xref: /linux/mm/vmscan.c (revision a8b70ccf10e38775785d9cb12ead916474549f99)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58 
59 #include "internal.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63 
64 struct scan_control {
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	/* This context's GFP mask */
69 	gfp_t gfp_mask;
70 
71 	/* Allocation order */
72 	int order;
73 
74 	/*
75 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 	 * are scanned.
77 	 */
78 	nodemask_t	*nodemask;
79 
80 	/*
81 	 * The memory cgroup that hit its limit and as a result is the
82 	 * primary target of this reclaim invocation.
83 	 */
84 	struct mem_cgroup *target_mem_cgroup;
85 
86 	/* Scan (total_size >> priority) pages at once */
87 	int priority;
88 
89 	/* The highest zone to isolate pages for reclaim from */
90 	enum zone_type reclaim_idx;
91 
92 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
93 	unsigned int may_writepage:1;
94 
95 	/* Can mapped pages be reclaimed? */
96 	unsigned int may_unmap:1;
97 
98 	/* Can pages be swapped as part of reclaim? */
99 	unsigned int may_swap:1;
100 
101 	/*
102 	 * Cgroups are not reclaimed below their configured memory.low,
103 	 * unless we threaten to OOM. If any cgroups are skipped due to
104 	 * memory.low and nothing was reclaimed, go back for memory.low.
105 	 */
106 	unsigned int memcg_low_reclaim:1;
107 	unsigned int memcg_low_skipped:1;
108 
109 	unsigned int hibernation_mode:1;
110 
111 	/* One of the zones is ready for compaction */
112 	unsigned int compaction_ready:1;
113 
114 	/* Incremented by the number of inactive pages that were scanned */
115 	unsigned long nr_scanned;
116 
117 	/* Number of pages freed so far during a call to shrink_zones() */
118 	unsigned long nr_reclaimed;
119 
120 	struct {
121 		unsigned int dirty;
122 		unsigned int unqueued_dirty;
123 		unsigned int congested;
124 		unsigned int writeback;
125 		unsigned int immediate;
126 		unsigned int file_taken;
127 		unsigned int taken;
128 	} nr;
129 };
130 
131 #ifdef ARCH_HAS_PREFETCH
132 #define prefetch_prev_lru_page(_page, _base, _field)			\
133 	do {								\
134 		if ((_page)->lru.prev != _base) {			\
135 			struct page *prev;				\
136 									\
137 			prev = lru_to_page(&(_page->lru));		\
138 			prefetch(&prev->_field);			\
139 		}							\
140 	} while (0)
141 #else
142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
143 #endif
144 
145 #ifdef ARCH_HAS_PREFETCHW
146 #define prefetchw_prev_lru_page(_page, _base, _field)			\
147 	do {								\
148 		if ((_page)->lru.prev != _base) {			\
149 			struct page *prev;				\
150 									\
151 			prev = lru_to_page(&(_page->lru));		\
152 			prefetchw(&prev->_field);			\
153 		}							\
154 	} while (0)
155 #else
156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
157 #endif
158 
159 /*
160  * From 0 .. 100.  Higher means more swappy.
161  */
162 int vm_swappiness = 60;
163 /*
164  * The total number of pages which are beyond the high watermark within all
165  * zones.
166  */
167 unsigned long vm_total_pages;
168 
169 static LIST_HEAD(shrinker_list);
170 static DECLARE_RWSEM(shrinker_rwsem);
171 
172 #ifdef CONFIG_MEMCG
173 static bool global_reclaim(struct scan_control *sc)
174 {
175 	return !sc->target_mem_cgroup;
176 }
177 
178 /**
179  * sane_reclaim - is the usual dirty throttling mechanism operational?
180  * @sc: scan_control in question
181  *
182  * The normal page dirty throttling mechanism in balance_dirty_pages() is
183  * completely broken with the legacy memcg and direct stalling in
184  * shrink_page_list() is used for throttling instead, which lacks all the
185  * niceties such as fairness, adaptive pausing, bandwidth proportional
186  * allocation and configurability.
187  *
188  * This function tests whether the vmscan currently in progress can assume
189  * that the normal dirty throttling mechanism is operational.
190  */
191 static bool sane_reclaim(struct scan_control *sc)
192 {
193 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
194 
195 	if (!memcg)
196 		return true;
197 #ifdef CONFIG_CGROUP_WRITEBACK
198 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
199 		return true;
200 #endif
201 	return false;
202 }
203 
204 static void set_memcg_congestion(pg_data_t *pgdat,
205 				struct mem_cgroup *memcg,
206 				bool congested)
207 {
208 	struct mem_cgroup_per_node *mn;
209 
210 	if (!memcg)
211 		return;
212 
213 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
214 	WRITE_ONCE(mn->congested, congested);
215 }
216 
217 static bool memcg_congested(pg_data_t *pgdat,
218 			struct mem_cgroup *memcg)
219 {
220 	struct mem_cgroup_per_node *mn;
221 
222 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
223 	return READ_ONCE(mn->congested);
224 
225 }
226 #else
227 static bool global_reclaim(struct scan_control *sc)
228 {
229 	return true;
230 }
231 
232 static bool sane_reclaim(struct scan_control *sc)
233 {
234 	return true;
235 }
236 
237 static inline void set_memcg_congestion(struct pglist_data *pgdat,
238 				struct mem_cgroup *memcg, bool congested)
239 {
240 }
241 
242 static inline bool memcg_congested(struct pglist_data *pgdat,
243 			struct mem_cgroup *memcg)
244 {
245 	return false;
246 
247 }
248 #endif
249 
250 /*
251  * This misses isolated pages which are not accounted for to save counters.
252  * As the data only determines if reclaim or compaction continues, it is
253  * not expected that isolated pages will be a dominating factor.
254  */
255 unsigned long zone_reclaimable_pages(struct zone *zone)
256 {
257 	unsigned long nr;
258 
259 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
260 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
261 	if (get_nr_swap_pages() > 0)
262 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
263 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
264 
265 	return nr;
266 }
267 
268 /**
269  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
270  * @lruvec: lru vector
271  * @lru: lru to use
272  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
273  */
274 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
275 {
276 	unsigned long lru_size;
277 	int zid;
278 
279 	if (!mem_cgroup_disabled())
280 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
281 	else
282 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
283 
284 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
285 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
286 		unsigned long size;
287 
288 		if (!managed_zone(zone))
289 			continue;
290 
291 		if (!mem_cgroup_disabled())
292 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
293 		else
294 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
295 				       NR_ZONE_LRU_BASE + lru);
296 		lru_size -= min(size, lru_size);
297 	}
298 
299 	return lru_size;
300 
301 }
302 
303 /*
304  * Add a shrinker callback to be called from the vm.
305  */
306 int register_shrinker(struct shrinker *shrinker)
307 {
308 	size_t size = sizeof(*shrinker->nr_deferred);
309 
310 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
311 		size *= nr_node_ids;
312 
313 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
314 	if (!shrinker->nr_deferred)
315 		return -ENOMEM;
316 
317 	down_write(&shrinker_rwsem);
318 	list_add_tail(&shrinker->list, &shrinker_list);
319 	up_write(&shrinker_rwsem);
320 	return 0;
321 }
322 EXPORT_SYMBOL(register_shrinker);
323 
324 /*
325  * Remove one
326  */
327 void unregister_shrinker(struct shrinker *shrinker)
328 {
329 	if (!shrinker->nr_deferred)
330 		return;
331 	down_write(&shrinker_rwsem);
332 	list_del(&shrinker->list);
333 	up_write(&shrinker_rwsem);
334 	kfree(shrinker->nr_deferred);
335 	shrinker->nr_deferred = NULL;
336 }
337 EXPORT_SYMBOL(unregister_shrinker);
338 
339 #define SHRINK_BATCH 128
340 
341 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
342 				    struct shrinker *shrinker, int priority)
343 {
344 	unsigned long freed = 0;
345 	unsigned long long delta;
346 	long total_scan;
347 	long freeable;
348 	long nr;
349 	long new_nr;
350 	int nid = shrinkctl->nid;
351 	long batch_size = shrinker->batch ? shrinker->batch
352 					  : SHRINK_BATCH;
353 	long scanned = 0, next_deferred;
354 
355 	freeable = shrinker->count_objects(shrinker, shrinkctl);
356 	if (freeable == 0)
357 		return 0;
358 
359 	/*
360 	 * copy the current shrinker scan count into a local variable
361 	 * and zero it so that other concurrent shrinker invocations
362 	 * don't also do this scanning work.
363 	 */
364 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
365 
366 	total_scan = nr;
367 	delta = freeable >> priority;
368 	delta *= 4;
369 	do_div(delta, shrinker->seeks);
370 	total_scan += delta;
371 	if (total_scan < 0) {
372 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
373 		       shrinker->scan_objects, total_scan);
374 		total_scan = freeable;
375 		next_deferred = nr;
376 	} else
377 		next_deferred = total_scan;
378 
379 	/*
380 	 * We need to avoid excessive windup on filesystem shrinkers
381 	 * due to large numbers of GFP_NOFS allocations causing the
382 	 * shrinkers to return -1 all the time. This results in a large
383 	 * nr being built up so when a shrink that can do some work
384 	 * comes along it empties the entire cache due to nr >>>
385 	 * freeable. This is bad for sustaining a working set in
386 	 * memory.
387 	 *
388 	 * Hence only allow the shrinker to scan the entire cache when
389 	 * a large delta change is calculated directly.
390 	 */
391 	if (delta < freeable / 4)
392 		total_scan = min(total_scan, freeable / 2);
393 
394 	/*
395 	 * Avoid risking looping forever due to too large nr value:
396 	 * never try to free more than twice the estimate number of
397 	 * freeable entries.
398 	 */
399 	if (total_scan > freeable * 2)
400 		total_scan = freeable * 2;
401 
402 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
403 				   freeable, delta, total_scan, priority);
404 
405 	/*
406 	 * Normally, we should not scan less than batch_size objects in one
407 	 * pass to avoid too frequent shrinker calls, but if the slab has less
408 	 * than batch_size objects in total and we are really tight on memory,
409 	 * we will try to reclaim all available objects, otherwise we can end
410 	 * up failing allocations although there are plenty of reclaimable
411 	 * objects spread over several slabs with usage less than the
412 	 * batch_size.
413 	 *
414 	 * We detect the "tight on memory" situations by looking at the total
415 	 * number of objects we want to scan (total_scan). If it is greater
416 	 * than the total number of objects on slab (freeable), we must be
417 	 * scanning at high prio and therefore should try to reclaim as much as
418 	 * possible.
419 	 */
420 	while (total_scan >= batch_size ||
421 	       total_scan >= freeable) {
422 		unsigned long ret;
423 		unsigned long nr_to_scan = min(batch_size, total_scan);
424 
425 		shrinkctl->nr_to_scan = nr_to_scan;
426 		shrinkctl->nr_scanned = nr_to_scan;
427 		ret = shrinker->scan_objects(shrinker, shrinkctl);
428 		if (ret == SHRINK_STOP)
429 			break;
430 		freed += ret;
431 
432 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
433 		total_scan -= shrinkctl->nr_scanned;
434 		scanned += shrinkctl->nr_scanned;
435 
436 		cond_resched();
437 	}
438 
439 	if (next_deferred >= scanned)
440 		next_deferred -= scanned;
441 	else
442 		next_deferred = 0;
443 	/*
444 	 * move the unused scan count back into the shrinker in a
445 	 * manner that handles concurrent updates. If we exhausted the
446 	 * scan, there is no need to do an update.
447 	 */
448 	if (next_deferred > 0)
449 		new_nr = atomic_long_add_return(next_deferred,
450 						&shrinker->nr_deferred[nid]);
451 	else
452 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
453 
454 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
455 	return freed;
456 }
457 
458 /**
459  * shrink_slab - shrink slab caches
460  * @gfp_mask: allocation context
461  * @nid: node whose slab caches to target
462  * @memcg: memory cgroup whose slab caches to target
463  * @priority: the reclaim priority
464  *
465  * Call the shrink functions to age shrinkable caches.
466  *
467  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
468  * unaware shrinkers will receive a node id of 0 instead.
469  *
470  * @memcg specifies the memory cgroup to target. If it is not NULL,
471  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
472  * objects from the memory cgroup specified. Otherwise, only unaware
473  * shrinkers are called.
474  *
475  * @priority is sc->priority, we take the number of objects and >> by priority
476  * in order to get the scan target.
477  *
478  * Returns the number of reclaimed slab objects.
479  */
480 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
481 				 struct mem_cgroup *memcg,
482 				 int priority)
483 {
484 	struct shrinker *shrinker;
485 	unsigned long freed = 0;
486 
487 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
488 		return 0;
489 
490 	if (!down_read_trylock(&shrinker_rwsem))
491 		goto out;
492 
493 	list_for_each_entry(shrinker, &shrinker_list, list) {
494 		struct shrink_control sc = {
495 			.gfp_mask = gfp_mask,
496 			.nid = nid,
497 			.memcg = memcg,
498 		};
499 
500 		/*
501 		 * If kernel memory accounting is disabled, we ignore
502 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
503 		 * passing NULL for memcg.
504 		 */
505 		if (memcg_kmem_enabled() &&
506 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
507 			continue;
508 
509 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
510 			sc.nid = 0;
511 
512 		freed += do_shrink_slab(&sc, shrinker, priority);
513 		/*
514 		 * Bail out if someone want to register a new shrinker to
515 		 * prevent the regsitration from being stalled for long periods
516 		 * by parallel ongoing shrinking.
517 		 */
518 		if (rwsem_is_contended(&shrinker_rwsem)) {
519 			freed = freed ? : 1;
520 			break;
521 		}
522 	}
523 
524 	up_read(&shrinker_rwsem);
525 out:
526 	cond_resched();
527 	return freed;
528 }
529 
530 void drop_slab_node(int nid)
531 {
532 	unsigned long freed;
533 
534 	do {
535 		struct mem_cgroup *memcg = NULL;
536 
537 		freed = 0;
538 		do {
539 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
540 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
541 	} while (freed > 10);
542 }
543 
544 void drop_slab(void)
545 {
546 	int nid;
547 
548 	for_each_online_node(nid)
549 		drop_slab_node(nid);
550 }
551 
552 static inline int is_page_cache_freeable(struct page *page)
553 {
554 	/*
555 	 * A freeable page cache page is referenced only by the caller
556 	 * that isolated the page, the page cache radix tree and
557 	 * optional buffer heads at page->private.
558 	 */
559 	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
560 		HPAGE_PMD_NR : 1;
561 	return page_count(page) - page_has_private(page) == 1 + radix_pins;
562 }
563 
564 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
565 {
566 	if (current->flags & PF_SWAPWRITE)
567 		return 1;
568 	if (!inode_write_congested(inode))
569 		return 1;
570 	if (inode_to_bdi(inode) == current->backing_dev_info)
571 		return 1;
572 	return 0;
573 }
574 
575 /*
576  * We detected a synchronous write error writing a page out.  Probably
577  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
578  * fsync(), msync() or close().
579  *
580  * The tricky part is that after writepage we cannot touch the mapping: nothing
581  * prevents it from being freed up.  But we have a ref on the page and once
582  * that page is locked, the mapping is pinned.
583  *
584  * We're allowed to run sleeping lock_page() here because we know the caller has
585  * __GFP_FS.
586  */
587 static void handle_write_error(struct address_space *mapping,
588 				struct page *page, int error)
589 {
590 	lock_page(page);
591 	if (page_mapping(page) == mapping)
592 		mapping_set_error(mapping, error);
593 	unlock_page(page);
594 }
595 
596 /* possible outcome of pageout() */
597 typedef enum {
598 	/* failed to write page out, page is locked */
599 	PAGE_KEEP,
600 	/* move page to the active list, page is locked */
601 	PAGE_ACTIVATE,
602 	/* page has been sent to the disk successfully, page is unlocked */
603 	PAGE_SUCCESS,
604 	/* page is clean and locked */
605 	PAGE_CLEAN,
606 } pageout_t;
607 
608 /*
609  * pageout is called by shrink_page_list() for each dirty page.
610  * Calls ->writepage().
611  */
612 static pageout_t pageout(struct page *page, struct address_space *mapping,
613 			 struct scan_control *sc)
614 {
615 	/*
616 	 * If the page is dirty, only perform writeback if that write
617 	 * will be non-blocking.  To prevent this allocation from being
618 	 * stalled by pagecache activity.  But note that there may be
619 	 * stalls if we need to run get_block().  We could test
620 	 * PagePrivate for that.
621 	 *
622 	 * If this process is currently in __generic_file_write_iter() against
623 	 * this page's queue, we can perform writeback even if that
624 	 * will block.
625 	 *
626 	 * If the page is swapcache, write it back even if that would
627 	 * block, for some throttling. This happens by accident, because
628 	 * swap_backing_dev_info is bust: it doesn't reflect the
629 	 * congestion state of the swapdevs.  Easy to fix, if needed.
630 	 */
631 	if (!is_page_cache_freeable(page))
632 		return PAGE_KEEP;
633 	if (!mapping) {
634 		/*
635 		 * Some data journaling orphaned pages can have
636 		 * page->mapping == NULL while being dirty with clean buffers.
637 		 */
638 		if (page_has_private(page)) {
639 			if (try_to_free_buffers(page)) {
640 				ClearPageDirty(page);
641 				pr_info("%s: orphaned page\n", __func__);
642 				return PAGE_CLEAN;
643 			}
644 		}
645 		return PAGE_KEEP;
646 	}
647 	if (mapping->a_ops->writepage == NULL)
648 		return PAGE_ACTIVATE;
649 	if (!may_write_to_inode(mapping->host, sc))
650 		return PAGE_KEEP;
651 
652 	if (clear_page_dirty_for_io(page)) {
653 		int res;
654 		struct writeback_control wbc = {
655 			.sync_mode = WB_SYNC_NONE,
656 			.nr_to_write = SWAP_CLUSTER_MAX,
657 			.range_start = 0,
658 			.range_end = LLONG_MAX,
659 			.for_reclaim = 1,
660 		};
661 
662 		SetPageReclaim(page);
663 		res = mapping->a_ops->writepage(page, &wbc);
664 		if (res < 0)
665 			handle_write_error(mapping, page, res);
666 		if (res == AOP_WRITEPAGE_ACTIVATE) {
667 			ClearPageReclaim(page);
668 			return PAGE_ACTIVATE;
669 		}
670 
671 		if (!PageWriteback(page)) {
672 			/* synchronous write or broken a_ops? */
673 			ClearPageReclaim(page);
674 		}
675 		trace_mm_vmscan_writepage(page);
676 		inc_node_page_state(page, NR_VMSCAN_WRITE);
677 		return PAGE_SUCCESS;
678 	}
679 
680 	return PAGE_CLEAN;
681 }
682 
683 /*
684  * Same as remove_mapping, but if the page is removed from the mapping, it
685  * gets returned with a refcount of 0.
686  */
687 static int __remove_mapping(struct address_space *mapping, struct page *page,
688 			    bool reclaimed)
689 {
690 	unsigned long flags;
691 	int refcount;
692 
693 	BUG_ON(!PageLocked(page));
694 	BUG_ON(mapping != page_mapping(page));
695 
696 	xa_lock_irqsave(&mapping->i_pages, flags);
697 	/*
698 	 * The non racy check for a busy page.
699 	 *
700 	 * Must be careful with the order of the tests. When someone has
701 	 * a ref to the page, it may be possible that they dirty it then
702 	 * drop the reference. So if PageDirty is tested before page_count
703 	 * here, then the following race may occur:
704 	 *
705 	 * get_user_pages(&page);
706 	 * [user mapping goes away]
707 	 * write_to(page);
708 	 *				!PageDirty(page)    [good]
709 	 * SetPageDirty(page);
710 	 * put_page(page);
711 	 *				!page_count(page)   [good, discard it]
712 	 *
713 	 * [oops, our write_to data is lost]
714 	 *
715 	 * Reversing the order of the tests ensures such a situation cannot
716 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
717 	 * load is not satisfied before that of page->_refcount.
718 	 *
719 	 * Note that if SetPageDirty is always performed via set_page_dirty,
720 	 * and thus under the i_pages lock, then this ordering is not required.
721 	 */
722 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
723 		refcount = 1 + HPAGE_PMD_NR;
724 	else
725 		refcount = 2;
726 	if (!page_ref_freeze(page, refcount))
727 		goto cannot_free;
728 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
729 	if (unlikely(PageDirty(page))) {
730 		page_ref_unfreeze(page, refcount);
731 		goto cannot_free;
732 	}
733 
734 	if (PageSwapCache(page)) {
735 		swp_entry_t swap = { .val = page_private(page) };
736 		mem_cgroup_swapout(page, swap);
737 		__delete_from_swap_cache(page);
738 		xa_unlock_irqrestore(&mapping->i_pages, flags);
739 		put_swap_page(page, swap);
740 	} else {
741 		void (*freepage)(struct page *);
742 		void *shadow = NULL;
743 
744 		freepage = mapping->a_ops->freepage;
745 		/*
746 		 * Remember a shadow entry for reclaimed file cache in
747 		 * order to detect refaults, thus thrashing, later on.
748 		 *
749 		 * But don't store shadows in an address space that is
750 		 * already exiting.  This is not just an optizimation,
751 		 * inode reclaim needs to empty out the radix tree or
752 		 * the nodes are lost.  Don't plant shadows behind its
753 		 * back.
754 		 *
755 		 * We also don't store shadows for DAX mappings because the
756 		 * only page cache pages found in these are zero pages
757 		 * covering holes, and because we don't want to mix DAX
758 		 * exceptional entries and shadow exceptional entries in the
759 		 * same address_space.
760 		 */
761 		if (reclaimed && page_is_file_cache(page) &&
762 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
763 			shadow = workingset_eviction(mapping, page);
764 		__delete_from_page_cache(page, shadow);
765 		xa_unlock_irqrestore(&mapping->i_pages, flags);
766 
767 		if (freepage != NULL)
768 			freepage(page);
769 	}
770 
771 	return 1;
772 
773 cannot_free:
774 	xa_unlock_irqrestore(&mapping->i_pages, flags);
775 	return 0;
776 }
777 
778 /*
779  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
780  * someone else has a ref on the page, abort and return 0.  If it was
781  * successfully detached, return 1.  Assumes the caller has a single ref on
782  * this page.
783  */
784 int remove_mapping(struct address_space *mapping, struct page *page)
785 {
786 	if (__remove_mapping(mapping, page, false)) {
787 		/*
788 		 * Unfreezing the refcount with 1 rather than 2 effectively
789 		 * drops the pagecache ref for us without requiring another
790 		 * atomic operation.
791 		 */
792 		page_ref_unfreeze(page, 1);
793 		return 1;
794 	}
795 	return 0;
796 }
797 
798 /**
799  * putback_lru_page - put previously isolated page onto appropriate LRU list
800  * @page: page to be put back to appropriate lru list
801  *
802  * Add previously isolated @page to appropriate LRU list.
803  * Page may still be unevictable for other reasons.
804  *
805  * lru_lock must not be held, interrupts must be enabled.
806  */
807 void putback_lru_page(struct page *page)
808 {
809 	lru_cache_add(page);
810 	put_page(page);		/* drop ref from isolate */
811 }
812 
813 enum page_references {
814 	PAGEREF_RECLAIM,
815 	PAGEREF_RECLAIM_CLEAN,
816 	PAGEREF_KEEP,
817 	PAGEREF_ACTIVATE,
818 };
819 
820 static enum page_references page_check_references(struct page *page,
821 						  struct scan_control *sc)
822 {
823 	int referenced_ptes, referenced_page;
824 	unsigned long vm_flags;
825 
826 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
827 					  &vm_flags);
828 	referenced_page = TestClearPageReferenced(page);
829 
830 	/*
831 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
832 	 * move the page to the unevictable list.
833 	 */
834 	if (vm_flags & VM_LOCKED)
835 		return PAGEREF_RECLAIM;
836 
837 	if (referenced_ptes) {
838 		if (PageSwapBacked(page))
839 			return PAGEREF_ACTIVATE;
840 		/*
841 		 * All mapped pages start out with page table
842 		 * references from the instantiating fault, so we need
843 		 * to look twice if a mapped file page is used more
844 		 * than once.
845 		 *
846 		 * Mark it and spare it for another trip around the
847 		 * inactive list.  Another page table reference will
848 		 * lead to its activation.
849 		 *
850 		 * Note: the mark is set for activated pages as well
851 		 * so that recently deactivated but used pages are
852 		 * quickly recovered.
853 		 */
854 		SetPageReferenced(page);
855 
856 		if (referenced_page || referenced_ptes > 1)
857 			return PAGEREF_ACTIVATE;
858 
859 		/*
860 		 * Activate file-backed executable pages after first usage.
861 		 */
862 		if (vm_flags & VM_EXEC)
863 			return PAGEREF_ACTIVATE;
864 
865 		return PAGEREF_KEEP;
866 	}
867 
868 	/* Reclaim if clean, defer dirty pages to writeback */
869 	if (referenced_page && !PageSwapBacked(page))
870 		return PAGEREF_RECLAIM_CLEAN;
871 
872 	return PAGEREF_RECLAIM;
873 }
874 
875 /* Check if a page is dirty or under writeback */
876 static void page_check_dirty_writeback(struct page *page,
877 				       bool *dirty, bool *writeback)
878 {
879 	struct address_space *mapping;
880 
881 	/*
882 	 * Anonymous pages are not handled by flushers and must be written
883 	 * from reclaim context. Do not stall reclaim based on them
884 	 */
885 	if (!page_is_file_cache(page) ||
886 	    (PageAnon(page) && !PageSwapBacked(page))) {
887 		*dirty = false;
888 		*writeback = false;
889 		return;
890 	}
891 
892 	/* By default assume that the page flags are accurate */
893 	*dirty = PageDirty(page);
894 	*writeback = PageWriteback(page);
895 
896 	/* Verify dirty/writeback state if the filesystem supports it */
897 	if (!page_has_private(page))
898 		return;
899 
900 	mapping = page_mapping(page);
901 	if (mapping && mapping->a_ops->is_dirty_writeback)
902 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
903 }
904 
905 /*
906  * shrink_page_list() returns the number of reclaimed pages
907  */
908 static unsigned long shrink_page_list(struct list_head *page_list,
909 				      struct pglist_data *pgdat,
910 				      struct scan_control *sc,
911 				      enum ttu_flags ttu_flags,
912 				      struct reclaim_stat *stat,
913 				      bool force_reclaim)
914 {
915 	LIST_HEAD(ret_pages);
916 	LIST_HEAD(free_pages);
917 	int pgactivate = 0;
918 	unsigned nr_unqueued_dirty = 0;
919 	unsigned nr_dirty = 0;
920 	unsigned nr_congested = 0;
921 	unsigned nr_reclaimed = 0;
922 	unsigned nr_writeback = 0;
923 	unsigned nr_immediate = 0;
924 	unsigned nr_ref_keep = 0;
925 	unsigned nr_unmap_fail = 0;
926 
927 	cond_resched();
928 
929 	while (!list_empty(page_list)) {
930 		struct address_space *mapping;
931 		struct page *page;
932 		int may_enter_fs;
933 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
934 		bool dirty, writeback;
935 
936 		cond_resched();
937 
938 		page = lru_to_page(page_list);
939 		list_del(&page->lru);
940 
941 		if (!trylock_page(page))
942 			goto keep;
943 
944 		VM_BUG_ON_PAGE(PageActive(page), page);
945 
946 		sc->nr_scanned++;
947 
948 		if (unlikely(!page_evictable(page)))
949 			goto activate_locked;
950 
951 		if (!sc->may_unmap && page_mapped(page))
952 			goto keep_locked;
953 
954 		/* Double the slab pressure for mapped and swapcache pages */
955 		if ((page_mapped(page) || PageSwapCache(page)) &&
956 		    !(PageAnon(page) && !PageSwapBacked(page)))
957 			sc->nr_scanned++;
958 
959 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
960 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
961 
962 		/*
963 		 * The number of dirty pages determines if a node is marked
964 		 * reclaim_congested which affects wait_iff_congested. kswapd
965 		 * will stall and start writing pages if the tail of the LRU
966 		 * is all dirty unqueued pages.
967 		 */
968 		page_check_dirty_writeback(page, &dirty, &writeback);
969 		if (dirty || writeback)
970 			nr_dirty++;
971 
972 		if (dirty && !writeback)
973 			nr_unqueued_dirty++;
974 
975 		/*
976 		 * Treat this page as congested if the underlying BDI is or if
977 		 * pages are cycling through the LRU so quickly that the
978 		 * pages marked for immediate reclaim are making it to the
979 		 * end of the LRU a second time.
980 		 */
981 		mapping = page_mapping(page);
982 		if (((dirty || writeback) && mapping &&
983 		     inode_write_congested(mapping->host)) ||
984 		    (writeback && PageReclaim(page)))
985 			nr_congested++;
986 
987 		/*
988 		 * If a page at the tail of the LRU is under writeback, there
989 		 * are three cases to consider.
990 		 *
991 		 * 1) If reclaim is encountering an excessive number of pages
992 		 *    under writeback and this page is both under writeback and
993 		 *    PageReclaim then it indicates that pages are being queued
994 		 *    for IO but are being recycled through the LRU before the
995 		 *    IO can complete. Waiting on the page itself risks an
996 		 *    indefinite stall if it is impossible to writeback the
997 		 *    page due to IO error or disconnected storage so instead
998 		 *    note that the LRU is being scanned too quickly and the
999 		 *    caller can stall after page list has been processed.
1000 		 *
1001 		 * 2) Global or new memcg reclaim encounters a page that is
1002 		 *    not marked for immediate reclaim, or the caller does not
1003 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1004 		 *    not to fs). In this case mark the page for immediate
1005 		 *    reclaim and continue scanning.
1006 		 *
1007 		 *    Require may_enter_fs because we would wait on fs, which
1008 		 *    may not have submitted IO yet. And the loop driver might
1009 		 *    enter reclaim, and deadlock if it waits on a page for
1010 		 *    which it is needed to do the write (loop masks off
1011 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1012 		 *    would probably show more reasons.
1013 		 *
1014 		 * 3) Legacy memcg encounters a page that is already marked
1015 		 *    PageReclaim. memcg does not have any dirty pages
1016 		 *    throttling so we could easily OOM just because too many
1017 		 *    pages are in writeback and there is nothing else to
1018 		 *    reclaim. Wait for the writeback to complete.
1019 		 *
1020 		 * In cases 1) and 2) we activate the pages to get them out of
1021 		 * the way while we continue scanning for clean pages on the
1022 		 * inactive list and refilling from the active list. The
1023 		 * observation here is that waiting for disk writes is more
1024 		 * expensive than potentially causing reloads down the line.
1025 		 * Since they're marked for immediate reclaim, they won't put
1026 		 * memory pressure on the cache working set any longer than it
1027 		 * takes to write them to disk.
1028 		 */
1029 		if (PageWriteback(page)) {
1030 			/* Case 1 above */
1031 			if (current_is_kswapd() &&
1032 			    PageReclaim(page) &&
1033 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1034 				nr_immediate++;
1035 				goto activate_locked;
1036 
1037 			/* Case 2 above */
1038 			} else if (sane_reclaim(sc) ||
1039 			    !PageReclaim(page) || !may_enter_fs) {
1040 				/*
1041 				 * This is slightly racy - end_page_writeback()
1042 				 * might have just cleared PageReclaim, then
1043 				 * setting PageReclaim here end up interpreted
1044 				 * as PageReadahead - but that does not matter
1045 				 * enough to care.  What we do want is for this
1046 				 * page to have PageReclaim set next time memcg
1047 				 * reclaim reaches the tests above, so it will
1048 				 * then wait_on_page_writeback() to avoid OOM;
1049 				 * and it's also appropriate in global reclaim.
1050 				 */
1051 				SetPageReclaim(page);
1052 				nr_writeback++;
1053 				goto activate_locked;
1054 
1055 			/* Case 3 above */
1056 			} else {
1057 				unlock_page(page);
1058 				wait_on_page_writeback(page);
1059 				/* then go back and try same page again */
1060 				list_add_tail(&page->lru, page_list);
1061 				continue;
1062 			}
1063 		}
1064 
1065 		if (!force_reclaim)
1066 			references = page_check_references(page, sc);
1067 
1068 		switch (references) {
1069 		case PAGEREF_ACTIVATE:
1070 			goto activate_locked;
1071 		case PAGEREF_KEEP:
1072 			nr_ref_keep++;
1073 			goto keep_locked;
1074 		case PAGEREF_RECLAIM:
1075 		case PAGEREF_RECLAIM_CLEAN:
1076 			; /* try to reclaim the page below */
1077 		}
1078 
1079 		/*
1080 		 * Anonymous process memory has backing store?
1081 		 * Try to allocate it some swap space here.
1082 		 * Lazyfree page could be freed directly
1083 		 */
1084 		if (PageAnon(page) && PageSwapBacked(page)) {
1085 			if (!PageSwapCache(page)) {
1086 				if (!(sc->gfp_mask & __GFP_IO))
1087 					goto keep_locked;
1088 				if (PageTransHuge(page)) {
1089 					/* cannot split THP, skip it */
1090 					if (!can_split_huge_page(page, NULL))
1091 						goto activate_locked;
1092 					/*
1093 					 * Split pages without a PMD map right
1094 					 * away. Chances are some or all of the
1095 					 * tail pages can be freed without IO.
1096 					 */
1097 					if (!compound_mapcount(page) &&
1098 					    split_huge_page_to_list(page,
1099 								    page_list))
1100 						goto activate_locked;
1101 				}
1102 				if (!add_to_swap(page)) {
1103 					if (!PageTransHuge(page))
1104 						goto activate_locked;
1105 					/* Fallback to swap normal pages */
1106 					if (split_huge_page_to_list(page,
1107 								    page_list))
1108 						goto activate_locked;
1109 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1110 					count_vm_event(THP_SWPOUT_FALLBACK);
1111 #endif
1112 					if (!add_to_swap(page))
1113 						goto activate_locked;
1114 				}
1115 
1116 				may_enter_fs = 1;
1117 
1118 				/* Adding to swap updated mapping */
1119 				mapping = page_mapping(page);
1120 			}
1121 		} else if (unlikely(PageTransHuge(page))) {
1122 			/* Split file THP */
1123 			if (split_huge_page_to_list(page, page_list))
1124 				goto keep_locked;
1125 		}
1126 
1127 		/*
1128 		 * The page is mapped into the page tables of one or more
1129 		 * processes. Try to unmap it here.
1130 		 */
1131 		if (page_mapped(page)) {
1132 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1133 
1134 			if (unlikely(PageTransHuge(page)))
1135 				flags |= TTU_SPLIT_HUGE_PMD;
1136 			if (!try_to_unmap(page, flags)) {
1137 				nr_unmap_fail++;
1138 				goto activate_locked;
1139 			}
1140 		}
1141 
1142 		if (PageDirty(page)) {
1143 			/*
1144 			 * Only kswapd can writeback filesystem pages
1145 			 * to avoid risk of stack overflow. But avoid
1146 			 * injecting inefficient single-page IO into
1147 			 * flusher writeback as much as possible: only
1148 			 * write pages when we've encountered many
1149 			 * dirty pages, and when we've already scanned
1150 			 * the rest of the LRU for clean pages and see
1151 			 * the same dirty pages again (PageReclaim).
1152 			 */
1153 			if (page_is_file_cache(page) &&
1154 			    (!current_is_kswapd() || !PageReclaim(page) ||
1155 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1156 				/*
1157 				 * Immediately reclaim when written back.
1158 				 * Similar in principal to deactivate_page()
1159 				 * except we already have the page isolated
1160 				 * and know it's dirty
1161 				 */
1162 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1163 				SetPageReclaim(page);
1164 
1165 				goto activate_locked;
1166 			}
1167 
1168 			if (references == PAGEREF_RECLAIM_CLEAN)
1169 				goto keep_locked;
1170 			if (!may_enter_fs)
1171 				goto keep_locked;
1172 			if (!sc->may_writepage)
1173 				goto keep_locked;
1174 
1175 			/*
1176 			 * Page is dirty. Flush the TLB if a writable entry
1177 			 * potentially exists to avoid CPU writes after IO
1178 			 * starts and then write it out here.
1179 			 */
1180 			try_to_unmap_flush_dirty();
1181 			switch (pageout(page, mapping, sc)) {
1182 			case PAGE_KEEP:
1183 				goto keep_locked;
1184 			case PAGE_ACTIVATE:
1185 				goto activate_locked;
1186 			case PAGE_SUCCESS:
1187 				if (PageWriteback(page))
1188 					goto keep;
1189 				if (PageDirty(page))
1190 					goto keep;
1191 
1192 				/*
1193 				 * A synchronous write - probably a ramdisk.  Go
1194 				 * ahead and try to reclaim the page.
1195 				 */
1196 				if (!trylock_page(page))
1197 					goto keep;
1198 				if (PageDirty(page) || PageWriteback(page))
1199 					goto keep_locked;
1200 				mapping = page_mapping(page);
1201 			case PAGE_CLEAN:
1202 				; /* try to free the page below */
1203 			}
1204 		}
1205 
1206 		/*
1207 		 * If the page has buffers, try to free the buffer mappings
1208 		 * associated with this page. If we succeed we try to free
1209 		 * the page as well.
1210 		 *
1211 		 * We do this even if the page is PageDirty().
1212 		 * try_to_release_page() does not perform I/O, but it is
1213 		 * possible for a page to have PageDirty set, but it is actually
1214 		 * clean (all its buffers are clean).  This happens if the
1215 		 * buffers were written out directly, with submit_bh(). ext3
1216 		 * will do this, as well as the blockdev mapping.
1217 		 * try_to_release_page() will discover that cleanness and will
1218 		 * drop the buffers and mark the page clean - it can be freed.
1219 		 *
1220 		 * Rarely, pages can have buffers and no ->mapping.  These are
1221 		 * the pages which were not successfully invalidated in
1222 		 * truncate_complete_page().  We try to drop those buffers here
1223 		 * and if that worked, and the page is no longer mapped into
1224 		 * process address space (page_count == 1) it can be freed.
1225 		 * Otherwise, leave the page on the LRU so it is swappable.
1226 		 */
1227 		if (page_has_private(page)) {
1228 			if (!try_to_release_page(page, sc->gfp_mask))
1229 				goto activate_locked;
1230 			if (!mapping && page_count(page) == 1) {
1231 				unlock_page(page);
1232 				if (put_page_testzero(page))
1233 					goto free_it;
1234 				else {
1235 					/*
1236 					 * rare race with speculative reference.
1237 					 * the speculative reference will free
1238 					 * this page shortly, so we may
1239 					 * increment nr_reclaimed here (and
1240 					 * leave it off the LRU).
1241 					 */
1242 					nr_reclaimed++;
1243 					continue;
1244 				}
1245 			}
1246 		}
1247 
1248 		if (PageAnon(page) && !PageSwapBacked(page)) {
1249 			/* follow __remove_mapping for reference */
1250 			if (!page_ref_freeze(page, 1))
1251 				goto keep_locked;
1252 			if (PageDirty(page)) {
1253 				page_ref_unfreeze(page, 1);
1254 				goto keep_locked;
1255 			}
1256 
1257 			count_vm_event(PGLAZYFREED);
1258 			count_memcg_page_event(page, PGLAZYFREED);
1259 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1260 			goto keep_locked;
1261 		/*
1262 		 * At this point, we have no other references and there is
1263 		 * no way to pick any more up (removed from LRU, removed
1264 		 * from pagecache). Can use non-atomic bitops now (and
1265 		 * we obviously don't have to worry about waking up a process
1266 		 * waiting on the page lock, because there are no references.
1267 		 */
1268 		__ClearPageLocked(page);
1269 free_it:
1270 		nr_reclaimed++;
1271 
1272 		/*
1273 		 * Is there need to periodically free_page_list? It would
1274 		 * appear not as the counts should be low
1275 		 */
1276 		if (unlikely(PageTransHuge(page))) {
1277 			mem_cgroup_uncharge(page);
1278 			(*get_compound_page_dtor(page))(page);
1279 		} else
1280 			list_add(&page->lru, &free_pages);
1281 		continue;
1282 
1283 activate_locked:
1284 		/* Not a candidate for swapping, so reclaim swap space. */
1285 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1286 						PageMlocked(page)))
1287 			try_to_free_swap(page);
1288 		VM_BUG_ON_PAGE(PageActive(page), page);
1289 		if (!PageMlocked(page)) {
1290 			SetPageActive(page);
1291 			pgactivate++;
1292 			count_memcg_page_event(page, PGACTIVATE);
1293 		}
1294 keep_locked:
1295 		unlock_page(page);
1296 keep:
1297 		list_add(&page->lru, &ret_pages);
1298 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1299 	}
1300 
1301 	mem_cgroup_uncharge_list(&free_pages);
1302 	try_to_unmap_flush();
1303 	free_unref_page_list(&free_pages);
1304 
1305 	list_splice(&ret_pages, page_list);
1306 	count_vm_events(PGACTIVATE, pgactivate);
1307 
1308 	if (stat) {
1309 		stat->nr_dirty = nr_dirty;
1310 		stat->nr_congested = nr_congested;
1311 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1312 		stat->nr_writeback = nr_writeback;
1313 		stat->nr_immediate = nr_immediate;
1314 		stat->nr_activate = pgactivate;
1315 		stat->nr_ref_keep = nr_ref_keep;
1316 		stat->nr_unmap_fail = nr_unmap_fail;
1317 	}
1318 	return nr_reclaimed;
1319 }
1320 
1321 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1322 					    struct list_head *page_list)
1323 {
1324 	struct scan_control sc = {
1325 		.gfp_mask = GFP_KERNEL,
1326 		.priority = DEF_PRIORITY,
1327 		.may_unmap = 1,
1328 	};
1329 	unsigned long ret;
1330 	struct page *page, *next;
1331 	LIST_HEAD(clean_pages);
1332 
1333 	list_for_each_entry_safe(page, next, page_list, lru) {
1334 		if (page_is_file_cache(page) && !PageDirty(page) &&
1335 		    !__PageMovable(page)) {
1336 			ClearPageActive(page);
1337 			list_move(&page->lru, &clean_pages);
1338 		}
1339 	}
1340 
1341 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1342 			TTU_IGNORE_ACCESS, NULL, true);
1343 	list_splice(&clean_pages, page_list);
1344 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1345 	return ret;
1346 }
1347 
1348 /*
1349  * Attempt to remove the specified page from its LRU.  Only take this page
1350  * if it is of the appropriate PageActive status.  Pages which are being
1351  * freed elsewhere are also ignored.
1352  *
1353  * page:	page to consider
1354  * mode:	one of the LRU isolation modes defined above
1355  *
1356  * returns 0 on success, -ve errno on failure.
1357  */
1358 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1359 {
1360 	int ret = -EINVAL;
1361 
1362 	/* Only take pages on the LRU. */
1363 	if (!PageLRU(page))
1364 		return ret;
1365 
1366 	/* Compaction should not handle unevictable pages but CMA can do so */
1367 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1368 		return ret;
1369 
1370 	ret = -EBUSY;
1371 
1372 	/*
1373 	 * To minimise LRU disruption, the caller can indicate that it only
1374 	 * wants to isolate pages it will be able to operate on without
1375 	 * blocking - clean pages for the most part.
1376 	 *
1377 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1378 	 * that it is possible to migrate without blocking
1379 	 */
1380 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1381 		/* All the caller can do on PageWriteback is block */
1382 		if (PageWriteback(page))
1383 			return ret;
1384 
1385 		if (PageDirty(page)) {
1386 			struct address_space *mapping;
1387 			bool migrate_dirty;
1388 
1389 			/*
1390 			 * Only pages without mappings or that have a
1391 			 * ->migratepage callback are possible to migrate
1392 			 * without blocking. However, we can be racing with
1393 			 * truncation so it's necessary to lock the page
1394 			 * to stabilise the mapping as truncation holds
1395 			 * the page lock until after the page is removed
1396 			 * from the page cache.
1397 			 */
1398 			if (!trylock_page(page))
1399 				return ret;
1400 
1401 			mapping = page_mapping(page);
1402 			migrate_dirty = mapping && mapping->a_ops->migratepage;
1403 			unlock_page(page);
1404 			if (!migrate_dirty)
1405 				return ret;
1406 		}
1407 	}
1408 
1409 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1410 		return ret;
1411 
1412 	if (likely(get_page_unless_zero(page))) {
1413 		/*
1414 		 * Be careful not to clear PageLRU until after we're
1415 		 * sure the page is not being freed elsewhere -- the
1416 		 * page release code relies on it.
1417 		 */
1418 		ClearPageLRU(page);
1419 		ret = 0;
1420 	}
1421 
1422 	return ret;
1423 }
1424 
1425 
1426 /*
1427  * Update LRU sizes after isolating pages. The LRU size updates must
1428  * be complete before mem_cgroup_update_lru_size due to a santity check.
1429  */
1430 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1431 			enum lru_list lru, unsigned long *nr_zone_taken)
1432 {
1433 	int zid;
1434 
1435 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1436 		if (!nr_zone_taken[zid])
1437 			continue;
1438 
1439 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1440 #ifdef CONFIG_MEMCG
1441 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1442 #endif
1443 	}
1444 
1445 }
1446 
1447 /*
1448  * zone_lru_lock is heavily contended.  Some of the functions that
1449  * shrink the lists perform better by taking out a batch of pages
1450  * and working on them outside the LRU lock.
1451  *
1452  * For pagecache intensive workloads, this function is the hottest
1453  * spot in the kernel (apart from copy_*_user functions).
1454  *
1455  * Appropriate locks must be held before calling this function.
1456  *
1457  * @nr_to_scan:	The number of eligible pages to look through on the list.
1458  * @lruvec:	The LRU vector to pull pages from.
1459  * @dst:	The temp list to put pages on to.
1460  * @nr_scanned:	The number of pages that were scanned.
1461  * @sc:		The scan_control struct for this reclaim session
1462  * @mode:	One of the LRU isolation modes
1463  * @lru:	LRU list id for isolating
1464  *
1465  * returns how many pages were moved onto *@dst.
1466  */
1467 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1468 		struct lruvec *lruvec, struct list_head *dst,
1469 		unsigned long *nr_scanned, struct scan_control *sc,
1470 		isolate_mode_t mode, enum lru_list lru)
1471 {
1472 	struct list_head *src = &lruvec->lists[lru];
1473 	unsigned long nr_taken = 0;
1474 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1475 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1476 	unsigned long skipped = 0;
1477 	unsigned long scan, total_scan, nr_pages;
1478 	LIST_HEAD(pages_skipped);
1479 
1480 	scan = 0;
1481 	for (total_scan = 0;
1482 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1483 	     total_scan++) {
1484 		struct page *page;
1485 
1486 		page = lru_to_page(src);
1487 		prefetchw_prev_lru_page(page, src, flags);
1488 
1489 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1490 
1491 		if (page_zonenum(page) > sc->reclaim_idx) {
1492 			list_move(&page->lru, &pages_skipped);
1493 			nr_skipped[page_zonenum(page)]++;
1494 			continue;
1495 		}
1496 
1497 		/*
1498 		 * Do not count skipped pages because that makes the function
1499 		 * return with no isolated pages if the LRU mostly contains
1500 		 * ineligible pages.  This causes the VM to not reclaim any
1501 		 * pages, triggering a premature OOM.
1502 		 */
1503 		scan++;
1504 		switch (__isolate_lru_page(page, mode)) {
1505 		case 0:
1506 			nr_pages = hpage_nr_pages(page);
1507 			nr_taken += nr_pages;
1508 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1509 			list_move(&page->lru, dst);
1510 			break;
1511 
1512 		case -EBUSY:
1513 			/* else it is being freed elsewhere */
1514 			list_move(&page->lru, src);
1515 			continue;
1516 
1517 		default:
1518 			BUG();
1519 		}
1520 	}
1521 
1522 	/*
1523 	 * Splice any skipped pages to the start of the LRU list. Note that
1524 	 * this disrupts the LRU order when reclaiming for lower zones but
1525 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1526 	 * scanning would soon rescan the same pages to skip and put the
1527 	 * system at risk of premature OOM.
1528 	 */
1529 	if (!list_empty(&pages_skipped)) {
1530 		int zid;
1531 
1532 		list_splice(&pages_skipped, src);
1533 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1534 			if (!nr_skipped[zid])
1535 				continue;
1536 
1537 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1538 			skipped += nr_skipped[zid];
1539 		}
1540 	}
1541 	*nr_scanned = total_scan;
1542 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1543 				    total_scan, skipped, nr_taken, mode, lru);
1544 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1545 	return nr_taken;
1546 }
1547 
1548 /**
1549  * isolate_lru_page - tries to isolate a page from its LRU list
1550  * @page: page to isolate from its LRU list
1551  *
1552  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1553  * vmstat statistic corresponding to whatever LRU list the page was on.
1554  *
1555  * Returns 0 if the page was removed from an LRU list.
1556  * Returns -EBUSY if the page was not on an LRU list.
1557  *
1558  * The returned page will have PageLRU() cleared.  If it was found on
1559  * the active list, it will have PageActive set.  If it was found on
1560  * the unevictable list, it will have the PageUnevictable bit set. That flag
1561  * may need to be cleared by the caller before letting the page go.
1562  *
1563  * The vmstat statistic corresponding to the list on which the page was
1564  * found will be decremented.
1565  *
1566  * Restrictions:
1567  *
1568  * (1) Must be called with an elevated refcount on the page. This is a
1569  *     fundamentnal difference from isolate_lru_pages (which is called
1570  *     without a stable reference).
1571  * (2) the lru_lock must not be held.
1572  * (3) interrupts must be enabled.
1573  */
1574 int isolate_lru_page(struct page *page)
1575 {
1576 	int ret = -EBUSY;
1577 
1578 	VM_BUG_ON_PAGE(!page_count(page), page);
1579 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1580 
1581 	if (PageLRU(page)) {
1582 		struct zone *zone = page_zone(page);
1583 		struct lruvec *lruvec;
1584 
1585 		spin_lock_irq(zone_lru_lock(zone));
1586 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1587 		if (PageLRU(page)) {
1588 			int lru = page_lru(page);
1589 			get_page(page);
1590 			ClearPageLRU(page);
1591 			del_page_from_lru_list(page, lruvec, lru);
1592 			ret = 0;
1593 		}
1594 		spin_unlock_irq(zone_lru_lock(zone));
1595 	}
1596 	return ret;
1597 }
1598 
1599 /*
1600  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1601  * then get resheduled. When there are massive number of tasks doing page
1602  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1603  * the LRU list will go small and be scanned faster than necessary, leading to
1604  * unnecessary swapping, thrashing and OOM.
1605  */
1606 static int too_many_isolated(struct pglist_data *pgdat, int file,
1607 		struct scan_control *sc)
1608 {
1609 	unsigned long inactive, isolated;
1610 
1611 	if (current_is_kswapd())
1612 		return 0;
1613 
1614 	if (!sane_reclaim(sc))
1615 		return 0;
1616 
1617 	if (file) {
1618 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1619 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1620 	} else {
1621 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1622 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1623 	}
1624 
1625 	/*
1626 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1627 	 * won't get blocked by normal direct-reclaimers, forming a circular
1628 	 * deadlock.
1629 	 */
1630 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1631 		inactive >>= 3;
1632 
1633 	return isolated > inactive;
1634 }
1635 
1636 static noinline_for_stack void
1637 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1638 {
1639 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1640 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1641 	LIST_HEAD(pages_to_free);
1642 
1643 	/*
1644 	 * Put back any unfreeable pages.
1645 	 */
1646 	while (!list_empty(page_list)) {
1647 		struct page *page = lru_to_page(page_list);
1648 		int lru;
1649 
1650 		VM_BUG_ON_PAGE(PageLRU(page), page);
1651 		list_del(&page->lru);
1652 		if (unlikely(!page_evictable(page))) {
1653 			spin_unlock_irq(&pgdat->lru_lock);
1654 			putback_lru_page(page);
1655 			spin_lock_irq(&pgdat->lru_lock);
1656 			continue;
1657 		}
1658 
1659 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1660 
1661 		SetPageLRU(page);
1662 		lru = page_lru(page);
1663 		add_page_to_lru_list(page, lruvec, lru);
1664 
1665 		if (is_active_lru(lru)) {
1666 			int file = is_file_lru(lru);
1667 			int numpages = hpage_nr_pages(page);
1668 			reclaim_stat->recent_rotated[file] += numpages;
1669 		}
1670 		if (put_page_testzero(page)) {
1671 			__ClearPageLRU(page);
1672 			__ClearPageActive(page);
1673 			del_page_from_lru_list(page, lruvec, lru);
1674 
1675 			if (unlikely(PageCompound(page))) {
1676 				spin_unlock_irq(&pgdat->lru_lock);
1677 				mem_cgroup_uncharge(page);
1678 				(*get_compound_page_dtor(page))(page);
1679 				spin_lock_irq(&pgdat->lru_lock);
1680 			} else
1681 				list_add(&page->lru, &pages_to_free);
1682 		}
1683 	}
1684 
1685 	/*
1686 	 * To save our caller's stack, now use input list for pages to free.
1687 	 */
1688 	list_splice(&pages_to_free, page_list);
1689 }
1690 
1691 /*
1692  * If a kernel thread (such as nfsd for loop-back mounts) services
1693  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1694  * In that case we should only throttle if the backing device it is
1695  * writing to is congested.  In other cases it is safe to throttle.
1696  */
1697 static int current_may_throttle(void)
1698 {
1699 	return !(current->flags & PF_LESS_THROTTLE) ||
1700 		current->backing_dev_info == NULL ||
1701 		bdi_write_congested(current->backing_dev_info);
1702 }
1703 
1704 /*
1705  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1706  * of reclaimed pages
1707  */
1708 static noinline_for_stack unsigned long
1709 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1710 		     struct scan_control *sc, enum lru_list lru)
1711 {
1712 	LIST_HEAD(page_list);
1713 	unsigned long nr_scanned;
1714 	unsigned long nr_reclaimed = 0;
1715 	unsigned long nr_taken;
1716 	struct reclaim_stat stat = {};
1717 	isolate_mode_t isolate_mode = 0;
1718 	int file = is_file_lru(lru);
1719 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1720 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1721 	bool stalled = false;
1722 
1723 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1724 		if (stalled)
1725 			return 0;
1726 
1727 		/* wait a bit for the reclaimer. */
1728 		msleep(100);
1729 		stalled = true;
1730 
1731 		/* We are about to die and free our memory. Return now. */
1732 		if (fatal_signal_pending(current))
1733 			return SWAP_CLUSTER_MAX;
1734 	}
1735 
1736 	lru_add_drain();
1737 
1738 	if (!sc->may_unmap)
1739 		isolate_mode |= ISOLATE_UNMAPPED;
1740 
1741 	spin_lock_irq(&pgdat->lru_lock);
1742 
1743 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1744 				     &nr_scanned, sc, isolate_mode, lru);
1745 
1746 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1747 	reclaim_stat->recent_scanned[file] += nr_taken;
1748 
1749 	if (current_is_kswapd()) {
1750 		if (global_reclaim(sc))
1751 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1752 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1753 				   nr_scanned);
1754 	} else {
1755 		if (global_reclaim(sc))
1756 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1757 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1758 				   nr_scanned);
1759 	}
1760 	spin_unlock_irq(&pgdat->lru_lock);
1761 
1762 	if (nr_taken == 0)
1763 		return 0;
1764 
1765 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1766 				&stat, false);
1767 
1768 	spin_lock_irq(&pgdat->lru_lock);
1769 
1770 	if (current_is_kswapd()) {
1771 		if (global_reclaim(sc))
1772 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1773 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1774 				   nr_reclaimed);
1775 	} else {
1776 		if (global_reclaim(sc))
1777 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1778 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1779 				   nr_reclaimed);
1780 	}
1781 
1782 	putback_inactive_pages(lruvec, &page_list);
1783 
1784 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1785 
1786 	spin_unlock_irq(&pgdat->lru_lock);
1787 
1788 	mem_cgroup_uncharge_list(&page_list);
1789 	free_unref_page_list(&page_list);
1790 
1791 	/*
1792 	 * If dirty pages are scanned that are not queued for IO, it
1793 	 * implies that flushers are not doing their job. This can
1794 	 * happen when memory pressure pushes dirty pages to the end of
1795 	 * the LRU before the dirty limits are breached and the dirty
1796 	 * data has expired. It can also happen when the proportion of
1797 	 * dirty pages grows not through writes but through memory
1798 	 * pressure reclaiming all the clean cache. And in some cases,
1799 	 * the flushers simply cannot keep up with the allocation
1800 	 * rate. Nudge the flusher threads in case they are asleep.
1801 	 */
1802 	if (stat.nr_unqueued_dirty == nr_taken)
1803 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1804 
1805 	sc->nr.dirty += stat.nr_dirty;
1806 	sc->nr.congested += stat.nr_congested;
1807 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1808 	sc->nr.writeback += stat.nr_writeback;
1809 	sc->nr.immediate += stat.nr_immediate;
1810 	sc->nr.taken += nr_taken;
1811 	if (file)
1812 		sc->nr.file_taken += nr_taken;
1813 
1814 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1815 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1816 	return nr_reclaimed;
1817 }
1818 
1819 /*
1820  * This moves pages from the active list to the inactive list.
1821  *
1822  * We move them the other way if the page is referenced by one or more
1823  * processes, from rmap.
1824  *
1825  * If the pages are mostly unmapped, the processing is fast and it is
1826  * appropriate to hold zone_lru_lock across the whole operation.  But if
1827  * the pages are mapped, the processing is slow (page_referenced()) so we
1828  * should drop zone_lru_lock around each page.  It's impossible to balance
1829  * this, so instead we remove the pages from the LRU while processing them.
1830  * It is safe to rely on PG_active against the non-LRU pages in here because
1831  * nobody will play with that bit on a non-LRU page.
1832  *
1833  * The downside is that we have to touch page->_refcount against each page.
1834  * But we had to alter page->flags anyway.
1835  *
1836  * Returns the number of pages moved to the given lru.
1837  */
1838 
1839 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1840 				     struct list_head *list,
1841 				     struct list_head *pages_to_free,
1842 				     enum lru_list lru)
1843 {
1844 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1845 	struct page *page;
1846 	int nr_pages;
1847 	int nr_moved = 0;
1848 
1849 	while (!list_empty(list)) {
1850 		page = lru_to_page(list);
1851 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1852 
1853 		VM_BUG_ON_PAGE(PageLRU(page), page);
1854 		SetPageLRU(page);
1855 
1856 		nr_pages = hpage_nr_pages(page);
1857 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1858 		list_move(&page->lru, &lruvec->lists[lru]);
1859 
1860 		if (put_page_testzero(page)) {
1861 			__ClearPageLRU(page);
1862 			__ClearPageActive(page);
1863 			del_page_from_lru_list(page, lruvec, lru);
1864 
1865 			if (unlikely(PageCompound(page))) {
1866 				spin_unlock_irq(&pgdat->lru_lock);
1867 				mem_cgroup_uncharge(page);
1868 				(*get_compound_page_dtor(page))(page);
1869 				spin_lock_irq(&pgdat->lru_lock);
1870 			} else
1871 				list_add(&page->lru, pages_to_free);
1872 		} else {
1873 			nr_moved += nr_pages;
1874 		}
1875 	}
1876 
1877 	if (!is_active_lru(lru)) {
1878 		__count_vm_events(PGDEACTIVATE, nr_moved);
1879 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1880 				   nr_moved);
1881 	}
1882 
1883 	return nr_moved;
1884 }
1885 
1886 static void shrink_active_list(unsigned long nr_to_scan,
1887 			       struct lruvec *lruvec,
1888 			       struct scan_control *sc,
1889 			       enum lru_list lru)
1890 {
1891 	unsigned long nr_taken;
1892 	unsigned long nr_scanned;
1893 	unsigned long vm_flags;
1894 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1895 	LIST_HEAD(l_active);
1896 	LIST_HEAD(l_inactive);
1897 	struct page *page;
1898 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1899 	unsigned nr_deactivate, nr_activate;
1900 	unsigned nr_rotated = 0;
1901 	isolate_mode_t isolate_mode = 0;
1902 	int file = is_file_lru(lru);
1903 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1904 
1905 	lru_add_drain();
1906 
1907 	if (!sc->may_unmap)
1908 		isolate_mode |= ISOLATE_UNMAPPED;
1909 
1910 	spin_lock_irq(&pgdat->lru_lock);
1911 
1912 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1913 				     &nr_scanned, sc, isolate_mode, lru);
1914 
1915 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1916 	reclaim_stat->recent_scanned[file] += nr_taken;
1917 
1918 	__count_vm_events(PGREFILL, nr_scanned);
1919 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
1920 
1921 	spin_unlock_irq(&pgdat->lru_lock);
1922 
1923 	while (!list_empty(&l_hold)) {
1924 		cond_resched();
1925 		page = lru_to_page(&l_hold);
1926 		list_del(&page->lru);
1927 
1928 		if (unlikely(!page_evictable(page))) {
1929 			putback_lru_page(page);
1930 			continue;
1931 		}
1932 
1933 		if (unlikely(buffer_heads_over_limit)) {
1934 			if (page_has_private(page) && trylock_page(page)) {
1935 				if (page_has_private(page))
1936 					try_to_release_page(page, 0);
1937 				unlock_page(page);
1938 			}
1939 		}
1940 
1941 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1942 				    &vm_flags)) {
1943 			nr_rotated += hpage_nr_pages(page);
1944 			/*
1945 			 * Identify referenced, file-backed active pages and
1946 			 * give them one more trip around the active list. So
1947 			 * that executable code get better chances to stay in
1948 			 * memory under moderate memory pressure.  Anon pages
1949 			 * are not likely to be evicted by use-once streaming
1950 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1951 			 * so we ignore them here.
1952 			 */
1953 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1954 				list_add(&page->lru, &l_active);
1955 				continue;
1956 			}
1957 		}
1958 
1959 		ClearPageActive(page);	/* we are de-activating */
1960 		list_add(&page->lru, &l_inactive);
1961 	}
1962 
1963 	/*
1964 	 * Move pages back to the lru list.
1965 	 */
1966 	spin_lock_irq(&pgdat->lru_lock);
1967 	/*
1968 	 * Count referenced pages from currently used mappings as rotated,
1969 	 * even though only some of them are actually re-activated.  This
1970 	 * helps balance scan pressure between file and anonymous pages in
1971 	 * get_scan_count.
1972 	 */
1973 	reclaim_stat->recent_rotated[file] += nr_rotated;
1974 
1975 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1976 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1977 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1978 	spin_unlock_irq(&pgdat->lru_lock);
1979 
1980 	mem_cgroup_uncharge_list(&l_hold);
1981 	free_unref_page_list(&l_hold);
1982 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
1983 			nr_deactivate, nr_rotated, sc->priority, file);
1984 }
1985 
1986 /*
1987  * The inactive anon list should be small enough that the VM never has
1988  * to do too much work.
1989  *
1990  * The inactive file list should be small enough to leave most memory
1991  * to the established workingset on the scan-resistant active list,
1992  * but large enough to avoid thrashing the aggregate readahead window.
1993  *
1994  * Both inactive lists should also be large enough that each inactive
1995  * page has a chance to be referenced again before it is reclaimed.
1996  *
1997  * If that fails and refaulting is observed, the inactive list grows.
1998  *
1999  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2000  * on this LRU, maintained by the pageout code. An inactive_ratio
2001  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2002  *
2003  * total     target    max
2004  * memory    ratio     inactive
2005  * -------------------------------------
2006  *   10MB       1         5MB
2007  *  100MB       1        50MB
2008  *    1GB       3       250MB
2009  *   10GB      10       0.9GB
2010  *  100GB      31         3GB
2011  *    1TB     101        10GB
2012  *   10TB     320        32GB
2013  */
2014 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2015 				 struct mem_cgroup *memcg,
2016 				 struct scan_control *sc, bool actual_reclaim)
2017 {
2018 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2019 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2020 	enum lru_list inactive_lru = file * LRU_FILE;
2021 	unsigned long inactive, active;
2022 	unsigned long inactive_ratio;
2023 	unsigned long refaults;
2024 	unsigned long gb;
2025 
2026 	/*
2027 	 * If we don't have swap space, anonymous page deactivation
2028 	 * is pointless.
2029 	 */
2030 	if (!file && !total_swap_pages)
2031 		return false;
2032 
2033 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2034 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2035 
2036 	if (memcg)
2037 		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2038 	else
2039 		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2040 
2041 	/*
2042 	 * When refaults are being observed, it means a new workingset
2043 	 * is being established. Disable active list protection to get
2044 	 * rid of the stale workingset quickly.
2045 	 */
2046 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2047 		inactive_ratio = 0;
2048 	} else {
2049 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2050 		if (gb)
2051 			inactive_ratio = int_sqrt(10 * gb);
2052 		else
2053 			inactive_ratio = 1;
2054 	}
2055 
2056 	if (actual_reclaim)
2057 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2058 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2059 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2060 			inactive_ratio, file);
2061 
2062 	return inactive * inactive_ratio < active;
2063 }
2064 
2065 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2066 				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2067 				 struct scan_control *sc)
2068 {
2069 	if (is_active_lru(lru)) {
2070 		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2071 					 memcg, sc, true))
2072 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2073 		return 0;
2074 	}
2075 
2076 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2077 }
2078 
2079 enum scan_balance {
2080 	SCAN_EQUAL,
2081 	SCAN_FRACT,
2082 	SCAN_ANON,
2083 	SCAN_FILE,
2084 };
2085 
2086 /*
2087  * Determine how aggressively the anon and file LRU lists should be
2088  * scanned.  The relative value of each set of LRU lists is determined
2089  * by looking at the fraction of the pages scanned we did rotate back
2090  * onto the active list instead of evict.
2091  *
2092  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2093  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2094  */
2095 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2096 			   struct scan_control *sc, unsigned long *nr,
2097 			   unsigned long *lru_pages)
2098 {
2099 	int swappiness = mem_cgroup_swappiness(memcg);
2100 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2101 	u64 fraction[2];
2102 	u64 denominator = 0;	/* gcc */
2103 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2104 	unsigned long anon_prio, file_prio;
2105 	enum scan_balance scan_balance;
2106 	unsigned long anon, file;
2107 	unsigned long ap, fp;
2108 	enum lru_list lru;
2109 
2110 	/* If we have no swap space, do not bother scanning anon pages. */
2111 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2112 		scan_balance = SCAN_FILE;
2113 		goto out;
2114 	}
2115 
2116 	/*
2117 	 * Global reclaim will swap to prevent OOM even with no
2118 	 * swappiness, but memcg users want to use this knob to
2119 	 * disable swapping for individual groups completely when
2120 	 * using the memory controller's swap limit feature would be
2121 	 * too expensive.
2122 	 */
2123 	if (!global_reclaim(sc) && !swappiness) {
2124 		scan_balance = SCAN_FILE;
2125 		goto out;
2126 	}
2127 
2128 	/*
2129 	 * Do not apply any pressure balancing cleverness when the
2130 	 * system is close to OOM, scan both anon and file equally
2131 	 * (unless the swappiness setting disagrees with swapping).
2132 	 */
2133 	if (!sc->priority && swappiness) {
2134 		scan_balance = SCAN_EQUAL;
2135 		goto out;
2136 	}
2137 
2138 	/*
2139 	 * Prevent the reclaimer from falling into the cache trap: as
2140 	 * cache pages start out inactive, every cache fault will tip
2141 	 * the scan balance towards the file LRU.  And as the file LRU
2142 	 * shrinks, so does the window for rotation from references.
2143 	 * This means we have a runaway feedback loop where a tiny
2144 	 * thrashing file LRU becomes infinitely more attractive than
2145 	 * anon pages.  Try to detect this based on file LRU size.
2146 	 */
2147 	if (global_reclaim(sc)) {
2148 		unsigned long pgdatfile;
2149 		unsigned long pgdatfree;
2150 		int z;
2151 		unsigned long total_high_wmark = 0;
2152 
2153 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2154 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2155 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2156 
2157 		for (z = 0; z < MAX_NR_ZONES; z++) {
2158 			struct zone *zone = &pgdat->node_zones[z];
2159 			if (!managed_zone(zone))
2160 				continue;
2161 
2162 			total_high_wmark += high_wmark_pages(zone);
2163 		}
2164 
2165 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2166 			/*
2167 			 * Force SCAN_ANON if there are enough inactive
2168 			 * anonymous pages on the LRU in eligible zones.
2169 			 * Otherwise, the small LRU gets thrashed.
2170 			 */
2171 			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2172 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2173 					>> sc->priority) {
2174 				scan_balance = SCAN_ANON;
2175 				goto out;
2176 			}
2177 		}
2178 	}
2179 
2180 	/*
2181 	 * If there is enough inactive page cache, i.e. if the size of the
2182 	 * inactive list is greater than that of the active list *and* the
2183 	 * inactive list actually has some pages to scan on this priority, we
2184 	 * do not reclaim anything from the anonymous working set right now.
2185 	 * Without the second condition we could end up never scanning an
2186 	 * lruvec even if it has plenty of old anonymous pages unless the
2187 	 * system is under heavy pressure.
2188 	 */
2189 	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2190 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2191 		scan_balance = SCAN_FILE;
2192 		goto out;
2193 	}
2194 
2195 	scan_balance = SCAN_FRACT;
2196 
2197 	/*
2198 	 * With swappiness at 100, anonymous and file have the same priority.
2199 	 * This scanning priority is essentially the inverse of IO cost.
2200 	 */
2201 	anon_prio = swappiness;
2202 	file_prio = 200 - anon_prio;
2203 
2204 	/*
2205 	 * OK, so we have swap space and a fair amount of page cache
2206 	 * pages.  We use the recently rotated / recently scanned
2207 	 * ratios to determine how valuable each cache is.
2208 	 *
2209 	 * Because workloads change over time (and to avoid overflow)
2210 	 * we keep these statistics as a floating average, which ends
2211 	 * up weighing recent references more than old ones.
2212 	 *
2213 	 * anon in [0], file in [1]
2214 	 */
2215 
2216 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2217 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2218 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2219 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2220 
2221 	spin_lock_irq(&pgdat->lru_lock);
2222 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2223 		reclaim_stat->recent_scanned[0] /= 2;
2224 		reclaim_stat->recent_rotated[0] /= 2;
2225 	}
2226 
2227 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2228 		reclaim_stat->recent_scanned[1] /= 2;
2229 		reclaim_stat->recent_rotated[1] /= 2;
2230 	}
2231 
2232 	/*
2233 	 * The amount of pressure on anon vs file pages is inversely
2234 	 * proportional to the fraction of recently scanned pages on
2235 	 * each list that were recently referenced and in active use.
2236 	 */
2237 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2238 	ap /= reclaim_stat->recent_rotated[0] + 1;
2239 
2240 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2241 	fp /= reclaim_stat->recent_rotated[1] + 1;
2242 	spin_unlock_irq(&pgdat->lru_lock);
2243 
2244 	fraction[0] = ap;
2245 	fraction[1] = fp;
2246 	denominator = ap + fp + 1;
2247 out:
2248 	*lru_pages = 0;
2249 	for_each_evictable_lru(lru) {
2250 		int file = is_file_lru(lru);
2251 		unsigned long size;
2252 		unsigned long scan;
2253 
2254 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2255 		scan = size >> sc->priority;
2256 		/*
2257 		 * If the cgroup's already been deleted, make sure to
2258 		 * scrape out the remaining cache.
2259 		 */
2260 		if (!scan && !mem_cgroup_online(memcg))
2261 			scan = min(size, SWAP_CLUSTER_MAX);
2262 
2263 		switch (scan_balance) {
2264 		case SCAN_EQUAL:
2265 			/* Scan lists relative to size */
2266 			break;
2267 		case SCAN_FRACT:
2268 			/*
2269 			 * Scan types proportional to swappiness and
2270 			 * their relative recent reclaim efficiency.
2271 			 */
2272 			scan = div64_u64(scan * fraction[file],
2273 					 denominator);
2274 			break;
2275 		case SCAN_FILE:
2276 		case SCAN_ANON:
2277 			/* Scan one type exclusively */
2278 			if ((scan_balance == SCAN_FILE) != file) {
2279 				size = 0;
2280 				scan = 0;
2281 			}
2282 			break;
2283 		default:
2284 			/* Look ma, no brain */
2285 			BUG();
2286 		}
2287 
2288 		*lru_pages += size;
2289 		nr[lru] = scan;
2290 	}
2291 }
2292 
2293 /*
2294  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2295  */
2296 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2297 			      struct scan_control *sc, unsigned long *lru_pages)
2298 {
2299 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2300 	unsigned long nr[NR_LRU_LISTS];
2301 	unsigned long targets[NR_LRU_LISTS];
2302 	unsigned long nr_to_scan;
2303 	enum lru_list lru;
2304 	unsigned long nr_reclaimed = 0;
2305 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2306 	struct blk_plug plug;
2307 	bool scan_adjusted;
2308 
2309 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2310 
2311 	/* Record the original scan target for proportional adjustments later */
2312 	memcpy(targets, nr, sizeof(nr));
2313 
2314 	/*
2315 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2316 	 * event that can occur when there is little memory pressure e.g.
2317 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2318 	 * when the requested number of pages are reclaimed when scanning at
2319 	 * DEF_PRIORITY on the assumption that the fact we are direct
2320 	 * reclaiming implies that kswapd is not keeping up and it is best to
2321 	 * do a batch of work at once. For memcg reclaim one check is made to
2322 	 * abort proportional reclaim if either the file or anon lru has already
2323 	 * dropped to zero at the first pass.
2324 	 */
2325 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2326 			 sc->priority == DEF_PRIORITY);
2327 
2328 	blk_start_plug(&plug);
2329 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2330 					nr[LRU_INACTIVE_FILE]) {
2331 		unsigned long nr_anon, nr_file, percentage;
2332 		unsigned long nr_scanned;
2333 
2334 		for_each_evictable_lru(lru) {
2335 			if (nr[lru]) {
2336 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2337 				nr[lru] -= nr_to_scan;
2338 
2339 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2340 							    lruvec, memcg, sc);
2341 			}
2342 		}
2343 
2344 		cond_resched();
2345 
2346 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2347 			continue;
2348 
2349 		/*
2350 		 * For kswapd and memcg, reclaim at least the number of pages
2351 		 * requested. Ensure that the anon and file LRUs are scanned
2352 		 * proportionally what was requested by get_scan_count(). We
2353 		 * stop reclaiming one LRU and reduce the amount scanning
2354 		 * proportional to the original scan target.
2355 		 */
2356 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2357 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2358 
2359 		/*
2360 		 * It's just vindictive to attack the larger once the smaller
2361 		 * has gone to zero.  And given the way we stop scanning the
2362 		 * smaller below, this makes sure that we only make one nudge
2363 		 * towards proportionality once we've got nr_to_reclaim.
2364 		 */
2365 		if (!nr_file || !nr_anon)
2366 			break;
2367 
2368 		if (nr_file > nr_anon) {
2369 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2370 						targets[LRU_ACTIVE_ANON] + 1;
2371 			lru = LRU_BASE;
2372 			percentage = nr_anon * 100 / scan_target;
2373 		} else {
2374 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2375 						targets[LRU_ACTIVE_FILE] + 1;
2376 			lru = LRU_FILE;
2377 			percentage = nr_file * 100 / scan_target;
2378 		}
2379 
2380 		/* Stop scanning the smaller of the LRU */
2381 		nr[lru] = 0;
2382 		nr[lru + LRU_ACTIVE] = 0;
2383 
2384 		/*
2385 		 * Recalculate the other LRU scan count based on its original
2386 		 * scan target and the percentage scanning already complete
2387 		 */
2388 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2389 		nr_scanned = targets[lru] - nr[lru];
2390 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2391 		nr[lru] -= min(nr[lru], nr_scanned);
2392 
2393 		lru += LRU_ACTIVE;
2394 		nr_scanned = targets[lru] - nr[lru];
2395 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2396 		nr[lru] -= min(nr[lru], nr_scanned);
2397 
2398 		scan_adjusted = true;
2399 	}
2400 	blk_finish_plug(&plug);
2401 	sc->nr_reclaimed += nr_reclaimed;
2402 
2403 	/*
2404 	 * Even if we did not try to evict anon pages at all, we want to
2405 	 * rebalance the anon lru active/inactive ratio.
2406 	 */
2407 	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2408 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2409 				   sc, LRU_ACTIVE_ANON);
2410 }
2411 
2412 /* Use reclaim/compaction for costly allocs or under memory pressure */
2413 static bool in_reclaim_compaction(struct scan_control *sc)
2414 {
2415 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2416 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2417 			 sc->priority < DEF_PRIORITY - 2))
2418 		return true;
2419 
2420 	return false;
2421 }
2422 
2423 /*
2424  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2425  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2426  * true if more pages should be reclaimed such that when the page allocator
2427  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2428  * It will give up earlier than that if there is difficulty reclaiming pages.
2429  */
2430 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2431 					unsigned long nr_reclaimed,
2432 					unsigned long nr_scanned,
2433 					struct scan_control *sc)
2434 {
2435 	unsigned long pages_for_compaction;
2436 	unsigned long inactive_lru_pages;
2437 	int z;
2438 
2439 	/* If not in reclaim/compaction mode, stop */
2440 	if (!in_reclaim_compaction(sc))
2441 		return false;
2442 
2443 	/* Consider stopping depending on scan and reclaim activity */
2444 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2445 		/*
2446 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2447 		 * full LRU list has been scanned and we are still failing
2448 		 * to reclaim pages. This full LRU scan is potentially
2449 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2450 		 */
2451 		if (!nr_reclaimed && !nr_scanned)
2452 			return false;
2453 	} else {
2454 		/*
2455 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2456 		 * fail without consequence, stop if we failed to reclaim
2457 		 * any pages from the last SWAP_CLUSTER_MAX number of
2458 		 * pages that were scanned. This will return to the
2459 		 * caller faster at the risk reclaim/compaction and
2460 		 * the resulting allocation attempt fails
2461 		 */
2462 		if (!nr_reclaimed)
2463 			return false;
2464 	}
2465 
2466 	/*
2467 	 * If we have not reclaimed enough pages for compaction and the
2468 	 * inactive lists are large enough, continue reclaiming
2469 	 */
2470 	pages_for_compaction = compact_gap(sc->order);
2471 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2472 	if (get_nr_swap_pages() > 0)
2473 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2474 	if (sc->nr_reclaimed < pages_for_compaction &&
2475 			inactive_lru_pages > pages_for_compaction)
2476 		return true;
2477 
2478 	/* If compaction would go ahead or the allocation would succeed, stop */
2479 	for (z = 0; z <= sc->reclaim_idx; z++) {
2480 		struct zone *zone = &pgdat->node_zones[z];
2481 		if (!managed_zone(zone))
2482 			continue;
2483 
2484 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2485 		case COMPACT_SUCCESS:
2486 		case COMPACT_CONTINUE:
2487 			return false;
2488 		default:
2489 			/* check next zone */
2490 			;
2491 		}
2492 	}
2493 	return true;
2494 }
2495 
2496 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2497 {
2498 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2499 		(memcg && memcg_congested(pgdat, memcg));
2500 }
2501 
2502 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2503 {
2504 	struct reclaim_state *reclaim_state = current->reclaim_state;
2505 	unsigned long nr_reclaimed, nr_scanned;
2506 	bool reclaimable = false;
2507 
2508 	do {
2509 		struct mem_cgroup *root = sc->target_mem_cgroup;
2510 		struct mem_cgroup_reclaim_cookie reclaim = {
2511 			.pgdat = pgdat,
2512 			.priority = sc->priority,
2513 		};
2514 		unsigned long node_lru_pages = 0;
2515 		struct mem_cgroup *memcg;
2516 
2517 		memset(&sc->nr, 0, sizeof(sc->nr));
2518 
2519 		nr_reclaimed = sc->nr_reclaimed;
2520 		nr_scanned = sc->nr_scanned;
2521 
2522 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2523 		do {
2524 			unsigned long lru_pages;
2525 			unsigned long reclaimed;
2526 			unsigned long scanned;
2527 
2528 			if (mem_cgroup_low(root, memcg)) {
2529 				if (!sc->memcg_low_reclaim) {
2530 					sc->memcg_low_skipped = 1;
2531 					continue;
2532 				}
2533 				memcg_memory_event(memcg, MEMCG_LOW);
2534 			}
2535 
2536 			reclaimed = sc->nr_reclaimed;
2537 			scanned = sc->nr_scanned;
2538 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2539 			node_lru_pages += lru_pages;
2540 
2541 			if (memcg)
2542 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2543 					    memcg, sc->priority);
2544 
2545 			/* Record the group's reclaim efficiency */
2546 			vmpressure(sc->gfp_mask, memcg, false,
2547 				   sc->nr_scanned - scanned,
2548 				   sc->nr_reclaimed - reclaimed);
2549 
2550 			/*
2551 			 * Direct reclaim and kswapd have to scan all memory
2552 			 * cgroups to fulfill the overall scan target for the
2553 			 * node.
2554 			 *
2555 			 * Limit reclaim, on the other hand, only cares about
2556 			 * nr_to_reclaim pages to be reclaimed and it will
2557 			 * retry with decreasing priority if one round over the
2558 			 * whole hierarchy is not sufficient.
2559 			 */
2560 			if (!global_reclaim(sc) &&
2561 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2562 				mem_cgroup_iter_break(root, memcg);
2563 				break;
2564 			}
2565 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2566 
2567 		if (global_reclaim(sc))
2568 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2569 				    sc->priority);
2570 
2571 		if (reclaim_state) {
2572 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2573 			reclaim_state->reclaimed_slab = 0;
2574 		}
2575 
2576 		/* Record the subtree's reclaim efficiency */
2577 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2578 			   sc->nr_scanned - nr_scanned,
2579 			   sc->nr_reclaimed - nr_reclaimed);
2580 
2581 		if (sc->nr_reclaimed - nr_reclaimed)
2582 			reclaimable = true;
2583 
2584 		if (current_is_kswapd()) {
2585 			/*
2586 			 * If reclaim is isolating dirty pages under writeback,
2587 			 * it implies that the long-lived page allocation rate
2588 			 * is exceeding the page laundering rate. Either the
2589 			 * global limits are not being effective at throttling
2590 			 * processes due to the page distribution throughout
2591 			 * zones or there is heavy usage of a slow backing
2592 			 * device. The only option is to throttle from reclaim
2593 			 * context which is not ideal as there is no guarantee
2594 			 * the dirtying process is throttled in the same way
2595 			 * balance_dirty_pages() manages.
2596 			 *
2597 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2598 			 * count the number of pages under pages flagged for
2599 			 * immediate reclaim and stall if any are encountered
2600 			 * in the nr_immediate check below.
2601 			 */
2602 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2603 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2604 
2605 			/*
2606 			 * Tag a node as congested if all the dirty pages
2607 			 * scanned were backed by a congested BDI and
2608 			 * wait_iff_congested will stall.
2609 			 */
2610 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2611 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2612 
2613 			/* Allow kswapd to start writing pages during reclaim.*/
2614 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2615 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2616 
2617 			/*
2618 			 * If kswapd scans pages marked marked for immediate
2619 			 * reclaim and under writeback (nr_immediate), it
2620 			 * implies that pages are cycling through the LRU
2621 			 * faster than they are written so also forcibly stall.
2622 			 */
2623 			if (sc->nr.immediate)
2624 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2625 		}
2626 
2627 		/*
2628 		 * Legacy memcg will stall in page writeback so avoid forcibly
2629 		 * stalling in wait_iff_congested().
2630 		 */
2631 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2632 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2633 			set_memcg_congestion(pgdat, root, true);
2634 
2635 		/*
2636 		 * Stall direct reclaim for IO completions if underlying BDIs
2637 		 * and node is congested. Allow kswapd to continue until it
2638 		 * starts encountering unqueued dirty pages or cycling through
2639 		 * the LRU too quickly.
2640 		 */
2641 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2642 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2643 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2644 
2645 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2646 					 sc->nr_scanned - nr_scanned, sc));
2647 
2648 	/*
2649 	 * Kswapd gives up on balancing particular nodes after too
2650 	 * many failures to reclaim anything from them and goes to
2651 	 * sleep. On reclaim progress, reset the failure counter. A
2652 	 * successful direct reclaim run will revive a dormant kswapd.
2653 	 */
2654 	if (reclaimable)
2655 		pgdat->kswapd_failures = 0;
2656 
2657 	return reclaimable;
2658 }
2659 
2660 /*
2661  * Returns true if compaction should go ahead for a costly-order request, or
2662  * the allocation would already succeed without compaction. Return false if we
2663  * should reclaim first.
2664  */
2665 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2666 {
2667 	unsigned long watermark;
2668 	enum compact_result suitable;
2669 
2670 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2671 	if (suitable == COMPACT_SUCCESS)
2672 		/* Allocation should succeed already. Don't reclaim. */
2673 		return true;
2674 	if (suitable == COMPACT_SKIPPED)
2675 		/* Compaction cannot yet proceed. Do reclaim. */
2676 		return false;
2677 
2678 	/*
2679 	 * Compaction is already possible, but it takes time to run and there
2680 	 * are potentially other callers using the pages just freed. So proceed
2681 	 * with reclaim to make a buffer of free pages available to give
2682 	 * compaction a reasonable chance of completing and allocating the page.
2683 	 * Note that we won't actually reclaim the whole buffer in one attempt
2684 	 * as the target watermark in should_continue_reclaim() is lower. But if
2685 	 * we are already above the high+gap watermark, don't reclaim at all.
2686 	 */
2687 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2688 
2689 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2690 }
2691 
2692 /*
2693  * This is the direct reclaim path, for page-allocating processes.  We only
2694  * try to reclaim pages from zones which will satisfy the caller's allocation
2695  * request.
2696  *
2697  * If a zone is deemed to be full of pinned pages then just give it a light
2698  * scan then give up on it.
2699  */
2700 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2701 {
2702 	struct zoneref *z;
2703 	struct zone *zone;
2704 	unsigned long nr_soft_reclaimed;
2705 	unsigned long nr_soft_scanned;
2706 	gfp_t orig_mask;
2707 	pg_data_t *last_pgdat = NULL;
2708 
2709 	/*
2710 	 * If the number of buffer_heads in the machine exceeds the maximum
2711 	 * allowed level, force direct reclaim to scan the highmem zone as
2712 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2713 	 */
2714 	orig_mask = sc->gfp_mask;
2715 	if (buffer_heads_over_limit) {
2716 		sc->gfp_mask |= __GFP_HIGHMEM;
2717 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2718 	}
2719 
2720 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2721 					sc->reclaim_idx, sc->nodemask) {
2722 		/*
2723 		 * Take care memory controller reclaiming has small influence
2724 		 * to global LRU.
2725 		 */
2726 		if (global_reclaim(sc)) {
2727 			if (!cpuset_zone_allowed(zone,
2728 						 GFP_KERNEL | __GFP_HARDWALL))
2729 				continue;
2730 
2731 			/*
2732 			 * If we already have plenty of memory free for
2733 			 * compaction in this zone, don't free any more.
2734 			 * Even though compaction is invoked for any
2735 			 * non-zero order, only frequent costly order
2736 			 * reclamation is disruptive enough to become a
2737 			 * noticeable problem, like transparent huge
2738 			 * page allocations.
2739 			 */
2740 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2741 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2742 			    compaction_ready(zone, sc)) {
2743 				sc->compaction_ready = true;
2744 				continue;
2745 			}
2746 
2747 			/*
2748 			 * Shrink each node in the zonelist once. If the
2749 			 * zonelist is ordered by zone (not the default) then a
2750 			 * node may be shrunk multiple times but in that case
2751 			 * the user prefers lower zones being preserved.
2752 			 */
2753 			if (zone->zone_pgdat == last_pgdat)
2754 				continue;
2755 
2756 			/*
2757 			 * This steals pages from memory cgroups over softlimit
2758 			 * and returns the number of reclaimed pages and
2759 			 * scanned pages. This works for global memory pressure
2760 			 * and balancing, not for a memcg's limit.
2761 			 */
2762 			nr_soft_scanned = 0;
2763 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2764 						sc->order, sc->gfp_mask,
2765 						&nr_soft_scanned);
2766 			sc->nr_reclaimed += nr_soft_reclaimed;
2767 			sc->nr_scanned += nr_soft_scanned;
2768 			/* need some check for avoid more shrink_zone() */
2769 		}
2770 
2771 		/* See comment about same check for global reclaim above */
2772 		if (zone->zone_pgdat == last_pgdat)
2773 			continue;
2774 		last_pgdat = zone->zone_pgdat;
2775 		shrink_node(zone->zone_pgdat, sc);
2776 	}
2777 
2778 	/*
2779 	 * Restore to original mask to avoid the impact on the caller if we
2780 	 * promoted it to __GFP_HIGHMEM.
2781 	 */
2782 	sc->gfp_mask = orig_mask;
2783 }
2784 
2785 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2786 {
2787 	struct mem_cgroup *memcg;
2788 
2789 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2790 	do {
2791 		unsigned long refaults;
2792 		struct lruvec *lruvec;
2793 
2794 		if (memcg)
2795 			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2796 		else
2797 			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2798 
2799 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2800 		lruvec->refaults = refaults;
2801 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2802 }
2803 
2804 /*
2805  * This is the main entry point to direct page reclaim.
2806  *
2807  * If a full scan of the inactive list fails to free enough memory then we
2808  * are "out of memory" and something needs to be killed.
2809  *
2810  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2811  * high - the zone may be full of dirty or under-writeback pages, which this
2812  * caller can't do much about.  We kick the writeback threads and take explicit
2813  * naps in the hope that some of these pages can be written.  But if the
2814  * allocating task holds filesystem locks which prevent writeout this might not
2815  * work, and the allocation attempt will fail.
2816  *
2817  * returns:	0, if no pages reclaimed
2818  * 		else, the number of pages reclaimed
2819  */
2820 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2821 					  struct scan_control *sc)
2822 {
2823 	int initial_priority = sc->priority;
2824 	pg_data_t *last_pgdat;
2825 	struct zoneref *z;
2826 	struct zone *zone;
2827 retry:
2828 	delayacct_freepages_start();
2829 
2830 	if (global_reclaim(sc))
2831 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2832 
2833 	do {
2834 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2835 				sc->priority);
2836 		sc->nr_scanned = 0;
2837 		shrink_zones(zonelist, sc);
2838 
2839 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2840 			break;
2841 
2842 		if (sc->compaction_ready)
2843 			break;
2844 
2845 		/*
2846 		 * If we're getting trouble reclaiming, start doing
2847 		 * writepage even in laptop mode.
2848 		 */
2849 		if (sc->priority < DEF_PRIORITY - 2)
2850 			sc->may_writepage = 1;
2851 	} while (--sc->priority >= 0);
2852 
2853 	last_pgdat = NULL;
2854 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2855 					sc->nodemask) {
2856 		if (zone->zone_pgdat == last_pgdat)
2857 			continue;
2858 		last_pgdat = zone->zone_pgdat;
2859 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2860 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
2861 	}
2862 
2863 	delayacct_freepages_end();
2864 
2865 	if (sc->nr_reclaimed)
2866 		return sc->nr_reclaimed;
2867 
2868 	/* Aborted reclaim to try compaction? don't OOM, then */
2869 	if (sc->compaction_ready)
2870 		return 1;
2871 
2872 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2873 	if (sc->memcg_low_skipped) {
2874 		sc->priority = initial_priority;
2875 		sc->memcg_low_reclaim = 1;
2876 		sc->memcg_low_skipped = 0;
2877 		goto retry;
2878 	}
2879 
2880 	return 0;
2881 }
2882 
2883 static bool allow_direct_reclaim(pg_data_t *pgdat)
2884 {
2885 	struct zone *zone;
2886 	unsigned long pfmemalloc_reserve = 0;
2887 	unsigned long free_pages = 0;
2888 	int i;
2889 	bool wmark_ok;
2890 
2891 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2892 		return true;
2893 
2894 	for (i = 0; i <= ZONE_NORMAL; i++) {
2895 		zone = &pgdat->node_zones[i];
2896 		if (!managed_zone(zone))
2897 			continue;
2898 
2899 		if (!zone_reclaimable_pages(zone))
2900 			continue;
2901 
2902 		pfmemalloc_reserve += min_wmark_pages(zone);
2903 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2904 	}
2905 
2906 	/* If there are no reserves (unexpected config) then do not throttle */
2907 	if (!pfmemalloc_reserve)
2908 		return true;
2909 
2910 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2911 
2912 	/* kswapd must be awake if processes are being throttled */
2913 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2914 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2915 						(enum zone_type)ZONE_NORMAL);
2916 		wake_up_interruptible(&pgdat->kswapd_wait);
2917 	}
2918 
2919 	return wmark_ok;
2920 }
2921 
2922 /*
2923  * Throttle direct reclaimers if backing storage is backed by the network
2924  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2925  * depleted. kswapd will continue to make progress and wake the processes
2926  * when the low watermark is reached.
2927  *
2928  * Returns true if a fatal signal was delivered during throttling. If this
2929  * happens, the page allocator should not consider triggering the OOM killer.
2930  */
2931 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2932 					nodemask_t *nodemask)
2933 {
2934 	struct zoneref *z;
2935 	struct zone *zone;
2936 	pg_data_t *pgdat = NULL;
2937 
2938 	/*
2939 	 * Kernel threads should not be throttled as they may be indirectly
2940 	 * responsible for cleaning pages necessary for reclaim to make forward
2941 	 * progress. kjournald for example may enter direct reclaim while
2942 	 * committing a transaction where throttling it could forcing other
2943 	 * processes to block on log_wait_commit().
2944 	 */
2945 	if (current->flags & PF_KTHREAD)
2946 		goto out;
2947 
2948 	/*
2949 	 * If a fatal signal is pending, this process should not throttle.
2950 	 * It should return quickly so it can exit and free its memory
2951 	 */
2952 	if (fatal_signal_pending(current))
2953 		goto out;
2954 
2955 	/*
2956 	 * Check if the pfmemalloc reserves are ok by finding the first node
2957 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2958 	 * GFP_KERNEL will be required for allocating network buffers when
2959 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2960 	 *
2961 	 * Throttling is based on the first usable node and throttled processes
2962 	 * wait on a queue until kswapd makes progress and wakes them. There
2963 	 * is an affinity then between processes waking up and where reclaim
2964 	 * progress has been made assuming the process wakes on the same node.
2965 	 * More importantly, processes running on remote nodes will not compete
2966 	 * for remote pfmemalloc reserves and processes on different nodes
2967 	 * should make reasonable progress.
2968 	 */
2969 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2970 					gfp_zone(gfp_mask), nodemask) {
2971 		if (zone_idx(zone) > ZONE_NORMAL)
2972 			continue;
2973 
2974 		/* Throttle based on the first usable node */
2975 		pgdat = zone->zone_pgdat;
2976 		if (allow_direct_reclaim(pgdat))
2977 			goto out;
2978 		break;
2979 	}
2980 
2981 	/* If no zone was usable by the allocation flags then do not throttle */
2982 	if (!pgdat)
2983 		goto out;
2984 
2985 	/* Account for the throttling */
2986 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2987 
2988 	/*
2989 	 * If the caller cannot enter the filesystem, it's possible that it
2990 	 * is due to the caller holding an FS lock or performing a journal
2991 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2992 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2993 	 * blocked waiting on the same lock. Instead, throttle for up to a
2994 	 * second before continuing.
2995 	 */
2996 	if (!(gfp_mask & __GFP_FS)) {
2997 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2998 			allow_direct_reclaim(pgdat), HZ);
2999 
3000 		goto check_pending;
3001 	}
3002 
3003 	/* Throttle until kswapd wakes the process */
3004 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3005 		allow_direct_reclaim(pgdat));
3006 
3007 check_pending:
3008 	if (fatal_signal_pending(current))
3009 		return true;
3010 
3011 out:
3012 	return false;
3013 }
3014 
3015 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3016 				gfp_t gfp_mask, nodemask_t *nodemask)
3017 {
3018 	unsigned long nr_reclaimed;
3019 	struct scan_control sc = {
3020 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3021 		.gfp_mask = current_gfp_context(gfp_mask),
3022 		.reclaim_idx = gfp_zone(gfp_mask),
3023 		.order = order,
3024 		.nodemask = nodemask,
3025 		.priority = DEF_PRIORITY,
3026 		.may_writepage = !laptop_mode,
3027 		.may_unmap = 1,
3028 		.may_swap = 1,
3029 	};
3030 
3031 	/*
3032 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3033 	 * 1 is returned so that the page allocator does not OOM kill at this
3034 	 * point.
3035 	 */
3036 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3037 		return 1;
3038 
3039 	trace_mm_vmscan_direct_reclaim_begin(order,
3040 				sc.may_writepage,
3041 				sc.gfp_mask,
3042 				sc.reclaim_idx);
3043 
3044 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3045 
3046 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3047 
3048 	return nr_reclaimed;
3049 }
3050 
3051 #ifdef CONFIG_MEMCG
3052 
3053 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3054 						gfp_t gfp_mask, bool noswap,
3055 						pg_data_t *pgdat,
3056 						unsigned long *nr_scanned)
3057 {
3058 	struct scan_control sc = {
3059 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3060 		.target_mem_cgroup = memcg,
3061 		.may_writepage = !laptop_mode,
3062 		.may_unmap = 1,
3063 		.reclaim_idx = MAX_NR_ZONES - 1,
3064 		.may_swap = !noswap,
3065 	};
3066 	unsigned long lru_pages;
3067 
3068 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3069 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3070 
3071 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3072 						      sc.may_writepage,
3073 						      sc.gfp_mask,
3074 						      sc.reclaim_idx);
3075 
3076 	/*
3077 	 * NOTE: Although we can get the priority field, using it
3078 	 * here is not a good idea, since it limits the pages we can scan.
3079 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3080 	 * will pick up pages from other mem cgroup's as well. We hack
3081 	 * the priority and make it zero.
3082 	 */
3083 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3084 
3085 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3086 
3087 	*nr_scanned = sc.nr_scanned;
3088 	return sc.nr_reclaimed;
3089 }
3090 
3091 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3092 					   unsigned long nr_pages,
3093 					   gfp_t gfp_mask,
3094 					   bool may_swap)
3095 {
3096 	struct zonelist *zonelist;
3097 	unsigned long nr_reclaimed;
3098 	int nid;
3099 	unsigned int noreclaim_flag;
3100 	struct scan_control sc = {
3101 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3102 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3103 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3104 		.reclaim_idx = MAX_NR_ZONES - 1,
3105 		.target_mem_cgroup = memcg,
3106 		.priority = DEF_PRIORITY,
3107 		.may_writepage = !laptop_mode,
3108 		.may_unmap = 1,
3109 		.may_swap = may_swap,
3110 	};
3111 
3112 	/*
3113 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3114 	 * take care of from where we get pages. So the node where we start the
3115 	 * scan does not need to be the current node.
3116 	 */
3117 	nid = mem_cgroup_select_victim_node(memcg);
3118 
3119 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3120 
3121 	trace_mm_vmscan_memcg_reclaim_begin(0,
3122 					    sc.may_writepage,
3123 					    sc.gfp_mask,
3124 					    sc.reclaim_idx);
3125 
3126 	noreclaim_flag = memalloc_noreclaim_save();
3127 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3128 	memalloc_noreclaim_restore(noreclaim_flag);
3129 
3130 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3131 
3132 	return nr_reclaimed;
3133 }
3134 #endif
3135 
3136 static void age_active_anon(struct pglist_data *pgdat,
3137 				struct scan_control *sc)
3138 {
3139 	struct mem_cgroup *memcg;
3140 
3141 	if (!total_swap_pages)
3142 		return;
3143 
3144 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3145 	do {
3146 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3147 
3148 		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3149 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3150 					   sc, LRU_ACTIVE_ANON);
3151 
3152 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3153 	} while (memcg);
3154 }
3155 
3156 /*
3157  * Returns true if there is an eligible zone balanced for the request order
3158  * and classzone_idx
3159  */
3160 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3161 {
3162 	int i;
3163 	unsigned long mark = -1;
3164 	struct zone *zone;
3165 
3166 	for (i = 0; i <= classzone_idx; i++) {
3167 		zone = pgdat->node_zones + i;
3168 
3169 		if (!managed_zone(zone))
3170 			continue;
3171 
3172 		mark = high_wmark_pages(zone);
3173 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3174 			return true;
3175 	}
3176 
3177 	/*
3178 	 * If a node has no populated zone within classzone_idx, it does not
3179 	 * need balancing by definition. This can happen if a zone-restricted
3180 	 * allocation tries to wake a remote kswapd.
3181 	 */
3182 	if (mark == -1)
3183 		return true;
3184 
3185 	return false;
3186 }
3187 
3188 /* Clear pgdat state for congested, dirty or under writeback. */
3189 static void clear_pgdat_congested(pg_data_t *pgdat)
3190 {
3191 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3192 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3193 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3194 }
3195 
3196 /*
3197  * Prepare kswapd for sleeping. This verifies that there are no processes
3198  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3199  *
3200  * Returns true if kswapd is ready to sleep
3201  */
3202 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3203 {
3204 	/*
3205 	 * The throttled processes are normally woken up in balance_pgdat() as
3206 	 * soon as allow_direct_reclaim() is true. But there is a potential
3207 	 * race between when kswapd checks the watermarks and a process gets
3208 	 * throttled. There is also a potential race if processes get
3209 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3210 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3211 	 * the wake up checks. If kswapd is going to sleep, no process should
3212 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3213 	 * the wake up is premature, processes will wake kswapd and get
3214 	 * throttled again. The difference from wake ups in balance_pgdat() is
3215 	 * that here we are under prepare_to_wait().
3216 	 */
3217 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3218 		wake_up_all(&pgdat->pfmemalloc_wait);
3219 
3220 	/* Hopeless node, leave it to direct reclaim */
3221 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3222 		return true;
3223 
3224 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3225 		clear_pgdat_congested(pgdat);
3226 		return true;
3227 	}
3228 
3229 	return false;
3230 }
3231 
3232 /*
3233  * kswapd shrinks a node of pages that are at or below the highest usable
3234  * zone that is currently unbalanced.
3235  *
3236  * Returns true if kswapd scanned at least the requested number of pages to
3237  * reclaim or if the lack of progress was due to pages under writeback.
3238  * This is used to determine if the scanning priority needs to be raised.
3239  */
3240 static bool kswapd_shrink_node(pg_data_t *pgdat,
3241 			       struct scan_control *sc)
3242 {
3243 	struct zone *zone;
3244 	int z;
3245 
3246 	/* Reclaim a number of pages proportional to the number of zones */
3247 	sc->nr_to_reclaim = 0;
3248 	for (z = 0; z <= sc->reclaim_idx; z++) {
3249 		zone = pgdat->node_zones + z;
3250 		if (!managed_zone(zone))
3251 			continue;
3252 
3253 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3254 	}
3255 
3256 	/*
3257 	 * Historically care was taken to put equal pressure on all zones but
3258 	 * now pressure is applied based on node LRU order.
3259 	 */
3260 	shrink_node(pgdat, sc);
3261 
3262 	/*
3263 	 * Fragmentation may mean that the system cannot be rebalanced for
3264 	 * high-order allocations. If twice the allocation size has been
3265 	 * reclaimed then recheck watermarks only at order-0 to prevent
3266 	 * excessive reclaim. Assume that a process requested a high-order
3267 	 * can direct reclaim/compact.
3268 	 */
3269 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3270 		sc->order = 0;
3271 
3272 	return sc->nr_scanned >= sc->nr_to_reclaim;
3273 }
3274 
3275 /*
3276  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3277  * that are eligible for use by the caller until at least one zone is
3278  * balanced.
3279  *
3280  * Returns the order kswapd finished reclaiming at.
3281  *
3282  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3283  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3284  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3285  * or lower is eligible for reclaim until at least one usable zone is
3286  * balanced.
3287  */
3288 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3289 {
3290 	int i;
3291 	unsigned long nr_soft_reclaimed;
3292 	unsigned long nr_soft_scanned;
3293 	struct zone *zone;
3294 	struct scan_control sc = {
3295 		.gfp_mask = GFP_KERNEL,
3296 		.order = order,
3297 		.priority = DEF_PRIORITY,
3298 		.may_writepage = !laptop_mode,
3299 		.may_unmap = 1,
3300 		.may_swap = 1,
3301 	};
3302 	count_vm_event(PAGEOUTRUN);
3303 
3304 	do {
3305 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3306 		bool raise_priority = true;
3307 
3308 		sc.reclaim_idx = classzone_idx;
3309 
3310 		/*
3311 		 * If the number of buffer_heads exceeds the maximum allowed
3312 		 * then consider reclaiming from all zones. This has a dual
3313 		 * purpose -- on 64-bit systems it is expected that
3314 		 * buffer_heads are stripped during active rotation. On 32-bit
3315 		 * systems, highmem pages can pin lowmem memory and shrinking
3316 		 * buffers can relieve lowmem pressure. Reclaim may still not
3317 		 * go ahead if all eligible zones for the original allocation
3318 		 * request are balanced to avoid excessive reclaim from kswapd.
3319 		 */
3320 		if (buffer_heads_over_limit) {
3321 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3322 				zone = pgdat->node_zones + i;
3323 				if (!managed_zone(zone))
3324 					continue;
3325 
3326 				sc.reclaim_idx = i;
3327 				break;
3328 			}
3329 		}
3330 
3331 		/*
3332 		 * Only reclaim if there are no eligible zones. Note that
3333 		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3334 		 * have adjusted it.
3335 		 */
3336 		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3337 			goto out;
3338 
3339 		/*
3340 		 * Do some background aging of the anon list, to give
3341 		 * pages a chance to be referenced before reclaiming. All
3342 		 * pages are rotated regardless of classzone as this is
3343 		 * about consistent aging.
3344 		 */
3345 		age_active_anon(pgdat, &sc);
3346 
3347 		/*
3348 		 * If we're getting trouble reclaiming, start doing writepage
3349 		 * even in laptop mode.
3350 		 */
3351 		if (sc.priority < DEF_PRIORITY - 2)
3352 			sc.may_writepage = 1;
3353 
3354 		/* Call soft limit reclaim before calling shrink_node. */
3355 		sc.nr_scanned = 0;
3356 		nr_soft_scanned = 0;
3357 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3358 						sc.gfp_mask, &nr_soft_scanned);
3359 		sc.nr_reclaimed += nr_soft_reclaimed;
3360 
3361 		/*
3362 		 * There should be no need to raise the scanning priority if
3363 		 * enough pages are already being scanned that that high
3364 		 * watermark would be met at 100% efficiency.
3365 		 */
3366 		if (kswapd_shrink_node(pgdat, &sc))
3367 			raise_priority = false;
3368 
3369 		/*
3370 		 * If the low watermark is met there is no need for processes
3371 		 * to be throttled on pfmemalloc_wait as they should not be
3372 		 * able to safely make forward progress. Wake them
3373 		 */
3374 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3375 				allow_direct_reclaim(pgdat))
3376 			wake_up_all(&pgdat->pfmemalloc_wait);
3377 
3378 		/* Check if kswapd should be suspending */
3379 		if (try_to_freeze() || kthread_should_stop())
3380 			break;
3381 
3382 		/*
3383 		 * Raise priority if scanning rate is too low or there was no
3384 		 * progress in reclaiming pages
3385 		 */
3386 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3387 		if (raise_priority || !nr_reclaimed)
3388 			sc.priority--;
3389 	} while (sc.priority >= 1);
3390 
3391 	if (!sc.nr_reclaimed)
3392 		pgdat->kswapd_failures++;
3393 
3394 out:
3395 	snapshot_refaults(NULL, pgdat);
3396 	/*
3397 	 * Return the order kswapd stopped reclaiming at as
3398 	 * prepare_kswapd_sleep() takes it into account. If another caller
3399 	 * entered the allocator slow path while kswapd was awake, order will
3400 	 * remain at the higher level.
3401 	 */
3402 	return sc.order;
3403 }
3404 
3405 /*
3406  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3407  * allocation request woke kswapd for. When kswapd has not woken recently,
3408  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3409  * given classzone and returns it or the highest classzone index kswapd
3410  * was recently woke for.
3411  */
3412 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3413 					   enum zone_type classzone_idx)
3414 {
3415 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3416 		return classzone_idx;
3417 
3418 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3419 }
3420 
3421 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3422 				unsigned int classzone_idx)
3423 {
3424 	long remaining = 0;
3425 	DEFINE_WAIT(wait);
3426 
3427 	if (freezing(current) || kthread_should_stop())
3428 		return;
3429 
3430 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3431 
3432 	/*
3433 	 * Try to sleep for a short interval. Note that kcompactd will only be
3434 	 * woken if it is possible to sleep for a short interval. This is
3435 	 * deliberate on the assumption that if reclaim cannot keep an
3436 	 * eligible zone balanced that it's also unlikely that compaction will
3437 	 * succeed.
3438 	 */
3439 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3440 		/*
3441 		 * Compaction records what page blocks it recently failed to
3442 		 * isolate pages from and skips them in the future scanning.
3443 		 * When kswapd is going to sleep, it is reasonable to assume
3444 		 * that pages and compaction may succeed so reset the cache.
3445 		 */
3446 		reset_isolation_suitable(pgdat);
3447 
3448 		/*
3449 		 * We have freed the memory, now we should compact it to make
3450 		 * allocation of the requested order possible.
3451 		 */
3452 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3453 
3454 		remaining = schedule_timeout(HZ/10);
3455 
3456 		/*
3457 		 * If woken prematurely then reset kswapd_classzone_idx and
3458 		 * order. The values will either be from a wakeup request or
3459 		 * the previous request that slept prematurely.
3460 		 */
3461 		if (remaining) {
3462 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3463 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3464 		}
3465 
3466 		finish_wait(&pgdat->kswapd_wait, &wait);
3467 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3468 	}
3469 
3470 	/*
3471 	 * After a short sleep, check if it was a premature sleep. If not, then
3472 	 * go fully to sleep until explicitly woken up.
3473 	 */
3474 	if (!remaining &&
3475 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3476 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3477 
3478 		/*
3479 		 * vmstat counters are not perfectly accurate and the estimated
3480 		 * value for counters such as NR_FREE_PAGES can deviate from the
3481 		 * true value by nr_online_cpus * threshold. To avoid the zone
3482 		 * watermarks being breached while under pressure, we reduce the
3483 		 * per-cpu vmstat threshold while kswapd is awake and restore
3484 		 * them before going back to sleep.
3485 		 */
3486 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3487 
3488 		if (!kthread_should_stop())
3489 			schedule();
3490 
3491 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3492 	} else {
3493 		if (remaining)
3494 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3495 		else
3496 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3497 	}
3498 	finish_wait(&pgdat->kswapd_wait, &wait);
3499 }
3500 
3501 /*
3502  * The background pageout daemon, started as a kernel thread
3503  * from the init process.
3504  *
3505  * This basically trickles out pages so that we have _some_
3506  * free memory available even if there is no other activity
3507  * that frees anything up. This is needed for things like routing
3508  * etc, where we otherwise might have all activity going on in
3509  * asynchronous contexts that cannot page things out.
3510  *
3511  * If there are applications that are active memory-allocators
3512  * (most normal use), this basically shouldn't matter.
3513  */
3514 static int kswapd(void *p)
3515 {
3516 	unsigned int alloc_order, reclaim_order;
3517 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3518 	pg_data_t *pgdat = (pg_data_t*)p;
3519 	struct task_struct *tsk = current;
3520 
3521 	struct reclaim_state reclaim_state = {
3522 		.reclaimed_slab = 0,
3523 	};
3524 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3525 
3526 	if (!cpumask_empty(cpumask))
3527 		set_cpus_allowed_ptr(tsk, cpumask);
3528 	current->reclaim_state = &reclaim_state;
3529 
3530 	/*
3531 	 * Tell the memory management that we're a "memory allocator",
3532 	 * and that if we need more memory we should get access to it
3533 	 * regardless (see "__alloc_pages()"). "kswapd" should
3534 	 * never get caught in the normal page freeing logic.
3535 	 *
3536 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3537 	 * you need a small amount of memory in order to be able to
3538 	 * page out something else, and this flag essentially protects
3539 	 * us from recursively trying to free more memory as we're
3540 	 * trying to free the first piece of memory in the first place).
3541 	 */
3542 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3543 	set_freezable();
3544 
3545 	pgdat->kswapd_order = 0;
3546 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3547 	for ( ; ; ) {
3548 		bool ret;
3549 
3550 		alloc_order = reclaim_order = pgdat->kswapd_order;
3551 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3552 
3553 kswapd_try_sleep:
3554 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3555 					classzone_idx);
3556 
3557 		/* Read the new order and classzone_idx */
3558 		alloc_order = reclaim_order = pgdat->kswapd_order;
3559 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3560 		pgdat->kswapd_order = 0;
3561 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3562 
3563 		ret = try_to_freeze();
3564 		if (kthread_should_stop())
3565 			break;
3566 
3567 		/*
3568 		 * We can speed up thawing tasks if we don't call balance_pgdat
3569 		 * after returning from the refrigerator
3570 		 */
3571 		if (ret)
3572 			continue;
3573 
3574 		/*
3575 		 * Reclaim begins at the requested order but if a high-order
3576 		 * reclaim fails then kswapd falls back to reclaiming for
3577 		 * order-0. If that happens, kswapd will consider sleeping
3578 		 * for the order it finished reclaiming at (reclaim_order)
3579 		 * but kcompactd is woken to compact for the original
3580 		 * request (alloc_order).
3581 		 */
3582 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3583 						alloc_order);
3584 		fs_reclaim_acquire(GFP_KERNEL);
3585 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3586 		fs_reclaim_release(GFP_KERNEL);
3587 		if (reclaim_order < alloc_order)
3588 			goto kswapd_try_sleep;
3589 	}
3590 
3591 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3592 	current->reclaim_state = NULL;
3593 
3594 	return 0;
3595 }
3596 
3597 /*
3598  * A zone is low on free memory or too fragmented for high-order memory.  If
3599  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3600  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3601  * has failed or is not needed, still wake up kcompactd if only compaction is
3602  * needed.
3603  */
3604 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3605 		   enum zone_type classzone_idx)
3606 {
3607 	pg_data_t *pgdat;
3608 
3609 	if (!managed_zone(zone))
3610 		return;
3611 
3612 	if (!cpuset_zone_allowed(zone, gfp_flags))
3613 		return;
3614 	pgdat = zone->zone_pgdat;
3615 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3616 							   classzone_idx);
3617 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3618 	if (!waitqueue_active(&pgdat->kswapd_wait))
3619 		return;
3620 
3621 	/* Hopeless node, leave it to direct reclaim if possible */
3622 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3623 	    pgdat_balanced(pgdat, order, classzone_idx)) {
3624 		/*
3625 		 * There may be plenty of free memory available, but it's too
3626 		 * fragmented for high-order allocations.  Wake up kcompactd
3627 		 * and rely on compaction_suitable() to determine if it's
3628 		 * needed.  If it fails, it will defer subsequent attempts to
3629 		 * ratelimit its work.
3630 		 */
3631 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3632 			wakeup_kcompactd(pgdat, order, classzone_idx);
3633 		return;
3634 	}
3635 
3636 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3637 				      gfp_flags);
3638 	wake_up_interruptible(&pgdat->kswapd_wait);
3639 }
3640 
3641 #ifdef CONFIG_HIBERNATION
3642 /*
3643  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3644  * freed pages.
3645  *
3646  * Rather than trying to age LRUs the aim is to preserve the overall
3647  * LRU order by reclaiming preferentially
3648  * inactive > active > active referenced > active mapped
3649  */
3650 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3651 {
3652 	struct reclaim_state reclaim_state;
3653 	struct scan_control sc = {
3654 		.nr_to_reclaim = nr_to_reclaim,
3655 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3656 		.reclaim_idx = MAX_NR_ZONES - 1,
3657 		.priority = DEF_PRIORITY,
3658 		.may_writepage = 1,
3659 		.may_unmap = 1,
3660 		.may_swap = 1,
3661 		.hibernation_mode = 1,
3662 	};
3663 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3664 	struct task_struct *p = current;
3665 	unsigned long nr_reclaimed;
3666 	unsigned int noreclaim_flag;
3667 
3668 	noreclaim_flag = memalloc_noreclaim_save();
3669 	fs_reclaim_acquire(sc.gfp_mask);
3670 	reclaim_state.reclaimed_slab = 0;
3671 	p->reclaim_state = &reclaim_state;
3672 
3673 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3674 
3675 	p->reclaim_state = NULL;
3676 	fs_reclaim_release(sc.gfp_mask);
3677 	memalloc_noreclaim_restore(noreclaim_flag);
3678 
3679 	return nr_reclaimed;
3680 }
3681 #endif /* CONFIG_HIBERNATION */
3682 
3683 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3684    not required for correctness.  So if the last cpu in a node goes
3685    away, we get changed to run anywhere: as the first one comes back,
3686    restore their cpu bindings. */
3687 static int kswapd_cpu_online(unsigned int cpu)
3688 {
3689 	int nid;
3690 
3691 	for_each_node_state(nid, N_MEMORY) {
3692 		pg_data_t *pgdat = NODE_DATA(nid);
3693 		const struct cpumask *mask;
3694 
3695 		mask = cpumask_of_node(pgdat->node_id);
3696 
3697 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3698 			/* One of our CPUs online: restore mask */
3699 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3700 	}
3701 	return 0;
3702 }
3703 
3704 /*
3705  * This kswapd start function will be called by init and node-hot-add.
3706  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3707  */
3708 int kswapd_run(int nid)
3709 {
3710 	pg_data_t *pgdat = NODE_DATA(nid);
3711 	int ret = 0;
3712 
3713 	if (pgdat->kswapd)
3714 		return 0;
3715 
3716 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3717 	if (IS_ERR(pgdat->kswapd)) {
3718 		/* failure at boot is fatal */
3719 		BUG_ON(system_state < SYSTEM_RUNNING);
3720 		pr_err("Failed to start kswapd on node %d\n", nid);
3721 		ret = PTR_ERR(pgdat->kswapd);
3722 		pgdat->kswapd = NULL;
3723 	}
3724 	return ret;
3725 }
3726 
3727 /*
3728  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3729  * hold mem_hotplug_begin/end().
3730  */
3731 void kswapd_stop(int nid)
3732 {
3733 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3734 
3735 	if (kswapd) {
3736 		kthread_stop(kswapd);
3737 		NODE_DATA(nid)->kswapd = NULL;
3738 	}
3739 }
3740 
3741 static int __init kswapd_init(void)
3742 {
3743 	int nid, ret;
3744 
3745 	swap_setup();
3746 	for_each_node_state(nid, N_MEMORY)
3747  		kswapd_run(nid);
3748 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3749 					"mm/vmscan:online", kswapd_cpu_online,
3750 					NULL);
3751 	WARN_ON(ret < 0);
3752 	return 0;
3753 }
3754 
3755 module_init(kswapd_init)
3756 
3757 #ifdef CONFIG_NUMA
3758 /*
3759  * Node reclaim mode
3760  *
3761  * If non-zero call node_reclaim when the number of free pages falls below
3762  * the watermarks.
3763  */
3764 int node_reclaim_mode __read_mostly;
3765 
3766 #define RECLAIM_OFF 0
3767 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3768 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3769 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3770 
3771 /*
3772  * Priority for NODE_RECLAIM. This determines the fraction of pages
3773  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3774  * a zone.
3775  */
3776 #define NODE_RECLAIM_PRIORITY 4
3777 
3778 /*
3779  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3780  * occur.
3781  */
3782 int sysctl_min_unmapped_ratio = 1;
3783 
3784 /*
3785  * If the number of slab pages in a zone grows beyond this percentage then
3786  * slab reclaim needs to occur.
3787  */
3788 int sysctl_min_slab_ratio = 5;
3789 
3790 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3791 {
3792 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3793 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3794 		node_page_state(pgdat, NR_ACTIVE_FILE);
3795 
3796 	/*
3797 	 * It's possible for there to be more file mapped pages than
3798 	 * accounted for by the pages on the file LRU lists because
3799 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3800 	 */
3801 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3802 }
3803 
3804 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3805 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3806 {
3807 	unsigned long nr_pagecache_reclaimable;
3808 	unsigned long delta = 0;
3809 
3810 	/*
3811 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3812 	 * potentially reclaimable. Otherwise, we have to worry about
3813 	 * pages like swapcache and node_unmapped_file_pages() provides
3814 	 * a better estimate
3815 	 */
3816 	if (node_reclaim_mode & RECLAIM_UNMAP)
3817 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3818 	else
3819 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3820 
3821 	/* If we can't clean pages, remove dirty pages from consideration */
3822 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3823 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3824 
3825 	/* Watch for any possible underflows due to delta */
3826 	if (unlikely(delta > nr_pagecache_reclaimable))
3827 		delta = nr_pagecache_reclaimable;
3828 
3829 	return nr_pagecache_reclaimable - delta;
3830 }
3831 
3832 /*
3833  * Try to free up some pages from this node through reclaim.
3834  */
3835 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3836 {
3837 	/* Minimum pages needed in order to stay on node */
3838 	const unsigned long nr_pages = 1 << order;
3839 	struct task_struct *p = current;
3840 	struct reclaim_state reclaim_state;
3841 	unsigned int noreclaim_flag;
3842 	struct scan_control sc = {
3843 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3844 		.gfp_mask = current_gfp_context(gfp_mask),
3845 		.order = order,
3846 		.priority = NODE_RECLAIM_PRIORITY,
3847 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3848 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3849 		.may_swap = 1,
3850 		.reclaim_idx = gfp_zone(gfp_mask),
3851 	};
3852 
3853 	cond_resched();
3854 	/*
3855 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3856 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3857 	 * and RECLAIM_UNMAP.
3858 	 */
3859 	noreclaim_flag = memalloc_noreclaim_save();
3860 	p->flags |= PF_SWAPWRITE;
3861 	fs_reclaim_acquire(sc.gfp_mask);
3862 	reclaim_state.reclaimed_slab = 0;
3863 	p->reclaim_state = &reclaim_state;
3864 
3865 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3866 		/*
3867 		 * Free memory by calling shrink node with increasing
3868 		 * priorities until we have enough memory freed.
3869 		 */
3870 		do {
3871 			shrink_node(pgdat, &sc);
3872 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3873 	}
3874 
3875 	p->reclaim_state = NULL;
3876 	fs_reclaim_release(gfp_mask);
3877 	current->flags &= ~PF_SWAPWRITE;
3878 	memalloc_noreclaim_restore(noreclaim_flag);
3879 	return sc.nr_reclaimed >= nr_pages;
3880 }
3881 
3882 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3883 {
3884 	int ret;
3885 
3886 	/*
3887 	 * Node reclaim reclaims unmapped file backed pages and
3888 	 * slab pages if we are over the defined limits.
3889 	 *
3890 	 * A small portion of unmapped file backed pages is needed for
3891 	 * file I/O otherwise pages read by file I/O will be immediately
3892 	 * thrown out if the node is overallocated. So we do not reclaim
3893 	 * if less than a specified percentage of the node is used by
3894 	 * unmapped file backed pages.
3895 	 */
3896 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3897 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3898 		return NODE_RECLAIM_FULL;
3899 
3900 	/*
3901 	 * Do not scan if the allocation should not be delayed.
3902 	 */
3903 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3904 		return NODE_RECLAIM_NOSCAN;
3905 
3906 	/*
3907 	 * Only run node reclaim on the local node or on nodes that do not
3908 	 * have associated processors. This will favor the local processor
3909 	 * over remote processors and spread off node memory allocations
3910 	 * as wide as possible.
3911 	 */
3912 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3913 		return NODE_RECLAIM_NOSCAN;
3914 
3915 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3916 		return NODE_RECLAIM_NOSCAN;
3917 
3918 	ret = __node_reclaim(pgdat, gfp_mask, order);
3919 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3920 
3921 	if (!ret)
3922 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3923 
3924 	return ret;
3925 }
3926 #endif
3927 
3928 /*
3929  * page_evictable - test whether a page is evictable
3930  * @page: the page to test
3931  *
3932  * Test whether page is evictable--i.e., should be placed on active/inactive
3933  * lists vs unevictable list.
3934  *
3935  * Reasons page might not be evictable:
3936  * (1) page's mapping marked unevictable
3937  * (2) page is part of an mlocked VMA
3938  *
3939  */
3940 int page_evictable(struct page *page)
3941 {
3942 	int ret;
3943 
3944 	/* Prevent address_space of inode and swap cache from being freed */
3945 	rcu_read_lock();
3946 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3947 	rcu_read_unlock();
3948 	return ret;
3949 }
3950 
3951 #ifdef CONFIG_SHMEM
3952 /**
3953  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3954  * @pages:	array of pages to check
3955  * @nr_pages:	number of pages to check
3956  *
3957  * Checks pages for evictability and moves them to the appropriate lru list.
3958  *
3959  * This function is only used for SysV IPC SHM_UNLOCK.
3960  */
3961 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3962 {
3963 	struct lruvec *lruvec;
3964 	struct pglist_data *pgdat = NULL;
3965 	int pgscanned = 0;
3966 	int pgrescued = 0;
3967 	int i;
3968 
3969 	for (i = 0; i < nr_pages; i++) {
3970 		struct page *page = pages[i];
3971 		struct pglist_data *pagepgdat = page_pgdat(page);
3972 
3973 		pgscanned++;
3974 		if (pagepgdat != pgdat) {
3975 			if (pgdat)
3976 				spin_unlock_irq(&pgdat->lru_lock);
3977 			pgdat = pagepgdat;
3978 			spin_lock_irq(&pgdat->lru_lock);
3979 		}
3980 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3981 
3982 		if (!PageLRU(page) || !PageUnevictable(page))
3983 			continue;
3984 
3985 		if (page_evictable(page)) {
3986 			enum lru_list lru = page_lru_base_type(page);
3987 
3988 			VM_BUG_ON_PAGE(PageActive(page), page);
3989 			ClearPageUnevictable(page);
3990 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3991 			add_page_to_lru_list(page, lruvec, lru);
3992 			pgrescued++;
3993 		}
3994 	}
3995 
3996 	if (pgdat) {
3997 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3998 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3999 		spin_unlock_irq(&pgdat->lru_lock);
4000 	}
4001 }
4002 #endif /* CONFIG_SHMEM */
4003