1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/module.h> 18 #include <linux/gfp.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/swap.h> 21 #include <linux/pagemap.h> 22 #include <linux/init.h> 23 #include <linux/highmem.h> 24 #include <linux/vmpressure.h> 25 #include <linux/vmstat.h> 26 #include <linux/file.h> 27 #include <linux/writeback.h> 28 #include <linux/blkdev.h> 29 #include <linux/buffer_head.h> /* for try_to_release_page(), 30 buffer_heads_over_limit */ 31 #include <linux/mm_inline.h> 32 #include <linux/backing-dev.h> 33 #include <linux/rmap.h> 34 #include <linux/topology.h> 35 #include <linux/cpu.h> 36 #include <linux/cpuset.h> 37 #include <linux/compaction.h> 38 #include <linux/notifier.h> 39 #include <linux/rwsem.h> 40 #include <linux/delay.h> 41 #include <linux/kthread.h> 42 #include <linux/freezer.h> 43 #include <linux/memcontrol.h> 44 #include <linux/delayacct.h> 45 #include <linux/sysctl.h> 46 #include <linux/oom.h> 47 #include <linux/prefetch.h> 48 #include <linux/printk.h> 49 #include <linux/dax.h> 50 51 #include <asm/tlbflush.h> 52 #include <asm/div64.h> 53 54 #include <linux/swapops.h> 55 #include <linux/balloon_compaction.h> 56 57 #include "internal.h" 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/vmscan.h> 61 62 struct scan_control { 63 /* How many pages shrink_list() should reclaim */ 64 unsigned long nr_to_reclaim; 65 66 /* This context's GFP mask */ 67 gfp_t gfp_mask; 68 69 /* Allocation order */ 70 int order; 71 72 /* 73 * Nodemask of nodes allowed by the caller. If NULL, all nodes 74 * are scanned. 75 */ 76 nodemask_t *nodemask; 77 78 /* 79 * The memory cgroup that hit its limit and as a result is the 80 * primary target of this reclaim invocation. 81 */ 82 struct mem_cgroup *target_mem_cgroup; 83 84 /* Scan (total_size >> priority) pages at once */ 85 int priority; 86 87 unsigned int may_writepage:1; 88 89 /* Can mapped pages be reclaimed? */ 90 unsigned int may_unmap:1; 91 92 /* Can pages be swapped as part of reclaim? */ 93 unsigned int may_swap:1; 94 95 /* Can cgroups be reclaimed below their normal consumption range? */ 96 unsigned int may_thrash:1; 97 98 unsigned int hibernation_mode:1; 99 100 /* One of the zones is ready for compaction */ 101 unsigned int compaction_ready:1; 102 103 /* Incremented by the number of inactive pages that were scanned */ 104 unsigned long nr_scanned; 105 106 /* Number of pages freed so far during a call to shrink_zones() */ 107 unsigned long nr_reclaimed; 108 }; 109 110 #ifdef ARCH_HAS_PREFETCH 111 #define prefetch_prev_lru_page(_page, _base, _field) \ 112 do { \ 113 if ((_page)->lru.prev != _base) { \ 114 struct page *prev; \ 115 \ 116 prev = lru_to_page(&(_page->lru)); \ 117 prefetch(&prev->_field); \ 118 } \ 119 } while (0) 120 #else 121 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 122 #endif 123 124 #ifdef ARCH_HAS_PREFETCHW 125 #define prefetchw_prev_lru_page(_page, _base, _field) \ 126 do { \ 127 if ((_page)->lru.prev != _base) { \ 128 struct page *prev; \ 129 \ 130 prev = lru_to_page(&(_page->lru)); \ 131 prefetchw(&prev->_field); \ 132 } \ 133 } while (0) 134 #else 135 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 136 #endif 137 138 /* 139 * From 0 .. 100. Higher means more swappy. 140 */ 141 int vm_swappiness = 60; 142 /* 143 * The total number of pages which are beyond the high watermark within all 144 * zones. 145 */ 146 unsigned long vm_total_pages; 147 148 static LIST_HEAD(shrinker_list); 149 static DECLARE_RWSEM(shrinker_rwsem); 150 151 #ifdef CONFIG_MEMCG 152 static bool global_reclaim(struct scan_control *sc) 153 { 154 return !sc->target_mem_cgroup; 155 } 156 157 /** 158 * sane_reclaim - is the usual dirty throttling mechanism operational? 159 * @sc: scan_control in question 160 * 161 * The normal page dirty throttling mechanism in balance_dirty_pages() is 162 * completely broken with the legacy memcg and direct stalling in 163 * shrink_page_list() is used for throttling instead, which lacks all the 164 * niceties such as fairness, adaptive pausing, bandwidth proportional 165 * allocation and configurability. 166 * 167 * This function tests whether the vmscan currently in progress can assume 168 * that the normal dirty throttling mechanism is operational. 169 */ 170 static bool sane_reclaim(struct scan_control *sc) 171 { 172 struct mem_cgroup *memcg = sc->target_mem_cgroup; 173 174 if (!memcg) 175 return true; 176 #ifdef CONFIG_CGROUP_WRITEBACK 177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 178 return true; 179 #endif 180 return false; 181 } 182 #else 183 static bool global_reclaim(struct scan_control *sc) 184 { 185 return true; 186 } 187 188 static bool sane_reclaim(struct scan_control *sc) 189 { 190 return true; 191 } 192 #endif 193 194 static unsigned long zone_reclaimable_pages(struct zone *zone) 195 { 196 unsigned long nr; 197 198 nr = zone_page_state_snapshot(zone, NR_ACTIVE_FILE) + 199 zone_page_state_snapshot(zone, NR_INACTIVE_FILE) + 200 zone_page_state_snapshot(zone, NR_ISOLATED_FILE); 201 202 if (get_nr_swap_pages() > 0) 203 nr += zone_page_state_snapshot(zone, NR_ACTIVE_ANON) + 204 zone_page_state_snapshot(zone, NR_INACTIVE_ANON) + 205 zone_page_state_snapshot(zone, NR_ISOLATED_ANON); 206 207 return nr; 208 } 209 210 bool zone_reclaimable(struct zone *zone) 211 { 212 return zone_page_state_snapshot(zone, NR_PAGES_SCANNED) < 213 zone_reclaimable_pages(zone) * 6; 214 } 215 216 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru) 217 { 218 if (!mem_cgroup_disabled()) 219 return mem_cgroup_get_lru_size(lruvec, lru); 220 221 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); 222 } 223 224 /* 225 * Add a shrinker callback to be called from the vm. 226 */ 227 int register_shrinker(struct shrinker *shrinker) 228 { 229 size_t size = sizeof(*shrinker->nr_deferred); 230 231 if (shrinker->flags & SHRINKER_NUMA_AWARE) 232 size *= nr_node_ids; 233 234 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 235 if (!shrinker->nr_deferred) 236 return -ENOMEM; 237 238 down_write(&shrinker_rwsem); 239 list_add_tail(&shrinker->list, &shrinker_list); 240 up_write(&shrinker_rwsem); 241 return 0; 242 } 243 EXPORT_SYMBOL(register_shrinker); 244 245 /* 246 * Remove one 247 */ 248 void unregister_shrinker(struct shrinker *shrinker) 249 { 250 down_write(&shrinker_rwsem); 251 list_del(&shrinker->list); 252 up_write(&shrinker_rwsem); 253 kfree(shrinker->nr_deferred); 254 } 255 EXPORT_SYMBOL(unregister_shrinker); 256 257 #define SHRINK_BATCH 128 258 259 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 260 struct shrinker *shrinker, 261 unsigned long nr_scanned, 262 unsigned long nr_eligible) 263 { 264 unsigned long freed = 0; 265 unsigned long long delta; 266 long total_scan; 267 long freeable; 268 long nr; 269 long new_nr; 270 int nid = shrinkctl->nid; 271 long batch_size = shrinker->batch ? shrinker->batch 272 : SHRINK_BATCH; 273 274 freeable = shrinker->count_objects(shrinker, shrinkctl); 275 if (freeable == 0) 276 return 0; 277 278 /* 279 * copy the current shrinker scan count into a local variable 280 * and zero it so that other concurrent shrinker invocations 281 * don't also do this scanning work. 282 */ 283 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 284 285 total_scan = nr; 286 delta = (4 * nr_scanned) / shrinker->seeks; 287 delta *= freeable; 288 do_div(delta, nr_eligible + 1); 289 total_scan += delta; 290 if (total_scan < 0) { 291 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 292 shrinker->scan_objects, total_scan); 293 total_scan = freeable; 294 } 295 296 /* 297 * We need to avoid excessive windup on filesystem shrinkers 298 * due to large numbers of GFP_NOFS allocations causing the 299 * shrinkers to return -1 all the time. This results in a large 300 * nr being built up so when a shrink that can do some work 301 * comes along it empties the entire cache due to nr >>> 302 * freeable. This is bad for sustaining a working set in 303 * memory. 304 * 305 * Hence only allow the shrinker to scan the entire cache when 306 * a large delta change is calculated directly. 307 */ 308 if (delta < freeable / 4) 309 total_scan = min(total_scan, freeable / 2); 310 311 /* 312 * Avoid risking looping forever due to too large nr value: 313 * never try to free more than twice the estimate number of 314 * freeable entries. 315 */ 316 if (total_scan > freeable * 2) 317 total_scan = freeable * 2; 318 319 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 320 nr_scanned, nr_eligible, 321 freeable, delta, total_scan); 322 323 /* 324 * Normally, we should not scan less than batch_size objects in one 325 * pass to avoid too frequent shrinker calls, but if the slab has less 326 * than batch_size objects in total and we are really tight on memory, 327 * we will try to reclaim all available objects, otherwise we can end 328 * up failing allocations although there are plenty of reclaimable 329 * objects spread over several slabs with usage less than the 330 * batch_size. 331 * 332 * We detect the "tight on memory" situations by looking at the total 333 * number of objects we want to scan (total_scan). If it is greater 334 * than the total number of objects on slab (freeable), we must be 335 * scanning at high prio and therefore should try to reclaim as much as 336 * possible. 337 */ 338 while (total_scan >= batch_size || 339 total_scan >= freeable) { 340 unsigned long ret; 341 unsigned long nr_to_scan = min(batch_size, total_scan); 342 343 shrinkctl->nr_to_scan = nr_to_scan; 344 ret = shrinker->scan_objects(shrinker, shrinkctl); 345 if (ret == SHRINK_STOP) 346 break; 347 freed += ret; 348 349 count_vm_events(SLABS_SCANNED, nr_to_scan); 350 total_scan -= nr_to_scan; 351 352 cond_resched(); 353 } 354 355 /* 356 * move the unused scan count back into the shrinker in a 357 * manner that handles concurrent updates. If we exhausted the 358 * scan, there is no need to do an update. 359 */ 360 if (total_scan > 0) 361 new_nr = atomic_long_add_return(total_scan, 362 &shrinker->nr_deferred[nid]); 363 else 364 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 365 366 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 367 return freed; 368 } 369 370 /** 371 * shrink_slab - shrink slab caches 372 * @gfp_mask: allocation context 373 * @nid: node whose slab caches to target 374 * @memcg: memory cgroup whose slab caches to target 375 * @nr_scanned: pressure numerator 376 * @nr_eligible: pressure denominator 377 * 378 * Call the shrink functions to age shrinkable caches. 379 * 380 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 381 * unaware shrinkers will receive a node id of 0 instead. 382 * 383 * @memcg specifies the memory cgroup to target. If it is not NULL, 384 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 385 * objects from the memory cgroup specified. Otherwise all shrinkers 386 * are called, and memcg aware shrinkers are supposed to scan the 387 * global list then. 388 * 389 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 390 * the available objects should be scanned. Page reclaim for example 391 * passes the number of pages scanned and the number of pages on the 392 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 393 * when it encountered mapped pages. The ratio is further biased by 394 * the ->seeks setting of the shrink function, which indicates the 395 * cost to recreate an object relative to that of an LRU page. 396 * 397 * Returns the number of reclaimed slab objects. 398 */ 399 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 400 struct mem_cgroup *memcg, 401 unsigned long nr_scanned, 402 unsigned long nr_eligible) 403 { 404 struct shrinker *shrinker; 405 unsigned long freed = 0; 406 407 if (memcg && !memcg_kmem_online(memcg)) 408 return 0; 409 410 if (nr_scanned == 0) 411 nr_scanned = SWAP_CLUSTER_MAX; 412 413 if (!down_read_trylock(&shrinker_rwsem)) { 414 /* 415 * If we would return 0, our callers would understand that we 416 * have nothing else to shrink and give up trying. By returning 417 * 1 we keep it going and assume we'll be able to shrink next 418 * time. 419 */ 420 freed = 1; 421 goto out; 422 } 423 424 list_for_each_entry(shrinker, &shrinker_list, list) { 425 struct shrink_control sc = { 426 .gfp_mask = gfp_mask, 427 .nid = nid, 428 .memcg = memcg, 429 }; 430 431 if (memcg && !(shrinker->flags & SHRINKER_MEMCG_AWARE)) 432 continue; 433 434 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 435 sc.nid = 0; 436 437 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 438 } 439 440 up_read(&shrinker_rwsem); 441 out: 442 cond_resched(); 443 return freed; 444 } 445 446 void drop_slab_node(int nid) 447 { 448 unsigned long freed; 449 450 do { 451 struct mem_cgroup *memcg = NULL; 452 453 freed = 0; 454 do { 455 freed += shrink_slab(GFP_KERNEL, nid, memcg, 456 1000, 1000); 457 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 458 } while (freed > 10); 459 } 460 461 void drop_slab(void) 462 { 463 int nid; 464 465 for_each_online_node(nid) 466 drop_slab_node(nid); 467 } 468 469 static inline int is_page_cache_freeable(struct page *page) 470 { 471 /* 472 * A freeable page cache page is referenced only by the caller 473 * that isolated the page, the page cache radix tree and 474 * optional buffer heads at page->private. 475 */ 476 return page_count(page) - page_has_private(page) == 2; 477 } 478 479 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 480 { 481 if (current->flags & PF_SWAPWRITE) 482 return 1; 483 if (!inode_write_congested(inode)) 484 return 1; 485 if (inode_to_bdi(inode) == current->backing_dev_info) 486 return 1; 487 return 0; 488 } 489 490 /* 491 * We detected a synchronous write error writing a page out. Probably 492 * -ENOSPC. We need to propagate that into the address_space for a subsequent 493 * fsync(), msync() or close(). 494 * 495 * The tricky part is that after writepage we cannot touch the mapping: nothing 496 * prevents it from being freed up. But we have a ref on the page and once 497 * that page is locked, the mapping is pinned. 498 * 499 * We're allowed to run sleeping lock_page() here because we know the caller has 500 * __GFP_FS. 501 */ 502 static void handle_write_error(struct address_space *mapping, 503 struct page *page, int error) 504 { 505 lock_page(page); 506 if (page_mapping(page) == mapping) 507 mapping_set_error(mapping, error); 508 unlock_page(page); 509 } 510 511 /* possible outcome of pageout() */ 512 typedef enum { 513 /* failed to write page out, page is locked */ 514 PAGE_KEEP, 515 /* move page to the active list, page is locked */ 516 PAGE_ACTIVATE, 517 /* page has been sent to the disk successfully, page is unlocked */ 518 PAGE_SUCCESS, 519 /* page is clean and locked */ 520 PAGE_CLEAN, 521 } pageout_t; 522 523 /* 524 * pageout is called by shrink_page_list() for each dirty page. 525 * Calls ->writepage(). 526 */ 527 static pageout_t pageout(struct page *page, struct address_space *mapping, 528 struct scan_control *sc) 529 { 530 /* 531 * If the page is dirty, only perform writeback if that write 532 * will be non-blocking. To prevent this allocation from being 533 * stalled by pagecache activity. But note that there may be 534 * stalls if we need to run get_block(). We could test 535 * PagePrivate for that. 536 * 537 * If this process is currently in __generic_file_write_iter() against 538 * this page's queue, we can perform writeback even if that 539 * will block. 540 * 541 * If the page is swapcache, write it back even if that would 542 * block, for some throttling. This happens by accident, because 543 * swap_backing_dev_info is bust: it doesn't reflect the 544 * congestion state of the swapdevs. Easy to fix, if needed. 545 */ 546 if (!is_page_cache_freeable(page)) 547 return PAGE_KEEP; 548 if (!mapping) { 549 /* 550 * Some data journaling orphaned pages can have 551 * page->mapping == NULL while being dirty with clean buffers. 552 */ 553 if (page_has_private(page)) { 554 if (try_to_free_buffers(page)) { 555 ClearPageDirty(page); 556 pr_info("%s: orphaned page\n", __func__); 557 return PAGE_CLEAN; 558 } 559 } 560 return PAGE_KEEP; 561 } 562 if (mapping->a_ops->writepage == NULL) 563 return PAGE_ACTIVATE; 564 if (!may_write_to_inode(mapping->host, sc)) 565 return PAGE_KEEP; 566 567 if (clear_page_dirty_for_io(page)) { 568 int res; 569 struct writeback_control wbc = { 570 .sync_mode = WB_SYNC_NONE, 571 .nr_to_write = SWAP_CLUSTER_MAX, 572 .range_start = 0, 573 .range_end = LLONG_MAX, 574 .for_reclaim = 1, 575 }; 576 577 SetPageReclaim(page); 578 res = mapping->a_ops->writepage(page, &wbc); 579 if (res < 0) 580 handle_write_error(mapping, page, res); 581 if (res == AOP_WRITEPAGE_ACTIVATE) { 582 ClearPageReclaim(page); 583 return PAGE_ACTIVATE; 584 } 585 586 if (!PageWriteback(page)) { 587 /* synchronous write or broken a_ops? */ 588 ClearPageReclaim(page); 589 } 590 trace_mm_vmscan_writepage(page); 591 inc_zone_page_state(page, NR_VMSCAN_WRITE); 592 return PAGE_SUCCESS; 593 } 594 595 return PAGE_CLEAN; 596 } 597 598 /* 599 * Same as remove_mapping, but if the page is removed from the mapping, it 600 * gets returned with a refcount of 0. 601 */ 602 static int __remove_mapping(struct address_space *mapping, struct page *page, 603 bool reclaimed) 604 { 605 unsigned long flags; 606 607 BUG_ON(!PageLocked(page)); 608 BUG_ON(mapping != page_mapping(page)); 609 610 spin_lock_irqsave(&mapping->tree_lock, flags); 611 /* 612 * The non racy check for a busy page. 613 * 614 * Must be careful with the order of the tests. When someone has 615 * a ref to the page, it may be possible that they dirty it then 616 * drop the reference. So if PageDirty is tested before page_count 617 * here, then the following race may occur: 618 * 619 * get_user_pages(&page); 620 * [user mapping goes away] 621 * write_to(page); 622 * !PageDirty(page) [good] 623 * SetPageDirty(page); 624 * put_page(page); 625 * !page_count(page) [good, discard it] 626 * 627 * [oops, our write_to data is lost] 628 * 629 * Reversing the order of the tests ensures such a situation cannot 630 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 631 * load is not satisfied before that of page->_count. 632 * 633 * Note that if SetPageDirty is always performed via set_page_dirty, 634 * and thus under tree_lock, then this ordering is not required. 635 */ 636 if (!page_freeze_refs(page, 2)) 637 goto cannot_free; 638 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 639 if (unlikely(PageDirty(page))) { 640 page_unfreeze_refs(page, 2); 641 goto cannot_free; 642 } 643 644 if (PageSwapCache(page)) { 645 swp_entry_t swap = { .val = page_private(page) }; 646 mem_cgroup_swapout(page, swap); 647 __delete_from_swap_cache(page); 648 spin_unlock_irqrestore(&mapping->tree_lock, flags); 649 swapcache_free(swap); 650 } else { 651 void (*freepage)(struct page *); 652 void *shadow = NULL; 653 654 freepage = mapping->a_ops->freepage; 655 /* 656 * Remember a shadow entry for reclaimed file cache in 657 * order to detect refaults, thus thrashing, later on. 658 * 659 * But don't store shadows in an address space that is 660 * already exiting. This is not just an optizimation, 661 * inode reclaim needs to empty out the radix tree or 662 * the nodes are lost. Don't plant shadows behind its 663 * back. 664 * 665 * We also don't store shadows for DAX mappings because the 666 * only page cache pages found in these are zero pages 667 * covering holes, and because we don't want to mix DAX 668 * exceptional entries and shadow exceptional entries in the 669 * same page_tree. 670 */ 671 if (reclaimed && page_is_file_cache(page) && 672 !mapping_exiting(mapping) && !dax_mapping(mapping)) 673 shadow = workingset_eviction(mapping, page); 674 __delete_from_page_cache(page, shadow); 675 spin_unlock_irqrestore(&mapping->tree_lock, flags); 676 677 if (freepage != NULL) 678 freepage(page); 679 } 680 681 return 1; 682 683 cannot_free: 684 spin_unlock_irqrestore(&mapping->tree_lock, flags); 685 return 0; 686 } 687 688 /* 689 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 690 * someone else has a ref on the page, abort and return 0. If it was 691 * successfully detached, return 1. Assumes the caller has a single ref on 692 * this page. 693 */ 694 int remove_mapping(struct address_space *mapping, struct page *page) 695 { 696 if (__remove_mapping(mapping, page, false)) { 697 /* 698 * Unfreezing the refcount with 1 rather than 2 effectively 699 * drops the pagecache ref for us without requiring another 700 * atomic operation. 701 */ 702 page_unfreeze_refs(page, 1); 703 return 1; 704 } 705 return 0; 706 } 707 708 /** 709 * putback_lru_page - put previously isolated page onto appropriate LRU list 710 * @page: page to be put back to appropriate lru list 711 * 712 * Add previously isolated @page to appropriate LRU list. 713 * Page may still be unevictable for other reasons. 714 * 715 * lru_lock must not be held, interrupts must be enabled. 716 */ 717 void putback_lru_page(struct page *page) 718 { 719 bool is_unevictable; 720 int was_unevictable = PageUnevictable(page); 721 722 VM_BUG_ON_PAGE(PageLRU(page), page); 723 724 redo: 725 ClearPageUnevictable(page); 726 727 if (page_evictable(page)) { 728 /* 729 * For evictable pages, we can use the cache. 730 * In event of a race, worst case is we end up with an 731 * unevictable page on [in]active list. 732 * We know how to handle that. 733 */ 734 is_unevictable = false; 735 lru_cache_add(page); 736 } else { 737 /* 738 * Put unevictable pages directly on zone's unevictable 739 * list. 740 */ 741 is_unevictable = true; 742 add_page_to_unevictable_list(page); 743 /* 744 * When racing with an mlock or AS_UNEVICTABLE clearing 745 * (page is unlocked) make sure that if the other thread 746 * does not observe our setting of PG_lru and fails 747 * isolation/check_move_unevictable_pages, 748 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 749 * the page back to the evictable list. 750 * 751 * The other side is TestClearPageMlocked() or shmem_lock(). 752 */ 753 smp_mb(); 754 } 755 756 /* 757 * page's status can change while we move it among lru. If an evictable 758 * page is on unevictable list, it never be freed. To avoid that, 759 * check after we added it to the list, again. 760 */ 761 if (is_unevictable && page_evictable(page)) { 762 if (!isolate_lru_page(page)) { 763 put_page(page); 764 goto redo; 765 } 766 /* This means someone else dropped this page from LRU 767 * So, it will be freed or putback to LRU again. There is 768 * nothing to do here. 769 */ 770 } 771 772 if (was_unevictable && !is_unevictable) 773 count_vm_event(UNEVICTABLE_PGRESCUED); 774 else if (!was_unevictable && is_unevictable) 775 count_vm_event(UNEVICTABLE_PGCULLED); 776 777 put_page(page); /* drop ref from isolate */ 778 } 779 780 enum page_references { 781 PAGEREF_RECLAIM, 782 PAGEREF_RECLAIM_CLEAN, 783 PAGEREF_KEEP, 784 PAGEREF_ACTIVATE, 785 }; 786 787 static enum page_references page_check_references(struct page *page, 788 struct scan_control *sc) 789 { 790 int referenced_ptes, referenced_page; 791 unsigned long vm_flags; 792 793 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 794 &vm_flags); 795 referenced_page = TestClearPageReferenced(page); 796 797 /* 798 * Mlock lost the isolation race with us. Let try_to_unmap() 799 * move the page to the unevictable list. 800 */ 801 if (vm_flags & VM_LOCKED) 802 return PAGEREF_RECLAIM; 803 804 if (referenced_ptes) { 805 if (PageSwapBacked(page)) 806 return PAGEREF_ACTIVATE; 807 /* 808 * All mapped pages start out with page table 809 * references from the instantiating fault, so we need 810 * to look twice if a mapped file page is used more 811 * than once. 812 * 813 * Mark it and spare it for another trip around the 814 * inactive list. Another page table reference will 815 * lead to its activation. 816 * 817 * Note: the mark is set for activated pages as well 818 * so that recently deactivated but used pages are 819 * quickly recovered. 820 */ 821 SetPageReferenced(page); 822 823 if (referenced_page || referenced_ptes > 1) 824 return PAGEREF_ACTIVATE; 825 826 /* 827 * Activate file-backed executable pages after first usage. 828 */ 829 if (vm_flags & VM_EXEC) 830 return PAGEREF_ACTIVATE; 831 832 return PAGEREF_KEEP; 833 } 834 835 /* Reclaim if clean, defer dirty pages to writeback */ 836 if (referenced_page && !PageSwapBacked(page)) 837 return PAGEREF_RECLAIM_CLEAN; 838 839 return PAGEREF_RECLAIM; 840 } 841 842 /* Check if a page is dirty or under writeback */ 843 static void page_check_dirty_writeback(struct page *page, 844 bool *dirty, bool *writeback) 845 { 846 struct address_space *mapping; 847 848 /* 849 * Anonymous pages are not handled by flushers and must be written 850 * from reclaim context. Do not stall reclaim based on them 851 */ 852 if (!page_is_file_cache(page)) { 853 *dirty = false; 854 *writeback = false; 855 return; 856 } 857 858 /* By default assume that the page flags are accurate */ 859 *dirty = PageDirty(page); 860 *writeback = PageWriteback(page); 861 862 /* Verify dirty/writeback state if the filesystem supports it */ 863 if (!page_has_private(page)) 864 return; 865 866 mapping = page_mapping(page); 867 if (mapping && mapping->a_ops->is_dirty_writeback) 868 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 869 } 870 871 /* 872 * shrink_page_list() returns the number of reclaimed pages 873 */ 874 static unsigned long shrink_page_list(struct list_head *page_list, 875 struct zone *zone, 876 struct scan_control *sc, 877 enum ttu_flags ttu_flags, 878 unsigned long *ret_nr_dirty, 879 unsigned long *ret_nr_unqueued_dirty, 880 unsigned long *ret_nr_congested, 881 unsigned long *ret_nr_writeback, 882 unsigned long *ret_nr_immediate, 883 bool force_reclaim) 884 { 885 LIST_HEAD(ret_pages); 886 LIST_HEAD(free_pages); 887 int pgactivate = 0; 888 unsigned long nr_unqueued_dirty = 0; 889 unsigned long nr_dirty = 0; 890 unsigned long nr_congested = 0; 891 unsigned long nr_reclaimed = 0; 892 unsigned long nr_writeback = 0; 893 unsigned long nr_immediate = 0; 894 895 cond_resched(); 896 897 while (!list_empty(page_list)) { 898 struct address_space *mapping; 899 struct page *page; 900 int may_enter_fs; 901 enum page_references references = PAGEREF_RECLAIM_CLEAN; 902 bool dirty, writeback; 903 bool lazyfree = false; 904 int ret = SWAP_SUCCESS; 905 906 cond_resched(); 907 908 page = lru_to_page(page_list); 909 list_del(&page->lru); 910 911 if (!trylock_page(page)) 912 goto keep; 913 914 VM_BUG_ON_PAGE(PageActive(page), page); 915 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 916 917 sc->nr_scanned++; 918 919 if (unlikely(!page_evictable(page))) 920 goto cull_mlocked; 921 922 if (!sc->may_unmap && page_mapped(page)) 923 goto keep_locked; 924 925 /* Double the slab pressure for mapped and swapcache pages */ 926 if (page_mapped(page) || PageSwapCache(page)) 927 sc->nr_scanned++; 928 929 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 930 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 931 932 /* 933 * The number of dirty pages determines if a zone is marked 934 * reclaim_congested which affects wait_iff_congested. kswapd 935 * will stall and start writing pages if the tail of the LRU 936 * is all dirty unqueued pages. 937 */ 938 page_check_dirty_writeback(page, &dirty, &writeback); 939 if (dirty || writeback) 940 nr_dirty++; 941 942 if (dirty && !writeback) 943 nr_unqueued_dirty++; 944 945 /* 946 * Treat this page as congested if the underlying BDI is or if 947 * pages are cycling through the LRU so quickly that the 948 * pages marked for immediate reclaim are making it to the 949 * end of the LRU a second time. 950 */ 951 mapping = page_mapping(page); 952 if (((dirty || writeback) && mapping && 953 inode_write_congested(mapping->host)) || 954 (writeback && PageReclaim(page))) 955 nr_congested++; 956 957 /* 958 * If a page at the tail of the LRU is under writeback, there 959 * are three cases to consider. 960 * 961 * 1) If reclaim is encountering an excessive number of pages 962 * under writeback and this page is both under writeback and 963 * PageReclaim then it indicates that pages are being queued 964 * for IO but are being recycled through the LRU before the 965 * IO can complete. Waiting on the page itself risks an 966 * indefinite stall if it is impossible to writeback the 967 * page due to IO error or disconnected storage so instead 968 * note that the LRU is being scanned too quickly and the 969 * caller can stall after page list has been processed. 970 * 971 * 2) Global or new memcg reclaim encounters a page that is 972 * not marked for immediate reclaim, or the caller does not 973 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 974 * not to fs). In this case mark the page for immediate 975 * reclaim and continue scanning. 976 * 977 * Require may_enter_fs because we would wait on fs, which 978 * may not have submitted IO yet. And the loop driver might 979 * enter reclaim, and deadlock if it waits on a page for 980 * which it is needed to do the write (loop masks off 981 * __GFP_IO|__GFP_FS for this reason); but more thought 982 * would probably show more reasons. 983 * 984 * 3) Legacy memcg encounters a page that is already marked 985 * PageReclaim. memcg does not have any dirty pages 986 * throttling so we could easily OOM just because too many 987 * pages are in writeback and there is nothing else to 988 * reclaim. Wait for the writeback to complete. 989 */ 990 if (PageWriteback(page)) { 991 /* Case 1 above */ 992 if (current_is_kswapd() && 993 PageReclaim(page) && 994 test_bit(ZONE_WRITEBACK, &zone->flags)) { 995 nr_immediate++; 996 goto keep_locked; 997 998 /* Case 2 above */ 999 } else if (sane_reclaim(sc) || 1000 !PageReclaim(page) || !may_enter_fs) { 1001 /* 1002 * This is slightly racy - end_page_writeback() 1003 * might have just cleared PageReclaim, then 1004 * setting PageReclaim here end up interpreted 1005 * as PageReadahead - but that does not matter 1006 * enough to care. What we do want is for this 1007 * page to have PageReclaim set next time memcg 1008 * reclaim reaches the tests above, so it will 1009 * then wait_on_page_writeback() to avoid OOM; 1010 * and it's also appropriate in global reclaim. 1011 */ 1012 SetPageReclaim(page); 1013 nr_writeback++; 1014 goto keep_locked; 1015 1016 /* Case 3 above */ 1017 } else { 1018 unlock_page(page); 1019 wait_on_page_writeback(page); 1020 /* then go back and try same page again */ 1021 list_add_tail(&page->lru, page_list); 1022 continue; 1023 } 1024 } 1025 1026 if (!force_reclaim) 1027 references = page_check_references(page, sc); 1028 1029 switch (references) { 1030 case PAGEREF_ACTIVATE: 1031 goto activate_locked; 1032 case PAGEREF_KEEP: 1033 goto keep_locked; 1034 case PAGEREF_RECLAIM: 1035 case PAGEREF_RECLAIM_CLEAN: 1036 ; /* try to reclaim the page below */ 1037 } 1038 1039 /* 1040 * Anonymous process memory has backing store? 1041 * Try to allocate it some swap space here. 1042 */ 1043 if (PageAnon(page) && !PageSwapCache(page)) { 1044 if (!(sc->gfp_mask & __GFP_IO)) 1045 goto keep_locked; 1046 if (!add_to_swap(page, page_list)) 1047 goto activate_locked; 1048 lazyfree = true; 1049 may_enter_fs = 1; 1050 1051 /* Adding to swap updated mapping */ 1052 mapping = page_mapping(page); 1053 } 1054 1055 /* 1056 * The page is mapped into the page tables of one or more 1057 * processes. Try to unmap it here. 1058 */ 1059 if (page_mapped(page) && mapping) { 1060 switch (ret = try_to_unmap(page, lazyfree ? 1061 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) : 1062 (ttu_flags | TTU_BATCH_FLUSH))) { 1063 case SWAP_FAIL: 1064 goto activate_locked; 1065 case SWAP_AGAIN: 1066 goto keep_locked; 1067 case SWAP_MLOCK: 1068 goto cull_mlocked; 1069 case SWAP_LZFREE: 1070 goto lazyfree; 1071 case SWAP_SUCCESS: 1072 ; /* try to free the page below */ 1073 } 1074 } 1075 1076 if (PageDirty(page)) { 1077 /* 1078 * Only kswapd can writeback filesystem pages to 1079 * avoid risk of stack overflow but only writeback 1080 * if many dirty pages have been encountered. 1081 */ 1082 if (page_is_file_cache(page) && 1083 (!current_is_kswapd() || 1084 !test_bit(ZONE_DIRTY, &zone->flags))) { 1085 /* 1086 * Immediately reclaim when written back. 1087 * Similar in principal to deactivate_page() 1088 * except we already have the page isolated 1089 * and know it's dirty 1090 */ 1091 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); 1092 SetPageReclaim(page); 1093 1094 goto keep_locked; 1095 } 1096 1097 if (references == PAGEREF_RECLAIM_CLEAN) 1098 goto keep_locked; 1099 if (!may_enter_fs) 1100 goto keep_locked; 1101 if (!sc->may_writepage) 1102 goto keep_locked; 1103 1104 /* 1105 * Page is dirty. Flush the TLB if a writable entry 1106 * potentially exists to avoid CPU writes after IO 1107 * starts and then write it out here. 1108 */ 1109 try_to_unmap_flush_dirty(); 1110 switch (pageout(page, mapping, sc)) { 1111 case PAGE_KEEP: 1112 goto keep_locked; 1113 case PAGE_ACTIVATE: 1114 goto activate_locked; 1115 case PAGE_SUCCESS: 1116 if (PageWriteback(page)) 1117 goto keep; 1118 if (PageDirty(page)) 1119 goto keep; 1120 1121 /* 1122 * A synchronous write - probably a ramdisk. Go 1123 * ahead and try to reclaim the page. 1124 */ 1125 if (!trylock_page(page)) 1126 goto keep; 1127 if (PageDirty(page) || PageWriteback(page)) 1128 goto keep_locked; 1129 mapping = page_mapping(page); 1130 case PAGE_CLEAN: 1131 ; /* try to free the page below */ 1132 } 1133 } 1134 1135 /* 1136 * If the page has buffers, try to free the buffer mappings 1137 * associated with this page. If we succeed we try to free 1138 * the page as well. 1139 * 1140 * We do this even if the page is PageDirty(). 1141 * try_to_release_page() does not perform I/O, but it is 1142 * possible for a page to have PageDirty set, but it is actually 1143 * clean (all its buffers are clean). This happens if the 1144 * buffers were written out directly, with submit_bh(). ext3 1145 * will do this, as well as the blockdev mapping. 1146 * try_to_release_page() will discover that cleanness and will 1147 * drop the buffers and mark the page clean - it can be freed. 1148 * 1149 * Rarely, pages can have buffers and no ->mapping. These are 1150 * the pages which were not successfully invalidated in 1151 * truncate_complete_page(). We try to drop those buffers here 1152 * and if that worked, and the page is no longer mapped into 1153 * process address space (page_count == 1) it can be freed. 1154 * Otherwise, leave the page on the LRU so it is swappable. 1155 */ 1156 if (page_has_private(page)) { 1157 if (!try_to_release_page(page, sc->gfp_mask)) 1158 goto activate_locked; 1159 if (!mapping && page_count(page) == 1) { 1160 unlock_page(page); 1161 if (put_page_testzero(page)) 1162 goto free_it; 1163 else { 1164 /* 1165 * rare race with speculative reference. 1166 * the speculative reference will free 1167 * this page shortly, so we may 1168 * increment nr_reclaimed here (and 1169 * leave it off the LRU). 1170 */ 1171 nr_reclaimed++; 1172 continue; 1173 } 1174 } 1175 } 1176 1177 lazyfree: 1178 if (!mapping || !__remove_mapping(mapping, page, true)) 1179 goto keep_locked; 1180 1181 /* 1182 * At this point, we have no other references and there is 1183 * no way to pick any more up (removed from LRU, removed 1184 * from pagecache). Can use non-atomic bitops now (and 1185 * we obviously don't have to worry about waking up a process 1186 * waiting on the page lock, because there are no references. 1187 */ 1188 __ClearPageLocked(page); 1189 free_it: 1190 if (ret == SWAP_LZFREE) 1191 count_vm_event(PGLAZYFREED); 1192 1193 nr_reclaimed++; 1194 1195 /* 1196 * Is there need to periodically free_page_list? It would 1197 * appear not as the counts should be low 1198 */ 1199 list_add(&page->lru, &free_pages); 1200 continue; 1201 1202 cull_mlocked: 1203 if (PageSwapCache(page)) 1204 try_to_free_swap(page); 1205 unlock_page(page); 1206 list_add(&page->lru, &ret_pages); 1207 continue; 1208 1209 activate_locked: 1210 /* Not a candidate for swapping, so reclaim swap space. */ 1211 if (PageSwapCache(page) && mem_cgroup_swap_full(page)) 1212 try_to_free_swap(page); 1213 VM_BUG_ON_PAGE(PageActive(page), page); 1214 SetPageActive(page); 1215 pgactivate++; 1216 keep_locked: 1217 unlock_page(page); 1218 keep: 1219 list_add(&page->lru, &ret_pages); 1220 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1221 } 1222 1223 mem_cgroup_uncharge_list(&free_pages); 1224 try_to_unmap_flush(); 1225 free_hot_cold_page_list(&free_pages, true); 1226 1227 list_splice(&ret_pages, page_list); 1228 count_vm_events(PGACTIVATE, pgactivate); 1229 1230 *ret_nr_dirty += nr_dirty; 1231 *ret_nr_congested += nr_congested; 1232 *ret_nr_unqueued_dirty += nr_unqueued_dirty; 1233 *ret_nr_writeback += nr_writeback; 1234 *ret_nr_immediate += nr_immediate; 1235 return nr_reclaimed; 1236 } 1237 1238 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1239 struct list_head *page_list) 1240 { 1241 struct scan_control sc = { 1242 .gfp_mask = GFP_KERNEL, 1243 .priority = DEF_PRIORITY, 1244 .may_unmap = 1, 1245 }; 1246 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5; 1247 struct page *page, *next; 1248 LIST_HEAD(clean_pages); 1249 1250 list_for_each_entry_safe(page, next, page_list, lru) { 1251 if (page_is_file_cache(page) && !PageDirty(page) && 1252 !isolated_balloon_page(page)) { 1253 ClearPageActive(page); 1254 list_move(&page->lru, &clean_pages); 1255 } 1256 } 1257 1258 ret = shrink_page_list(&clean_pages, zone, &sc, 1259 TTU_UNMAP|TTU_IGNORE_ACCESS, 1260 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true); 1261 list_splice(&clean_pages, page_list); 1262 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret); 1263 return ret; 1264 } 1265 1266 /* 1267 * Attempt to remove the specified page from its LRU. Only take this page 1268 * if it is of the appropriate PageActive status. Pages which are being 1269 * freed elsewhere are also ignored. 1270 * 1271 * page: page to consider 1272 * mode: one of the LRU isolation modes defined above 1273 * 1274 * returns 0 on success, -ve errno on failure. 1275 */ 1276 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1277 { 1278 int ret = -EINVAL; 1279 1280 /* Only take pages on the LRU. */ 1281 if (!PageLRU(page)) 1282 return ret; 1283 1284 /* Compaction should not handle unevictable pages but CMA can do so */ 1285 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1286 return ret; 1287 1288 ret = -EBUSY; 1289 1290 /* 1291 * To minimise LRU disruption, the caller can indicate that it only 1292 * wants to isolate pages it will be able to operate on without 1293 * blocking - clean pages for the most part. 1294 * 1295 * ISOLATE_CLEAN means that only clean pages should be isolated. This 1296 * is used by reclaim when it is cannot write to backing storage 1297 * 1298 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1299 * that it is possible to migrate without blocking 1300 */ 1301 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { 1302 /* All the caller can do on PageWriteback is block */ 1303 if (PageWriteback(page)) 1304 return ret; 1305 1306 if (PageDirty(page)) { 1307 struct address_space *mapping; 1308 1309 /* ISOLATE_CLEAN means only clean pages */ 1310 if (mode & ISOLATE_CLEAN) 1311 return ret; 1312 1313 /* 1314 * Only pages without mappings or that have a 1315 * ->migratepage callback are possible to migrate 1316 * without blocking 1317 */ 1318 mapping = page_mapping(page); 1319 if (mapping && !mapping->a_ops->migratepage) 1320 return ret; 1321 } 1322 } 1323 1324 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1325 return ret; 1326 1327 if (likely(get_page_unless_zero(page))) { 1328 /* 1329 * Be careful not to clear PageLRU until after we're 1330 * sure the page is not being freed elsewhere -- the 1331 * page release code relies on it. 1332 */ 1333 ClearPageLRU(page); 1334 ret = 0; 1335 } 1336 1337 return ret; 1338 } 1339 1340 /* 1341 * zone->lru_lock is heavily contended. Some of the functions that 1342 * shrink the lists perform better by taking out a batch of pages 1343 * and working on them outside the LRU lock. 1344 * 1345 * For pagecache intensive workloads, this function is the hottest 1346 * spot in the kernel (apart from copy_*_user functions). 1347 * 1348 * Appropriate locks must be held before calling this function. 1349 * 1350 * @nr_to_scan: The number of pages to look through on the list. 1351 * @lruvec: The LRU vector to pull pages from. 1352 * @dst: The temp list to put pages on to. 1353 * @nr_scanned: The number of pages that were scanned. 1354 * @sc: The scan_control struct for this reclaim session 1355 * @mode: One of the LRU isolation modes 1356 * @lru: LRU list id for isolating 1357 * 1358 * returns how many pages were moved onto *@dst. 1359 */ 1360 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1361 struct lruvec *lruvec, struct list_head *dst, 1362 unsigned long *nr_scanned, struct scan_control *sc, 1363 isolate_mode_t mode, enum lru_list lru) 1364 { 1365 struct list_head *src = &lruvec->lists[lru]; 1366 unsigned long nr_taken = 0; 1367 unsigned long scan; 1368 1369 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan && 1370 !list_empty(src); scan++) { 1371 struct page *page; 1372 int nr_pages; 1373 1374 page = lru_to_page(src); 1375 prefetchw_prev_lru_page(page, src, flags); 1376 1377 VM_BUG_ON_PAGE(!PageLRU(page), page); 1378 1379 switch (__isolate_lru_page(page, mode)) { 1380 case 0: 1381 nr_pages = hpage_nr_pages(page); 1382 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); 1383 list_move(&page->lru, dst); 1384 nr_taken += nr_pages; 1385 break; 1386 1387 case -EBUSY: 1388 /* else it is being freed elsewhere */ 1389 list_move(&page->lru, src); 1390 continue; 1391 1392 default: 1393 BUG(); 1394 } 1395 } 1396 1397 *nr_scanned = scan; 1398 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, 1399 nr_taken, mode, is_file_lru(lru)); 1400 return nr_taken; 1401 } 1402 1403 /** 1404 * isolate_lru_page - tries to isolate a page from its LRU list 1405 * @page: page to isolate from its LRU list 1406 * 1407 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1408 * vmstat statistic corresponding to whatever LRU list the page was on. 1409 * 1410 * Returns 0 if the page was removed from an LRU list. 1411 * Returns -EBUSY if the page was not on an LRU list. 1412 * 1413 * The returned page will have PageLRU() cleared. If it was found on 1414 * the active list, it will have PageActive set. If it was found on 1415 * the unevictable list, it will have the PageUnevictable bit set. That flag 1416 * may need to be cleared by the caller before letting the page go. 1417 * 1418 * The vmstat statistic corresponding to the list on which the page was 1419 * found will be decremented. 1420 * 1421 * Restrictions: 1422 * (1) Must be called with an elevated refcount on the page. This is a 1423 * fundamentnal difference from isolate_lru_pages (which is called 1424 * without a stable reference). 1425 * (2) the lru_lock must not be held. 1426 * (3) interrupts must be enabled. 1427 */ 1428 int isolate_lru_page(struct page *page) 1429 { 1430 int ret = -EBUSY; 1431 1432 VM_BUG_ON_PAGE(!page_count(page), page); 1433 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1434 1435 if (PageLRU(page)) { 1436 struct zone *zone = page_zone(page); 1437 struct lruvec *lruvec; 1438 1439 spin_lock_irq(&zone->lru_lock); 1440 lruvec = mem_cgroup_page_lruvec(page, zone); 1441 if (PageLRU(page)) { 1442 int lru = page_lru(page); 1443 get_page(page); 1444 ClearPageLRU(page); 1445 del_page_from_lru_list(page, lruvec, lru); 1446 ret = 0; 1447 } 1448 spin_unlock_irq(&zone->lru_lock); 1449 } 1450 return ret; 1451 } 1452 1453 /* 1454 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1455 * then get resheduled. When there are massive number of tasks doing page 1456 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1457 * the LRU list will go small and be scanned faster than necessary, leading to 1458 * unnecessary swapping, thrashing and OOM. 1459 */ 1460 static int too_many_isolated(struct zone *zone, int file, 1461 struct scan_control *sc) 1462 { 1463 unsigned long inactive, isolated; 1464 1465 if (current_is_kswapd()) 1466 return 0; 1467 1468 if (!sane_reclaim(sc)) 1469 return 0; 1470 1471 if (file) { 1472 inactive = zone_page_state(zone, NR_INACTIVE_FILE); 1473 isolated = zone_page_state(zone, NR_ISOLATED_FILE); 1474 } else { 1475 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1476 isolated = zone_page_state(zone, NR_ISOLATED_ANON); 1477 } 1478 1479 /* 1480 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1481 * won't get blocked by normal direct-reclaimers, forming a circular 1482 * deadlock. 1483 */ 1484 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1485 inactive >>= 3; 1486 1487 return isolated > inactive; 1488 } 1489 1490 static noinline_for_stack void 1491 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1492 { 1493 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1494 struct zone *zone = lruvec_zone(lruvec); 1495 LIST_HEAD(pages_to_free); 1496 1497 /* 1498 * Put back any unfreeable pages. 1499 */ 1500 while (!list_empty(page_list)) { 1501 struct page *page = lru_to_page(page_list); 1502 int lru; 1503 1504 VM_BUG_ON_PAGE(PageLRU(page), page); 1505 list_del(&page->lru); 1506 if (unlikely(!page_evictable(page))) { 1507 spin_unlock_irq(&zone->lru_lock); 1508 putback_lru_page(page); 1509 spin_lock_irq(&zone->lru_lock); 1510 continue; 1511 } 1512 1513 lruvec = mem_cgroup_page_lruvec(page, zone); 1514 1515 SetPageLRU(page); 1516 lru = page_lru(page); 1517 add_page_to_lru_list(page, lruvec, lru); 1518 1519 if (is_active_lru(lru)) { 1520 int file = is_file_lru(lru); 1521 int numpages = hpage_nr_pages(page); 1522 reclaim_stat->recent_rotated[file] += numpages; 1523 } 1524 if (put_page_testzero(page)) { 1525 __ClearPageLRU(page); 1526 __ClearPageActive(page); 1527 del_page_from_lru_list(page, lruvec, lru); 1528 1529 if (unlikely(PageCompound(page))) { 1530 spin_unlock_irq(&zone->lru_lock); 1531 mem_cgroup_uncharge(page); 1532 (*get_compound_page_dtor(page))(page); 1533 spin_lock_irq(&zone->lru_lock); 1534 } else 1535 list_add(&page->lru, &pages_to_free); 1536 } 1537 } 1538 1539 /* 1540 * To save our caller's stack, now use input list for pages to free. 1541 */ 1542 list_splice(&pages_to_free, page_list); 1543 } 1544 1545 /* 1546 * If a kernel thread (such as nfsd for loop-back mounts) services 1547 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1548 * In that case we should only throttle if the backing device it is 1549 * writing to is congested. In other cases it is safe to throttle. 1550 */ 1551 static int current_may_throttle(void) 1552 { 1553 return !(current->flags & PF_LESS_THROTTLE) || 1554 current->backing_dev_info == NULL || 1555 bdi_write_congested(current->backing_dev_info); 1556 } 1557 1558 /* 1559 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number 1560 * of reclaimed pages 1561 */ 1562 static noinline_for_stack unsigned long 1563 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1564 struct scan_control *sc, enum lru_list lru) 1565 { 1566 LIST_HEAD(page_list); 1567 unsigned long nr_scanned; 1568 unsigned long nr_reclaimed = 0; 1569 unsigned long nr_taken; 1570 unsigned long nr_dirty = 0; 1571 unsigned long nr_congested = 0; 1572 unsigned long nr_unqueued_dirty = 0; 1573 unsigned long nr_writeback = 0; 1574 unsigned long nr_immediate = 0; 1575 isolate_mode_t isolate_mode = 0; 1576 int file = is_file_lru(lru); 1577 struct zone *zone = lruvec_zone(lruvec); 1578 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1579 1580 while (unlikely(too_many_isolated(zone, file, sc))) { 1581 congestion_wait(BLK_RW_ASYNC, HZ/10); 1582 1583 /* We are about to die and free our memory. Return now. */ 1584 if (fatal_signal_pending(current)) 1585 return SWAP_CLUSTER_MAX; 1586 } 1587 1588 lru_add_drain(); 1589 1590 if (!sc->may_unmap) 1591 isolate_mode |= ISOLATE_UNMAPPED; 1592 if (!sc->may_writepage) 1593 isolate_mode |= ISOLATE_CLEAN; 1594 1595 spin_lock_irq(&zone->lru_lock); 1596 1597 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1598 &nr_scanned, sc, isolate_mode, lru); 1599 1600 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1601 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1602 1603 if (global_reclaim(sc)) { 1604 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1605 if (current_is_kswapd()) 1606 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); 1607 else 1608 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); 1609 } 1610 spin_unlock_irq(&zone->lru_lock); 1611 1612 if (nr_taken == 0) 1613 return 0; 1614 1615 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP, 1616 &nr_dirty, &nr_unqueued_dirty, &nr_congested, 1617 &nr_writeback, &nr_immediate, 1618 false); 1619 1620 spin_lock_irq(&zone->lru_lock); 1621 1622 reclaim_stat->recent_scanned[file] += nr_taken; 1623 1624 if (global_reclaim(sc)) { 1625 if (current_is_kswapd()) 1626 __count_zone_vm_events(PGSTEAL_KSWAPD, zone, 1627 nr_reclaimed); 1628 else 1629 __count_zone_vm_events(PGSTEAL_DIRECT, zone, 1630 nr_reclaimed); 1631 } 1632 1633 putback_inactive_pages(lruvec, &page_list); 1634 1635 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1636 1637 spin_unlock_irq(&zone->lru_lock); 1638 1639 mem_cgroup_uncharge_list(&page_list); 1640 free_hot_cold_page_list(&page_list, true); 1641 1642 /* 1643 * If reclaim is isolating dirty pages under writeback, it implies 1644 * that the long-lived page allocation rate is exceeding the page 1645 * laundering rate. Either the global limits are not being effective 1646 * at throttling processes due to the page distribution throughout 1647 * zones or there is heavy usage of a slow backing device. The 1648 * only option is to throttle from reclaim context which is not ideal 1649 * as there is no guarantee the dirtying process is throttled in the 1650 * same way balance_dirty_pages() manages. 1651 * 1652 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1653 * of pages under pages flagged for immediate reclaim and stall if any 1654 * are encountered in the nr_immediate check below. 1655 */ 1656 if (nr_writeback && nr_writeback == nr_taken) 1657 set_bit(ZONE_WRITEBACK, &zone->flags); 1658 1659 /* 1660 * Legacy memcg will stall in page writeback so avoid forcibly 1661 * stalling here. 1662 */ 1663 if (sane_reclaim(sc)) { 1664 /* 1665 * Tag a zone as congested if all the dirty pages scanned were 1666 * backed by a congested BDI and wait_iff_congested will stall. 1667 */ 1668 if (nr_dirty && nr_dirty == nr_congested) 1669 set_bit(ZONE_CONGESTED, &zone->flags); 1670 1671 /* 1672 * If dirty pages are scanned that are not queued for IO, it 1673 * implies that flushers are not keeping up. In this case, flag 1674 * the zone ZONE_DIRTY and kswapd will start writing pages from 1675 * reclaim context. 1676 */ 1677 if (nr_unqueued_dirty == nr_taken) 1678 set_bit(ZONE_DIRTY, &zone->flags); 1679 1680 /* 1681 * If kswapd scans pages marked marked for immediate 1682 * reclaim and under writeback (nr_immediate), it implies 1683 * that pages are cycling through the LRU faster than 1684 * they are written so also forcibly stall. 1685 */ 1686 if (nr_immediate && current_may_throttle()) 1687 congestion_wait(BLK_RW_ASYNC, HZ/10); 1688 } 1689 1690 /* 1691 * Stall direct reclaim for IO completions if underlying BDIs or zone 1692 * is congested. Allow kswapd to continue until it starts encountering 1693 * unqueued dirty pages or cycling through the LRU too quickly. 1694 */ 1695 if (!sc->hibernation_mode && !current_is_kswapd() && 1696 current_may_throttle()) 1697 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); 1698 1699 trace_mm_vmscan_lru_shrink_inactive(zone, nr_scanned, nr_reclaimed, 1700 sc->priority, file); 1701 return nr_reclaimed; 1702 } 1703 1704 /* 1705 * This moves pages from the active list to the inactive list. 1706 * 1707 * We move them the other way if the page is referenced by one or more 1708 * processes, from rmap. 1709 * 1710 * If the pages are mostly unmapped, the processing is fast and it is 1711 * appropriate to hold zone->lru_lock across the whole operation. But if 1712 * the pages are mapped, the processing is slow (page_referenced()) so we 1713 * should drop zone->lru_lock around each page. It's impossible to balance 1714 * this, so instead we remove the pages from the LRU while processing them. 1715 * It is safe to rely on PG_active against the non-LRU pages in here because 1716 * nobody will play with that bit on a non-LRU page. 1717 * 1718 * The downside is that we have to touch page->_count against each page. 1719 * But we had to alter page->flags anyway. 1720 */ 1721 1722 static void move_active_pages_to_lru(struct lruvec *lruvec, 1723 struct list_head *list, 1724 struct list_head *pages_to_free, 1725 enum lru_list lru) 1726 { 1727 struct zone *zone = lruvec_zone(lruvec); 1728 unsigned long pgmoved = 0; 1729 struct page *page; 1730 int nr_pages; 1731 1732 while (!list_empty(list)) { 1733 page = lru_to_page(list); 1734 lruvec = mem_cgroup_page_lruvec(page, zone); 1735 1736 VM_BUG_ON_PAGE(PageLRU(page), page); 1737 SetPageLRU(page); 1738 1739 nr_pages = hpage_nr_pages(page); 1740 mem_cgroup_update_lru_size(lruvec, lru, nr_pages); 1741 list_move(&page->lru, &lruvec->lists[lru]); 1742 pgmoved += nr_pages; 1743 1744 if (put_page_testzero(page)) { 1745 __ClearPageLRU(page); 1746 __ClearPageActive(page); 1747 del_page_from_lru_list(page, lruvec, lru); 1748 1749 if (unlikely(PageCompound(page))) { 1750 spin_unlock_irq(&zone->lru_lock); 1751 mem_cgroup_uncharge(page); 1752 (*get_compound_page_dtor(page))(page); 1753 spin_lock_irq(&zone->lru_lock); 1754 } else 1755 list_add(&page->lru, pages_to_free); 1756 } 1757 } 1758 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); 1759 if (!is_active_lru(lru)) 1760 __count_vm_events(PGDEACTIVATE, pgmoved); 1761 } 1762 1763 static void shrink_active_list(unsigned long nr_to_scan, 1764 struct lruvec *lruvec, 1765 struct scan_control *sc, 1766 enum lru_list lru) 1767 { 1768 unsigned long nr_taken; 1769 unsigned long nr_scanned; 1770 unsigned long vm_flags; 1771 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1772 LIST_HEAD(l_active); 1773 LIST_HEAD(l_inactive); 1774 struct page *page; 1775 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1776 unsigned long nr_rotated = 0; 1777 isolate_mode_t isolate_mode = 0; 1778 int file = is_file_lru(lru); 1779 struct zone *zone = lruvec_zone(lruvec); 1780 1781 lru_add_drain(); 1782 1783 if (!sc->may_unmap) 1784 isolate_mode |= ISOLATE_UNMAPPED; 1785 if (!sc->may_writepage) 1786 isolate_mode |= ISOLATE_CLEAN; 1787 1788 spin_lock_irq(&zone->lru_lock); 1789 1790 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1791 &nr_scanned, sc, isolate_mode, lru); 1792 if (global_reclaim(sc)) 1793 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned); 1794 1795 reclaim_stat->recent_scanned[file] += nr_taken; 1796 1797 __count_zone_vm_events(PGREFILL, zone, nr_scanned); 1798 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); 1799 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); 1800 spin_unlock_irq(&zone->lru_lock); 1801 1802 while (!list_empty(&l_hold)) { 1803 cond_resched(); 1804 page = lru_to_page(&l_hold); 1805 list_del(&page->lru); 1806 1807 if (unlikely(!page_evictable(page))) { 1808 putback_lru_page(page); 1809 continue; 1810 } 1811 1812 if (unlikely(buffer_heads_over_limit)) { 1813 if (page_has_private(page) && trylock_page(page)) { 1814 if (page_has_private(page)) 1815 try_to_release_page(page, 0); 1816 unlock_page(page); 1817 } 1818 } 1819 1820 if (page_referenced(page, 0, sc->target_mem_cgroup, 1821 &vm_flags)) { 1822 nr_rotated += hpage_nr_pages(page); 1823 /* 1824 * Identify referenced, file-backed active pages and 1825 * give them one more trip around the active list. So 1826 * that executable code get better chances to stay in 1827 * memory under moderate memory pressure. Anon pages 1828 * are not likely to be evicted by use-once streaming 1829 * IO, plus JVM can create lots of anon VM_EXEC pages, 1830 * so we ignore them here. 1831 */ 1832 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1833 list_add(&page->lru, &l_active); 1834 continue; 1835 } 1836 } 1837 1838 ClearPageActive(page); /* we are de-activating */ 1839 list_add(&page->lru, &l_inactive); 1840 } 1841 1842 /* 1843 * Move pages back to the lru list. 1844 */ 1845 spin_lock_irq(&zone->lru_lock); 1846 /* 1847 * Count referenced pages from currently used mappings as rotated, 1848 * even though only some of them are actually re-activated. This 1849 * helps balance scan pressure between file and anonymous pages in 1850 * get_scan_count. 1851 */ 1852 reclaim_stat->recent_rotated[file] += nr_rotated; 1853 1854 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1855 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1856 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); 1857 spin_unlock_irq(&zone->lru_lock); 1858 1859 mem_cgroup_uncharge_list(&l_hold); 1860 free_hot_cold_page_list(&l_hold, true); 1861 } 1862 1863 #ifdef CONFIG_SWAP 1864 static bool inactive_anon_is_low_global(struct zone *zone) 1865 { 1866 unsigned long active, inactive; 1867 1868 active = zone_page_state(zone, NR_ACTIVE_ANON); 1869 inactive = zone_page_state(zone, NR_INACTIVE_ANON); 1870 1871 return inactive * zone->inactive_ratio < active; 1872 } 1873 1874 /** 1875 * inactive_anon_is_low - check if anonymous pages need to be deactivated 1876 * @lruvec: LRU vector to check 1877 * 1878 * Returns true if the zone does not have enough inactive anon pages, 1879 * meaning some active anon pages need to be deactivated. 1880 */ 1881 static bool inactive_anon_is_low(struct lruvec *lruvec) 1882 { 1883 /* 1884 * If we don't have swap space, anonymous page deactivation 1885 * is pointless. 1886 */ 1887 if (!total_swap_pages) 1888 return false; 1889 1890 if (!mem_cgroup_disabled()) 1891 return mem_cgroup_inactive_anon_is_low(lruvec); 1892 1893 return inactive_anon_is_low_global(lruvec_zone(lruvec)); 1894 } 1895 #else 1896 static inline bool inactive_anon_is_low(struct lruvec *lruvec) 1897 { 1898 return false; 1899 } 1900 #endif 1901 1902 /** 1903 * inactive_file_is_low - check if file pages need to be deactivated 1904 * @lruvec: LRU vector to check 1905 * 1906 * When the system is doing streaming IO, memory pressure here 1907 * ensures that active file pages get deactivated, until more 1908 * than half of the file pages are on the inactive list. 1909 * 1910 * Once we get to that situation, protect the system's working 1911 * set from being evicted by disabling active file page aging. 1912 * 1913 * This uses a different ratio than the anonymous pages, because 1914 * the page cache uses a use-once replacement algorithm. 1915 */ 1916 static bool inactive_file_is_low(struct lruvec *lruvec) 1917 { 1918 unsigned long inactive; 1919 unsigned long active; 1920 1921 inactive = lruvec_lru_size(lruvec, LRU_INACTIVE_FILE); 1922 active = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE); 1923 1924 return active > inactive; 1925 } 1926 1927 static bool inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) 1928 { 1929 if (is_file_lru(lru)) 1930 return inactive_file_is_low(lruvec); 1931 else 1932 return inactive_anon_is_low(lruvec); 1933 } 1934 1935 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 1936 struct lruvec *lruvec, struct scan_control *sc) 1937 { 1938 if (is_active_lru(lru)) { 1939 if (inactive_list_is_low(lruvec, lru)) 1940 shrink_active_list(nr_to_scan, lruvec, sc, lru); 1941 return 0; 1942 } 1943 1944 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 1945 } 1946 1947 enum scan_balance { 1948 SCAN_EQUAL, 1949 SCAN_FRACT, 1950 SCAN_ANON, 1951 SCAN_FILE, 1952 }; 1953 1954 /* 1955 * Determine how aggressively the anon and file LRU lists should be 1956 * scanned. The relative value of each set of LRU lists is determined 1957 * by looking at the fraction of the pages scanned we did rotate back 1958 * onto the active list instead of evict. 1959 * 1960 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 1961 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 1962 */ 1963 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 1964 struct scan_control *sc, unsigned long *nr, 1965 unsigned long *lru_pages) 1966 { 1967 int swappiness = mem_cgroup_swappiness(memcg); 1968 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1969 u64 fraction[2]; 1970 u64 denominator = 0; /* gcc */ 1971 struct zone *zone = lruvec_zone(lruvec); 1972 unsigned long anon_prio, file_prio; 1973 enum scan_balance scan_balance; 1974 unsigned long anon, file; 1975 bool force_scan = false; 1976 unsigned long ap, fp; 1977 enum lru_list lru; 1978 bool some_scanned; 1979 int pass; 1980 1981 /* 1982 * If the zone or memcg is small, nr[l] can be 0. This 1983 * results in no scanning on this priority and a potential 1984 * priority drop. Global direct reclaim can go to the next 1985 * zone and tends to have no problems. Global kswapd is for 1986 * zone balancing and it needs to scan a minimum amount. When 1987 * reclaiming for a memcg, a priority drop can cause high 1988 * latencies, so it's better to scan a minimum amount there as 1989 * well. 1990 */ 1991 if (current_is_kswapd()) { 1992 if (!zone_reclaimable(zone)) 1993 force_scan = true; 1994 if (!mem_cgroup_online(memcg)) 1995 force_scan = true; 1996 } 1997 if (!global_reclaim(sc)) 1998 force_scan = true; 1999 2000 /* If we have no swap space, do not bother scanning anon pages. */ 2001 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2002 scan_balance = SCAN_FILE; 2003 goto out; 2004 } 2005 2006 /* 2007 * Global reclaim will swap to prevent OOM even with no 2008 * swappiness, but memcg users want to use this knob to 2009 * disable swapping for individual groups completely when 2010 * using the memory controller's swap limit feature would be 2011 * too expensive. 2012 */ 2013 if (!global_reclaim(sc) && !swappiness) { 2014 scan_balance = SCAN_FILE; 2015 goto out; 2016 } 2017 2018 /* 2019 * Do not apply any pressure balancing cleverness when the 2020 * system is close to OOM, scan both anon and file equally 2021 * (unless the swappiness setting disagrees with swapping). 2022 */ 2023 if (!sc->priority && swappiness) { 2024 scan_balance = SCAN_EQUAL; 2025 goto out; 2026 } 2027 2028 /* 2029 * Prevent the reclaimer from falling into the cache trap: as 2030 * cache pages start out inactive, every cache fault will tip 2031 * the scan balance towards the file LRU. And as the file LRU 2032 * shrinks, so does the window for rotation from references. 2033 * This means we have a runaway feedback loop where a tiny 2034 * thrashing file LRU becomes infinitely more attractive than 2035 * anon pages. Try to detect this based on file LRU size. 2036 */ 2037 if (global_reclaim(sc)) { 2038 unsigned long zonefile; 2039 unsigned long zonefree; 2040 2041 zonefree = zone_page_state(zone, NR_FREE_PAGES); 2042 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) + 2043 zone_page_state(zone, NR_INACTIVE_FILE); 2044 2045 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) { 2046 scan_balance = SCAN_ANON; 2047 goto out; 2048 } 2049 } 2050 2051 /* 2052 * If there is enough inactive page cache, i.e. if the size of the 2053 * inactive list is greater than that of the active list *and* the 2054 * inactive list actually has some pages to scan on this priority, we 2055 * do not reclaim anything from the anonymous working set right now. 2056 * Without the second condition we could end up never scanning an 2057 * lruvec even if it has plenty of old anonymous pages unless the 2058 * system is under heavy pressure. 2059 */ 2060 if (!inactive_file_is_low(lruvec) && 2061 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE) >> sc->priority) { 2062 scan_balance = SCAN_FILE; 2063 goto out; 2064 } 2065 2066 scan_balance = SCAN_FRACT; 2067 2068 /* 2069 * With swappiness at 100, anonymous and file have the same priority. 2070 * This scanning priority is essentially the inverse of IO cost. 2071 */ 2072 anon_prio = swappiness; 2073 file_prio = 200 - anon_prio; 2074 2075 /* 2076 * OK, so we have swap space and a fair amount of page cache 2077 * pages. We use the recently rotated / recently scanned 2078 * ratios to determine how valuable each cache is. 2079 * 2080 * Because workloads change over time (and to avoid overflow) 2081 * we keep these statistics as a floating average, which ends 2082 * up weighing recent references more than old ones. 2083 * 2084 * anon in [0], file in [1] 2085 */ 2086 2087 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON) + 2088 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON); 2089 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE) + 2090 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE); 2091 2092 spin_lock_irq(&zone->lru_lock); 2093 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2094 reclaim_stat->recent_scanned[0] /= 2; 2095 reclaim_stat->recent_rotated[0] /= 2; 2096 } 2097 2098 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2099 reclaim_stat->recent_scanned[1] /= 2; 2100 reclaim_stat->recent_rotated[1] /= 2; 2101 } 2102 2103 /* 2104 * The amount of pressure on anon vs file pages is inversely 2105 * proportional to the fraction of recently scanned pages on 2106 * each list that were recently referenced and in active use. 2107 */ 2108 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2109 ap /= reclaim_stat->recent_rotated[0] + 1; 2110 2111 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2112 fp /= reclaim_stat->recent_rotated[1] + 1; 2113 spin_unlock_irq(&zone->lru_lock); 2114 2115 fraction[0] = ap; 2116 fraction[1] = fp; 2117 denominator = ap + fp + 1; 2118 out: 2119 some_scanned = false; 2120 /* Only use force_scan on second pass. */ 2121 for (pass = 0; !some_scanned && pass < 2; pass++) { 2122 *lru_pages = 0; 2123 for_each_evictable_lru(lru) { 2124 int file = is_file_lru(lru); 2125 unsigned long size; 2126 unsigned long scan; 2127 2128 size = lruvec_lru_size(lruvec, lru); 2129 scan = size >> sc->priority; 2130 2131 if (!scan && pass && force_scan) 2132 scan = min(size, SWAP_CLUSTER_MAX); 2133 2134 switch (scan_balance) { 2135 case SCAN_EQUAL: 2136 /* Scan lists relative to size */ 2137 break; 2138 case SCAN_FRACT: 2139 /* 2140 * Scan types proportional to swappiness and 2141 * their relative recent reclaim efficiency. 2142 */ 2143 scan = div64_u64(scan * fraction[file], 2144 denominator); 2145 break; 2146 case SCAN_FILE: 2147 case SCAN_ANON: 2148 /* Scan one type exclusively */ 2149 if ((scan_balance == SCAN_FILE) != file) { 2150 size = 0; 2151 scan = 0; 2152 } 2153 break; 2154 default: 2155 /* Look ma, no brain */ 2156 BUG(); 2157 } 2158 2159 *lru_pages += size; 2160 nr[lru] = scan; 2161 2162 /* 2163 * Skip the second pass and don't force_scan, 2164 * if we found something to scan. 2165 */ 2166 some_scanned |= !!scan; 2167 } 2168 } 2169 } 2170 2171 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 2172 static void init_tlb_ubc(void) 2173 { 2174 /* 2175 * This deliberately does not clear the cpumask as it's expensive 2176 * and unnecessary. If there happens to be data in there then the 2177 * first SWAP_CLUSTER_MAX pages will send an unnecessary IPI and 2178 * then will be cleared. 2179 */ 2180 current->tlb_ubc.flush_required = false; 2181 } 2182 #else 2183 static inline void init_tlb_ubc(void) 2184 { 2185 } 2186 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 2187 2188 /* 2189 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. 2190 */ 2191 static void shrink_zone_memcg(struct zone *zone, struct mem_cgroup *memcg, 2192 struct scan_control *sc, unsigned long *lru_pages) 2193 { 2194 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2195 unsigned long nr[NR_LRU_LISTS]; 2196 unsigned long targets[NR_LRU_LISTS]; 2197 unsigned long nr_to_scan; 2198 enum lru_list lru; 2199 unsigned long nr_reclaimed = 0; 2200 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2201 struct blk_plug plug; 2202 bool scan_adjusted; 2203 2204 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2205 2206 /* Record the original scan target for proportional adjustments later */ 2207 memcpy(targets, nr, sizeof(nr)); 2208 2209 /* 2210 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2211 * event that can occur when there is little memory pressure e.g. 2212 * multiple streaming readers/writers. Hence, we do not abort scanning 2213 * when the requested number of pages are reclaimed when scanning at 2214 * DEF_PRIORITY on the assumption that the fact we are direct 2215 * reclaiming implies that kswapd is not keeping up and it is best to 2216 * do a batch of work at once. For memcg reclaim one check is made to 2217 * abort proportional reclaim if either the file or anon lru has already 2218 * dropped to zero at the first pass. 2219 */ 2220 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2221 sc->priority == DEF_PRIORITY); 2222 2223 init_tlb_ubc(); 2224 2225 blk_start_plug(&plug); 2226 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2227 nr[LRU_INACTIVE_FILE]) { 2228 unsigned long nr_anon, nr_file, percentage; 2229 unsigned long nr_scanned; 2230 2231 for_each_evictable_lru(lru) { 2232 if (nr[lru]) { 2233 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2234 nr[lru] -= nr_to_scan; 2235 2236 nr_reclaimed += shrink_list(lru, nr_to_scan, 2237 lruvec, sc); 2238 } 2239 } 2240 2241 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2242 continue; 2243 2244 /* 2245 * For kswapd and memcg, reclaim at least the number of pages 2246 * requested. Ensure that the anon and file LRUs are scanned 2247 * proportionally what was requested by get_scan_count(). We 2248 * stop reclaiming one LRU and reduce the amount scanning 2249 * proportional to the original scan target. 2250 */ 2251 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2252 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2253 2254 /* 2255 * It's just vindictive to attack the larger once the smaller 2256 * has gone to zero. And given the way we stop scanning the 2257 * smaller below, this makes sure that we only make one nudge 2258 * towards proportionality once we've got nr_to_reclaim. 2259 */ 2260 if (!nr_file || !nr_anon) 2261 break; 2262 2263 if (nr_file > nr_anon) { 2264 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2265 targets[LRU_ACTIVE_ANON] + 1; 2266 lru = LRU_BASE; 2267 percentage = nr_anon * 100 / scan_target; 2268 } else { 2269 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2270 targets[LRU_ACTIVE_FILE] + 1; 2271 lru = LRU_FILE; 2272 percentage = nr_file * 100 / scan_target; 2273 } 2274 2275 /* Stop scanning the smaller of the LRU */ 2276 nr[lru] = 0; 2277 nr[lru + LRU_ACTIVE] = 0; 2278 2279 /* 2280 * Recalculate the other LRU scan count based on its original 2281 * scan target and the percentage scanning already complete 2282 */ 2283 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2284 nr_scanned = targets[lru] - nr[lru]; 2285 nr[lru] = targets[lru] * (100 - percentage) / 100; 2286 nr[lru] -= min(nr[lru], nr_scanned); 2287 2288 lru += LRU_ACTIVE; 2289 nr_scanned = targets[lru] - nr[lru]; 2290 nr[lru] = targets[lru] * (100 - percentage) / 100; 2291 nr[lru] -= min(nr[lru], nr_scanned); 2292 2293 scan_adjusted = true; 2294 } 2295 blk_finish_plug(&plug); 2296 sc->nr_reclaimed += nr_reclaimed; 2297 2298 /* 2299 * Even if we did not try to evict anon pages at all, we want to 2300 * rebalance the anon lru active/inactive ratio. 2301 */ 2302 if (inactive_anon_is_low(lruvec)) 2303 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2304 sc, LRU_ACTIVE_ANON); 2305 2306 throttle_vm_writeout(sc->gfp_mask); 2307 } 2308 2309 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2310 static bool in_reclaim_compaction(struct scan_control *sc) 2311 { 2312 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2313 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2314 sc->priority < DEF_PRIORITY - 2)) 2315 return true; 2316 2317 return false; 2318 } 2319 2320 /* 2321 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2322 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2323 * true if more pages should be reclaimed such that when the page allocator 2324 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2325 * It will give up earlier than that if there is difficulty reclaiming pages. 2326 */ 2327 static inline bool should_continue_reclaim(struct zone *zone, 2328 unsigned long nr_reclaimed, 2329 unsigned long nr_scanned, 2330 struct scan_control *sc) 2331 { 2332 unsigned long pages_for_compaction; 2333 unsigned long inactive_lru_pages; 2334 2335 /* If not in reclaim/compaction mode, stop */ 2336 if (!in_reclaim_compaction(sc)) 2337 return false; 2338 2339 /* Consider stopping depending on scan and reclaim activity */ 2340 if (sc->gfp_mask & __GFP_REPEAT) { 2341 /* 2342 * For __GFP_REPEAT allocations, stop reclaiming if the 2343 * full LRU list has been scanned and we are still failing 2344 * to reclaim pages. This full LRU scan is potentially 2345 * expensive but a __GFP_REPEAT caller really wants to succeed 2346 */ 2347 if (!nr_reclaimed && !nr_scanned) 2348 return false; 2349 } else { 2350 /* 2351 * For non-__GFP_REPEAT allocations which can presumably 2352 * fail without consequence, stop if we failed to reclaim 2353 * any pages from the last SWAP_CLUSTER_MAX number of 2354 * pages that were scanned. This will return to the 2355 * caller faster at the risk reclaim/compaction and 2356 * the resulting allocation attempt fails 2357 */ 2358 if (!nr_reclaimed) 2359 return false; 2360 } 2361 2362 /* 2363 * If we have not reclaimed enough pages for compaction and the 2364 * inactive lists are large enough, continue reclaiming 2365 */ 2366 pages_for_compaction = (2UL << sc->order); 2367 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE); 2368 if (get_nr_swap_pages() > 0) 2369 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON); 2370 if (sc->nr_reclaimed < pages_for_compaction && 2371 inactive_lru_pages > pages_for_compaction) 2372 return true; 2373 2374 /* If compaction would go ahead or the allocation would succeed, stop */ 2375 switch (compaction_suitable(zone, sc->order, 0, 0)) { 2376 case COMPACT_PARTIAL: 2377 case COMPACT_CONTINUE: 2378 return false; 2379 default: 2380 return true; 2381 } 2382 } 2383 2384 static bool shrink_zone(struct zone *zone, struct scan_control *sc, 2385 bool is_classzone) 2386 { 2387 struct reclaim_state *reclaim_state = current->reclaim_state; 2388 unsigned long nr_reclaimed, nr_scanned; 2389 bool reclaimable = false; 2390 2391 do { 2392 struct mem_cgroup *root = sc->target_mem_cgroup; 2393 struct mem_cgroup_reclaim_cookie reclaim = { 2394 .zone = zone, 2395 .priority = sc->priority, 2396 }; 2397 unsigned long zone_lru_pages = 0; 2398 struct mem_cgroup *memcg; 2399 2400 nr_reclaimed = sc->nr_reclaimed; 2401 nr_scanned = sc->nr_scanned; 2402 2403 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2404 do { 2405 unsigned long lru_pages; 2406 unsigned long reclaimed; 2407 unsigned long scanned; 2408 2409 if (mem_cgroup_low(root, memcg)) { 2410 if (!sc->may_thrash) 2411 continue; 2412 mem_cgroup_events(memcg, MEMCG_LOW, 1); 2413 } 2414 2415 reclaimed = sc->nr_reclaimed; 2416 scanned = sc->nr_scanned; 2417 2418 shrink_zone_memcg(zone, memcg, sc, &lru_pages); 2419 zone_lru_pages += lru_pages; 2420 2421 if (memcg && is_classzone) 2422 shrink_slab(sc->gfp_mask, zone_to_nid(zone), 2423 memcg, sc->nr_scanned - scanned, 2424 lru_pages); 2425 2426 /* Record the group's reclaim efficiency */ 2427 vmpressure(sc->gfp_mask, memcg, false, 2428 sc->nr_scanned - scanned, 2429 sc->nr_reclaimed - reclaimed); 2430 2431 /* 2432 * Direct reclaim and kswapd have to scan all memory 2433 * cgroups to fulfill the overall scan target for the 2434 * zone. 2435 * 2436 * Limit reclaim, on the other hand, only cares about 2437 * nr_to_reclaim pages to be reclaimed and it will 2438 * retry with decreasing priority if one round over the 2439 * whole hierarchy is not sufficient. 2440 */ 2441 if (!global_reclaim(sc) && 2442 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2443 mem_cgroup_iter_break(root, memcg); 2444 break; 2445 } 2446 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2447 2448 /* 2449 * Shrink the slab caches in the same proportion that 2450 * the eligible LRU pages were scanned. 2451 */ 2452 if (global_reclaim(sc) && is_classzone) 2453 shrink_slab(sc->gfp_mask, zone_to_nid(zone), NULL, 2454 sc->nr_scanned - nr_scanned, 2455 zone_lru_pages); 2456 2457 if (reclaim_state) { 2458 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2459 reclaim_state->reclaimed_slab = 0; 2460 } 2461 2462 /* Record the subtree's reclaim efficiency */ 2463 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2464 sc->nr_scanned - nr_scanned, 2465 sc->nr_reclaimed - nr_reclaimed); 2466 2467 if (sc->nr_reclaimed - nr_reclaimed) 2468 reclaimable = true; 2469 2470 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, 2471 sc->nr_scanned - nr_scanned, sc)); 2472 2473 return reclaimable; 2474 } 2475 2476 /* 2477 * Returns true if compaction should go ahead for a high-order request, or 2478 * the high-order allocation would succeed without compaction. 2479 */ 2480 static inline bool compaction_ready(struct zone *zone, int order) 2481 { 2482 unsigned long balance_gap, watermark; 2483 bool watermark_ok; 2484 2485 /* 2486 * Compaction takes time to run and there are potentially other 2487 * callers using the pages just freed. Continue reclaiming until 2488 * there is a buffer of free pages available to give compaction 2489 * a reasonable chance of completing and allocating the page 2490 */ 2491 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 2492 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 2493 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order); 2494 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0); 2495 2496 /* 2497 * If compaction is deferred, reclaim up to a point where 2498 * compaction will have a chance of success when re-enabled 2499 */ 2500 if (compaction_deferred(zone, order)) 2501 return watermark_ok; 2502 2503 /* 2504 * If compaction is not ready to start and allocation is not likely 2505 * to succeed without it, then keep reclaiming. 2506 */ 2507 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED) 2508 return false; 2509 2510 return watermark_ok; 2511 } 2512 2513 /* 2514 * This is the direct reclaim path, for page-allocating processes. We only 2515 * try to reclaim pages from zones which will satisfy the caller's allocation 2516 * request. 2517 * 2518 * We reclaim from a zone even if that zone is over high_wmark_pages(zone). 2519 * Because: 2520 * a) The caller may be trying to free *extra* pages to satisfy a higher-order 2521 * allocation or 2522 * b) The target zone may be at high_wmark_pages(zone) but the lower zones 2523 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' 2524 * zone defense algorithm. 2525 * 2526 * If a zone is deemed to be full of pinned pages then just give it a light 2527 * scan then give up on it. 2528 * 2529 * Returns true if a zone was reclaimable. 2530 */ 2531 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2532 { 2533 struct zoneref *z; 2534 struct zone *zone; 2535 unsigned long nr_soft_reclaimed; 2536 unsigned long nr_soft_scanned; 2537 gfp_t orig_mask; 2538 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask); 2539 bool reclaimable = false; 2540 2541 /* 2542 * If the number of buffer_heads in the machine exceeds the maximum 2543 * allowed level, force direct reclaim to scan the highmem zone as 2544 * highmem pages could be pinning lowmem pages storing buffer_heads 2545 */ 2546 orig_mask = sc->gfp_mask; 2547 if (buffer_heads_over_limit) 2548 sc->gfp_mask |= __GFP_HIGHMEM; 2549 2550 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2551 requested_highidx, sc->nodemask) { 2552 enum zone_type classzone_idx; 2553 2554 if (!populated_zone(zone)) 2555 continue; 2556 2557 classzone_idx = requested_highidx; 2558 while (!populated_zone(zone->zone_pgdat->node_zones + 2559 classzone_idx)) 2560 classzone_idx--; 2561 2562 /* 2563 * Take care memory controller reclaiming has small influence 2564 * to global LRU. 2565 */ 2566 if (global_reclaim(sc)) { 2567 if (!cpuset_zone_allowed(zone, 2568 GFP_KERNEL | __GFP_HARDWALL)) 2569 continue; 2570 2571 if (sc->priority != DEF_PRIORITY && 2572 !zone_reclaimable(zone)) 2573 continue; /* Let kswapd poll it */ 2574 2575 /* 2576 * If we already have plenty of memory free for 2577 * compaction in this zone, don't free any more. 2578 * Even though compaction is invoked for any 2579 * non-zero order, only frequent costly order 2580 * reclamation is disruptive enough to become a 2581 * noticeable problem, like transparent huge 2582 * page allocations. 2583 */ 2584 if (IS_ENABLED(CONFIG_COMPACTION) && 2585 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2586 zonelist_zone_idx(z) <= requested_highidx && 2587 compaction_ready(zone, sc->order)) { 2588 sc->compaction_ready = true; 2589 continue; 2590 } 2591 2592 /* 2593 * This steals pages from memory cgroups over softlimit 2594 * and returns the number of reclaimed pages and 2595 * scanned pages. This works for global memory pressure 2596 * and balancing, not for a memcg's limit. 2597 */ 2598 nr_soft_scanned = 0; 2599 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 2600 sc->order, sc->gfp_mask, 2601 &nr_soft_scanned); 2602 sc->nr_reclaimed += nr_soft_reclaimed; 2603 sc->nr_scanned += nr_soft_scanned; 2604 if (nr_soft_reclaimed) 2605 reclaimable = true; 2606 /* need some check for avoid more shrink_zone() */ 2607 } 2608 2609 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx)) 2610 reclaimable = true; 2611 2612 if (global_reclaim(sc) && 2613 !reclaimable && zone_reclaimable(zone)) 2614 reclaimable = true; 2615 } 2616 2617 /* 2618 * Restore to original mask to avoid the impact on the caller if we 2619 * promoted it to __GFP_HIGHMEM. 2620 */ 2621 sc->gfp_mask = orig_mask; 2622 2623 return reclaimable; 2624 } 2625 2626 /* 2627 * This is the main entry point to direct page reclaim. 2628 * 2629 * If a full scan of the inactive list fails to free enough memory then we 2630 * are "out of memory" and something needs to be killed. 2631 * 2632 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2633 * high - the zone may be full of dirty or under-writeback pages, which this 2634 * caller can't do much about. We kick the writeback threads and take explicit 2635 * naps in the hope that some of these pages can be written. But if the 2636 * allocating task holds filesystem locks which prevent writeout this might not 2637 * work, and the allocation attempt will fail. 2638 * 2639 * returns: 0, if no pages reclaimed 2640 * else, the number of pages reclaimed 2641 */ 2642 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2643 struct scan_control *sc) 2644 { 2645 int initial_priority = sc->priority; 2646 unsigned long total_scanned = 0; 2647 unsigned long writeback_threshold; 2648 bool zones_reclaimable; 2649 retry: 2650 delayacct_freepages_start(); 2651 2652 if (global_reclaim(sc)) 2653 count_vm_event(ALLOCSTALL); 2654 2655 do { 2656 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2657 sc->priority); 2658 sc->nr_scanned = 0; 2659 zones_reclaimable = shrink_zones(zonelist, sc); 2660 2661 total_scanned += sc->nr_scanned; 2662 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2663 break; 2664 2665 if (sc->compaction_ready) 2666 break; 2667 2668 /* 2669 * If we're getting trouble reclaiming, start doing 2670 * writepage even in laptop mode. 2671 */ 2672 if (sc->priority < DEF_PRIORITY - 2) 2673 sc->may_writepage = 1; 2674 2675 /* 2676 * Try to write back as many pages as we just scanned. This 2677 * tends to cause slow streaming writers to write data to the 2678 * disk smoothly, at the dirtying rate, which is nice. But 2679 * that's undesirable in laptop mode, where we *want* lumpy 2680 * writeout. So in laptop mode, write out the whole world. 2681 */ 2682 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; 2683 if (total_scanned > writeback_threshold) { 2684 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, 2685 WB_REASON_TRY_TO_FREE_PAGES); 2686 sc->may_writepage = 1; 2687 } 2688 } while (--sc->priority >= 0); 2689 2690 delayacct_freepages_end(); 2691 2692 if (sc->nr_reclaimed) 2693 return sc->nr_reclaimed; 2694 2695 /* Aborted reclaim to try compaction? don't OOM, then */ 2696 if (sc->compaction_ready) 2697 return 1; 2698 2699 /* Untapped cgroup reserves? Don't OOM, retry. */ 2700 if (!sc->may_thrash) { 2701 sc->priority = initial_priority; 2702 sc->may_thrash = 1; 2703 goto retry; 2704 } 2705 2706 /* Any of the zones still reclaimable? Don't OOM. */ 2707 if (zones_reclaimable) 2708 return 1; 2709 2710 return 0; 2711 } 2712 2713 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) 2714 { 2715 struct zone *zone; 2716 unsigned long pfmemalloc_reserve = 0; 2717 unsigned long free_pages = 0; 2718 int i; 2719 bool wmark_ok; 2720 2721 for (i = 0; i <= ZONE_NORMAL; i++) { 2722 zone = &pgdat->node_zones[i]; 2723 if (!populated_zone(zone) || 2724 zone_reclaimable_pages(zone) == 0) 2725 continue; 2726 2727 pfmemalloc_reserve += min_wmark_pages(zone); 2728 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2729 } 2730 2731 /* If there are no reserves (unexpected config) then do not throttle */ 2732 if (!pfmemalloc_reserve) 2733 return true; 2734 2735 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2736 2737 /* kswapd must be awake if processes are being throttled */ 2738 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2739 pgdat->classzone_idx = min(pgdat->classzone_idx, 2740 (enum zone_type)ZONE_NORMAL); 2741 wake_up_interruptible(&pgdat->kswapd_wait); 2742 } 2743 2744 return wmark_ok; 2745 } 2746 2747 /* 2748 * Throttle direct reclaimers if backing storage is backed by the network 2749 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2750 * depleted. kswapd will continue to make progress and wake the processes 2751 * when the low watermark is reached. 2752 * 2753 * Returns true if a fatal signal was delivered during throttling. If this 2754 * happens, the page allocator should not consider triggering the OOM killer. 2755 */ 2756 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2757 nodemask_t *nodemask) 2758 { 2759 struct zoneref *z; 2760 struct zone *zone; 2761 pg_data_t *pgdat = NULL; 2762 2763 /* 2764 * Kernel threads should not be throttled as they may be indirectly 2765 * responsible for cleaning pages necessary for reclaim to make forward 2766 * progress. kjournald for example may enter direct reclaim while 2767 * committing a transaction where throttling it could forcing other 2768 * processes to block on log_wait_commit(). 2769 */ 2770 if (current->flags & PF_KTHREAD) 2771 goto out; 2772 2773 /* 2774 * If a fatal signal is pending, this process should not throttle. 2775 * It should return quickly so it can exit and free its memory 2776 */ 2777 if (fatal_signal_pending(current)) 2778 goto out; 2779 2780 /* 2781 * Check if the pfmemalloc reserves are ok by finding the first node 2782 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2783 * GFP_KERNEL will be required for allocating network buffers when 2784 * swapping over the network so ZONE_HIGHMEM is unusable. 2785 * 2786 * Throttling is based on the first usable node and throttled processes 2787 * wait on a queue until kswapd makes progress and wakes them. There 2788 * is an affinity then between processes waking up and where reclaim 2789 * progress has been made assuming the process wakes on the same node. 2790 * More importantly, processes running on remote nodes will not compete 2791 * for remote pfmemalloc reserves and processes on different nodes 2792 * should make reasonable progress. 2793 */ 2794 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2795 gfp_zone(gfp_mask), nodemask) { 2796 if (zone_idx(zone) > ZONE_NORMAL) 2797 continue; 2798 2799 /* Throttle based on the first usable node */ 2800 pgdat = zone->zone_pgdat; 2801 if (pfmemalloc_watermark_ok(pgdat)) 2802 goto out; 2803 break; 2804 } 2805 2806 /* If no zone was usable by the allocation flags then do not throttle */ 2807 if (!pgdat) 2808 goto out; 2809 2810 /* Account for the throttling */ 2811 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2812 2813 /* 2814 * If the caller cannot enter the filesystem, it's possible that it 2815 * is due to the caller holding an FS lock or performing a journal 2816 * transaction in the case of a filesystem like ext[3|4]. In this case, 2817 * it is not safe to block on pfmemalloc_wait as kswapd could be 2818 * blocked waiting on the same lock. Instead, throttle for up to a 2819 * second before continuing. 2820 */ 2821 if (!(gfp_mask & __GFP_FS)) { 2822 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2823 pfmemalloc_watermark_ok(pgdat), HZ); 2824 2825 goto check_pending; 2826 } 2827 2828 /* Throttle until kswapd wakes the process */ 2829 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2830 pfmemalloc_watermark_ok(pgdat)); 2831 2832 check_pending: 2833 if (fatal_signal_pending(current)) 2834 return true; 2835 2836 out: 2837 return false; 2838 } 2839 2840 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2841 gfp_t gfp_mask, nodemask_t *nodemask) 2842 { 2843 unsigned long nr_reclaimed; 2844 struct scan_control sc = { 2845 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2846 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 2847 .order = order, 2848 .nodemask = nodemask, 2849 .priority = DEF_PRIORITY, 2850 .may_writepage = !laptop_mode, 2851 .may_unmap = 1, 2852 .may_swap = 1, 2853 }; 2854 2855 /* 2856 * Do not enter reclaim if fatal signal was delivered while throttled. 2857 * 1 is returned so that the page allocator does not OOM kill at this 2858 * point. 2859 */ 2860 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2861 return 1; 2862 2863 trace_mm_vmscan_direct_reclaim_begin(order, 2864 sc.may_writepage, 2865 gfp_mask); 2866 2867 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2868 2869 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2870 2871 return nr_reclaimed; 2872 } 2873 2874 #ifdef CONFIG_MEMCG 2875 2876 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, 2877 gfp_t gfp_mask, bool noswap, 2878 struct zone *zone, 2879 unsigned long *nr_scanned) 2880 { 2881 struct scan_control sc = { 2882 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2883 .target_mem_cgroup = memcg, 2884 .may_writepage = !laptop_mode, 2885 .may_unmap = 1, 2886 .may_swap = !noswap, 2887 }; 2888 unsigned long lru_pages; 2889 2890 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2891 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 2892 2893 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 2894 sc.may_writepage, 2895 sc.gfp_mask); 2896 2897 /* 2898 * NOTE: Although we can get the priority field, using it 2899 * here is not a good idea, since it limits the pages we can scan. 2900 * if we don't reclaim here, the shrink_zone from balance_pgdat 2901 * will pick up pages from other mem cgroup's as well. We hack 2902 * the priority and make it zero. 2903 */ 2904 shrink_zone_memcg(zone, memcg, &sc, &lru_pages); 2905 2906 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 2907 2908 *nr_scanned = sc.nr_scanned; 2909 return sc.nr_reclaimed; 2910 } 2911 2912 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 2913 unsigned long nr_pages, 2914 gfp_t gfp_mask, 2915 bool may_swap) 2916 { 2917 struct zonelist *zonelist; 2918 unsigned long nr_reclaimed; 2919 int nid; 2920 struct scan_control sc = { 2921 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 2922 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 2923 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 2924 .target_mem_cgroup = memcg, 2925 .priority = DEF_PRIORITY, 2926 .may_writepage = !laptop_mode, 2927 .may_unmap = 1, 2928 .may_swap = may_swap, 2929 }; 2930 2931 /* 2932 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 2933 * take care of from where we get pages. So the node where we start the 2934 * scan does not need to be the current node. 2935 */ 2936 nid = mem_cgroup_select_victim_node(memcg); 2937 2938 zonelist = NODE_DATA(nid)->node_zonelists; 2939 2940 trace_mm_vmscan_memcg_reclaim_begin(0, 2941 sc.may_writepage, 2942 sc.gfp_mask); 2943 2944 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2945 2946 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 2947 2948 return nr_reclaimed; 2949 } 2950 #endif 2951 2952 static void age_active_anon(struct zone *zone, struct scan_control *sc) 2953 { 2954 struct mem_cgroup *memcg; 2955 2956 if (!total_swap_pages) 2957 return; 2958 2959 memcg = mem_cgroup_iter(NULL, NULL, NULL); 2960 do { 2961 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); 2962 2963 if (inactive_anon_is_low(lruvec)) 2964 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2965 sc, LRU_ACTIVE_ANON); 2966 2967 memcg = mem_cgroup_iter(NULL, memcg, NULL); 2968 } while (memcg); 2969 } 2970 2971 static bool zone_balanced(struct zone *zone, int order, 2972 unsigned long balance_gap, int classzone_idx) 2973 { 2974 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) + 2975 balance_gap, classzone_idx)) 2976 return false; 2977 2978 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone, 2979 order, 0, classzone_idx) == COMPACT_SKIPPED) 2980 return false; 2981 2982 return true; 2983 } 2984 2985 /* 2986 * pgdat_balanced() is used when checking if a node is balanced. 2987 * 2988 * For order-0, all zones must be balanced! 2989 * 2990 * For high-order allocations only zones that meet watermarks and are in a 2991 * zone allowed by the callers classzone_idx are added to balanced_pages. The 2992 * total of balanced pages must be at least 25% of the zones allowed by 2993 * classzone_idx for the node to be considered balanced. Forcing all zones to 2994 * be balanced for high orders can cause excessive reclaim when there are 2995 * imbalanced zones. 2996 * The choice of 25% is due to 2997 * o a 16M DMA zone that is balanced will not balance a zone on any 2998 * reasonable sized machine 2999 * o On all other machines, the top zone must be at least a reasonable 3000 * percentage of the middle zones. For example, on 32-bit x86, highmem 3001 * would need to be at least 256M for it to be balance a whole node. 3002 * Similarly, on x86-64 the Normal zone would need to be at least 1G 3003 * to balance a node on its own. These seemed like reasonable ratios. 3004 */ 3005 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3006 { 3007 unsigned long managed_pages = 0; 3008 unsigned long balanced_pages = 0; 3009 int i; 3010 3011 /* Check the watermark levels */ 3012 for (i = 0; i <= classzone_idx; i++) { 3013 struct zone *zone = pgdat->node_zones + i; 3014 3015 if (!populated_zone(zone)) 3016 continue; 3017 3018 managed_pages += zone->managed_pages; 3019 3020 /* 3021 * A special case here: 3022 * 3023 * balance_pgdat() skips over all_unreclaimable after 3024 * DEF_PRIORITY. Effectively, it considers them balanced so 3025 * they must be considered balanced here as well! 3026 */ 3027 if (!zone_reclaimable(zone)) { 3028 balanced_pages += zone->managed_pages; 3029 continue; 3030 } 3031 3032 if (zone_balanced(zone, order, 0, i)) 3033 balanced_pages += zone->managed_pages; 3034 else if (!order) 3035 return false; 3036 } 3037 3038 if (order) 3039 return balanced_pages >= (managed_pages >> 2); 3040 else 3041 return true; 3042 } 3043 3044 /* 3045 * Prepare kswapd for sleeping. This verifies that there are no processes 3046 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3047 * 3048 * Returns true if kswapd is ready to sleep 3049 */ 3050 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, 3051 int classzone_idx) 3052 { 3053 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ 3054 if (remaining) 3055 return false; 3056 3057 /* 3058 * The throttled processes are normally woken up in balance_pgdat() as 3059 * soon as pfmemalloc_watermark_ok() is true. But there is a potential 3060 * race between when kswapd checks the watermarks and a process gets 3061 * throttled. There is also a potential race if processes get 3062 * throttled, kswapd wakes, a large process exits thereby balancing the 3063 * zones, which causes kswapd to exit balance_pgdat() before reaching 3064 * the wake up checks. If kswapd is going to sleep, no process should 3065 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3066 * the wake up is premature, processes will wake kswapd and get 3067 * throttled again. The difference from wake ups in balance_pgdat() is 3068 * that here we are under prepare_to_wait(). 3069 */ 3070 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3071 wake_up_all(&pgdat->pfmemalloc_wait); 3072 3073 return pgdat_balanced(pgdat, order, classzone_idx); 3074 } 3075 3076 /* 3077 * kswapd shrinks the zone by the number of pages required to reach 3078 * the high watermark. 3079 * 3080 * Returns true if kswapd scanned at least the requested number of pages to 3081 * reclaim or if the lack of progress was due to pages under writeback. 3082 * This is used to determine if the scanning priority needs to be raised. 3083 */ 3084 static bool kswapd_shrink_zone(struct zone *zone, 3085 int classzone_idx, 3086 struct scan_control *sc, 3087 unsigned long *nr_attempted) 3088 { 3089 int testorder = sc->order; 3090 unsigned long balance_gap; 3091 bool lowmem_pressure; 3092 3093 /* Reclaim above the high watermark. */ 3094 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone)); 3095 3096 /* 3097 * Kswapd reclaims only single pages with compaction enabled. Trying 3098 * too hard to reclaim until contiguous free pages have become 3099 * available can hurt performance by evicting too much useful data 3100 * from memory. Do not reclaim more than needed for compaction. 3101 */ 3102 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 3103 compaction_suitable(zone, sc->order, 0, classzone_idx) 3104 != COMPACT_SKIPPED) 3105 testorder = 0; 3106 3107 /* 3108 * We put equal pressure on every zone, unless one zone has way too 3109 * many pages free already. The "too many pages" is defined as the 3110 * high wmark plus a "gap" where the gap is either the low 3111 * watermark or 1% of the zone, whichever is smaller. 3112 */ 3113 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP( 3114 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO)); 3115 3116 /* 3117 * If there is no low memory pressure or the zone is balanced then no 3118 * reclaim is necessary 3119 */ 3120 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone)); 3121 if (!lowmem_pressure && zone_balanced(zone, testorder, 3122 balance_gap, classzone_idx)) 3123 return true; 3124 3125 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx); 3126 3127 /* Account for the number of pages attempted to reclaim */ 3128 *nr_attempted += sc->nr_to_reclaim; 3129 3130 clear_bit(ZONE_WRITEBACK, &zone->flags); 3131 3132 /* 3133 * If a zone reaches its high watermark, consider it to be no longer 3134 * congested. It's possible there are dirty pages backed by congested 3135 * BDIs but as pressure is relieved, speculatively avoid congestion 3136 * waits. 3137 */ 3138 if (zone_reclaimable(zone) && 3139 zone_balanced(zone, testorder, 0, classzone_idx)) { 3140 clear_bit(ZONE_CONGESTED, &zone->flags); 3141 clear_bit(ZONE_DIRTY, &zone->flags); 3142 } 3143 3144 return sc->nr_scanned >= sc->nr_to_reclaim; 3145 } 3146 3147 /* 3148 * For kswapd, balance_pgdat() will work across all this node's zones until 3149 * they are all at high_wmark_pages(zone). 3150 * 3151 * Returns the final order kswapd was reclaiming at 3152 * 3153 * There is special handling here for zones which are full of pinned pages. 3154 * This can happen if the pages are all mlocked, or if they are all used by 3155 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. 3156 * What we do is to detect the case where all pages in the zone have been 3157 * scanned twice and there has been zero successful reclaim. Mark the zone as 3158 * dead and from now on, only perform a short scan. Basically we're polling 3159 * the zone for when the problem goes away. 3160 * 3161 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3162 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3163 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the 3164 * lower zones regardless of the number of free pages in the lower zones. This 3165 * interoperates with the page allocator fallback scheme to ensure that aging 3166 * of pages is balanced across the zones. 3167 */ 3168 static unsigned long balance_pgdat(pg_data_t *pgdat, int order, 3169 int *classzone_idx) 3170 { 3171 int i; 3172 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ 3173 unsigned long nr_soft_reclaimed; 3174 unsigned long nr_soft_scanned; 3175 struct scan_control sc = { 3176 .gfp_mask = GFP_KERNEL, 3177 .order = order, 3178 .priority = DEF_PRIORITY, 3179 .may_writepage = !laptop_mode, 3180 .may_unmap = 1, 3181 .may_swap = 1, 3182 }; 3183 count_vm_event(PAGEOUTRUN); 3184 3185 do { 3186 unsigned long nr_attempted = 0; 3187 bool raise_priority = true; 3188 bool pgdat_needs_compaction = (order > 0); 3189 3190 sc.nr_reclaimed = 0; 3191 3192 /* 3193 * Scan in the highmem->dma direction for the highest 3194 * zone which needs scanning 3195 */ 3196 for (i = pgdat->nr_zones - 1; i >= 0; i--) { 3197 struct zone *zone = pgdat->node_zones + i; 3198 3199 if (!populated_zone(zone)) 3200 continue; 3201 3202 if (sc.priority != DEF_PRIORITY && 3203 !zone_reclaimable(zone)) 3204 continue; 3205 3206 /* 3207 * Do some background aging of the anon list, to give 3208 * pages a chance to be referenced before reclaiming. 3209 */ 3210 age_active_anon(zone, &sc); 3211 3212 /* 3213 * If the number of buffer_heads in the machine 3214 * exceeds the maximum allowed level and this node 3215 * has a highmem zone, force kswapd to reclaim from 3216 * it to relieve lowmem pressure. 3217 */ 3218 if (buffer_heads_over_limit && is_highmem_idx(i)) { 3219 end_zone = i; 3220 break; 3221 } 3222 3223 if (!zone_balanced(zone, order, 0, 0)) { 3224 end_zone = i; 3225 break; 3226 } else { 3227 /* 3228 * If balanced, clear the dirty and congested 3229 * flags 3230 */ 3231 clear_bit(ZONE_CONGESTED, &zone->flags); 3232 clear_bit(ZONE_DIRTY, &zone->flags); 3233 } 3234 } 3235 3236 if (i < 0) 3237 goto out; 3238 3239 for (i = 0; i <= end_zone; i++) { 3240 struct zone *zone = pgdat->node_zones + i; 3241 3242 if (!populated_zone(zone)) 3243 continue; 3244 3245 /* 3246 * If any zone is currently balanced then kswapd will 3247 * not call compaction as it is expected that the 3248 * necessary pages are already available. 3249 */ 3250 if (pgdat_needs_compaction && 3251 zone_watermark_ok(zone, order, 3252 low_wmark_pages(zone), 3253 *classzone_idx, 0)) 3254 pgdat_needs_compaction = false; 3255 } 3256 3257 /* 3258 * If we're getting trouble reclaiming, start doing writepage 3259 * even in laptop mode. 3260 */ 3261 if (sc.priority < DEF_PRIORITY - 2) 3262 sc.may_writepage = 1; 3263 3264 /* 3265 * Now scan the zone in the dma->highmem direction, stopping 3266 * at the last zone which needs scanning. 3267 * 3268 * We do this because the page allocator works in the opposite 3269 * direction. This prevents the page allocator from allocating 3270 * pages behind kswapd's direction of progress, which would 3271 * cause too much scanning of the lower zones. 3272 */ 3273 for (i = 0; i <= end_zone; i++) { 3274 struct zone *zone = pgdat->node_zones + i; 3275 3276 if (!populated_zone(zone)) 3277 continue; 3278 3279 if (sc.priority != DEF_PRIORITY && 3280 !zone_reclaimable(zone)) 3281 continue; 3282 3283 sc.nr_scanned = 0; 3284 3285 nr_soft_scanned = 0; 3286 /* 3287 * Call soft limit reclaim before calling shrink_zone. 3288 */ 3289 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, 3290 order, sc.gfp_mask, 3291 &nr_soft_scanned); 3292 sc.nr_reclaimed += nr_soft_reclaimed; 3293 3294 /* 3295 * There should be no need to raise the scanning 3296 * priority if enough pages are already being scanned 3297 * that that high watermark would be met at 100% 3298 * efficiency. 3299 */ 3300 if (kswapd_shrink_zone(zone, end_zone, 3301 &sc, &nr_attempted)) 3302 raise_priority = false; 3303 } 3304 3305 /* 3306 * If the low watermark is met there is no need for processes 3307 * to be throttled on pfmemalloc_wait as they should not be 3308 * able to safely make forward progress. Wake them 3309 */ 3310 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3311 pfmemalloc_watermark_ok(pgdat)) 3312 wake_up_all(&pgdat->pfmemalloc_wait); 3313 3314 /* 3315 * Fragmentation may mean that the system cannot be rebalanced 3316 * for high-order allocations in all zones. If twice the 3317 * allocation size has been reclaimed and the zones are still 3318 * not balanced then recheck the watermarks at order-0 to 3319 * prevent kswapd reclaiming excessively. Assume that a 3320 * process requested a high-order can direct reclaim/compact. 3321 */ 3322 if (order && sc.nr_reclaimed >= 2UL << order) 3323 order = sc.order = 0; 3324 3325 /* Check if kswapd should be suspending */ 3326 if (try_to_freeze() || kthread_should_stop()) 3327 break; 3328 3329 /* 3330 * Compact if necessary and kswapd is reclaiming at least the 3331 * high watermark number of pages as requsted 3332 */ 3333 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted) 3334 compact_pgdat(pgdat, order); 3335 3336 /* 3337 * Raise priority if scanning rate is too low or there was no 3338 * progress in reclaiming pages 3339 */ 3340 if (raise_priority || !sc.nr_reclaimed) 3341 sc.priority--; 3342 } while (sc.priority >= 1 && 3343 !pgdat_balanced(pgdat, order, *classzone_idx)); 3344 3345 out: 3346 /* 3347 * Return the order we were reclaiming at so prepare_kswapd_sleep() 3348 * makes a decision on the order we were last reclaiming at. However, 3349 * if another caller entered the allocator slow path while kswapd 3350 * was awake, order will remain at the higher level 3351 */ 3352 *classzone_idx = end_zone; 3353 return order; 3354 } 3355 3356 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3357 { 3358 long remaining = 0; 3359 DEFINE_WAIT(wait); 3360 3361 if (freezing(current) || kthread_should_stop()) 3362 return; 3363 3364 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3365 3366 /* Try to sleep for a short interval */ 3367 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3368 remaining = schedule_timeout(HZ/10); 3369 finish_wait(&pgdat->kswapd_wait, &wait); 3370 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3371 } 3372 3373 /* 3374 * After a short sleep, check if it was a premature sleep. If not, then 3375 * go fully to sleep until explicitly woken up. 3376 */ 3377 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { 3378 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3379 3380 /* 3381 * vmstat counters are not perfectly accurate and the estimated 3382 * value for counters such as NR_FREE_PAGES can deviate from the 3383 * true value by nr_online_cpus * threshold. To avoid the zone 3384 * watermarks being breached while under pressure, we reduce the 3385 * per-cpu vmstat threshold while kswapd is awake and restore 3386 * them before going back to sleep. 3387 */ 3388 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3389 3390 /* 3391 * Compaction records what page blocks it recently failed to 3392 * isolate pages from and skips them in the future scanning. 3393 * When kswapd is going to sleep, it is reasonable to assume 3394 * that pages and compaction may succeed so reset the cache. 3395 */ 3396 reset_isolation_suitable(pgdat); 3397 3398 if (!kthread_should_stop()) 3399 schedule(); 3400 3401 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3402 } else { 3403 if (remaining) 3404 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3405 else 3406 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3407 } 3408 finish_wait(&pgdat->kswapd_wait, &wait); 3409 } 3410 3411 /* 3412 * The background pageout daemon, started as a kernel thread 3413 * from the init process. 3414 * 3415 * This basically trickles out pages so that we have _some_ 3416 * free memory available even if there is no other activity 3417 * that frees anything up. This is needed for things like routing 3418 * etc, where we otherwise might have all activity going on in 3419 * asynchronous contexts that cannot page things out. 3420 * 3421 * If there are applications that are active memory-allocators 3422 * (most normal use), this basically shouldn't matter. 3423 */ 3424 static int kswapd(void *p) 3425 { 3426 unsigned long order, new_order; 3427 unsigned balanced_order; 3428 int classzone_idx, new_classzone_idx; 3429 int balanced_classzone_idx; 3430 pg_data_t *pgdat = (pg_data_t*)p; 3431 struct task_struct *tsk = current; 3432 3433 struct reclaim_state reclaim_state = { 3434 .reclaimed_slab = 0, 3435 }; 3436 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3437 3438 lockdep_set_current_reclaim_state(GFP_KERNEL); 3439 3440 if (!cpumask_empty(cpumask)) 3441 set_cpus_allowed_ptr(tsk, cpumask); 3442 current->reclaim_state = &reclaim_state; 3443 3444 /* 3445 * Tell the memory management that we're a "memory allocator", 3446 * and that if we need more memory we should get access to it 3447 * regardless (see "__alloc_pages()"). "kswapd" should 3448 * never get caught in the normal page freeing logic. 3449 * 3450 * (Kswapd normally doesn't need memory anyway, but sometimes 3451 * you need a small amount of memory in order to be able to 3452 * page out something else, and this flag essentially protects 3453 * us from recursively trying to free more memory as we're 3454 * trying to free the first piece of memory in the first place). 3455 */ 3456 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3457 set_freezable(); 3458 3459 order = new_order = 0; 3460 balanced_order = 0; 3461 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; 3462 balanced_classzone_idx = classzone_idx; 3463 for ( ; ; ) { 3464 bool ret; 3465 3466 /* 3467 * If the last balance_pgdat was unsuccessful it's unlikely a 3468 * new request of a similar or harder type will succeed soon 3469 * so consider going to sleep on the basis we reclaimed at 3470 */ 3471 if (balanced_classzone_idx >= new_classzone_idx && 3472 balanced_order == new_order) { 3473 new_order = pgdat->kswapd_max_order; 3474 new_classzone_idx = pgdat->classzone_idx; 3475 pgdat->kswapd_max_order = 0; 3476 pgdat->classzone_idx = pgdat->nr_zones - 1; 3477 } 3478 3479 if (order < new_order || classzone_idx > new_classzone_idx) { 3480 /* 3481 * Don't sleep if someone wants a larger 'order' 3482 * allocation or has tigher zone constraints 3483 */ 3484 order = new_order; 3485 classzone_idx = new_classzone_idx; 3486 } else { 3487 kswapd_try_to_sleep(pgdat, balanced_order, 3488 balanced_classzone_idx); 3489 order = pgdat->kswapd_max_order; 3490 classzone_idx = pgdat->classzone_idx; 3491 new_order = order; 3492 new_classzone_idx = classzone_idx; 3493 pgdat->kswapd_max_order = 0; 3494 pgdat->classzone_idx = pgdat->nr_zones - 1; 3495 } 3496 3497 ret = try_to_freeze(); 3498 if (kthread_should_stop()) 3499 break; 3500 3501 /* 3502 * We can speed up thawing tasks if we don't call balance_pgdat 3503 * after returning from the refrigerator 3504 */ 3505 if (!ret) { 3506 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); 3507 balanced_classzone_idx = classzone_idx; 3508 balanced_order = balance_pgdat(pgdat, order, 3509 &balanced_classzone_idx); 3510 } 3511 } 3512 3513 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3514 current->reclaim_state = NULL; 3515 lockdep_clear_current_reclaim_state(); 3516 3517 return 0; 3518 } 3519 3520 /* 3521 * A zone is low on free memory, so wake its kswapd task to service it. 3522 */ 3523 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3524 { 3525 pg_data_t *pgdat; 3526 3527 if (!populated_zone(zone)) 3528 return; 3529 3530 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3531 return; 3532 pgdat = zone->zone_pgdat; 3533 if (pgdat->kswapd_max_order < order) { 3534 pgdat->kswapd_max_order = order; 3535 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); 3536 } 3537 if (!waitqueue_active(&pgdat->kswapd_wait)) 3538 return; 3539 if (zone_balanced(zone, order, 0, 0)) 3540 return; 3541 3542 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); 3543 wake_up_interruptible(&pgdat->kswapd_wait); 3544 } 3545 3546 #ifdef CONFIG_HIBERNATION 3547 /* 3548 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3549 * freed pages. 3550 * 3551 * Rather than trying to age LRUs the aim is to preserve the overall 3552 * LRU order by reclaiming preferentially 3553 * inactive > active > active referenced > active mapped 3554 */ 3555 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3556 { 3557 struct reclaim_state reclaim_state; 3558 struct scan_control sc = { 3559 .nr_to_reclaim = nr_to_reclaim, 3560 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3561 .priority = DEF_PRIORITY, 3562 .may_writepage = 1, 3563 .may_unmap = 1, 3564 .may_swap = 1, 3565 .hibernation_mode = 1, 3566 }; 3567 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3568 struct task_struct *p = current; 3569 unsigned long nr_reclaimed; 3570 3571 p->flags |= PF_MEMALLOC; 3572 lockdep_set_current_reclaim_state(sc.gfp_mask); 3573 reclaim_state.reclaimed_slab = 0; 3574 p->reclaim_state = &reclaim_state; 3575 3576 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3577 3578 p->reclaim_state = NULL; 3579 lockdep_clear_current_reclaim_state(); 3580 p->flags &= ~PF_MEMALLOC; 3581 3582 return nr_reclaimed; 3583 } 3584 #endif /* CONFIG_HIBERNATION */ 3585 3586 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3587 not required for correctness. So if the last cpu in a node goes 3588 away, we get changed to run anywhere: as the first one comes back, 3589 restore their cpu bindings. */ 3590 static int cpu_callback(struct notifier_block *nfb, unsigned long action, 3591 void *hcpu) 3592 { 3593 int nid; 3594 3595 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { 3596 for_each_node_state(nid, N_MEMORY) { 3597 pg_data_t *pgdat = NODE_DATA(nid); 3598 const struct cpumask *mask; 3599 3600 mask = cpumask_of_node(pgdat->node_id); 3601 3602 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3603 /* One of our CPUs online: restore mask */ 3604 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3605 } 3606 } 3607 return NOTIFY_OK; 3608 } 3609 3610 /* 3611 * This kswapd start function will be called by init and node-hot-add. 3612 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3613 */ 3614 int kswapd_run(int nid) 3615 { 3616 pg_data_t *pgdat = NODE_DATA(nid); 3617 int ret = 0; 3618 3619 if (pgdat->kswapd) 3620 return 0; 3621 3622 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3623 if (IS_ERR(pgdat->kswapd)) { 3624 /* failure at boot is fatal */ 3625 BUG_ON(system_state == SYSTEM_BOOTING); 3626 pr_err("Failed to start kswapd on node %d\n", nid); 3627 ret = PTR_ERR(pgdat->kswapd); 3628 pgdat->kswapd = NULL; 3629 } 3630 return ret; 3631 } 3632 3633 /* 3634 * Called by memory hotplug when all memory in a node is offlined. Caller must 3635 * hold mem_hotplug_begin/end(). 3636 */ 3637 void kswapd_stop(int nid) 3638 { 3639 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3640 3641 if (kswapd) { 3642 kthread_stop(kswapd); 3643 NODE_DATA(nid)->kswapd = NULL; 3644 } 3645 } 3646 3647 static int __init kswapd_init(void) 3648 { 3649 int nid; 3650 3651 swap_setup(); 3652 for_each_node_state(nid, N_MEMORY) 3653 kswapd_run(nid); 3654 hotcpu_notifier(cpu_callback, 0); 3655 return 0; 3656 } 3657 3658 module_init(kswapd_init) 3659 3660 #ifdef CONFIG_NUMA 3661 /* 3662 * Zone reclaim mode 3663 * 3664 * If non-zero call zone_reclaim when the number of free pages falls below 3665 * the watermarks. 3666 */ 3667 int zone_reclaim_mode __read_mostly; 3668 3669 #define RECLAIM_OFF 0 3670 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3671 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3672 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3673 3674 /* 3675 * Priority for ZONE_RECLAIM. This determines the fraction of pages 3676 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3677 * a zone. 3678 */ 3679 #define ZONE_RECLAIM_PRIORITY 4 3680 3681 /* 3682 * Percentage of pages in a zone that must be unmapped for zone_reclaim to 3683 * occur. 3684 */ 3685 int sysctl_min_unmapped_ratio = 1; 3686 3687 /* 3688 * If the number of slab pages in a zone grows beyond this percentage then 3689 * slab reclaim needs to occur. 3690 */ 3691 int sysctl_min_slab_ratio = 5; 3692 3693 static inline unsigned long zone_unmapped_file_pages(struct zone *zone) 3694 { 3695 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); 3696 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + 3697 zone_page_state(zone, NR_ACTIVE_FILE); 3698 3699 /* 3700 * It's possible for there to be more file mapped pages than 3701 * accounted for by the pages on the file LRU lists because 3702 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3703 */ 3704 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3705 } 3706 3707 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3708 static unsigned long zone_pagecache_reclaimable(struct zone *zone) 3709 { 3710 unsigned long nr_pagecache_reclaimable; 3711 unsigned long delta = 0; 3712 3713 /* 3714 * If RECLAIM_UNMAP is set, then all file pages are considered 3715 * potentially reclaimable. Otherwise, we have to worry about 3716 * pages like swapcache and zone_unmapped_file_pages() provides 3717 * a better estimate 3718 */ 3719 if (zone_reclaim_mode & RECLAIM_UNMAP) 3720 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); 3721 else 3722 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); 3723 3724 /* If we can't clean pages, remove dirty pages from consideration */ 3725 if (!(zone_reclaim_mode & RECLAIM_WRITE)) 3726 delta += zone_page_state(zone, NR_FILE_DIRTY); 3727 3728 /* Watch for any possible underflows due to delta */ 3729 if (unlikely(delta > nr_pagecache_reclaimable)) 3730 delta = nr_pagecache_reclaimable; 3731 3732 return nr_pagecache_reclaimable - delta; 3733 } 3734 3735 /* 3736 * Try to free up some pages from this zone through reclaim. 3737 */ 3738 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3739 { 3740 /* Minimum pages needed in order to stay on node */ 3741 const unsigned long nr_pages = 1 << order; 3742 struct task_struct *p = current; 3743 struct reclaim_state reclaim_state; 3744 struct scan_control sc = { 3745 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3746 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)), 3747 .order = order, 3748 .priority = ZONE_RECLAIM_PRIORITY, 3749 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), 3750 .may_unmap = !!(zone_reclaim_mode & RECLAIM_UNMAP), 3751 .may_swap = 1, 3752 }; 3753 3754 cond_resched(); 3755 /* 3756 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3757 * and we also need to be able to write out pages for RECLAIM_WRITE 3758 * and RECLAIM_UNMAP. 3759 */ 3760 p->flags |= PF_MEMALLOC | PF_SWAPWRITE; 3761 lockdep_set_current_reclaim_state(gfp_mask); 3762 reclaim_state.reclaimed_slab = 0; 3763 p->reclaim_state = &reclaim_state; 3764 3765 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { 3766 /* 3767 * Free memory by calling shrink zone with increasing 3768 * priorities until we have enough memory freed. 3769 */ 3770 do { 3771 shrink_zone(zone, &sc, true); 3772 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3773 } 3774 3775 p->reclaim_state = NULL; 3776 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); 3777 lockdep_clear_current_reclaim_state(); 3778 return sc.nr_reclaimed >= nr_pages; 3779 } 3780 3781 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) 3782 { 3783 int node_id; 3784 int ret; 3785 3786 /* 3787 * Zone reclaim reclaims unmapped file backed pages and 3788 * slab pages if we are over the defined limits. 3789 * 3790 * A small portion of unmapped file backed pages is needed for 3791 * file I/O otherwise pages read by file I/O will be immediately 3792 * thrown out if the zone is overallocated. So we do not reclaim 3793 * if less than a specified percentage of the zone is used by 3794 * unmapped file backed pages. 3795 */ 3796 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && 3797 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) 3798 return ZONE_RECLAIM_FULL; 3799 3800 if (!zone_reclaimable(zone)) 3801 return ZONE_RECLAIM_FULL; 3802 3803 /* 3804 * Do not scan if the allocation should not be delayed. 3805 */ 3806 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3807 return ZONE_RECLAIM_NOSCAN; 3808 3809 /* 3810 * Only run zone reclaim on the local zone or on zones that do not 3811 * have associated processors. This will favor the local processor 3812 * over remote processors and spread off node memory allocations 3813 * as wide as possible. 3814 */ 3815 node_id = zone_to_nid(zone); 3816 if (node_state(node_id, N_CPU) && node_id != numa_node_id()) 3817 return ZONE_RECLAIM_NOSCAN; 3818 3819 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags)) 3820 return ZONE_RECLAIM_NOSCAN; 3821 3822 ret = __zone_reclaim(zone, gfp_mask, order); 3823 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 3824 3825 if (!ret) 3826 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3827 3828 return ret; 3829 } 3830 #endif 3831 3832 /* 3833 * page_evictable - test whether a page is evictable 3834 * @page: the page to test 3835 * 3836 * Test whether page is evictable--i.e., should be placed on active/inactive 3837 * lists vs unevictable list. 3838 * 3839 * Reasons page might not be evictable: 3840 * (1) page's mapping marked unevictable 3841 * (2) page is part of an mlocked VMA 3842 * 3843 */ 3844 int page_evictable(struct page *page) 3845 { 3846 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3847 } 3848 3849 #ifdef CONFIG_SHMEM 3850 /** 3851 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3852 * @pages: array of pages to check 3853 * @nr_pages: number of pages to check 3854 * 3855 * Checks pages for evictability and moves them to the appropriate lru list. 3856 * 3857 * This function is only used for SysV IPC SHM_UNLOCK. 3858 */ 3859 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3860 { 3861 struct lruvec *lruvec; 3862 struct zone *zone = NULL; 3863 int pgscanned = 0; 3864 int pgrescued = 0; 3865 int i; 3866 3867 for (i = 0; i < nr_pages; i++) { 3868 struct page *page = pages[i]; 3869 struct zone *pagezone; 3870 3871 pgscanned++; 3872 pagezone = page_zone(page); 3873 if (pagezone != zone) { 3874 if (zone) 3875 spin_unlock_irq(&zone->lru_lock); 3876 zone = pagezone; 3877 spin_lock_irq(&zone->lru_lock); 3878 } 3879 lruvec = mem_cgroup_page_lruvec(page, zone); 3880 3881 if (!PageLRU(page) || !PageUnevictable(page)) 3882 continue; 3883 3884 if (page_evictable(page)) { 3885 enum lru_list lru = page_lru_base_type(page); 3886 3887 VM_BUG_ON_PAGE(PageActive(page), page); 3888 ClearPageUnevictable(page); 3889 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3890 add_page_to_lru_list(page, lruvec, lru); 3891 pgrescued++; 3892 } 3893 } 3894 3895 if (zone) { 3896 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3897 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3898 spin_unlock_irq(&zone->lru_lock); 3899 } 3900 } 3901 #endif /* CONFIG_SHMEM */ 3902