xref: /linux/mm/vmstat.c (revision 2b8232ce512105e28453f301d1510de8363bccd1)
1 /*
2  *  linux/mm/vmstat.c
3  *
4  *  Manages VM statistics
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  zoned VM statistics
8  *  Copyright (C) 2006 Silicon Graphics, Inc.,
9  *		Christoph Lameter <christoph@lameter.com>
10  */
11 
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/cpu.h>
16 #include <linux/sched.h>
17 
18 #ifdef CONFIG_VM_EVENT_COUNTERS
19 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
20 EXPORT_PER_CPU_SYMBOL(vm_event_states);
21 
22 static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask)
23 {
24 	int cpu = 0;
25 	int i;
26 
27 	memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
28 
29 	cpu = first_cpu(*cpumask);
30 	while (cpu < NR_CPUS) {
31 		struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
32 
33 		cpu = next_cpu(cpu, *cpumask);
34 
35 		if (cpu < NR_CPUS)
36 			prefetch(&per_cpu(vm_event_states, cpu));
37 
38 
39 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
40 			ret[i] += this->event[i];
41 	}
42 }
43 
44 /*
45  * Accumulate the vm event counters across all CPUs.
46  * The result is unavoidably approximate - it can change
47  * during and after execution of this function.
48 */
49 void all_vm_events(unsigned long *ret)
50 {
51 	sum_vm_events(ret, &cpu_online_map);
52 }
53 EXPORT_SYMBOL_GPL(all_vm_events);
54 
55 #ifdef CONFIG_HOTPLUG
56 /*
57  * Fold the foreign cpu events into our own.
58  *
59  * This is adding to the events on one processor
60  * but keeps the global counts constant.
61  */
62 void vm_events_fold_cpu(int cpu)
63 {
64 	struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65 	int i;
66 
67 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68 		count_vm_events(i, fold_state->event[i]);
69 		fold_state->event[i] = 0;
70 	}
71 }
72 #endif /* CONFIG_HOTPLUG */
73 
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
75 
76 /*
77  * Manage combined zone based / global counters
78  *
79  * vm_stat contains the global counters
80  */
81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
82 EXPORT_SYMBOL(vm_stat);
83 
84 #ifdef CONFIG_SMP
85 
86 static int calculate_threshold(struct zone *zone)
87 {
88 	int threshold;
89 	int mem;	/* memory in 128 MB units */
90 
91 	/*
92 	 * The threshold scales with the number of processors and the amount
93 	 * of memory per zone. More memory means that we can defer updates for
94 	 * longer, more processors could lead to more contention.
95  	 * fls() is used to have a cheap way of logarithmic scaling.
96 	 *
97 	 * Some sample thresholds:
98 	 *
99 	 * Threshold	Processors	(fls)	Zonesize	fls(mem+1)
100 	 * ------------------------------------------------------------------
101 	 * 8		1		1	0.9-1 GB	4
102 	 * 16		2		2	0.9-1 GB	4
103 	 * 20 		2		2	1-2 GB		5
104 	 * 24		2		2	2-4 GB		6
105 	 * 28		2		2	4-8 GB		7
106 	 * 32		2		2	8-16 GB		8
107 	 * 4		2		2	<128M		1
108 	 * 30		4		3	2-4 GB		5
109 	 * 48		4		3	8-16 GB		8
110 	 * 32		8		4	1-2 GB		4
111 	 * 32		8		4	0.9-1GB		4
112 	 * 10		16		5	<128M		1
113 	 * 40		16		5	900M		4
114 	 * 70		64		7	2-4 GB		5
115 	 * 84		64		7	4-8 GB		6
116 	 * 108		512		9	4-8 GB		6
117 	 * 125		1024		10	8-16 GB		8
118 	 * 125		1024		10	16-32 GB	9
119 	 */
120 
121 	mem = zone->present_pages >> (27 - PAGE_SHIFT);
122 
123 	threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
124 
125 	/*
126 	 * Maximum threshold is 125
127 	 */
128 	threshold = min(125, threshold);
129 
130 	return threshold;
131 }
132 
133 /*
134  * Refresh the thresholds for each zone.
135  */
136 static void refresh_zone_stat_thresholds(void)
137 {
138 	struct zone *zone;
139 	int cpu;
140 	int threshold;
141 
142 	for_each_zone(zone) {
143 
144 		if (!zone->present_pages)
145 			continue;
146 
147 		threshold = calculate_threshold(zone);
148 
149 		for_each_online_cpu(cpu)
150 			zone_pcp(zone, cpu)->stat_threshold = threshold;
151 	}
152 }
153 
154 /*
155  * For use when we know that interrupts are disabled.
156  */
157 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
158 				int delta)
159 {
160 	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
161 	s8 *p = pcp->vm_stat_diff + item;
162 	long x;
163 
164 	x = delta + *p;
165 
166 	if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
167 		zone_page_state_add(x, zone, item);
168 		x = 0;
169 	}
170 	*p = x;
171 }
172 EXPORT_SYMBOL(__mod_zone_page_state);
173 
174 /*
175  * For an unknown interrupt state
176  */
177 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
178 					int delta)
179 {
180 	unsigned long flags;
181 
182 	local_irq_save(flags);
183 	__mod_zone_page_state(zone, item, delta);
184 	local_irq_restore(flags);
185 }
186 EXPORT_SYMBOL(mod_zone_page_state);
187 
188 /*
189  * Optimized increment and decrement functions.
190  *
191  * These are only for a single page and therefore can take a struct page *
192  * argument instead of struct zone *. This allows the inclusion of the code
193  * generated for page_zone(page) into the optimized functions.
194  *
195  * No overflow check is necessary and therefore the differential can be
196  * incremented or decremented in place which may allow the compilers to
197  * generate better code.
198  * The increment or decrement is known and therefore one boundary check can
199  * be omitted.
200  *
201  * NOTE: These functions are very performance sensitive. Change only
202  * with care.
203  *
204  * Some processors have inc/dec instructions that are atomic vs an interrupt.
205  * However, the code must first determine the differential location in a zone
206  * based on the processor number and then inc/dec the counter. There is no
207  * guarantee without disabling preemption that the processor will not change
208  * in between and therefore the atomicity vs. interrupt cannot be exploited
209  * in a useful way here.
210  */
211 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
212 {
213 	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
214 	s8 *p = pcp->vm_stat_diff + item;
215 
216 	(*p)++;
217 
218 	if (unlikely(*p > pcp->stat_threshold)) {
219 		int overstep = pcp->stat_threshold / 2;
220 
221 		zone_page_state_add(*p + overstep, zone, item);
222 		*p = -overstep;
223 	}
224 }
225 
226 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
227 {
228 	__inc_zone_state(page_zone(page), item);
229 }
230 EXPORT_SYMBOL(__inc_zone_page_state);
231 
232 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
233 {
234 	struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
235 	s8 *p = pcp->vm_stat_diff + item;
236 
237 	(*p)--;
238 
239 	if (unlikely(*p < - pcp->stat_threshold)) {
240 		int overstep = pcp->stat_threshold / 2;
241 
242 		zone_page_state_add(*p - overstep, zone, item);
243 		*p = overstep;
244 	}
245 }
246 
247 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
248 {
249 	__dec_zone_state(page_zone(page), item);
250 }
251 EXPORT_SYMBOL(__dec_zone_page_state);
252 
253 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
254 {
255 	unsigned long flags;
256 
257 	local_irq_save(flags);
258 	__inc_zone_state(zone, item);
259 	local_irq_restore(flags);
260 }
261 
262 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
263 {
264 	unsigned long flags;
265 	struct zone *zone;
266 
267 	zone = page_zone(page);
268 	local_irq_save(flags);
269 	__inc_zone_state(zone, item);
270 	local_irq_restore(flags);
271 }
272 EXPORT_SYMBOL(inc_zone_page_state);
273 
274 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
275 {
276 	unsigned long flags;
277 
278 	local_irq_save(flags);
279 	__dec_zone_page_state(page, item);
280 	local_irq_restore(flags);
281 }
282 EXPORT_SYMBOL(dec_zone_page_state);
283 
284 /*
285  * Update the zone counters for one cpu.
286  *
287  * Note that refresh_cpu_vm_stats strives to only access
288  * node local memory. The per cpu pagesets on remote zones are placed
289  * in the memory local to the processor using that pageset. So the
290  * loop over all zones will access a series of cachelines local to
291  * the processor.
292  *
293  * The call to zone_page_state_add updates the cachelines with the
294  * statistics in the remote zone struct as well as the global cachelines
295  * with the global counters. These could cause remote node cache line
296  * bouncing and will have to be only done when necessary.
297  */
298 void refresh_cpu_vm_stats(int cpu)
299 {
300 	struct zone *zone;
301 	int i;
302 	unsigned long flags;
303 
304 	for_each_zone(zone) {
305 		struct per_cpu_pageset *p;
306 
307 		if (!populated_zone(zone))
308 			continue;
309 
310 		p = zone_pcp(zone, cpu);
311 
312 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
313 			if (p->vm_stat_diff[i]) {
314 				local_irq_save(flags);
315 				zone_page_state_add(p->vm_stat_diff[i],
316 					zone, i);
317 				p->vm_stat_diff[i] = 0;
318 #ifdef CONFIG_NUMA
319 				/* 3 seconds idle till flush */
320 				p->expire = 3;
321 #endif
322 				local_irq_restore(flags);
323 			}
324 #ifdef CONFIG_NUMA
325 		/*
326 		 * Deal with draining the remote pageset of this
327 		 * processor
328 		 *
329 		 * Check if there are pages remaining in this pageset
330 		 * if not then there is nothing to expire.
331 		 */
332 		if (!p->expire || (!p->pcp[0].count && !p->pcp[1].count))
333 			continue;
334 
335 		/*
336 		 * We never drain zones local to this processor.
337 		 */
338 		if (zone_to_nid(zone) == numa_node_id()) {
339 			p->expire = 0;
340 			continue;
341 		}
342 
343 		p->expire--;
344 		if (p->expire)
345 			continue;
346 
347 		if (p->pcp[0].count)
348 			drain_zone_pages(zone, p->pcp + 0);
349 
350 		if (p->pcp[1].count)
351 			drain_zone_pages(zone, p->pcp + 1);
352 #endif
353 	}
354 }
355 
356 static void __refresh_cpu_vm_stats(void *dummy)
357 {
358 	refresh_cpu_vm_stats(smp_processor_id());
359 }
360 
361 /*
362  * Consolidate all counters.
363  *
364  * Note that the result is less inaccurate but still inaccurate
365  * if concurrent processes are allowed to run.
366  */
367 void refresh_vm_stats(void)
368 {
369 	on_each_cpu(__refresh_cpu_vm_stats, NULL, 0, 1);
370 }
371 EXPORT_SYMBOL(refresh_vm_stats);
372 
373 #endif
374 
375 #ifdef CONFIG_NUMA
376 /*
377  * zonelist = the list of zones passed to the allocator
378  * z 	    = the zone from which the allocation occurred.
379  *
380  * Must be called with interrupts disabled.
381  */
382 void zone_statistics(struct zonelist *zonelist, struct zone *z)
383 {
384 	if (z->zone_pgdat == zonelist->zones[0]->zone_pgdat) {
385 		__inc_zone_state(z, NUMA_HIT);
386 	} else {
387 		__inc_zone_state(z, NUMA_MISS);
388 		__inc_zone_state(zonelist->zones[0], NUMA_FOREIGN);
389 	}
390 	if (z->node == numa_node_id())
391 		__inc_zone_state(z, NUMA_LOCAL);
392 	else
393 		__inc_zone_state(z, NUMA_OTHER);
394 }
395 #endif
396 
397 #ifdef CONFIG_PROC_FS
398 
399 #include <linux/seq_file.h>
400 
401 static void *frag_start(struct seq_file *m, loff_t *pos)
402 {
403 	pg_data_t *pgdat;
404 	loff_t node = *pos;
405 	for (pgdat = first_online_pgdat();
406 	     pgdat && node;
407 	     pgdat = next_online_pgdat(pgdat))
408 		--node;
409 
410 	return pgdat;
411 }
412 
413 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
414 {
415 	pg_data_t *pgdat = (pg_data_t *)arg;
416 
417 	(*pos)++;
418 	return next_online_pgdat(pgdat);
419 }
420 
421 static void frag_stop(struct seq_file *m, void *arg)
422 {
423 }
424 
425 /*
426  * This walks the free areas for each zone.
427  */
428 static int frag_show(struct seq_file *m, void *arg)
429 {
430 	pg_data_t *pgdat = (pg_data_t *)arg;
431 	struct zone *zone;
432 	struct zone *node_zones = pgdat->node_zones;
433 	unsigned long flags;
434 	int order;
435 
436 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
437 		if (!populated_zone(zone))
438 			continue;
439 
440 		spin_lock_irqsave(&zone->lock, flags);
441 		seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
442 		for (order = 0; order < MAX_ORDER; ++order)
443 			seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
444 		spin_unlock_irqrestore(&zone->lock, flags);
445 		seq_putc(m, '\n');
446 	}
447 	return 0;
448 }
449 
450 const struct seq_operations fragmentation_op = {
451 	.start	= frag_start,
452 	.next	= frag_next,
453 	.stop	= frag_stop,
454 	.show	= frag_show,
455 };
456 
457 #ifdef CONFIG_ZONE_DMA
458 #define TEXT_FOR_DMA(xx) xx "_dma",
459 #else
460 #define TEXT_FOR_DMA(xx)
461 #endif
462 
463 #ifdef CONFIG_ZONE_DMA32
464 #define TEXT_FOR_DMA32(xx) xx "_dma32",
465 #else
466 #define TEXT_FOR_DMA32(xx)
467 #endif
468 
469 #ifdef CONFIG_HIGHMEM
470 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
471 #else
472 #define TEXT_FOR_HIGHMEM(xx)
473 #endif
474 
475 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
476 					TEXT_FOR_HIGHMEM(xx) xx "_movable",
477 
478 static const char * const vmstat_text[] = {
479 	/* Zoned VM counters */
480 	"nr_free_pages",
481 	"nr_inactive",
482 	"nr_active",
483 	"nr_anon_pages",
484 	"nr_mapped",
485 	"nr_file_pages",
486 	"nr_dirty",
487 	"nr_writeback",
488 	"nr_slab_reclaimable",
489 	"nr_slab_unreclaimable",
490 	"nr_page_table_pages",
491 	"nr_unstable",
492 	"nr_bounce",
493 	"nr_vmscan_write",
494 
495 #ifdef CONFIG_NUMA
496 	"numa_hit",
497 	"numa_miss",
498 	"numa_foreign",
499 	"numa_interleave",
500 	"numa_local",
501 	"numa_other",
502 #endif
503 
504 #ifdef CONFIG_VM_EVENT_COUNTERS
505 	"pgpgin",
506 	"pgpgout",
507 	"pswpin",
508 	"pswpout",
509 
510 	TEXTS_FOR_ZONES("pgalloc")
511 
512 	"pgfree",
513 	"pgactivate",
514 	"pgdeactivate",
515 
516 	"pgfault",
517 	"pgmajfault",
518 
519 	TEXTS_FOR_ZONES("pgrefill")
520 	TEXTS_FOR_ZONES("pgsteal")
521 	TEXTS_FOR_ZONES("pgscan_kswapd")
522 	TEXTS_FOR_ZONES("pgscan_direct")
523 
524 	"pginodesteal",
525 	"slabs_scanned",
526 	"kswapd_steal",
527 	"kswapd_inodesteal",
528 	"pageoutrun",
529 	"allocstall",
530 
531 	"pgrotated",
532 #endif
533 };
534 
535 /*
536  * Output information about zones in @pgdat.
537  */
538 static int zoneinfo_show(struct seq_file *m, void *arg)
539 {
540 	pg_data_t *pgdat = arg;
541 	struct zone *zone;
542 	struct zone *node_zones = pgdat->node_zones;
543 	unsigned long flags;
544 
545 	for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
546 		int i;
547 
548 		if (!populated_zone(zone))
549 			continue;
550 
551 		spin_lock_irqsave(&zone->lock, flags);
552 		seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
553 		seq_printf(m,
554 			   "\n  pages free     %lu"
555 			   "\n        min      %lu"
556 			   "\n        low      %lu"
557 			   "\n        high     %lu"
558 			   "\n        scanned  %lu (a: %lu i: %lu)"
559 			   "\n        spanned  %lu"
560 			   "\n        present  %lu",
561 			   zone_page_state(zone, NR_FREE_PAGES),
562 			   zone->pages_min,
563 			   zone->pages_low,
564 			   zone->pages_high,
565 			   zone->pages_scanned,
566 			   zone->nr_scan_active, zone->nr_scan_inactive,
567 			   zone->spanned_pages,
568 			   zone->present_pages);
569 
570 		for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
571 			seq_printf(m, "\n    %-12s %lu", vmstat_text[i],
572 					zone_page_state(zone, i));
573 
574 		seq_printf(m,
575 			   "\n        protection: (%lu",
576 			   zone->lowmem_reserve[0]);
577 		for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
578 			seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
579 		seq_printf(m,
580 			   ")"
581 			   "\n  pagesets");
582 		for_each_online_cpu(i) {
583 			struct per_cpu_pageset *pageset;
584 			int j;
585 
586 			pageset = zone_pcp(zone, i);
587 			for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
588 				seq_printf(m,
589 					   "\n    cpu: %i pcp: %i"
590 					   "\n              count: %i"
591 					   "\n              high:  %i"
592 					   "\n              batch: %i",
593 					   i, j,
594 					   pageset->pcp[j].count,
595 					   pageset->pcp[j].high,
596 					   pageset->pcp[j].batch);
597 			}
598 #ifdef CONFIG_SMP
599 			seq_printf(m, "\n  vm stats threshold: %d",
600 					pageset->stat_threshold);
601 #endif
602 		}
603 		seq_printf(m,
604 			   "\n  all_unreclaimable: %u"
605 			   "\n  prev_priority:     %i"
606 			   "\n  start_pfn:         %lu",
607 			   zone->all_unreclaimable,
608 			   zone->prev_priority,
609 			   zone->zone_start_pfn);
610 		spin_unlock_irqrestore(&zone->lock, flags);
611 		seq_putc(m, '\n');
612 	}
613 	return 0;
614 }
615 
616 const struct seq_operations zoneinfo_op = {
617 	.start	= frag_start, /* iterate over all zones. The same as in
618 			       * fragmentation. */
619 	.next	= frag_next,
620 	.stop	= frag_stop,
621 	.show	= zoneinfo_show,
622 };
623 
624 static void *vmstat_start(struct seq_file *m, loff_t *pos)
625 {
626 	unsigned long *v;
627 #ifdef CONFIG_VM_EVENT_COUNTERS
628 	unsigned long *e;
629 #endif
630 	int i;
631 
632 	if (*pos >= ARRAY_SIZE(vmstat_text))
633 		return NULL;
634 
635 #ifdef CONFIG_VM_EVENT_COUNTERS
636 	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
637 			+ sizeof(struct vm_event_state), GFP_KERNEL);
638 #else
639 	v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
640 			GFP_KERNEL);
641 #endif
642 	m->private = v;
643 	if (!v)
644 		return ERR_PTR(-ENOMEM);
645 	for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
646 		v[i] = global_page_state(i);
647 #ifdef CONFIG_VM_EVENT_COUNTERS
648 	e = v + NR_VM_ZONE_STAT_ITEMS;
649 	all_vm_events(e);
650 	e[PGPGIN] /= 2;		/* sectors -> kbytes */
651 	e[PGPGOUT] /= 2;
652 #endif
653 	return v + *pos;
654 }
655 
656 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
657 {
658 	(*pos)++;
659 	if (*pos >= ARRAY_SIZE(vmstat_text))
660 		return NULL;
661 	return (unsigned long *)m->private + *pos;
662 }
663 
664 static int vmstat_show(struct seq_file *m, void *arg)
665 {
666 	unsigned long *l = arg;
667 	unsigned long off = l - (unsigned long *)m->private;
668 
669 	seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
670 	return 0;
671 }
672 
673 static void vmstat_stop(struct seq_file *m, void *arg)
674 {
675 	kfree(m->private);
676 	m->private = NULL;
677 }
678 
679 const struct seq_operations vmstat_op = {
680 	.start	= vmstat_start,
681 	.next	= vmstat_next,
682 	.stop	= vmstat_stop,
683 	.show	= vmstat_show,
684 };
685 
686 #endif /* CONFIG_PROC_FS */
687 
688 #ifdef CONFIG_SMP
689 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
690 int sysctl_stat_interval __read_mostly = HZ;
691 
692 static void vmstat_update(struct work_struct *w)
693 {
694 	refresh_cpu_vm_stats(smp_processor_id());
695 	schedule_delayed_work(&__get_cpu_var(vmstat_work),
696 		sysctl_stat_interval);
697 }
698 
699 static void __devinit start_cpu_timer(int cpu)
700 {
701 	struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);
702 
703 	INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
704 	schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
705 }
706 
707 /*
708  * Use the cpu notifier to insure that the thresholds are recalculated
709  * when necessary.
710  */
711 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
712 		unsigned long action,
713 		void *hcpu)
714 {
715 	long cpu = (long)hcpu;
716 
717 	switch (action) {
718 	case CPU_ONLINE:
719 	case CPU_ONLINE_FROZEN:
720 		start_cpu_timer(cpu);
721 		break;
722 	case CPU_DOWN_PREPARE:
723 	case CPU_DOWN_PREPARE_FROZEN:
724 		cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
725 		per_cpu(vmstat_work, cpu).work.func = NULL;
726 		break;
727 	case CPU_DOWN_FAILED:
728 	case CPU_DOWN_FAILED_FROZEN:
729 		start_cpu_timer(cpu);
730 		break;
731 	case CPU_DEAD:
732 	case CPU_DEAD_FROZEN:
733 		refresh_zone_stat_thresholds();
734 		break;
735 	default:
736 		break;
737 	}
738 	return NOTIFY_OK;
739 }
740 
741 static struct notifier_block __cpuinitdata vmstat_notifier =
742 	{ &vmstat_cpuup_callback, NULL, 0 };
743 
744 int __init setup_vmstat(void)
745 {
746 	int cpu;
747 
748 	refresh_zone_stat_thresholds();
749 	register_cpu_notifier(&vmstat_notifier);
750 
751 	for_each_online_cpu(cpu)
752 		start_cpu_timer(cpu);
753 	return 0;
754 }
755 module_init(setup_vmstat)
756 #endif
757