1 /* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/backing-dev.h> 12 #include <linux/dax.h> 13 #include <linux/gfp.h> 14 #include <linux/mm.h> 15 #include <linux/swap.h> 16 #include <linux/export.h> 17 #include <linux/pagemap.h> 18 #include <linux/highmem.h> 19 #include <linux/pagevec.h> 20 #include <linux/task_io_accounting_ops.h> 21 #include <linux/buffer_head.h> /* grr. try_to_release_page, 22 do_invalidatepage */ 23 #include <linux/shmem_fs.h> 24 #include <linux/cleancache.h> 25 #include <linux/rmap.h> 26 #include "internal.h" 27 28 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, 29 void *entry) 30 { 31 struct radix_tree_node *node; 32 void **slot; 33 34 spin_lock_irq(&mapping->tree_lock); 35 /* 36 * Regular page slots are stabilized by the page lock even 37 * without the tree itself locked. These unlocked entries 38 * need verification under the tree lock. 39 */ 40 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot)) 41 goto unlock; 42 if (*slot != entry) 43 goto unlock; 44 __radix_tree_replace(&mapping->page_tree, node, slot, NULL, 45 workingset_update_node, mapping); 46 mapping->nrexceptional--; 47 unlock: 48 spin_unlock_irq(&mapping->tree_lock); 49 } 50 51 /* 52 * Unconditionally remove exceptional entry. Usually called from truncate path. 53 */ 54 static void truncate_exceptional_entry(struct address_space *mapping, 55 pgoff_t index, void *entry) 56 { 57 /* Handled by shmem itself */ 58 if (shmem_mapping(mapping)) 59 return; 60 61 if (dax_mapping(mapping)) { 62 dax_delete_mapping_entry(mapping, index); 63 return; 64 } 65 clear_shadow_entry(mapping, index, entry); 66 } 67 68 /* 69 * Invalidate exceptional entry if easily possible. This handles exceptional 70 * entries for invalidate_inode_pages() so for DAX it evicts only unlocked and 71 * clean entries. 72 */ 73 static int invalidate_exceptional_entry(struct address_space *mapping, 74 pgoff_t index, void *entry) 75 { 76 /* Handled by shmem itself */ 77 if (shmem_mapping(mapping)) 78 return 1; 79 if (dax_mapping(mapping)) 80 return dax_invalidate_mapping_entry(mapping, index); 81 clear_shadow_entry(mapping, index, entry); 82 return 1; 83 } 84 85 /* 86 * Invalidate exceptional entry if clean. This handles exceptional entries for 87 * invalidate_inode_pages2() so for DAX it evicts only clean entries. 88 */ 89 static int invalidate_exceptional_entry2(struct address_space *mapping, 90 pgoff_t index, void *entry) 91 { 92 /* Handled by shmem itself */ 93 if (shmem_mapping(mapping)) 94 return 1; 95 if (dax_mapping(mapping)) 96 return dax_invalidate_mapping_entry_sync(mapping, index); 97 clear_shadow_entry(mapping, index, entry); 98 return 1; 99 } 100 101 /** 102 * do_invalidatepage - invalidate part or all of a page 103 * @page: the page which is affected 104 * @offset: start of the range to invalidate 105 * @length: length of the range to invalidate 106 * 107 * do_invalidatepage() is called when all or part of the page has become 108 * invalidated by a truncate operation. 109 * 110 * do_invalidatepage() does not have to release all buffers, but it must 111 * ensure that no dirty buffer is left outside @offset and that no I/O 112 * is underway against any of the blocks which are outside the truncation 113 * point. Because the caller is about to free (and possibly reuse) those 114 * blocks on-disk. 115 */ 116 void do_invalidatepage(struct page *page, unsigned int offset, 117 unsigned int length) 118 { 119 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 120 121 invalidatepage = page->mapping->a_ops->invalidatepage; 122 #ifdef CONFIG_BLOCK 123 if (!invalidatepage) 124 invalidatepage = block_invalidatepage; 125 #endif 126 if (invalidatepage) 127 (*invalidatepage)(page, offset, length); 128 } 129 130 /* 131 * If truncate cannot remove the fs-private metadata from the page, the page 132 * becomes orphaned. It will be left on the LRU and may even be mapped into 133 * user pagetables if we're racing with filemap_fault(). 134 * 135 * We need to bale out if page->mapping is no longer equal to the original 136 * mapping. This happens a) when the VM reclaimed the page while we waited on 137 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 138 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 139 */ 140 static int 141 truncate_complete_page(struct address_space *mapping, struct page *page) 142 { 143 if (page->mapping != mapping) 144 return -EIO; 145 146 if (page_has_private(page)) 147 do_invalidatepage(page, 0, PAGE_SIZE); 148 149 /* 150 * Some filesystems seem to re-dirty the page even after 151 * the VM has canceled the dirty bit (eg ext3 journaling). 152 * Hence dirty accounting check is placed after invalidation. 153 */ 154 cancel_dirty_page(page); 155 ClearPageMappedToDisk(page); 156 delete_from_page_cache(page); 157 return 0; 158 } 159 160 /* 161 * This is for invalidate_mapping_pages(). That function can be called at 162 * any time, and is not supposed to throw away dirty pages. But pages can 163 * be marked dirty at any time too, so use remove_mapping which safely 164 * discards clean, unused pages. 165 * 166 * Returns non-zero if the page was successfully invalidated. 167 */ 168 static int 169 invalidate_complete_page(struct address_space *mapping, struct page *page) 170 { 171 int ret; 172 173 if (page->mapping != mapping) 174 return 0; 175 176 if (page_has_private(page) && !try_to_release_page(page, 0)) 177 return 0; 178 179 ret = remove_mapping(mapping, page); 180 181 return ret; 182 } 183 184 int truncate_inode_page(struct address_space *mapping, struct page *page) 185 { 186 loff_t holelen; 187 VM_BUG_ON_PAGE(PageTail(page), page); 188 189 holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE; 190 if (page_mapped(page)) { 191 unmap_mapping_range(mapping, 192 (loff_t)page->index << PAGE_SHIFT, 193 holelen, 0); 194 } 195 return truncate_complete_page(mapping, page); 196 } 197 198 /* 199 * Used to get rid of pages on hardware memory corruption. 200 */ 201 int generic_error_remove_page(struct address_space *mapping, struct page *page) 202 { 203 if (!mapping) 204 return -EINVAL; 205 /* 206 * Only punch for normal data pages for now. 207 * Handling other types like directories would need more auditing. 208 */ 209 if (!S_ISREG(mapping->host->i_mode)) 210 return -EIO; 211 return truncate_inode_page(mapping, page); 212 } 213 EXPORT_SYMBOL(generic_error_remove_page); 214 215 /* 216 * Safely invalidate one page from its pagecache mapping. 217 * It only drops clean, unused pages. The page must be locked. 218 * 219 * Returns 1 if the page is successfully invalidated, otherwise 0. 220 */ 221 int invalidate_inode_page(struct page *page) 222 { 223 struct address_space *mapping = page_mapping(page); 224 if (!mapping) 225 return 0; 226 if (PageDirty(page) || PageWriteback(page)) 227 return 0; 228 if (page_mapped(page)) 229 return 0; 230 return invalidate_complete_page(mapping, page); 231 } 232 233 /** 234 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 235 * @mapping: mapping to truncate 236 * @lstart: offset from which to truncate 237 * @lend: offset to which to truncate (inclusive) 238 * 239 * Truncate the page cache, removing the pages that are between 240 * specified offsets (and zeroing out partial pages 241 * if lstart or lend + 1 is not page aligned). 242 * 243 * Truncate takes two passes - the first pass is nonblocking. It will not 244 * block on page locks and it will not block on writeback. The second pass 245 * will wait. This is to prevent as much IO as possible in the affected region. 246 * The first pass will remove most pages, so the search cost of the second pass 247 * is low. 248 * 249 * We pass down the cache-hot hint to the page freeing code. Even if the 250 * mapping is large, it is probably the case that the final pages are the most 251 * recently touched, and freeing happens in ascending file offset order. 252 * 253 * Note that since ->invalidatepage() accepts range to invalidate 254 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 255 * page aligned properly. 256 */ 257 void truncate_inode_pages_range(struct address_space *mapping, 258 loff_t lstart, loff_t lend) 259 { 260 pgoff_t start; /* inclusive */ 261 pgoff_t end; /* exclusive */ 262 unsigned int partial_start; /* inclusive */ 263 unsigned int partial_end; /* exclusive */ 264 struct pagevec pvec; 265 pgoff_t indices[PAGEVEC_SIZE]; 266 pgoff_t index; 267 int i; 268 269 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 270 goto out; 271 272 /* Offsets within partial pages */ 273 partial_start = lstart & (PAGE_SIZE - 1); 274 partial_end = (lend + 1) & (PAGE_SIZE - 1); 275 276 /* 277 * 'start' and 'end' always covers the range of pages to be fully 278 * truncated. Partial pages are covered with 'partial_start' at the 279 * start of the range and 'partial_end' at the end of the range. 280 * Note that 'end' is exclusive while 'lend' is inclusive. 281 */ 282 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; 283 if (lend == -1) 284 /* 285 * lend == -1 indicates end-of-file so we have to set 'end' 286 * to the highest possible pgoff_t and since the type is 287 * unsigned we're using -1. 288 */ 289 end = -1; 290 else 291 end = (lend + 1) >> PAGE_SHIFT; 292 293 pagevec_init(&pvec, 0); 294 index = start; 295 while (index < end && pagevec_lookup_entries(&pvec, mapping, index, 296 min(end - index, (pgoff_t)PAGEVEC_SIZE), 297 indices)) { 298 for (i = 0; i < pagevec_count(&pvec); i++) { 299 struct page *page = pvec.pages[i]; 300 301 /* We rely upon deletion not changing page->index */ 302 index = indices[i]; 303 if (index >= end) 304 break; 305 306 if (radix_tree_exceptional_entry(page)) { 307 truncate_exceptional_entry(mapping, index, 308 page); 309 continue; 310 } 311 312 if (!trylock_page(page)) 313 continue; 314 WARN_ON(page_to_index(page) != index); 315 if (PageWriteback(page)) { 316 unlock_page(page); 317 continue; 318 } 319 truncate_inode_page(mapping, page); 320 unlock_page(page); 321 } 322 pagevec_remove_exceptionals(&pvec); 323 pagevec_release(&pvec); 324 cond_resched(); 325 index++; 326 } 327 328 if (partial_start) { 329 struct page *page = find_lock_page(mapping, start - 1); 330 if (page) { 331 unsigned int top = PAGE_SIZE; 332 if (start > end) { 333 /* Truncation within a single page */ 334 top = partial_end; 335 partial_end = 0; 336 } 337 wait_on_page_writeback(page); 338 zero_user_segment(page, partial_start, top); 339 cleancache_invalidate_page(mapping, page); 340 if (page_has_private(page)) 341 do_invalidatepage(page, partial_start, 342 top - partial_start); 343 unlock_page(page); 344 put_page(page); 345 } 346 } 347 if (partial_end) { 348 struct page *page = find_lock_page(mapping, end); 349 if (page) { 350 wait_on_page_writeback(page); 351 zero_user_segment(page, 0, partial_end); 352 cleancache_invalidate_page(mapping, page); 353 if (page_has_private(page)) 354 do_invalidatepage(page, 0, 355 partial_end); 356 unlock_page(page); 357 put_page(page); 358 } 359 } 360 /* 361 * If the truncation happened within a single page no pages 362 * will be released, just zeroed, so we can bail out now. 363 */ 364 if (start >= end) 365 goto out; 366 367 index = start; 368 for ( ; ; ) { 369 cond_resched(); 370 if (!pagevec_lookup_entries(&pvec, mapping, index, 371 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { 372 /* If all gone from start onwards, we're done */ 373 if (index == start) 374 break; 375 /* Otherwise restart to make sure all gone */ 376 index = start; 377 continue; 378 } 379 if (index == start && indices[0] >= end) { 380 /* All gone out of hole to be punched, we're done */ 381 pagevec_remove_exceptionals(&pvec); 382 pagevec_release(&pvec); 383 break; 384 } 385 for (i = 0; i < pagevec_count(&pvec); i++) { 386 struct page *page = pvec.pages[i]; 387 388 /* We rely upon deletion not changing page->index */ 389 index = indices[i]; 390 if (index >= end) { 391 /* Restart punch to make sure all gone */ 392 index = start - 1; 393 break; 394 } 395 396 if (radix_tree_exceptional_entry(page)) { 397 truncate_exceptional_entry(mapping, index, 398 page); 399 continue; 400 } 401 402 lock_page(page); 403 WARN_ON(page_to_index(page) != index); 404 wait_on_page_writeback(page); 405 truncate_inode_page(mapping, page); 406 unlock_page(page); 407 } 408 pagevec_remove_exceptionals(&pvec); 409 pagevec_release(&pvec); 410 index++; 411 } 412 413 out: 414 cleancache_invalidate_inode(mapping); 415 } 416 EXPORT_SYMBOL(truncate_inode_pages_range); 417 418 /** 419 * truncate_inode_pages - truncate *all* the pages from an offset 420 * @mapping: mapping to truncate 421 * @lstart: offset from which to truncate 422 * 423 * Called under (and serialised by) inode->i_mutex. 424 * 425 * Note: When this function returns, there can be a page in the process of 426 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 427 * mapping->nrpages can be non-zero when this function returns even after 428 * truncation of the whole mapping. 429 */ 430 void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 431 { 432 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 433 } 434 EXPORT_SYMBOL(truncate_inode_pages); 435 436 /** 437 * truncate_inode_pages_final - truncate *all* pages before inode dies 438 * @mapping: mapping to truncate 439 * 440 * Called under (and serialized by) inode->i_mutex. 441 * 442 * Filesystems have to use this in the .evict_inode path to inform the 443 * VM that this is the final truncate and the inode is going away. 444 */ 445 void truncate_inode_pages_final(struct address_space *mapping) 446 { 447 unsigned long nrexceptional; 448 unsigned long nrpages; 449 450 /* 451 * Page reclaim can not participate in regular inode lifetime 452 * management (can't call iput()) and thus can race with the 453 * inode teardown. Tell it when the address space is exiting, 454 * so that it does not install eviction information after the 455 * final truncate has begun. 456 */ 457 mapping_set_exiting(mapping); 458 459 /* 460 * When reclaim installs eviction entries, it increases 461 * nrexceptional first, then decreases nrpages. Make sure we see 462 * this in the right order or we might miss an entry. 463 */ 464 nrpages = mapping->nrpages; 465 smp_rmb(); 466 nrexceptional = mapping->nrexceptional; 467 468 if (nrpages || nrexceptional) { 469 /* 470 * As truncation uses a lockless tree lookup, cycle 471 * the tree lock to make sure any ongoing tree 472 * modification that does not see AS_EXITING is 473 * completed before starting the final truncate. 474 */ 475 spin_lock_irq(&mapping->tree_lock); 476 spin_unlock_irq(&mapping->tree_lock); 477 478 truncate_inode_pages(mapping, 0); 479 } 480 } 481 EXPORT_SYMBOL(truncate_inode_pages_final); 482 483 /** 484 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 485 * @mapping: the address_space which holds the pages to invalidate 486 * @start: the offset 'from' which to invalidate 487 * @end: the offset 'to' which to invalidate (inclusive) 488 * 489 * This function only removes the unlocked pages, if you want to 490 * remove all the pages of one inode, you must call truncate_inode_pages. 491 * 492 * invalidate_mapping_pages() will not block on IO activity. It will not 493 * invalidate pages which are dirty, locked, under writeback or mapped into 494 * pagetables. 495 */ 496 unsigned long invalidate_mapping_pages(struct address_space *mapping, 497 pgoff_t start, pgoff_t end) 498 { 499 pgoff_t indices[PAGEVEC_SIZE]; 500 struct pagevec pvec; 501 pgoff_t index = start; 502 unsigned long ret; 503 unsigned long count = 0; 504 int i; 505 506 pagevec_init(&pvec, 0); 507 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 508 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 509 indices)) { 510 for (i = 0; i < pagevec_count(&pvec); i++) { 511 struct page *page = pvec.pages[i]; 512 513 /* We rely upon deletion not changing page->index */ 514 index = indices[i]; 515 if (index > end) 516 break; 517 518 if (radix_tree_exceptional_entry(page)) { 519 invalidate_exceptional_entry(mapping, index, 520 page); 521 continue; 522 } 523 524 if (!trylock_page(page)) 525 continue; 526 527 WARN_ON(page_to_index(page) != index); 528 529 /* Middle of THP: skip */ 530 if (PageTransTail(page)) { 531 unlock_page(page); 532 continue; 533 } else if (PageTransHuge(page)) { 534 index += HPAGE_PMD_NR - 1; 535 i += HPAGE_PMD_NR - 1; 536 /* 'end' is in the middle of THP */ 537 if (index == round_down(end, HPAGE_PMD_NR)) 538 continue; 539 } 540 541 ret = invalidate_inode_page(page); 542 unlock_page(page); 543 /* 544 * Invalidation is a hint that the page is no longer 545 * of interest and try to speed up its reclaim. 546 */ 547 if (!ret) 548 deactivate_file_page(page); 549 count += ret; 550 } 551 pagevec_remove_exceptionals(&pvec); 552 pagevec_release(&pvec); 553 cond_resched(); 554 index++; 555 } 556 return count; 557 } 558 EXPORT_SYMBOL(invalidate_mapping_pages); 559 560 /* 561 * This is like invalidate_complete_page(), except it ignores the page's 562 * refcount. We do this because invalidate_inode_pages2() needs stronger 563 * invalidation guarantees, and cannot afford to leave pages behind because 564 * shrink_page_list() has a temp ref on them, or because they're transiently 565 * sitting in the lru_cache_add() pagevecs. 566 */ 567 static int 568 invalidate_complete_page2(struct address_space *mapping, struct page *page) 569 { 570 unsigned long flags; 571 572 if (page->mapping != mapping) 573 return 0; 574 575 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 576 return 0; 577 578 spin_lock_irqsave(&mapping->tree_lock, flags); 579 if (PageDirty(page)) 580 goto failed; 581 582 BUG_ON(page_has_private(page)); 583 __delete_from_page_cache(page, NULL); 584 spin_unlock_irqrestore(&mapping->tree_lock, flags); 585 586 if (mapping->a_ops->freepage) 587 mapping->a_ops->freepage(page); 588 589 put_page(page); /* pagecache ref */ 590 return 1; 591 failed: 592 spin_unlock_irqrestore(&mapping->tree_lock, flags); 593 return 0; 594 } 595 596 static int do_launder_page(struct address_space *mapping, struct page *page) 597 { 598 if (!PageDirty(page)) 599 return 0; 600 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 601 return 0; 602 return mapping->a_ops->launder_page(page); 603 } 604 605 /** 606 * invalidate_inode_pages2_range - remove range of pages from an address_space 607 * @mapping: the address_space 608 * @start: the page offset 'from' which to invalidate 609 * @end: the page offset 'to' which to invalidate (inclusive) 610 * 611 * Any pages which are found to be mapped into pagetables are unmapped prior to 612 * invalidation. 613 * 614 * Returns -EBUSY if any pages could not be invalidated. 615 */ 616 int invalidate_inode_pages2_range(struct address_space *mapping, 617 pgoff_t start, pgoff_t end) 618 { 619 pgoff_t indices[PAGEVEC_SIZE]; 620 struct pagevec pvec; 621 pgoff_t index; 622 int i; 623 int ret = 0; 624 int ret2 = 0; 625 int did_range_unmap = 0; 626 627 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 628 goto out; 629 630 pagevec_init(&pvec, 0); 631 index = start; 632 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 633 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 634 indices)) { 635 for (i = 0; i < pagevec_count(&pvec); i++) { 636 struct page *page = pvec.pages[i]; 637 638 /* We rely upon deletion not changing page->index */ 639 index = indices[i]; 640 if (index > end) 641 break; 642 643 if (radix_tree_exceptional_entry(page)) { 644 if (!invalidate_exceptional_entry2(mapping, 645 index, page)) 646 ret = -EBUSY; 647 continue; 648 } 649 650 lock_page(page); 651 WARN_ON(page_to_index(page) != index); 652 if (page->mapping != mapping) { 653 unlock_page(page); 654 continue; 655 } 656 wait_on_page_writeback(page); 657 if (page_mapped(page)) { 658 if (!did_range_unmap) { 659 /* 660 * Zap the rest of the file in one hit. 661 */ 662 unmap_mapping_range(mapping, 663 (loff_t)index << PAGE_SHIFT, 664 (loff_t)(1 + end - index) 665 << PAGE_SHIFT, 666 0); 667 did_range_unmap = 1; 668 } else { 669 /* 670 * Just zap this page 671 */ 672 unmap_mapping_range(mapping, 673 (loff_t)index << PAGE_SHIFT, 674 PAGE_SIZE, 0); 675 } 676 } 677 BUG_ON(page_mapped(page)); 678 ret2 = do_launder_page(mapping, page); 679 if (ret2 == 0) { 680 if (!invalidate_complete_page2(mapping, page)) 681 ret2 = -EBUSY; 682 } 683 if (ret2 < 0) 684 ret = ret2; 685 unlock_page(page); 686 } 687 pagevec_remove_exceptionals(&pvec); 688 pagevec_release(&pvec); 689 cond_resched(); 690 index++; 691 } 692 693 out: 694 cleancache_invalidate_inode(mapping); 695 return ret; 696 } 697 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 698 699 /** 700 * invalidate_inode_pages2 - remove all pages from an address_space 701 * @mapping: the address_space 702 * 703 * Any pages which are found to be mapped into pagetables are unmapped prior to 704 * invalidation. 705 * 706 * Returns -EBUSY if any pages could not be invalidated. 707 */ 708 int invalidate_inode_pages2(struct address_space *mapping) 709 { 710 return invalidate_inode_pages2_range(mapping, 0, -1); 711 } 712 EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 713 714 /** 715 * truncate_pagecache - unmap and remove pagecache that has been truncated 716 * @inode: inode 717 * @newsize: new file size 718 * 719 * inode's new i_size must already be written before truncate_pagecache 720 * is called. 721 * 722 * This function should typically be called before the filesystem 723 * releases resources associated with the freed range (eg. deallocates 724 * blocks). This way, pagecache will always stay logically coherent 725 * with on-disk format, and the filesystem would not have to deal with 726 * situations such as writepage being called for a page that has already 727 * had its underlying blocks deallocated. 728 */ 729 void truncate_pagecache(struct inode *inode, loff_t newsize) 730 { 731 struct address_space *mapping = inode->i_mapping; 732 loff_t holebegin = round_up(newsize, PAGE_SIZE); 733 734 /* 735 * unmap_mapping_range is called twice, first simply for 736 * efficiency so that truncate_inode_pages does fewer 737 * single-page unmaps. However after this first call, and 738 * before truncate_inode_pages finishes, it is possible for 739 * private pages to be COWed, which remain after 740 * truncate_inode_pages finishes, hence the second 741 * unmap_mapping_range call must be made for correctness. 742 */ 743 unmap_mapping_range(mapping, holebegin, 0, 1); 744 truncate_inode_pages(mapping, newsize); 745 unmap_mapping_range(mapping, holebegin, 0, 1); 746 } 747 EXPORT_SYMBOL(truncate_pagecache); 748 749 /** 750 * truncate_setsize - update inode and pagecache for a new file size 751 * @inode: inode 752 * @newsize: new file size 753 * 754 * truncate_setsize updates i_size and performs pagecache truncation (if 755 * necessary) to @newsize. It will be typically be called from the filesystem's 756 * setattr function when ATTR_SIZE is passed in. 757 * 758 * Must be called with a lock serializing truncates and writes (generally 759 * i_mutex but e.g. xfs uses a different lock) and before all filesystem 760 * specific block truncation has been performed. 761 */ 762 void truncate_setsize(struct inode *inode, loff_t newsize) 763 { 764 loff_t oldsize = inode->i_size; 765 766 i_size_write(inode, newsize); 767 if (newsize > oldsize) 768 pagecache_isize_extended(inode, oldsize, newsize); 769 truncate_pagecache(inode, newsize); 770 } 771 EXPORT_SYMBOL(truncate_setsize); 772 773 /** 774 * pagecache_isize_extended - update pagecache after extension of i_size 775 * @inode: inode for which i_size was extended 776 * @from: original inode size 777 * @to: new inode size 778 * 779 * Handle extension of inode size either caused by extending truncate or by 780 * write starting after current i_size. We mark the page straddling current 781 * i_size RO so that page_mkwrite() is called on the nearest write access to 782 * the page. This way filesystem can be sure that page_mkwrite() is called on 783 * the page before user writes to the page via mmap after the i_size has been 784 * changed. 785 * 786 * The function must be called after i_size is updated so that page fault 787 * coming after we unlock the page will already see the new i_size. 788 * The function must be called while we still hold i_mutex - this not only 789 * makes sure i_size is stable but also that userspace cannot observe new 790 * i_size value before we are prepared to store mmap writes at new inode size. 791 */ 792 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) 793 { 794 int bsize = i_blocksize(inode); 795 loff_t rounded_from; 796 struct page *page; 797 pgoff_t index; 798 799 WARN_ON(to > inode->i_size); 800 801 if (from >= to || bsize == PAGE_SIZE) 802 return; 803 /* Page straddling @from will not have any hole block created? */ 804 rounded_from = round_up(from, bsize); 805 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) 806 return; 807 808 index = from >> PAGE_SHIFT; 809 page = find_lock_page(inode->i_mapping, index); 810 /* Page not cached? Nothing to do */ 811 if (!page) 812 return; 813 /* 814 * See clear_page_dirty_for_io() for details why set_page_dirty() 815 * is needed. 816 */ 817 if (page_mkclean(page)) 818 set_page_dirty(page); 819 unlock_page(page); 820 put_page(page); 821 } 822 EXPORT_SYMBOL(pagecache_isize_extended); 823 824 /** 825 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 826 * @inode: inode 827 * @lstart: offset of beginning of hole 828 * @lend: offset of last byte of hole 829 * 830 * This function should typically be called before the filesystem 831 * releases resources associated with the freed range (eg. deallocates 832 * blocks). This way, pagecache will always stay logically coherent 833 * with on-disk format, and the filesystem would not have to deal with 834 * situations such as writepage being called for a page that has already 835 * had its underlying blocks deallocated. 836 */ 837 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 838 { 839 struct address_space *mapping = inode->i_mapping; 840 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 841 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 842 /* 843 * This rounding is currently just for example: unmap_mapping_range 844 * expands its hole outwards, whereas we want it to contract the hole 845 * inwards. However, existing callers of truncate_pagecache_range are 846 * doing their own page rounding first. Note that unmap_mapping_range 847 * allows holelen 0 for all, and we allow lend -1 for end of file. 848 */ 849 850 /* 851 * Unlike in truncate_pagecache, unmap_mapping_range is called only 852 * once (before truncating pagecache), and without "even_cows" flag: 853 * hole-punching should not remove private COWed pages from the hole. 854 */ 855 if ((u64)unmap_end > (u64)unmap_start) 856 unmap_mapping_range(mapping, unmap_start, 857 1 + unmap_end - unmap_start, 0); 858 truncate_inode_pages_range(mapping, lstart, lend); 859 } 860 EXPORT_SYMBOL(truncate_pagecache_range); 861