1 /* 2 * linux/mm/vmalloc.c 3 * 4 * Copyright (C) 1993 Linus Torvalds 5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000 7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002 8 */ 9 10 #include <linux/mm.h> 11 #include <linux/module.h> 12 #include <linux/highmem.h> 13 #include <linux/slab.h> 14 #include <linux/spinlock.h> 15 #include <linux/interrupt.h> 16 17 #include <linux/vmalloc.h> 18 19 #include <asm/uaccess.h> 20 #include <asm/tlbflush.h> 21 22 23 DEFINE_RWLOCK(vmlist_lock); 24 struct vm_struct *vmlist; 25 26 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end) 27 { 28 pte_t *pte; 29 30 pte = pte_offset_kernel(pmd, addr); 31 do { 32 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte); 33 WARN_ON(!pte_none(ptent) && !pte_present(ptent)); 34 } while (pte++, addr += PAGE_SIZE, addr != end); 35 } 36 37 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr, 38 unsigned long end) 39 { 40 pmd_t *pmd; 41 unsigned long next; 42 43 pmd = pmd_offset(pud, addr); 44 do { 45 next = pmd_addr_end(addr, end); 46 if (pmd_none_or_clear_bad(pmd)) 47 continue; 48 vunmap_pte_range(pmd, addr, next); 49 } while (pmd++, addr = next, addr != end); 50 } 51 52 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr, 53 unsigned long end) 54 { 55 pud_t *pud; 56 unsigned long next; 57 58 pud = pud_offset(pgd, addr); 59 do { 60 next = pud_addr_end(addr, end); 61 if (pud_none_or_clear_bad(pud)) 62 continue; 63 vunmap_pmd_range(pud, addr, next); 64 } while (pud++, addr = next, addr != end); 65 } 66 67 void unmap_vm_area(struct vm_struct *area) 68 { 69 pgd_t *pgd; 70 unsigned long next; 71 unsigned long addr = (unsigned long) area->addr; 72 unsigned long end = addr + area->size; 73 74 BUG_ON(addr >= end); 75 pgd = pgd_offset_k(addr); 76 flush_cache_vunmap(addr, end); 77 do { 78 next = pgd_addr_end(addr, end); 79 if (pgd_none_or_clear_bad(pgd)) 80 continue; 81 vunmap_pud_range(pgd, addr, next); 82 } while (pgd++, addr = next, addr != end); 83 flush_tlb_kernel_range((unsigned long) area->addr, end); 84 } 85 86 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, 87 unsigned long end, pgprot_t prot, struct page ***pages) 88 { 89 pte_t *pte; 90 91 pte = pte_alloc_kernel(&init_mm, pmd, addr); 92 if (!pte) 93 return -ENOMEM; 94 do { 95 struct page *page = **pages; 96 WARN_ON(!pte_none(*pte)); 97 if (!page) 98 return -ENOMEM; 99 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot)); 100 (*pages)++; 101 } while (pte++, addr += PAGE_SIZE, addr != end); 102 return 0; 103 } 104 105 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr, 106 unsigned long end, pgprot_t prot, struct page ***pages) 107 { 108 pmd_t *pmd; 109 unsigned long next; 110 111 pmd = pmd_alloc(&init_mm, pud, addr); 112 if (!pmd) 113 return -ENOMEM; 114 do { 115 next = pmd_addr_end(addr, end); 116 if (vmap_pte_range(pmd, addr, next, prot, pages)) 117 return -ENOMEM; 118 } while (pmd++, addr = next, addr != end); 119 return 0; 120 } 121 122 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr, 123 unsigned long end, pgprot_t prot, struct page ***pages) 124 { 125 pud_t *pud; 126 unsigned long next; 127 128 pud = pud_alloc(&init_mm, pgd, addr); 129 if (!pud) 130 return -ENOMEM; 131 do { 132 next = pud_addr_end(addr, end); 133 if (vmap_pmd_range(pud, addr, next, prot, pages)) 134 return -ENOMEM; 135 } while (pud++, addr = next, addr != end); 136 return 0; 137 } 138 139 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) 140 { 141 pgd_t *pgd; 142 unsigned long next; 143 unsigned long addr = (unsigned long) area->addr; 144 unsigned long end = addr + area->size - PAGE_SIZE; 145 int err; 146 147 BUG_ON(addr >= end); 148 pgd = pgd_offset_k(addr); 149 spin_lock(&init_mm.page_table_lock); 150 do { 151 next = pgd_addr_end(addr, end); 152 err = vmap_pud_range(pgd, addr, next, prot, pages); 153 if (err) 154 break; 155 } while (pgd++, addr = next, addr != end); 156 spin_unlock(&init_mm.page_table_lock); 157 flush_cache_vmap((unsigned long) area->addr, end); 158 return err; 159 } 160 161 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags, 162 unsigned long start, unsigned long end) 163 { 164 struct vm_struct **p, *tmp, *area; 165 unsigned long align = 1; 166 unsigned long addr; 167 168 if (flags & VM_IOREMAP) { 169 int bit = fls(size); 170 171 if (bit > IOREMAP_MAX_ORDER) 172 bit = IOREMAP_MAX_ORDER; 173 else if (bit < PAGE_SHIFT) 174 bit = PAGE_SHIFT; 175 176 align = 1ul << bit; 177 } 178 addr = ALIGN(start, align); 179 size = PAGE_ALIGN(size); 180 181 area = kmalloc(sizeof(*area), GFP_KERNEL); 182 if (unlikely(!area)) 183 return NULL; 184 185 if (unlikely(!size)) { 186 kfree (area); 187 return NULL; 188 } 189 190 /* 191 * We always allocate a guard page. 192 */ 193 size += PAGE_SIZE; 194 195 write_lock(&vmlist_lock); 196 for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) { 197 if ((unsigned long)tmp->addr < addr) { 198 if((unsigned long)tmp->addr + tmp->size >= addr) 199 addr = ALIGN(tmp->size + 200 (unsigned long)tmp->addr, align); 201 continue; 202 } 203 if ((size + addr) < addr) 204 goto out; 205 if (size + addr <= (unsigned long)tmp->addr) 206 goto found; 207 addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align); 208 if (addr > end - size) 209 goto out; 210 } 211 212 found: 213 area->next = *p; 214 *p = area; 215 216 area->flags = flags; 217 area->addr = (void *)addr; 218 area->size = size; 219 area->pages = NULL; 220 area->nr_pages = 0; 221 area->phys_addr = 0; 222 write_unlock(&vmlist_lock); 223 224 return area; 225 226 out: 227 write_unlock(&vmlist_lock); 228 kfree(area); 229 if (printk_ratelimit()) 230 printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n"); 231 return NULL; 232 } 233 234 /** 235 * get_vm_area - reserve a contingous kernel virtual area 236 * 237 * @size: size of the area 238 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC 239 * 240 * Search an area of @size in the kernel virtual mapping area, 241 * and reserved it for out purposes. Returns the area descriptor 242 * on success or %NULL on failure. 243 */ 244 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags) 245 { 246 return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END); 247 } 248 249 /* Caller must hold vmlist_lock */ 250 struct vm_struct *__remove_vm_area(void *addr) 251 { 252 struct vm_struct **p, *tmp; 253 254 for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) { 255 if (tmp->addr == addr) 256 goto found; 257 } 258 return NULL; 259 260 found: 261 unmap_vm_area(tmp); 262 *p = tmp->next; 263 264 /* 265 * Remove the guard page. 266 */ 267 tmp->size -= PAGE_SIZE; 268 return tmp; 269 } 270 271 /** 272 * remove_vm_area - find and remove a contingous kernel virtual area 273 * 274 * @addr: base address 275 * 276 * Search for the kernel VM area starting at @addr, and remove it. 277 * This function returns the found VM area, but using it is NOT safe 278 * on SMP machines, except for its size or flags. 279 */ 280 struct vm_struct *remove_vm_area(void *addr) 281 { 282 struct vm_struct *v; 283 write_lock(&vmlist_lock); 284 v = __remove_vm_area(addr); 285 write_unlock(&vmlist_lock); 286 return v; 287 } 288 289 void __vunmap(void *addr, int deallocate_pages) 290 { 291 struct vm_struct *area; 292 293 if (!addr) 294 return; 295 296 if ((PAGE_SIZE-1) & (unsigned long)addr) { 297 printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr); 298 WARN_ON(1); 299 return; 300 } 301 302 area = remove_vm_area(addr); 303 if (unlikely(!area)) { 304 printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", 305 addr); 306 WARN_ON(1); 307 return; 308 } 309 310 if (deallocate_pages) { 311 int i; 312 313 for (i = 0; i < area->nr_pages; i++) { 314 if (unlikely(!area->pages[i])) 315 BUG(); 316 __free_page(area->pages[i]); 317 } 318 319 if (area->nr_pages > PAGE_SIZE/sizeof(struct page *)) 320 vfree(area->pages); 321 else 322 kfree(area->pages); 323 } 324 325 kfree(area); 326 return; 327 } 328 329 /** 330 * vfree - release memory allocated by vmalloc() 331 * 332 * @addr: memory base address 333 * 334 * Free the virtually contiguous memory area starting at @addr, as 335 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). 336 * 337 * May not be called in interrupt context. 338 */ 339 void vfree(void *addr) 340 { 341 BUG_ON(in_interrupt()); 342 __vunmap(addr, 1); 343 } 344 345 EXPORT_SYMBOL(vfree); 346 347 /** 348 * vunmap - release virtual mapping obtained by vmap() 349 * 350 * @addr: memory base address 351 * 352 * Free the virtually contiguous memory area starting at @addr, 353 * which was created from the page array passed to vmap(). 354 * 355 * May not be called in interrupt context. 356 */ 357 void vunmap(void *addr) 358 { 359 BUG_ON(in_interrupt()); 360 __vunmap(addr, 0); 361 } 362 363 EXPORT_SYMBOL(vunmap); 364 365 /** 366 * vmap - map an array of pages into virtually contiguous space 367 * 368 * @pages: array of page pointers 369 * @count: number of pages to map 370 * @flags: vm_area->flags 371 * @prot: page protection for the mapping 372 * 373 * Maps @count pages from @pages into contiguous kernel virtual 374 * space. 375 */ 376 void *vmap(struct page **pages, unsigned int count, 377 unsigned long flags, pgprot_t prot) 378 { 379 struct vm_struct *area; 380 381 if (count > num_physpages) 382 return NULL; 383 384 area = get_vm_area((count << PAGE_SHIFT), flags); 385 if (!area) 386 return NULL; 387 if (map_vm_area(area, prot, &pages)) { 388 vunmap(area->addr); 389 return NULL; 390 } 391 392 return area->addr; 393 } 394 395 EXPORT_SYMBOL(vmap); 396 397 void *__vmalloc_area(struct vm_struct *area, unsigned int __nocast gfp_mask, pgprot_t prot) 398 { 399 struct page **pages; 400 unsigned int nr_pages, array_size, i; 401 402 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; 403 array_size = (nr_pages * sizeof(struct page *)); 404 405 area->nr_pages = nr_pages; 406 /* Please note that the recursion is strictly bounded. */ 407 if (array_size > PAGE_SIZE) 408 pages = __vmalloc(array_size, gfp_mask, PAGE_KERNEL); 409 else 410 pages = kmalloc(array_size, (gfp_mask & ~__GFP_HIGHMEM)); 411 area->pages = pages; 412 if (!area->pages) { 413 remove_vm_area(area->addr); 414 kfree(area); 415 return NULL; 416 } 417 memset(area->pages, 0, array_size); 418 419 for (i = 0; i < area->nr_pages; i++) { 420 area->pages[i] = alloc_page(gfp_mask); 421 if (unlikely(!area->pages[i])) { 422 /* Successfully allocated i pages, free them in __vunmap() */ 423 area->nr_pages = i; 424 goto fail; 425 } 426 } 427 428 if (map_vm_area(area, prot, &pages)) 429 goto fail; 430 return area->addr; 431 432 fail: 433 vfree(area->addr); 434 return NULL; 435 } 436 437 /** 438 * __vmalloc - allocate virtually contiguous memory 439 * 440 * @size: allocation size 441 * @gfp_mask: flags for the page level allocator 442 * @prot: protection mask for the allocated pages 443 * 444 * Allocate enough pages to cover @size from the page level 445 * allocator with @gfp_mask flags. Map them into contiguous 446 * kernel virtual space, using a pagetable protection of @prot. 447 */ 448 void *__vmalloc(unsigned long size, unsigned int __nocast gfp_mask, pgprot_t prot) 449 { 450 struct vm_struct *area; 451 452 size = PAGE_ALIGN(size); 453 if (!size || (size >> PAGE_SHIFT) > num_physpages) 454 return NULL; 455 456 area = get_vm_area(size, VM_ALLOC); 457 if (!area) 458 return NULL; 459 460 return __vmalloc_area(area, gfp_mask, prot); 461 } 462 463 EXPORT_SYMBOL(__vmalloc); 464 465 /** 466 * vmalloc - allocate virtually contiguous memory 467 * 468 * @size: allocation size 469 * 470 * Allocate enough pages to cover @size from the page level 471 * allocator and map them into contiguous kernel virtual space. 472 * 473 * For tight cotrol over page level allocator and protection flags 474 * use __vmalloc() instead. 475 */ 476 void *vmalloc(unsigned long size) 477 { 478 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL); 479 } 480 481 EXPORT_SYMBOL(vmalloc); 482 483 #ifndef PAGE_KERNEL_EXEC 484 # define PAGE_KERNEL_EXEC PAGE_KERNEL 485 #endif 486 487 /** 488 * vmalloc_exec - allocate virtually contiguous, executable memory 489 * 490 * @size: allocation size 491 * 492 * Kernel-internal function to allocate enough pages to cover @size 493 * the page level allocator and map them into contiguous and 494 * executable kernel virtual space. 495 * 496 * For tight cotrol over page level allocator and protection flags 497 * use __vmalloc() instead. 498 */ 499 500 void *vmalloc_exec(unsigned long size) 501 { 502 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC); 503 } 504 505 /** 506 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable) 507 * 508 * @size: allocation size 509 * 510 * Allocate enough 32bit PA addressable pages to cover @size from the 511 * page level allocator and map them into contiguous kernel virtual space. 512 */ 513 void *vmalloc_32(unsigned long size) 514 { 515 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL); 516 } 517 518 EXPORT_SYMBOL(vmalloc_32); 519 520 long vread(char *buf, char *addr, unsigned long count) 521 { 522 struct vm_struct *tmp; 523 char *vaddr, *buf_start = buf; 524 unsigned long n; 525 526 /* Don't allow overflow */ 527 if ((unsigned long) addr + count < count) 528 count = -(unsigned long) addr; 529 530 read_lock(&vmlist_lock); 531 for (tmp = vmlist; tmp; tmp = tmp->next) { 532 vaddr = (char *) tmp->addr; 533 if (addr >= vaddr + tmp->size - PAGE_SIZE) 534 continue; 535 while (addr < vaddr) { 536 if (count == 0) 537 goto finished; 538 *buf = '\0'; 539 buf++; 540 addr++; 541 count--; 542 } 543 n = vaddr + tmp->size - PAGE_SIZE - addr; 544 do { 545 if (count == 0) 546 goto finished; 547 *buf = *addr; 548 buf++; 549 addr++; 550 count--; 551 } while (--n > 0); 552 } 553 finished: 554 read_unlock(&vmlist_lock); 555 return buf - buf_start; 556 } 557 558 long vwrite(char *buf, char *addr, unsigned long count) 559 { 560 struct vm_struct *tmp; 561 char *vaddr, *buf_start = buf; 562 unsigned long n; 563 564 /* Don't allow overflow */ 565 if ((unsigned long) addr + count < count) 566 count = -(unsigned long) addr; 567 568 read_lock(&vmlist_lock); 569 for (tmp = vmlist; tmp; tmp = tmp->next) { 570 vaddr = (char *) tmp->addr; 571 if (addr >= vaddr + tmp->size - PAGE_SIZE) 572 continue; 573 while (addr < vaddr) { 574 if (count == 0) 575 goto finished; 576 buf++; 577 addr++; 578 count--; 579 } 580 n = vaddr + tmp->size - PAGE_SIZE - addr; 581 do { 582 if (count == 0) 583 goto finished; 584 *addr = *buf; 585 buf++; 586 addr++; 587 count--; 588 } while (--n > 0); 589 } 590 finished: 591 read_unlock(&vmlist_lock); 592 return buf - buf_start; 593 } 594