xref: /linux/mm/truncate.c (revision 05384213436ab690c46d9dfec706b80ef8d671ab)
1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/mm.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
22 				   do_invalidatepage */
23 #include <linux/shmem_fs.h>
24 #include <linux/cleancache.h>
25 #include <linux/rmap.h>
26 #include "internal.h"
27 
28 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
29 			       void *entry)
30 {
31 	struct radix_tree_node *node;
32 	void **slot;
33 
34 	spin_lock_irq(&mapping->tree_lock);
35 	/*
36 	 * Regular page slots are stabilized by the page lock even
37 	 * without the tree itself locked.  These unlocked entries
38 	 * need verification under the tree lock.
39 	 */
40 	if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
41 		goto unlock;
42 	if (*slot != entry)
43 		goto unlock;
44 	__radix_tree_replace(&mapping->page_tree, node, slot, NULL,
45 			     workingset_update_node, mapping);
46 	mapping->nrexceptional--;
47 unlock:
48 	spin_unlock_irq(&mapping->tree_lock);
49 }
50 
51 /*
52  * Unconditionally remove exceptional entry. Usually called from truncate path.
53  */
54 static void truncate_exceptional_entry(struct address_space *mapping,
55 				       pgoff_t index, void *entry)
56 {
57 	/* Handled by shmem itself */
58 	if (shmem_mapping(mapping))
59 		return;
60 
61 	if (dax_mapping(mapping)) {
62 		dax_delete_mapping_entry(mapping, index);
63 		return;
64 	}
65 	clear_shadow_entry(mapping, index, entry);
66 }
67 
68 /*
69  * Invalidate exceptional entry if easily possible. This handles exceptional
70  * entries for invalidate_inode_pages() so for DAX it evicts only unlocked and
71  * clean entries.
72  */
73 static int invalidate_exceptional_entry(struct address_space *mapping,
74 					pgoff_t index, void *entry)
75 {
76 	/* Handled by shmem itself */
77 	if (shmem_mapping(mapping))
78 		return 1;
79 	if (dax_mapping(mapping))
80 		return dax_invalidate_mapping_entry(mapping, index);
81 	clear_shadow_entry(mapping, index, entry);
82 	return 1;
83 }
84 
85 /*
86  * Invalidate exceptional entry if clean. This handles exceptional entries for
87  * invalidate_inode_pages2() so for DAX it evicts only clean entries.
88  */
89 static int invalidate_exceptional_entry2(struct address_space *mapping,
90 					 pgoff_t index, void *entry)
91 {
92 	/* Handled by shmem itself */
93 	if (shmem_mapping(mapping))
94 		return 1;
95 	if (dax_mapping(mapping))
96 		return dax_invalidate_mapping_entry_sync(mapping, index);
97 	clear_shadow_entry(mapping, index, entry);
98 	return 1;
99 }
100 
101 /**
102  * do_invalidatepage - invalidate part or all of a page
103  * @page: the page which is affected
104  * @offset: start of the range to invalidate
105  * @length: length of the range to invalidate
106  *
107  * do_invalidatepage() is called when all or part of the page has become
108  * invalidated by a truncate operation.
109  *
110  * do_invalidatepage() does not have to release all buffers, but it must
111  * ensure that no dirty buffer is left outside @offset and that no I/O
112  * is underway against any of the blocks which are outside the truncation
113  * point.  Because the caller is about to free (and possibly reuse) those
114  * blocks on-disk.
115  */
116 void do_invalidatepage(struct page *page, unsigned int offset,
117 		       unsigned int length)
118 {
119 	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
120 
121 	invalidatepage = page->mapping->a_ops->invalidatepage;
122 #ifdef CONFIG_BLOCK
123 	if (!invalidatepage)
124 		invalidatepage = block_invalidatepage;
125 #endif
126 	if (invalidatepage)
127 		(*invalidatepage)(page, offset, length);
128 }
129 
130 /*
131  * If truncate cannot remove the fs-private metadata from the page, the page
132  * becomes orphaned.  It will be left on the LRU and may even be mapped into
133  * user pagetables if we're racing with filemap_fault().
134  *
135  * We need to bale out if page->mapping is no longer equal to the original
136  * mapping.  This happens a) when the VM reclaimed the page while we waited on
137  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
138  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
139  */
140 static int
141 truncate_complete_page(struct address_space *mapping, struct page *page)
142 {
143 	if (page->mapping != mapping)
144 		return -EIO;
145 
146 	if (page_has_private(page))
147 		do_invalidatepage(page, 0, PAGE_SIZE);
148 
149 	/*
150 	 * Some filesystems seem to re-dirty the page even after
151 	 * the VM has canceled the dirty bit (eg ext3 journaling).
152 	 * Hence dirty accounting check is placed after invalidation.
153 	 */
154 	cancel_dirty_page(page);
155 	ClearPageMappedToDisk(page);
156 	delete_from_page_cache(page);
157 	return 0;
158 }
159 
160 /*
161  * This is for invalidate_mapping_pages().  That function can be called at
162  * any time, and is not supposed to throw away dirty pages.  But pages can
163  * be marked dirty at any time too, so use remove_mapping which safely
164  * discards clean, unused pages.
165  *
166  * Returns non-zero if the page was successfully invalidated.
167  */
168 static int
169 invalidate_complete_page(struct address_space *mapping, struct page *page)
170 {
171 	int ret;
172 
173 	if (page->mapping != mapping)
174 		return 0;
175 
176 	if (page_has_private(page) && !try_to_release_page(page, 0))
177 		return 0;
178 
179 	ret = remove_mapping(mapping, page);
180 
181 	return ret;
182 }
183 
184 int truncate_inode_page(struct address_space *mapping, struct page *page)
185 {
186 	loff_t holelen;
187 	VM_BUG_ON_PAGE(PageTail(page), page);
188 
189 	holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
190 	if (page_mapped(page)) {
191 		unmap_mapping_range(mapping,
192 				   (loff_t)page->index << PAGE_SHIFT,
193 				   holelen, 0);
194 	}
195 	return truncate_complete_page(mapping, page);
196 }
197 
198 /*
199  * Used to get rid of pages on hardware memory corruption.
200  */
201 int generic_error_remove_page(struct address_space *mapping, struct page *page)
202 {
203 	if (!mapping)
204 		return -EINVAL;
205 	/*
206 	 * Only punch for normal data pages for now.
207 	 * Handling other types like directories would need more auditing.
208 	 */
209 	if (!S_ISREG(mapping->host->i_mode))
210 		return -EIO;
211 	return truncate_inode_page(mapping, page);
212 }
213 EXPORT_SYMBOL(generic_error_remove_page);
214 
215 /*
216  * Safely invalidate one page from its pagecache mapping.
217  * It only drops clean, unused pages. The page must be locked.
218  *
219  * Returns 1 if the page is successfully invalidated, otherwise 0.
220  */
221 int invalidate_inode_page(struct page *page)
222 {
223 	struct address_space *mapping = page_mapping(page);
224 	if (!mapping)
225 		return 0;
226 	if (PageDirty(page) || PageWriteback(page))
227 		return 0;
228 	if (page_mapped(page))
229 		return 0;
230 	return invalidate_complete_page(mapping, page);
231 }
232 
233 /**
234  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
235  * @mapping: mapping to truncate
236  * @lstart: offset from which to truncate
237  * @lend: offset to which to truncate (inclusive)
238  *
239  * Truncate the page cache, removing the pages that are between
240  * specified offsets (and zeroing out partial pages
241  * if lstart or lend + 1 is not page aligned).
242  *
243  * Truncate takes two passes - the first pass is nonblocking.  It will not
244  * block on page locks and it will not block on writeback.  The second pass
245  * will wait.  This is to prevent as much IO as possible in the affected region.
246  * The first pass will remove most pages, so the search cost of the second pass
247  * is low.
248  *
249  * We pass down the cache-hot hint to the page freeing code.  Even if the
250  * mapping is large, it is probably the case that the final pages are the most
251  * recently touched, and freeing happens in ascending file offset order.
252  *
253  * Note that since ->invalidatepage() accepts range to invalidate
254  * truncate_inode_pages_range is able to handle cases where lend + 1 is not
255  * page aligned properly.
256  */
257 void truncate_inode_pages_range(struct address_space *mapping,
258 				loff_t lstart, loff_t lend)
259 {
260 	pgoff_t		start;		/* inclusive */
261 	pgoff_t		end;		/* exclusive */
262 	unsigned int	partial_start;	/* inclusive */
263 	unsigned int	partial_end;	/* exclusive */
264 	struct pagevec	pvec;
265 	pgoff_t		indices[PAGEVEC_SIZE];
266 	pgoff_t		index;
267 	int		i;
268 
269 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
270 		goto out;
271 
272 	/* Offsets within partial pages */
273 	partial_start = lstart & (PAGE_SIZE - 1);
274 	partial_end = (lend + 1) & (PAGE_SIZE - 1);
275 
276 	/*
277 	 * 'start' and 'end' always covers the range of pages to be fully
278 	 * truncated. Partial pages are covered with 'partial_start' at the
279 	 * start of the range and 'partial_end' at the end of the range.
280 	 * Note that 'end' is exclusive while 'lend' is inclusive.
281 	 */
282 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
283 	if (lend == -1)
284 		/*
285 		 * lend == -1 indicates end-of-file so we have to set 'end'
286 		 * to the highest possible pgoff_t and since the type is
287 		 * unsigned we're using -1.
288 		 */
289 		end = -1;
290 	else
291 		end = (lend + 1) >> PAGE_SHIFT;
292 
293 	pagevec_init(&pvec, 0);
294 	index = start;
295 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
296 			min(end - index, (pgoff_t)PAGEVEC_SIZE),
297 			indices)) {
298 		for (i = 0; i < pagevec_count(&pvec); i++) {
299 			struct page *page = pvec.pages[i];
300 
301 			/* We rely upon deletion not changing page->index */
302 			index = indices[i];
303 			if (index >= end)
304 				break;
305 
306 			if (radix_tree_exceptional_entry(page)) {
307 				truncate_exceptional_entry(mapping, index,
308 							   page);
309 				continue;
310 			}
311 
312 			if (!trylock_page(page))
313 				continue;
314 			WARN_ON(page_to_index(page) != index);
315 			if (PageWriteback(page)) {
316 				unlock_page(page);
317 				continue;
318 			}
319 			truncate_inode_page(mapping, page);
320 			unlock_page(page);
321 		}
322 		pagevec_remove_exceptionals(&pvec);
323 		pagevec_release(&pvec);
324 		cond_resched();
325 		index++;
326 	}
327 
328 	if (partial_start) {
329 		struct page *page = find_lock_page(mapping, start - 1);
330 		if (page) {
331 			unsigned int top = PAGE_SIZE;
332 			if (start > end) {
333 				/* Truncation within a single page */
334 				top = partial_end;
335 				partial_end = 0;
336 			}
337 			wait_on_page_writeback(page);
338 			zero_user_segment(page, partial_start, top);
339 			cleancache_invalidate_page(mapping, page);
340 			if (page_has_private(page))
341 				do_invalidatepage(page, partial_start,
342 						  top - partial_start);
343 			unlock_page(page);
344 			put_page(page);
345 		}
346 	}
347 	if (partial_end) {
348 		struct page *page = find_lock_page(mapping, end);
349 		if (page) {
350 			wait_on_page_writeback(page);
351 			zero_user_segment(page, 0, partial_end);
352 			cleancache_invalidate_page(mapping, page);
353 			if (page_has_private(page))
354 				do_invalidatepage(page, 0,
355 						  partial_end);
356 			unlock_page(page);
357 			put_page(page);
358 		}
359 	}
360 	/*
361 	 * If the truncation happened within a single page no pages
362 	 * will be released, just zeroed, so we can bail out now.
363 	 */
364 	if (start >= end)
365 		goto out;
366 
367 	index = start;
368 	for ( ; ; ) {
369 		cond_resched();
370 		if (!pagevec_lookup_entries(&pvec, mapping, index,
371 			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
372 			/* If all gone from start onwards, we're done */
373 			if (index == start)
374 				break;
375 			/* Otherwise restart to make sure all gone */
376 			index = start;
377 			continue;
378 		}
379 		if (index == start && indices[0] >= end) {
380 			/* All gone out of hole to be punched, we're done */
381 			pagevec_remove_exceptionals(&pvec);
382 			pagevec_release(&pvec);
383 			break;
384 		}
385 		for (i = 0; i < pagevec_count(&pvec); i++) {
386 			struct page *page = pvec.pages[i];
387 
388 			/* We rely upon deletion not changing page->index */
389 			index = indices[i];
390 			if (index >= end) {
391 				/* Restart punch to make sure all gone */
392 				index = start - 1;
393 				break;
394 			}
395 
396 			if (radix_tree_exceptional_entry(page)) {
397 				truncate_exceptional_entry(mapping, index,
398 							   page);
399 				continue;
400 			}
401 
402 			lock_page(page);
403 			WARN_ON(page_to_index(page) != index);
404 			wait_on_page_writeback(page);
405 			truncate_inode_page(mapping, page);
406 			unlock_page(page);
407 		}
408 		pagevec_remove_exceptionals(&pvec);
409 		pagevec_release(&pvec);
410 		index++;
411 	}
412 
413 out:
414 	cleancache_invalidate_inode(mapping);
415 }
416 EXPORT_SYMBOL(truncate_inode_pages_range);
417 
418 /**
419  * truncate_inode_pages - truncate *all* the pages from an offset
420  * @mapping: mapping to truncate
421  * @lstart: offset from which to truncate
422  *
423  * Called under (and serialised by) inode->i_mutex.
424  *
425  * Note: When this function returns, there can be a page in the process of
426  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
427  * mapping->nrpages can be non-zero when this function returns even after
428  * truncation of the whole mapping.
429  */
430 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
431 {
432 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
433 }
434 EXPORT_SYMBOL(truncate_inode_pages);
435 
436 /**
437  * truncate_inode_pages_final - truncate *all* pages before inode dies
438  * @mapping: mapping to truncate
439  *
440  * Called under (and serialized by) inode->i_mutex.
441  *
442  * Filesystems have to use this in the .evict_inode path to inform the
443  * VM that this is the final truncate and the inode is going away.
444  */
445 void truncate_inode_pages_final(struct address_space *mapping)
446 {
447 	unsigned long nrexceptional;
448 	unsigned long nrpages;
449 
450 	/*
451 	 * Page reclaim can not participate in regular inode lifetime
452 	 * management (can't call iput()) and thus can race with the
453 	 * inode teardown.  Tell it when the address space is exiting,
454 	 * so that it does not install eviction information after the
455 	 * final truncate has begun.
456 	 */
457 	mapping_set_exiting(mapping);
458 
459 	/*
460 	 * When reclaim installs eviction entries, it increases
461 	 * nrexceptional first, then decreases nrpages.  Make sure we see
462 	 * this in the right order or we might miss an entry.
463 	 */
464 	nrpages = mapping->nrpages;
465 	smp_rmb();
466 	nrexceptional = mapping->nrexceptional;
467 
468 	if (nrpages || nrexceptional) {
469 		/*
470 		 * As truncation uses a lockless tree lookup, cycle
471 		 * the tree lock to make sure any ongoing tree
472 		 * modification that does not see AS_EXITING is
473 		 * completed before starting the final truncate.
474 		 */
475 		spin_lock_irq(&mapping->tree_lock);
476 		spin_unlock_irq(&mapping->tree_lock);
477 
478 		truncate_inode_pages(mapping, 0);
479 	}
480 }
481 EXPORT_SYMBOL(truncate_inode_pages_final);
482 
483 /**
484  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
485  * @mapping: the address_space which holds the pages to invalidate
486  * @start: the offset 'from' which to invalidate
487  * @end: the offset 'to' which to invalidate (inclusive)
488  *
489  * This function only removes the unlocked pages, if you want to
490  * remove all the pages of one inode, you must call truncate_inode_pages.
491  *
492  * invalidate_mapping_pages() will not block on IO activity. It will not
493  * invalidate pages which are dirty, locked, under writeback or mapped into
494  * pagetables.
495  */
496 unsigned long invalidate_mapping_pages(struct address_space *mapping,
497 		pgoff_t start, pgoff_t end)
498 {
499 	pgoff_t indices[PAGEVEC_SIZE];
500 	struct pagevec pvec;
501 	pgoff_t index = start;
502 	unsigned long ret;
503 	unsigned long count = 0;
504 	int i;
505 
506 	pagevec_init(&pvec, 0);
507 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
508 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
509 			indices)) {
510 		for (i = 0; i < pagevec_count(&pvec); i++) {
511 			struct page *page = pvec.pages[i];
512 
513 			/* We rely upon deletion not changing page->index */
514 			index = indices[i];
515 			if (index > end)
516 				break;
517 
518 			if (radix_tree_exceptional_entry(page)) {
519 				invalidate_exceptional_entry(mapping, index,
520 							     page);
521 				continue;
522 			}
523 
524 			if (!trylock_page(page))
525 				continue;
526 
527 			WARN_ON(page_to_index(page) != index);
528 
529 			/* Middle of THP: skip */
530 			if (PageTransTail(page)) {
531 				unlock_page(page);
532 				continue;
533 			} else if (PageTransHuge(page)) {
534 				index += HPAGE_PMD_NR - 1;
535 				i += HPAGE_PMD_NR - 1;
536 				/* 'end' is in the middle of THP */
537 				if (index ==  round_down(end, HPAGE_PMD_NR))
538 					continue;
539 			}
540 
541 			ret = invalidate_inode_page(page);
542 			unlock_page(page);
543 			/*
544 			 * Invalidation is a hint that the page is no longer
545 			 * of interest and try to speed up its reclaim.
546 			 */
547 			if (!ret)
548 				deactivate_file_page(page);
549 			count += ret;
550 		}
551 		pagevec_remove_exceptionals(&pvec);
552 		pagevec_release(&pvec);
553 		cond_resched();
554 		index++;
555 	}
556 	return count;
557 }
558 EXPORT_SYMBOL(invalidate_mapping_pages);
559 
560 /*
561  * This is like invalidate_complete_page(), except it ignores the page's
562  * refcount.  We do this because invalidate_inode_pages2() needs stronger
563  * invalidation guarantees, and cannot afford to leave pages behind because
564  * shrink_page_list() has a temp ref on them, or because they're transiently
565  * sitting in the lru_cache_add() pagevecs.
566  */
567 static int
568 invalidate_complete_page2(struct address_space *mapping, struct page *page)
569 {
570 	unsigned long flags;
571 
572 	if (page->mapping != mapping)
573 		return 0;
574 
575 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
576 		return 0;
577 
578 	spin_lock_irqsave(&mapping->tree_lock, flags);
579 	if (PageDirty(page))
580 		goto failed;
581 
582 	BUG_ON(page_has_private(page));
583 	__delete_from_page_cache(page, NULL);
584 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
585 
586 	if (mapping->a_ops->freepage)
587 		mapping->a_ops->freepage(page);
588 
589 	put_page(page);	/* pagecache ref */
590 	return 1;
591 failed:
592 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
593 	return 0;
594 }
595 
596 static int do_launder_page(struct address_space *mapping, struct page *page)
597 {
598 	if (!PageDirty(page))
599 		return 0;
600 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
601 		return 0;
602 	return mapping->a_ops->launder_page(page);
603 }
604 
605 /**
606  * invalidate_inode_pages2_range - remove range of pages from an address_space
607  * @mapping: the address_space
608  * @start: the page offset 'from' which to invalidate
609  * @end: the page offset 'to' which to invalidate (inclusive)
610  *
611  * Any pages which are found to be mapped into pagetables are unmapped prior to
612  * invalidation.
613  *
614  * Returns -EBUSY if any pages could not be invalidated.
615  */
616 int invalidate_inode_pages2_range(struct address_space *mapping,
617 				  pgoff_t start, pgoff_t end)
618 {
619 	pgoff_t indices[PAGEVEC_SIZE];
620 	struct pagevec pvec;
621 	pgoff_t index;
622 	int i;
623 	int ret = 0;
624 	int ret2 = 0;
625 	int did_range_unmap = 0;
626 
627 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
628 		goto out;
629 
630 	pagevec_init(&pvec, 0);
631 	index = start;
632 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
633 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
634 			indices)) {
635 		for (i = 0; i < pagevec_count(&pvec); i++) {
636 			struct page *page = pvec.pages[i];
637 
638 			/* We rely upon deletion not changing page->index */
639 			index = indices[i];
640 			if (index > end)
641 				break;
642 
643 			if (radix_tree_exceptional_entry(page)) {
644 				if (!invalidate_exceptional_entry2(mapping,
645 								   index, page))
646 					ret = -EBUSY;
647 				continue;
648 			}
649 
650 			lock_page(page);
651 			WARN_ON(page_to_index(page) != index);
652 			if (page->mapping != mapping) {
653 				unlock_page(page);
654 				continue;
655 			}
656 			wait_on_page_writeback(page);
657 			if (page_mapped(page)) {
658 				if (!did_range_unmap) {
659 					/*
660 					 * Zap the rest of the file in one hit.
661 					 */
662 					unmap_mapping_range(mapping,
663 					   (loff_t)index << PAGE_SHIFT,
664 					   (loff_t)(1 + end - index)
665 							 << PAGE_SHIFT,
666 							 0);
667 					did_range_unmap = 1;
668 				} else {
669 					/*
670 					 * Just zap this page
671 					 */
672 					unmap_mapping_range(mapping,
673 					   (loff_t)index << PAGE_SHIFT,
674 					   PAGE_SIZE, 0);
675 				}
676 			}
677 			BUG_ON(page_mapped(page));
678 			ret2 = do_launder_page(mapping, page);
679 			if (ret2 == 0) {
680 				if (!invalidate_complete_page2(mapping, page))
681 					ret2 = -EBUSY;
682 			}
683 			if (ret2 < 0)
684 				ret = ret2;
685 			unlock_page(page);
686 		}
687 		pagevec_remove_exceptionals(&pvec);
688 		pagevec_release(&pvec);
689 		cond_resched();
690 		index++;
691 	}
692 
693 out:
694 	cleancache_invalidate_inode(mapping);
695 	return ret;
696 }
697 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
698 
699 /**
700  * invalidate_inode_pages2 - remove all pages from an address_space
701  * @mapping: the address_space
702  *
703  * Any pages which are found to be mapped into pagetables are unmapped prior to
704  * invalidation.
705  *
706  * Returns -EBUSY if any pages could not be invalidated.
707  */
708 int invalidate_inode_pages2(struct address_space *mapping)
709 {
710 	return invalidate_inode_pages2_range(mapping, 0, -1);
711 }
712 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
713 
714 /**
715  * truncate_pagecache - unmap and remove pagecache that has been truncated
716  * @inode: inode
717  * @newsize: new file size
718  *
719  * inode's new i_size must already be written before truncate_pagecache
720  * is called.
721  *
722  * This function should typically be called before the filesystem
723  * releases resources associated with the freed range (eg. deallocates
724  * blocks). This way, pagecache will always stay logically coherent
725  * with on-disk format, and the filesystem would not have to deal with
726  * situations such as writepage being called for a page that has already
727  * had its underlying blocks deallocated.
728  */
729 void truncate_pagecache(struct inode *inode, loff_t newsize)
730 {
731 	struct address_space *mapping = inode->i_mapping;
732 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
733 
734 	/*
735 	 * unmap_mapping_range is called twice, first simply for
736 	 * efficiency so that truncate_inode_pages does fewer
737 	 * single-page unmaps.  However after this first call, and
738 	 * before truncate_inode_pages finishes, it is possible for
739 	 * private pages to be COWed, which remain after
740 	 * truncate_inode_pages finishes, hence the second
741 	 * unmap_mapping_range call must be made for correctness.
742 	 */
743 	unmap_mapping_range(mapping, holebegin, 0, 1);
744 	truncate_inode_pages(mapping, newsize);
745 	unmap_mapping_range(mapping, holebegin, 0, 1);
746 }
747 EXPORT_SYMBOL(truncate_pagecache);
748 
749 /**
750  * truncate_setsize - update inode and pagecache for a new file size
751  * @inode: inode
752  * @newsize: new file size
753  *
754  * truncate_setsize updates i_size and performs pagecache truncation (if
755  * necessary) to @newsize. It will be typically be called from the filesystem's
756  * setattr function when ATTR_SIZE is passed in.
757  *
758  * Must be called with a lock serializing truncates and writes (generally
759  * i_mutex but e.g. xfs uses a different lock) and before all filesystem
760  * specific block truncation has been performed.
761  */
762 void truncate_setsize(struct inode *inode, loff_t newsize)
763 {
764 	loff_t oldsize = inode->i_size;
765 
766 	i_size_write(inode, newsize);
767 	if (newsize > oldsize)
768 		pagecache_isize_extended(inode, oldsize, newsize);
769 	truncate_pagecache(inode, newsize);
770 }
771 EXPORT_SYMBOL(truncate_setsize);
772 
773 /**
774  * pagecache_isize_extended - update pagecache after extension of i_size
775  * @inode:	inode for which i_size was extended
776  * @from:	original inode size
777  * @to:		new inode size
778  *
779  * Handle extension of inode size either caused by extending truncate or by
780  * write starting after current i_size. We mark the page straddling current
781  * i_size RO so that page_mkwrite() is called on the nearest write access to
782  * the page.  This way filesystem can be sure that page_mkwrite() is called on
783  * the page before user writes to the page via mmap after the i_size has been
784  * changed.
785  *
786  * The function must be called after i_size is updated so that page fault
787  * coming after we unlock the page will already see the new i_size.
788  * The function must be called while we still hold i_mutex - this not only
789  * makes sure i_size is stable but also that userspace cannot observe new
790  * i_size value before we are prepared to store mmap writes at new inode size.
791  */
792 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
793 {
794 	int bsize = i_blocksize(inode);
795 	loff_t rounded_from;
796 	struct page *page;
797 	pgoff_t index;
798 
799 	WARN_ON(to > inode->i_size);
800 
801 	if (from >= to || bsize == PAGE_SIZE)
802 		return;
803 	/* Page straddling @from will not have any hole block created? */
804 	rounded_from = round_up(from, bsize);
805 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
806 		return;
807 
808 	index = from >> PAGE_SHIFT;
809 	page = find_lock_page(inode->i_mapping, index);
810 	/* Page not cached? Nothing to do */
811 	if (!page)
812 		return;
813 	/*
814 	 * See clear_page_dirty_for_io() for details why set_page_dirty()
815 	 * is needed.
816 	 */
817 	if (page_mkclean(page))
818 		set_page_dirty(page);
819 	unlock_page(page);
820 	put_page(page);
821 }
822 EXPORT_SYMBOL(pagecache_isize_extended);
823 
824 /**
825  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
826  * @inode: inode
827  * @lstart: offset of beginning of hole
828  * @lend: offset of last byte of hole
829  *
830  * This function should typically be called before the filesystem
831  * releases resources associated with the freed range (eg. deallocates
832  * blocks). This way, pagecache will always stay logically coherent
833  * with on-disk format, and the filesystem would not have to deal with
834  * situations such as writepage being called for a page that has already
835  * had its underlying blocks deallocated.
836  */
837 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
838 {
839 	struct address_space *mapping = inode->i_mapping;
840 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
841 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
842 	/*
843 	 * This rounding is currently just for example: unmap_mapping_range
844 	 * expands its hole outwards, whereas we want it to contract the hole
845 	 * inwards.  However, existing callers of truncate_pagecache_range are
846 	 * doing their own page rounding first.  Note that unmap_mapping_range
847 	 * allows holelen 0 for all, and we allow lend -1 for end of file.
848 	 */
849 
850 	/*
851 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
852 	 * once (before truncating pagecache), and without "even_cows" flag:
853 	 * hole-punching should not remove private COWed pages from the hole.
854 	 */
855 	if ((u64)unmap_end > (u64)unmap_start)
856 		unmap_mapping_range(mapping, unmap_start,
857 				    1 + unmap_end - unmap_start, 0);
858 	truncate_inode_pages_range(mapping, lstart, lend);
859 }
860 EXPORT_SYMBOL(truncate_pagecache_range);
861