xref: /linux/mm/swap.c (revision d461e96cd22b5aeb1df448536b92e8d8e88c4a05)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16 
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
40 
41 #include "internal.h"
42 
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
45 
46 /* How many pages do we try to swap or page in/out together? */
47 int page_cluster;
48 
49 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
50 struct lru_rotate {
51 	local_lock_t lock;
52 	struct pagevec pvec;
53 };
54 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
55 	.lock = INIT_LOCAL_LOCK(lock),
56 };
57 
58 /*
59  * The following struct pagevec are grouped together because they are protected
60  * by disabling preemption (and interrupts remain enabled).
61  */
62 struct lru_pvecs {
63 	local_lock_t lock;
64 	struct pagevec lru_add;
65 	struct pagevec lru_deactivate_file;
66 	struct pagevec lru_deactivate;
67 	struct pagevec lru_lazyfree;
68 #ifdef CONFIG_SMP
69 	struct pagevec activate_page;
70 #endif
71 };
72 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
73 	.lock = INIT_LOCAL_LOCK(lock),
74 };
75 
76 /*
77  * This path almost never happens for VM activity - pages are normally
78  * freed via pagevecs.  But it gets used by networking.
79  */
80 static void __page_cache_release(struct page *page)
81 {
82 	if (PageLRU(page)) {
83 		struct folio *folio = page_folio(page);
84 		struct lruvec *lruvec;
85 		unsigned long flags;
86 
87 		lruvec = folio_lruvec_lock_irqsave(folio, &flags);
88 		del_page_from_lru_list(page, lruvec);
89 		__clear_page_lru_flags(page);
90 		unlock_page_lruvec_irqrestore(lruvec, flags);
91 	}
92 	__ClearPageWaiters(page);
93 }
94 
95 static void __put_single_page(struct page *page)
96 {
97 	__page_cache_release(page);
98 	mem_cgroup_uncharge(page_folio(page));
99 	free_unref_page(page, 0);
100 }
101 
102 static void __put_compound_page(struct page *page)
103 {
104 	/*
105 	 * __page_cache_release() is supposed to be called for thp, not for
106 	 * hugetlb. This is because hugetlb page does never have PageLRU set
107 	 * (it's never listed to any LRU lists) and no memcg routines should
108 	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
109 	 */
110 	if (!PageHuge(page))
111 		__page_cache_release(page);
112 	destroy_compound_page(page);
113 }
114 
115 void __put_page(struct page *page)
116 {
117 	if (is_zone_device_page(page)) {
118 		put_dev_pagemap(page->pgmap);
119 
120 		/*
121 		 * The page belongs to the device that created pgmap. Do
122 		 * not return it to page allocator.
123 		 */
124 		return;
125 	}
126 
127 	if (unlikely(PageCompound(page)))
128 		__put_compound_page(page);
129 	else
130 		__put_single_page(page);
131 }
132 EXPORT_SYMBOL(__put_page);
133 
134 /**
135  * put_pages_list() - release a list of pages
136  * @pages: list of pages threaded on page->lru
137  *
138  * Release a list of pages which are strung together on page.lru.  Currently
139  * used by read_cache_pages() and related error recovery code.
140  */
141 void put_pages_list(struct list_head *pages)
142 {
143 	while (!list_empty(pages)) {
144 		struct page *victim;
145 
146 		victim = lru_to_page(pages);
147 		list_del(&victim->lru);
148 		put_page(victim);
149 	}
150 }
151 EXPORT_SYMBOL(put_pages_list);
152 
153 /*
154  * get_kernel_pages() - pin kernel pages in memory
155  * @kiov:	An array of struct kvec structures
156  * @nr_segs:	number of segments to pin
157  * @write:	pinning for read/write, currently ignored
158  * @pages:	array that receives pointers to the pages pinned.
159  *		Should be at least nr_segs long.
160  *
161  * Returns number of pages pinned. This may be fewer than the number
162  * requested. If nr_pages is 0 or negative, returns 0. If no pages
163  * were pinned, returns -errno. Each page returned must be released
164  * with a put_page() call when it is finished with.
165  */
166 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
167 		struct page **pages)
168 {
169 	int seg;
170 
171 	for (seg = 0; seg < nr_segs; seg++) {
172 		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
173 			return seg;
174 
175 		pages[seg] = kmap_to_page(kiov[seg].iov_base);
176 		get_page(pages[seg]);
177 	}
178 
179 	return seg;
180 }
181 EXPORT_SYMBOL_GPL(get_kernel_pages);
182 
183 static void pagevec_lru_move_fn(struct pagevec *pvec,
184 	void (*move_fn)(struct page *page, struct lruvec *lruvec))
185 {
186 	int i;
187 	struct lruvec *lruvec = NULL;
188 	unsigned long flags = 0;
189 
190 	for (i = 0; i < pagevec_count(pvec); i++) {
191 		struct page *page = pvec->pages[i];
192 		struct folio *folio = page_folio(page);
193 
194 		/* block memcg migration during page moving between lru */
195 		if (!TestClearPageLRU(page))
196 			continue;
197 
198 		lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
199 		(*move_fn)(page, lruvec);
200 
201 		SetPageLRU(page);
202 	}
203 	if (lruvec)
204 		unlock_page_lruvec_irqrestore(lruvec, flags);
205 	release_pages(pvec->pages, pvec->nr);
206 	pagevec_reinit(pvec);
207 }
208 
209 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec)
210 {
211 	struct folio *folio = page_folio(page);
212 
213 	if (!folio_test_unevictable(folio)) {
214 		lruvec_del_folio(lruvec, folio);
215 		folio_clear_active(folio);
216 		lruvec_add_folio_tail(lruvec, folio);
217 		__count_vm_events(PGROTATED, folio_nr_pages(folio));
218 	}
219 }
220 
221 /* return true if pagevec needs to drain */
222 static bool pagevec_add_and_need_flush(struct pagevec *pvec, struct page *page)
223 {
224 	bool ret = false;
225 
226 	if (!pagevec_add(pvec, page) || PageCompound(page) ||
227 			lru_cache_disabled())
228 		ret = true;
229 
230 	return ret;
231 }
232 
233 /*
234  * Writeback is about to end against a folio which has been marked for
235  * immediate reclaim.  If it still appears to be reclaimable, move it
236  * to the tail of the inactive list.
237  *
238  * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
239  */
240 void folio_rotate_reclaimable(struct folio *folio)
241 {
242 	if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
243 	    !folio_test_unevictable(folio) && folio_test_lru(folio)) {
244 		struct pagevec *pvec;
245 		unsigned long flags;
246 
247 		folio_get(folio);
248 		local_lock_irqsave(&lru_rotate.lock, flags);
249 		pvec = this_cpu_ptr(&lru_rotate.pvec);
250 		if (pagevec_add_and_need_flush(pvec, &folio->page))
251 			pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
252 		local_unlock_irqrestore(&lru_rotate.lock, flags);
253 	}
254 }
255 
256 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
257 {
258 	do {
259 		unsigned long lrusize;
260 
261 		/*
262 		 * Hold lruvec->lru_lock is safe here, since
263 		 * 1) The pinned lruvec in reclaim, or
264 		 * 2) From a pre-LRU page during refault (which also holds the
265 		 *    rcu lock, so would be safe even if the page was on the LRU
266 		 *    and could move simultaneously to a new lruvec).
267 		 */
268 		spin_lock_irq(&lruvec->lru_lock);
269 		/* Record cost event */
270 		if (file)
271 			lruvec->file_cost += nr_pages;
272 		else
273 			lruvec->anon_cost += nr_pages;
274 
275 		/*
276 		 * Decay previous events
277 		 *
278 		 * Because workloads change over time (and to avoid
279 		 * overflow) we keep these statistics as a floating
280 		 * average, which ends up weighing recent refaults
281 		 * more than old ones.
282 		 */
283 		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
284 			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
285 			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
286 			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
287 
288 		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
289 			lruvec->file_cost /= 2;
290 			lruvec->anon_cost /= 2;
291 		}
292 		spin_unlock_irq(&lruvec->lru_lock);
293 	} while ((lruvec = parent_lruvec(lruvec)));
294 }
295 
296 void lru_note_cost_folio(struct folio *folio)
297 {
298 	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
299 			folio_nr_pages(folio));
300 }
301 
302 static void __folio_activate(struct folio *folio, struct lruvec *lruvec)
303 {
304 	if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
305 		long nr_pages = folio_nr_pages(folio);
306 
307 		lruvec_del_folio(lruvec, folio);
308 		folio_set_active(folio);
309 		lruvec_add_folio(lruvec, folio);
310 		trace_mm_lru_activate(folio);
311 
312 		__count_vm_events(PGACTIVATE, nr_pages);
313 		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
314 				     nr_pages);
315 	}
316 }
317 
318 #ifdef CONFIG_SMP
319 static void __activate_page(struct page *page, struct lruvec *lruvec)
320 {
321 	return __folio_activate(page_folio(page), lruvec);
322 }
323 
324 static void activate_page_drain(int cpu)
325 {
326 	struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
327 
328 	if (pagevec_count(pvec))
329 		pagevec_lru_move_fn(pvec, __activate_page);
330 }
331 
332 static bool need_activate_page_drain(int cpu)
333 {
334 	return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
335 }
336 
337 static void folio_activate(struct folio *folio)
338 {
339 	if (folio_test_lru(folio) && !folio_test_active(folio) &&
340 	    !folio_test_unevictable(folio)) {
341 		struct pagevec *pvec;
342 
343 		folio_get(folio);
344 		local_lock(&lru_pvecs.lock);
345 		pvec = this_cpu_ptr(&lru_pvecs.activate_page);
346 		if (pagevec_add_and_need_flush(pvec, &folio->page))
347 			pagevec_lru_move_fn(pvec, __activate_page);
348 		local_unlock(&lru_pvecs.lock);
349 	}
350 }
351 
352 #else
353 static inline void activate_page_drain(int cpu)
354 {
355 }
356 
357 static void folio_activate(struct folio *folio)
358 {
359 	struct lruvec *lruvec;
360 
361 	if (folio_test_clear_lru(folio)) {
362 		lruvec = folio_lruvec_lock_irq(folio);
363 		__folio_activate(folio, lruvec);
364 		unlock_page_lruvec_irq(lruvec);
365 		folio_set_lru(folio);
366 	}
367 }
368 #endif
369 
370 static void __lru_cache_activate_folio(struct folio *folio)
371 {
372 	struct pagevec *pvec;
373 	int i;
374 
375 	local_lock(&lru_pvecs.lock);
376 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
377 
378 	/*
379 	 * Search backwards on the optimistic assumption that the page being
380 	 * activated has just been added to this pagevec. Note that only
381 	 * the local pagevec is examined as a !PageLRU page could be in the
382 	 * process of being released, reclaimed, migrated or on a remote
383 	 * pagevec that is currently being drained. Furthermore, marking
384 	 * a remote pagevec's page PageActive potentially hits a race where
385 	 * a page is marked PageActive just after it is added to the inactive
386 	 * list causing accounting errors and BUG_ON checks to trigger.
387 	 */
388 	for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
389 		struct page *pagevec_page = pvec->pages[i];
390 
391 		if (pagevec_page == &folio->page) {
392 			folio_set_active(folio);
393 			break;
394 		}
395 	}
396 
397 	local_unlock(&lru_pvecs.lock);
398 }
399 
400 /*
401  * Mark a page as having seen activity.
402  *
403  * inactive,unreferenced	->	inactive,referenced
404  * inactive,referenced		->	active,unreferenced
405  * active,unreferenced		->	active,referenced
406  *
407  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
408  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
409  */
410 void folio_mark_accessed(struct folio *folio)
411 {
412 	if (!folio_test_referenced(folio)) {
413 		folio_set_referenced(folio);
414 	} else if (folio_test_unevictable(folio)) {
415 		/*
416 		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
417 		 * this list is never rotated or maintained, so marking an
418 		 * evictable page accessed has no effect.
419 		 */
420 	} else if (!folio_test_active(folio)) {
421 		/*
422 		 * If the page is on the LRU, queue it for activation via
423 		 * lru_pvecs.activate_page. Otherwise, assume the page is on a
424 		 * pagevec, mark it active and it'll be moved to the active
425 		 * LRU on the next drain.
426 		 */
427 		if (folio_test_lru(folio))
428 			folio_activate(folio);
429 		else
430 			__lru_cache_activate_folio(folio);
431 		folio_clear_referenced(folio);
432 		workingset_activation(folio);
433 	}
434 	if (folio_test_idle(folio))
435 		folio_clear_idle(folio);
436 }
437 EXPORT_SYMBOL(folio_mark_accessed);
438 
439 /**
440  * folio_add_lru - Add a folio to an LRU list.
441  * @folio: The folio to be added to the LRU.
442  *
443  * Queue the folio for addition to the LRU. The decision on whether
444  * to add the page to the [in]active [file|anon] list is deferred until the
445  * pagevec is drained. This gives a chance for the caller of folio_add_lru()
446  * have the folio added to the active list using folio_mark_accessed().
447  */
448 void folio_add_lru(struct folio *folio)
449 {
450 	struct pagevec *pvec;
451 
452 	VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio);
453 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
454 
455 	folio_get(folio);
456 	local_lock(&lru_pvecs.lock);
457 	pvec = this_cpu_ptr(&lru_pvecs.lru_add);
458 	if (pagevec_add_and_need_flush(pvec, &folio->page))
459 		__pagevec_lru_add(pvec);
460 	local_unlock(&lru_pvecs.lock);
461 }
462 EXPORT_SYMBOL(folio_add_lru);
463 
464 /**
465  * lru_cache_add_inactive_or_unevictable
466  * @page:  the page to be added to LRU
467  * @vma:   vma in which page is mapped for determining reclaimability
468  *
469  * Place @page on the inactive or unevictable LRU list, depending on its
470  * evictability.
471  */
472 void lru_cache_add_inactive_or_unevictable(struct page *page,
473 					 struct vm_area_struct *vma)
474 {
475 	bool unevictable;
476 
477 	VM_BUG_ON_PAGE(PageLRU(page), page);
478 
479 	unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
480 	if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
481 		int nr_pages = thp_nr_pages(page);
482 		/*
483 		 * We use the irq-unsafe __mod_zone_page_state because this
484 		 * counter is not modified from interrupt context, and the pte
485 		 * lock is held(spinlock), which implies preemption disabled.
486 		 */
487 		__mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
488 		count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
489 	}
490 	lru_cache_add(page);
491 }
492 
493 /*
494  * If the page can not be invalidated, it is moved to the
495  * inactive list to speed up its reclaim.  It is moved to the
496  * head of the list, rather than the tail, to give the flusher
497  * threads some time to write it out, as this is much more
498  * effective than the single-page writeout from reclaim.
499  *
500  * If the page isn't page_mapped and dirty/writeback, the page
501  * could reclaim asap using PG_reclaim.
502  *
503  * 1. active, mapped page -> none
504  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
505  * 3. inactive, mapped page -> none
506  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
507  * 5. inactive, clean -> inactive, tail
508  * 6. Others -> none
509  *
510  * In 4, why it moves inactive's head, the VM expects the page would
511  * be write it out by flusher threads as this is much more effective
512  * than the single-page writeout from reclaim.
513  */
514 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec)
515 {
516 	bool active = PageActive(page);
517 	int nr_pages = thp_nr_pages(page);
518 
519 	if (PageUnevictable(page))
520 		return;
521 
522 	/* Some processes are using the page */
523 	if (page_mapped(page))
524 		return;
525 
526 	del_page_from_lru_list(page, lruvec);
527 	ClearPageActive(page);
528 	ClearPageReferenced(page);
529 
530 	if (PageWriteback(page) || PageDirty(page)) {
531 		/*
532 		 * PG_reclaim could be raced with end_page_writeback
533 		 * It can make readahead confusing.  But race window
534 		 * is _really_ small and  it's non-critical problem.
535 		 */
536 		add_page_to_lru_list(page, lruvec);
537 		SetPageReclaim(page);
538 	} else {
539 		/*
540 		 * The page's writeback ends up during pagevec
541 		 * We move that page into tail of inactive.
542 		 */
543 		add_page_to_lru_list_tail(page, lruvec);
544 		__count_vm_events(PGROTATED, nr_pages);
545 	}
546 
547 	if (active) {
548 		__count_vm_events(PGDEACTIVATE, nr_pages);
549 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
550 				     nr_pages);
551 	}
552 }
553 
554 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec)
555 {
556 	if (PageActive(page) && !PageUnevictable(page)) {
557 		int nr_pages = thp_nr_pages(page);
558 
559 		del_page_from_lru_list(page, lruvec);
560 		ClearPageActive(page);
561 		ClearPageReferenced(page);
562 		add_page_to_lru_list(page, lruvec);
563 
564 		__count_vm_events(PGDEACTIVATE, nr_pages);
565 		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
566 				     nr_pages);
567 	}
568 }
569 
570 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec)
571 {
572 	if (PageAnon(page) && PageSwapBacked(page) &&
573 	    !PageSwapCache(page) && !PageUnevictable(page)) {
574 		int nr_pages = thp_nr_pages(page);
575 
576 		del_page_from_lru_list(page, lruvec);
577 		ClearPageActive(page);
578 		ClearPageReferenced(page);
579 		/*
580 		 * Lazyfree pages are clean anonymous pages.  They have
581 		 * PG_swapbacked flag cleared, to distinguish them from normal
582 		 * anonymous pages
583 		 */
584 		ClearPageSwapBacked(page);
585 		add_page_to_lru_list(page, lruvec);
586 
587 		__count_vm_events(PGLAZYFREE, nr_pages);
588 		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
589 				     nr_pages);
590 	}
591 }
592 
593 /*
594  * Drain pages out of the cpu's pagevecs.
595  * Either "cpu" is the current CPU, and preemption has already been
596  * disabled; or "cpu" is being hot-unplugged, and is already dead.
597  */
598 void lru_add_drain_cpu(int cpu)
599 {
600 	struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
601 
602 	if (pagevec_count(pvec))
603 		__pagevec_lru_add(pvec);
604 
605 	pvec = &per_cpu(lru_rotate.pvec, cpu);
606 	/* Disabling interrupts below acts as a compiler barrier. */
607 	if (data_race(pagevec_count(pvec))) {
608 		unsigned long flags;
609 
610 		/* No harm done if a racing interrupt already did this */
611 		local_lock_irqsave(&lru_rotate.lock, flags);
612 		pagevec_lru_move_fn(pvec, pagevec_move_tail_fn);
613 		local_unlock_irqrestore(&lru_rotate.lock, flags);
614 	}
615 
616 	pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
617 	if (pagevec_count(pvec))
618 		pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
619 
620 	pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
621 	if (pagevec_count(pvec))
622 		pagevec_lru_move_fn(pvec, lru_deactivate_fn);
623 
624 	pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
625 	if (pagevec_count(pvec))
626 		pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
627 
628 	activate_page_drain(cpu);
629 }
630 
631 /**
632  * deactivate_file_page - forcefully deactivate a file page
633  * @page: page to deactivate
634  *
635  * This function hints the VM that @page is a good reclaim candidate,
636  * for example if its invalidation fails due to the page being dirty
637  * or under writeback.
638  */
639 void deactivate_file_page(struct page *page)
640 {
641 	/*
642 	 * In a workload with many unevictable page such as mprotect,
643 	 * unevictable page deactivation for accelerating reclaim is pointless.
644 	 */
645 	if (PageUnevictable(page))
646 		return;
647 
648 	if (likely(get_page_unless_zero(page))) {
649 		struct pagevec *pvec;
650 
651 		local_lock(&lru_pvecs.lock);
652 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
653 
654 		if (pagevec_add_and_need_flush(pvec, page))
655 			pagevec_lru_move_fn(pvec, lru_deactivate_file_fn);
656 		local_unlock(&lru_pvecs.lock);
657 	}
658 }
659 
660 /*
661  * deactivate_page - deactivate a page
662  * @page: page to deactivate
663  *
664  * deactivate_page() moves @page to the inactive list if @page was on the active
665  * list and was not an unevictable page.  This is done to accelerate the reclaim
666  * of @page.
667  */
668 void deactivate_page(struct page *page)
669 {
670 	if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
671 		struct pagevec *pvec;
672 
673 		local_lock(&lru_pvecs.lock);
674 		pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
675 		get_page(page);
676 		if (pagevec_add_and_need_flush(pvec, page))
677 			pagevec_lru_move_fn(pvec, lru_deactivate_fn);
678 		local_unlock(&lru_pvecs.lock);
679 	}
680 }
681 
682 /**
683  * mark_page_lazyfree - make an anon page lazyfree
684  * @page: page to deactivate
685  *
686  * mark_page_lazyfree() moves @page to the inactive file list.
687  * This is done to accelerate the reclaim of @page.
688  */
689 void mark_page_lazyfree(struct page *page)
690 {
691 	if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
692 	    !PageSwapCache(page) && !PageUnevictable(page)) {
693 		struct pagevec *pvec;
694 
695 		local_lock(&lru_pvecs.lock);
696 		pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
697 		get_page(page);
698 		if (pagevec_add_and_need_flush(pvec, page))
699 			pagevec_lru_move_fn(pvec, lru_lazyfree_fn);
700 		local_unlock(&lru_pvecs.lock);
701 	}
702 }
703 
704 void lru_add_drain(void)
705 {
706 	local_lock(&lru_pvecs.lock);
707 	lru_add_drain_cpu(smp_processor_id());
708 	local_unlock(&lru_pvecs.lock);
709 }
710 
711 /*
712  * It's called from per-cpu workqueue context in SMP case so
713  * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
714  * the same cpu. It shouldn't be a problem in !SMP case since
715  * the core is only one and the locks will disable preemption.
716  */
717 static void lru_add_and_bh_lrus_drain(void)
718 {
719 	local_lock(&lru_pvecs.lock);
720 	lru_add_drain_cpu(smp_processor_id());
721 	local_unlock(&lru_pvecs.lock);
722 	invalidate_bh_lrus_cpu();
723 }
724 
725 void lru_add_drain_cpu_zone(struct zone *zone)
726 {
727 	local_lock(&lru_pvecs.lock);
728 	lru_add_drain_cpu(smp_processor_id());
729 	drain_local_pages(zone);
730 	local_unlock(&lru_pvecs.lock);
731 }
732 
733 #ifdef CONFIG_SMP
734 
735 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
736 
737 static void lru_add_drain_per_cpu(struct work_struct *dummy)
738 {
739 	lru_add_and_bh_lrus_drain();
740 }
741 
742 /*
743  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
744  * kworkers being shut down before our page_alloc_cpu_dead callback is
745  * executed on the offlined cpu.
746  * Calling this function with cpu hotplug locks held can actually lead
747  * to obscure indirect dependencies via WQ context.
748  */
749 inline void __lru_add_drain_all(bool force_all_cpus)
750 {
751 	/*
752 	 * lru_drain_gen - Global pages generation number
753 	 *
754 	 * (A) Definition: global lru_drain_gen = x implies that all generations
755 	 *     0 < n <= x are already *scheduled* for draining.
756 	 *
757 	 * This is an optimization for the highly-contended use case where a
758 	 * user space workload keeps constantly generating a flow of pages for
759 	 * each CPU.
760 	 */
761 	static unsigned int lru_drain_gen;
762 	static struct cpumask has_work;
763 	static DEFINE_MUTEX(lock);
764 	unsigned cpu, this_gen;
765 
766 	/*
767 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
768 	 * initialized.
769 	 */
770 	if (WARN_ON(!mm_percpu_wq))
771 		return;
772 
773 	/*
774 	 * Guarantee pagevec counter stores visible by this CPU are visible to
775 	 * other CPUs before loading the current drain generation.
776 	 */
777 	smp_mb();
778 
779 	/*
780 	 * (B) Locally cache global LRU draining generation number
781 	 *
782 	 * The read barrier ensures that the counter is loaded before the mutex
783 	 * is taken. It pairs with smp_mb() inside the mutex critical section
784 	 * at (D).
785 	 */
786 	this_gen = smp_load_acquire(&lru_drain_gen);
787 
788 	mutex_lock(&lock);
789 
790 	/*
791 	 * (C) Exit the draining operation if a newer generation, from another
792 	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
793 	 */
794 	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
795 		goto done;
796 
797 	/*
798 	 * (D) Increment global generation number
799 	 *
800 	 * Pairs with smp_load_acquire() at (B), outside of the critical
801 	 * section. Use a full memory barrier to guarantee that the new global
802 	 * drain generation number is stored before loading pagevec counters.
803 	 *
804 	 * This pairing must be done here, before the for_each_online_cpu loop
805 	 * below which drains the page vectors.
806 	 *
807 	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
808 	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
809 	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
810 	 * along, adds some pages to its per-cpu vectors, then calls
811 	 * lru_add_drain_all().
812 	 *
813 	 * If the paired barrier is done at any later step, e.g. after the
814 	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
815 	 * added pages.
816 	 */
817 	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
818 	smp_mb();
819 
820 	cpumask_clear(&has_work);
821 	for_each_online_cpu(cpu) {
822 		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
823 
824 		if (force_all_cpus ||
825 		    pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
826 		    data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
827 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
828 		    pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
829 		    pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
830 		    need_activate_page_drain(cpu) ||
831 		    has_bh_in_lru(cpu, NULL)) {
832 			INIT_WORK(work, lru_add_drain_per_cpu);
833 			queue_work_on(cpu, mm_percpu_wq, work);
834 			__cpumask_set_cpu(cpu, &has_work);
835 		}
836 	}
837 
838 	for_each_cpu(cpu, &has_work)
839 		flush_work(&per_cpu(lru_add_drain_work, cpu));
840 
841 done:
842 	mutex_unlock(&lock);
843 }
844 
845 void lru_add_drain_all(void)
846 {
847 	__lru_add_drain_all(false);
848 }
849 #else
850 void lru_add_drain_all(void)
851 {
852 	lru_add_drain();
853 }
854 #endif /* CONFIG_SMP */
855 
856 atomic_t lru_disable_count = ATOMIC_INIT(0);
857 
858 /*
859  * lru_cache_disable() needs to be called before we start compiling
860  * a list of pages to be migrated using isolate_lru_page().
861  * It drains pages on LRU cache and then disable on all cpus until
862  * lru_cache_enable is called.
863  *
864  * Must be paired with a call to lru_cache_enable().
865  */
866 void lru_cache_disable(void)
867 {
868 	atomic_inc(&lru_disable_count);
869 #ifdef CONFIG_SMP
870 	/*
871 	 * lru_add_drain_all in the force mode will schedule draining on
872 	 * all online CPUs so any calls of lru_cache_disabled wrapped by
873 	 * local_lock or preemption disabled would be ordered by that.
874 	 * The atomic operation doesn't need to have stronger ordering
875 	 * requirements because that is enforeced by the scheduling
876 	 * guarantees.
877 	 */
878 	__lru_add_drain_all(true);
879 #else
880 	lru_add_and_bh_lrus_drain();
881 #endif
882 }
883 
884 /**
885  * release_pages - batched put_page()
886  * @pages: array of pages to release
887  * @nr: number of pages
888  *
889  * Decrement the reference count on all the pages in @pages.  If it
890  * fell to zero, remove the page from the LRU and free it.
891  */
892 void release_pages(struct page **pages, int nr)
893 {
894 	int i;
895 	LIST_HEAD(pages_to_free);
896 	struct lruvec *lruvec = NULL;
897 	unsigned long flags = 0;
898 	unsigned int lock_batch;
899 
900 	for (i = 0; i < nr; i++) {
901 		struct page *page = pages[i];
902 		struct folio *folio = page_folio(page);
903 
904 		/*
905 		 * Make sure the IRQ-safe lock-holding time does not get
906 		 * excessive with a continuous string of pages from the
907 		 * same lruvec. The lock is held only if lruvec != NULL.
908 		 */
909 		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
910 			unlock_page_lruvec_irqrestore(lruvec, flags);
911 			lruvec = NULL;
912 		}
913 
914 		page = &folio->page;
915 		if (is_huge_zero_page(page))
916 			continue;
917 
918 		if (is_zone_device_page(page)) {
919 			if (lruvec) {
920 				unlock_page_lruvec_irqrestore(lruvec, flags);
921 				lruvec = NULL;
922 			}
923 			/*
924 			 * ZONE_DEVICE pages that return 'false' from
925 			 * page_is_devmap_managed() do not require special
926 			 * processing, and instead, expect a call to
927 			 * put_page_testzero().
928 			 */
929 			if (page_is_devmap_managed(page)) {
930 				put_devmap_managed_page(page);
931 				continue;
932 			}
933 			if (put_page_testzero(page))
934 				put_dev_pagemap(page->pgmap);
935 			continue;
936 		}
937 
938 		if (!put_page_testzero(page))
939 			continue;
940 
941 		if (PageCompound(page)) {
942 			if (lruvec) {
943 				unlock_page_lruvec_irqrestore(lruvec, flags);
944 				lruvec = NULL;
945 			}
946 			__put_compound_page(page);
947 			continue;
948 		}
949 
950 		if (PageLRU(page)) {
951 			struct lruvec *prev_lruvec = lruvec;
952 
953 			lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
954 									&flags);
955 			if (prev_lruvec != lruvec)
956 				lock_batch = 0;
957 
958 			del_page_from_lru_list(page, lruvec);
959 			__clear_page_lru_flags(page);
960 		}
961 
962 		__ClearPageWaiters(page);
963 
964 		list_add(&page->lru, &pages_to_free);
965 	}
966 	if (lruvec)
967 		unlock_page_lruvec_irqrestore(lruvec, flags);
968 
969 	mem_cgroup_uncharge_list(&pages_to_free);
970 	free_unref_page_list(&pages_to_free);
971 }
972 EXPORT_SYMBOL(release_pages);
973 
974 /*
975  * The pages which we're about to release may be in the deferred lru-addition
976  * queues.  That would prevent them from really being freed right now.  That's
977  * OK from a correctness point of view but is inefficient - those pages may be
978  * cache-warm and we want to give them back to the page allocator ASAP.
979  *
980  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
981  * and __pagevec_lru_add_active() call release_pages() directly to avoid
982  * mutual recursion.
983  */
984 void __pagevec_release(struct pagevec *pvec)
985 {
986 	if (!pvec->percpu_pvec_drained) {
987 		lru_add_drain();
988 		pvec->percpu_pvec_drained = true;
989 	}
990 	release_pages(pvec->pages, pagevec_count(pvec));
991 	pagevec_reinit(pvec);
992 }
993 EXPORT_SYMBOL(__pagevec_release);
994 
995 static void __pagevec_lru_add_fn(struct folio *folio, struct lruvec *lruvec)
996 {
997 	int was_unevictable = folio_test_clear_unevictable(folio);
998 	long nr_pages = folio_nr_pages(folio);
999 
1000 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1001 
1002 	/*
1003 	 * A folio becomes evictable in two ways:
1004 	 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
1005 	 * 2) Before acquiring LRU lock to put the folio on the correct LRU
1006 	 *    and then
1007 	 *   a) do PageLRU check with lock [check_move_unevictable_pages]
1008 	 *   b) do PageLRU check before lock [clear_page_mlock]
1009 	 *
1010 	 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
1011 	 * following strict ordering:
1012 	 *
1013 	 * #0: __pagevec_lru_add_fn		#1: clear_page_mlock
1014 	 *
1015 	 * folio_set_lru()			folio_test_clear_mlocked()
1016 	 * smp_mb() // explicit ordering	// above provides strict
1017 	 *					// ordering
1018 	 * folio_test_mlocked()			folio_test_lru()
1019 	 *
1020 	 *
1021 	 * if '#1' does not observe setting of PG_lru by '#0' and
1022 	 * fails isolation, the explicit barrier will make sure that
1023 	 * folio_evictable check will put the folio on the correct
1024 	 * LRU. Without smp_mb(), folio_set_lru() can be reordered
1025 	 * after folio_test_mlocked() check and can make '#1' fail the
1026 	 * isolation of the folio whose mlocked bit is cleared (#0 is
1027 	 * also looking at the same folio) and the evictable folio will
1028 	 * be stranded on an unevictable LRU.
1029 	 */
1030 	folio_set_lru(folio);
1031 	smp_mb__after_atomic();
1032 
1033 	if (folio_evictable(folio)) {
1034 		if (was_unevictable)
1035 			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1036 	} else {
1037 		folio_clear_active(folio);
1038 		folio_set_unevictable(folio);
1039 		if (!was_unevictable)
1040 			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1041 	}
1042 
1043 	lruvec_add_folio(lruvec, folio);
1044 	trace_mm_lru_insertion(folio);
1045 }
1046 
1047 /*
1048  * Add the passed pages to the LRU, then drop the caller's refcount
1049  * on them.  Reinitialises the caller's pagevec.
1050  */
1051 void __pagevec_lru_add(struct pagevec *pvec)
1052 {
1053 	int i;
1054 	struct lruvec *lruvec = NULL;
1055 	unsigned long flags = 0;
1056 
1057 	for (i = 0; i < pagevec_count(pvec); i++) {
1058 		struct folio *folio = page_folio(pvec->pages[i]);
1059 
1060 		lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
1061 		__pagevec_lru_add_fn(folio, lruvec);
1062 	}
1063 	if (lruvec)
1064 		unlock_page_lruvec_irqrestore(lruvec, flags);
1065 	release_pages(pvec->pages, pvec->nr);
1066 	pagevec_reinit(pvec);
1067 }
1068 
1069 /**
1070  * pagevec_remove_exceptionals - pagevec exceptionals pruning
1071  * @pvec:	The pagevec to prune
1072  *
1073  * find_get_entries() fills both pages and XArray value entries (aka
1074  * exceptional entries) into the pagevec.  This function prunes all
1075  * exceptionals from @pvec without leaving holes, so that it can be
1076  * passed on to page-only pagevec operations.
1077  */
1078 void pagevec_remove_exceptionals(struct pagevec *pvec)
1079 {
1080 	int i, j;
1081 
1082 	for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1083 		struct page *page = pvec->pages[i];
1084 		if (!xa_is_value(page))
1085 			pvec->pages[j++] = page;
1086 	}
1087 	pvec->nr = j;
1088 }
1089 
1090 /**
1091  * pagevec_lookup_range - gang pagecache lookup
1092  * @pvec:	Where the resulting pages are placed
1093  * @mapping:	The address_space to search
1094  * @start:	The starting page index
1095  * @end:	The final page index
1096  *
1097  * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1098  * pages in the mapping starting from index @start and upto index @end
1099  * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1100  * reference against the pages in @pvec.
1101  *
1102  * The search returns a group of mapping-contiguous pages with ascending
1103  * indexes.  There may be holes in the indices due to not-present pages. We
1104  * also update @start to index the next page for the traversal.
1105  *
1106  * pagevec_lookup_range() returns the number of pages which were found. If this
1107  * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1108  * reached.
1109  */
1110 unsigned pagevec_lookup_range(struct pagevec *pvec,
1111 		struct address_space *mapping, pgoff_t *start, pgoff_t end)
1112 {
1113 	pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1114 					pvec->pages);
1115 	return pagevec_count(pvec);
1116 }
1117 EXPORT_SYMBOL(pagevec_lookup_range);
1118 
1119 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1120 		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1121 		xa_mark_t tag)
1122 {
1123 	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1124 					PAGEVEC_SIZE, pvec->pages);
1125 	return pagevec_count(pvec);
1126 }
1127 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1128 
1129 /*
1130  * Perform any setup for the swap system
1131  */
1132 void __init swap_setup(void)
1133 {
1134 	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1135 
1136 	/* Use a smaller cluster for small-memory machines */
1137 	if (megs < 16)
1138 		page_cluster = 2;
1139 	else
1140 		page_cluster = 3;
1141 	/*
1142 	 * Right now other parts of the system means that we
1143 	 * _really_ don't want to cluster much more
1144 	 */
1145 }
1146 
1147 #ifdef CONFIG_DEV_PAGEMAP_OPS
1148 void put_devmap_managed_page(struct page *page)
1149 {
1150 	int count;
1151 
1152 	if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1153 		return;
1154 
1155 	count = page_ref_dec_return(page);
1156 
1157 	/*
1158 	 * devmap page refcounts are 1-based, rather than 0-based: if
1159 	 * refcount is 1, then the page is free and the refcount is
1160 	 * stable because nobody holds a reference on the page.
1161 	 */
1162 	if (count == 1)
1163 		free_devmap_managed_page(page);
1164 	else if (!count)
1165 		__put_page(page);
1166 }
1167 EXPORT_SYMBOL(put_devmap_managed_page);
1168 #endif
1169