1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 * Numa awareness, Christoph Lameter, SGI, June 2005 9 */ 10 11 #include <linux/mm.h> 12 #include <linux/module.h> 13 #include <linux/highmem.h> 14 #include <linux/slab.h> 15 #include <linux/spinlock.h> 16 #include <linux/interrupt.h> 17 18 #include <linux/vmalloc.h> 19 20 #include <asm/uaccess.h> 21 #include <asm/tlbflush.h> 22 23 24 DEFINE_RWLOCK(vmlist_lock); 25 struct vm_struct *vmlist; 26 27 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 28 { 29 pte_t *pte; 30 31 pte = pte_offset_kernel(pmd, addr); 32 do { 33 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 34 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 35 } while (pte++, addr += PAGE_SIZE, addr != end); 36 } 37 38 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr, 39 unsigned long end) 40 { 41 pmd_t *pmd; 42 unsigned long next; 43 44 pmd = pmd_offset(pud, addr); 45 do { 46 next = pmd_addr_end(addr, end); 47 if (pmd_none_or_clear_bad(pmd)) 48 continue; 49 vunmap_pte_range(pmd, addr, next); 50 } while (pmd++, addr = next, addr != end); 51 } 52 53 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr, 54 unsigned long end) 55 { 56 pud_t *pud; 57 unsigned long next; 58 59 pud = pud_offset(pgd, addr); 60 do { 61 next = pud_addr_end(addr, end); 62 if (pud_none_or_clear_bad(pud)) 63 continue; 64 vunmap_pmd_range(pud, addr, next); 65 } while (pud++, addr = next, addr != end); 66 } 67 68 void unmap_vm_area(struct vm_struct *area) 69 { 70 pgd_t *pgd; 71 unsigned long next; 72 unsigned long addr = (unsigned long) area->addr; 73 unsigned long end = addr + area->size; 74 75 BUG_ON(addr >= end); 76 pgd = pgd_offset_k(addr); 77 flush_cache_vunmap(addr, end); 78 do { 79 next = pgd_addr_end(addr, end); 80 if (pgd_none_or_clear_bad(pgd)) 81 continue; 82 vunmap_pud_range(pgd, addr, next); 83 } while (pgd++, addr = next, addr != end); 84 flush_tlb_kernel_range((unsigned long) area->addr, end); 85 } 86 87 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 88 unsigned long end, pgprot_t prot, struct page ***pages) 89 { 90 pte_t *pte; 91 92 pte = pte_alloc_kernel(pmd, addr); 93 if (!pte) 94 return -ENOMEM; 95 do { 96 struct page *page = **pages; 97 WARN_ON(!pte_none(*pte)); 98 if (!page) 99 return -ENOMEM; 100 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 101 (*pages)++; 102 } while (pte++, addr += PAGE_SIZE, addr != end); 103 return 0; 104 } 105 106 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr, 107 unsigned long end, pgprot_t prot, struct page ***pages) 108 { 109 pmd_t *pmd; 110 unsigned long next; 111 112 pmd = pmd_alloc(&init_mm, pud, addr); 113 if (!pmd) 114 return -ENOMEM; 115 do { 116 next = pmd_addr_end(addr, end); 117 if (vmap_pte_range(pmd, addr, next, prot, pages)) 118 return -ENOMEM; 119 } while (pmd++, addr = next, addr != end); 120 return 0; 121 } 122 123 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr, 124 unsigned long end, pgprot_t prot, struct page ***pages) 125 { 126 pud_t *pud; 127 unsigned long next; 128 129 pud = pud_alloc(&init_mm, pgd, addr); 130 if (!pud) 131 return -ENOMEM; 132 do { 133 next = pud_addr_end(addr, end); 134 if (vmap_pmd_range(pud, addr, next, prot, pages)) 135 return -ENOMEM; 136 } while (pud++, addr = next, addr != end); 137 return 0; 138 } 139 140 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 141 { 142 pgd_t *pgd; 143 unsigned long next; 144 unsigned long addr = (unsigned long) area->addr; 145 unsigned long end = addr + area->size - PAGE_SIZE; 146 int err; 147 148 BUG_ON(addr >= end); 149 pgd = pgd_offset_k(addr); 150 do { 151 next = pgd_addr_end(addr, end); 152 err = vmap_pud_range(pgd, addr, next, prot, pages); 153 if (err) 154 break; 155 } while (pgd++, addr = next, addr != end); 156 flush_cache_vmap((unsigned long) area->addr, end); 157 return err; 158 } 159 160 struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags, 161 unsigned long start, unsigned long end, int node) 162 { 163 struct vm_struct **p, *tmp, *area; 164 unsigned long align = 1; 165 unsigned long addr; 166 167 if (flags & VM_IOREMAP) { 168 int bit = fls(size); 169 170 if (bit > IOREMAP_MAX_ORDER) 171 bit = IOREMAP_MAX_ORDER; 172 else if (bit < PAGE_SHIFT) 173 bit = PAGE_SHIFT; 174 175 align = 1ul << bit; 176 } 177 addr = ALIGN(start, align); 178 size = PAGE_ALIGN(size); 179 180 area = kmalloc_node(sizeof(*area), GFP_KERNEL, node); 181 if (unlikely(!area)) 182 return NULL; 183 184 if (unlikely(!size)) { 185 kfree (area); 186 return NULL; 187 } 188 189 /* 190 * We always allocate a guard page. 191 */ 192 size += PAGE_SIZE; 193 194 write_lock(&vmlist_lock); 195 for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) { 196 if ((unsigned long)tmp->addr < addr) { 197 if((unsigned long)tmp->addr + tmp->size >= addr) 198 addr = ALIGN(tmp->size + 199 (unsigned long)tmp->addr, align); 200 continue; 201 } 202 if ((size + addr) < addr) 203 goto out; 204 if (size + addr <= (unsigned long)tmp->addr) 205 goto found; 206 addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); 207 if (addr > end - size) 208 goto out; 209 } 210 211 found: 212 area->next = *p; 213 *p = area; 214 215 area->flags = flags; 216 area->addr = (void *)addr; 217 area->size = size; 218 area->pages = NULL; 219 area->nr_pages = 0; 220 area->phys_addr = 0; 221 write_unlock(&vmlist_lock); 222 223 return area; 224 225 out: 226 write_unlock(&vmlist_lock); 227 kfree(area); 228 if (printk_ratelimit()) 229 printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n"); 230 return NULL; 231 } 232 233 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 234 unsigned long start, unsigned long end) 235 { 236 return __get_vm_area_node(size, flags, start, end, -1); 237 } 238 239 /** 240 * get_vm_area - reserve a contingous kernel virtual area 241 * 242 * @size: size of the area 243 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 244 * 245 * Search an area of @size in the kernel virtual mapping area, 246 * and reserved it for out purposes. Returns the area descriptor 247 * on success or %NULL on failure. 248 */ 249 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 250 { 251 return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END); 252 } 253 254 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, int node) 255 { 256 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node); 257 } 258 259 /* Caller must hold vmlist_lock */ 260 static struct vm_struct *__find_vm_area(void *addr) 261 { 262 struct vm_struct *tmp; 263 264 for (tmp = vmlist; tmp != NULL; tmp = tmp->next) { 265 if (tmp->addr == addr) 266 break; 267 } 268 269 return tmp; 270 } 271 272 /* Caller must hold vmlist_lock */ 273 struct vm_struct *__remove_vm_area(void *addr) 274 { 275 struct vm_struct **p, *tmp; 276 277 for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) { 278 if (tmp->addr == addr) 279 goto found; 280 } 281 return NULL; 282 283 found: 284 unmap_vm_area(tmp); 285 *p = tmp->next; 286 287 /* 288 * Remove the guard page. 289 */ 290 tmp->size -= PAGE_SIZE; 291 return tmp; 292 } 293 294 /** 295 * remove_vm_area - find and remove a contingous kernel virtual area 296 * 297 * @addr: base address 298 * 299 * Search for the kernel VM area starting at @addr, and remove it. 300 * This function returns the found VM area, but using it is NOT safe 301 * on SMP machines, except for its size or flags. 302 */ 303 struct vm_struct *remove_vm_area(void *addr) 304 { 305 struct vm_struct *v; 306 write_lock(&vmlist_lock); 307 v = __remove_vm_area(addr); 308 write_unlock(&vmlist_lock); 309 return v; 310 } 311 312 void __vunmap(void *addr, int deallocate_pages) 313 { 314 struct vm_struct *area; 315 316 if (!addr) 317 return; 318 319 if ((PAGE_SIZE-1) & (unsigned long)addr) { 320 printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 321 WARN_ON(1); 322 return; 323 } 324 325 area = remove_vm_area(addr); 326 if (unlikely(!area)) { 327 printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 328 addr); 329 WARN_ON(1); 330 return; 331 } 332 333 if (deallocate_pages) { 334 int i; 335 336 for (i = 0; i < area->nr_pages; i++) { 337 BUG_ON(!area->pages[i]); 338 __free_page(area->pages[i]); 339 } 340 341 if (area->nr_pages > PAGE_SIZE/sizeof(struct page *)) 342 vfree(area->pages); 343 else 344 kfree(area->pages); 345 } 346 347 kfree(area); 348 return; 349 } 350 351 /** 352 * vfree - release memory allocated by vmalloc() 353 * 354 * @addr: memory base address 355 * 356 * Free the virtually contiguous memory area starting at @addr, as 357 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is 358 * NULL, no operation is performed. 359 * 360 * Must not be called in interrupt context. 361 */ 362 void vfree(void *addr) 363 { 364 BUG_ON(in_interrupt()); 365 __vunmap(addr, 1); 366 } 367 EXPORT_SYMBOL(vfree); 368 369 /** 370 * vunmap - release virtual mapping obtained by vmap() 371 * 372 * @addr: memory base address 373 * 374 * Free the virtually contiguous memory area starting at @addr, 375 * which was created from the page array passed to vmap(). 376 * 377 * Must not be called in interrupt context. 378 */ 379 void vunmap(void *addr) 380 { 381 BUG_ON(in_interrupt()); 382 __vunmap(addr, 0); 383 } 384 EXPORT_SYMBOL(vunmap); 385 386 /** 387 * vmap - map an array of pages into virtually contiguous space 388 * 389 * @pages: array of page pointers 390 * @count: number of pages to map 391 * @flags: vm_area->flags 392 * @prot: page protection for the mapping 393 * 394 * Maps @count pages from @pages into contiguous kernel virtual 395 * space. 396 */ 397 void *vmap(struct page **pages, unsigned int count, 398 unsigned long flags, pgprot_t prot) 399 { 400 struct vm_struct *area; 401 402 if (count > num_physpages) 403 return NULL; 404 405 area = get_vm_area((count << PAGE_SHIFT), flags); 406 if (!area) 407 return NULL; 408 if (map_vm_area(area, prot, &pages)) { 409 vunmap(area->addr); 410 return NULL; 411 } 412 413 return area->addr; 414 } 415 EXPORT_SYMBOL(vmap); 416 417 void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, 418 pgprot_t prot, int node) 419 { 420 struct page **pages; 421 unsigned int nr_pages, array_size, i; 422 423 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 424 array_size = (nr_pages * sizeof(struct page *)); 425 426 area->nr_pages = nr_pages; 427 /* Please note that the recursion is strictly bounded. */ 428 if (array_size > PAGE_SIZE) 429 pages = __vmalloc_node(array_size, gfp_mask, PAGE_KERNEL, node); 430 else 431 pages = kmalloc_node(array_size, (gfp_mask & ~__GFP_HIGHMEM), node); 432 area->pages = pages; 433 if (!area->pages) { 434 remove_vm_area(area->addr); 435 kfree(area); 436 return NULL; 437 } 438 memset(area->pages, 0, array_size); 439 440 for (i = 0; i < area->nr_pages; i++) { 441 if (node < 0) 442 area->pages[i] = alloc_page(gfp_mask); 443 else 444 area->pages[i] = alloc_pages_node(node, gfp_mask, 0); 445 if (unlikely(!area->pages[i])) { 446 /* Successfully allocated i pages, free them in __vunmap() */ 447 area->nr_pages = i; 448 goto fail; 449 } 450 } 451 452 if (map_vm_area(area, prot, &pages)) 453 goto fail; 454 return area->addr; 455 456 fail: 457 vfree(area->addr); 458 return NULL; 459 } 460 461 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot) 462 { 463 return __vmalloc_area_node(area, gfp_mask, prot, -1); 464 } 465 466 /** 467 * __vmalloc_node - allocate virtually contiguous memory 468 * 469 * @size: allocation size 470 * @gfp_mask: flags for the page level allocator 471 * @prot: protection mask for the allocated pages 472 * @node: node to use for allocation or -1 473 * 474 * Allocate enough pages to cover @size from the page level 475 * allocator with @gfp_mask flags. Map them into contiguous 476 * kernel virtual space, using a pagetable protection of @prot. 477 */ 478 void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot, 479 int node) 480 { 481 struct vm_struct *area; 482 483 size = PAGE_ALIGN(size); 484 if (!size || (size >> PAGE_SHIFT) > num_physpages) 485 return NULL; 486 487 area = get_vm_area_node(size, VM_ALLOC, node); 488 if (!area) 489 return NULL; 490 491 return __vmalloc_area_node(area, gfp_mask, prot, node); 492 } 493 EXPORT_SYMBOL(__vmalloc_node); 494 495 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot) 496 { 497 return __vmalloc_node(size, gfp_mask, prot, -1); 498 } 499 EXPORT_SYMBOL(__vmalloc); 500 501 /** 502 * vmalloc - allocate virtually contiguous memory 503 * 504 * @size: allocation size 505 * 506 * Allocate enough pages to cover @size from the page level 507 * allocator and map them into contiguous kernel virtual space. 508 * 509 * For tight cotrol over page level allocator and protection flags 510 * use __vmalloc() instead. 511 */ 512 void *vmalloc(unsigned long size) 513 { 514 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 515 } 516 EXPORT_SYMBOL(vmalloc); 517 518 /** 519 * vmalloc_user - allocate virtually contiguous memory which has 520 * been zeroed so it can be mapped to userspace without 521 * leaking data. 522 * 523 * @size: allocation size 524 */ 525 void *vmalloc_user(unsigned long size) 526 { 527 struct vm_struct *area; 528 void *ret; 529 530 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL); 531 write_lock(&vmlist_lock); 532 area = __find_vm_area(ret); 533 area->flags |= VM_USERMAP; 534 write_unlock(&vmlist_lock); 535 536 return ret; 537 } 538 EXPORT_SYMBOL(vmalloc_user); 539 540 /** 541 * vmalloc_node - allocate memory on a specific node 542 * 543 * @size: allocation size 544 * @node: numa node 545 * 546 * Allocate enough pages to cover @size from the page level 547 * allocator and map them into contiguous kernel virtual space. 548 * 549 * For tight cotrol over page level allocator and protection flags 550 * use __vmalloc() instead. 551 */ 552 void *vmalloc_node(unsigned long size, int node) 553 { 554 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node); 555 } 556 EXPORT_SYMBOL(vmalloc_node); 557 558 #ifndef PAGE_KERNEL_EXEC 559 # define PAGE_KERNEL_EXEC PAGE_KERNEL 560 #endif 561 562 /** 563 * vmalloc_exec - allocate virtually contiguous, executable memory 564 * 565 * @size: allocation size 566 * 567 * Kernel-internal function to allocate enough pages to cover @size 568 * the page level allocator and map them into contiguous and 569 * executable kernel virtual space. 570 * 571 * For tight cotrol over page level allocator and protection flags 572 * use __vmalloc() instead. 573 */ 574 575 void *vmalloc_exec(unsigned long size) 576 { 577 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 578 } 579 580 /** 581 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 582 * 583 * @size: allocation size 584 * 585 * Allocate enough 32bit PA addressable pages to cover @size from the 586 * page level allocator and map them into contiguous kernel virtual space. 587 */ 588 void *vmalloc_32(unsigned long size) 589 { 590 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 591 } 592 EXPORT_SYMBOL(vmalloc_32); 593 594 /** 595 * vmalloc_32_user - allocate virtually contiguous memory (32bit 596 * addressable) which is zeroed so it can be 597 * mapped to userspace without leaking data. 598 * 599 * @size: allocation size 600 */ 601 void *vmalloc_32_user(unsigned long size) 602 { 603 struct vm_struct *area; 604 void *ret; 605 606 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL); 607 write_lock(&vmlist_lock); 608 area = __find_vm_area(ret); 609 area->flags |= VM_USERMAP; 610 write_unlock(&vmlist_lock); 611 612 return ret; 613 } 614 EXPORT_SYMBOL(vmalloc_32_user); 615 616 long vread(char *buf, char *addr, unsigned long count) 617 { 618 struct vm_struct *tmp; 619 char *vaddr, *buf_start = buf; 620 unsigned long n; 621 622 /* Don't allow overflow */ 623 if ((unsigned long) addr + count < count) 624 count = -(unsigned long) addr; 625 626 read_lock(&vmlist_lock); 627 for (tmp = vmlist; tmp; tmp = tmp->next) { 628 vaddr = (char *) tmp->addr; 629 if (addr >= vaddr + tmp->size - PAGE_SIZE) 630 continue; 631 while (addr < vaddr) { 632 if (count == 0) 633 goto finished; 634 *buf = '\0'; 635 buf++; 636 addr++; 637 count--; 638 } 639 n = vaddr + tmp->size - PAGE_SIZE - addr; 640 do { 641 if (count == 0) 642 goto finished; 643 *buf = *addr; 644 buf++; 645 addr++; 646 count--; 647 } while (--n > 0); 648 } 649 finished: 650 read_unlock(&vmlist_lock); 651 return buf - buf_start; 652 } 653 654 long vwrite(char *buf, char *addr, unsigned long count) 655 { 656 struct vm_struct *tmp; 657 char *vaddr, *buf_start = buf; 658 unsigned long n; 659 660 /* Don't allow overflow */ 661 if ((unsigned long) addr + count < count) 662 count = -(unsigned long) addr; 663 664 read_lock(&vmlist_lock); 665 for (tmp = vmlist; tmp; tmp = tmp->next) { 666 vaddr = (char *) tmp->addr; 667 if (addr >= vaddr + tmp->size - PAGE_SIZE) 668 continue; 669 while (addr < vaddr) { 670 if (count == 0) 671 goto finished; 672 buf++; 673 addr++; 674 count--; 675 } 676 n = vaddr + tmp->size - PAGE_SIZE - addr; 677 do { 678 if (count == 0) 679 goto finished; 680 *addr = *buf; 681 buf++; 682 addr++; 683 count--; 684 } while (--n > 0); 685 } 686 finished: 687 read_unlock(&vmlist_lock); 688 return buf - buf_start; 689 } 690 691 /** 692 * remap_vmalloc_range - map vmalloc pages to userspace 693 * 694 * @vma: vma to cover (map full range of vma) 695 * @addr: vmalloc memory 696 * @pgoff: number of pages into addr before first page to map 697 * @returns: 0 for success, -Exxx on failure 698 * 699 * This function checks that addr is a valid vmalloc'ed area, and 700 * that it is big enough to cover the vma. Will return failure if 701 * that criteria isn't met. 702 * 703 * Similar to remap_pfn_range (see mm/memory.c) 704 */ 705 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr, 706 unsigned long pgoff) 707 { 708 struct vm_struct *area; 709 unsigned long uaddr = vma->vm_start; 710 unsigned long usize = vma->vm_end - vma->vm_start; 711 int ret; 712 713 if ((PAGE_SIZE-1) & (unsigned long)addr) 714 return -EINVAL; 715 716 read_lock(&vmlist_lock); 717 area = __find_vm_area(addr); 718 if (!area) 719 goto out_einval_locked; 720 721 if (!(area->flags & VM_USERMAP)) 722 goto out_einval_locked; 723 724 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE) 725 goto out_einval_locked; 726 read_unlock(&vmlist_lock); 727 728 addr += pgoff << PAGE_SHIFT; 729 do { 730 struct page *page = vmalloc_to_page(addr); 731 ret = vm_insert_page(vma, uaddr, page); 732 if (ret) 733 return ret; 734 735 uaddr += PAGE_SIZE; 736 addr += PAGE_SIZE; 737 usize -= PAGE_SIZE; 738 } while (usize > 0); 739 740 /* Prevent "things" like memory migration? VM_flags need a cleanup... */ 741 vma->vm_flags |= VM_RESERVED; 742 743 return ret; 744 745 out_einval_locked: 746 read_unlock(&vmlist_lock); 747 return -EINVAL; 748 } 749 EXPORT_SYMBOL(remap_vmalloc_range); 750 751