xref: /linux/mm/vmscan.c (revision 3b812ecce736432e6b55e77028ea387eb1517d24)
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50 
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56 
57 #include "internal.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61 
62 struct scan_control {
63 	/* How many pages shrink_list() should reclaim */
64 	unsigned long nr_to_reclaim;
65 
66 	/* This context's GFP mask */
67 	gfp_t gfp_mask;
68 
69 	/* Allocation order */
70 	int order;
71 
72 	/*
73 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 	 * are scanned.
75 	 */
76 	nodemask_t	*nodemask;
77 
78 	/*
79 	 * The memory cgroup that hit its limit and as a result is the
80 	 * primary target of this reclaim invocation.
81 	 */
82 	struct mem_cgroup *target_mem_cgroup;
83 
84 	/* Scan (total_size >> priority) pages at once */
85 	int priority;
86 
87 	unsigned int may_writepage:1;
88 
89 	/* Can mapped pages be reclaimed? */
90 	unsigned int may_unmap:1;
91 
92 	/* Can pages be swapped as part of reclaim? */
93 	unsigned int may_swap:1;
94 
95 	/* Can cgroups be reclaimed below their normal consumption range? */
96 	unsigned int may_thrash:1;
97 
98 	unsigned int hibernation_mode:1;
99 
100 	/* One of the zones is ready for compaction */
101 	unsigned int compaction_ready:1;
102 
103 	/* Incremented by the number of inactive pages that were scanned */
104 	unsigned long nr_scanned;
105 
106 	/* Number of pages freed so far during a call to shrink_zones() */
107 	unsigned long nr_reclaimed;
108 };
109 
110 #ifdef ARCH_HAS_PREFETCH
111 #define prefetch_prev_lru_page(_page, _base, _field)			\
112 	do {								\
113 		if ((_page)->lru.prev != _base) {			\
114 			struct page *prev;				\
115 									\
116 			prev = lru_to_page(&(_page->lru));		\
117 			prefetch(&prev->_field);			\
118 		}							\
119 	} while (0)
120 #else
121 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
122 #endif
123 
124 #ifdef ARCH_HAS_PREFETCHW
125 #define prefetchw_prev_lru_page(_page, _base, _field)			\
126 	do {								\
127 		if ((_page)->lru.prev != _base) {			\
128 			struct page *prev;				\
129 									\
130 			prev = lru_to_page(&(_page->lru));		\
131 			prefetchw(&prev->_field);			\
132 		}							\
133 	} while (0)
134 #else
135 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
136 #endif
137 
138 /*
139  * From 0 .. 100.  Higher means more swappy.
140  */
141 int vm_swappiness = 60;
142 /*
143  * The total number of pages which are beyond the high watermark within all
144  * zones.
145  */
146 unsigned long vm_total_pages;
147 
148 static LIST_HEAD(shrinker_list);
149 static DECLARE_RWSEM(shrinker_rwsem);
150 
151 #ifdef CONFIG_MEMCG
152 static bool global_reclaim(struct scan_control *sc)
153 {
154 	return !sc->target_mem_cgroup;
155 }
156 
157 /**
158  * sane_reclaim - is the usual dirty throttling mechanism operational?
159  * @sc: scan_control in question
160  *
161  * The normal page dirty throttling mechanism in balance_dirty_pages() is
162  * completely broken with the legacy memcg and direct stalling in
163  * shrink_page_list() is used for throttling instead, which lacks all the
164  * niceties such as fairness, adaptive pausing, bandwidth proportional
165  * allocation and configurability.
166  *
167  * This function tests whether the vmscan currently in progress can assume
168  * that the normal dirty throttling mechanism is operational.
169  */
170 static bool sane_reclaim(struct scan_control *sc)
171 {
172 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
173 
174 	if (!memcg)
175 		return true;
176 #ifdef CONFIG_CGROUP_WRITEBACK
177 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
178 		return true;
179 #endif
180 	return false;
181 }
182 #else
183 static bool global_reclaim(struct scan_control *sc)
184 {
185 	return true;
186 }
187 
188 static bool sane_reclaim(struct scan_control *sc)
189 {
190 	return true;
191 }
192 #endif
193 
194 static unsigned long zone_reclaimable_pages(struct zone *zone)
195 {
196 	unsigned long nr;
197 
198 	nr = zone_page_state_snapshot(zone, NR_ACTIVE_FILE) +
199 	     zone_page_state_snapshot(zone, NR_INACTIVE_FILE) +
200 	     zone_page_state_snapshot(zone, NR_ISOLATED_FILE);
201 
202 	if (get_nr_swap_pages() > 0)
203 		nr += zone_page_state_snapshot(zone, NR_ACTIVE_ANON) +
204 		      zone_page_state_snapshot(zone, NR_INACTIVE_ANON) +
205 		      zone_page_state_snapshot(zone, NR_ISOLATED_ANON);
206 
207 	return nr;
208 }
209 
210 bool zone_reclaimable(struct zone *zone)
211 {
212 	return zone_page_state_snapshot(zone, NR_PAGES_SCANNED) <
213 		zone_reclaimable_pages(zone) * 6;
214 }
215 
216 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru)
217 {
218 	if (!mem_cgroup_disabled())
219 		return mem_cgroup_get_lru_size(lruvec, lru);
220 
221 	return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
222 }
223 
224 /*
225  * Add a shrinker callback to be called from the vm.
226  */
227 int register_shrinker(struct shrinker *shrinker)
228 {
229 	size_t size = sizeof(*shrinker->nr_deferred);
230 
231 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
232 		size *= nr_node_ids;
233 
234 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
235 	if (!shrinker->nr_deferred)
236 		return -ENOMEM;
237 
238 	down_write(&shrinker_rwsem);
239 	list_add_tail(&shrinker->list, &shrinker_list);
240 	up_write(&shrinker_rwsem);
241 	return 0;
242 }
243 EXPORT_SYMBOL(register_shrinker);
244 
245 /*
246  * Remove one
247  */
248 void unregister_shrinker(struct shrinker *shrinker)
249 {
250 	down_write(&shrinker_rwsem);
251 	list_del(&shrinker->list);
252 	up_write(&shrinker_rwsem);
253 	kfree(shrinker->nr_deferred);
254 }
255 EXPORT_SYMBOL(unregister_shrinker);
256 
257 #define SHRINK_BATCH 128
258 
259 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
260 				    struct shrinker *shrinker,
261 				    unsigned long nr_scanned,
262 				    unsigned long nr_eligible)
263 {
264 	unsigned long freed = 0;
265 	unsigned long long delta;
266 	long total_scan;
267 	long freeable;
268 	long nr;
269 	long new_nr;
270 	int nid = shrinkctl->nid;
271 	long batch_size = shrinker->batch ? shrinker->batch
272 					  : SHRINK_BATCH;
273 
274 	freeable = shrinker->count_objects(shrinker, shrinkctl);
275 	if (freeable == 0)
276 		return 0;
277 
278 	/*
279 	 * copy the current shrinker scan count into a local variable
280 	 * and zero it so that other concurrent shrinker invocations
281 	 * don't also do this scanning work.
282 	 */
283 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
284 
285 	total_scan = nr;
286 	delta = (4 * nr_scanned) / shrinker->seeks;
287 	delta *= freeable;
288 	do_div(delta, nr_eligible + 1);
289 	total_scan += delta;
290 	if (total_scan < 0) {
291 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
292 		       shrinker->scan_objects, total_scan);
293 		total_scan = freeable;
294 	}
295 
296 	/*
297 	 * We need to avoid excessive windup on filesystem shrinkers
298 	 * due to large numbers of GFP_NOFS allocations causing the
299 	 * shrinkers to return -1 all the time. This results in a large
300 	 * nr being built up so when a shrink that can do some work
301 	 * comes along it empties the entire cache due to nr >>>
302 	 * freeable. This is bad for sustaining a working set in
303 	 * memory.
304 	 *
305 	 * Hence only allow the shrinker to scan the entire cache when
306 	 * a large delta change is calculated directly.
307 	 */
308 	if (delta < freeable / 4)
309 		total_scan = min(total_scan, freeable / 2);
310 
311 	/*
312 	 * Avoid risking looping forever due to too large nr value:
313 	 * never try to free more than twice the estimate number of
314 	 * freeable entries.
315 	 */
316 	if (total_scan > freeable * 2)
317 		total_scan = freeable * 2;
318 
319 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
320 				   nr_scanned, nr_eligible,
321 				   freeable, delta, total_scan);
322 
323 	/*
324 	 * Normally, we should not scan less than batch_size objects in one
325 	 * pass to avoid too frequent shrinker calls, but if the slab has less
326 	 * than batch_size objects in total and we are really tight on memory,
327 	 * we will try to reclaim all available objects, otherwise we can end
328 	 * up failing allocations although there are plenty of reclaimable
329 	 * objects spread over several slabs with usage less than the
330 	 * batch_size.
331 	 *
332 	 * We detect the "tight on memory" situations by looking at the total
333 	 * number of objects we want to scan (total_scan). If it is greater
334 	 * than the total number of objects on slab (freeable), we must be
335 	 * scanning at high prio and therefore should try to reclaim as much as
336 	 * possible.
337 	 */
338 	while (total_scan >= batch_size ||
339 	       total_scan >= freeable) {
340 		unsigned long ret;
341 		unsigned long nr_to_scan = min(batch_size, total_scan);
342 
343 		shrinkctl->nr_to_scan = nr_to_scan;
344 		ret = shrinker->scan_objects(shrinker, shrinkctl);
345 		if (ret == SHRINK_STOP)
346 			break;
347 		freed += ret;
348 
349 		count_vm_events(SLABS_SCANNED, nr_to_scan);
350 		total_scan -= nr_to_scan;
351 
352 		cond_resched();
353 	}
354 
355 	/*
356 	 * move the unused scan count back into the shrinker in a
357 	 * manner that handles concurrent updates. If we exhausted the
358 	 * scan, there is no need to do an update.
359 	 */
360 	if (total_scan > 0)
361 		new_nr = atomic_long_add_return(total_scan,
362 						&shrinker->nr_deferred[nid]);
363 	else
364 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
365 
366 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
367 	return freed;
368 }
369 
370 /**
371  * shrink_slab - shrink slab caches
372  * @gfp_mask: allocation context
373  * @nid: node whose slab caches to target
374  * @memcg: memory cgroup whose slab caches to target
375  * @nr_scanned: pressure numerator
376  * @nr_eligible: pressure denominator
377  *
378  * Call the shrink functions to age shrinkable caches.
379  *
380  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
381  * unaware shrinkers will receive a node id of 0 instead.
382  *
383  * @memcg specifies the memory cgroup to target. If it is not NULL,
384  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
385  * objects from the memory cgroup specified. Otherwise all shrinkers
386  * are called, and memcg aware shrinkers are supposed to scan the
387  * global list then.
388  *
389  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
390  * the available objects should be scanned.  Page reclaim for example
391  * passes the number of pages scanned and the number of pages on the
392  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
393  * when it encountered mapped pages.  The ratio is further biased by
394  * the ->seeks setting of the shrink function, which indicates the
395  * cost to recreate an object relative to that of an LRU page.
396  *
397  * Returns the number of reclaimed slab objects.
398  */
399 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
400 				 struct mem_cgroup *memcg,
401 				 unsigned long nr_scanned,
402 				 unsigned long nr_eligible)
403 {
404 	struct shrinker *shrinker;
405 	unsigned long freed = 0;
406 
407 	if (memcg && !memcg_kmem_online(memcg))
408 		return 0;
409 
410 	if (nr_scanned == 0)
411 		nr_scanned = SWAP_CLUSTER_MAX;
412 
413 	if (!down_read_trylock(&shrinker_rwsem)) {
414 		/*
415 		 * If we would return 0, our callers would understand that we
416 		 * have nothing else to shrink and give up trying. By returning
417 		 * 1 we keep it going and assume we'll be able to shrink next
418 		 * time.
419 		 */
420 		freed = 1;
421 		goto out;
422 	}
423 
424 	list_for_each_entry(shrinker, &shrinker_list, list) {
425 		struct shrink_control sc = {
426 			.gfp_mask = gfp_mask,
427 			.nid = nid,
428 			.memcg = memcg,
429 		};
430 
431 		if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE))
432 			continue;
433 
434 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
435 			sc.nid = 0;
436 
437 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
438 	}
439 
440 	up_read(&shrinker_rwsem);
441 out:
442 	cond_resched();
443 	return freed;
444 }
445 
446 void drop_slab_node(int nid)
447 {
448 	unsigned long freed;
449 
450 	do {
451 		struct mem_cgroup *memcg = NULL;
452 
453 		freed = 0;
454 		do {
455 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
456 					     1000, 1000);
457 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
458 	} while (freed > 10);
459 }
460 
461 void drop_slab(void)
462 {
463 	int nid;
464 
465 	for_each_online_node(nid)
466 		drop_slab_node(nid);
467 }
468 
469 static inline int is_page_cache_freeable(struct page *page)
470 {
471 	/*
472 	 * A freeable page cache page is referenced only by the caller
473 	 * that isolated the page, the page cache radix tree and
474 	 * optional buffer heads at page->private.
475 	 */
476 	return page_count(page) - page_has_private(page) == 2;
477 }
478 
479 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
480 {
481 	if (current->flags & PF_SWAPWRITE)
482 		return 1;
483 	if (!inode_write_congested(inode))
484 		return 1;
485 	if (inode_to_bdi(inode) == current->backing_dev_info)
486 		return 1;
487 	return 0;
488 }
489 
490 /*
491  * We detected a synchronous write error writing a page out.  Probably
492  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
493  * fsync(), msync() or close().
494  *
495  * The tricky part is that after writepage we cannot touch the mapping: nothing
496  * prevents it from being freed up.  But we have a ref on the page and once
497  * that page is locked, the mapping is pinned.
498  *
499  * We're allowed to run sleeping lock_page() here because we know the caller has
500  * __GFP_FS.
501  */
502 static void handle_write_error(struct address_space *mapping,
503 				struct page *page, int error)
504 {
505 	lock_page(page);
506 	if (page_mapping(page) == mapping)
507 		mapping_set_error(mapping, error);
508 	unlock_page(page);
509 }
510 
511 /* possible outcome of pageout() */
512 typedef enum {
513 	/* failed to write page out, page is locked */
514 	PAGE_KEEP,
515 	/* move page to the active list, page is locked */
516 	PAGE_ACTIVATE,
517 	/* page has been sent to the disk successfully, page is unlocked */
518 	PAGE_SUCCESS,
519 	/* page is clean and locked */
520 	PAGE_CLEAN,
521 } pageout_t;
522 
523 /*
524  * pageout is called by shrink_page_list() for each dirty page.
525  * Calls ->writepage().
526  */
527 static pageout_t pageout(struct page *page, struct address_space *mapping,
528 			 struct scan_control *sc)
529 {
530 	/*
531 	 * If the page is dirty, only perform writeback if that write
532 	 * will be non-blocking.  To prevent this allocation from being
533 	 * stalled by pagecache activity.  But note that there may be
534 	 * stalls if we need to run get_block().  We could test
535 	 * PagePrivate for that.
536 	 *
537 	 * If this process is currently in __generic_file_write_iter() against
538 	 * this page's queue, we can perform writeback even if that
539 	 * will block.
540 	 *
541 	 * If the page is swapcache, write it back even if that would
542 	 * block, for some throttling. This happens by accident, because
543 	 * swap_backing_dev_info is bust: it doesn't reflect the
544 	 * congestion state of the swapdevs.  Easy to fix, if needed.
545 	 */
546 	if (!is_page_cache_freeable(page))
547 		return PAGE_KEEP;
548 	if (!mapping) {
549 		/*
550 		 * Some data journaling orphaned pages can have
551 		 * page->mapping == NULL while being dirty with clean buffers.
552 		 */
553 		if (page_has_private(page)) {
554 			if (try_to_free_buffers(page)) {
555 				ClearPageDirty(page);
556 				pr_info("%s: orphaned page\n", __func__);
557 				return PAGE_CLEAN;
558 			}
559 		}
560 		return PAGE_KEEP;
561 	}
562 	if (mapping->a_ops->writepage == NULL)
563 		return PAGE_ACTIVATE;
564 	if (!may_write_to_inode(mapping->host, sc))
565 		return PAGE_KEEP;
566 
567 	if (clear_page_dirty_for_io(page)) {
568 		int res;
569 		struct writeback_control wbc = {
570 			.sync_mode = WB_SYNC_NONE,
571 			.nr_to_write = SWAP_CLUSTER_MAX,
572 			.range_start = 0,
573 			.range_end = LLONG_MAX,
574 			.for_reclaim = 1,
575 		};
576 
577 		SetPageReclaim(page);
578 		res = mapping->a_ops->writepage(page, &wbc);
579 		if (res < 0)
580 			handle_write_error(mapping, page, res);
581 		if (res == AOP_WRITEPAGE_ACTIVATE) {
582 			ClearPageReclaim(page);
583 			return PAGE_ACTIVATE;
584 		}
585 
586 		if (!PageWriteback(page)) {
587 			/* synchronous write or broken a_ops? */
588 			ClearPageReclaim(page);
589 		}
590 		trace_mm_vmscan_writepage(page);
591 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
592 		return PAGE_SUCCESS;
593 	}
594 
595 	return PAGE_CLEAN;
596 }
597 
598 /*
599  * Same as remove_mapping, but if the page is removed from the mapping, it
600  * gets returned with a refcount of 0.
601  */
602 static int __remove_mapping(struct address_space *mapping, struct page *page,
603 			    bool reclaimed)
604 {
605 	unsigned long flags;
606 
607 	BUG_ON(!PageLocked(page));
608 	BUG_ON(mapping != page_mapping(page));
609 
610 	spin_lock_irqsave(&mapping->tree_lock, flags);
611 	/*
612 	 * The non racy check for a busy page.
613 	 *
614 	 * Must be careful with the order of the tests. When someone has
615 	 * a ref to the page, it may be possible that they dirty it then
616 	 * drop the reference. So if PageDirty is tested before page_count
617 	 * here, then the following race may occur:
618 	 *
619 	 * get_user_pages(&page);
620 	 * [user mapping goes away]
621 	 * write_to(page);
622 	 *				!PageDirty(page)    [good]
623 	 * SetPageDirty(page);
624 	 * put_page(page);
625 	 *				!page_count(page)   [good, discard it]
626 	 *
627 	 * [oops, our write_to data is lost]
628 	 *
629 	 * Reversing the order of the tests ensures such a situation cannot
630 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
631 	 * load is not satisfied before that of page->_count.
632 	 *
633 	 * Note that if SetPageDirty is always performed via set_page_dirty,
634 	 * and thus under tree_lock, then this ordering is not required.
635 	 */
636 	if (!page_freeze_refs(page, 2))
637 		goto cannot_free;
638 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
639 	if (unlikely(PageDirty(page))) {
640 		page_unfreeze_refs(page, 2);
641 		goto cannot_free;
642 	}
643 
644 	if (PageSwapCache(page)) {
645 		swp_entry_t swap = { .val = page_private(page) };
646 		mem_cgroup_swapout(page, swap);
647 		__delete_from_swap_cache(page);
648 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
649 		swapcache_free(swap);
650 	} else {
651 		void (*freepage)(struct page *);
652 		void *shadow = NULL;
653 
654 		freepage = mapping->a_ops->freepage;
655 		/*
656 		 * Remember a shadow entry for reclaimed file cache in
657 		 * order to detect refaults, thus thrashing, later on.
658 		 *
659 		 * But don't store shadows in an address space that is
660 		 * already exiting.  This is not just an optizimation,
661 		 * inode reclaim needs to empty out the radix tree or
662 		 * the nodes are lost.  Don't plant shadows behind its
663 		 * back.
664 		 *
665 		 * We also don't store shadows for DAX mappings because the
666 		 * only page cache pages found in these are zero pages
667 		 * covering holes, and because we don't want to mix DAX
668 		 * exceptional entries and shadow exceptional entries in the
669 		 * same page_tree.
670 		 */
671 		if (reclaimed && page_is_file_cache(page) &&
672 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
673 			shadow = workingset_eviction(mapping, page);
674 		__delete_from_page_cache(page, shadow);
675 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
676 
677 		if (freepage != NULL)
678 			freepage(page);
679 	}
680 
681 	return 1;
682 
683 cannot_free:
684 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
685 	return 0;
686 }
687 
688 /*
689  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
690  * someone else has a ref on the page, abort and return 0.  If it was
691  * successfully detached, return 1.  Assumes the caller has a single ref on
692  * this page.
693  */
694 int remove_mapping(struct address_space *mapping, struct page *page)
695 {
696 	if (__remove_mapping(mapping, page, false)) {
697 		/*
698 		 * Unfreezing the refcount with 1 rather than 2 effectively
699 		 * drops the pagecache ref for us without requiring another
700 		 * atomic operation.
701 		 */
702 		page_unfreeze_refs(page, 1);
703 		return 1;
704 	}
705 	return 0;
706 }
707 
708 /**
709  * putback_lru_page - put previously isolated page onto appropriate LRU list
710  * @page: page to be put back to appropriate lru list
711  *
712  * Add previously isolated @page to appropriate LRU list.
713  * Page may still be unevictable for other reasons.
714  *
715  * lru_lock must not be held, interrupts must be enabled.
716  */
717 void putback_lru_page(struct page *page)
718 {
719 	bool is_unevictable;
720 	int was_unevictable = PageUnevictable(page);
721 
722 	VM_BUG_ON_PAGE(PageLRU(page), page);
723 
724 redo:
725 	ClearPageUnevictable(page);
726 
727 	if (page_evictable(page)) {
728 		/*
729 		 * For evictable pages, we can use the cache.
730 		 * In event of a race, worst case is we end up with an
731 		 * unevictable page on [in]active list.
732 		 * We know how to handle that.
733 		 */
734 		is_unevictable = false;
735 		lru_cache_add(page);
736 	} else {
737 		/*
738 		 * Put unevictable pages directly on zone's unevictable
739 		 * list.
740 		 */
741 		is_unevictable = true;
742 		add_page_to_unevictable_list(page);
743 		/*
744 		 * When racing with an mlock or AS_UNEVICTABLE clearing
745 		 * (page is unlocked) make sure that if the other thread
746 		 * does not observe our setting of PG_lru and fails
747 		 * isolation/check_move_unevictable_pages,
748 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
749 		 * the page back to the evictable list.
750 		 *
751 		 * The other side is TestClearPageMlocked() or shmem_lock().
752 		 */
753 		smp_mb();
754 	}
755 
756 	/*
757 	 * page's status can change while we move it among lru. If an evictable
758 	 * page is on unevictable list, it never be freed. To avoid that,
759 	 * check after we added it to the list, again.
760 	 */
761 	if (is_unevictable && page_evictable(page)) {
762 		if (!isolate_lru_page(page)) {
763 			put_page(page);
764 			goto redo;
765 		}
766 		/* This means someone else dropped this page from LRU
767 		 * So, it will be freed or putback to LRU again. There is
768 		 * nothing to do here.
769 		 */
770 	}
771 
772 	if (was_unevictable && !is_unevictable)
773 		count_vm_event(UNEVICTABLE_PGRESCUED);
774 	else if (!was_unevictable && is_unevictable)
775 		count_vm_event(UNEVICTABLE_PGCULLED);
776 
777 	put_page(page);		/* drop ref from isolate */
778 }
779 
780 enum page_references {
781 	PAGEREF_RECLAIM,
782 	PAGEREF_RECLAIM_CLEAN,
783 	PAGEREF_KEEP,
784 	PAGEREF_ACTIVATE,
785 };
786 
787 static enum page_references page_check_references(struct page *page,
788 						  struct scan_control *sc)
789 {
790 	int referenced_ptes, referenced_page;
791 	unsigned long vm_flags;
792 
793 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
794 					  &vm_flags);
795 	referenced_page = TestClearPageReferenced(page);
796 
797 	/*
798 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
799 	 * move the page to the unevictable list.
800 	 */
801 	if (vm_flags & VM_LOCKED)
802 		return PAGEREF_RECLAIM;
803 
804 	if (referenced_ptes) {
805 		if (PageSwapBacked(page))
806 			return PAGEREF_ACTIVATE;
807 		/*
808 		 * All mapped pages start out with page table
809 		 * references from the instantiating fault, so we need
810 		 * to look twice if a mapped file page is used more
811 		 * than once.
812 		 *
813 		 * Mark it and spare it for another trip around the
814 		 * inactive list.  Another page table reference will
815 		 * lead to its activation.
816 		 *
817 		 * Note: the mark is set for activated pages as well
818 		 * so that recently deactivated but used pages are
819 		 * quickly recovered.
820 		 */
821 		SetPageReferenced(page);
822 
823 		if (referenced_page || referenced_ptes > 1)
824 			return PAGEREF_ACTIVATE;
825 
826 		/*
827 		 * Activate file-backed executable pages after first usage.
828 		 */
829 		if (vm_flags & VM_EXEC)
830 			return PAGEREF_ACTIVATE;
831 
832 		return PAGEREF_KEEP;
833 	}
834 
835 	/* Reclaim if clean, defer dirty pages to writeback */
836 	if (referenced_page && !PageSwapBacked(page))
837 		return PAGEREF_RECLAIM_CLEAN;
838 
839 	return PAGEREF_RECLAIM;
840 }
841 
842 /* Check if a page is dirty or under writeback */
843 static void page_check_dirty_writeback(struct page *page,
844 				       bool *dirty, bool *writeback)
845 {
846 	struct address_space *mapping;
847 
848 	/*
849 	 * Anonymous pages are not handled by flushers and must be written
850 	 * from reclaim context. Do not stall reclaim based on them
851 	 */
852 	if (!page_is_file_cache(page)) {
853 		*dirty = false;
854 		*writeback = false;
855 		return;
856 	}
857 
858 	/* By default assume that the page flags are accurate */
859 	*dirty = PageDirty(page);
860 	*writeback = PageWriteback(page);
861 
862 	/* Verify dirty/writeback state if the filesystem supports it */
863 	if (!page_has_private(page))
864 		return;
865 
866 	mapping = page_mapping(page);
867 	if (mapping && mapping->a_ops->is_dirty_writeback)
868 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
869 }
870 
871 /*
872  * shrink_page_list() returns the number of reclaimed pages
873  */
874 static unsigned long shrink_page_list(struct list_head *page_list,
875 				      struct zone *zone,
876 				      struct scan_control *sc,
877 				      enum ttu_flags ttu_flags,
878 				      unsigned long *ret_nr_dirty,
879 				      unsigned long *ret_nr_unqueued_dirty,
880 				      unsigned long *ret_nr_congested,
881 				      unsigned long *ret_nr_writeback,
882 				      unsigned long *ret_nr_immediate,
883 				      bool force_reclaim)
884 {
885 	LIST_HEAD(ret_pages);
886 	LIST_HEAD(free_pages);
887 	int pgactivate = 0;
888 	unsigned long nr_unqueued_dirty = 0;
889 	unsigned long nr_dirty = 0;
890 	unsigned long nr_congested = 0;
891 	unsigned long nr_reclaimed = 0;
892 	unsigned long nr_writeback = 0;
893 	unsigned long nr_immediate = 0;
894 
895 	cond_resched();
896 
897 	while (!list_empty(page_list)) {
898 		struct address_space *mapping;
899 		struct page *page;
900 		int may_enter_fs;
901 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
902 		bool dirty, writeback;
903 		bool lazyfree = false;
904 		int ret = SWAP_SUCCESS;
905 
906 		cond_resched();
907 
908 		page = lru_to_page(page_list);
909 		list_del(&page->lru);
910 
911 		if (!trylock_page(page))
912 			goto keep;
913 
914 		VM_BUG_ON_PAGE(PageActive(page), page);
915 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
916 
917 		sc->nr_scanned++;
918 
919 		if (unlikely(!page_evictable(page)))
920 			goto cull_mlocked;
921 
922 		if (!sc->may_unmap && page_mapped(page))
923 			goto keep_locked;
924 
925 		/* Double the slab pressure for mapped and swapcache pages */
926 		if (page_mapped(page) || PageSwapCache(page))
927 			sc->nr_scanned++;
928 
929 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
930 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
931 
932 		/*
933 		 * The number of dirty pages determines if a zone is marked
934 		 * reclaim_congested which affects wait_iff_congested. kswapd
935 		 * will stall and start writing pages if the tail of the LRU
936 		 * is all dirty unqueued pages.
937 		 */
938 		page_check_dirty_writeback(page, &dirty, &writeback);
939 		if (dirty || writeback)
940 			nr_dirty++;
941 
942 		if (dirty && !writeback)
943 			nr_unqueued_dirty++;
944 
945 		/*
946 		 * Treat this page as congested if the underlying BDI is or if
947 		 * pages are cycling through the LRU so quickly that the
948 		 * pages marked for immediate reclaim are making it to the
949 		 * end of the LRU a second time.
950 		 */
951 		mapping = page_mapping(page);
952 		if (((dirty || writeback) && mapping &&
953 		     inode_write_congested(mapping->host)) ||
954 		    (writeback && PageReclaim(page)))
955 			nr_congested++;
956 
957 		/*
958 		 * If a page at the tail of the LRU is under writeback, there
959 		 * are three cases to consider.
960 		 *
961 		 * 1) If reclaim is encountering an excessive number of pages
962 		 *    under writeback and this page is both under writeback and
963 		 *    PageReclaim then it indicates that pages are being queued
964 		 *    for IO but are being recycled through the LRU before the
965 		 *    IO can complete. Waiting on the page itself risks an
966 		 *    indefinite stall if it is impossible to writeback the
967 		 *    page due to IO error or disconnected storage so instead
968 		 *    note that the LRU is being scanned too quickly and the
969 		 *    caller can stall after page list has been processed.
970 		 *
971 		 * 2) Global or new memcg reclaim encounters a page that is
972 		 *    not marked for immediate reclaim, or the caller does not
973 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
974 		 *    not to fs). In this case mark the page for immediate
975 		 *    reclaim and continue scanning.
976 		 *
977 		 *    Require may_enter_fs because we would wait on fs, which
978 		 *    may not have submitted IO yet. And the loop driver might
979 		 *    enter reclaim, and deadlock if it waits on a page for
980 		 *    which it is needed to do the write (loop masks off
981 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
982 		 *    would probably show more reasons.
983 		 *
984 		 * 3) Legacy memcg encounters a page that is already marked
985 		 *    PageReclaim. memcg does not have any dirty pages
986 		 *    throttling so we could easily OOM just because too many
987 		 *    pages are in writeback and there is nothing else to
988 		 *    reclaim. Wait for the writeback to complete.
989 		 */
990 		if (PageWriteback(page)) {
991 			/* Case 1 above */
992 			if (current_is_kswapd() &&
993 			    PageReclaim(page) &&
994 			    test_bit(ZONE_WRITEBACK, &zone->flags)) {
995 				nr_immediate++;
996 				goto keep_locked;
997 
998 			/* Case 2 above */
999 			} else if (sane_reclaim(sc) ||
1000 			    !PageReclaim(page) || !may_enter_fs) {
1001 				/*
1002 				 * This is slightly racy - end_page_writeback()
1003 				 * might have just cleared PageReclaim, then
1004 				 * setting PageReclaim here end up interpreted
1005 				 * as PageReadahead - but that does not matter
1006 				 * enough to care.  What we do want is for this
1007 				 * page to have PageReclaim set next time memcg
1008 				 * reclaim reaches the tests above, so it will
1009 				 * then wait_on_page_writeback() to avoid OOM;
1010 				 * and it's also appropriate in global reclaim.
1011 				 */
1012 				SetPageReclaim(page);
1013 				nr_writeback++;
1014 				goto keep_locked;
1015 
1016 			/* Case 3 above */
1017 			} else {
1018 				unlock_page(page);
1019 				wait_on_page_writeback(page);
1020 				/* then go back and try same page again */
1021 				list_add_tail(&page->lru, page_list);
1022 				continue;
1023 			}
1024 		}
1025 
1026 		if (!force_reclaim)
1027 			references = page_check_references(page, sc);
1028 
1029 		switch (references) {
1030 		case PAGEREF_ACTIVATE:
1031 			goto activate_locked;
1032 		case PAGEREF_KEEP:
1033 			goto keep_locked;
1034 		case PAGEREF_RECLAIM:
1035 		case PAGEREF_RECLAIM_CLEAN:
1036 			; /* try to reclaim the page below */
1037 		}
1038 
1039 		/*
1040 		 * Anonymous process memory has backing store?
1041 		 * Try to allocate it some swap space here.
1042 		 */
1043 		if (PageAnon(page) && !PageSwapCache(page)) {
1044 			if (!(sc->gfp_mask & __GFP_IO))
1045 				goto keep_locked;
1046 			if (!add_to_swap(page, page_list))
1047 				goto activate_locked;
1048 			lazyfree = true;
1049 			may_enter_fs = 1;
1050 
1051 			/* Adding to swap updated mapping */
1052 			mapping = page_mapping(page);
1053 		}
1054 
1055 		/*
1056 		 * The page is mapped into the page tables of one or more
1057 		 * processes. Try to unmap it here.
1058 		 */
1059 		if (page_mapped(page) && mapping) {
1060 			switch (ret = try_to_unmap(page, lazyfree ?
1061 				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1062 				(ttu_flags | TTU_BATCH_FLUSH))) {
1063 			case SWAP_FAIL:
1064 				goto activate_locked;
1065 			case SWAP_AGAIN:
1066 				goto keep_locked;
1067 			case SWAP_MLOCK:
1068 				goto cull_mlocked;
1069 			case SWAP_LZFREE:
1070 				goto lazyfree;
1071 			case SWAP_SUCCESS:
1072 				; /* try to free the page below */
1073 			}
1074 		}
1075 
1076 		if (PageDirty(page)) {
1077 			/*
1078 			 * Only kswapd can writeback filesystem pages to
1079 			 * avoid risk of stack overflow but only writeback
1080 			 * if many dirty pages have been encountered.
1081 			 */
1082 			if (page_is_file_cache(page) &&
1083 					(!current_is_kswapd() ||
1084 					 !test_bit(ZONE_DIRTY, &zone->flags))) {
1085 				/*
1086 				 * Immediately reclaim when written back.
1087 				 * Similar in principal to deactivate_page()
1088 				 * except we already have the page isolated
1089 				 * and know it's dirty
1090 				 */
1091 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1092 				SetPageReclaim(page);
1093 
1094 				goto keep_locked;
1095 			}
1096 
1097 			if (references == PAGEREF_RECLAIM_CLEAN)
1098 				goto keep_locked;
1099 			if (!may_enter_fs)
1100 				goto keep_locked;
1101 			if (!sc->may_writepage)
1102 				goto keep_locked;
1103 
1104 			/*
1105 			 * Page is dirty. Flush the TLB if a writable entry
1106 			 * potentially exists to avoid CPU writes after IO
1107 			 * starts and then write it out here.
1108 			 */
1109 			try_to_unmap_flush_dirty();
1110 			switch (pageout(page, mapping, sc)) {
1111 			case PAGE_KEEP:
1112 				goto keep_locked;
1113 			case PAGE_ACTIVATE:
1114 				goto activate_locked;
1115 			case PAGE_SUCCESS:
1116 				if (PageWriteback(page))
1117 					goto keep;
1118 				if (PageDirty(page))
1119 					goto keep;
1120 
1121 				/*
1122 				 * A synchronous write - probably a ramdisk.  Go
1123 				 * ahead and try to reclaim the page.
1124 				 */
1125 				if (!trylock_page(page))
1126 					goto keep;
1127 				if (PageDirty(page) || PageWriteback(page))
1128 					goto keep_locked;
1129 				mapping = page_mapping(page);
1130 			case PAGE_CLEAN:
1131 				; /* try to free the page below */
1132 			}
1133 		}
1134 
1135 		/*
1136 		 * If the page has buffers, try to free the buffer mappings
1137 		 * associated with this page. If we succeed we try to free
1138 		 * the page as well.
1139 		 *
1140 		 * We do this even if the page is PageDirty().
1141 		 * try_to_release_page() does not perform I/O, but it is
1142 		 * possible for a page to have PageDirty set, but it is actually
1143 		 * clean (all its buffers are clean).  This happens if the
1144 		 * buffers were written out directly, with submit_bh(). ext3
1145 		 * will do this, as well as the blockdev mapping.
1146 		 * try_to_release_page() will discover that cleanness and will
1147 		 * drop the buffers and mark the page clean - it can be freed.
1148 		 *
1149 		 * Rarely, pages can have buffers and no ->mapping.  These are
1150 		 * the pages which were not successfully invalidated in
1151 		 * truncate_complete_page().  We try to drop those buffers here
1152 		 * and if that worked, and the page is no longer mapped into
1153 		 * process address space (page_count == 1) it can be freed.
1154 		 * Otherwise, leave the page on the LRU so it is swappable.
1155 		 */
1156 		if (page_has_private(page)) {
1157 			if (!try_to_release_page(page, sc->gfp_mask))
1158 				goto activate_locked;
1159 			if (!mapping && page_count(page) == 1) {
1160 				unlock_page(page);
1161 				if (put_page_testzero(page))
1162 					goto free_it;
1163 				else {
1164 					/*
1165 					 * rare race with speculative reference.
1166 					 * the speculative reference will free
1167 					 * this page shortly, so we may
1168 					 * increment nr_reclaimed here (and
1169 					 * leave it off the LRU).
1170 					 */
1171 					nr_reclaimed++;
1172 					continue;
1173 				}
1174 			}
1175 		}
1176 
1177 lazyfree:
1178 		if (!mapping || !__remove_mapping(mapping, page, true))
1179 			goto keep_locked;
1180 
1181 		/*
1182 		 * At this point, we have no other references and there is
1183 		 * no way to pick any more up (removed from LRU, removed
1184 		 * from pagecache). Can use non-atomic bitops now (and
1185 		 * we obviously don't have to worry about waking up a process
1186 		 * waiting on the page lock, because there are no references.
1187 		 */
1188 		__ClearPageLocked(page);
1189 free_it:
1190 		if (ret == SWAP_LZFREE)
1191 			count_vm_event(PGLAZYFREED);
1192 
1193 		nr_reclaimed++;
1194 
1195 		/*
1196 		 * Is there need to periodically free_page_list? It would
1197 		 * appear not as the counts should be low
1198 		 */
1199 		list_add(&page->lru, &free_pages);
1200 		continue;
1201 
1202 cull_mlocked:
1203 		if (PageSwapCache(page))
1204 			try_to_free_swap(page);
1205 		unlock_page(page);
1206 		list_add(&page->lru, &ret_pages);
1207 		continue;
1208 
1209 activate_locked:
1210 		/* Not a candidate for swapping, so reclaim swap space. */
1211 		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1212 			try_to_free_swap(page);
1213 		VM_BUG_ON_PAGE(PageActive(page), page);
1214 		SetPageActive(page);
1215 		pgactivate++;
1216 keep_locked:
1217 		unlock_page(page);
1218 keep:
1219 		list_add(&page->lru, &ret_pages);
1220 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1221 	}
1222 
1223 	mem_cgroup_uncharge_list(&free_pages);
1224 	try_to_unmap_flush();
1225 	free_hot_cold_page_list(&free_pages, true);
1226 
1227 	list_splice(&ret_pages, page_list);
1228 	count_vm_events(PGACTIVATE, pgactivate);
1229 
1230 	*ret_nr_dirty += nr_dirty;
1231 	*ret_nr_congested += nr_congested;
1232 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1233 	*ret_nr_writeback += nr_writeback;
1234 	*ret_nr_immediate += nr_immediate;
1235 	return nr_reclaimed;
1236 }
1237 
1238 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1239 					    struct list_head *page_list)
1240 {
1241 	struct scan_control sc = {
1242 		.gfp_mask = GFP_KERNEL,
1243 		.priority = DEF_PRIORITY,
1244 		.may_unmap = 1,
1245 	};
1246 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1247 	struct page *page, *next;
1248 	LIST_HEAD(clean_pages);
1249 
1250 	list_for_each_entry_safe(page, next, page_list, lru) {
1251 		if (page_is_file_cache(page) && !PageDirty(page) &&
1252 		    !isolated_balloon_page(page)) {
1253 			ClearPageActive(page);
1254 			list_move(&page->lru, &clean_pages);
1255 		}
1256 	}
1257 
1258 	ret = shrink_page_list(&clean_pages, zone, &sc,
1259 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1260 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1261 	list_splice(&clean_pages, page_list);
1262 	mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1263 	return ret;
1264 }
1265 
1266 /*
1267  * Attempt to remove the specified page from its LRU.  Only take this page
1268  * if it is of the appropriate PageActive status.  Pages which are being
1269  * freed elsewhere are also ignored.
1270  *
1271  * page:	page to consider
1272  * mode:	one of the LRU isolation modes defined above
1273  *
1274  * returns 0 on success, -ve errno on failure.
1275  */
1276 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1277 {
1278 	int ret = -EINVAL;
1279 
1280 	/* Only take pages on the LRU. */
1281 	if (!PageLRU(page))
1282 		return ret;
1283 
1284 	/* Compaction should not handle unevictable pages but CMA can do so */
1285 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1286 		return ret;
1287 
1288 	ret = -EBUSY;
1289 
1290 	/*
1291 	 * To minimise LRU disruption, the caller can indicate that it only
1292 	 * wants to isolate pages it will be able to operate on without
1293 	 * blocking - clean pages for the most part.
1294 	 *
1295 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1296 	 * is used by reclaim when it is cannot write to backing storage
1297 	 *
1298 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1299 	 * that it is possible to migrate without blocking
1300 	 */
1301 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1302 		/* All the caller can do on PageWriteback is block */
1303 		if (PageWriteback(page))
1304 			return ret;
1305 
1306 		if (PageDirty(page)) {
1307 			struct address_space *mapping;
1308 
1309 			/* ISOLATE_CLEAN means only clean pages */
1310 			if (mode & ISOLATE_CLEAN)
1311 				return ret;
1312 
1313 			/*
1314 			 * Only pages without mappings or that have a
1315 			 * ->migratepage callback are possible to migrate
1316 			 * without blocking
1317 			 */
1318 			mapping = page_mapping(page);
1319 			if (mapping && !mapping->a_ops->migratepage)
1320 				return ret;
1321 		}
1322 	}
1323 
1324 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1325 		return ret;
1326 
1327 	if (likely(get_page_unless_zero(page))) {
1328 		/*
1329 		 * Be careful not to clear PageLRU until after we're
1330 		 * sure the page is not being freed elsewhere -- the
1331 		 * page release code relies on it.
1332 		 */
1333 		ClearPageLRU(page);
1334 		ret = 0;
1335 	}
1336 
1337 	return ret;
1338 }
1339 
1340 /*
1341  * zone->lru_lock is heavily contended.  Some of the functions that
1342  * shrink the lists perform better by taking out a batch of pages
1343  * and working on them outside the LRU lock.
1344  *
1345  * For pagecache intensive workloads, this function is the hottest
1346  * spot in the kernel (apart from copy_*_user functions).
1347  *
1348  * Appropriate locks must be held before calling this function.
1349  *
1350  * @nr_to_scan:	The number of pages to look through on the list.
1351  * @lruvec:	The LRU vector to pull pages from.
1352  * @dst:	The temp list to put pages on to.
1353  * @nr_scanned:	The number of pages that were scanned.
1354  * @sc:		The scan_control struct for this reclaim session
1355  * @mode:	One of the LRU isolation modes
1356  * @lru:	LRU list id for isolating
1357  *
1358  * returns how many pages were moved onto *@dst.
1359  */
1360 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1361 		struct lruvec *lruvec, struct list_head *dst,
1362 		unsigned long *nr_scanned, struct scan_control *sc,
1363 		isolate_mode_t mode, enum lru_list lru)
1364 {
1365 	struct list_head *src = &lruvec->lists[lru];
1366 	unsigned long nr_taken = 0;
1367 	unsigned long scan;
1368 
1369 	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1370 					!list_empty(src); scan++) {
1371 		struct page *page;
1372 		int nr_pages;
1373 
1374 		page = lru_to_page(src);
1375 		prefetchw_prev_lru_page(page, src, flags);
1376 
1377 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1378 
1379 		switch (__isolate_lru_page(page, mode)) {
1380 		case 0:
1381 			nr_pages = hpage_nr_pages(page);
1382 			mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1383 			list_move(&page->lru, dst);
1384 			nr_taken += nr_pages;
1385 			break;
1386 
1387 		case -EBUSY:
1388 			/* else it is being freed elsewhere */
1389 			list_move(&page->lru, src);
1390 			continue;
1391 
1392 		default:
1393 			BUG();
1394 		}
1395 	}
1396 
1397 	*nr_scanned = scan;
1398 	trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1399 				    nr_taken, mode, is_file_lru(lru));
1400 	return nr_taken;
1401 }
1402 
1403 /**
1404  * isolate_lru_page - tries to isolate a page from its LRU list
1405  * @page: page to isolate from its LRU list
1406  *
1407  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1408  * vmstat statistic corresponding to whatever LRU list the page was on.
1409  *
1410  * Returns 0 if the page was removed from an LRU list.
1411  * Returns -EBUSY if the page was not on an LRU list.
1412  *
1413  * The returned page will have PageLRU() cleared.  If it was found on
1414  * the active list, it will have PageActive set.  If it was found on
1415  * the unevictable list, it will have the PageUnevictable bit set. That flag
1416  * may need to be cleared by the caller before letting the page go.
1417  *
1418  * The vmstat statistic corresponding to the list on which the page was
1419  * found will be decremented.
1420  *
1421  * Restrictions:
1422  * (1) Must be called with an elevated refcount on the page. This is a
1423  *     fundamentnal difference from isolate_lru_pages (which is called
1424  *     without a stable reference).
1425  * (2) the lru_lock must not be held.
1426  * (3) interrupts must be enabled.
1427  */
1428 int isolate_lru_page(struct page *page)
1429 {
1430 	int ret = -EBUSY;
1431 
1432 	VM_BUG_ON_PAGE(!page_count(page), page);
1433 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1434 
1435 	if (PageLRU(page)) {
1436 		struct zone *zone = page_zone(page);
1437 		struct lruvec *lruvec;
1438 
1439 		spin_lock_irq(&zone->lru_lock);
1440 		lruvec = mem_cgroup_page_lruvec(page, zone);
1441 		if (PageLRU(page)) {
1442 			int lru = page_lru(page);
1443 			get_page(page);
1444 			ClearPageLRU(page);
1445 			del_page_from_lru_list(page, lruvec, lru);
1446 			ret = 0;
1447 		}
1448 		spin_unlock_irq(&zone->lru_lock);
1449 	}
1450 	return ret;
1451 }
1452 
1453 /*
1454  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1455  * then get resheduled. When there are massive number of tasks doing page
1456  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1457  * the LRU list will go small and be scanned faster than necessary, leading to
1458  * unnecessary swapping, thrashing and OOM.
1459  */
1460 static int too_many_isolated(struct zone *zone, int file,
1461 		struct scan_control *sc)
1462 {
1463 	unsigned long inactive, isolated;
1464 
1465 	if (current_is_kswapd())
1466 		return 0;
1467 
1468 	if (!sane_reclaim(sc))
1469 		return 0;
1470 
1471 	if (file) {
1472 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1473 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1474 	} else {
1475 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1476 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1477 	}
1478 
1479 	/*
1480 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1481 	 * won't get blocked by normal direct-reclaimers, forming a circular
1482 	 * deadlock.
1483 	 */
1484 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1485 		inactive >>= 3;
1486 
1487 	return isolated > inactive;
1488 }
1489 
1490 static noinline_for_stack void
1491 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1492 {
1493 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1494 	struct zone *zone = lruvec_zone(lruvec);
1495 	LIST_HEAD(pages_to_free);
1496 
1497 	/*
1498 	 * Put back any unfreeable pages.
1499 	 */
1500 	while (!list_empty(page_list)) {
1501 		struct page *page = lru_to_page(page_list);
1502 		int lru;
1503 
1504 		VM_BUG_ON_PAGE(PageLRU(page), page);
1505 		list_del(&page->lru);
1506 		if (unlikely(!page_evictable(page))) {
1507 			spin_unlock_irq(&zone->lru_lock);
1508 			putback_lru_page(page);
1509 			spin_lock_irq(&zone->lru_lock);
1510 			continue;
1511 		}
1512 
1513 		lruvec = mem_cgroup_page_lruvec(page, zone);
1514 
1515 		SetPageLRU(page);
1516 		lru = page_lru(page);
1517 		add_page_to_lru_list(page, lruvec, lru);
1518 
1519 		if (is_active_lru(lru)) {
1520 			int file = is_file_lru(lru);
1521 			int numpages = hpage_nr_pages(page);
1522 			reclaim_stat->recent_rotated[file] += numpages;
1523 		}
1524 		if (put_page_testzero(page)) {
1525 			__ClearPageLRU(page);
1526 			__ClearPageActive(page);
1527 			del_page_from_lru_list(page, lruvec, lru);
1528 
1529 			if (unlikely(PageCompound(page))) {
1530 				spin_unlock_irq(&zone->lru_lock);
1531 				mem_cgroup_uncharge(page);
1532 				(*get_compound_page_dtor(page))(page);
1533 				spin_lock_irq(&zone->lru_lock);
1534 			} else
1535 				list_add(&page->lru, &pages_to_free);
1536 		}
1537 	}
1538 
1539 	/*
1540 	 * To save our caller's stack, now use input list for pages to free.
1541 	 */
1542 	list_splice(&pages_to_free, page_list);
1543 }
1544 
1545 /*
1546  * If a kernel thread (such as nfsd for loop-back mounts) services
1547  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1548  * In that case we should only throttle if the backing device it is
1549  * writing to is congested.  In other cases it is safe to throttle.
1550  */
1551 static int current_may_throttle(void)
1552 {
1553 	return !(current->flags & PF_LESS_THROTTLE) ||
1554 		current->backing_dev_info == NULL ||
1555 		bdi_write_congested(current->backing_dev_info);
1556 }
1557 
1558 /*
1559  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1560  * of reclaimed pages
1561  */
1562 static noinline_for_stack unsigned long
1563 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1564 		     struct scan_control *sc, enum lru_list lru)
1565 {
1566 	LIST_HEAD(page_list);
1567 	unsigned long nr_scanned;
1568 	unsigned long nr_reclaimed = 0;
1569 	unsigned long nr_taken;
1570 	unsigned long nr_dirty = 0;
1571 	unsigned long nr_congested = 0;
1572 	unsigned long nr_unqueued_dirty = 0;
1573 	unsigned long nr_writeback = 0;
1574 	unsigned long nr_immediate = 0;
1575 	isolate_mode_t isolate_mode = 0;
1576 	int file = is_file_lru(lru);
1577 	struct zone *zone = lruvec_zone(lruvec);
1578 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1579 
1580 	while (unlikely(too_many_isolated(zone, file, sc))) {
1581 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1582 
1583 		/* We are about to die and free our memory. Return now. */
1584 		if (fatal_signal_pending(current))
1585 			return SWAP_CLUSTER_MAX;
1586 	}
1587 
1588 	lru_add_drain();
1589 
1590 	if (!sc->may_unmap)
1591 		isolate_mode |= ISOLATE_UNMAPPED;
1592 	if (!sc->may_writepage)
1593 		isolate_mode |= ISOLATE_CLEAN;
1594 
1595 	spin_lock_irq(&zone->lru_lock);
1596 
1597 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1598 				     &nr_scanned, sc, isolate_mode, lru);
1599 
1600 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1601 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1602 
1603 	if (global_reclaim(sc)) {
1604 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1605 		if (current_is_kswapd())
1606 			__count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1607 		else
1608 			__count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1609 	}
1610 	spin_unlock_irq(&zone->lru_lock);
1611 
1612 	if (nr_taken == 0)
1613 		return 0;
1614 
1615 	nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
1616 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1617 				&nr_writeback, &nr_immediate,
1618 				false);
1619 
1620 	spin_lock_irq(&zone->lru_lock);
1621 
1622 	reclaim_stat->recent_scanned[file] += nr_taken;
1623 
1624 	if (global_reclaim(sc)) {
1625 		if (current_is_kswapd())
1626 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1627 					       nr_reclaimed);
1628 		else
1629 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1630 					       nr_reclaimed);
1631 	}
1632 
1633 	putback_inactive_pages(lruvec, &page_list);
1634 
1635 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1636 
1637 	spin_unlock_irq(&zone->lru_lock);
1638 
1639 	mem_cgroup_uncharge_list(&page_list);
1640 	free_hot_cold_page_list(&page_list, true);
1641 
1642 	/*
1643 	 * If reclaim is isolating dirty pages under writeback, it implies
1644 	 * that the long-lived page allocation rate is exceeding the page
1645 	 * laundering rate. Either the global limits are not being effective
1646 	 * at throttling processes due to the page distribution throughout
1647 	 * zones or there is heavy usage of a slow backing device. The
1648 	 * only option is to throttle from reclaim context which is not ideal
1649 	 * as there is no guarantee the dirtying process is throttled in the
1650 	 * same way balance_dirty_pages() manages.
1651 	 *
1652 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1653 	 * of pages under pages flagged for immediate reclaim and stall if any
1654 	 * are encountered in the nr_immediate check below.
1655 	 */
1656 	if (nr_writeback && nr_writeback == nr_taken)
1657 		set_bit(ZONE_WRITEBACK, &zone->flags);
1658 
1659 	/*
1660 	 * Legacy memcg will stall in page writeback so avoid forcibly
1661 	 * stalling here.
1662 	 */
1663 	if (sane_reclaim(sc)) {
1664 		/*
1665 		 * Tag a zone as congested if all the dirty pages scanned were
1666 		 * backed by a congested BDI and wait_iff_congested will stall.
1667 		 */
1668 		if (nr_dirty && nr_dirty == nr_congested)
1669 			set_bit(ZONE_CONGESTED, &zone->flags);
1670 
1671 		/*
1672 		 * If dirty pages are scanned that are not queued for IO, it
1673 		 * implies that flushers are not keeping up. In this case, flag
1674 		 * the zone ZONE_DIRTY and kswapd will start writing pages from
1675 		 * reclaim context.
1676 		 */
1677 		if (nr_unqueued_dirty == nr_taken)
1678 			set_bit(ZONE_DIRTY, &zone->flags);
1679 
1680 		/*
1681 		 * If kswapd scans pages marked marked for immediate
1682 		 * reclaim and under writeback (nr_immediate), it implies
1683 		 * that pages are cycling through the LRU faster than
1684 		 * they are written so also forcibly stall.
1685 		 */
1686 		if (nr_immediate && current_may_throttle())
1687 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1688 	}
1689 
1690 	/*
1691 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1692 	 * is congested. Allow kswapd to continue until it starts encountering
1693 	 * unqueued dirty pages or cycling through the LRU too quickly.
1694 	 */
1695 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1696 	    current_may_throttle())
1697 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1698 
1699 	trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed,
1700 			sc->priority, file);
1701 	return nr_reclaimed;
1702 }
1703 
1704 /*
1705  * This moves pages from the active list to the inactive list.
1706  *
1707  * We move them the other way if the page is referenced by one or more
1708  * processes, from rmap.
1709  *
1710  * If the pages are mostly unmapped, the processing is fast and it is
1711  * appropriate to hold zone->lru_lock across the whole operation.  But if
1712  * the pages are mapped, the processing is slow (page_referenced()) so we
1713  * should drop zone->lru_lock around each page.  It's impossible to balance
1714  * this, so instead we remove the pages from the LRU while processing them.
1715  * It is safe to rely on PG_active against the non-LRU pages in here because
1716  * nobody will play with that bit on a non-LRU page.
1717  *
1718  * The downside is that we have to touch page->_count against each page.
1719  * But we had to alter page->flags anyway.
1720  */
1721 
1722 static void move_active_pages_to_lru(struct lruvec *lruvec,
1723 				     struct list_head *list,
1724 				     struct list_head *pages_to_free,
1725 				     enum lru_list lru)
1726 {
1727 	struct zone *zone = lruvec_zone(lruvec);
1728 	unsigned long pgmoved = 0;
1729 	struct page *page;
1730 	int nr_pages;
1731 
1732 	while (!list_empty(list)) {
1733 		page = lru_to_page(list);
1734 		lruvec = mem_cgroup_page_lruvec(page, zone);
1735 
1736 		VM_BUG_ON_PAGE(PageLRU(page), page);
1737 		SetPageLRU(page);
1738 
1739 		nr_pages = hpage_nr_pages(page);
1740 		mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1741 		list_move(&page->lru, &lruvec->lists[lru]);
1742 		pgmoved += nr_pages;
1743 
1744 		if (put_page_testzero(page)) {
1745 			__ClearPageLRU(page);
1746 			__ClearPageActive(page);
1747 			del_page_from_lru_list(page, lruvec, lru);
1748 
1749 			if (unlikely(PageCompound(page))) {
1750 				spin_unlock_irq(&zone->lru_lock);
1751 				mem_cgroup_uncharge(page);
1752 				(*get_compound_page_dtor(page))(page);
1753 				spin_lock_irq(&zone->lru_lock);
1754 			} else
1755 				list_add(&page->lru, pages_to_free);
1756 		}
1757 	}
1758 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1759 	if (!is_active_lru(lru))
1760 		__count_vm_events(PGDEACTIVATE, pgmoved);
1761 }
1762 
1763 static void shrink_active_list(unsigned long nr_to_scan,
1764 			       struct lruvec *lruvec,
1765 			       struct scan_control *sc,
1766 			       enum lru_list lru)
1767 {
1768 	unsigned long nr_taken;
1769 	unsigned long nr_scanned;
1770 	unsigned long vm_flags;
1771 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1772 	LIST_HEAD(l_active);
1773 	LIST_HEAD(l_inactive);
1774 	struct page *page;
1775 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1776 	unsigned long nr_rotated = 0;
1777 	isolate_mode_t isolate_mode = 0;
1778 	int file = is_file_lru(lru);
1779 	struct zone *zone = lruvec_zone(lruvec);
1780 
1781 	lru_add_drain();
1782 
1783 	if (!sc->may_unmap)
1784 		isolate_mode |= ISOLATE_UNMAPPED;
1785 	if (!sc->may_writepage)
1786 		isolate_mode |= ISOLATE_CLEAN;
1787 
1788 	spin_lock_irq(&zone->lru_lock);
1789 
1790 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1791 				     &nr_scanned, sc, isolate_mode, lru);
1792 	if (global_reclaim(sc))
1793 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
1794 
1795 	reclaim_stat->recent_scanned[file] += nr_taken;
1796 
1797 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1798 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1799 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1800 	spin_unlock_irq(&zone->lru_lock);
1801 
1802 	while (!list_empty(&l_hold)) {
1803 		cond_resched();
1804 		page = lru_to_page(&l_hold);
1805 		list_del(&page->lru);
1806 
1807 		if (unlikely(!page_evictable(page))) {
1808 			putback_lru_page(page);
1809 			continue;
1810 		}
1811 
1812 		if (unlikely(buffer_heads_over_limit)) {
1813 			if (page_has_private(page) && trylock_page(page)) {
1814 				if (page_has_private(page))
1815 					try_to_release_page(page, 0);
1816 				unlock_page(page);
1817 			}
1818 		}
1819 
1820 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1821 				    &vm_flags)) {
1822 			nr_rotated += hpage_nr_pages(page);
1823 			/*
1824 			 * Identify referenced, file-backed active pages and
1825 			 * give them one more trip around the active list. So
1826 			 * that executable code get better chances to stay in
1827 			 * memory under moderate memory pressure.  Anon pages
1828 			 * are not likely to be evicted by use-once streaming
1829 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1830 			 * so we ignore them here.
1831 			 */
1832 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1833 				list_add(&page->lru, &l_active);
1834 				continue;
1835 			}
1836 		}
1837 
1838 		ClearPageActive(page);	/* we are de-activating */
1839 		list_add(&page->lru, &l_inactive);
1840 	}
1841 
1842 	/*
1843 	 * Move pages back to the lru list.
1844 	 */
1845 	spin_lock_irq(&zone->lru_lock);
1846 	/*
1847 	 * Count referenced pages from currently used mappings as rotated,
1848 	 * even though only some of them are actually re-activated.  This
1849 	 * helps balance scan pressure between file and anonymous pages in
1850 	 * get_scan_count.
1851 	 */
1852 	reclaim_stat->recent_rotated[file] += nr_rotated;
1853 
1854 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1855 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1856 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1857 	spin_unlock_irq(&zone->lru_lock);
1858 
1859 	mem_cgroup_uncharge_list(&l_hold);
1860 	free_hot_cold_page_list(&l_hold, true);
1861 }
1862 
1863 #ifdef CONFIG_SWAP
1864 static bool inactive_anon_is_low_global(struct zone *zone)
1865 {
1866 	unsigned long active, inactive;
1867 
1868 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1869 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1870 
1871 	return inactive * zone->inactive_ratio < active;
1872 }
1873 
1874 /**
1875  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1876  * @lruvec: LRU vector to check
1877  *
1878  * Returns true if the zone does not have enough inactive anon pages,
1879  * meaning some active anon pages need to be deactivated.
1880  */
1881 static bool inactive_anon_is_low(struct lruvec *lruvec)
1882 {
1883 	/*
1884 	 * If we don't have swap space, anonymous page deactivation
1885 	 * is pointless.
1886 	 */
1887 	if (!total_swap_pages)
1888 		return false;
1889 
1890 	if (!mem_cgroup_disabled())
1891 		return mem_cgroup_inactive_anon_is_low(lruvec);
1892 
1893 	return inactive_anon_is_low_global(lruvec_zone(lruvec));
1894 }
1895 #else
1896 static inline bool inactive_anon_is_low(struct lruvec *lruvec)
1897 {
1898 	return false;
1899 }
1900 #endif
1901 
1902 /**
1903  * inactive_file_is_low - check if file pages need to be deactivated
1904  * @lruvec: LRU vector to check
1905  *
1906  * When the system is doing streaming IO, memory pressure here
1907  * ensures that active file pages get deactivated, until more
1908  * than half of the file pages are on the inactive list.
1909  *
1910  * Once we get to that situation, protect the system's working
1911  * set from being evicted by disabling active file page aging.
1912  *
1913  * This uses a different ratio than the anonymous pages, because
1914  * the page cache uses a use-once replacement algorithm.
1915  */
1916 static bool inactive_file_is_low(struct lruvec *lruvec)
1917 {
1918 	unsigned long inactive;
1919 	unsigned long active;
1920 
1921 	inactive = lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
1922 	active = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE);
1923 
1924 	return active > inactive;
1925 }
1926 
1927 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1928 {
1929 	if (is_file_lru(lru))
1930 		return inactive_file_is_low(lruvec);
1931 	else
1932 		return inactive_anon_is_low(lruvec);
1933 }
1934 
1935 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1936 				 struct lruvec *lruvec, struct scan_control *sc)
1937 {
1938 	if (is_active_lru(lru)) {
1939 		if (inactive_list_is_low(lruvec, lru))
1940 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
1941 		return 0;
1942 	}
1943 
1944 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1945 }
1946 
1947 enum scan_balance {
1948 	SCAN_EQUAL,
1949 	SCAN_FRACT,
1950 	SCAN_ANON,
1951 	SCAN_FILE,
1952 };
1953 
1954 /*
1955  * Determine how aggressively the anon and file LRU lists should be
1956  * scanned.  The relative value of each set of LRU lists is determined
1957  * by looking at the fraction of the pages scanned we did rotate back
1958  * onto the active list instead of evict.
1959  *
1960  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1961  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1962  */
1963 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
1964 			   struct scan_control *sc, unsigned long *nr,
1965 			   unsigned long *lru_pages)
1966 {
1967 	int swappiness = mem_cgroup_swappiness(memcg);
1968 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1969 	u64 fraction[2];
1970 	u64 denominator = 0;	/* gcc */
1971 	struct zone *zone = lruvec_zone(lruvec);
1972 	unsigned long anon_prio, file_prio;
1973 	enum scan_balance scan_balance;
1974 	unsigned long anon, file;
1975 	bool force_scan = false;
1976 	unsigned long ap, fp;
1977 	enum lru_list lru;
1978 	bool some_scanned;
1979 	int pass;
1980 
1981 	/*
1982 	 * If the zone or memcg is small, nr[l] can be 0.  This
1983 	 * results in no scanning on this priority and a potential
1984 	 * priority drop.  Global direct reclaim can go to the next
1985 	 * zone and tends to have no problems. Global kswapd is for
1986 	 * zone balancing and it needs to scan a minimum amount. When
1987 	 * reclaiming for a memcg, a priority drop can cause high
1988 	 * latencies, so it's better to scan a minimum amount there as
1989 	 * well.
1990 	 */
1991 	if (current_is_kswapd()) {
1992 		if (!zone_reclaimable(zone))
1993 			force_scan = true;
1994 		if (!mem_cgroup_online(memcg))
1995 			force_scan = true;
1996 	}
1997 	if (!global_reclaim(sc))
1998 		force_scan = true;
1999 
2000 	/* If we have no swap space, do not bother scanning anon pages. */
2001 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2002 		scan_balance = SCAN_FILE;
2003 		goto out;
2004 	}
2005 
2006 	/*
2007 	 * Global reclaim will swap to prevent OOM even with no
2008 	 * swappiness, but memcg users want to use this knob to
2009 	 * disable swapping for individual groups completely when
2010 	 * using the memory controller's swap limit feature would be
2011 	 * too expensive.
2012 	 */
2013 	if (!global_reclaim(sc) && !swappiness) {
2014 		scan_balance = SCAN_FILE;
2015 		goto out;
2016 	}
2017 
2018 	/*
2019 	 * Do not apply any pressure balancing cleverness when the
2020 	 * system is close to OOM, scan both anon and file equally
2021 	 * (unless the swappiness setting disagrees with swapping).
2022 	 */
2023 	if (!sc->priority && swappiness) {
2024 		scan_balance = SCAN_EQUAL;
2025 		goto out;
2026 	}
2027 
2028 	/*
2029 	 * Prevent the reclaimer from falling into the cache trap: as
2030 	 * cache pages start out inactive, every cache fault will tip
2031 	 * the scan balance towards the file LRU.  And as the file LRU
2032 	 * shrinks, so does the window for rotation from references.
2033 	 * This means we have a runaway feedback loop where a tiny
2034 	 * thrashing file LRU becomes infinitely more attractive than
2035 	 * anon pages.  Try to detect this based on file LRU size.
2036 	 */
2037 	if (global_reclaim(sc)) {
2038 		unsigned long zonefile;
2039 		unsigned long zonefree;
2040 
2041 		zonefree = zone_page_state(zone, NR_FREE_PAGES);
2042 		zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
2043 			   zone_page_state(zone, NR_INACTIVE_FILE);
2044 
2045 		if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
2046 			scan_balance = SCAN_ANON;
2047 			goto out;
2048 		}
2049 	}
2050 
2051 	/*
2052 	 * If there is enough inactive page cache, i.e. if the size of the
2053 	 * inactive list is greater than that of the active list *and* the
2054 	 * inactive list actually has some pages to scan on this priority, we
2055 	 * do not reclaim anything from the anonymous working set right now.
2056 	 * Without the second condition we could end up never scanning an
2057 	 * lruvec even if it has plenty of old anonymous pages unless the
2058 	 * system is under heavy pressure.
2059 	 */
2060 	if (!inactive_file_is_low(lruvec) &&
2061 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) {
2062 		scan_balance = SCAN_FILE;
2063 		goto out;
2064 	}
2065 
2066 	scan_balance = SCAN_FRACT;
2067 
2068 	/*
2069 	 * With swappiness at 100, anonymous and file have the same priority.
2070 	 * This scanning priority is essentially the inverse of IO cost.
2071 	 */
2072 	anon_prio = swappiness;
2073 	file_prio = 200 - anon_prio;
2074 
2075 	/*
2076 	 * OK, so we have swap space and a fair amount of page cache
2077 	 * pages.  We use the recently rotated / recently scanned
2078 	 * ratios to determine how valuable each cache is.
2079 	 *
2080 	 * Because workloads change over time (and to avoid overflow)
2081 	 * we keep these statistics as a floating average, which ends
2082 	 * up weighing recent references more than old ones.
2083 	 *
2084 	 * anon in [0], file in [1]
2085 	 */
2086 
2087 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) +
2088 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON);
2089 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) +
2090 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE);
2091 
2092 	spin_lock_irq(&zone->lru_lock);
2093 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2094 		reclaim_stat->recent_scanned[0] /= 2;
2095 		reclaim_stat->recent_rotated[0] /= 2;
2096 	}
2097 
2098 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2099 		reclaim_stat->recent_scanned[1] /= 2;
2100 		reclaim_stat->recent_rotated[1] /= 2;
2101 	}
2102 
2103 	/*
2104 	 * The amount of pressure on anon vs file pages is inversely
2105 	 * proportional to the fraction of recently scanned pages on
2106 	 * each list that were recently referenced and in active use.
2107 	 */
2108 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2109 	ap /= reclaim_stat->recent_rotated[0] + 1;
2110 
2111 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2112 	fp /= reclaim_stat->recent_rotated[1] + 1;
2113 	spin_unlock_irq(&zone->lru_lock);
2114 
2115 	fraction[0] = ap;
2116 	fraction[1] = fp;
2117 	denominator = ap + fp + 1;
2118 out:
2119 	some_scanned = false;
2120 	/* Only use force_scan on second pass. */
2121 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2122 		*lru_pages = 0;
2123 		for_each_evictable_lru(lru) {
2124 			int file = is_file_lru(lru);
2125 			unsigned long size;
2126 			unsigned long scan;
2127 
2128 			size = lruvec_lru_size(lruvec, lru);
2129 			scan = size >> sc->priority;
2130 
2131 			if (!scan && pass && force_scan)
2132 				scan = min(size, SWAP_CLUSTER_MAX);
2133 
2134 			switch (scan_balance) {
2135 			case SCAN_EQUAL:
2136 				/* Scan lists relative to size */
2137 				break;
2138 			case SCAN_FRACT:
2139 				/*
2140 				 * Scan types proportional to swappiness and
2141 				 * their relative recent reclaim efficiency.
2142 				 */
2143 				scan = div64_u64(scan * fraction[file],
2144 							denominator);
2145 				break;
2146 			case SCAN_FILE:
2147 			case SCAN_ANON:
2148 				/* Scan one type exclusively */
2149 				if ((scan_balance == SCAN_FILE) != file) {
2150 					size = 0;
2151 					scan = 0;
2152 				}
2153 				break;
2154 			default:
2155 				/* Look ma, no brain */
2156 				BUG();
2157 			}
2158 
2159 			*lru_pages += size;
2160 			nr[lru] = scan;
2161 
2162 			/*
2163 			 * Skip the second pass and don't force_scan,
2164 			 * if we found something to scan.
2165 			 */
2166 			some_scanned |= !!scan;
2167 		}
2168 	}
2169 }
2170 
2171 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
2172 static void init_tlb_ubc(void)
2173 {
2174 	/*
2175 	 * This deliberately does not clear the cpumask as it's expensive
2176 	 * and unnecessary. If there happens to be data in there then the
2177 	 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and
2178 	 * then will be cleared.
2179 	 */
2180 	current->tlb_ubc.flush_required = false;
2181 }
2182 #else
2183 static inline void init_tlb_ubc(void)
2184 {
2185 }
2186 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
2187 
2188 /*
2189  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2190  */
2191 static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg,
2192 			      struct scan_control *sc, unsigned long *lru_pages)
2193 {
2194 	struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2195 	unsigned long nr[NR_LRU_LISTS];
2196 	unsigned long targets[NR_LRU_LISTS];
2197 	unsigned long nr_to_scan;
2198 	enum lru_list lru;
2199 	unsigned long nr_reclaimed = 0;
2200 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2201 	struct blk_plug plug;
2202 	bool scan_adjusted;
2203 
2204 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2205 
2206 	/* Record the original scan target for proportional adjustments later */
2207 	memcpy(targets, nr, sizeof(nr));
2208 
2209 	/*
2210 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2211 	 * event that can occur when there is little memory pressure e.g.
2212 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2213 	 * when the requested number of pages are reclaimed when scanning at
2214 	 * DEF_PRIORITY on the assumption that the fact we are direct
2215 	 * reclaiming implies that kswapd is not keeping up and it is best to
2216 	 * do a batch of work at once. For memcg reclaim one check is made to
2217 	 * abort proportional reclaim if either the file or anon lru has already
2218 	 * dropped to zero at the first pass.
2219 	 */
2220 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2221 			 sc->priority == DEF_PRIORITY);
2222 
2223 	init_tlb_ubc();
2224 
2225 	blk_start_plug(&plug);
2226 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2227 					nr[LRU_INACTIVE_FILE]) {
2228 		unsigned long nr_anon, nr_file, percentage;
2229 		unsigned long nr_scanned;
2230 
2231 		for_each_evictable_lru(lru) {
2232 			if (nr[lru]) {
2233 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2234 				nr[lru] -= nr_to_scan;
2235 
2236 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2237 							    lruvec, sc);
2238 			}
2239 		}
2240 
2241 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2242 			continue;
2243 
2244 		/*
2245 		 * For kswapd and memcg, reclaim at least the number of pages
2246 		 * requested. Ensure that the anon and file LRUs are scanned
2247 		 * proportionally what was requested by get_scan_count(). We
2248 		 * stop reclaiming one LRU and reduce the amount scanning
2249 		 * proportional to the original scan target.
2250 		 */
2251 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2252 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2253 
2254 		/*
2255 		 * It's just vindictive to attack the larger once the smaller
2256 		 * has gone to zero.  And given the way we stop scanning the
2257 		 * smaller below, this makes sure that we only make one nudge
2258 		 * towards proportionality once we've got nr_to_reclaim.
2259 		 */
2260 		if (!nr_file || !nr_anon)
2261 			break;
2262 
2263 		if (nr_file > nr_anon) {
2264 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2265 						targets[LRU_ACTIVE_ANON] + 1;
2266 			lru = LRU_BASE;
2267 			percentage = nr_anon * 100 / scan_target;
2268 		} else {
2269 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2270 						targets[LRU_ACTIVE_FILE] + 1;
2271 			lru = LRU_FILE;
2272 			percentage = nr_file * 100 / scan_target;
2273 		}
2274 
2275 		/* Stop scanning the smaller of the LRU */
2276 		nr[lru] = 0;
2277 		nr[lru + LRU_ACTIVE] = 0;
2278 
2279 		/*
2280 		 * Recalculate the other LRU scan count based on its original
2281 		 * scan target and the percentage scanning already complete
2282 		 */
2283 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2284 		nr_scanned = targets[lru] - nr[lru];
2285 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2286 		nr[lru] -= min(nr[lru], nr_scanned);
2287 
2288 		lru += LRU_ACTIVE;
2289 		nr_scanned = targets[lru] - nr[lru];
2290 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2291 		nr[lru] -= min(nr[lru], nr_scanned);
2292 
2293 		scan_adjusted = true;
2294 	}
2295 	blk_finish_plug(&plug);
2296 	sc->nr_reclaimed += nr_reclaimed;
2297 
2298 	/*
2299 	 * Even if we did not try to evict anon pages at all, we want to
2300 	 * rebalance the anon lru active/inactive ratio.
2301 	 */
2302 	if (inactive_anon_is_low(lruvec))
2303 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2304 				   sc, LRU_ACTIVE_ANON);
2305 
2306 	throttle_vm_writeout(sc->gfp_mask);
2307 }
2308 
2309 /* Use reclaim/compaction for costly allocs or under memory pressure */
2310 static bool in_reclaim_compaction(struct scan_control *sc)
2311 {
2312 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2313 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2314 			 sc->priority < DEF_PRIORITY - 2))
2315 		return true;
2316 
2317 	return false;
2318 }
2319 
2320 /*
2321  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2322  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2323  * true if more pages should be reclaimed such that when the page allocator
2324  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2325  * It will give up earlier than that if there is difficulty reclaiming pages.
2326  */
2327 static inline bool should_continue_reclaim(struct zone *zone,
2328 					unsigned long nr_reclaimed,
2329 					unsigned long nr_scanned,
2330 					struct scan_control *sc)
2331 {
2332 	unsigned long pages_for_compaction;
2333 	unsigned long inactive_lru_pages;
2334 
2335 	/* If not in reclaim/compaction mode, stop */
2336 	if (!in_reclaim_compaction(sc))
2337 		return false;
2338 
2339 	/* Consider stopping depending on scan and reclaim activity */
2340 	if (sc->gfp_mask & __GFP_REPEAT) {
2341 		/*
2342 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2343 		 * full LRU list has been scanned and we are still failing
2344 		 * to reclaim pages. This full LRU scan is potentially
2345 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2346 		 */
2347 		if (!nr_reclaimed && !nr_scanned)
2348 			return false;
2349 	} else {
2350 		/*
2351 		 * For non-__GFP_REPEAT allocations which can presumably
2352 		 * fail without consequence, stop if we failed to reclaim
2353 		 * any pages from the last SWAP_CLUSTER_MAX number of
2354 		 * pages that were scanned. This will return to the
2355 		 * caller faster at the risk reclaim/compaction and
2356 		 * the resulting allocation attempt fails
2357 		 */
2358 		if (!nr_reclaimed)
2359 			return false;
2360 	}
2361 
2362 	/*
2363 	 * If we have not reclaimed enough pages for compaction and the
2364 	 * inactive lists are large enough, continue reclaiming
2365 	 */
2366 	pages_for_compaction = (2UL << sc->order);
2367 	inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
2368 	if (get_nr_swap_pages() > 0)
2369 		inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
2370 	if (sc->nr_reclaimed < pages_for_compaction &&
2371 			inactive_lru_pages > pages_for_compaction)
2372 		return true;
2373 
2374 	/* If compaction would go ahead or the allocation would succeed, stop */
2375 	switch (compaction_suitable(zone, sc->order, 0, 0)) {
2376 	case COMPACT_PARTIAL:
2377 	case COMPACT_CONTINUE:
2378 		return false;
2379 	default:
2380 		return true;
2381 	}
2382 }
2383 
2384 static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2385 			bool is_classzone)
2386 {
2387 	struct reclaim_state *reclaim_state = current->reclaim_state;
2388 	unsigned long nr_reclaimed, nr_scanned;
2389 	bool reclaimable = false;
2390 
2391 	do {
2392 		struct mem_cgroup *root = sc->target_mem_cgroup;
2393 		struct mem_cgroup_reclaim_cookie reclaim = {
2394 			.zone = zone,
2395 			.priority = sc->priority,
2396 		};
2397 		unsigned long zone_lru_pages = 0;
2398 		struct mem_cgroup *memcg;
2399 
2400 		nr_reclaimed = sc->nr_reclaimed;
2401 		nr_scanned = sc->nr_scanned;
2402 
2403 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2404 		do {
2405 			unsigned long lru_pages;
2406 			unsigned long reclaimed;
2407 			unsigned long scanned;
2408 
2409 			if (mem_cgroup_low(root, memcg)) {
2410 				if (!sc->may_thrash)
2411 					continue;
2412 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2413 			}
2414 
2415 			reclaimed = sc->nr_reclaimed;
2416 			scanned = sc->nr_scanned;
2417 
2418 			shrink_zone_memcg(zone, memcg, sc, &lru_pages);
2419 			zone_lru_pages += lru_pages;
2420 
2421 			if (memcg && is_classzone)
2422 				shrink_slab(sc->gfp_mask, zone_to_nid(zone),
2423 					    memcg, sc->nr_scanned - scanned,
2424 					    lru_pages);
2425 
2426 			/* Record the group's reclaim efficiency */
2427 			vmpressure(sc->gfp_mask, memcg, false,
2428 				   sc->nr_scanned - scanned,
2429 				   sc->nr_reclaimed - reclaimed);
2430 
2431 			/*
2432 			 * Direct reclaim and kswapd have to scan all memory
2433 			 * cgroups to fulfill the overall scan target for the
2434 			 * zone.
2435 			 *
2436 			 * Limit reclaim, on the other hand, only cares about
2437 			 * nr_to_reclaim pages to be reclaimed and it will
2438 			 * retry with decreasing priority if one round over the
2439 			 * whole hierarchy is not sufficient.
2440 			 */
2441 			if (!global_reclaim(sc) &&
2442 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2443 				mem_cgroup_iter_break(root, memcg);
2444 				break;
2445 			}
2446 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2447 
2448 		/*
2449 		 * Shrink the slab caches in the same proportion that
2450 		 * the eligible LRU pages were scanned.
2451 		 */
2452 		if (global_reclaim(sc) && is_classzone)
2453 			shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL,
2454 				    sc->nr_scanned - nr_scanned,
2455 				    zone_lru_pages);
2456 
2457 		if (reclaim_state) {
2458 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2459 			reclaim_state->reclaimed_slab = 0;
2460 		}
2461 
2462 		/* Record the subtree's reclaim efficiency */
2463 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2464 			   sc->nr_scanned - nr_scanned,
2465 			   sc->nr_reclaimed - nr_reclaimed);
2466 
2467 		if (sc->nr_reclaimed - nr_reclaimed)
2468 			reclaimable = true;
2469 
2470 	} while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2471 					 sc->nr_scanned - nr_scanned, sc));
2472 
2473 	return reclaimable;
2474 }
2475 
2476 /*
2477  * Returns true if compaction should go ahead for a high-order request, or
2478  * the high-order allocation would succeed without compaction.
2479  */
2480 static inline bool compaction_ready(struct zone *zone, int order)
2481 {
2482 	unsigned long balance_gap, watermark;
2483 	bool watermark_ok;
2484 
2485 	/*
2486 	 * Compaction takes time to run and there are potentially other
2487 	 * callers using the pages just freed. Continue reclaiming until
2488 	 * there is a buffer of free pages available to give compaction
2489 	 * a reasonable chance of completing and allocating the page
2490 	 */
2491 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2492 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
2493 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
2494 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0);
2495 
2496 	/*
2497 	 * If compaction is deferred, reclaim up to a point where
2498 	 * compaction will have a chance of success when re-enabled
2499 	 */
2500 	if (compaction_deferred(zone, order))
2501 		return watermark_ok;
2502 
2503 	/*
2504 	 * If compaction is not ready to start and allocation is not likely
2505 	 * to succeed without it, then keep reclaiming.
2506 	 */
2507 	if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
2508 		return false;
2509 
2510 	return watermark_ok;
2511 }
2512 
2513 /*
2514  * This is the direct reclaim path, for page-allocating processes.  We only
2515  * try to reclaim pages from zones which will satisfy the caller's allocation
2516  * request.
2517  *
2518  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2519  * Because:
2520  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2521  *    allocation or
2522  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2523  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2524  *    zone defense algorithm.
2525  *
2526  * If a zone is deemed to be full of pinned pages then just give it a light
2527  * scan then give up on it.
2528  *
2529  * Returns true if a zone was reclaimable.
2530  */
2531 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2532 {
2533 	struct zoneref *z;
2534 	struct zone *zone;
2535 	unsigned long nr_soft_reclaimed;
2536 	unsigned long nr_soft_scanned;
2537 	gfp_t orig_mask;
2538 	enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2539 	bool reclaimable = false;
2540 
2541 	/*
2542 	 * If the number of buffer_heads in the machine exceeds the maximum
2543 	 * allowed level, force direct reclaim to scan the highmem zone as
2544 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2545 	 */
2546 	orig_mask = sc->gfp_mask;
2547 	if (buffer_heads_over_limit)
2548 		sc->gfp_mask |= __GFP_HIGHMEM;
2549 
2550 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2551 					requested_highidx, sc->nodemask) {
2552 		enum zone_type classzone_idx;
2553 
2554 		if (!populated_zone(zone))
2555 			continue;
2556 
2557 		classzone_idx = requested_highidx;
2558 		while (!populated_zone(zone->zone_pgdat->node_zones +
2559 							classzone_idx))
2560 			classzone_idx--;
2561 
2562 		/*
2563 		 * Take care memory controller reclaiming has small influence
2564 		 * to global LRU.
2565 		 */
2566 		if (global_reclaim(sc)) {
2567 			if (!cpuset_zone_allowed(zone,
2568 						 GFP_KERNEL | __GFP_HARDWALL))
2569 				continue;
2570 
2571 			if (sc->priority != DEF_PRIORITY &&
2572 			    !zone_reclaimable(zone))
2573 				continue;	/* Let kswapd poll it */
2574 
2575 			/*
2576 			 * If we already have plenty of memory free for
2577 			 * compaction in this zone, don't free any more.
2578 			 * Even though compaction is invoked for any
2579 			 * non-zero order, only frequent costly order
2580 			 * reclamation is disruptive enough to become a
2581 			 * noticeable problem, like transparent huge
2582 			 * page allocations.
2583 			 */
2584 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2585 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2586 			    zonelist_zone_idx(z) <= requested_highidx &&
2587 			    compaction_ready(zone, sc->order)) {
2588 				sc->compaction_ready = true;
2589 				continue;
2590 			}
2591 
2592 			/*
2593 			 * This steals pages from memory cgroups over softlimit
2594 			 * and returns the number of reclaimed pages and
2595 			 * scanned pages. This works for global memory pressure
2596 			 * and balancing, not for a memcg's limit.
2597 			 */
2598 			nr_soft_scanned = 0;
2599 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2600 						sc->order, sc->gfp_mask,
2601 						&nr_soft_scanned);
2602 			sc->nr_reclaimed += nr_soft_reclaimed;
2603 			sc->nr_scanned += nr_soft_scanned;
2604 			if (nr_soft_reclaimed)
2605 				reclaimable = true;
2606 			/* need some check for avoid more shrink_zone() */
2607 		}
2608 
2609 		if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2610 			reclaimable = true;
2611 
2612 		if (global_reclaim(sc) &&
2613 		    !reclaimable && zone_reclaimable(zone))
2614 			reclaimable = true;
2615 	}
2616 
2617 	/*
2618 	 * Restore to original mask to avoid the impact on the caller if we
2619 	 * promoted it to __GFP_HIGHMEM.
2620 	 */
2621 	sc->gfp_mask = orig_mask;
2622 
2623 	return reclaimable;
2624 }
2625 
2626 /*
2627  * This is the main entry point to direct page reclaim.
2628  *
2629  * If a full scan of the inactive list fails to free enough memory then we
2630  * are "out of memory" and something needs to be killed.
2631  *
2632  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2633  * high - the zone may be full of dirty or under-writeback pages, which this
2634  * caller can't do much about.  We kick the writeback threads and take explicit
2635  * naps in the hope that some of these pages can be written.  But if the
2636  * allocating task holds filesystem locks which prevent writeout this might not
2637  * work, and the allocation attempt will fail.
2638  *
2639  * returns:	0, if no pages reclaimed
2640  * 		else, the number of pages reclaimed
2641  */
2642 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2643 					  struct scan_control *sc)
2644 {
2645 	int initial_priority = sc->priority;
2646 	unsigned long total_scanned = 0;
2647 	unsigned long writeback_threshold;
2648 	bool zones_reclaimable;
2649 retry:
2650 	delayacct_freepages_start();
2651 
2652 	if (global_reclaim(sc))
2653 		count_vm_event(ALLOCSTALL);
2654 
2655 	do {
2656 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2657 				sc->priority);
2658 		sc->nr_scanned = 0;
2659 		zones_reclaimable = shrink_zones(zonelist, sc);
2660 
2661 		total_scanned += sc->nr_scanned;
2662 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2663 			break;
2664 
2665 		if (sc->compaction_ready)
2666 			break;
2667 
2668 		/*
2669 		 * If we're getting trouble reclaiming, start doing
2670 		 * writepage even in laptop mode.
2671 		 */
2672 		if (sc->priority < DEF_PRIORITY - 2)
2673 			sc->may_writepage = 1;
2674 
2675 		/*
2676 		 * Try to write back as many pages as we just scanned.  This
2677 		 * tends to cause slow streaming writers to write data to the
2678 		 * disk smoothly, at the dirtying rate, which is nice.   But
2679 		 * that's undesirable in laptop mode, where we *want* lumpy
2680 		 * writeout.  So in laptop mode, write out the whole world.
2681 		 */
2682 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2683 		if (total_scanned > writeback_threshold) {
2684 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2685 						WB_REASON_TRY_TO_FREE_PAGES);
2686 			sc->may_writepage = 1;
2687 		}
2688 	} while (--sc->priority >= 0);
2689 
2690 	delayacct_freepages_end();
2691 
2692 	if (sc->nr_reclaimed)
2693 		return sc->nr_reclaimed;
2694 
2695 	/* Aborted reclaim to try compaction? don't OOM, then */
2696 	if (sc->compaction_ready)
2697 		return 1;
2698 
2699 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2700 	if (!sc->may_thrash) {
2701 		sc->priority = initial_priority;
2702 		sc->may_thrash = 1;
2703 		goto retry;
2704 	}
2705 
2706 	/* Any of the zones still reclaimable?  Don't OOM. */
2707 	if (zones_reclaimable)
2708 		return 1;
2709 
2710 	return 0;
2711 }
2712 
2713 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2714 {
2715 	struct zone *zone;
2716 	unsigned long pfmemalloc_reserve = 0;
2717 	unsigned long free_pages = 0;
2718 	int i;
2719 	bool wmark_ok;
2720 
2721 	for (i = 0; i <= ZONE_NORMAL; i++) {
2722 		zone = &pgdat->node_zones[i];
2723 		if (!populated_zone(zone) ||
2724 		    zone_reclaimable_pages(zone) == 0)
2725 			continue;
2726 
2727 		pfmemalloc_reserve += min_wmark_pages(zone);
2728 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2729 	}
2730 
2731 	/* If there are no reserves (unexpected config) then do not throttle */
2732 	if (!pfmemalloc_reserve)
2733 		return true;
2734 
2735 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2736 
2737 	/* kswapd must be awake if processes are being throttled */
2738 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2739 		pgdat->classzone_idx = min(pgdat->classzone_idx,
2740 						(enum zone_type)ZONE_NORMAL);
2741 		wake_up_interruptible(&pgdat->kswapd_wait);
2742 	}
2743 
2744 	return wmark_ok;
2745 }
2746 
2747 /*
2748  * Throttle direct reclaimers if backing storage is backed by the network
2749  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2750  * depleted. kswapd will continue to make progress and wake the processes
2751  * when the low watermark is reached.
2752  *
2753  * Returns true if a fatal signal was delivered during throttling. If this
2754  * happens, the page allocator should not consider triggering the OOM killer.
2755  */
2756 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2757 					nodemask_t *nodemask)
2758 {
2759 	struct zoneref *z;
2760 	struct zone *zone;
2761 	pg_data_t *pgdat = NULL;
2762 
2763 	/*
2764 	 * Kernel threads should not be throttled as they may be indirectly
2765 	 * responsible for cleaning pages necessary for reclaim to make forward
2766 	 * progress. kjournald for example may enter direct reclaim while
2767 	 * committing a transaction where throttling it could forcing other
2768 	 * processes to block on log_wait_commit().
2769 	 */
2770 	if (current->flags & PF_KTHREAD)
2771 		goto out;
2772 
2773 	/*
2774 	 * If a fatal signal is pending, this process should not throttle.
2775 	 * It should return quickly so it can exit and free its memory
2776 	 */
2777 	if (fatal_signal_pending(current))
2778 		goto out;
2779 
2780 	/*
2781 	 * Check if the pfmemalloc reserves are ok by finding the first node
2782 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2783 	 * GFP_KERNEL will be required for allocating network buffers when
2784 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2785 	 *
2786 	 * Throttling is based on the first usable node and throttled processes
2787 	 * wait on a queue until kswapd makes progress and wakes them. There
2788 	 * is an affinity then between processes waking up and where reclaim
2789 	 * progress has been made assuming the process wakes on the same node.
2790 	 * More importantly, processes running on remote nodes will not compete
2791 	 * for remote pfmemalloc reserves and processes on different nodes
2792 	 * should make reasonable progress.
2793 	 */
2794 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2795 					gfp_zone(gfp_mask), nodemask) {
2796 		if (zone_idx(zone) > ZONE_NORMAL)
2797 			continue;
2798 
2799 		/* Throttle based on the first usable node */
2800 		pgdat = zone->zone_pgdat;
2801 		if (pfmemalloc_watermark_ok(pgdat))
2802 			goto out;
2803 		break;
2804 	}
2805 
2806 	/* If no zone was usable by the allocation flags then do not throttle */
2807 	if (!pgdat)
2808 		goto out;
2809 
2810 	/* Account for the throttling */
2811 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2812 
2813 	/*
2814 	 * If the caller cannot enter the filesystem, it's possible that it
2815 	 * is due to the caller holding an FS lock or performing a journal
2816 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2817 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2818 	 * blocked waiting on the same lock. Instead, throttle for up to a
2819 	 * second before continuing.
2820 	 */
2821 	if (!(gfp_mask & __GFP_FS)) {
2822 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2823 			pfmemalloc_watermark_ok(pgdat), HZ);
2824 
2825 		goto check_pending;
2826 	}
2827 
2828 	/* Throttle until kswapd wakes the process */
2829 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2830 		pfmemalloc_watermark_ok(pgdat));
2831 
2832 check_pending:
2833 	if (fatal_signal_pending(current))
2834 		return true;
2835 
2836 out:
2837 	return false;
2838 }
2839 
2840 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2841 				gfp_t gfp_mask, nodemask_t *nodemask)
2842 {
2843 	unsigned long nr_reclaimed;
2844 	struct scan_control sc = {
2845 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2846 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2847 		.order = order,
2848 		.nodemask = nodemask,
2849 		.priority = DEF_PRIORITY,
2850 		.may_writepage = !laptop_mode,
2851 		.may_unmap = 1,
2852 		.may_swap = 1,
2853 	};
2854 
2855 	/*
2856 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2857 	 * 1 is returned so that the page allocator does not OOM kill at this
2858 	 * point.
2859 	 */
2860 	if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2861 		return 1;
2862 
2863 	trace_mm_vmscan_direct_reclaim_begin(order,
2864 				sc.may_writepage,
2865 				gfp_mask);
2866 
2867 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2868 
2869 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2870 
2871 	return nr_reclaimed;
2872 }
2873 
2874 #ifdef CONFIG_MEMCG
2875 
2876 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2877 						gfp_t gfp_mask, bool noswap,
2878 						struct zone *zone,
2879 						unsigned long *nr_scanned)
2880 {
2881 	struct scan_control sc = {
2882 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2883 		.target_mem_cgroup = memcg,
2884 		.may_writepage = !laptop_mode,
2885 		.may_unmap = 1,
2886 		.may_swap = !noswap,
2887 	};
2888 	unsigned long lru_pages;
2889 
2890 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2891 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2892 
2893 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2894 						      sc.may_writepage,
2895 						      sc.gfp_mask);
2896 
2897 	/*
2898 	 * NOTE: Although we can get the priority field, using it
2899 	 * here is not a good idea, since it limits the pages we can scan.
2900 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2901 	 * will pick up pages from other mem cgroup's as well. We hack
2902 	 * the priority and make it zero.
2903 	 */
2904 	shrink_zone_memcg(zone, memcg, &sc, &lru_pages);
2905 
2906 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2907 
2908 	*nr_scanned = sc.nr_scanned;
2909 	return sc.nr_reclaimed;
2910 }
2911 
2912 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2913 					   unsigned long nr_pages,
2914 					   gfp_t gfp_mask,
2915 					   bool may_swap)
2916 {
2917 	struct zonelist *zonelist;
2918 	unsigned long nr_reclaimed;
2919 	int nid;
2920 	struct scan_control sc = {
2921 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
2922 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2923 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2924 		.target_mem_cgroup = memcg,
2925 		.priority = DEF_PRIORITY,
2926 		.may_writepage = !laptop_mode,
2927 		.may_unmap = 1,
2928 		.may_swap = may_swap,
2929 	};
2930 
2931 	/*
2932 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2933 	 * take care of from where we get pages. So the node where we start the
2934 	 * scan does not need to be the current node.
2935 	 */
2936 	nid = mem_cgroup_select_victim_node(memcg);
2937 
2938 	zonelist = NODE_DATA(nid)->node_zonelists;
2939 
2940 	trace_mm_vmscan_memcg_reclaim_begin(0,
2941 					    sc.may_writepage,
2942 					    sc.gfp_mask);
2943 
2944 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2945 
2946 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2947 
2948 	return nr_reclaimed;
2949 }
2950 #endif
2951 
2952 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2953 {
2954 	struct mem_cgroup *memcg;
2955 
2956 	if (!total_swap_pages)
2957 		return;
2958 
2959 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2960 	do {
2961 		struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2962 
2963 		if (inactive_anon_is_low(lruvec))
2964 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2965 					   sc, LRU_ACTIVE_ANON);
2966 
2967 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2968 	} while (memcg);
2969 }
2970 
2971 static bool zone_balanced(struct zone *zone, int order,
2972 			  unsigned long balance_gap, int classzone_idx)
2973 {
2974 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2975 				    balance_gap, classzone_idx))
2976 		return false;
2977 
2978 	if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2979 				order, 0, classzone_idx) == COMPACT_SKIPPED)
2980 		return false;
2981 
2982 	return true;
2983 }
2984 
2985 /*
2986  * pgdat_balanced() is used when checking if a node is balanced.
2987  *
2988  * For order-0, all zones must be balanced!
2989  *
2990  * For high-order allocations only zones that meet watermarks and are in a
2991  * zone allowed by the callers classzone_idx are added to balanced_pages. The
2992  * total of balanced pages must be at least 25% of the zones allowed by
2993  * classzone_idx for the node to be considered balanced. Forcing all zones to
2994  * be balanced for high orders can cause excessive reclaim when there are
2995  * imbalanced zones.
2996  * The choice of 25% is due to
2997  *   o a 16M DMA zone that is balanced will not balance a zone on any
2998  *     reasonable sized machine
2999  *   o On all other machines, the top zone must be at least a reasonable
3000  *     percentage of the middle zones. For example, on 32-bit x86, highmem
3001  *     would need to be at least 256M for it to be balance a whole node.
3002  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
3003  *     to balance a node on its own. These seemed like reasonable ratios.
3004  */
3005 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3006 {
3007 	unsigned long managed_pages = 0;
3008 	unsigned long balanced_pages = 0;
3009 	int i;
3010 
3011 	/* Check the watermark levels */
3012 	for (i = 0; i <= classzone_idx; i++) {
3013 		struct zone *zone = pgdat->node_zones + i;
3014 
3015 		if (!populated_zone(zone))
3016 			continue;
3017 
3018 		managed_pages += zone->managed_pages;
3019 
3020 		/*
3021 		 * A special case here:
3022 		 *
3023 		 * balance_pgdat() skips over all_unreclaimable after
3024 		 * DEF_PRIORITY. Effectively, it considers them balanced so
3025 		 * they must be considered balanced here as well!
3026 		 */
3027 		if (!zone_reclaimable(zone)) {
3028 			balanced_pages += zone->managed_pages;
3029 			continue;
3030 		}
3031 
3032 		if (zone_balanced(zone, order, 0, i))
3033 			balanced_pages += zone->managed_pages;
3034 		else if (!order)
3035 			return false;
3036 	}
3037 
3038 	if (order)
3039 		return balanced_pages >= (managed_pages >> 2);
3040 	else
3041 		return true;
3042 }
3043 
3044 /*
3045  * Prepare kswapd for sleeping. This verifies that there are no processes
3046  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3047  *
3048  * Returns true if kswapd is ready to sleep
3049  */
3050 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
3051 					int classzone_idx)
3052 {
3053 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
3054 	if (remaining)
3055 		return false;
3056 
3057 	/*
3058 	 * The throttled processes are normally woken up in balance_pgdat() as
3059 	 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3060 	 * race between when kswapd checks the watermarks and a process gets
3061 	 * throttled. There is also a potential race if processes get
3062 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3063 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3064 	 * the wake up checks. If kswapd is going to sleep, no process should
3065 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3066 	 * the wake up is premature, processes will wake kswapd and get
3067 	 * throttled again. The difference from wake ups in balance_pgdat() is
3068 	 * that here we are under prepare_to_wait().
3069 	 */
3070 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3071 		wake_up_all(&pgdat->pfmemalloc_wait);
3072 
3073 	return pgdat_balanced(pgdat, order, classzone_idx);
3074 }
3075 
3076 /*
3077  * kswapd shrinks the zone by the number of pages required to reach
3078  * the high watermark.
3079  *
3080  * Returns true if kswapd scanned at least the requested number of pages to
3081  * reclaim or if the lack of progress was due to pages under writeback.
3082  * This is used to determine if the scanning priority needs to be raised.
3083  */
3084 static bool kswapd_shrink_zone(struct zone *zone,
3085 			       int classzone_idx,
3086 			       struct scan_control *sc,
3087 			       unsigned long *nr_attempted)
3088 {
3089 	int testorder = sc->order;
3090 	unsigned long balance_gap;
3091 	bool lowmem_pressure;
3092 
3093 	/* Reclaim above the high watermark. */
3094 	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
3095 
3096 	/*
3097 	 * Kswapd reclaims only single pages with compaction enabled. Trying
3098 	 * too hard to reclaim until contiguous free pages have become
3099 	 * available can hurt performance by evicting too much useful data
3100 	 * from memory. Do not reclaim more than needed for compaction.
3101 	 */
3102 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3103 			compaction_suitable(zone, sc->order, 0, classzone_idx)
3104 							!= COMPACT_SKIPPED)
3105 		testorder = 0;
3106 
3107 	/*
3108 	 * We put equal pressure on every zone, unless one zone has way too
3109 	 * many pages free already. The "too many pages" is defined as the
3110 	 * high wmark plus a "gap" where the gap is either the low
3111 	 * watermark or 1% of the zone, whichever is smaller.
3112 	 */
3113 	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3114 			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
3115 
3116 	/*
3117 	 * If there is no low memory pressure or the zone is balanced then no
3118 	 * reclaim is necessary
3119 	 */
3120 	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3121 	if (!lowmem_pressure && zone_balanced(zone, testorder,
3122 						balance_gap, classzone_idx))
3123 		return true;
3124 
3125 	shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
3126 
3127 	/* Account for the number of pages attempted to reclaim */
3128 	*nr_attempted += sc->nr_to_reclaim;
3129 
3130 	clear_bit(ZONE_WRITEBACK, &zone->flags);
3131 
3132 	/*
3133 	 * If a zone reaches its high watermark, consider it to be no longer
3134 	 * congested. It's possible there are dirty pages backed by congested
3135 	 * BDIs but as pressure is relieved, speculatively avoid congestion
3136 	 * waits.
3137 	 */
3138 	if (zone_reclaimable(zone) &&
3139 	    zone_balanced(zone, testorder, 0, classzone_idx)) {
3140 		clear_bit(ZONE_CONGESTED, &zone->flags);
3141 		clear_bit(ZONE_DIRTY, &zone->flags);
3142 	}
3143 
3144 	return sc->nr_scanned >= sc->nr_to_reclaim;
3145 }
3146 
3147 /*
3148  * For kswapd, balance_pgdat() will work across all this node's zones until
3149  * they are all at high_wmark_pages(zone).
3150  *
3151  * Returns the final order kswapd was reclaiming at
3152  *
3153  * There is special handling here for zones which are full of pinned pages.
3154  * This can happen if the pages are all mlocked, or if they are all used by
3155  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
3156  * What we do is to detect the case where all pages in the zone have been
3157  * scanned twice and there has been zero successful reclaim.  Mark the zone as
3158  * dead and from now on, only perform a short scan.  Basically we're polling
3159  * the zone for when the problem goes away.
3160  *
3161  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3162  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3163  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3164  * lower zones regardless of the number of free pages in the lower zones. This
3165  * interoperates with the page allocator fallback scheme to ensure that aging
3166  * of pages is balanced across the zones.
3167  */
3168 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
3169 							int *classzone_idx)
3170 {
3171 	int i;
3172 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
3173 	unsigned long nr_soft_reclaimed;
3174 	unsigned long nr_soft_scanned;
3175 	struct scan_control sc = {
3176 		.gfp_mask = GFP_KERNEL,
3177 		.order = order,
3178 		.priority = DEF_PRIORITY,
3179 		.may_writepage = !laptop_mode,
3180 		.may_unmap = 1,
3181 		.may_swap = 1,
3182 	};
3183 	count_vm_event(PAGEOUTRUN);
3184 
3185 	do {
3186 		unsigned long nr_attempted = 0;
3187 		bool raise_priority = true;
3188 		bool pgdat_needs_compaction = (order > 0);
3189 
3190 		sc.nr_reclaimed = 0;
3191 
3192 		/*
3193 		 * Scan in the highmem->dma direction for the highest
3194 		 * zone which needs scanning
3195 		 */
3196 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3197 			struct zone *zone = pgdat->node_zones + i;
3198 
3199 			if (!populated_zone(zone))
3200 				continue;
3201 
3202 			if (sc.priority != DEF_PRIORITY &&
3203 			    !zone_reclaimable(zone))
3204 				continue;
3205 
3206 			/*
3207 			 * Do some background aging of the anon list, to give
3208 			 * pages a chance to be referenced before reclaiming.
3209 			 */
3210 			age_active_anon(zone, &sc);
3211 
3212 			/*
3213 			 * If the number of buffer_heads in the machine
3214 			 * exceeds the maximum allowed level and this node
3215 			 * has a highmem zone, force kswapd to reclaim from
3216 			 * it to relieve lowmem pressure.
3217 			 */
3218 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
3219 				end_zone = i;
3220 				break;
3221 			}
3222 
3223 			if (!zone_balanced(zone, order, 0, 0)) {
3224 				end_zone = i;
3225 				break;
3226 			} else {
3227 				/*
3228 				 * If balanced, clear the dirty and congested
3229 				 * flags
3230 				 */
3231 				clear_bit(ZONE_CONGESTED, &zone->flags);
3232 				clear_bit(ZONE_DIRTY, &zone->flags);
3233 			}
3234 		}
3235 
3236 		if (i < 0)
3237 			goto out;
3238 
3239 		for (i = 0; i <= end_zone; i++) {
3240 			struct zone *zone = pgdat->node_zones + i;
3241 
3242 			if (!populated_zone(zone))
3243 				continue;
3244 
3245 			/*
3246 			 * If any zone is currently balanced then kswapd will
3247 			 * not call compaction as it is expected that the
3248 			 * necessary pages are already available.
3249 			 */
3250 			if (pgdat_needs_compaction &&
3251 					zone_watermark_ok(zone, order,
3252 						low_wmark_pages(zone),
3253 						*classzone_idx, 0))
3254 				pgdat_needs_compaction = false;
3255 		}
3256 
3257 		/*
3258 		 * If we're getting trouble reclaiming, start doing writepage
3259 		 * even in laptop mode.
3260 		 */
3261 		if (sc.priority < DEF_PRIORITY - 2)
3262 			sc.may_writepage = 1;
3263 
3264 		/*
3265 		 * Now scan the zone in the dma->highmem direction, stopping
3266 		 * at the last zone which needs scanning.
3267 		 *
3268 		 * We do this because the page allocator works in the opposite
3269 		 * direction.  This prevents the page allocator from allocating
3270 		 * pages behind kswapd's direction of progress, which would
3271 		 * cause too much scanning of the lower zones.
3272 		 */
3273 		for (i = 0; i <= end_zone; i++) {
3274 			struct zone *zone = pgdat->node_zones + i;
3275 
3276 			if (!populated_zone(zone))
3277 				continue;
3278 
3279 			if (sc.priority != DEF_PRIORITY &&
3280 			    !zone_reclaimable(zone))
3281 				continue;
3282 
3283 			sc.nr_scanned = 0;
3284 
3285 			nr_soft_scanned = 0;
3286 			/*
3287 			 * Call soft limit reclaim before calling shrink_zone.
3288 			 */
3289 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3290 							order, sc.gfp_mask,
3291 							&nr_soft_scanned);
3292 			sc.nr_reclaimed += nr_soft_reclaimed;
3293 
3294 			/*
3295 			 * There should be no need to raise the scanning
3296 			 * priority if enough pages are already being scanned
3297 			 * that that high watermark would be met at 100%
3298 			 * efficiency.
3299 			 */
3300 			if (kswapd_shrink_zone(zone, end_zone,
3301 					       &sc, &nr_attempted))
3302 				raise_priority = false;
3303 		}
3304 
3305 		/*
3306 		 * If the low watermark is met there is no need for processes
3307 		 * to be throttled on pfmemalloc_wait as they should not be
3308 		 * able to safely make forward progress. Wake them
3309 		 */
3310 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3311 				pfmemalloc_watermark_ok(pgdat))
3312 			wake_up_all(&pgdat->pfmemalloc_wait);
3313 
3314 		/*
3315 		 * Fragmentation may mean that the system cannot be rebalanced
3316 		 * for high-order allocations in all zones. If twice the
3317 		 * allocation size has been reclaimed and the zones are still
3318 		 * not balanced then recheck the watermarks at order-0 to
3319 		 * prevent kswapd reclaiming excessively. Assume that a
3320 		 * process requested a high-order can direct reclaim/compact.
3321 		 */
3322 		if (order && sc.nr_reclaimed >= 2UL << order)
3323 			order = sc.order = 0;
3324 
3325 		/* Check if kswapd should be suspending */
3326 		if (try_to_freeze() || kthread_should_stop())
3327 			break;
3328 
3329 		/*
3330 		 * Compact if necessary and kswapd is reclaiming at least the
3331 		 * high watermark number of pages as requsted
3332 		 */
3333 		if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3334 			compact_pgdat(pgdat, order);
3335 
3336 		/*
3337 		 * Raise priority if scanning rate is too low or there was no
3338 		 * progress in reclaiming pages
3339 		 */
3340 		if (raise_priority || !sc.nr_reclaimed)
3341 			sc.priority--;
3342 	} while (sc.priority >= 1 &&
3343 		 !pgdat_balanced(pgdat, order, *classzone_idx));
3344 
3345 out:
3346 	/*
3347 	 * Return the order we were reclaiming at so prepare_kswapd_sleep()
3348 	 * makes a decision on the order we were last reclaiming at. However,
3349 	 * if another caller entered the allocator slow path while kswapd
3350 	 * was awake, order will remain at the higher level
3351 	 */
3352 	*classzone_idx = end_zone;
3353 	return order;
3354 }
3355 
3356 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3357 {
3358 	long remaining = 0;
3359 	DEFINE_WAIT(wait);
3360 
3361 	if (freezing(current) || kthread_should_stop())
3362 		return;
3363 
3364 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3365 
3366 	/* Try to sleep for a short interval */
3367 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3368 		remaining = schedule_timeout(HZ/10);
3369 		finish_wait(&pgdat->kswapd_wait, &wait);
3370 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3371 	}
3372 
3373 	/*
3374 	 * After a short sleep, check if it was a premature sleep. If not, then
3375 	 * go fully to sleep until explicitly woken up.
3376 	 */
3377 	if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
3378 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3379 
3380 		/*
3381 		 * vmstat counters are not perfectly accurate and the estimated
3382 		 * value for counters such as NR_FREE_PAGES can deviate from the
3383 		 * true value by nr_online_cpus * threshold. To avoid the zone
3384 		 * watermarks being breached while under pressure, we reduce the
3385 		 * per-cpu vmstat threshold while kswapd is awake and restore
3386 		 * them before going back to sleep.
3387 		 */
3388 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3389 
3390 		/*
3391 		 * Compaction records what page blocks it recently failed to
3392 		 * isolate pages from and skips them in the future scanning.
3393 		 * When kswapd is going to sleep, it is reasonable to assume
3394 		 * that pages and compaction may succeed so reset the cache.
3395 		 */
3396 		reset_isolation_suitable(pgdat);
3397 
3398 		if (!kthread_should_stop())
3399 			schedule();
3400 
3401 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3402 	} else {
3403 		if (remaining)
3404 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3405 		else
3406 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3407 	}
3408 	finish_wait(&pgdat->kswapd_wait, &wait);
3409 }
3410 
3411 /*
3412  * The background pageout daemon, started as a kernel thread
3413  * from the init process.
3414  *
3415  * This basically trickles out pages so that we have _some_
3416  * free memory available even if there is no other activity
3417  * that frees anything up. This is needed for things like routing
3418  * etc, where we otherwise might have all activity going on in
3419  * asynchronous contexts that cannot page things out.
3420  *
3421  * If there are applications that are active memory-allocators
3422  * (most normal use), this basically shouldn't matter.
3423  */
3424 static int kswapd(void *p)
3425 {
3426 	unsigned long order, new_order;
3427 	unsigned balanced_order;
3428 	int classzone_idx, new_classzone_idx;
3429 	int balanced_classzone_idx;
3430 	pg_data_t *pgdat = (pg_data_t*)p;
3431 	struct task_struct *tsk = current;
3432 
3433 	struct reclaim_state reclaim_state = {
3434 		.reclaimed_slab = 0,
3435 	};
3436 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3437 
3438 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3439 
3440 	if (!cpumask_empty(cpumask))
3441 		set_cpus_allowed_ptr(tsk, cpumask);
3442 	current->reclaim_state = &reclaim_state;
3443 
3444 	/*
3445 	 * Tell the memory management that we're a "memory allocator",
3446 	 * and that if we need more memory we should get access to it
3447 	 * regardless (see "__alloc_pages()"). "kswapd" should
3448 	 * never get caught in the normal page freeing logic.
3449 	 *
3450 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3451 	 * you need a small amount of memory in order to be able to
3452 	 * page out something else, and this flag essentially protects
3453 	 * us from recursively trying to free more memory as we're
3454 	 * trying to free the first piece of memory in the first place).
3455 	 */
3456 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3457 	set_freezable();
3458 
3459 	order = new_order = 0;
3460 	balanced_order = 0;
3461 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3462 	balanced_classzone_idx = classzone_idx;
3463 	for ( ; ; ) {
3464 		bool ret;
3465 
3466 		/*
3467 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3468 		 * new request of a similar or harder type will succeed soon
3469 		 * so consider going to sleep on the basis we reclaimed at
3470 		 */
3471 		if (balanced_classzone_idx >= new_classzone_idx &&
3472 					balanced_order == new_order) {
3473 			new_order = pgdat->kswapd_max_order;
3474 			new_classzone_idx = pgdat->classzone_idx;
3475 			pgdat->kswapd_max_order =  0;
3476 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3477 		}
3478 
3479 		if (order < new_order || classzone_idx > new_classzone_idx) {
3480 			/*
3481 			 * Don't sleep if someone wants a larger 'order'
3482 			 * allocation or has tigher zone constraints
3483 			 */
3484 			order = new_order;
3485 			classzone_idx = new_classzone_idx;
3486 		} else {
3487 			kswapd_try_to_sleep(pgdat, balanced_order,
3488 						balanced_classzone_idx);
3489 			order = pgdat->kswapd_max_order;
3490 			classzone_idx = pgdat->classzone_idx;
3491 			new_order = order;
3492 			new_classzone_idx = classzone_idx;
3493 			pgdat->kswapd_max_order = 0;
3494 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3495 		}
3496 
3497 		ret = try_to_freeze();
3498 		if (kthread_should_stop())
3499 			break;
3500 
3501 		/*
3502 		 * We can speed up thawing tasks if we don't call balance_pgdat
3503 		 * after returning from the refrigerator
3504 		 */
3505 		if (!ret) {
3506 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3507 			balanced_classzone_idx = classzone_idx;
3508 			balanced_order = balance_pgdat(pgdat, order,
3509 						&balanced_classzone_idx);
3510 		}
3511 	}
3512 
3513 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3514 	current->reclaim_state = NULL;
3515 	lockdep_clear_current_reclaim_state();
3516 
3517 	return 0;
3518 }
3519 
3520 /*
3521  * A zone is low on free memory, so wake its kswapd task to service it.
3522  */
3523 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3524 {
3525 	pg_data_t *pgdat;
3526 
3527 	if (!populated_zone(zone))
3528 		return;
3529 
3530 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3531 		return;
3532 	pgdat = zone->zone_pgdat;
3533 	if (pgdat->kswapd_max_order < order) {
3534 		pgdat->kswapd_max_order = order;
3535 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3536 	}
3537 	if (!waitqueue_active(&pgdat->kswapd_wait))
3538 		return;
3539 	if (zone_balanced(zone, order, 0, 0))
3540 		return;
3541 
3542 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3543 	wake_up_interruptible(&pgdat->kswapd_wait);
3544 }
3545 
3546 #ifdef CONFIG_HIBERNATION
3547 /*
3548  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3549  * freed pages.
3550  *
3551  * Rather than trying to age LRUs the aim is to preserve the overall
3552  * LRU order by reclaiming preferentially
3553  * inactive > active > active referenced > active mapped
3554  */
3555 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3556 {
3557 	struct reclaim_state reclaim_state;
3558 	struct scan_control sc = {
3559 		.nr_to_reclaim = nr_to_reclaim,
3560 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3561 		.priority = DEF_PRIORITY,
3562 		.may_writepage = 1,
3563 		.may_unmap = 1,
3564 		.may_swap = 1,
3565 		.hibernation_mode = 1,
3566 	};
3567 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3568 	struct task_struct *p = current;
3569 	unsigned long nr_reclaimed;
3570 
3571 	p->flags |= PF_MEMALLOC;
3572 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3573 	reclaim_state.reclaimed_slab = 0;
3574 	p->reclaim_state = &reclaim_state;
3575 
3576 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3577 
3578 	p->reclaim_state = NULL;
3579 	lockdep_clear_current_reclaim_state();
3580 	p->flags &= ~PF_MEMALLOC;
3581 
3582 	return nr_reclaimed;
3583 }
3584 #endif /* CONFIG_HIBERNATION */
3585 
3586 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3587    not required for correctness.  So if the last cpu in a node goes
3588    away, we get changed to run anywhere: as the first one comes back,
3589    restore their cpu bindings. */
3590 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3591 			void *hcpu)
3592 {
3593 	int nid;
3594 
3595 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3596 		for_each_node_state(nid, N_MEMORY) {
3597 			pg_data_t *pgdat = NODE_DATA(nid);
3598 			const struct cpumask *mask;
3599 
3600 			mask = cpumask_of_node(pgdat->node_id);
3601 
3602 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3603 				/* One of our CPUs online: restore mask */
3604 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3605 		}
3606 	}
3607 	return NOTIFY_OK;
3608 }
3609 
3610 /*
3611  * This kswapd start function will be called by init and node-hot-add.
3612  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3613  */
3614 int kswapd_run(int nid)
3615 {
3616 	pg_data_t *pgdat = NODE_DATA(nid);
3617 	int ret = 0;
3618 
3619 	if (pgdat->kswapd)
3620 		return 0;
3621 
3622 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3623 	if (IS_ERR(pgdat->kswapd)) {
3624 		/* failure at boot is fatal */
3625 		BUG_ON(system_state == SYSTEM_BOOTING);
3626 		pr_err("Failed to start kswapd on node %d\n", nid);
3627 		ret = PTR_ERR(pgdat->kswapd);
3628 		pgdat->kswapd = NULL;
3629 	}
3630 	return ret;
3631 }
3632 
3633 /*
3634  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3635  * hold mem_hotplug_begin/end().
3636  */
3637 void kswapd_stop(int nid)
3638 {
3639 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3640 
3641 	if (kswapd) {
3642 		kthread_stop(kswapd);
3643 		NODE_DATA(nid)->kswapd = NULL;
3644 	}
3645 }
3646 
3647 static int __init kswapd_init(void)
3648 {
3649 	int nid;
3650 
3651 	swap_setup();
3652 	for_each_node_state(nid, N_MEMORY)
3653  		kswapd_run(nid);
3654 	hotcpu_notifier(cpu_callback, 0);
3655 	return 0;
3656 }
3657 
3658 module_init(kswapd_init)
3659 
3660 #ifdef CONFIG_NUMA
3661 /*
3662  * Zone reclaim mode
3663  *
3664  * If non-zero call zone_reclaim when the number of free pages falls below
3665  * the watermarks.
3666  */
3667 int zone_reclaim_mode __read_mostly;
3668 
3669 #define RECLAIM_OFF 0
3670 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3671 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3672 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3673 
3674 /*
3675  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3676  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3677  * a zone.
3678  */
3679 #define ZONE_RECLAIM_PRIORITY 4
3680 
3681 /*
3682  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3683  * occur.
3684  */
3685 int sysctl_min_unmapped_ratio = 1;
3686 
3687 /*
3688  * If the number of slab pages in a zone grows beyond this percentage then
3689  * slab reclaim needs to occur.
3690  */
3691 int sysctl_min_slab_ratio = 5;
3692 
3693 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3694 {
3695 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3696 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3697 		zone_page_state(zone, NR_ACTIVE_FILE);
3698 
3699 	/*
3700 	 * It's possible for there to be more file mapped pages than
3701 	 * accounted for by the pages on the file LRU lists because
3702 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3703 	 */
3704 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3705 }
3706 
3707 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3708 static unsigned long zone_pagecache_reclaimable(struct zone *zone)
3709 {
3710 	unsigned long nr_pagecache_reclaimable;
3711 	unsigned long delta = 0;
3712 
3713 	/*
3714 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3715 	 * potentially reclaimable. Otherwise, we have to worry about
3716 	 * pages like swapcache and zone_unmapped_file_pages() provides
3717 	 * a better estimate
3718 	 */
3719 	if (zone_reclaim_mode & RECLAIM_UNMAP)
3720 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3721 	else
3722 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3723 
3724 	/* If we can't clean pages, remove dirty pages from consideration */
3725 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3726 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3727 
3728 	/* Watch for any possible underflows due to delta */
3729 	if (unlikely(delta > nr_pagecache_reclaimable))
3730 		delta = nr_pagecache_reclaimable;
3731 
3732 	return nr_pagecache_reclaimable - delta;
3733 }
3734 
3735 /*
3736  * Try to free up some pages from this zone through reclaim.
3737  */
3738 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3739 {
3740 	/* Minimum pages needed in order to stay on node */
3741 	const unsigned long nr_pages = 1 << order;
3742 	struct task_struct *p = current;
3743 	struct reclaim_state reclaim_state;
3744 	struct scan_control sc = {
3745 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3746 		.gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3747 		.order = order,
3748 		.priority = ZONE_RECLAIM_PRIORITY,
3749 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3750 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP),
3751 		.may_swap = 1,
3752 	};
3753 
3754 	cond_resched();
3755 	/*
3756 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3757 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3758 	 * and RECLAIM_UNMAP.
3759 	 */
3760 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3761 	lockdep_set_current_reclaim_state(gfp_mask);
3762 	reclaim_state.reclaimed_slab = 0;
3763 	p->reclaim_state = &reclaim_state;
3764 
3765 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3766 		/*
3767 		 * Free memory by calling shrink zone with increasing
3768 		 * priorities until we have enough memory freed.
3769 		 */
3770 		do {
3771 			shrink_zone(zone, &sc, true);
3772 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3773 	}
3774 
3775 	p->reclaim_state = NULL;
3776 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3777 	lockdep_clear_current_reclaim_state();
3778 	return sc.nr_reclaimed >= nr_pages;
3779 }
3780 
3781 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3782 {
3783 	int node_id;
3784 	int ret;
3785 
3786 	/*
3787 	 * Zone reclaim reclaims unmapped file backed pages and
3788 	 * slab pages if we are over the defined limits.
3789 	 *
3790 	 * A small portion of unmapped file backed pages is needed for
3791 	 * file I/O otherwise pages read by file I/O will be immediately
3792 	 * thrown out if the zone is overallocated. So we do not reclaim
3793 	 * if less than a specified percentage of the zone is used by
3794 	 * unmapped file backed pages.
3795 	 */
3796 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3797 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3798 		return ZONE_RECLAIM_FULL;
3799 
3800 	if (!zone_reclaimable(zone))
3801 		return ZONE_RECLAIM_FULL;
3802 
3803 	/*
3804 	 * Do not scan if the allocation should not be delayed.
3805 	 */
3806 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3807 		return ZONE_RECLAIM_NOSCAN;
3808 
3809 	/*
3810 	 * Only run zone reclaim on the local zone or on zones that do not
3811 	 * have associated processors. This will favor the local processor
3812 	 * over remote processors and spread off node memory allocations
3813 	 * as wide as possible.
3814 	 */
3815 	node_id = zone_to_nid(zone);
3816 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3817 		return ZONE_RECLAIM_NOSCAN;
3818 
3819 	if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
3820 		return ZONE_RECLAIM_NOSCAN;
3821 
3822 	ret = __zone_reclaim(zone, gfp_mask, order);
3823 	clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
3824 
3825 	if (!ret)
3826 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3827 
3828 	return ret;
3829 }
3830 #endif
3831 
3832 /*
3833  * page_evictable - test whether a page is evictable
3834  * @page: the page to test
3835  *
3836  * Test whether page is evictable--i.e., should be placed on active/inactive
3837  * lists vs unevictable list.
3838  *
3839  * Reasons page might not be evictable:
3840  * (1) page's mapping marked unevictable
3841  * (2) page is part of an mlocked VMA
3842  *
3843  */
3844 int page_evictable(struct page *page)
3845 {
3846 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3847 }
3848 
3849 #ifdef CONFIG_SHMEM
3850 /**
3851  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3852  * @pages:	array of pages to check
3853  * @nr_pages:	number of pages to check
3854  *
3855  * Checks pages for evictability and moves them to the appropriate lru list.
3856  *
3857  * This function is only used for SysV IPC SHM_UNLOCK.
3858  */
3859 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3860 {
3861 	struct lruvec *lruvec;
3862 	struct zone *zone = NULL;
3863 	int pgscanned = 0;
3864 	int pgrescued = 0;
3865 	int i;
3866 
3867 	for (i = 0; i < nr_pages; i++) {
3868 		struct page *page = pages[i];
3869 		struct zone *pagezone;
3870 
3871 		pgscanned++;
3872 		pagezone = page_zone(page);
3873 		if (pagezone != zone) {
3874 			if (zone)
3875 				spin_unlock_irq(&zone->lru_lock);
3876 			zone = pagezone;
3877 			spin_lock_irq(&zone->lru_lock);
3878 		}
3879 		lruvec = mem_cgroup_page_lruvec(page, zone);
3880 
3881 		if (!PageLRU(page) || !PageUnevictable(page))
3882 			continue;
3883 
3884 		if (page_evictable(page)) {
3885 			enum lru_list lru = page_lru_base_type(page);
3886 
3887 			VM_BUG_ON_PAGE(PageActive(page), page);
3888 			ClearPageUnevictable(page);
3889 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3890 			add_page_to_lru_list(page, lruvec, lru);
3891 			pgrescued++;
3892 		}
3893 	}
3894 
3895 	if (zone) {
3896 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3897 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3898 		spin_unlock_irq(&zone->lru_lock);
3899 	}
3900 }
3901 #endif /* CONFIG_SHMEM */
3902