1 /* 2 * linux/mm/vmscan.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * 6 * Swap reorganised 29.12.95, Stephen Tweedie. 7 * kswapd added: 7.1.96 sct 8 * Removed kswapd_ctl limits, and swap out as many pages as needed 9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel. 10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com). 11 * Multiqueue VM started 5.8.00, Rik van Riel. 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/mm.h> 17 #include <linux/sched/mm.h> 18 #include <linux/module.h> 19 #include <linux/gfp.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/swap.h> 22 #include <linux/pagemap.h> 23 #include <linux/init.h> 24 #include <linux/highmem.h> 25 #include <linux/vmpressure.h> 26 #include <linux/vmstat.h> 27 #include <linux/file.h> 28 #include <linux/writeback.h> 29 #include <linux/blkdev.h> 30 #include <linux/buffer_head.h> /* for try_to_release_page(), 31 buffer_heads_over_limit */ 32 #include <linux/mm_inline.h> 33 #include <linux/backing-dev.h> 34 #include <linux/rmap.h> 35 #include <linux/topology.h> 36 #include <linux/cpu.h> 37 #include <linux/cpuset.h> 38 #include <linux/compaction.h> 39 #include <linux/notifier.h> 40 #include <linux/rwsem.h> 41 #include <linux/delay.h> 42 #include <linux/kthread.h> 43 #include <linux/freezer.h> 44 #include <linux/memcontrol.h> 45 #include <linux/delayacct.h> 46 #include <linux/sysctl.h> 47 #include <linux/oom.h> 48 #include <linux/prefetch.h> 49 #include <linux/printk.h> 50 #include <linux/dax.h> 51 52 #include <asm/tlbflush.h> 53 #include <asm/div64.h> 54 55 #include <linux/swapops.h> 56 #include <linux/balloon_compaction.h> 57 58 #include "internal.h" 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/vmscan.h> 62 63 struct scan_control { 64 /* How many pages shrink_list() should reclaim */ 65 unsigned long nr_to_reclaim; 66 67 /* This context's GFP mask */ 68 gfp_t gfp_mask; 69 70 /* Allocation order */ 71 int order; 72 73 /* 74 * Nodemask of nodes allowed by the caller. If NULL, all nodes 75 * are scanned. 76 */ 77 nodemask_t *nodemask; 78 79 /* 80 * The memory cgroup that hit its limit and as a result is the 81 * primary target of this reclaim invocation. 82 */ 83 struct mem_cgroup *target_mem_cgroup; 84 85 /* Scan (total_size >> priority) pages at once */ 86 int priority; 87 88 /* The highest zone to isolate pages for reclaim from */ 89 enum zone_type reclaim_idx; 90 91 /* Writepage batching in laptop mode; RECLAIM_WRITE */ 92 unsigned int may_writepage:1; 93 94 /* Can mapped pages be reclaimed? */ 95 unsigned int may_unmap:1; 96 97 /* Can pages be swapped as part of reclaim? */ 98 unsigned int may_swap:1; 99 100 /* 101 * Cgroups are not reclaimed below their configured memory.low, 102 * unless we threaten to OOM. If any cgroups are skipped due to 103 * memory.low and nothing was reclaimed, go back for memory.low. 104 */ 105 unsigned int memcg_low_reclaim:1; 106 unsigned int memcg_low_skipped:1; 107 108 unsigned int hibernation_mode:1; 109 110 /* One of the zones is ready for compaction */ 111 unsigned int compaction_ready:1; 112 113 /* Incremented by the number of inactive pages that were scanned */ 114 unsigned long nr_scanned; 115 116 /* Number of pages freed so far during a call to shrink_zones() */ 117 unsigned long nr_reclaimed; 118 }; 119 120 #ifdef ARCH_HAS_PREFETCH 121 #define prefetch_prev_lru_page(_page, _base, _field) \ 122 do { \ 123 if ((_page)->lru.prev != _base) { \ 124 struct page *prev; \ 125 \ 126 prev = lru_to_page(&(_page->lru)); \ 127 prefetch(&prev->_field); \ 128 } \ 129 } while (0) 130 #else 131 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) 132 #endif 133 134 #ifdef ARCH_HAS_PREFETCHW 135 #define prefetchw_prev_lru_page(_page, _base, _field) \ 136 do { \ 137 if ((_page)->lru.prev != _base) { \ 138 struct page *prev; \ 139 \ 140 prev = lru_to_page(&(_page->lru)); \ 141 prefetchw(&prev->_field); \ 142 } \ 143 } while (0) 144 #else 145 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) 146 #endif 147 148 /* 149 * From 0 .. 100. Higher means more swappy. 150 */ 151 int vm_swappiness = 60; 152 /* 153 * The total number of pages which are beyond the high watermark within all 154 * zones. 155 */ 156 unsigned long vm_total_pages; 157 158 static LIST_HEAD(shrinker_list); 159 static DECLARE_RWSEM(shrinker_rwsem); 160 161 #ifdef CONFIG_MEMCG 162 static bool global_reclaim(struct scan_control *sc) 163 { 164 return !sc->target_mem_cgroup; 165 } 166 167 /** 168 * sane_reclaim - is the usual dirty throttling mechanism operational? 169 * @sc: scan_control in question 170 * 171 * The normal page dirty throttling mechanism in balance_dirty_pages() is 172 * completely broken with the legacy memcg and direct stalling in 173 * shrink_page_list() is used for throttling instead, which lacks all the 174 * niceties such as fairness, adaptive pausing, bandwidth proportional 175 * allocation and configurability. 176 * 177 * This function tests whether the vmscan currently in progress can assume 178 * that the normal dirty throttling mechanism is operational. 179 */ 180 static bool sane_reclaim(struct scan_control *sc) 181 { 182 struct mem_cgroup *memcg = sc->target_mem_cgroup; 183 184 if (!memcg) 185 return true; 186 #ifdef CONFIG_CGROUP_WRITEBACK 187 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 188 return true; 189 #endif 190 return false; 191 } 192 #else 193 static bool global_reclaim(struct scan_control *sc) 194 { 195 return true; 196 } 197 198 static bool sane_reclaim(struct scan_control *sc) 199 { 200 return true; 201 } 202 #endif 203 204 /* 205 * This misses isolated pages which are not accounted for to save counters. 206 * As the data only determines if reclaim or compaction continues, it is 207 * not expected that isolated pages will be a dominating factor. 208 */ 209 unsigned long zone_reclaimable_pages(struct zone *zone) 210 { 211 unsigned long nr; 212 213 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + 214 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); 215 if (get_nr_swap_pages() > 0) 216 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + 217 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); 218 219 return nr; 220 } 221 222 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat) 223 { 224 unsigned long nr; 225 226 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) + 227 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) + 228 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE); 229 230 if (get_nr_swap_pages() > 0) 231 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) + 232 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) + 233 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON); 234 235 return nr; 236 } 237 238 /** 239 * lruvec_lru_size - Returns the number of pages on the given LRU list. 240 * @lruvec: lru vector 241 * @lru: lru to use 242 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) 243 */ 244 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) 245 { 246 unsigned long lru_size; 247 int zid; 248 249 if (!mem_cgroup_disabled()) 250 lru_size = mem_cgroup_get_lru_size(lruvec, lru); 251 else 252 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); 253 254 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { 255 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; 256 unsigned long size; 257 258 if (!managed_zone(zone)) 259 continue; 260 261 if (!mem_cgroup_disabled()) 262 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); 263 else 264 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], 265 NR_ZONE_LRU_BASE + lru); 266 lru_size -= min(size, lru_size); 267 } 268 269 return lru_size; 270 271 } 272 273 /* 274 * Add a shrinker callback to be called from the vm. 275 */ 276 int register_shrinker(struct shrinker *shrinker) 277 { 278 size_t size = sizeof(*shrinker->nr_deferred); 279 280 if (shrinker->flags & SHRINKER_NUMA_AWARE) 281 size *= nr_node_ids; 282 283 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); 284 if (!shrinker->nr_deferred) 285 return -ENOMEM; 286 287 down_write(&shrinker_rwsem); 288 list_add_tail(&shrinker->list, &shrinker_list); 289 up_write(&shrinker_rwsem); 290 return 0; 291 } 292 EXPORT_SYMBOL(register_shrinker); 293 294 /* 295 * Remove one 296 */ 297 void unregister_shrinker(struct shrinker *shrinker) 298 { 299 down_write(&shrinker_rwsem); 300 list_del(&shrinker->list); 301 up_write(&shrinker_rwsem); 302 kfree(shrinker->nr_deferred); 303 } 304 EXPORT_SYMBOL(unregister_shrinker); 305 306 #define SHRINK_BATCH 128 307 308 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, 309 struct shrinker *shrinker, 310 unsigned long nr_scanned, 311 unsigned long nr_eligible) 312 { 313 unsigned long freed = 0; 314 unsigned long long delta; 315 long total_scan; 316 long freeable; 317 long nr; 318 long new_nr; 319 int nid = shrinkctl->nid; 320 long batch_size = shrinker->batch ? shrinker->batch 321 : SHRINK_BATCH; 322 long scanned = 0, next_deferred; 323 324 freeable = shrinker->count_objects(shrinker, shrinkctl); 325 if (freeable == 0) 326 return 0; 327 328 /* 329 * copy the current shrinker scan count into a local variable 330 * and zero it so that other concurrent shrinker invocations 331 * don't also do this scanning work. 332 */ 333 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); 334 335 total_scan = nr; 336 delta = (4 * nr_scanned) / shrinker->seeks; 337 delta *= freeable; 338 do_div(delta, nr_eligible + 1); 339 total_scan += delta; 340 if (total_scan < 0) { 341 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n", 342 shrinker->scan_objects, total_scan); 343 total_scan = freeable; 344 next_deferred = nr; 345 } else 346 next_deferred = total_scan; 347 348 /* 349 * We need to avoid excessive windup on filesystem shrinkers 350 * due to large numbers of GFP_NOFS allocations causing the 351 * shrinkers to return -1 all the time. This results in a large 352 * nr being built up so when a shrink that can do some work 353 * comes along it empties the entire cache due to nr >>> 354 * freeable. This is bad for sustaining a working set in 355 * memory. 356 * 357 * Hence only allow the shrinker to scan the entire cache when 358 * a large delta change is calculated directly. 359 */ 360 if (delta < freeable / 4) 361 total_scan = min(total_scan, freeable / 2); 362 363 /* 364 * Avoid risking looping forever due to too large nr value: 365 * never try to free more than twice the estimate number of 366 * freeable entries. 367 */ 368 if (total_scan > freeable * 2) 369 total_scan = freeable * 2; 370 371 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, 372 nr_scanned, nr_eligible, 373 freeable, delta, total_scan); 374 375 /* 376 * Normally, we should not scan less than batch_size objects in one 377 * pass to avoid too frequent shrinker calls, but if the slab has less 378 * than batch_size objects in total and we are really tight on memory, 379 * we will try to reclaim all available objects, otherwise we can end 380 * up failing allocations although there are plenty of reclaimable 381 * objects spread over several slabs with usage less than the 382 * batch_size. 383 * 384 * We detect the "tight on memory" situations by looking at the total 385 * number of objects we want to scan (total_scan). If it is greater 386 * than the total number of objects on slab (freeable), we must be 387 * scanning at high prio and therefore should try to reclaim as much as 388 * possible. 389 */ 390 while (total_scan >= batch_size || 391 total_scan >= freeable) { 392 unsigned long ret; 393 unsigned long nr_to_scan = min(batch_size, total_scan); 394 395 shrinkctl->nr_to_scan = nr_to_scan; 396 ret = shrinker->scan_objects(shrinker, shrinkctl); 397 if (ret == SHRINK_STOP) 398 break; 399 freed += ret; 400 401 count_vm_events(SLABS_SCANNED, nr_to_scan); 402 total_scan -= nr_to_scan; 403 scanned += nr_to_scan; 404 405 cond_resched(); 406 } 407 408 if (next_deferred >= scanned) 409 next_deferred -= scanned; 410 else 411 next_deferred = 0; 412 /* 413 * move the unused scan count back into the shrinker in a 414 * manner that handles concurrent updates. If we exhausted the 415 * scan, there is no need to do an update. 416 */ 417 if (next_deferred > 0) 418 new_nr = atomic_long_add_return(next_deferred, 419 &shrinker->nr_deferred[nid]); 420 else 421 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); 422 423 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); 424 return freed; 425 } 426 427 /** 428 * shrink_slab - shrink slab caches 429 * @gfp_mask: allocation context 430 * @nid: node whose slab caches to target 431 * @memcg: memory cgroup whose slab caches to target 432 * @nr_scanned: pressure numerator 433 * @nr_eligible: pressure denominator 434 * 435 * Call the shrink functions to age shrinkable caches. 436 * 437 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, 438 * unaware shrinkers will receive a node id of 0 instead. 439 * 440 * @memcg specifies the memory cgroup to target. If it is not NULL, 441 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan 442 * objects from the memory cgroup specified. Otherwise, only unaware 443 * shrinkers are called. 444 * 445 * @nr_scanned and @nr_eligible form a ratio that indicate how much of 446 * the available objects should be scanned. Page reclaim for example 447 * passes the number of pages scanned and the number of pages on the 448 * LRU lists that it considered on @nid, plus a bias in @nr_scanned 449 * when it encountered mapped pages. The ratio is further biased by 450 * the ->seeks setting of the shrink function, which indicates the 451 * cost to recreate an object relative to that of an LRU page. 452 * 453 * Returns the number of reclaimed slab objects. 454 */ 455 static unsigned long shrink_slab(gfp_t gfp_mask, int nid, 456 struct mem_cgroup *memcg, 457 unsigned long nr_scanned, 458 unsigned long nr_eligible) 459 { 460 struct shrinker *shrinker; 461 unsigned long freed = 0; 462 463 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))) 464 return 0; 465 466 if (nr_scanned == 0) 467 nr_scanned = SWAP_CLUSTER_MAX; 468 469 if (!down_read_trylock(&shrinker_rwsem)) { 470 /* 471 * If we would return 0, our callers would understand that we 472 * have nothing else to shrink and give up trying. By returning 473 * 1 we keep it going and assume we'll be able to shrink next 474 * time. 475 */ 476 freed = 1; 477 goto out; 478 } 479 480 list_for_each_entry(shrinker, &shrinker_list, list) { 481 struct shrink_control sc = { 482 .gfp_mask = gfp_mask, 483 .nid = nid, 484 .memcg = memcg, 485 }; 486 487 /* 488 * If kernel memory accounting is disabled, we ignore 489 * SHRINKER_MEMCG_AWARE flag and call all shrinkers 490 * passing NULL for memcg. 491 */ 492 if (memcg_kmem_enabled() && 493 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE)) 494 continue; 495 496 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) 497 sc.nid = 0; 498 499 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible); 500 } 501 502 up_read(&shrinker_rwsem); 503 out: 504 cond_resched(); 505 return freed; 506 } 507 508 void drop_slab_node(int nid) 509 { 510 unsigned long freed; 511 512 do { 513 struct mem_cgroup *memcg = NULL; 514 515 freed = 0; 516 do { 517 freed += shrink_slab(GFP_KERNEL, nid, memcg, 518 1000, 1000); 519 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); 520 } while (freed > 10); 521 } 522 523 void drop_slab(void) 524 { 525 int nid; 526 527 for_each_online_node(nid) 528 drop_slab_node(nid); 529 } 530 531 static inline int is_page_cache_freeable(struct page *page) 532 { 533 /* 534 * A freeable page cache page is referenced only by the caller 535 * that isolated the page, the page cache radix tree and 536 * optional buffer heads at page->private. 537 */ 538 return page_count(page) - page_has_private(page) == 2; 539 } 540 541 static int may_write_to_inode(struct inode *inode, struct scan_control *sc) 542 { 543 if (current->flags & PF_SWAPWRITE) 544 return 1; 545 if (!inode_write_congested(inode)) 546 return 1; 547 if (inode_to_bdi(inode) == current->backing_dev_info) 548 return 1; 549 return 0; 550 } 551 552 /* 553 * We detected a synchronous write error writing a page out. Probably 554 * -ENOSPC. We need to propagate that into the address_space for a subsequent 555 * fsync(), msync() or close(). 556 * 557 * The tricky part is that after writepage we cannot touch the mapping: nothing 558 * prevents it from being freed up. But we have a ref on the page and once 559 * that page is locked, the mapping is pinned. 560 * 561 * We're allowed to run sleeping lock_page() here because we know the caller has 562 * __GFP_FS. 563 */ 564 static void handle_write_error(struct address_space *mapping, 565 struct page *page, int error) 566 { 567 lock_page(page); 568 if (page_mapping(page) == mapping) 569 mapping_set_error(mapping, error); 570 unlock_page(page); 571 } 572 573 /* possible outcome of pageout() */ 574 typedef enum { 575 /* failed to write page out, page is locked */ 576 PAGE_KEEP, 577 /* move page to the active list, page is locked */ 578 PAGE_ACTIVATE, 579 /* page has been sent to the disk successfully, page is unlocked */ 580 PAGE_SUCCESS, 581 /* page is clean and locked */ 582 PAGE_CLEAN, 583 } pageout_t; 584 585 /* 586 * pageout is called by shrink_page_list() for each dirty page. 587 * Calls ->writepage(). 588 */ 589 static pageout_t pageout(struct page *page, struct address_space *mapping, 590 struct scan_control *sc) 591 { 592 /* 593 * If the page is dirty, only perform writeback if that write 594 * will be non-blocking. To prevent this allocation from being 595 * stalled by pagecache activity. But note that there may be 596 * stalls if we need to run get_block(). We could test 597 * PagePrivate for that. 598 * 599 * If this process is currently in __generic_file_write_iter() against 600 * this page's queue, we can perform writeback even if that 601 * will block. 602 * 603 * If the page is swapcache, write it back even if that would 604 * block, for some throttling. This happens by accident, because 605 * swap_backing_dev_info is bust: it doesn't reflect the 606 * congestion state of the swapdevs. Easy to fix, if needed. 607 */ 608 if (!is_page_cache_freeable(page)) 609 return PAGE_KEEP; 610 if (!mapping) { 611 /* 612 * Some data journaling orphaned pages can have 613 * page->mapping == NULL while being dirty with clean buffers. 614 */ 615 if (page_has_private(page)) { 616 if (try_to_free_buffers(page)) { 617 ClearPageDirty(page); 618 pr_info("%s: orphaned page\n", __func__); 619 return PAGE_CLEAN; 620 } 621 } 622 return PAGE_KEEP; 623 } 624 if (mapping->a_ops->writepage == NULL) 625 return PAGE_ACTIVATE; 626 if (!may_write_to_inode(mapping->host, sc)) 627 return PAGE_KEEP; 628 629 if (clear_page_dirty_for_io(page)) { 630 int res; 631 struct writeback_control wbc = { 632 .sync_mode = WB_SYNC_NONE, 633 .nr_to_write = SWAP_CLUSTER_MAX, 634 .range_start = 0, 635 .range_end = LLONG_MAX, 636 .for_reclaim = 1, 637 }; 638 639 SetPageReclaim(page); 640 res = mapping->a_ops->writepage(page, &wbc); 641 if (res < 0) 642 handle_write_error(mapping, page, res); 643 if (res == AOP_WRITEPAGE_ACTIVATE) { 644 ClearPageReclaim(page); 645 return PAGE_ACTIVATE; 646 } 647 648 if (!PageWriteback(page)) { 649 /* synchronous write or broken a_ops? */ 650 ClearPageReclaim(page); 651 } 652 trace_mm_vmscan_writepage(page); 653 inc_node_page_state(page, NR_VMSCAN_WRITE); 654 return PAGE_SUCCESS; 655 } 656 657 return PAGE_CLEAN; 658 } 659 660 /* 661 * Same as remove_mapping, but if the page is removed from the mapping, it 662 * gets returned with a refcount of 0. 663 */ 664 static int __remove_mapping(struct address_space *mapping, struct page *page, 665 bool reclaimed) 666 { 667 unsigned long flags; 668 669 BUG_ON(!PageLocked(page)); 670 BUG_ON(mapping != page_mapping(page)); 671 672 spin_lock_irqsave(&mapping->tree_lock, flags); 673 /* 674 * The non racy check for a busy page. 675 * 676 * Must be careful with the order of the tests. When someone has 677 * a ref to the page, it may be possible that they dirty it then 678 * drop the reference. So if PageDirty is tested before page_count 679 * here, then the following race may occur: 680 * 681 * get_user_pages(&page); 682 * [user mapping goes away] 683 * write_to(page); 684 * !PageDirty(page) [good] 685 * SetPageDirty(page); 686 * put_page(page); 687 * !page_count(page) [good, discard it] 688 * 689 * [oops, our write_to data is lost] 690 * 691 * Reversing the order of the tests ensures such a situation cannot 692 * escape unnoticed. The smp_rmb is needed to ensure the page->flags 693 * load is not satisfied before that of page->_refcount. 694 * 695 * Note that if SetPageDirty is always performed via set_page_dirty, 696 * and thus under tree_lock, then this ordering is not required. 697 */ 698 if (!page_ref_freeze(page, 2)) 699 goto cannot_free; 700 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ 701 if (unlikely(PageDirty(page))) { 702 page_ref_unfreeze(page, 2); 703 goto cannot_free; 704 } 705 706 if (PageSwapCache(page)) { 707 swp_entry_t swap = { .val = page_private(page) }; 708 mem_cgroup_swapout(page, swap); 709 __delete_from_swap_cache(page); 710 spin_unlock_irqrestore(&mapping->tree_lock, flags); 711 swapcache_free(swap); 712 } else { 713 void (*freepage)(struct page *); 714 void *shadow = NULL; 715 716 freepage = mapping->a_ops->freepage; 717 /* 718 * Remember a shadow entry for reclaimed file cache in 719 * order to detect refaults, thus thrashing, later on. 720 * 721 * But don't store shadows in an address space that is 722 * already exiting. This is not just an optizimation, 723 * inode reclaim needs to empty out the radix tree or 724 * the nodes are lost. Don't plant shadows behind its 725 * back. 726 * 727 * We also don't store shadows for DAX mappings because the 728 * only page cache pages found in these are zero pages 729 * covering holes, and because we don't want to mix DAX 730 * exceptional entries and shadow exceptional entries in the 731 * same page_tree. 732 */ 733 if (reclaimed && page_is_file_cache(page) && 734 !mapping_exiting(mapping) && !dax_mapping(mapping)) 735 shadow = workingset_eviction(mapping, page); 736 __delete_from_page_cache(page, shadow); 737 spin_unlock_irqrestore(&mapping->tree_lock, flags); 738 739 if (freepage != NULL) 740 freepage(page); 741 } 742 743 return 1; 744 745 cannot_free: 746 spin_unlock_irqrestore(&mapping->tree_lock, flags); 747 return 0; 748 } 749 750 /* 751 * Attempt to detach a locked page from its ->mapping. If it is dirty or if 752 * someone else has a ref on the page, abort and return 0. If it was 753 * successfully detached, return 1. Assumes the caller has a single ref on 754 * this page. 755 */ 756 int remove_mapping(struct address_space *mapping, struct page *page) 757 { 758 if (__remove_mapping(mapping, page, false)) { 759 /* 760 * Unfreezing the refcount with 1 rather than 2 effectively 761 * drops the pagecache ref for us without requiring another 762 * atomic operation. 763 */ 764 page_ref_unfreeze(page, 1); 765 return 1; 766 } 767 return 0; 768 } 769 770 /** 771 * putback_lru_page - put previously isolated page onto appropriate LRU list 772 * @page: page to be put back to appropriate lru list 773 * 774 * Add previously isolated @page to appropriate LRU list. 775 * Page may still be unevictable for other reasons. 776 * 777 * lru_lock must not be held, interrupts must be enabled. 778 */ 779 void putback_lru_page(struct page *page) 780 { 781 bool is_unevictable; 782 int was_unevictable = PageUnevictable(page); 783 784 VM_BUG_ON_PAGE(PageLRU(page), page); 785 786 redo: 787 ClearPageUnevictable(page); 788 789 if (page_evictable(page)) { 790 /* 791 * For evictable pages, we can use the cache. 792 * In event of a race, worst case is we end up with an 793 * unevictable page on [in]active list. 794 * We know how to handle that. 795 */ 796 is_unevictable = false; 797 lru_cache_add(page); 798 } else { 799 /* 800 * Put unevictable pages directly on zone's unevictable 801 * list. 802 */ 803 is_unevictable = true; 804 add_page_to_unevictable_list(page); 805 /* 806 * When racing with an mlock or AS_UNEVICTABLE clearing 807 * (page is unlocked) make sure that if the other thread 808 * does not observe our setting of PG_lru and fails 809 * isolation/check_move_unevictable_pages, 810 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move 811 * the page back to the evictable list. 812 * 813 * The other side is TestClearPageMlocked() or shmem_lock(). 814 */ 815 smp_mb(); 816 } 817 818 /* 819 * page's status can change while we move it among lru. If an evictable 820 * page is on unevictable list, it never be freed. To avoid that, 821 * check after we added it to the list, again. 822 */ 823 if (is_unevictable && page_evictable(page)) { 824 if (!isolate_lru_page(page)) { 825 put_page(page); 826 goto redo; 827 } 828 /* This means someone else dropped this page from LRU 829 * So, it will be freed or putback to LRU again. There is 830 * nothing to do here. 831 */ 832 } 833 834 if (was_unevictable && !is_unevictable) 835 count_vm_event(UNEVICTABLE_PGRESCUED); 836 else if (!was_unevictable && is_unevictable) 837 count_vm_event(UNEVICTABLE_PGCULLED); 838 839 put_page(page); /* drop ref from isolate */ 840 } 841 842 enum page_references { 843 PAGEREF_RECLAIM, 844 PAGEREF_RECLAIM_CLEAN, 845 PAGEREF_KEEP, 846 PAGEREF_ACTIVATE, 847 }; 848 849 static enum page_references page_check_references(struct page *page, 850 struct scan_control *sc) 851 { 852 int referenced_ptes, referenced_page; 853 unsigned long vm_flags; 854 855 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, 856 &vm_flags); 857 referenced_page = TestClearPageReferenced(page); 858 859 /* 860 * Mlock lost the isolation race with us. Let try_to_unmap() 861 * move the page to the unevictable list. 862 */ 863 if (vm_flags & VM_LOCKED) 864 return PAGEREF_RECLAIM; 865 866 if (referenced_ptes) { 867 if (PageSwapBacked(page)) 868 return PAGEREF_ACTIVATE; 869 /* 870 * All mapped pages start out with page table 871 * references from the instantiating fault, so we need 872 * to look twice if a mapped file page is used more 873 * than once. 874 * 875 * Mark it and spare it for another trip around the 876 * inactive list. Another page table reference will 877 * lead to its activation. 878 * 879 * Note: the mark is set for activated pages as well 880 * so that recently deactivated but used pages are 881 * quickly recovered. 882 */ 883 SetPageReferenced(page); 884 885 if (referenced_page || referenced_ptes > 1) 886 return PAGEREF_ACTIVATE; 887 888 /* 889 * Activate file-backed executable pages after first usage. 890 */ 891 if (vm_flags & VM_EXEC) 892 return PAGEREF_ACTIVATE; 893 894 return PAGEREF_KEEP; 895 } 896 897 /* Reclaim if clean, defer dirty pages to writeback */ 898 if (referenced_page && !PageSwapBacked(page)) 899 return PAGEREF_RECLAIM_CLEAN; 900 901 return PAGEREF_RECLAIM; 902 } 903 904 /* Check if a page is dirty or under writeback */ 905 static void page_check_dirty_writeback(struct page *page, 906 bool *dirty, bool *writeback) 907 { 908 struct address_space *mapping; 909 910 /* 911 * Anonymous pages are not handled by flushers and must be written 912 * from reclaim context. Do not stall reclaim based on them 913 */ 914 if (!page_is_file_cache(page) || 915 (PageAnon(page) && !PageSwapBacked(page))) { 916 *dirty = false; 917 *writeback = false; 918 return; 919 } 920 921 /* By default assume that the page flags are accurate */ 922 *dirty = PageDirty(page); 923 *writeback = PageWriteback(page); 924 925 /* Verify dirty/writeback state if the filesystem supports it */ 926 if (!page_has_private(page)) 927 return; 928 929 mapping = page_mapping(page); 930 if (mapping && mapping->a_ops->is_dirty_writeback) 931 mapping->a_ops->is_dirty_writeback(page, dirty, writeback); 932 } 933 934 struct reclaim_stat { 935 unsigned nr_dirty; 936 unsigned nr_unqueued_dirty; 937 unsigned nr_congested; 938 unsigned nr_writeback; 939 unsigned nr_immediate; 940 unsigned nr_activate; 941 unsigned nr_ref_keep; 942 unsigned nr_unmap_fail; 943 }; 944 945 /* 946 * shrink_page_list() returns the number of reclaimed pages 947 */ 948 static unsigned long shrink_page_list(struct list_head *page_list, 949 struct pglist_data *pgdat, 950 struct scan_control *sc, 951 enum ttu_flags ttu_flags, 952 struct reclaim_stat *stat, 953 bool force_reclaim) 954 { 955 LIST_HEAD(ret_pages); 956 LIST_HEAD(free_pages); 957 int pgactivate = 0; 958 unsigned nr_unqueued_dirty = 0; 959 unsigned nr_dirty = 0; 960 unsigned nr_congested = 0; 961 unsigned nr_reclaimed = 0; 962 unsigned nr_writeback = 0; 963 unsigned nr_immediate = 0; 964 unsigned nr_ref_keep = 0; 965 unsigned nr_unmap_fail = 0; 966 967 cond_resched(); 968 969 while (!list_empty(page_list)) { 970 struct address_space *mapping; 971 struct page *page; 972 int may_enter_fs; 973 enum page_references references = PAGEREF_RECLAIM_CLEAN; 974 bool dirty, writeback; 975 976 cond_resched(); 977 978 page = lru_to_page(page_list); 979 list_del(&page->lru); 980 981 if (!trylock_page(page)) 982 goto keep; 983 984 VM_BUG_ON_PAGE(PageActive(page), page); 985 986 sc->nr_scanned++; 987 988 if (unlikely(!page_evictable(page))) 989 goto activate_locked; 990 991 if (!sc->may_unmap && page_mapped(page)) 992 goto keep_locked; 993 994 /* Double the slab pressure for mapped and swapcache pages */ 995 if ((page_mapped(page) || PageSwapCache(page)) && 996 !(PageAnon(page) && !PageSwapBacked(page))) 997 sc->nr_scanned++; 998 999 may_enter_fs = (sc->gfp_mask & __GFP_FS) || 1000 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); 1001 1002 /* 1003 * The number of dirty pages determines if a zone is marked 1004 * reclaim_congested which affects wait_iff_congested. kswapd 1005 * will stall and start writing pages if the tail of the LRU 1006 * is all dirty unqueued pages. 1007 */ 1008 page_check_dirty_writeback(page, &dirty, &writeback); 1009 if (dirty || writeback) 1010 nr_dirty++; 1011 1012 if (dirty && !writeback) 1013 nr_unqueued_dirty++; 1014 1015 /* 1016 * Treat this page as congested if the underlying BDI is or if 1017 * pages are cycling through the LRU so quickly that the 1018 * pages marked for immediate reclaim are making it to the 1019 * end of the LRU a second time. 1020 */ 1021 mapping = page_mapping(page); 1022 if (((dirty || writeback) && mapping && 1023 inode_write_congested(mapping->host)) || 1024 (writeback && PageReclaim(page))) 1025 nr_congested++; 1026 1027 /* 1028 * If a page at the tail of the LRU is under writeback, there 1029 * are three cases to consider. 1030 * 1031 * 1) If reclaim is encountering an excessive number of pages 1032 * under writeback and this page is both under writeback and 1033 * PageReclaim then it indicates that pages are being queued 1034 * for IO but are being recycled through the LRU before the 1035 * IO can complete. Waiting on the page itself risks an 1036 * indefinite stall if it is impossible to writeback the 1037 * page due to IO error or disconnected storage so instead 1038 * note that the LRU is being scanned too quickly and the 1039 * caller can stall after page list has been processed. 1040 * 1041 * 2) Global or new memcg reclaim encounters a page that is 1042 * not marked for immediate reclaim, or the caller does not 1043 * have __GFP_FS (or __GFP_IO if it's simply going to swap, 1044 * not to fs). In this case mark the page for immediate 1045 * reclaim and continue scanning. 1046 * 1047 * Require may_enter_fs because we would wait on fs, which 1048 * may not have submitted IO yet. And the loop driver might 1049 * enter reclaim, and deadlock if it waits on a page for 1050 * which it is needed to do the write (loop masks off 1051 * __GFP_IO|__GFP_FS for this reason); but more thought 1052 * would probably show more reasons. 1053 * 1054 * 3) Legacy memcg encounters a page that is already marked 1055 * PageReclaim. memcg does not have any dirty pages 1056 * throttling so we could easily OOM just because too many 1057 * pages are in writeback and there is nothing else to 1058 * reclaim. Wait for the writeback to complete. 1059 * 1060 * In cases 1) and 2) we activate the pages to get them out of 1061 * the way while we continue scanning for clean pages on the 1062 * inactive list and refilling from the active list. The 1063 * observation here is that waiting for disk writes is more 1064 * expensive than potentially causing reloads down the line. 1065 * Since they're marked for immediate reclaim, they won't put 1066 * memory pressure on the cache working set any longer than it 1067 * takes to write them to disk. 1068 */ 1069 if (PageWriteback(page)) { 1070 /* Case 1 above */ 1071 if (current_is_kswapd() && 1072 PageReclaim(page) && 1073 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { 1074 nr_immediate++; 1075 goto activate_locked; 1076 1077 /* Case 2 above */ 1078 } else if (sane_reclaim(sc) || 1079 !PageReclaim(page) || !may_enter_fs) { 1080 /* 1081 * This is slightly racy - end_page_writeback() 1082 * might have just cleared PageReclaim, then 1083 * setting PageReclaim here end up interpreted 1084 * as PageReadahead - but that does not matter 1085 * enough to care. What we do want is for this 1086 * page to have PageReclaim set next time memcg 1087 * reclaim reaches the tests above, so it will 1088 * then wait_on_page_writeback() to avoid OOM; 1089 * and it's also appropriate in global reclaim. 1090 */ 1091 SetPageReclaim(page); 1092 nr_writeback++; 1093 goto activate_locked; 1094 1095 /* Case 3 above */ 1096 } else { 1097 unlock_page(page); 1098 wait_on_page_writeback(page); 1099 /* then go back and try same page again */ 1100 list_add_tail(&page->lru, page_list); 1101 continue; 1102 } 1103 } 1104 1105 if (!force_reclaim) 1106 references = page_check_references(page, sc); 1107 1108 switch (references) { 1109 case PAGEREF_ACTIVATE: 1110 goto activate_locked; 1111 case PAGEREF_KEEP: 1112 nr_ref_keep++; 1113 goto keep_locked; 1114 case PAGEREF_RECLAIM: 1115 case PAGEREF_RECLAIM_CLEAN: 1116 ; /* try to reclaim the page below */ 1117 } 1118 1119 /* 1120 * Anonymous process memory has backing store? 1121 * Try to allocate it some swap space here. 1122 * Lazyfree page could be freed directly 1123 */ 1124 if (PageAnon(page) && PageSwapBacked(page) && 1125 !PageSwapCache(page)) { 1126 if (!(sc->gfp_mask & __GFP_IO)) 1127 goto keep_locked; 1128 if (!add_to_swap(page, page_list)) 1129 goto activate_locked; 1130 may_enter_fs = 1; 1131 1132 /* Adding to swap updated mapping */ 1133 mapping = page_mapping(page); 1134 } else if (unlikely(PageTransHuge(page))) { 1135 /* Split file THP */ 1136 if (split_huge_page_to_list(page, page_list)) 1137 goto keep_locked; 1138 } 1139 1140 VM_BUG_ON_PAGE(PageTransHuge(page), page); 1141 1142 /* 1143 * The page is mapped into the page tables of one or more 1144 * processes. Try to unmap it here. 1145 */ 1146 if (page_mapped(page)) { 1147 if (!try_to_unmap(page, ttu_flags | TTU_BATCH_FLUSH)) { 1148 nr_unmap_fail++; 1149 goto activate_locked; 1150 } 1151 } 1152 1153 if (PageDirty(page)) { 1154 /* 1155 * Only kswapd can writeback filesystem pages 1156 * to avoid risk of stack overflow. But avoid 1157 * injecting inefficient single-page IO into 1158 * flusher writeback as much as possible: only 1159 * write pages when we've encountered many 1160 * dirty pages, and when we've already scanned 1161 * the rest of the LRU for clean pages and see 1162 * the same dirty pages again (PageReclaim). 1163 */ 1164 if (page_is_file_cache(page) && 1165 (!current_is_kswapd() || !PageReclaim(page) || 1166 !test_bit(PGDAT_DIRTY, &pgdat->flags))) { 1167 /* 1168 * Immediately reclaim when written back. 1169 * Similar in principal to deactivate_page() 1170 * except we already have the page isolated 1171 * and know it's dirty 1172 */ 1173 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); 1174 SetPageReclaim(page); 1175 1176 goto activate_locked; 1177 } 1178 1179 if (references == PAGEREF_RECLAIM_CLEAN) 1180 goto keep_locked; 1181 if (!may_enter_fs) 1182 goto keep_locked; 1183 if (!sc->may_writepage) 1184 goto keep_locked; 1185 1186 /* 1187 * Page is dirty. Flush the TLB if a writable entry 1188 * potentially exists to avoid CPU writes after IO 1189 * starts and then write it out here. 1190 */ 1191 try_to_unmap_flush_dirty(); 1192 switch (pageout(page, mapping, sc)) { 1193 case PAGE_KEEP: 1194 goto keep_locked; 1195 case PAGE_ACTIVATE: 1196 goto activate_locked; 1197 case PAGE_SUCCESS: 1198 if (PageWriteback(page)) 1199 goto keep; 1200 if (PageDirty(page)) 1201 goto keep; 1202 1203 /* 1204 * A synchronous write - probably a ramdisk. Go 1205 * ahead and try to reclaim the page. 1206 */ 1207 if (!trylock_page(page)) 1208 goto keep; 1209 if (PageDirty(page) || PageWriteback(page)) 1210 goto keep_locked; 1211 mapping = page_mapping(page); 1212 case PAGE_CLEAN: 1213 ; /* try to free the page below */ 1214 } 1215 } 1216 1217 /* 1218 * If the page has buffers, try to free the buffer mappings 1219 * associated with this page. If we succeed we try to free 1220 * the page as well. 1221 * 1222 * We do this even if the page is PageDirty(). 1223 * try_to_release_page() does not perform I/O, but it is 1224 * possible for a page to have PageDirty set, but it is actually 1225 * clean (all its buffers are clean). This happens if the 1226 * buffers were written out directly, with submit_bh(). ext3 1227 * will do this, as well as the blockdev mapping. 1228 * try_to_release_page() will discover that cleanness and will 1229 * drop the buffers and mark the page clean - it can be freed. 1230 * 1231 * Rarely, pages can have buffers and no ->mapping. These are 1232 * the pages which were not successfully invalidated in 1233 * truncate_complete_page(). We try to drop those buffers here 1234 * and if that worked, and the page is no longer mapped into 1235 * process address space (page_count == 1) it can be freed. 1236 * Otherwise, leave the page on the LRU so it is swappable. 1237 */ 1238 if (page_has_private(page)) { 1239 if (!try_to_release_page(page, sc->gfp_mask)) 1240 goto activate_locked; 1241 if (!mapping && page_count(page) == 1) { 1242 unlock_page(page); 1243 if (put_page_testzero(page)) 1244 goto free_it; 1245 else { 1246 /* 1247 * rare race with speculative reference. 1248 * the speculative reference will free 1249 * this page shortly, so we may 1250 * increment nr_reclaimed here (and 1251 * leave it off the LRU). 1252 */ 1253 nr_reclaimed++; 1254 continue; 1255 } 1256 } 1257 } 1258 1259 if (PageAnon(page) && !PageSwapBacked(page)) { 1260 /* follow __remove_mapping for reference */ 1261 if (!page_ref_freeze(page, 1)) 1262 goto keep_locked; 1263 if (PageDirty(page)) { 1264 page_ref_unfreeze(page, 1); 1265 goto keep_locked; 1266 } 1267 1268 count_vm_event(PGLAZYFREED); 1269 } else if (!mapping || !__remove_mapping(mapping, page, true)) 1270 goto keep_locked; 1271 /* 1272 * At this point, we have no other references and there is 1273 * no way to pick any more up (removed from LRU, removed 1274 * from pagecache). Can use non-atomic bitops now (and 1275 * we obviously don't have to worry about waking up a process 1276 * waiting on the page lock, because there are no references. 1277 */ 1278 __ClearPageLocked(page); 1279 free_it: 1280 nr_reclaimed++; 1281 1282 /* 1283 * Is there need to periodically free_page_list? It would 1284 * appear not as the counts should be low 1285 */ 1286 list_add(&page->lru, &free_pages); 1287 continue; 1288 1289 activate_locked: 1290 /* Not a candidate for swapping, so reclaim swap space. */ 1291 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || 1292 PageMlocked(page))) 1293 try_to_free_swap(page); 1294 VM_BUG_ON_PAGE(PageActive(page), page); 1295 if (!PageMlocked(page)) { 1296 SetPageActive(page); 1297 pgactivate++; 1298 } 1299 keep_locked: 1300 unlock_page(page); 1301 keep: 1302 list_add(&page->lru, &ret_pages); 1303 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); 1304 } 1305 1306 mem_cgroup_uncharge_list(&free_pages); 1307 try_to_unmap_flush(); 1308 free_hot_cold_page_list(&free_pages, true); 1309 1310 list_splice(&ret_pages, page_list); 1311 count_vm_events(PGACTIVATE, pgactivate); 1312 1313 if (stat) { 1314 stat->nr_dirty = nr_dirty; 1315 stat->nr_congested = nr_congested; 1316 stat->nr_unqueued_dirty = nr_unqueued_dirty; 1317 stat->nr_writeback = nr_writeback; 1318 stat->nr_immediate = nr_immediate; 1319 stat->nr_activate = pgactivate; 1320 stat->nr_ref_keep = nr_ref_keep; 1321 stat->nr_unmap_fail = nr_unmap_fail; 1322 } 1323 return nr_reclaimed; 1324 } 1325 1326 unsigned long reclaim_clean_pages_from_list(struct zone *zone, 1327 struct list_head *page_list) 1328 { 1329 struct scan_control sc = { 1330 .gfp_mask = GFP_KERNEL, 1331 .priority = DEF_PRIORITY, 1332 .may_unmap = 1, 1333 }; 1334 unsigned long ret; 1335 struct page *page, *next; 1336 LIST_HEAD(clean_pages); 1337 1338 list_for_each_entry_safe(page, next, page_list, lru) { 1339 if (page_is_file_cache(page) && !PageDirty(page) && 1340 !__PageMovable(page)) { 1341 ClearPageActive(page); 1342 list_move(&page->lru, &clean_pages); 1343 } 1344 } 1345 1346 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, 1347 TTU_IGNORE_ACCESS, NULL, true); 1348 list_splice(&clean_pages, page_list); 1349 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); 1350 return ret; 1351 } 1352 1353 /* 1354 * Attempt to remove the specified page from its LRU. Only take this page 1355 * if it is of the appropriate PageActive status. Pages which are being 1356 * freed elsewhere are also ignored. 1357 * 1358 * page: page to consider 1359 * mode: one of the LRU isolation modes defined above 1360 * 1361 * returns 0 on success, -ve errno on failure. 1362 */ 1363 int __isolate_lru_page(struct page *page, isolate_mode_t mode) 1364 { 1365 int ret = -EINVAL; 1366 1367 /* Only take pages on the LRU. */ 1368 if (!PageLRU(page)) 1369 return ret; 1370 1371 /* Compaction should not handle unevictable pages but CMA can do so */ 1372 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) 1373 return ret; 1374 1375 ret = -EBUSY; 1376 1377 /* 1378 * To minimise LRU disruption, the caller can indicate that it only 1379 * wants to isolate pages it will be able to operate on without 1380 * blocking - clean pages for the most part. 1381 * 1382 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages 1383 * that it is possible to migrate without blocking 1384 */ 1385 if (mode & ISOLATE_ASYNC_MIGRATE) { 1386 /* All the caller can do on PageWriteback is block */ 1387 if (PageWriteback(page)) 1388 return ret; 1389 1390 if (PageDirty(page)) { 1391 struct address_space *mapping; 1392 1393 /* 1394 * Only pages without mappings or that have a 1395 * ->migratepage callback are possible to migrate 1396 * without blocking 1397 */ 1398 mapping = page_mapping(page); 1399 if (mapping && !mapping->a_ops->migratepage) 1400 return ret; 1401 } 1402 } 1403 1404 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) 1405 return ret; 1406 1407 if (likely(get_page_unless_zero(page))) { 1408 /* 1409 * Be careful not to clear PageLRU until after we're 1410 * sure the page is not being freed elsewhere -- the 1411 * page release code relies on it. 1412 */ 1413 ClearPageLRU(page); 1414 ret = 0; 1415 } 1416 1417 return ret; 1418 } 1419 1420 1421 /* 1422 * Update LRU sizes after isolating pages. The LRU size updates must 1423 * be complete before mem_cgroup_update_lru_size due to a santity check. 1424 */ 1425 static __always_inline void update_lru_sizes(struct lruvec *lruvec, 1426 enum lru_list lru, unsigned long *nr_zone_taken) 1427 { 1428 int zid; 1429 1430 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1431 if (!nr_zone_taken[zid]) 1432 continue; 1433 1434 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1435 #ifdef CONFIG_MEMCG 1436 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); 1437 #endif 1438 } 1439 1440 } 1441 1442 /* 1443 * zone_lru_lock is heavily contended. Some of the functions that 1444 * shrink the lists perform better by taking out a batch of pages 1445 * and working on them outside the LRU lock. 1446 * 1447 * For pagecache intensive workloads, this function is the hottest 1448 * spot in the kernel (apart from copy_*_user functions). 1449 * 1450 * Appropriate locks must be held before calling this function. 1451 * 1452 * @nr_to_scan: The number of pages to look through on the list. 1453 * @lruvec: The LRU vector to pull pages from. 1454 * @dst: The temp list to put pages on to. 1455 * @nr_scanned: The number of pages that were scanned. 1456 * @sc: The scan_control struct for this reclaim session 1457 * @mode: One of the LRU isolation modes 1458 * @lru: LRU list id for isolating 1459 * 1460 * returns how many pages were moved onto *@dst. 1461 */ 1462 static unsigned long isolate_lru_pages(unsigned long nr_to_scan, 1463 struct lruvec *lruvec, struct list_head *dst, 1464 unsigned long *nr_scanned, struct scan_control *sc, 1465 isolate_mode_t mode, enum lru_list lru) 1466 { 1467 struct list_head *src = &lruvec->lists[lru]; 1468 unsigned long nr_taken = 0; 1469 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; 1470 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; 1471 unsigned long skipped = 0; 1472 unsigned long scan, nr_pages; 1473 LIST_HEAD(pages_skipped); 1474 1475 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan && 1476 !list_empty(src); scan++) { 1477 struct page *page; 1478 1479 page = lru_to_page(src); 1480 prefetchw_prev_lru_page(page, src, flags); 1481 1482 VM_BUG_ON_PAGE(!PageLRU(page), page); 1483 1484 if (page_zonenum(page) > sc->reclaim_idx) { 1485 list_move(&page->lru, &pages_skipped); 1486 nr_skipped[page_zonenum(page)]++; 1487 continue; 1488 } 1489 1490 switch (__isolate_lru_page(page, mode)) { 1491 case 0: 1492 nr_pages = hpage_nr_pages(page); 1493 nr_taken += nr_pages; 1494 nr_zone_taken[page_zonenum(page)] += nr_pages; 1495 list_move(&page->lru, dst); 1496 break; 1497 1498 case -EBUSY: 1499 /* else it is being freed elsewhere */ 1500 list_move(&page->lru, src); 1501 continue; 1502 1503 default: 1504 BUG(); 1505 } 1506 } 1507 1508 /* 1509 * Splice any skipped pages to the start of the LRU list. Note that 1510 * this disrupts the LRU order when reclaiming for lower zones but 1511 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX 1512 * scanning would soon rescan the same pages to skip and put the 1513 * system at risk of premature OOM. 1514 */ 1515 if (!list_empty(&pages_skipped)) { 1516 int zid; 1517 1518 list_splice(&pages_skipped, src); 1519 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1520 if (!nr_skipped[zid]) 1521 continue; 1522 1523 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); 1524 skipped += nr_skipped[zid]; 1525 } 1526 } 1527 *nr_scanned = scan; 1528 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, 1529 scan, skipped, nr_taken, mode, lru); 1530 update_lru_sizes(lruvec, lru, nr_zone_taken); 1531 return nr_taken; 1532 } 1533 1534 /** 1535 * isolate_lru_page - tries to isolate a page from its LRU list 1536 * @page: page to isolate from its LRU list 1537 * 1538 * Isolates a @page from an LRU list, clears PageLRU and adjusts the 1539 * vmstat statistic corresponding to whatever LRU list the page was on. 1540 * 1541 * Returns 0 if the page was removed from an LRU list. 1542 * Returns -EBUSY if the page was not on an LRU list. 1543 * 1544 * The returned page will have PageLRU() cleared. If it was found on 1545 * the active list, it will have PageActive set. If it was found on 1546 * the unevictable list, it will have the PageUnevictable bit set. That flag 1547 * may need to be cleared by the caller before letting the page go. 1548 * 1549 * The vmstat statistic corresponding to the list on which the page was 1550 * found will be decremented. 1551 * 1552 * Restrictions: 1553 * (1) Must be called with an elevated refcount on the page. This is a 1554 * fundamentnal difference from isolate_lru_pages (which is called 1555 * without a stable reference). 1556 * (2) the lru_lock must not be held. 1557 * (3) interrupts must be enabled. 1558 */ 1559 int isolate_lru_page(struct page *page) 1560 { 1561 int ret = -EBUSY; 1562 1563 VM_BUG_ON_PAGE(!page_count(page), page); 1564 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); 1565 1566 if (PageLRU(page)) { 1567 struct zone *zone = page_zone(page); 1568 struct lruvec *lruvec; 1569 1570 spin_lock_irq(zone_lru_lock(zone)); 1571 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 1572 if (PageLRU(page)) { 1573 int lru = page_lru(page); 1574 get_page(page); 1575 ClearPageLRU(page); 1576 del_page_from_lru_list(page, lruvec, lru); 1577 ret = 0; 1578 } 1579 spin_unlock_irq(zone_lru_lock(zone)); 1580 } 1581 return ret; 1582 } 1583 1584 /* 1585 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and 1586 * then get resheduled. When there are massive number of tasks doing page 1587 * allocation, such sleeping direct reclaimers may keep piling up on each CPU, 1588 * the LRU list will go small and be scanned faster than necessary, leading to 1589 * unnecessary swapping, thrashing and OOM. 1590 */ 1591 static int too_many_isolated(struct pglist_data *pgdat, int file, 1592 struct scan_control *sc) 1593 { 1594 unsigned long inactive, isolated; 1595 1596 if (current_is_kswapd()) 1597 return 0; 1598 1599 if (!sane_reclaim(sc)) 1600 return 0; 1601 1602 if (file) { 1603 inactive = node_page_state(pgdat, NR_INACTIVE_FILE); 1604 isolated = node_page_state(pgdat, NR_ISOLATED_FILE); 1605 } else { 1606 inactive = node_page_state(pgdat, NR_INACTIVE_ANON); 1607 isolated = node_page_state(pgdat, NR_ISOLATED_ANON); 1608 } 1609 1610 /* 1611 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they 1612 * won't get blocked by normal direct-reclaimers, forming a circular 1613 * deadlock. 1614 */ 1615 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 1616 inactive >>= 3; 1617 1618 return isolated > inactive; 1619 } 1620 1621 static noinline_for_stack void 1622 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) 1623 { 1624 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1625 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1626 LIST_HEAD(pages_to_free); 1627 1628 /* 1629 * Put back any unfreeable pages. 1630 */ 1631 while (!list_empty(page_list)) { 1632 struct page *page = lru_to_page(page_list); 1633 int lru; 1634 1635 VM_BUG_ON_PAGE(PageLRU(page), page); 1636 list_del(&page->lru); 1637 if (unlikely(!page_evictable(page))) { 1638 spin_unlock_irq(&pgdat->lru_lock); 1639 putback_lru_page(page); 1640 spin_lock_irq(&pgdat->lru_lock); 1641 continue; 1642 } 1643 1644 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1645 1646 SetPageLRU(page); 1647 lru = page_lru(page); 1648 add_page_to_lru_list(page, lruvec, lru); 1649 1650 if (is_active_lru(lru)) { 1651 int file = is_file_lru(lru); 1652 int numpages = hpage_nr_pages(page); 1653 reclaim_stat->recent_rotated[file] += numpages; 1654 } 1655 if (put_page_testzero(page)) { 1656 __ClearPageLRU(page); 1657 __ClearPageActive(page); 1658 del_page_from_lru_list(page, lruvec, lru); 1659 1660 if (unlikely(PageCompound(page))) { 1661 spin_unlock_irq(&pgdat->lru_lock); 1662 mem_cgroup_uncharge(page); 1663 (*get_compound_page_dtor(page))(page); 1664 spin_lock_irq(&pgdat->lru_lock); 1665 } else 1666 list_add(&page->lru, &pages_to_free); 1667 } 1668 } 1669 1670 /* 1671 * To save our caller's stack, now use input list for pages to free. 1672 */ 1673 list_splice(&pages_to_free, page_list); 1674 } 1675 1676 /* 1677 * If a kernel thread (such as nfsd for loop-back mounts) services 1678 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. 1679 * In that case we should only throttle if the backing device it is 1680 * writing to is congested. In other cases it is safe to throttle. 1681 */ 1682 static int current_may_throttle(void) 1683 { 1684 return !(current->flags & PF_LESS_THROTTLE) || 1685 current->backing_dev_info == NULL || 1686 bdi_write_congested(current->backing_dev_info); 1687 } 1688 1689 /* 1690 * shrink_inactive_list() is a helper for shrink_node(). It returns the number 1691 * of reclaimed pages 1692 */ 1693 static noinline_for_stack unsigned long 1694 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, 1695 struct scan_control *sc, enum lru_list lru) 1696 { 1697 LIST_HEAD(page_list); 1698 unsigned long nr_scanned; 1699 unsigned long nr_reclaimed = 0; 1700 unsigned long nr_taken; 1701 struct reclaim_stat stat = {}; 1702 isolate_mode_t isolate_mode = 0; 1703 int file = is_file_lru(lru); 1704 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1705 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1706 1707 while (unlikely(too_many_isolated(pgdat, file, sc))) { 1708 congestion_wait(BLK_RW_ASYNC, HZ/10); 1709 1710 /* We are about to die and free our memory. Return now. */ 1711 if (fatal_signal_pending(current)) 1712 return SWAP_CLUSTER_MAX; 1713 } 1714 1715 lru_add_drain(); 1716 1717 if (!sc->may_unmap) 1718 isolate_mode |= ISOLATE_UNMAPPED; 1719 1720 spin_lock_irq(&pgdat->lru_lock); 1721 1722 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, 1723 &nr_scanned, sc, isolate_mode, lru); 1724 1725 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1726 reclaim_stat->recent_scanned[file] += nr_taken; 1727 1728 if (global_reclaim(sc)) { 1729 if (current_is_kswapd()) 1730 __count_vm_events(PGSCAN_KSWAPD, nr_scanned); 1731 else 1732 __count_vm_events(PGSCAN_DIRECT, nr_scanned); 1733 } 1734 spin_unlock_irq(&pgdat->lru_lock); 1735 1736 if (nr_taken == 0) 1737 return 0; 1738 1739 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, 1740 &stat, false); 1741 1742 spin_lock_irq(&pgdat->lru_lock); 1743 1744 if (global_reclaim(sc)) { 1745 if (current_is_kswapd()) 1746 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); 1747 else 1748 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); 1749 } 1750 1751 putback_inactive_pages(lruvec, &page_list); 1752 1753 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1754 1755 spin_unlock_irq(&pgdat->lru_lock); 1756 1757 mem_cgroup_uncharge_list(&page_list); 1758 free_hot_cold_page_list(&page_list, true); 1759 1760 /* 1761 * If reclaim is isolating dirty pages under writeback, it implies 1762 * that the long-lived page allocation rate is exceeding the page 1763 * laundering rate. Either the global limits are not being effective 1764 * at throttling processes due to the page distribution throughout 1765 * zones or there is heavy usage of a slow backing device. The 1766 * only option is to throttle from reclaim context which is not ideal 1767 * as there is no guarantee the dirtying process is throttled in the 1768 * same way balance_dirty_pages() manages. 1769 * 1770 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number 1771 * of pages under pages flagged for immediate reclaim and stall if any 1772 * are encountered in the nr_immediate check below. 1773 */ 1774 if (stat.nr_writeback && stat.nr_writeback == nr_taken) 1775 set_bit(PGDAT_WRITEBACK, &pgdat->flags); 1776 1777 /* 1778 * Legacy memcg will stall in page writeback so avoid forcibly 1779 * stalling here. 1780 */ 1781 if (sane_reclaim(sc)) { 1782 /* 1783 * Tag a zone as congested if all the dirty pages scanned were 1784 * backed by a congested BDI and wait_iff_congested will stall. 1785 */ 1786 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested) 1787 set_bit(PGDAT_CONGESTED, &pgdat->flags); 1788 1789 /* 1790 * If dirty pages are scanned that are not queued for IO, it 1791 * implies that flushers are not doing their job. This can 1792 * happen when memory pressure pushes dirty pages to the end of 1793 * the LRU before the dirty limits are breached and the dirty 1794 * data has expired. It can also happen when the proportion of 1795 * dirty pages grows not through writes but through memory 1796 * pressure reclaiming all the clean cache. And in some cases, 1797 * the flushers simply cannot keep up with the allocation 1798 * rate. Nudge the flusher threads in case they are asleep, but 1799 * also allow kswapd to start writing pages during reclaim. 1800 */ 1801 if (stat.nr_unqueued_dirty == nr_taken) { 1802 wakeup_flusher_threads(0, WB_REASON_VMSCAN); 1803 set_bit(PGDAT_DIRTY, &pgdat->flags); 1804 } 1805 1806 /* 1807 * If kswapd scans pages marked marked for immediate 1808 * reclaim and under writeback (nr_immediate), it implies 1809 * that pages are cycling through the LRU faster than 1810 * they are written so also forcibly stall. 1811 */ 1812 if (stat.nr_immediate && current_may_throttle()) 1813 congestion_wait(BLK_RW_ASYNC, HZ/10); 1814 } 1815 1816 /* 1817 * Stall direct reclaim for IO completions if underlying BDIs or zone 1818 * is congested. Allow kswapd to continue until it starts encountering 1819 * unqueued dirty pages or cycling through the LRU too quickly. 1820 */ 1821 if (!sc->hibernation_mode && !current_is_kswapd() && 1822 current_may_throttle()) 1823 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10); 1824 1825 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, 1826 nr_scanned, nr_reclaimed, 1827 stat.nr_dirty, stat.nr_writeback, 1828 stat.nr_congested, stat.nr_immediate, 1829 stat.nr_activate, stat.nr_ref_keep, 1830 stat.nr_unmap_fail, 1831 sc->priority, file); 1832 return nr_reclaimed; 1833 } 1834 1835 /* 1836 * This moves pages from the active list to the inactive list. 1837 * 1838 * We move them the other way if the page is referenced by one or more 1839 * processes, from rmap. 1840 * 1841 * If the pages are mostly unmapped, the processing is fast and it is 1842 * appropriate to hold zone_lru_lock across the whole operation. But if 1843 * the pages are mapped, the processing is slow (page_referenced()) so we 1844 * should drop zone_lru_lock around each page. It's impossible to balance 1845 * this, so instead we remove the pages from the LRU while processing them. 1846 * It is safe to rely on PG_active against the non-LRU pages in here because 1847 * nobody will play with that bit on a non-LRU page. 1848 * 1849 * The downside is that we have to touch page->_refcount against each page. 1850 * But we had to alter page->flags anyway. 1851 * 1852 * Returns the number of pages moved to the given lru. 1853 */ 1854 1855 static unsigned move_active_pages_to_lru(struct lruvec *lruvec, 1856 struct list_head *list, 1857 struct list_head *pages_to_free, 1858 enum lru_list lru) 1859 { 1860 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1861 struct page *page; 1862 int nr_pages; 1863 int nr_moved = 0; 1864 1865 while (!list_empty(list)) { 1866 page = lru_to_page(list); 1867 lruvec = mem_cgroup_page_lruvec(page, pgdat); 1868 1869 VM_BUG_ON_PAGE(PageLRU(page), page); 1870 SetPageLRU(page); 1871 1872 nr_pages = hpage_nr_pages(page); 1873 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); 1874 list_move(&page->lru, &lruvec->lists[lru]); 1875 1876 if (put_page_testzero(page)) { 1877 __ClearPageLRU(page); 1878 __ClearPageActive(page); 1879 del_page_from_lru_list(page, lruvec, lru); 1880 1881 if (unlikely(PageCompound(page))) { 1882 spin_unlock_irq(&pgdat->lru_lock); 1883 mem_cgroup_uncharge(page); 1884 (*get_compound_page_dtor(page))(page); 1885 spin_lock_irq(&pgdat->lru_lock); 1886 } else 1887 list_add(&page->lru, pages_to_free); 1888 } else { 1889 nr_moved += nr_pages; 1890 } 1891 } 1892 1893 if (!is_active_lru(lru)) 1894 __count_vm_events(PGDEACTIVATE, nr_moved); 1895 1896 return nr_moved; 1897 } 1898 1899 static void shrink_active_list(unsigned long nr_to_scan, 1900 struct lruvec *lruvec, 1901 struct scan_control *sc, 1902 enum lru_list lru) 1903 { 1904 unsigned long nr_taken; 1905 unsigned long nr_scanned; 1906 unsigned long vm_flags; 1907 LIST_HEAD(l_hold); /* The pages which were snipped off */ 1908 LIST_HEAD(l_active); 1909 LIST_HEAD(l_inactive); 1910 struct page *page; 1911 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 1912 unsigned nr_deactivate, nr_activate; 1913 unsigned nr_rotated = 0; 1914 isolate_mode_t isolate_mode = 0; 1915 int file = is_file_lru(lru); 1916 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 1917 1918 lru_add_drain(); 1919 1920 if (!sc->may_unmap) 1921 isolate_mode |= ISOLATE_UNMAPPED; 1922 1923 spin_lock_irq(&pgdat->lru_lock); 1924 1925 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, 1926 &nr_scanned, sc, isolate_mode, lru); 1927 1928 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); 1929 reclaim_stat->recent_scanned[file] += nr_taken; 1930 1931 __count_vm_events(PGREFILL, nr_scanned); 1932 1933 spin_unlock_irq(&pgdat->lru_lock); 1934 1935 while (!list_empty(&l_hold)) { 1936 cond_resched(); 1937 page = lru_to_page(&l_hold); 1938 list_del(&page->lru); 1939 1940 if (unlikely(!page_evictable(page))) { 1941 putback_lru_page(page); 1942 continue; 1943 } 1944 1945 if (unlikely(buffer_heads_over_limit)) { 1946 if (page_has_private(page) && trylock_page(page)) { 1947 if (page_has_private(page)) 1948 try_to_release_page(page, 0); 1949 unlock_page(page); 1950 } 1951 } 1952 1953 if (page_referenced(page, 0, sc->target_mem_cgroup, 1954 &vm_flags)) { 1955 nr_rotated += hpage_nr_pages(page); 1956 /* 1957 * Identify referenced, file-backed active pages and 1958 * give them one more trip around the active list. So 1959 * that executable code get better chances to stay in 1960 * memory under moderate memory pressure. Anon pages 1961 * are not likely to be evicted by use-once streaming 1962 * IO, plus JVM can create lots of anon VM_EXEC pages, 1963 * so we ignore them here. 1964 */ 1965 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { 1966 list_add(&page->lru, &l_active); 1967 continue; 1968 } 1969 } 1970 1971 ClearPageActive(page); /* we are de-activating */ 1972 list_add(&page->lru, &l_inactive); 1973 } 1974 1975 /* 1976 * Move pages back to the lru list. 1977 */ 1978 spin_lock_irq(&pgdat->lru_lock); 1979 /* 1980 * Count referenced pages from currently used mappings as rotated, 1981 * even though only some of them are actually re-activated. This 1982 * helps balance scan pressure between file and anonymous pages in 1983 * get_scan_count. 1984 */ 1985 reclaim_stat->recent_rotated[file] += nr_rotated; 1986 1987 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); 1988 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); 1989 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); 1990 spin_unlock_irq(&pgdat->lru_lock); 1991 1992 mem_cgroup_uncharge_list(&l_hold); 1993 free_hot_cold_page_list(&l_hold, true); 1994 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, 1995 nr_deactivate, nr_rotated, sc->priority, file); 1996 } 1997 1998 /* 1999 * The inactive anon list should be small enough that the VM never has 2000 * to do too much work. 2001 * 2002 * The inactive file list should be small enough to leave most memory 2003 * to the established workingset on the scan-resistant active list, 2004 * but large enough to avoid thrashing the aggregate readahead window. 2005 * 2006 * Both inactive lists should also be large enough that each inactive 2007 * page has a chance to be referenced again before it is reclaimed. 2008 * 2009 * If that fails and refaulting is observed, the inactive list grows. 2010 * 2011 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages 2012 * on this LRU, maintained by the pageout code. A zone->inactive_ratio 2013 * of 3 means 3:1 or 25% of the pages are kept on the inactive list. 2014 * 2015 * total target max 2016 * memory ratio inactive 2017 * ------------------------------------- 2018 * 10MB 1 5MB 2019 * 100MB 1 50MB 2020 * 1GB 3 250MB 2021 * 10GB 10 0.9GB 2022 * 100GB 31 3GB 2023 * 1TB 101 10GB 2024 * 10TB 320 32GB 2025 */ 2026 static bool inactive_list_is_low(struct lruvec *lruvec, bool file, 2027 struct mem_cgroup *memcg, 2028 struct scan_control *sc, bool actual_reclaim) 2029 { 2030 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; 2031 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2032 enum lru_list inactive_lru = file * LRU_FILE; 2033 unsigned long inactive, active; 2034 unsigned long inactive_ratio; 2035 unsigned long refaults; 2036 unsigned long gb; 2037 2038 /* 2039 * If we don't have swap space, anonymous page deactivation 2040 * is pointless. 2041 */ 2042 if (!file && !total_swap_pages) 2043 return false; 2044 2045 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); 2046 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); 2047 2048 if (memcg) 2049 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2050 else 2051 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2052 2053 /* 2054 * When refaults are being observed, it means a new workingset 2055 * is being established. Disable active list protection to get 2056 * rid of the stale workingset quickly. 2057 */ 2058 if (file && actual_reclaim && lruvec->refaults != refaults) { 2059 inactive_ratio = 0; 2060 } else { 2061 gb = (inactive + active) >> (30 - PAGE_SHIFT); 2062 if (gb) 2063 inactive_ratio = int_sqrt(10 * gb); 2064 else 2065 inactive_ratio = 1; 2066 } 2067 2068 if (actual_reclaim) 2069 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, 2070 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, 2071 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, 2072 inactive_ratio, file); 2073 2074 return inactive * inactive_ratio < active; 2075 } 2076 2077 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, 2078 struct lruvec *lruvec, struct mem_cgroup *memcg, 2079 struct scan_control *sc) 2080 { 2081 if (is_active_lru(lru)) { 2082 if (inactive_list_is_low(lruvec, is_file_lru(lru), 2083 memcg, sc, true)) 2084 shrink_active_list(nr_to_scan, lruvec, sc, lru); 2085 return 0; 2086 } 2087 2088 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); 2089 } 2090 2091 enum scan_balance { 2092 SCAN_EQUAL, 2093 SCAN_FRACT, 2094 SCAN_ANON, 2095 SCAN_FILE, 2096 }; 2097 2098 /* 2099 * Determine how aggressively the anon and file LRU lists should be 2100 * scanned. The relative value of each set of LRU lists is determined 2101 * by looking at the fraction of the pages scanned we did rotate back 2102 * onto the active list instead of evict. 2103 * 2104 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan 2105 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan 2106 */ 2107 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, 2108 struct scan_control *sc, unsigned long *nr, 2109 unsigned long *lru_pages) 2110 { 2111 int swappiness = mem_cgroup_swappiness(memcg); 2112 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; 2113 u64 fraction[2]; 2114 u64 denominator = 0; /* gcc */ 2115 struct pglist_data *pgdat = lruvec_pgdat(lruvec); 2116 unsigned long anon_prio, file_prio; 2117 enum scan_balance scan_balance; 2118 unsigned long anon, file; 2119 unsigned long ap, fp; 2120 enum lru_list lru; 2121 2122 /* If we have no swap space, do not bother scanning anon pages. */ 2123 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { 2124 scan_balance = SCAN_FILE; 2125 goto out; 2126 } 2127 2128 /* 2129 * Global reclaim will swap to prevent OOM even with no 2130 * swappiness, but memcg users want to use this knob to 2131 * disable swapping for individual groups completely when 2132 * using the memory controller's swap limit feature would be 2133 * too expensive. 2134 */ 2135 if (!global_reclaim(sc) && !swappiness) { 2136 scan_balance = SCAN_FILE; 2137 goto out; 2138 } 2139 2140 /* 2141 * Do not apply any pressure balancing cleverness when the 2142 * system is close to OOM, scan both anon and file equally 2143 * (unless the swappiness setting disagrees with swapping). 2144 */ 2145 if (!sc->priority && swappiness) { 2146 scan_balance = SCAN_EQUAL; 2147 goto out; 2148 } 2149 2150 /* 2151 * Prevent the reclaimer from falling into the cache trap: as 2152 * cache pages start out inactive, every cache fault will tip 2153 * the scan balance towards the file LRU. And as the file LRU 2154 * shrinks, so does the window for rotation from references. 2155 * This means we have a runaway feedback loop where a tiny 2156 * thrashing file LRU becomes infinitely more attractive than 2157 * anon pages. Try to detect this based on file LRU size. 2158 */ 2159 if (global_reclaim(sc)) { 2160 unsigned long pgdatfile; 2161 unsigned long pgdatfree; 2162 int z; 2163 unsigned long total_high_wmark = 0; 2164 2165 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); 2166 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + 2167 node_page_state(pgdat, NR_INACTIVE_FILE); 2168 2169 for (z = 0; z < MAX_NR_ZONES; z++) { 2170 struct zone *zone = &pgdat->node_zones[z]; 2171 if (!managed_zone(zone)) 2172 continue; 2173 2174 total_high_wmark += high_wmark_pages(zone); 2175 } 2176 2177 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { 2178 scan_balance = SCAN_ANON; 2179 goto out; 2180 } 2181 } 2182 2183 /* 2184 * If there is enough inactive page cache, i.e. if the size of the 2185 * inactive list is greater than that of the active list *and* the 2186 * inactive list actually has some pages to scan on this priority, we 2187 * do not reclaim anything from the anonymous working set right now. 2188 * Without the second condition we could end up never scanning an 2189 * lruvec even if it has plenty of old anonymous pages unless the 2190 * system is under heavy pressure. 2191 */ 2192 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) && 2193 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { 2194 scan_balance = SCAN_FILE; 2195 goto out; 2196 } 2197 2198 scan_balance = SCAN_FRACT; 2199 2200 /* 2201 * With swappiness at 100, anonymous and file have the same priority. 2202 * This scanning priority is essentially the inverse of IO cost. 2203 */ 2204 anon_prio = swappiness; 2205 file_prio = 200 - anon_prio; 2206 2207 /* 2208 * OK, so we have swap space and a fair amount of page cache 2209 * pages. We use the recently rotated / recently scanned 2210 * ratios to determine how valuable each cache is. 2211 * 2212 * Because workloads change over time (and to avoid overflow) 2213 * we keep these statistics as a floating average, which ends 2214 * up weighing recent references more than old ones. 2215 * 2216 * anon in [0], file in [1] 2217 */ 2218 2219 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + 2220 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); 2221 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + 2222 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); 2223 2224 spin_lock_irq(&pgdat->lru_lock); 2225 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { 2226 reclaim_stat->recent_scanned[0] /= 2; 2227 reclaim_stat->recent_rotated[0] /= 2; 2228 } 2229 2230 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { 2231 reclaim_stat->recent_scanned[1] /= 2; 2232 reclaim_stat->recent_rotated[1] /= 2; 2233 } 2234 2235 /* 2236 * The amount of pressure on anon vs file pages is inversely 2237 * proportional to the fraction of recently scanned pages on 2238 * each list that were recently referenced and in active use. 2239 */ 2240 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); 2241 ap /= reclaim_stat->recent_rotated[0] + 1; 2242 2243 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); 2244 fp /= reclaim_stat->recent_rotated[1] + 1; 2245 spin_unlock_irq(&pgdat->lru_lock); 2246 2247 fraction[0] = ap; 2248 fraction[1] = fp; 2249 denominator = ap + fp + 1; 2250 out: 2251 *lru_pages = 0; 2252 for_each_evictable_lru(lru) { 2253 int file = is_file_lru(lru); 2254 unsigned long size; 2255 unsigned long scan; 2256 2257 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); 2258 scan = size >> sc->priority; 2259 /* 2260 * If the cgroup's already been deleted, make sure to 2261 * scrape out the remaining cache. 2262 */ 2263 if (!scan && !mem_cgroup_online(memcg)) 2264 scan = min(size, SWAP_CLUSTER_MAX); 2265 2266 switch (scan_balance) { 2267 case SCAN_EQUAL: 2268 /* Scan lists relative to size */ 2269 break; 2270 case SCAN_FRACT: 2271 /* 2272 * Scan types proportional to swappiness and 2273 * their relative recent reclaim efficiency. 2274 */ 2275 scan = div64_u64(scan * fraction[file], 2276 denominator); 2277 break; 2278 case SCAN_FILE: 2279 case SCAN_ANON: 2280 /* Scan one type exclusively */ 2281 if ((scan_balance == SCAN_FILE) != file) { 2282 size = 0; 2283 scan = 0; 2284 } 2285 break; 2286 default: 2287 /* Look ma, no brain */ 2288 BUG(); 2289 } 2290 2291 *lru_pages += size; 2292 nr[lru] = scan; 2293 } 2294 } 2295 2296 /* 2297 * This is a basic per-node page freer. Used by both kswapd and direct reclaim. 2298 */ 2299 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, 2300 struct scan_control *sc, unsigned long *lru_pages) 2301 { 2302 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 2303 unsigned long nr[NR_LRU_LISTS]; 2304 unsigned long targets[NR_LRU_LISTS]; 2305 unsigned long nr_to_scan; 2306 enum lru_list lru; 2307 unsigned long nr_reclaimed = 0; 2308 unsigned long nr_to_reclaim = sc->nr_to_reclaim; 2309 struct blk_plug plug; 2310 bool scan_adjusted; 2311 2312 get_scan_count(lruvec, memcg, sc, nr, lru_pages); 2313 2314 /* Record the original scan target for proportional adjustments later */ 2315 memcpy(targets, nr, sizeof(nr)); 2316 2317 /* 2318 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal 2319 * event that can occur when there is little memory pressure e.g. 2320 * multiple streaming readers/writers. Hence, we do not abort scanning 2321 * when the requested number of pages are reclaimed when scanning at 2322 * DEF_PRIORITY on the assumption that the fact we are direct 2323 * reclaiming implies that kswapd is not keeping up and it is best to 2324 * do a batch of work at once. For memcg reclaim one check is made to 2325 * abort proportional reclaim if either the file or anon lru has already 2326 * dropped to zero at the first pass. 2327 */ 2328 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && 2329 sc->priority == DEF_PRIORITY); 2330 2331 blk_start_plug(&plug); 2332 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || 2333 nr[LRU_INACTIVE_FILE]) { 2334 unsigned long nr_anon, nr_file, percentage; 2335 unsigned long nr_scanned; 2336 2337 for_each_evictable_lru(lru) { 2338 if (nr[lru]) { 2339 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); 2340 nr[lru] -= nr_to_scan; 2341 2342 nr_reclaimed += shrink_list(lru, nr_to_scan, 2343 lruvec, memcg, sc); 2344 } 2345 } 2346 2347 cond_resched(); 2348 2349 if (nr_reclaimed < nr_to_reclaim || scan_adjusted) 2350 continue; 2351 2352 /* 2353 * For kswapd and memcg, reclaim at least the number of pages 2354 * requested. Ensure that the anon and file LRUs are scanned 2355 * proportionally what was requested by get_scan_count(). We 2356 * stop reclaiming one LRU and reduce the amount scanning 2357 * proportional to the original scan target. 2358 */ 2359 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; 2360 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; 2361 2362 /* 2363 * It's just vindictive to attack the larger once the smaller 2364 * has gone to zero. And given the way we stop scanning the 2365 * smaller below, this makes sure that we only make one nudge 2366 * towards proportionality once we've got nr_to_reclaim. 2367 */ 2368 if (!nr_file || !nr_anon) 2369 break; 2370 2371 if (nr_file > nr_anon) { 2372 unsigned long scan_target = targets[LRU_INACTIVE_ANON] + 2373 targets[LRU_ACTIVE_ANON] + 1; 2374 lru = LRU_BASE; 2375 percentage = nr_anon * 100 / scan_target; 2376 } else { 2377 unsigned long scan_target = targets[LRU_INACTIVE_FILE] + 2378 targets[LRU_ACTIVE_FILE] + 1; 2379 lru = LRU_FILE; 2380 percentage = nr_file * 100 / scan_target; 2381 } 2382 2383 /* Stop scanning the smaller of the LRU */ 2384 nr[lru] = 0; 2385 nr[lru + LRU_ACTIVE] = 0; 2386 2387 /* 2388 * Recalculate the other LRU scan count based on its original 2389 * scan target and the percentage scanning already complete 2390 */ 2391 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; 2392 nr_scanned = targets[lru] - nr[lru]; 2393 nr[lru] = targets[lru] * (100 - percentage) / 100; 2394 nr[lru] -= min(nr[lru], nr_scanned); 2395 2396 lru += LRU_ACTIVE; 2397 nr_scanned = targets[lru] - nr[lru]; 2398 nr[lru] = targets[lru] * (100 - percentage) / 100; 2399 nr[lru] -= min(nr[lru], nr_scanned); 2400 2401 scan_adjusted = true; 2402 } 2403 blk_finish_plug(&plug); 2404 sc->nr_reclaimed += nr_reclaimed; 2405 2406 /* 2407 * Even if we did not try to evict anon pages at all, we want to 2408 * rebalance the anon lru active/inactive ratio. 2409 */ 2410 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 2411 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 2412 sc, LRU_ACTIVE_ANON); 2413 } 2414 2415 /* Use reclaim/compaction for costly allocs or under memory pressure */ 2416 static bool in_reclaim_compaction(struct scan_control *sc) 2417 { 2418 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && 2419 (sc->order > PAGE_ALLOC_COSTLY_ORDER || 2420 sc->priority < DEF_PRIORITY - 2)) 2421 return true; 2422 2423 return false; 2424 } 2425 2426 /* 2427 * Reclaim/compaction is used for high-order allocation requests. It reclaims 2428 * order-0 pages before compacting the zone. should_continue_reclaim() returns 2429 * true if more pages should be reclaimed such that when the page allocator 2430 * calls try_to_compact_zone() that it will have enough free pages to succeed. 2431 * It will give up earlier than that if there is difficulty reclaiming pages. 2432 */ 2433 static inline bool should_continue_reclaim(struct pglist_data *pgdat, 2434 unsigned long nr_reclaimed, 2435 unsigned long nr_scanned, 2436 struct scan_control *sc) 2437 { 2438 unsigned long pages_for_compaction; 2439 unsigned long inactive_lru_pages; 2440 int z; 2441 2442 /* If not in reclaim/compaction mode, stop */ 2443 if (!in_reclaim_compaction(sc)) 2444 return false; 2445 2446 /* Consider stopping depending on scan and reclaim activity */ 2447 if (sc->gfp_mask & __GFP_REPEAT) { 2448 /* 2449 * For __GFP_REPEAT allocations, stop reclaiming if the 2450 * full LRU list has been scanned and we are still failing 2451 * to reclaim pages. This full LRU scan is potentially 2452 * expensive but a __GFP_REPEAT caller really wants to succeed 2453 */ 2454 if (!nr_reclaimed && !nr_scanned) 2455 return false; 2456 } else { 2457 /* 2458 * For non-__GFP_REPEAT allocations which can presumably 2459 * fail without consequence, stop if we failed to reclaim 2460 * any pages from the last SWAP_CLUSTER_MAX number of 2461 * pages that were scanned. This will return to the 2462 * caller faster at the risk reclaim/compaction and 2463 * the resulting allocation attempt fails 2464 */ 2465 if (!nr_reclaimed) 2466 return false; 2467 } 2468 2469 /* 2470 * If we have not reclaimed enough pages for compaction and the 2471 * inactive lists are large enough, continue reclaiming 2472 */ 2473 pages_for_compaction = compact_gap(sc->order); 2474 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); 2475 if (get_nr_swap_pages() > 0) 2476 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); 2477 if (sc->nr_reclaimed < pages_for_compaction && 2478 inactive_lru_pages > pages_for_compaction) 2479 return true; 2480 2481 /* If compaction would go ahead or the allocation would succeed, stop */ 2482 for (z = 0; z <= sc->reclaim_idx; z++) { 2483 struct zone *zone = &pgdat->node_zones[z]; 2484 if (!managed_zone(zone)) 2485 continue; 2486 2487 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { 2488 case COMPACT_SUCCESS: 2489 case COMPACT_CONTINUE: 2490 return false; 2491 default: 2492 /* check next zone */ 2493 ; 2494 } 2495 } 2496 return true; 2497 } 2498 2499 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) 2500 { 2501 struct reclaim_state *reclaim_state = current->reclaim_state; 2502 unsigned long nr_reclaimed, nr_scanned; 2503 bool reclaimable = false; 2504 2505 do { 2506 struct mem_cgroup *root = sc->target_mem_cgroup; 2507 struct mem_cgroup_reclaim_cookie reclaim = { 2508 .pgdat = pgdat, 2509 .priority = sc->priority, 2510 }; 2511 unsigned long node_lru_pages = 0; 2512 struct mem_cgroup *memcg; 2513 2514 nr_reclaimed = sc->nr_reclaimed; 2515 nr_scanned = sc->nr_scanned; 2516 2517 memcg = mem_cgroup_iter(root, NULL, &reclaim); 2518 do { 2519 unsigned long lru_pages; 2520 unsigned long reclaimed; 2521 unsigned long scanned; 2522 2523 if (mem_cgroup_low(root, memcg)) { 2524 if (!sc->memcg_low_reclaim) { 2525 sc->memcg_low_skipped = 1; 2526 continue; 2527 } 2528 mem_cgroup_event(memcg, MEMCG_LOW); 2529 } 2530 2531 reclaimed = sc->nr_reclaimed; 2532 scanned = sc->nr_scanned; 2533 2534 shrink_node_memcg(pgdat, memcg, sc, &lru_pages); 2535 node_lru_pages += lru_pages; 2536 2537 if (memcg) 2538 shrink_slab(sc->gfp_mask, pgdat->node_id, 2539 memcg, sc->nr_scanned - scanned, 2540 lru_pages); 2541 2542 /* Record the group's reclaim efficiency */ 2543 vmpressure(sc->gfp_mask, memcg, false, 2544 sc->nr_scanned - scanned, 2545 sc->nr_reclaimed - reclaimed); 2546 2547 /* 2548 * Direct reclaim and kswapd have to scan all memory 2549 * cgroups to fulfill the overall scan target for the 2550 * node. 2551 * 2552 * Limit reclaim, on the other hand, only cares about 2553 * nr_to_reclaim pages to be reclaimed and it will 2554 * retry with decreasing priority if one round over the 2555 * whole hierarchy is not sufficient. 2556 */ 2557 if (!global_reclaim(sc) && 2558 sc->nr_reclaimed >= sc->nr_to_reclaim) { 2559 mem_cgroup_iter_break(root, memcg); 2560 break; 2561 } 2562 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); 2563 2564 /* 2565 * Shrink the slab caches in the same proportion that 2566 * the eligible LRU pages were scanned. 2567 */ 2568 if (global_reclaim(sc)) 2569 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL, 2570 sc->nr_scanned - nr_scanned, 2571 node_lru_pages); 2572 2573 if (reclaim_state) { 2574 sc->nr_reclaimed += reclaim_state->reclaimed_slab; 2575 reclaim_state->reclaimed_slab = 0; 2576 } 2577 2578 /* Record the subtree's reclaim efficiency */ 2579 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, 2580 sc->nr_scanned - nr_scanned, 2581 sc->nr_reclaimed - nr_reclaimed); 2582 2583 if (sc->nr_reclaimed - nr_reclaimed) 2584 reclaimable = true; 2585 2586 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, 2587 sc->nr_scanned - nr_scanned, sc)); 2588 2589 /* 2590 * Kswapd gives up on balancing particular nodes after too 2591 * many failures to reclaim anything from them and goes to 2592 * sleep. On reclaim progress, reset the failure counter. A 2593 * successful direct reclaim run will revive a dormant kswapd. 2594 */ 2595 if (reclaimable) 2596 pgdat->kswapd_failures = 0; 2597 2598 return reclaimable; 2599 } 2600 2601 /* 2602 * Returns true if compaction should go ahead for a costly-order request, or 2603 * the allocation would already succeed without compaction. Return false if we 2604 * should reclaim first. 2605 */ 2606 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) 2607 { 2608 unsigned long watermark; 2609 enum compact_result suitable; 2610 2611 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); 2612 if (suitable == COMPACT_SUCCESS) 2613 /* Allocation should succeed already. Don't reclaim. */ 2614 return true; 2615 if (suitable == COMPACT_SKIPPED) 2616 /* Compaction cannot yet proceed. Do reclaim. */ 2617 return false; 2618 2619 /* 2620 * Compaction is already possible, but it takes time to run and there 2621 * are potentially other callers using the pages just freed. So proceed 2622 * with reclaim to make a buffer of free pages available to give 2623 * compaction a reasonable chance of completing and allocating the page. 2624 * Note that we won't actually reclaim the whole buffer in one attempt 2625 * as the target watermark in should_continue_reclaim() is lower. But if 2626 * we are already above the high+gap watermark, don't reclaim at all. 2627 */ 2628 watermark = high_wmark_pages(zone) + compact_gap(sc->order); 2629 2630 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); 2631 } 2632 2633 /* 2634 * This is the direct reclaim path, for page-allocating processes. We only 2635 * try to reclaim pages from zones which will satisfy the caller's allocation 2636 * request. 2637 * 2638 * If a zone is deemed to be full of pinned pages then just give it a light 2639 * scan then give up on it. 2640 */ 2641 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) 2642 { 2643 struct zoneref *z; 2644 struct zone *zone; 2645 unsigned long nr_soft_reclaimed; 2646 unsigned long nr_soft_scanned; 2647 gfp_t orig_mask; 2648 pg_data_t *last_pgdat = NULL; 2649 2650 /* 2651 * If the number of buffer_heads in the machine exceeds the maximum 2652 * allowed level, force direct reclaim to scan the highmem zone as 2653 * highmem pages could be pinning lowmem pages storing buffer_heads 2654 */ 2655 orig_mask = sc->gfp_mask; 2656 if (buffer_heads_over_limit) { 2657 sc->gfp_mask |= __GFP_HIGHMEM; 2658 sc->reclaim_idx = gfp_zone(sc->gfp_mask); 2659 } 2660 2661 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2662 sc->reclaim_idx, sc->nodemask) { 2663 /* 2664 * Take care memory controller reclaiming has small influence 2665 * to global LRU. 2666 */ 2667 if (global_reclaim(sc)) { 2668 if (!cpuset_zone_allowed(zone, 2669 GFP_KERNEL | __GFP_HARDWALL)) 2670 continue; 2671 2672 /* 2673 * If we already have plenty of memory free for 2674 * compaction in this zone, don't free any more. 2675 * Even though compaction is invoked for any 2676 * non-zero order, only frequent costly order 2677 * reclamation is disruptive enough to become a 2678 * noticeable problem, like transparent huge 2679 * page allocations. 2680 */ 2681 if (IS_ENABLED(CONFIG_COMPACTION) && 2682 sc->order > PAGE_ALLOC_COSTLY_ORDER && 2683 compaction_ready(zone, sc)) { 2684 sc->compaction_ready = true; 2685 continue; 2686 } 2687 2688 /* 2689 * Shrink each node in the zonelist once. If the 2690 * zonelist is ordered by zone (not the default) then a 2691 * node may be shrunk multiple times but in that case 2692 * the user prefers lower zones being preserved. 2693 */ 2694 if (zone->zone_pgdat == last_pgdat) 2695 continue; 2696 2697 /* 2698 * This steals pages from memory cgroups over softlimit 2699 * and returns the number of reclaimed pages and 2700 * scanned pages. This works for global memory pressure 2701 * and balancing, not for a memcg's limit. 2702 */ 2703 nr_soft_scanned = 0; 2704 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, 2705 sc->order, sc->gfp_mask, 2706 &nr_soft_scanned); 2707 sc->nr_reclaimed += nr_soft_reclaimed; 2708 sc->nr_scanned += nr_soft_scanned; 2709 /* need some check for avoid more shrink_zone() */ 2710 } 2711 2712 /* See comment about same check for global reclaim above */ 2713 if (zone->zone_pgdat == last_pgdat) 2714 continue; 2715 last_pgdat = zone->zone_pgdat; 2716 shrink_node(zone->zone_pgdat, sc); 2717 } 2718 2719 /* 2720 * Restore to original mask to avoid the impact on the caller if we 2721 * promoted it to __GFP_HIGHMEM. 2722 */ 2723 sc->gfp_mask = orig_mask; 2724 } 2725 2726 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) 2727 { 2728 struct mem_cgroup *memcg; 2729 2730 memcg = mem_cgroup_iter(root_memcg, NULL, NULL); 2731 do { 2732 unsigned long refaults; 2733 struct lruvec *lruvec; 2734 2735 if (memcg) 2736 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE); 2737 else 2738 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE); 2739 2740 lruvec = mem_cgroup_lruvec(pgdat, memcg); 2741 lruvec->refaults = refaults; 2742 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); 2743 } 2744 2745 /* 2746 * This is the main entry point to direct page reclaim. 2747 * 2748 * If a full scan of the inactive list fails to free enough memory then we 2749 * are "out of memory" and something needs to be killed. 2750 * 2751 * If the caller is !__GFP_FS then the probability of a failure is reasonably 2752 * high - the zone may be full of dirty or under-writeback pages, which this 2753 * caller can't do much about. We kick the writeback threads and take explicit 2754 * naps in the hope that some of these pages can be written. But if the 2755 * allocating task holds filesystem locks which prevent writeout this might not 2756 * work, and the allocation attempt will fail. 2757 * 2758 * returns: 0, if no pages reclaimed 2759 * else, the number of pages reclaimed 2760 */ 2761 static unsigned long do_try_to_free_pages(struct zonelist *zonelist, 2762 struct scan_control *sc) 2763 { 2764 int initial_priority = sc->priority; 2765 pg_data_t *last_pgdat; 2766 struct zoneref *z; 2767 struct zone *zone; 2768 retry: 2769 delayacct_freepages_start(); 2770 2771 if (global_reclaim(sc)) 2772 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); 2773 2774 do { 2775 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, 2776 sc->priority); 2777 sc->nr_scanned = 0; 2778 shrink_zones(zonelist, sc); 2779 2780 if (sc->nr_reclaimed >= sc->nr_to_reclaim) 2781 break; 2782 2783 if (sc->compaction_ready) 2784 break; 2785 2786 /* 2787 * If we're getting trouble reclaiming, start doing 2788 * writepage even in laptop mode. 2789 */ 2790 if (sc->priority < DEF_PRIORITY - 2) 2791 sc->may_writepage = 1; 2792 } while (--sc->priority >= 0); 2793 2794 last_pgdat = NULL; 2795 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, 2796 sc->nodemask) { 2797 if (zone->zone_pgdat == last_pgdat) 2798 continue; 2799 last_pgdat = zone->zone_pgdat; 2800 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); 2801 } 2802 2803 delayacct_freepages_end(); 2804 2805 if (sc->nr_reclaimed) 2806 return sc->nr_reclaimed; 2807 2808 /* Aborted reclaim to try compaction? don't OOM, then */ 2809 if (sc->compaction_ready) 2810 return 1; 2811 2812 /* Untapped cgroup reserves? Don't OOM, retry. */ 2813 if (sc->memcg_low_skipped) { 2814 sc->priority = initial_priority; 2815 sc->memcg_low_reclaim = 1; 2816 sc->memcg_low_skipped = 0; 2817 goto retry; 2818 } 2819 2820 return 0; 2821 } 2822 2823 static bool allow_direct_reclaim(pg_data_t *pgdat) 2824 { 2825 struct zone *zone; 2826 unsigned long pfmemalloc_reserve = 0; 2827 unsigned long free_pages = 0; 2828 int i; 2829 bool wmark_ok; 2830 2831 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 2832 return true; 2833 2834 for (i = 0; i <= ZONE_NORMAL; i++) { 2835 zone = &pgdat->node_zones[i]; 2836 if (!managed_zone(zone)) 2837 continue; 2838 2839 if (!zone_reclaimable_pages(zone)) 2840 continue; 2841 2842 pfmemalloc_reserve += min_wmark_pages(zone); 2843 free_pages += zone_page_state(zone, NR_FREE_PAGES); 2844 } 2845 2846 /* If there are no reserves (unexpected config) then do not throttle */ 2847 if (!pfmemalloc_reserve) 2848 return true; 2849 2850 wmark_ok = free_pages > pfmemalloc_reserve / 2; 2851 2852 /* kswapd must be awake if processes are being throttled */ 2853 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { 2854 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, 2855 (enum zone_type)ZONE_NORMAL); 2856 wake_up_interruptible(&pgdat->kswapd_wait); 2857 } 2858 2859 return wmark_ok; 2860 } 2861 2862 /* 2863 * Throttle direct reclaimers if backing storage is backed by the network 2864 * and the PFMEMALLOC reserve for the preferred node is getting dangerously 2865 * depleted. kswapd will continue to make progress and wake the processes 2866 * when the low watermark is reached. 2867 * 2868 * Returns true if a fatal signal was delivered during throttling. If this 2869 * happens, the page allocator should not consider triggering the OOM killer. 2870 */ 2871 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, 2872 nodemask_t *nodemask) 2873 { 2874 struct zoneref *z; 2875 struct zone *zone; 2876 pg_data_t *pgdat = NULL; 2877 2878 /* 2879 * Kernel threads should not be throttled as they may be indirectly 2880 * responsible for cleaning pages necessary for reclaim to make forward 2881 * progress. kjournald for example may enter direct reclaim while 2882 * committing a transaction where throttling it could forcing other 2883 * processes to block on log_wait_commit(). 2884 */ 2885 if (current->flags & PF_KTHREAD) 2886 goto out; 2887 2888 /* 2889 * If a fatal signal is pending, this process should not throttle. 2890 * It should return quickly so it can exit and free its memory 2891 */ 2892 if (fatal_signal_pending(current)) 2893 goto out; 2894 2895 /* 2896 * Check if the pfmemalloc reserves are ok by finding the first node 2897 * with a usable ZONE_NORMAL or lower zone. The expectation is that 2898 * GFP_KERNEL will be required for allocating network buffers when 2899 * swapping over the network so ZONE_HIGHMEM is unusable. 2900 * 2901 * Throttling is based on the first usable node and throttled processes 2902 * wait on a queue until kswapd makes progress and wakes them. There 2903 * is an affinity then between processes waking up and where reclaim 2904 * progress has been made assuming the process wakes on the same node. 2905 * More importantly, processes running on remote nodes will not compete 2906 * for remote pfmemalloc reserves and processes on different nodes 2907 * should make reasonable progress. 2908 */ 2909 for_each_zone_zonelist_nodemask(zone, z, zonelist, 2910 gfp_zone(gfp_mask), nodemask) { 2911 if (zone_idx(zone) > ZONE_NORMAL) 2912 continue; 2913 2914 /* Throttle based on the first usable node */ 2915 pgdat = zone->zone_pgdat; 2916 if (allow_direct_reclaim(pgdat)) 2917 goto out; 2918 break; 2919 } 2920 2921 /* If no zone was usable by the allocation flags then do not throttle */ 2922 if (!pgdat) 2923 goto out; 2924 2925 /* Account for the throttling */ 2926 count_vm_event(PGSCAN_DIRECT_THROTTLE); 2927 2928 /* 2929 * If the caller cannot enter the filesystem, it's possible that it 2930 * is due to the caller holding an FS lock or performing a journal 2931 * transaction in the case of a filesystem like ext[3|4]. In this case, 2932 * it is not safe to block on pfmemalloc_wait as kswapd could be 2933 * blocked waiting on the same lock. Instead, throttle for up to a 2934 * second before continuing. 2935 */ 2936 if (!(gfp_mask & __GFP_FS)) { 2937 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, 2938 allow_direct_reclaim(pgdat), HZ); 2939 2940 goto check_pending; 2941 } 2942 2943 /* Throttle until kswapd wakes the process */ 2944 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, 2945 allow_direct_reclaim(pgdat)); 2946 2947 check_pending: 2948 if (fatal_signal_pending(current)) 2949 return true; 2950 2951 out: 2952 return false; 2953 } 2954 2955 unsigned long try_to_free_pages(struct zonelist *zonelist, int order, 2956 gfp_t gfp_mask, nodemask_t *nodemask) 2957 { 2958 unsigned long nr_reclaimed; 2959 struct scan_control sc = { 2960 .nr_to_reclaim = SWAP_CLUSTER_MAX, 2961 .gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)), 2962 .reclaim_idx = gfp_zone(gfp_mask), 2963 .order = order, 2964 .nodemask = nodemask, 2965 .priority = DEF_PRIORITY, 2966 .may_writepage = !laptop_mode, 2967 .may_unmap = 1, 2968 .may_swap = 1, 2969 }; 2970 2971 /* 2972 * Do not enter reclaim if fatal signal was delivered while throttled. 2973 * 1 is returned so that the page allocator does not OOM kill at this 2974 * point. 2975 */ 2976 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask)) 2977 return 1; 2978 2979 trace_mm_vmscan_direct_reclaim_begin(order, 2980 sc.may_writepage, 2981 gfp_mask, 2982 sc.reclaim_idx); 2983 2984 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 2985 2986 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); 2987 2988 return nr_reclaimed; 2989 } 2990 2991 #ifdef CONFIG_MEMCG 2992 2993 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, 2994 gfp_t gfp_mask, bool noswap, 2995 pg_data_t *pgdat, 2996 unsigned long *nr_scanned) 2997 { 2998 struct scan_control sc = { 2999 .nr_to_reclaim = SWAP_CLUSTER_MAX, 3000 .target_mem_cgroup = memcg, 3001 .may_writepage = !laptop_mode, 3002 .may_unmap = 1, 3003 .reclaim_idx = MAX_NR_ZONES - 1, 3004 .may_swap = !noswap, 3005 }; 3006 unsigned long lru_pages; 3007 3008 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | 3009 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); 3010 3011 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, 3012 sc.may_writepage, 3013 sc.gfp_mask, 3014 sc.reclaim_idx); 3015 3016 /* 3017 * NOTE: Although we can get the priority field, using it 3018 * here is not a good idea, since it limits the pages we can scan. 3019 * if we don't reclaim here, the shrink_node from balance_pgdat 3020 * will pick up pages from other mem cgroup's as well. We hack 3021 * the priority and make it zero. 3022 */ 3023 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); 3024 3025 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); 3026 3027 *nr_scanned = sc.nr_scanned; 3028 return sc.nr_reclaimed; 3029 } 3030 3031 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, 3032 unsigned long nr_pages, 3033 gfp_t gfp_mask, 3034 bool may_swap) 3035 { 3036 struct zonelist *zonelist; 3037 unsigned long nr_reclaimed; 3038 int nid; 3039 unsigned int noreclaim_flag; 3040 struct scan_control sc = { 3041 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3042 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | 3043 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), 3044 .reclaim_idx = MAX_NR_ZONES - 1, 3045 .target_mem_cgroup = memcg, 3046 .priority = DEF_PRIORITY, 3047 .may_writepage = !laptop_mode, 3048 .may_unmap = 1, 3049 .may_swap = may_swap, 3050 }; 3051 3052 /* 3053 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't 3054 * take care of from where we get pages. So the node where we start the 3055 * scan does not need to be the current node. 3056 */ 3057 nid = mem_cgroup_select_victim_node(memcg); 3058 3059 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 3060 3061 trace_mm_vmscan_memcg_reclaim_begin(0, 3062 sc.may_writepage, 3063 sc.gfp_mask, 3064 sc.reclaim_idx); 3065 3066 noreclaim_flag = memalloc_noreclaim_save(); 3067 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3068 memalloc_noreclaim_restore(noreclaim_flag); 3069 3070 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); 3071 3072 return nr_reclaimed; 3073 } 3074 #endif 3075 3076 static void age_active_anon(struct pglist_data *pgdat, 3077 struct scan_control *sc) 3078 { 3079 struct mem_cgroup *memcg; 3080 3081 if (!total_swap_pages) 3082 return; 3083 3084 memcg = mem_cgroup_iter(NULL, NULL, NULL); 3085 do { 3086 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); 3087 3088 if (inactive_list_is_low(lruvec, false, memcg, sc, true)) 3089 shrink_active_list(SWAP_CLUSTER_MAX, lruvec, 3090 sc, LRU_ACTIVE_ANON); 3091 3092 memcg = mem_cgroup_iter(NULL, memcg, NULL); 3093 } while (memcg); 3094 } 3095 3096 /* 3097 * Returns true if there is an eligible zone balanced for the request order 3098 * and classzone_idx 3099 */ 3100 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) 3101 { 3102 int i; 3103 unsigned long mark = -1; 3104 struct zone *zone; 3105 3106 for (i = 0; i <= classzone_idx; i++) { 3107 zone = pgdat->node_zones + i; 3108 3109 if (!managed_zone(zone)) 3110 continue; 3111 3112 mark = high_wmark_pages(zone); 3113 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) 3114 return true; 3115 } 3116 3117 /* 3118 * If a node has no populated zone within classzone_idx, it does not 3119 * need balancing by definition. This can happen if a zone-restricted 3120 * allocation tries to wake a remote kswapd. 3121 */ 3122 if (mark == -1) 3123 return true; 3124 3125 return false; 3126 } 3127 3128 /* Clear pgdat state for congested, dirty or under writeback. */ 3129 static void clear_pgdat_congested(pg_data_t *pgdat) 3130 { 3131 clear_bit(PGDAT_CONGESTED, &pgdat->flags); 3132 clear_bit(PGDAT_DIRTY, &pgdat->flags); 3133 clear_bit(PGDAT_WRITEBACK, &pgdat->flags); 3134 } 3135 3136 /* 3137 * Prepare kswapd for sleeping. This verifies that there are no processes 3138 * waiting in throttle_direct_reclaim() and that watermarks have been met. 3139 * 3140 * Returns true if kswapd is ready to sleep 3141 */ 3142 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) 3143 { 3144 /* 3145 * The throttled processes are normally woken up in balance_pgdat() as 3146 * soon as allow_direct_reclaim() is true. But there is a potential 3147 * race between when kswapd checks the watermarks and a process gets 3148 * throttled. There is also a potential race if processes get 3149 * throttled, kswapd wakes, a large process exits thereby balancing the 3150 * zones, which causes kswapd to exit balance_pgdat() before reaching 3151 * the wake up checks. If kswapd is going to sleep, no process should 3152 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If 3153 * the wake up is premature, processes will wake kswapd and get 3154 * throttled again. The difference from wake ups in balance_pgdat() is 3155 * that here we are under prepare_to_wait(). 3156 */ 3157 if (waitqueue_active(&pgdat->pfmemalloc_wait)) 3158 wake_up_all(&pgdat->pfmemalloc_wait); 3159 3160 /* Hopeless node, leave it to direct reclaim */ 3161 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3162 return true; 3163 3164 if (pgdat_balanced(pgdat, order, classzone_idx)) { 3165 clear_pgdat_congested(pgdat); 3166 return true; 3167 } 3168 3169 return false; 3170 } 3171 3172 /* 3173 * kswapd shrinks a node of pages that are at or below the highest usable 3174 * zone that is currently unbalanced. 3175 * 3176 * Returns true if kswapd scanned at least the requested number of pages to 3177 * reclaim or if the lack of progress was due to pages under writeback. 3178 * This is used to determine if the scanning priority needs to be raised. 3179 */ 3180 static bool kswapd_shrink_node(pg_data_t *pgdat, 3181 struct scan_control *sc) 3182 { 3183 struct zone *zone; 3184 int z; 3185 3186 /* Reclaim a number of pages proportional to the number of zones */ 3187 sc->nr_to_reclaim = 0; 3188 for (z = 0; z <= sc->reclaim_idx; z++) { 3189 zone = pgdat->node_zones + z; 3190 if (!managed_zone(zone)) 3191 continue; 3192 3193 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); 3194 } 3195 3196 /* 3197 * Historically care was taken to put equal pressure on all zones but 3198 * now pressure is applied based on node LRU order. 3199 */ 3200 shrink_node(pgdat, sc); 3201 3202 /* 3203 * Fragmentation may mean that the system cannot be rebalanced for 3204 * high-order allocations. If twice the allocation size has been 3205 * reclaimed then recheck watermarks only at order-0 to prevent 3206 * excessive reclaim. Assume that a process requested a high-order 3207 * can direct reclaim/compact. 3208 */ 3209 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) 3210 sc->order = 0; 3211 3212 return sc->nr_scanned >= sc->nr_to_reclaim; 3213 } 3214 3215 /* 3216 * For kswapd, balance_pgdat() will reclaim pages across a node from zones 3217 * that are eligible for use by the caller until at least one zone is 3218 * balanced. 3219 * 3220 * Returns the order kswapd finished reclaiming at. 3221 * 3222 * kswapd scans the zones in the highmem->normal->dma direction. It skips 3223 * zones which have free_pages > high_wmark_pages(zone), but once a zone is 3224 * found to have free_pages <= high_wmark_pages(zone), any page is that zone 3225 * or lower is eligible for reclaim until at least one usable zone is 3226 * balanced. 3227 */ 3228 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) 3229 { 3230 int i; 3231 unsigned long nr_soft_reclaimed; 3232 unsigned long nr_soft_scanned; 3233 struct zone *zone; 3234 struct scan_control sc = { 3235 .gfp_mask = GFP_KERNEL, 3236 .order = order, 3237 .priority = DEF_PRIORITY, 3238 .may_writepage = !laptop_mode, 3239 .may_unmap = 1, 3240 .may_swap = 1, 3241 }; 3242 count_vm_event(PAGEOUTRUN); 3243 3244 do { 3245 unsigned long nr_reclaimed = sc.nr_reclaimed; 3246 bool raise_priority = true; 3247 3248 sc.reclaim_idx = classzone_idx; 3249 3250 /* 3251 * If the number of buffer_heads exceeds the maximum allowed 3252 * then consider reclaiming from all zones. This has a dual 3253 * purpose -- on 64-bit systems it is expected that 3254 * buffer_heads are stripped during active rotation. On 32-bit 3255 * systems, highmem pages can pin lowmem memory and shrinking 3256 * buffers can relieve lowmem pressure. Reclaim may still not 3257 * go ahead if all eligible zones for the original allocation 3258 * request are balanced to avoid excessive reclaim from kswapd. 3259 */ 3260 if (buffer_heads_over_limit) { 3261 for (i = MAX_NR_ZONES - 1; i >= 0; i--) { 3262 zone = pgdat->node_zones + i; 3263 if (!managed_zone(zone)) 3264 continue; 3265 3266 sc.reclaim_idx = i; 3267 break; 3268 } 3269 } 3270 3271 /* 3272 * Only reclaim if there are no eligible zones. Note that 3273 * sc.reclaim_idx is not used as buffer_heads_over_limit may 3274 * have adjusted it. 3275 */ 3276 if (pgdat_balanced(pgdat, sc.order, classzone_idx)) 3277 goto out; 3278 3279 /* 3280 * Do some background aging of the anon list, to give 3281 * pages a chance to be referenced before reclaiming. All 3282 * pages are rotated regardless of classzone as this is 3283 * about consistent aging. 3284 */ 3285 age_active_anon(pgdat, &sc); 3286 3287 /* 3288 * If we're getting trouble reclaiming, start doing writepage 3289 * even in laptop mode. 3290 */ 3291 if (sc.priority < DEF_PRIORITY - 2) 3292 sc.may_writepage = 1; 3293 3294 /* Call soft limit reclaim before calling shrink_node. */ 3295 sc.nr_scanned = 0; 3296 nr_soft_scanned = 0; 3297 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, 3298 sc.gfp_mask, &nr_soft_scanned); 3299 sc.nr_reclaimed += nr_soft_reclaimed; 3300 3301 /* 3302 * There should be no need to raise the scanning priority if 3303 * enough pages are already being scanned that that high 3304 * watermark would be met at 100% efficiency. 3305 */ 3306 if (kswapd_shrink_node(pgdat, &sc)) 3307 raise_priority = false; 3308 3309 /* 3310 * If the low watermark is met there is no need for processes 3311 * to be throttled on pfmemalloc_wait as they should not be 3312 * able to safely make forward progress. Wake them 3313 */ 3314 if (waitqueue_active(&pgdat->pfmemalloc_wait) && 3315 allow_direct_reclaim(pgdat)) 3316 wake_up_all(&pgdat->pfmemalloc_wait); 3317 3318 /* Check if kswapd should be suspending */ 3319 if (try_to_freeze() || kthread_should_stop()) 3320 break; 3321 3322 /* 3323 * Raise priority if scanning rate is too low or there was no 3324 * progress in reclaiming pages 3325 */ 3326 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; 3327 if (raise_priority || !nr_reclaimed) 3328 sc.priority--; 3329 } while (sc.priority >= 1); 3330 3331 if (!sc.nr_reclaimed) 3332 pgdat->kswapd_failures++; 3333 3334 out: 3335 snapshot_refaults(NULL, pgdat); 3336 /* 3337 * Return the order kswapd stopped reclaiming at as 3338 * prepare_kswapd_sleep() takes it into account. If another caller 3339 * entered the allocator slow path while kswapd was awake, order will 3340 * remain at the higher level. 3341 */ 3342 return sc.order; 3343 } 3344 3345 /* 3346 * pgdat->kswapd_classzone_idx is the highest zone index that a recent 3347 * allocation request woke kswapd for. When kswapd has not woken recently, 3348 * the value is MAX_NR_ZONES which is not a valid index. This compares a 3349 * given classzone and returns it or the highest classzone index kswapd 3350 * was recently woke for. 3351 */ 3352 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, 3353 enum zone_type classzone_idx) 3354 { 3355 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) 3356 return classzone_idx; 3357 3358 return max(pgdat->kswapd_classzone_idx, classzone_idx); 3359 } 3360 3361 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, 3362 unsigned int classzone_idx) 3363 { 3364 long remaining = 0; 3365 DEFINE_WAIT(wait); 3366 3367 if (freezing(current) || kthread_should_stop()) 3368 return; 3369 3370 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3371 3372 /* 3373 * Try to sleep for a short interval. Note that kcompactd will only be 3374 * woken if it is possible to sleep for a short interval. This is 3375 * deliberate on the assumption that if reclaim cannot keep an 3376 * eligible zone balanced that it's also unlikely that compaction will 3377 * succeed. 3378 */ 3379 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3380 /* 3381 * Compaction records what page blocks it recently failed to 3382 * isolate pages from and skips them in the future scanning. 3383 * When kswapd is going to sleep, it is reasonable to assume 3384 * that pages and compaction may succeed so reset the cache. 3385 */ 3386 reset_isolation_suitable(pgdat); 3387 3388 /* 3389 * We have freed the memory, now we should compact it to make 3390 * allocation of the requested order possible. 3391 */ 3392 wakeup_kcompactd(pgdat, alloc_order, classzone_idx); 3393 3394 remaining = schedule_timeout(HZ/10); 3395 3396 /* 3397 * If woken prematurely then reset kswapd_classzone_idx and 3398 * order. The values will either be from a wakeup request or 3399 * the previous request that slept prematurely. 3400 */ 3401 if (remaining) { 3402 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3403 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); 3404 } 3405 3406 finish_wait(&pgdat->kswapd_wait, &wait); 3407 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); 3408 } 3409 3410 /* 3411 * After a short sleep, check if it was a premature sleep. If not, then 3412 * go fully to sleep until explicitly woken up. 3413 */ 3414 if (!remaining && 3415 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { 3416 trace_mm_vmscan_kswapd_sleep(pgdat->node_id); 3417 3418 /* 3419 * vmstat counters are not perfectly accurate and the estimated 3420 * value for counters such as NR_FREE_PAGES can deviate from the 3421 * true value by nr_online_cpus * threshold. To avoid the zone 3422 * watermarks being breached while under pressure, we reduce the 3423 * per-cpu vmstat threshold while kswapd is awake and restore 3424 * them before going back to sleep. 3425 */ 3426 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); 3427 3428 if (!kthread_should_stop()) 3429 schedule(); 3430 3431 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); 3432 } else { 3433 if (remaining) 3434 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); 3435 else 3436 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); 3437 } 3438 finish_wait(&pgdat->kswapd_wait, &wait); 3439 } 3440 3441 /* 3442 * The background pageout daemon, started as a kernel thread 3443 * from the init process. 3444 * 3445 * This basically trickles out pages so that we have _some_ 3446 * free memory available even if there is no other activity 3447 * that frees anything up. This is needed for things like routing 3448 * etc, where we otherwise might have all activity going on in 3449 * asynchronous contexts that cannot page things out. 3450 * 3451 * If there are applications that are active memory-allocators 3452 * (most normal use), this basically shouldn't matter. 3453 */ 3454 static int kswapd(void *p) 3455 { 3456 unsigned int alloc_order, reclaim_order; 3457 unsigned int classzone_idx = MAX_NR_ZONES - 1; 3458 pg_data_t *pgdat = (pg_data_t*)p; 3459 struct task_struct *tsk = current; 3460 3461 struct reclaim_state reclaim_state = { 3462 .reclaimed_slab = 0, 3463 }; 3464 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 3465 3466 lockdep_set_current_reclaim_state(GFP_KERNEL); 3467 3468 if (!cpumask_empty(cpumask)) 3469 set_cpus_allowed_ptr(tsk, cpumask); 3470 current->reclaim_state = &reclaim_state; 3471 3472 /* 3473 * Tell the memory management that we're a "memory allocator", 3474 * and that if we need more memory we should get access to it 3475 * regardless (see "__alloc_pages()"). "kswapd" should 3476 * never get caught in the normal page freeing logic. 3477 * 3478 * (Kswapd normally doesn't need memory anyway, but sometimes 3479 * you need a small amount of memory in order to be able to 3480 * page out something else, and this flag essentially protects 3481 * us from recursively trying to free more memory as we're 3482 * trying to free the first piece of memory in the first place). 3483 */ 3484 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 3485 set_freezable(); 3486 3487 pgdat->kswapd_order = 0; 3488 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3489 for ( ; ; ) { 3490 bool ret; 3491 3492 alloc_order = reclaim_order = pgdat->kswapd_order; 3493 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); 3494 3495 kswapd_try_sleep: 3496 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, 3497 classzone_idx); 3498 3499 /* Read the new order and classzone_idx */ 3500 alloc_order = reclaim_order = pgdat->kswapd_order; 3501 classzone_idx = kswapd_classzone_idx(pgdat, 0); 3502 pgdat->kswapd_order = 0; 3503 pgdat->kswapd_classzone_idx = MAX_NR_ZONES; 3504 3505 ret = try_to_freeze(); 3506 if (kthread_should_stop()) 3507 break; 3508 3509 /* 3510 * We can speed up thawing tasks if we don't call balance_pgdat 3511 * after returning from the refrigerator 3512 */ 3513 if (ret) 3514 continue; 3515 3516 /* 3517 * Reclaim begins at the requested order but if a high-order 3518 * reclaim fails then kswapd falls back to reclaiming for 3519 * order-0. If that happens, kswapd will consider sleeping 3520 * for the order it finished reclaiming at (reclaim_order) 3521 * but kcompactd is woken to compact for the original 3522 * request (alloc_order). 3523 */ 3524 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, 3525 alloc_order); 3526 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); 3527 if (reclaim_order < alloc_order) 3528 goto kswapd_try_sleep; 3529 } 3530 3531 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); 3532 current->reclaim_state = NULL; 3533 lockdep_clear_current_reclaim_state(); 3534 3535 return 0; 3536 } 3537 3538 /* 3539 * A zone is low on free memory, so wake its kswapd task to service it. 3540 */ 3541 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) 3542 { 3543 pg_data_t *pgdat; 3544 3545 if (!managed_zone(zone)) 3546 return; 3547 3548 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL)) 3549 return; 3550 pgdat = zone->zone_pgdat; 3551 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, 3552 classzone_idx); 3553 pgdat->kswapd_order = max(pgdat->kswapd_order, order); 3554 if (!waitqueue_active(&pgdat->kswapd_wait)) 3555 return; 3556 3557 /* Hopeless node, leave it to direct reclaim */ 3558 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) 3559 return; 3560 3561 if (pgdat_balanced(pgdat, order, classzone_idx)) 3562 return; 3563 3564 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order); 3565 wake_up_interruptible(&pgdat->kswapd_wait); 3566 } 3567 3568 #ifdef CONFIG_HIBERNATION 3569 /* 3570 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of 3571 * freed pages. 3572 * 3573 * Rather than trying to age LRUs the aim is to preserve the overall 3574 * LRU order by reclaiming preferentially 3575 * inactive > active > active referenced > active mapped 3576 */ 3577 unsigned long shrink_all_memory(unsigned long nr_to_reclaim) 3578 { 3579 struct reclaim_state reclaim_state; 3580 struct scan_control sc = { 3581 .nr_to_reclaim = nr_to_reclaim, 3582 .gfp_mask = GFP_HIGHUSER_MOVABLE, 3583 .reclaim_idx = MAX_NR_ZONES - 1, 3584 .priority = DEF_PRIORITY, 3585 .may_writepage = 1, 3586 .may_unmap = 1, 3587 .may_swap = 1, 3588 .hibernation_mode = 1, 3589 }; 3590 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); 3591 struct task_struct *p = current; 3592 unsigned long nr_reclaimed; 3593 unsigned int noreclaim_flag; 3594 3595 noreclaim_flag = memalloc_noreclaim_save(); 3596 lockdep_set_current_reclaim_state(sc.gfp_mask); 3597 reclaim_state.reclaimed_slab = 0; 3598 p->reclaim_state = &reclaim_state; 3599 3600 nr_reclaimed = do_try_to_free_pages(zonelist, &sc); 3601 3602 p->reclaim_state = NULL; 3603 lockdep_clear_current_reclaim_state(); 3604 memalloc_noreclaim_restore(noreclaim_flag); 3605 3606 return nr_reclaimed; 3607 } 3608 #endif /* CONFIG_HIBERNATION */ 3609 3610 /* It's optimal to keep kswapds on the same CPUs as their memory, but 3611 not required for correctness. So if the last cpu in a node goes 3612 away, we get changed to run anywhere: as the first one comes back, 3613 restore their cpu bindings. */ 3614 static int kswapd_cpu_online(unsigned int cpu) 3615 { 3616 int nid; 3617 3618 for_each_node_state(nid, N_MEMORY) { 3619 pg_data_t *pgdat = NODE_DATA(nid); 3620 const struct cpumask *mask; 3621 3622 mask = cpumask_of_node(pgdat->node_id); 3623 3624 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) 3625 /* One of our CPUs online: restore mask */ 3626 set_cpus_allowed_ptr(pgdat->kswapd, mask); 3627 } 3628 return 0; 3629 } 3630 3631 /* 3632 * This kswapd start function will be called by init and node-hot-add. 3633 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. 3634 */ 3635 int kswapd_run(int nid) 3636 { 3637 pg_data_t *pgdat = NODE_DATA(nid); 3638 int ret = 0; 3639 3640 if (pgdat->kswapd) 3641 return 0; 3642 3643 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); 3644 if (IS_ERR(pgdat->kswapd)) { 3645 /* failure at boot is fatal */ 3646 BUG_ON(system_state == SYSTEM_BOOTING); 3647 pr_err("Failed to start kswapd on node %d\n", nid); 3648 ret = PTR_ERR(pgdat->kswapd); 3649 pgdat->kswapd = NULL; 3650 } 3651 return ret; 3652 } 3653 3654 /* 3655 * Called by memory hotplug when all memory in a node is offlined. Caller must 3656 * hold mem_hotplug_begin/end(). 3657 */ 3658 void kswapd_stop(int nid) 3659 { 3660 struct task_struct *kswapd = NODE_DATA(nid)->kswapd; 3661 3662 if (kswapd) { 3663 kthread_stop(kswapd); 3664 NODE_DATA(nid)->kswapd = NULL; 3665 } 3666 } 3667 3668 static int __init kswapd_init(void) 3669 { 3670 int nid, ret; 3671 3672 swap_setup(); 3673 for_each_node_state(nid, N_MEMORY) 3674 kswapd_run(nid); 3675 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, 3676 "mm/vmscan:online", kswapd_cpu_online, 3677 NULL); 3678 WARN_ON(ret < 0); 3679 return 0; 3680 } 3681 3682 module_init(kswapd_init) 3683 3684 #ifdef CONFIG_NUMA 3685 /* 3686 * Node reclaim mode 3687 * 3688 * If non-zero call node_reclaim when the number of free pages falls below 3689 * the watermarks. 3690 */ 3691 int node_reclaim_mode __read_mostly; 3692 3693 #define RECLAIM_OFF 0 3694 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ 3695 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ 3696 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ 3697 3698 /* 3699 * Priority for NODE_RECLAIM. This determines the fraction of pages 3700 * of a node considered for each zone_reclaim. 4 scans 1/16th of 3701 * a zone. 3702 */ 3703 #define NODE_RECLAIM_PRIORITY 4 3704 3705 /* 3706 * Percentage of pages in a zone that must be unmapped for node_reclaim to 3707 * occur. 3708 */ 3709 int sysctl_min_unmapped_ratio = 1; 3710 3711 /* 3712 * If the number of slab pages in a zone grows beyond this percentage then 3713 * slab reclaim needs to occur. 3714 */ 3715 int sysctl_min_slab_ratio = 5; 3716 3717 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) 3718 { 3719 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); 3720 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + 3721 node_page_state(pgdat, NR_ACTIVE_FILE); 3722 3723 /* 3724 * It's possible for there to be more file mapped pages than 3725 * accounted for by the pages on the file LRU lists because 3726 * tmpfs pages accounted for as ANON can also be FILE_MAPPED 3727 */ 3728 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; 3729 } 3730 3731 /* Work out how many page cache pages we can reclaim in this reclaim_mode */ 3732 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) 3733 { 3734 unsigned long nr_pagecache_reclaimable; 3735 unsigned long delta = 0; 3736 3737 /* 3738 * If RECLAIM_UNMAP is set, then all file pages are considered 3739 * potentially reclaimable. Otherwise, we have to worry about 3740 * pages like swapcache and node_unmapped_file_pages() provides 3741 * a better estimate 3742 */ 3743 if (node_reclaim_mode & RECLAIM_UNMAP) 3744 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); 3745 else 3746 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); 3747 3748 /* If we can't clean pages, remove dirty pages from consideration */ 3749 if (!(node_reclaim_mode & RECLAIM_WRITE)) 3750 delta += node_page_state(pgdat, NR_FILE_DIRTY); 3751 3752 /* Watch for any possible underflows due to delta */ 3753 if (unlikely(delta > nr_pagecache_reclaimable)) 3754 delta = nr_pagecache_reclaimable; 3755 3756 return nr_pagecache_reclaimable - delta; 3757 } 3758 3759 /* 3760 * Try to free up some pages from this node through reclaim. 3761 */ 3762 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3763 { 3764 /* Minimum pages needed in order to stay on node */ 3765 const unsigned long nr_pages = 1 << order; 3766 struct task_struct *p = current; 3767 struct reclaim_state reclaim_state; 3768 int classzone_idx = gfp_zone(gfp_mask); 3769 unsigned int noreclaim_flag; 3770 struct scan_control sc = { 3771 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), 3772 .gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)), 3773 .order = order, 3774 .priority = NODE_RECLAIM_PRIORITY, 3775 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), 3776 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), 3777 .may_swap = 1, 3778 .reclaim_idx = classzone_idx, 3779 }; 3780 3781 cond_resched(); 3782 /* 3783 * We need to be able to allocate from the reserves for RECLAIM_UNMAP 3784 * and we also need to be able to write out pages for RECLAIM_WRITE 3785 * and RECLAIM_UNMAP. 3786 */ 3787 noreclaim_flag = memalloc_noreclaim_save(); 3788 p->flags |= PF_SWAPWRITE; 3789 lockdep_set_current_reclaim_state(gfp_mask); 3790 reclaim_state.reclaimed_slab = 0; 3791 p->reclaim_state = &reclaim_state; 3792 3793 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { 3794 /* 3795 * Free memory by calling shrink zone with increasing 3796 * priorities until we have enough memory freed. 3797 */ 3798 do { 3799 shrink_node(pgdat, &sc); 3800 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); 3801 } 3802 3803 p->reclaim_state = NULL; 3804 current->flags &= ~PF_SWAPWRITE; 3805 memalloc_noreclaim_restore(noreclaim_flag); 3806 lockdep_clear_current_reclaim_state(); 3807 return sc.nr_reclaimed >= nr_pages; 3808 } 3809 3810 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) 3811 { 3812 int ret; 3813 3814 /* 3815 * Node reclaim reclaims unmapped file backed pages and 3816 * slab pages if we are over the defined limits. 3817 * 3818 * A small portion of unmapped file backed pages is needed for 3819 * file I/O otherwise pages read by file I/O will be immediately 3820 * thrown out if the node is overallocated. So we do not reclaim 3821 * if less than a specified percentage of the node is used by 3822 * unmapped file backed pages. 3823 */ 3824 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && 3825 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) 3826 return NODE_RECLAIM_FULL; 3827 3828 /* 3829 * Do not scan if the allocation should not be delayed. 3830 */ 3831 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) 3832 return NODE_RECLAIM_NOSCAN; 3833 3834 /* 3835 * Only run node reclaim on the local node or on nodes that do not 3836 * have associated processors. This will favor the local processor 3837 * over remote processors and spread off node memory allocations 3838 * as wide as possible. 3839 */ 3840 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) 3841 return NODE_RECLAIM_NOSCAN; 3842 3843 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) 3844 return NODE_RECLAIM_NOSCAN; 3845 3846 ret = __node_reclaim(pgdat, gfp_mask, order); 3847 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); 3848 3849 if (!ret) 3850 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); 3851 3852 return ret; 3853 } 3854 #endif 3855 3856 /* 3857 * page_evictable - test whether a page is evictable 3858 * @page: the page to test 3859 * 3860 * Test whether page is evictable--i.e., should be placed on active/inactive 3861 * lists vs unevictable list. 3862 * 3863 * Reasons page might not be evictable: 3864 * (1) page's mapping marked unevictable 3865 * (2) page is part of an mlocked VMA 3866 * 3867 */ 3868 int page_evictable(struct page *page) 3869 { 3870 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 3871 } 3872 3873 #ifdef CONFIG_SHMEM 3874 /** 3875 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list 3876 * @pages: array of pages to check 3877 * @nr_pages: number of pages to check 3878 * 3879 * Checks pages for evictability and moves them to the appropriate lru list. 3880 * 3881 * This function is only used for SysV IPC SHM_UNLOCK. 3882 */ 3883 void check_move_unevictable_pages(struct page **pages, int nr_pages) 3884 { 3885 struct lruvec *lruvec; 3886 struct pglist_data *pgdat = NULL; 3887 int pgscanned = 0; 3888 int pgrescued = 0; 3889 int i; 3890 3891 for (i = 0; i < nr_pages; i++) { 3892 struct page *page = pages[i]; 3893 struct pglist_data *pagepgdat = page_pgdat(page); 3894 3895 pgscanned++; 3896 if (pagepgdat != pgdat) { 3897 if (pgdat) 3898 spin_unlock_irq(&pgdat->lru_lock); 3899 pgdat = pagepgdat; 3900 spin_lock_irq(&pgdat->lru_lock); 3901 } 3902 lruvec = mem_cgroup_page_lruvec(page, pgdat); 3903 3904 if (!PageLRU(page) || !PageUnevictable(page)) 3905 continue; 3906 3907 if (page_evictable(page)) { 3908 enum lru_list lru = page_lru_base_type(page); 3909 3910 VM_BUG_ON_PAGE(PageActive(page), page); 3911 ClearPageUnevictable(page); 3912 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); 3913 add_page_to_lru_list(page, lruvec, lru); 3914 pgrescued++; 3915 } 3916 } 3917 3918 if (pgdat) { 3919 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); 3920 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); 3921 spin_unlock_irq(&pgdat->lru_lock); 3922 } 3923 } 3924 #endif /* CONFIG_SHMEM */ 3925