ALMOST_FULL 760 * to ALMOST_EMPTY when freeing an object. This function checks if such 761 * a status change has occurred for the given page and accordingly moves the 762 * page from the freelist of the old fullness group to that of the new 763 * fullness group. 764 */ 765 static enum fullness_group fix_fullness_group(struct size_class *class, 766 struct zspage *zspage) 767 { 768 int class_idx; 769 enum fullness_group currfg, newfg; 770 771 get_zspage_mapping(zspage, &class_idx, &currfg); 772 newfg = get_fullness_group(class, zspage); 773 if (newfg == currfg) 774 goto out; 775 776 if (!is_zspage_isolated(zspage)) { 777 remove_zspage(class, zspage, currfg); 778 insert_zspage(class, zspage, newfg); 779 } 780 781 set_zspage_mapping(zspage, class_idx, newfg); 782 783 out: 784 return newfg; 785 } 786 787 /* 788 * We have to decide on how many pages to link together 789 * to form a zspage for each size class. This is important 790 * to reduce wastage due to unusable space left at end of 791 * each zspage which is given as: 792 * wastage = Zp % class_size 793 * usage = Zp - wastage 794 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ... 795 * 796 * For example, for size class of 3/8 * PAGE_SIZE, we should 797 * link together 3 PAGE_SIZE sized pages to form a zspage 798 * since then we can perfectly fit in 8 such objects. 799 */ 800 static int get_pages_per_zspage(int class_size) 801 { 802 int i, max_usedpc = 0; 803 /* zspage order which gives maximum used size per KB */ 804 int max_usedpc_order = 1; 805 806 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) { 807 int zspage_size; 808 int waste, usedpc; 809 810 zspage_size = i * PAGE_SIZE; 811 waste = zspage_size % class_size; 812 usedpc = (zspage_size - waste) * 100 / zspage_size; 813 814 if (usedpc > max_usedpc) { 815 max_usedpc = usedpc; 816 max_usedpc_order = i; 817 } 818 } 819 820 return max_usedpc_order; 821 } 822 823 static struct zspage *get_zspage(struct page *page) 824 { 825 struct zspage *zspage = (struct zspage *)page->private; 826 827 BUG_ON(zspage->magic != ZSPAGE_MAGIC); 828 return zspage; 829 } 830 831 static struct page *get_next_page(struct page *page) 832 { 833 if (unlikely(PageHugeObject(page))) 834 return NULL; 835 836 return page->freelist; 837 } 838 839 /** 840 * obj_to_location - get (<page>, <obj_idx>) from encoded object value 841 * @obj: the encoded object value 842 * @page: page object resides in zspage 843 * @obj_idx: object index 844 */ 845 static void obj_to_location(unsigned long obj, struct page **page, 846 unsigned int *obj_idx) 847 { 848 obj >>= OBJ_TAG_BITS; 849 *page = pfn_to_page(obj >> OBJ_INDEX_BITS); 850 *obj_idx = (obj & OBJ_INDEX_MASK); 851 } 852 853 /** 854 * location_to_obj - get obj value encoded from (<page>, <obj_idx>) 855 * @page: page object resides in zspage 856 * @obj_idx: object index 857 */ 858 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx) 859 { 860 unsigned long obj; 861 862 obj = page_to_pfn(page) << OBJ_INDEX_BITS; 863 obj |= obj_idx & OBJ_INDEX_MASK; 864 obj <<= OBJ_TAG_BITS; 865 866 return obj; 867 } 868 869 static unsigned long handle_to_obj(unsigned long handle) 870 { 871 return *(unsigned long *)handle; 872 } 873 874 static unsigned long obj_to_head(struct page *page, void *obj) 875 { 876 if (unlikely(PageHugeObject(page))) { 877 VM_BUG_ON_PAGE(!is_first_page(page), page); 878 return page->index; 879 } else 880 return *(unsigned long *)obj; 881 } 882 883 static inline int testpin_tag(unsigned long handle) 884 { 885 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle); 886 } 887 888 static inline int trypin_tag(unsigned long handle) 889 { 890 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle); 891 } 892 893 static void pin_tag(unsigned long handle) 894 { 895 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle); 896 } 897 898 static void unpin_tag(unsigned long handle) 899 { 900 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle); 901 } 902 903 static void reset_page(struct page *page) 904 { 905 __ClearPageMovable(page); 906 ClearPagePrivate(page); 907 set_page_private(page, 0); 908 page_mapcount_reset(page); 909 ClearPageHugeObject(page); 910 page->freelist = NULL; 911 } 912 913 static int trylock_zspage(struct zspage *zspage) 914 { 915 struct page *cursor, *fail; 916 917 for (cursor = get_first_page(zspage); cursor != NULL; cursor = 918 get_next_page(cursor)) { 919 if (!trylock_page(cursor)) { 920 fail = cursor; 921 goto unlock; 922 } 923 } 924 925 return 1; 926 unlock: 927 for (cursor = get_first_page(zspage); cursor != fail; cursor = 928 get_next_page(cursor)) 929 unlock_page(cursor); 930 931 return 0; 932 } 933 934 static void __free_zspage(struct zs_pool *pool, struct size_class *class, 935 struct zspage *zspage) 936 { 937 struct page *page, *next; 938 enum fullness_group fg; 939 unsigned int class_idx; 940 941 get_zspage_mapping(zspage, &class_idx, &fg); 942 943 assert_spin_locked(&class->lock); 944 945 VM_BUG_ON(get_zspage_inuse(zspage)); 946 VM_BUG_ON(fg != ZS_EMPTY); 947 948 next = page = get_first_page(zspage); 949 do { 950 VM_BUG_ON_PAGE(!PageLocked(page), page); 951 next = get_next_page(page); 952 reset_page(page); 953 unlock_page(page); 954 dec_zone_page_state(page, NR_ZSPAGES); 955 put_page(page); 956 page = next; 957 } while (page != NULL); 958 959 cache_free_zspage(pool, zspage); 960 961 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage); 962 atomic_long_sub(class->pages_per_zspage, 963 &pool->pages_allocated); 964 } 965 966 static void free_zspage(struct zs_pool *pool, struct size_class *class, 967 struct zspage *zspage) 968 { 969 VM_BUG_ON(get_zspage_inuse(zspage)); 970 VM_BUG_ON(list_empty(&zspage->list)); 971 972 if (!trylock_zspage(zspage)) { 973 kick_deferred_free(pool); 974 return; 975 } 976 977 remove_zspage(class, zspage, ZS_EMPTY); 978 __free_zspage(pool, class, zspage); 979 } 980 981 /* Initialize a newly allocated zspage */ 982 static void init_zspage(struct size_class *class, struct zspage *zspage) 983 { 984 unsigned int freeobj = 1; 985 unsigned long off = 0; 986 struct page *page = get_first_page(zspage); 987 988 while (page) { 989 struct page *next_page; 990 struct link_free *link; 991 void *vaddr; 992 993 set_first_obj_offset(page, off); 994 995 vaddr = kmap_atomic(page); 996 link = (struct link_free *)vaddr + off / sizeof(*link); 997 998 while ((off += class->size) < PAGE_SIZE) { 999 link->next = freeobj++ << OBJ_TAG_BITS; 1000 link += class->size / sizeof(*link); 1001 } 1002 1003 /* 1004 * We now come to the last (full or partial) object on this 1005 * page, which must point to the first object on the next 1006 * page (if present) 1007 */ 1008 next_page = get_next_page(page); 1009 if (next_page) { 1010 link->next = freeobj++ << OBJ_TAG_BITS; 1011 } else { 1012 /* 1013 * Reset OBJ_TAG_BITS bit to last link to tell 1014 * whether it's allocated object or not. 1015 */ 1016 link->next = -1UL << OBJ_TAG_BITS; 1017 } 1018 kunmap_atomic(vaddr); 1019 page = next_page; 1020 off %= PAGE_SIZE; 1021 } 1022 1023 set_freeobj(zspage, 0); 1024 } 1025 1026 static void create_page_chain(struct size_class *class, struct zspage *zspage, 1027 struct page *pages[]) 1028 { 1029 int i; 1030 struct page *page; 1031 struct page *prev_page = NULL; 1032 int nr_pages = class->pages_per_zspage; 1033 1034 /* 1035 * Allocate individual pages and link them together as: 1036 * 1. all pages are linked together using page->freelist 1037 * 2. each sub-page point to zspage using page->private 1038 * 1039 * we set PG_private to identify the first page (i.e. no other sub-page 1040 * has this flag set). 1041 */ 1042 for (i = 0; i < nr_pages; i++) { 1043 page = pages[i]; 1044 set_page_private(page, (unsigned long)zspage); 1045 page->freelist = NULL; 1046 if (i == 0) { 1047 zspage->first_page = page; 1048 SetPagePrivate(page); 1049 if (unlikely(class->objs_per_zspage == 1 && 1050 class->pages_per_zspage == 1)) 1051 SetPageHugeObject(page); 1052 } else { 1053 prev_page->freelist = page; 1054 } 1055 prev_page = page; 1056 } 1057 } 1058 1059 /* 1060 * Allocate a zspage for the given size class 1061 */ 1062 static struct zspage *alloc_zspage(struct zs_pool *pool, 1063 struct size_class *class, 1064 gfp_t gfp) 1065 { 1066 int i; 1067 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE]; 1068 struct zspage *zspage = cache_alloc_zspage(pool, gfp); 1069 1070 if (!zspage) 1071 return NULL; 1072 1073 memset(zspage, 0, sizeof(struct zspage)); 1074 zspage->magic = ZSPAGE_MAGIC; 1075 migrate_lock_init(zspage); 1076 1077 for (i = 0; i < class->pages_per_zspage; i++) { 1078 struct page *page; 1079 1080 page = alloc_page(gfp); 1081 if (!page) { 1082 while (--i >= 0) { 1083 dec_zone_page_state(pages[i], NR_ZSPAGES); 1084 __free_page(pages[i]); 1085 } 1086 cache_free_zspage(pool, zspage); 1087 return NULL; 1088 } 1089 1090 inc_zone_page_state(page, NR_ZSPAGES); 1091 pages[i] = page; 1092 } 1093 1094 create_page_chain(class, zspage, pages); 1095 init_zspage(class, zspage); 1096 1097 return zspage; 1098 } 1099 1100 static struct zspage *find_get_zspage(struct size_class *class) 1101 { 1102 int i; 1103 struct zspage *zspage; 1104 1105 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) { 1106 zspage = list_first_entry_or_null(&class->fullness_list[i], 1107 struct zspage, list); 1108 if (zspage) 1109 break; 1110 } 1111 1112 return zspage; 1113 } 1114 1115 #ifdef CONFIG_PGTABLE_MAPPING 1116 static inline int __zs_cpu_up(struct mapping_area *area) 1117 { 1118 /* 1119 * Make sure we don't leak memory if a cpu UP notification 1120 * and zs_init() race and both call zs_cpu_up() on the same cpu 1121 */ 1122 if (area->vm) 1123 return 0; 1124 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL); 1125 if (!area->vm) 1126 return -ENOMEM; 1127 return 0; 1128 } 1129 1130 static inline void __zs_cpu_down(struct mapping_area *area) 1131 { 1132 if (area->vm) 1133 free_vm_area(area->vm); 1134 area->vm = NULL; 1135 } 1136 1137 static inline void *__zs_map_object(struct mapping_area *area, 1138 struct page *pages[2], int off, int size) 1139 { 1140 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages)); 1141 area->vm_addr = area->vm->addr; 1142 return area->vm_addr + off; 1143 } 1144 1145 static inline void __zs_unmap_object(struct mapping_area *area, 1146 struct page *pages[2], int off, int size) 1147 { 1148 unsigned long addr = (unsigned long)area->vm_addr; 1149 1150 unmap_kernel_range(addr, PAGE_SIZE * 2); 1151 } 1152 1153 #else /* CONFIG_PGTABLE_MAPPING */ 1154 1155 static inline int __zs_cpu_up(struct mapping_area *area) 1156 { 1157 /* 1158 * Make sure we don't leak memory if a cpu UP notification 1159 * and zs_init() race and both call zs_cpu_up() on the same cpu 1160 */ 1161 if (area->vm_buf) 1162 return 0; 1163 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL); 1164 if (!area->vm_buf) 1165 return -ENOMEM; 1166 return 0; 1167 } 1168 1169 static inline void __zs_cpu_down(struct mapping_area *area) 1170 { 1171 kfree(area->vm_buf); 1172 area->vm_buf = NULL; 1173 } 1174 1175 static void *__zs_map_object(struct mapping_area *area, 1176 struct page *pages[2], int off, int size) 1177 { 1178 int sizes[2]; 1179 void *addr; 1180 char *buf = area->vm_buf; 1181 1182 /* disable page faults to match kmap_atomic() return conditions */ 1183 pagefault_disable(); 1184 1185 /* no read fastpath */ 1186 if (area->vm_mm == ZS_MM_WO) 1187 goto out; 1188 1189 sizes[0] = PAGE_SIZE - off; 1190 sizes[1] = size - sizes[0]; 1191 1192 /* copy object to per-cpu buffer */ 1193 addr = kmap_atomic(pages[0]); 1194 memcpy(buf, addr + off, sizes[0]); 1195 kunmap_atomic(addr); 1196 addr = kmap_atomic(pages[1]); 1197 memcpy(buf + sizes[0], addr, sizes[1]); 1198 kunmap_atomic(addr); 1199 out: 1200 return area->vm_buf; 1201 } 1202 1203 static void __zs_unmap_object(struct mapping_area *area, 1204 struct page *pages[2], int off, int size) 1205 { 1206 int sizes[2]; 1207 void *addr; 1208 char *buf; 1209 1210 /* no write fastpath */ 1211 if (area->vm_mm == ZS_MM_RO) 1212 goto out; 1213 1214 buf = area->vm_buf; 1215 buf = buf + ZS_HANDLE_SIZE; 1216 size -= ZS_HANDLE_SIZE; 1217 off += ZS_HANDLE_SIZE; 1218 1219 sizes[0] = PAGE_SIZE - off; 1220 sizes[1] = size - sizes[0]; 1221 1222 /* copy per-cpu buffer to object */ 1223 addr = kmap_atomic(pages[0]); 1224 memcpy(addr + off, buf, sizes[0]); 1225 kunmap_atomic(addr); 1226 addr = kmap_atomic(pages[1]); 1227 memcpy(addr, buf + sizes[0], sizes[1]); 1228 kunmap_atomic(addr); 1229 1230 out: 1231 /* enable page faults to match kunmap_atomic() return conditions */ 1232 pagefault_enable(); 1233 } 1234 1235 #endif /* CONFIG_PGTABLE_MAPPING */ 1236 1237 static int zs_cpu_prepare(unsigned int cpu) 1238 { 1239 struct mapping_area *area; 1240 1241 area = &per_cpu(zs_map_area, cpu); 1242 return __zs_cpu_up(area); 1243 } 1244 1245 static int zs_cpu_dead(unsigned int cpu) 1246 { 1247 struct mapping_area *area; 1248 1249 area = &per_cpu(zs_map_area, cpu); 1250 __zs_cpu_down(area); 1251 return 0; 1252 } 1253 1254 static bool can_merge(struct size_class *prev, int pages_per_zspage, 1255 int objs_per_zspage) 1256 { 1257 if (prev->pages_per_zspage == pages_per_zspage && 1258 prev->objs_per_zspage == objs_per_zspage) 1259 return true; 1260 1261 return false; 1262 } 1263 1264 static bool zspage_full(struct size_class *class, struct zspage *zspage) 1265 { 1266 return get_zspage_inuse(zspage) == class->objs_per_zspage; 1267 } 1268 1269 unsigned long zs_get_total_pages(struct zs_pool *pool) 1270 { 1271 return atomic_long_read(&pool->pages_allocated); 1272 } 1273 EXPORT_SYMBOL_GPL(zs_get_total_pages); 1274 1275 /** 1276 * zs_map_object - get address of allocated object from handle. 1277 * @pool: pool from which the object was allocated 1278 * @handle: handle returned from zs_malloc 1279 * @mm: maping mode to use 1280 * 1281 * Before using an object allocated from zs_malloc, it must be mapped using 1282 * this function. When done with the object, it must be unmapped using 1283 * zs_unmap_object. 1284 * 1285 * Only one object can be mapped per cpu at a time. There is no protection 1286 * against nested mappings. 1287 * 1288 * This function returns with preemption and page faults disabled. 1289 */ 1290 void *zs_map_object(struct zs_pool *pool, unsigned long handle, 1291 enum zs_mapmode mm) 1292 { 1293 struct zspage *zspage; 1294 struct page *page; 1295 unsigned long obj, off; 1296 unsigned int obj_idx; 1297 1298 unsigned int class_idx; 1299 enum fullness_group fg; 1300 struct size_class *class; 1301 struct mapping_area *area; 1302 struct page *pages[2]; 1303 void *ret; 1304 1305 /* 1306 * Because we use per-cpu mapping areas shared among the 1307 * pools/users, we can't allow mapping in interrupt context 1308 * because it can corrupt another users mappings. 1309 */ 1310 BUG_ON(in_interrupt()); 1311 1312 /* From now on, migration cannot move the object */ 1313 pin_tag(handle); 1314 1315 obj = handle_to_obj(handle); 1316 obj_to_location(obj, &page, &obj_idx); 1317 zspage = get_zspage(page); 1318 1319 /* migration cannot move any subpage in this zspage */ 1320 migrate_read_lock(zspage); 1321 1322 get_zspage_mapping(zspage, &class_idx, &fg); 1323 class = pool->size_class[class_idx]; 1324 off = (class->size * obj_idx) & ~PAGE_MASK; 1325 1326 area = &get_cpu_var(zs_map_area); 1327 area->vm_mm = mm; 1328 if (off + class->size <= PAGE_SIZE) { 1329 /* this object is contained entirely within a page */ 1330 area->vm_addr = kmap_atomic(page); 1331 ret = area->vm_addr + off; 1332 goto out; 1333 } 1334 1335 /* this object spans two pages */ 1336 pages[0] = page; 1337 pages[1] = get_next_page(page); 1338 BUG_ON(!pages[1]); 1339 1340 ret = __zs_map_object(area, pages, off, class->size); 1341 out: 1342 if (likely(!PageHugeObject(page))) 1343 ret += ZS_HANDLE_SIZE; 1344 1345 return ret; 1346 } 1347 EXPORT_SYMBOL_GPL(zs_map_object); 1348 1349 void zs_unmap_object(struct zs_pool *pool, unsigned long handle) 1350 { 1351 struct zspage *zspage; 1352 struct page *page; 1353 unsigned long obj, off; 1354 unsigned int obj_idx; 1355 1356 unsigned int class_idx; 1357 enum fullness_group fg; 1358 struct size_class *class; 1359 struct mapping_area *area; 1360 1361 obj = handle_to_obj(handle); 1362 obj_to_location(obj, &page, &obj_idx); 1363 zspage = get_zspage(page); 1364 get_zspage_mapping(zspage, &class_idx, &fg); 1365 class = pool->size_class[class_idx]; 1366 off = (class->size * obj_idx) & ~PAGE_MASK; 1367 1368 area = this_cpu_ptr(&zs_map_area); 1369 if (off + class->size <= PAGE_SIZE) 1370 kunmap_atomic(area->vm_addr); 1371 else { 1372 struct page *pages[2]; 1373 1374 pages[0] = page; 1375 pages[1] = get_next_page(page); 1376 BUG_ON(!pages[1]); 1377 1378 __zs_unmap_object(area, pages, off, class->size); 1379 } 1380 put_cpu_var(zs_map_area); 1381 1382 migrate_read_unlock(zspage); 1383 unpin_tag(handle); 1384 } 1385 EXPORT_SYMBOL_GPL(zs_unmap_object); 1386 1387 /** 1388 * zs_huge_class_size() - Returns the size (in bytes) of the first huge 1389 * zsmalloc &size_class. 1390 * @pool: zsmalloc pool to use 1391 * 1392 * The function returns the size of the first huge class - any object of equal 1393 * or bigger size will be stored in zspage consisting of a single physical 1394 * page. 1395 * 1396 * Context: Any context. 1397 * 1398 * Return: the size (in bytes) of the first huge zsmalloc &size_class. 1399 */ 1400 size_t zs_huge_class_size(struct zs_pool *pool) 1401 { 1402 return huge_class_size; 1403 } 1404 EXPORT_SYMBOL_GPL(zs_huge_class_size); 1405 1406 static unsigned long obj_malloc(struct size_class *class, 1407 struct zspage *zspage, unsigned long handle) 1408 { 1409 int i, nr_page, offset; 1410 unsigned long obj; 1411 struct link_free *link; 1412 1413 struct page *m_page; 1414 unsigned long m_offset; 1415 void *vaddr; 1416 1417 handle |= OBJ_ALLOCATED_TAG; 1418 obj = get_freeobj(zspage); 1419 1420 offset = obj * class->size; 1421 nr_page = offset >> PAGE_SHIFT; 1422 m_offset = offset & ~PAGE_MASK; 1423 m_page = get_first_page(zspage); 1424 1425 for (i = 0; i < nr_page; i++) 1426 m_page = get_next_page(m_page); 1427 1428 vaddr = kmap_atomic(m_page); 1429 link = (struct link_free *)vaddr + m_offset / sizeof(*link); 1430 set_freeobj(zspage, link->next >> OBJ_TAG_BITS); 1431 if (likely(!PageHugeObject(m_page))) 1432 /* record handle in the header of allocated chunk */ 1433 link->handle = handle; 1434 else 1435 /* record handle to page->index */ 1436 zspage->first_page->index = handle; 1437 1438 kunmap_atomic(vaddr); 1439 mod_zspage_inuse(zspage, 1); 1440 zs_stat_inc(class, OBJ_USED, 1); 1441 1442 obj = location_to_obj(m_page, obj); 1443 1444 return obj; 1445 } 1446 1447 1448 /** 1449 * zs_malloc - Allocate block of given size from pool. 1450 * @pool: pool to allocate from 1451 * @size: size of block to allocate 1452 * @gfp: gfp flags when allocating object 1453 * 1454 * On success, handle to the allocated object is returned, 1455 * otherwise 0. 1456 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail. 1457 */ 1458 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp) 1459 { 1460 unsigned long handle, obj; 1461 struct size_class *class; 1462 enum fullness_group newfg; 1463 struct zspage *zspage; 1464 1465 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE)) 1466 return 0; 1467 1468 handle = cache_alloc_handle(pool, gfp); 1469 if (!handle) 1470 return 0; 1471 1472 /* extra space in chunk to keep the handle */ 1473 size += ZS_HANDLE_SIZE; 1474 class = pool->size_class[get_size_class_index(size)]; 1475 1476 spin_lock(&class->lock); 1477 zspage = find_get_zspage(class); 1478 if (likely(zspage)) { 1479 obj = obj_malloc(class, zspage, handle); 1480 /* Now move the zspage to another fullness group, if required */ 1481 fix_fullness_group(class, zspage); 1482 record_obj(handle, obj); 1483 spin_unlock(&class->lock); 1484 1485 return handle; 1486 } 1487 1488 spin_unlock(&class->lock); 1489 1490 zspage = alloc_zspage(pool, class, gfp); 1491 if (!zspage) { 1492 cache_free_handle(pool, handle); 1493 return 0; 1494 } 1495 1496 spin_lock(&class->lock); 1497 obj = obj_malloc(class, zspage, handle); 1498 newfg = get_fullness_group(class, zspage); 1499 insert_zspage(class, zspage, newfg); 1500 set_zspage_mapping(zspage, class->index, newfg); 1501 record_obj(handle, obj); 1502 atomic_long_add(class->pages_per_zspage, 1503 &pool->pages_allocated); 1504 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage); 1505 1506 /* We completely set up zspage so mark them as movable */ 1507 SetZsPageMovable(pool, zspage); 1508 spin_unlock(&class->lock); 1509 1510 return handle; 1511 } 1512 EXPORT_SYMBOL_GPL(zs_malloc); 1513 1514 static void obj_free(struct size_class *class, unsigned long obj) 1515 { 1516 struct link_free *link; 1517 struct zspage *zspage; 1518 struct page *f_page; 1519 unsigned long f_offset; 1520 unsigned int f_objidx; 1521 void *vaddr; 1522 1523 obj &= ~OBJ_ALLOCATED_TAG; 1524 obj_to_location(obj, &f_page, &f_objidx); 1525 f_offset = (class->size * f_objidx) & ~PAGE_MASK; 1526 zspage = get_zspage(f_page); 1527 1528 vaddr = kmap_atomic(f_page); 1529 1530 /* Insert this object in containing zspage's freelist */ 1531 link = (struct link_free *)(vaddr + f_offset); 1532 link->next = get_freeobj(zspage) << OBJ_TAG_BITS; 1533 kunmap_atomic(vaddr); 1534 set_freeobj(zspage, f_objidx); 1535 mod_zspage_inuse(zspage, -1); 1536 zs_stat_dec(class, OBJ_USED, 1); 1537 } 1538 1539 void zs_free(struct zs_pool *pool, unsigned long handle) 1540 { 1541 struct zspage *zspage; 1542 struct page *f_page; 1543 unsigned long obj; 1544 unsigned int f_objidx; 1545 int class_idx; 1546 struct size_class *class; 1547 enum fullness_group fullness; 1548 bool isolated; 1549 1550 if (unlikely(!handle)) 1551 return; 1552 1553 pin_tag(handle); 1554 obj = handle_to_obj(handle); 1555 obj_to_location(obj, &f_page, &f_objidx); 1556 zspage = get_zspage(f_page); 1557 1558 migrate_read_lock(zspage); 1559 1560 get_zspage_mapping(zspage, &class_idx, &fullness); 1561 class = pool->size_class[class_idx]; 1562 1563 spin_lock(&class->lock); 1564 obj_free(class, obj); 1565 fullness = fix_fullness_group(class, zspage); 1566 if (fullness != ZS_EMPTY) { 1567 migrate_read_unlock(zspage); 1568 goto out; 1569 } 1570 1571 isolated = is_zspage_isolated(zspage); 1572 migrate_read_unlock(zspage); 1573 /* If zspage is isolated, zs_page_putback will free the zspage */ 1574 if (likely(!isolated)) 1575 free_zspage(pool, class, zspage); 1576 out: 1577 1578 spin_unlock(&class->lock); 1579 unpin_tag(handle); 1580 cache_free_handle(pool, handle); 1581 } 1582 EXPORT_SYMBOL_GPL(zs_free); 1583 1584 static void zs_object_copy(struct size_class *class, unsigned long dst, 1585 unsigned long src) 1586 { 1587 struct page *s_page, *d_page; 1588 unsigned int s_objidx, d_objidx; 1589 unsigned long s_off, d_off; 1590 void *s_addr, *d_addr; 1591 int s_size, d_size, size; 1592 int written = 0; 1593 1594 s_size = d_size = class->size; 1595 1596 obj_to_location(src, &s_page, &s_objidx); 1597 obj_to_location(dst, &d_page, &d_objidx); 1598 1599 s_off = (class->size * s_objidx) & ~PAGE_MASK; 1600 d_off = (class->size * d_objidx) & ~PAGE_MASK; 1601 1602 if (s_off + class->size > PAGE_SIZE) 1603 s_size = PAGE_SIZE - s_off; 1604 1605 if (d_off + class->size > PAGE_SIZE) 1606 d_size = PAGE_SIZE - d_off; 1607 1608 s_addr = kmap_atomic(s_page); 1609 d_addr = kmap_atomic(d_page); 1610 1611 while (1) { 1612 size = min(s_size, d_size); 1613 memcpy(d_addr + d_off, s_addr + s_off, size); 1614 written += size; 1615 1616 if (written == class->size) 1617 break; 1618 1619 s_off += size; 1620 s_size -= size; 1621 d_off += size; 1622 d_size -= size; 1623 1624 if (s_off >= PAGE_SIZE) { 1625 kunmap_atomic(d_addr); 1626 kunmap_atomic(s_addr); 1627 s_page = get_next_page(s_page); 1628 s_addr = kmap_atomic(s_page); 1629 d_addr = kmap_atomic(d_page); 1630 s_size = class->size - written; 1631 s_off = 0; 1632 } 1633 1634 if (d_off >= PAGE_SIZE) { 1635 kunmap_atomic(d_addr); 1636 d_page = get_next_page(d_page); 1637 d_addr = kmap_atomic(d_page); 1638 d_size = class->size - written; 1639 d_off = 0; 1640 } 1641 } 1642 1643 kunmap_atomic(d_addr); 1644 kunmap_atomic(s_addr); 1645 } 1646 1647 /* 1648 * Find alloced object in zspage from index object and 1649 * return handle. 1650 */ 1651 static unsigned long find_alloced_obj(struct size_class *class, 1652 struct page *page, int *obj_idx) 1653 { 1654 unsigned long head; 1655 int offset = 0; 1656 int index = *obj_idx; 1657 unsigned long handle = 0; 1658 void *addr = kmap_atomic(page); 1659 1660 offset = get_first_obj_offset(page); 1661 offset += class->size * index; 1662 1663 while (offset < PAGE_SIZE) { 1664 head = obj_to_head(page, addr + offset); 1665 if (head & OBJ_ALLOCATED_TAG) { 1666 handle = head & ~OBJ_ALLOCATED_TAG; 1667 if (trypin_tag(handle)) 1668 break; 1669 handle = 0; 1670 } 1671 1672 offset += class->size; 1673 index++; 1674 } 1675 1676 kunmap_atomic(addr); 1677 1678 *obj_idx = index; 1679 1680 return handle; 1681 } 1682 1683 struct zs_compact_control { 1684 /* Source spage for migration which could be a subpage of zspage */ 1685 struct page *s_page; 1686 /* Destination page for migration which should be a first page 1687 * of zspage. */ 1688 struct page *d_page; 1689 /* Starting object index within @s_page which used for live object 1690 * in the subpage. */ 1691 int obj_idx; 1692 }; 1693 1694 static int migrate_zspage(struct zs_pool *pool, struct size_class *class, 1695 struct zs_compact_control *cc) 1696 { 1697 unsigned long used_obj, free_obj; 1698 unsigned long handle; 1699 struct page *s_page = cc->s_page; 1700 struct page *d_page = cc->d_page; 1701 int obj_idx = cc->obj_idx; 1702 int ret = 0; 1703 1704 while (1) { 1705 handle = find_alloced_obj(class, s_page, &obj_idx); 1706 if (!handle) { 1707 s_page = get_next_page(s_page); 1708 if (!s_page) 1709 break; 1710 obj_idx = 0; 1711 continue; 1712 } 1713 1714 /* Stop if there is no more space */ 1715 if (zspage_full(class, get_zspage(d_page))) { 1716 unpin_tag(handle); 1717 ret = -ENOMEM; 1718 break; 1719 } 1720 1721 used_obj = handle_to_obj(handle); 1722 free_obj = obj_malloc(class, get_zspage(d_page), handle); 1723 zs_object_copy(class, free_obj, used_obj); 1724 obj_idx++; 1725 /* 1726 * record_obj updates handle's value to free_obj and it will 1727 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which 1728 * breaks synchronization using pin_tag(e,g, zs_free) so 1729 * let's keep the lock bit. 1730 */ 1731 free_obj |= BIT(HANDLE_PIN_BIT); 1732 record_obj(handle, free_obj); 1733 unpin_tag(handle); 1734 obj_free(class, used_obj); 1735 } 1736 1737 /* Remember last position in this iteration */ 1738 cc->s_page = s_page; 1739 cc->obj_idx = obj_idx; 1740 1741 return ret; 1742 } 1743 1744 static struct zspage *isolate_zspage(struct size_class *class, bool source) 1745 { 1746 int i; 1747 struct zspage *zspage; 1748 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL}; 1749 1750 if (!source) { 1751 fg[0] = ZS_ALMOST_FULL; 1752 fg[1] = ZS_ALMOST_EMPTY; 1753 } 1754 1755 for (i = 0; i < 2; i++) { 1756 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]], 1757 struct zspage, list); 1758 if (zspage) { 1759 VM_BUG_ON(is_zspage_isolated(zspage)); 1760 remove_zspage(class, zspage, fg[i]); 1761 return zspage; 1762 } 1763 } 1764 1765 return zspage; 1766 } 1767 1768 /* 1769 * putback_zspage - add @zspage into right class's fullness list 1770 * @class: destination class 1771 * @zspage: target page 1772 * 1773 * Return @zspage's fullness_group 1774 */ 1775 static enum fullness_group putback_zspage(struct size_class *class, 1776 struct zspage *zspage) 1777 { 1778 enum fullness_group fullness; 1779 1780 VM_BUG_ON(is_zspage_isolated(zspage)); 1781 1782 fullness = get_fullness_group(class, zspage); 1783 insert_zspage(class, zspage, fullness); 1784 set_zspage_mapping(zspage, class->index, fullness); 1785 1786 return fullness; 1787 } 1788 1789 #ifdef CONFIG_COMPACTION 1790 /* 1791 * To prevent zspage destroy during migration, zspage freeing should 1792 * hold locks of all pages in the zspage. 1793 */ 1794 static void lock_zspage(struct zspage *zspage) 1795 { 1796 struct page *page = get_first_page(zspage); 1797 1798 do { 1799 lock_page(page); 1800 } while ((page = get_next_page(page)) != NULL); 1801 } 1802 1803 static struct dentry *zs_mount(struct file_system_type *fs_type, 1804 int flags, const char *dev_name, void *data) 1805 { 1806 static const struct dentry_operations ops = { 1807 .d_dname = simple_dname, 1808 }; 1809 1810 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC); 1811 } 1812 1813 static struct file_system_type zsmalloc_fs = { 1814 .name = "zsmalloc", 1815 .mount = zs_mount, 1816 .kill_sb = kill_anon_super, 1817 }; 1818 1819 static int zsmalloc_mount(void) 1820 { 1821 int ret = 0; 1822 1823 zsmalloc_mnt = kern_mount(&zsmalloc_fs); 1824 if (IS_ERR(zsmalloc_mnt)) 1825 ret = PTR_ERR(zsmalloc_mnt); 1826 1827 return ret; 1828 } 1829 1830 static void zsmalloc_unmount(void) 1831 { 1832 kern_unmount(zsmalloc_mnt); 1833 } 1834 1835 static void migrate_lock_init(struct zspage *zspage) 1836 { 1837 rwlock_init(&zspage->lock); 1838 } 1839 1840 static void migrate_read_lock(struct zspage *zspage) 1841 { 1842 read_lock(&zspage->lock); 1843 } 1844 1845 static void migrate_read_unlock(struct zspage *zspage) 1846 { 1847 read_unlock(&zspage->lock); 1848 } 1849 1850 static void migrate_write_lock(struct zspage *zspage) 1851 { 1852 write_lock(&zspage->lock); 1853 } 1854 1855 static void migrate_write_unlock(struct zspage *zspage) 1856 { 1857 write_unlock(&zspage->lock); 1858 } 1859 1860 /* Number of isolated subpage for *page migration* in this zspage */ 1861 static void inc_zspage_isolation(struct zspage *zspage) 1862 { 1863 zspage->isolated++; 1864 } 1865 1866 static void dec_zspage_isolation(struct zspage *zspage) 1867 { 1868 zspage->isolated--; 1869 } 1870 1871 static void replace_sub_page(struct size_class *class, struct zspage *zspage, 1872 struct page *newpage, struct page *oldpage) 1873 { 1874 struct page *page; 1875 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, }; 1876 int idx = 0; 1877 1878 page = get_first_page(zspage); 1879 do { 1880 if (page == oldpage) 1881 pages[idx] = newpage; 1882 else 1883 pages[idx] = page; 1884 idx++; 1885 } while ((page = get_next_page(page)) != NULL); 1886 1887 create_page_chain(class, zspage, pages); 1888 set_first_obj_offset(newpage, get_first_obj_offset(oldpage)); 1889 if (unlikely(PageHugeObject(oldpage))) 1890 newpage->index = oldpage->index; 1891 __SetPageMovable(newpage, page_mapping(oldpage)); 1892 } 1893 1894 static bool zs_page_isolate(struct page *page, isolate_mode_t mode) 1895 { 1896 struct zs_pool *pool; 1897 struct size_class *class; 1898 int class_idx; 1899 enum fullness_group fullness; 1900 struct zspage *zspage; 1901 struct address_space *mapping; 1902 1903 /* 1904 * Page is locked so zspage couldn't be destroyed. For detail, look at 1905 * lock_zspage in free_zspage. 1906 */ 1907 VM_BUG_ON_PAGE(!PageMovable(page), page); 1908 VM_BUG_ON_PAGE(PageIsolated(page), page); 1909 1910 zspage = get_zspage(page); 1911 1912 /* 1913 * Without class lock, fullness could be stale while class_idx is okay 1914 * because class_idx is constant unless page is freed so we should get 1915 * fullness again under class lock. 1916 */ 1917 get_zspage_mapping(zspage, &class_idx, &fullness); 1918 mapping = page_mapping(page); 1919 pool = mapping->private_data; 1920 class = pool->size_class[class_idx]; 1921 1922 spin_lock(&class->lock); 1923 if (get_zspage_inuse(zspage) == 0) { 1924 spin_unlock(&class->lock); 1925 return false; 1926 } 1927 1928 /* zspage is isolated for object migration */ 1929 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1930 spin_unlock(&class->lock); 1931 return false; 1932 } 1933 1934 /* 1935 * If this is first time isolation for the zspage, isolate zspage from 1936 * size_class to prevent further object allocation from the zspage. 1937 */ 1938 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) { 1939 get_zspage_mapping(zspage, &class_idx, &fullness); 1940 remove_zspage(class, zspage, fullness); 1941 } 1942 1943 inc_zspage_isolation(zspage); 1944 spin_unlock(&class->lock); 1945 1946 return true; 1947 } 1948 1949 static int zs_page_migrate(struct address_space *mapping, struct page *newpage, 1950 struct page *page, enum migrate_mode mode) 1951 { 1952 struct zs_pool *pool; 1953 struct size_class *class; 1954 int class_idx; 1955 enum fullness_group fullness; 1956 struct zspage *zspage; 1957 struct page *dummy; 1958 void *s_addr, *d_addr, *addr; 1959 int offset, pos; 1960 unsigned long handle, head; 1961 unsigned long old_obj, new_obj; 1962 unsigned int obj_idx; 1963 int ret = -EAGAIN; 1964 1965 /* 1966 * We cannot support the _NO_COPY case here, because copy needs to 1967 * happen under the zs lock, which does not work with 1968 * MIGRATE_SYNC_NO_COPY workflow. 1969 */ 1970 if (mode == MIGRATE_SYNC_NO_COPY) 1971 return -EINVAL; 1972 1973 VM_BUG_ON_PAGE(!PageMovable(page), page); 1974 VM_BUG_ON_PAGE(!PageIsolated(page), page); 1975 1976 zspage = get_zspage(page); 1977 1978 /* Concurrent compactor cannot migrate any subpage in zspage */ 1979 migrate_write_lock(zspage); 1980 get_zspage_mapping(zspage, &class_idx, &fullness); 1981 pool = mapping->private_data; 1982 class = pool->size_class[class_idx]; 1983 offset = get_first_obj_offset(page); 1984 1985 spin_lock(&class->lock); 1986 if (!get_zspage_inuse(zspage)) { 1987 /* 1988 * Set "offset" to end of the page so that every loops 1989 * skips unnecessary object scanning. 1990 */ 1991 offset = PAGE_SIZE; 1992 } 1993 1994 pos = offset; 1995 s_addr = kmap_atomic(page); 1996 while (pos < PAGE_SIZE) { 1997 head = obj_to_head(page, s_addr + pos); 1998 if (head & OBJ_ALLOCATED_TAG) { 1999 handle = head & ~OBJ_ALLOCATED_TAG; 2000 if (!trypin_tag(handle)) 2001 goto unpin_objects; 2002 } 2003 pos += class->size; 2004 } 2005 2006 /* 2007 * Here, any user cannot access all objects in the zspage so let's move. 2008 */ 2009 d_addr = kmap_atomic(newpage); 2010 memcpy(d_addr, s_addr, PAGE_SIZE); 2011 kunmap_atomic(d_addr); 2012 2013 for (addr = s_addr + offset; addr < s_addr + pos; 2014 addr += class->size) { 2015 head = obj_to_head(page, addr); 2016 if (head & OBJ_ALLOCATED_TAG) { 2017 handle = head & ~OBJ_ALLOCATED_TAG; 2018 if (!testpin_tag(handle)) 2019 BUG(); 2020 2021 old_obj = handle_to_obj(handle); 2022 obj_to_location(old_obj, &dummy, &obj_idx); 2023 new_obj = (unsigned long)location_to_obj(newpage, 2024 obj_idx); 2025 new_obj |= BIT(HANDLE_PIN_BIT); 2026 record_obj(handle, new_obj); 2027 } 2028 } 2029 2030 replace_sub_page(class, zspage, newpage, page); 2031 get_page(newpage); 2032 2033 dec_zspage_isolation(zspage); 2034 2035 /* 2036 * Page migration is done so let's putback isolated zspage to 2037 * the list if @page is final isolated subpage in the zspage. 2038 */ 2039 if (!is_zspage_isolated(zspage)) 2040 putback_zspage(class, zspage); 2041 2042 reset_page(page); 2043 put_page(page); 2044 page = newpage; 2045 2046 ret = MIGRATEPAGE_SUCCESS; 2047 unpin_objects: 2048 for (addr = s_addr + offset; addr < s_addr + pos; 2049 addr += class->size) { 2050 head = obj_to_head(page, addr); 2051 if (head & OBJ_ALLOCATED_TAG) { 2052 handle = head & ~OBJ_ALLOCATED_TAG; 2053 if (!testpin_tag(handle)) 2054 BUG(); 2055 unpin_tag(handle); 2056 } 2057 } 2058 kunmap_atomic(s_addr); 2059 spin_unlock(&class->lock); 2060 migrate_write_unlock(zspage); 2061 2062 return ret; 2063 } 2064 2065 static void zs_page_putback(struct page *page) 2066 { 2067 struct zs_pool *pool; 2068 struct size_class *class; 2069 int class_idx; 2070 enum fullness_group fg; 2071 struct address_space *mapping; 2072 struct zspage *zspage; 2073 2074 VM_BUG_ON_PAGE(!PageMovable(page), page); 2075 VM_BUG_ON_PAGE(!PageIsolated(page), page); 2076 2077 zspage = get_zspage(page); 2078 get_zspage_mapping(zspage, &class_idx, &fg); 2079 mapping = page_mapping(page); 2080 pool = mapping->private_data; 2081 class = pool->size_class[class_idx]; 2082 2083 spin_lock(&class->lock); 2084 dec_zspage_isolation(zspage); 2085 if (!is_zspage_isolated(zspage)) { 2086 fg = putback_zspage(class, zspage); 2087 /* 2088 * Due to page_lock, we cannot free zspage immediately 2089 * so let's defer. 2090 */ 2091 if (fg == ZS_EMPTY) 2092 schedule_work(&pool->free_work); 2093 } 2094 spin_unlock(&class->lock); 2095 } 2096 2097 static const struct address_space_operations zsmalloc_aops = { 2098 .isolate_page = zs_page_isolate, 2099 .migratepage = zs_page_migrate, 2100 .putback_page = zs_page_putback, 2101 }; 2102 2103 static int zs_register_migration(struct zs_pool *pool) 2104 { 2105 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb); 2106 if (IS_ERR(pool->inode)) { 2107 pool->inode = NULL; 2108 return 1; 2109 } 2110 2111 pool->inode->i_mapping->private_data = pool; 2112 pool->inode->i_mapping->a_ops = &zsmalloc_aops; 2113 return 0; 2114 } 2115 2116 static void zs_unregister_migration(struct zs_pool *pool) 2117 { 2118 flush_work(&pool->free_work); 2119 iput(pool->inode); 2120 } 2121 2122 /* 2123 * Caller should hold page_lock of all pages in the zspage 2124 * In here, we cannot use zspage meta data. 2125 */ 2126 static void async_free_zspage(struct work_struct *work) 2127 { 2128 int i; 2129 struct size_class *class; 2130 unsigned int class_idx; 2131 enum fullness_group fullness; 2132 struct zspage *zspage, *tmp; 2133 LIST_HEAD(free_pages); 2134 struct zs_pool *pool = container_of(work, struct zs_pool, 2135 free_work); 2136 2137 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2138 class = pool->size_class[i]; 2139 if (class->index != i) 2140 continue; 2141 2142 spin_lock(&class->lock); 2143 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages); 2144 spin_unlock(&class->lock); 2145 } 2146 2147 2148 list_for_each_entry_safe(zspage, tmp, &free_pages, list) { 2149 list_del(&zspage->list); 2150 lock_zspage(zspage); 2151 2152 get_zspage_mapping(zspage, &class_idx, &fullness); 2153 VM_BUG_ON(fullness != ZS_EMPTY); 2154 class = pool->size_class[class_idx]; 2155 spin_lock(&class->lock); 2156 __free_zspage(pool, pool->size_class[class_idx], zspage); 2157 spin_unlock(&class->lock); 2158 } 2159 }; 2160 2161 static void kick_deferred_free(struct zs_pool *pool) 2162 { 2163 schedule_work(&pool->free_work); 2164 } 2165 2166 static void init_deferred_free(struct zs_pool *pool) 2167 { 2168 INIT_WORK(&pool->free_work, async_free_zspage); 2169 } 2170 2171 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) 2172 { 2173 struct page *page = get_first_page(zspage); 2174 2175 do { 2176 WARN_ON(!trylock_page(page)); 2177 __SetPageMovable(page, pool->inode->i_mapping); 2178 unlock_page(page); 2179 } while ((page = get_next_page(page)) != NULL); 2180 } 2181 #endif 2182 2183 /* 2184 * 2185 * Based on the number of unused allocated objects calculate 2186 * and return the number of pages that we can free. 2187 */ 2188 static unsigned long zs_can_compact(struct size_class *class) 2189 { 2190 unsigned long obj_wasted; 2191 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED); 2192 unsigned long obj_used = zs_stat_get(class, OBJ_USED); 2193 2194 if (obj_allocated <= obj_used) 2195 return 0; 2196 2197 obj_wasted = obj_allocated - obj_used; 2198 obj_wasted /= class->objs_per_zspage; 2199 2200 return obj_wasted * class->pages_per_zspage; 2201 } 2202 2203 static void __zs_compact(struct zs_pool *pool, struct size_class *class) 2204 { 2205 struct zs_compact_control cc; 2206 struct zspage *src_zspage; 2207 struct zspage *dst_zspage = NULL; 2208 2209 spin_lock(&class->lock); 2210 while ((src_zspage = isolate_zspage(class, true))) { 2211 2212 if (!zs_can_compact(class)) 2213 break; 2214 2215 cc.obj_idx = 0; 2216 cc.s_page = get_first_page(src_zspage); 2217 2218 while ((dst_zspage = isolate_zspage(class, false))) { 2219 cc.d_page = get_first_page(dst_zspage); 2220 /* 2221 * If there is no more space in dst_page, resched 2222 * and see if anyone had allocated another zspage. 2223 */ 2224 if (!migrate_zspage(pool, class, &cc)) 2225 break; 2226 2227 putback_zspage(class, dst_zspage); 2228 } 2229 2230 /* Stop if we couldn't find slot */ 2231 if (dst_zspage == NULL) 2232 break; 2233 2234 putback_zspage(class, dst_zspage); 2235 if (putback_zspage(class, src_zspage) == ZS_EMPTY) { 2236 free_zspage(pool, class, src_zspage); 2237 pool->stats.pages_compacted += class->pages_per_zspage; 2238 } 2239 spin_unlock(&class->lock); 2240 cond_resched(); 2241 spin_lock(&class->lock); 2242 } 2243 2244 if (src_zspage) 2245 putback_zspage(class, src_zspage); 2246 2247 spin_unlock(&class->lock); 2248 } 2249 2250 unsigned long zs_compact(struct zs_pool *pool) 2251 { 2252 int i; 2253 struct size_class *class; 2254 2255 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2256 class = pool->size_class[i]; 2257 if (!class) 2258 continue; 2259 if (class->index != i) 2260 continue; 2261 __zs_compact(pool, class); 2262 } 2263 2264 return pool->stats.pages_compacted; 2265 } 2266 EXPORT_SYMBOL_GPL(zs_compact); 2267 2268 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats) 2269 { 2270 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats)); 2271 } 2272 EXPORT_SYMBOL_GPL(zs_pool_stats); 2273 2274 static unsigned long zs_shrinker_scan(struct shrinker *shrinker, 2275 struct shrink_control *sc) 2276 { 2277 unsigned long pages_freed; 2278 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2279 shrinker); 2280 2281 pages_freed = pool->stats.pages_compacted; 2282 /* 2283 * Compact classes and calculate compaction delta. 2284 * Can run concurrently with a manually triggered 2285 * (by user) compaction. 2286 */ 2287 pages_freed = zs_compact(pool) - pages_freed; 2288 2289 return pages_freed ? pages_freed : SHRINK_STOP; 2290 } 2291 2292 static unsigned long zs_shrinker_count(struct shrinker *shrinker, 2293 struct shrink_control *sc) 2294 { 2295 int i; 2296 struct size_class *class; 2297 unsigned long pages_to_free = 0; 2298 struct zs_pool *pool = container_of(shrinker, struct zs_pool, 2299 shrinker); 2300 2301 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2302 class = pool->size_class[i]; 2303 if (!class) 2304 continue; 2305 if (class->index != i) 2306 continue; 2307 2308 pages_to_free += zs_can_compact(class); 2309 } 2310 2311 return pages_to_free; 2312 } 2313 2314 static void zs_unregister_shrinker(struct zs_pool *pool) 2315 { 2316 unregister_shrinker(&pool->shrinker); 2317 } 2318 2319 static int zs_register_shrinker(struct zs_pool *pool) 2320 { 2321 pool->shrinker.scan_objects = zs_shrinker_scan; 2322 pool->shrinker.count_objects = zs_shrinker_count; 2323 pool->shrinker.batch = 0; 2324 pool->shrinker.seeks = DEFAULT_SEEKS; 2325 2326 return register_shrinker(&pool->shrinker); 2327 } 2328 2329 /** 2330 * zs_create_pool - Creates an allocation pool to work from. 2331 * @name: pool name to be created 2332 * 2333 * This function must be called before anything when using 2334 * the zsmalloc allocator. 2335 * 2336 * On success, a pointer to the newly created pool is returned, 2337 * otherwise NULL. 2338 */ 2339 struct zs_pool *zs_create_pool(const char *name) 2340 { 2341 int i; 2342 struct zs_pool *pool; 2343 struct size_class *prev_class = NULL; 2344 2345 pool = kzalloc(sizeof(*pool), GFP_KERNEL); 2346 if (!pool) 2347 return NULL; 2348 2349 init_deferred_free(pool); 2350 2351 pool->name = kstrdup(name, GFP_KERNEL); 2352 if (!pool->name) 2353 goto err; 2354 2355 if (create_cache(pool)) 2356 goto err; 2357 2358 /* 2359 * Iterate reversely, because, size of size_class that we want to use 2360 * for merging should be larger or equal to current size. 2361 */ 2362 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) { 2363 int size; 2364 int pages_per_zspage; 2365 int objs_per_zspage; 2366 struct size_class *class; 2367 int fullness = 0; 2368 2369 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA; 2370 if (size > ZS_MAX_ALLOC_SIZE) 2371 size = ZS_MAX_ALLOC_SIZE; 2372 pages_per_zspage = get_pages_per_zspage(size); 2373 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size; 2374 2375 /* 2376 * We iterate from biggest down to smallest classes, 2377 * so huge_class_size holds the size of the first huge 2378 * class. Any object bigger than or equal to that will 2379 * endup in the huge class. 2380 */ 2381 if (pages_per_zspage != 1 && objs_per_zspage != 1 && 2382 !huge_class_size) { 2383 huge_class_size = size; 2384 /* 2385 * The object uses ZS_HANDLE_SIZE bytes to store the 2386 * handle. We need to subtract it, because zs_malloc() 2387 * unconditionally adds handle size before it performs 2388 * size class search - so object may be smaller than 2389 * huge class size, yet it still can end up in the huge 2390 * class because it grows by ZS_HANDLE_SIZE extra bytes 2391 * right before class lookup. 2392 */ 2393 huge_class_size -= (ZS_HANDLE_SIZE - 1); 2394 } 2395 2396 /* 2397 * size_class is used for normal zsmalloc operation such 2398 * as alloc/free for that size. Although it is natural that we 2399 * have one size_class for each size, there is a chance that we 2400 * can get more memory utilization if we use one size_class for 2401 * many different sizes whose size_class have same 2402 * characteristics. So, we makes size_class point to 2403 * previous size_class if possible. 2404 */ 2405 if (prev_class) { 2406 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) { 2407 pool->size_class[i] = prev_class; 2408 continue; 2409 } 2410 } 2411 2412 class = kzalloc(sizeof(struct size_class), GFP_KERNEL); 2413 if (!class) 2414 goto err; 2415 2416 class->size = size; 2417 class->index = i; 2418 class->pages_per_zspage = pages_per_zspage; 2419 class->objs_per_zspage = objs_per_zspage; 2420 spin_lock_init(&class->lock); 2421 pool->size_class[i] = class; 2422 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS; 2423 fullness++) 2424 INIT_LIST_HEAD(&class->fullness_list[fullness]); 2425 2426 prev_class = class; 2427 } 2428 2429 /* debug only, don't abort if it fails */ 2430 zs_pool_stat_create(pool, name); 2431 2432 if (zs_register_migration(pool)) 2433 goto err; 2434 2435 /* 2436 * Not critical since shrinker is only used to trigger internal 2437 * defragmentation of the pool which is pretty optional thing. If 2438 * registration fails we still can use the pool normally and user can 2439 * trigger compaction manually. Thus, ignore return code. 2440 */ 2441 zs_register_shrinker(pool); 2442 2443 return pool; 2444 2445 err: 2446 zs_destroy_pool(pool); 2447 return NULL; 2448 } 2449 EXPORT_SYMBOL_GPL(zs_create_pool); 2450 2451 void zs_destroy_pool(struct zs_pool *pool) 2452 { 2453 int i; 2454 2455 zs_unregister_shrinker(pool); 2456 zs_unregister_migration(pool); 2457 zs_pool_stat_destroy(pool); 2458 2459 for (i = 0; i < ZS_SIZE_CLASSES; i++) { 2460 int fg; 2461 struct size_class *class = pool->size_class[i]; 2462 2463 if (!class) 2464 continue; 2465 2466 if (class->index != i) 2467 continue; 2468 2469 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) { 2470 if (!list_empty(&class->fullness_list[fg])) { 2471 pr_info("Freeing non-empty class with size %db, fullness group %d\n", 2472 class->size, fg); 2473 } 2474 } 2475 kfree(class); 2476 } 2477 2478 destroy_cache(pool); 2479 kfree(pool->name); 2480 kfree(pool); 2481 } 2482 EXPORT_SYMBOL_GPL(zs_destroy_pool); 2483 2484 static int __init zs_init(void) 2485 { 2486 int ret; 2487 2488 ret = zsmalloc_mount(); 2489 if (ret) 2490 goto out; 2491 2492 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare", 2493 zs_cpu_prepare, zs_cpu_dead); 2494 if (ret) 2495 goto hp_setup_fail; 2496 2497 #ifdef CONFIG_ZPOOL 2498 zpool_register_driver(&zs_zpool_driver); 2499 #endif 2500 2501 zs_stat_init(); 2502 2503 return 0; 2504 2505 hp_setup_fail: 2506 zsmalloc_unmount(); 2507 out: 2508 return ret; 2509 } 2510 2511 static void __exit zs_exit(void) 2512 { 2513 #ifdef CONFIG_ZPOOL 2514 zpool_unregister_driver(&zs_zpool_driver); 2515 #endif 2516 zsmalloc_unmount(); 2517 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE); 2518 2519 zs_stat_exit(); 2520 } 2521 2522 module_init(zs_init); 2523 module_exit(zs_exit); 2524 2525 MODULE_LICENSE("Dual BSD/GPL"); 2526 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>"); 2527