1 /* 2 * SLUB: A slab allocator that limits cache line use instead of queuing 3 * objects in per cpu and per node lists. 4 * 5 * The allocator synchronizes using per slab locks or atomic operatios 6 * and only uses a centralized lock to manage a pool of partial slabs. 7 * 8 * (C) 2007 SGI, Christoph Lameter 9 * (C) 2011 Linux Foundation, Christoph Lameter 10 */ 11 12 #include <linux/mm.h> 13 #include <linux/swap.h> /* struct reclaim_state */ 14 #include <linux/module.h> 15 #include <linux/bit_spinlock.h> 16 #include <linux/interrupt.h> 17 #include <linux/bitops.h> 18 #include <linux/slab.h> 19 #include "slab.h" 20 #include <linux/proc_fs.h> 21 #include <linux/notifier.h> 22 #include <linux/seq_file.h> 23 #include <linux/kasan.h> 24 #include <linux/kmemcheck.h> 25 #include <linux/cpu.h> 26 #include <linux/cpuset.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ctype.h> 29 #include <linux/debugobjects.h> 30 #include <linux/kallsyms.h> 31 #include <linux/memory.h> 32 #include <linux/math64.h> 33 #include <linux/fault-inject.h> 34 #include <linux/stacktrace.h> 35 #include <linux/prefetch.h> 36 #include <linux/memcontrol.h> 37 38 #include <trace/events/kmem.h> 39 40 #include "internal.h" 41 42 /* 43 * Lock order: 44 * 1. slab_mutex (Global Mutex) 45 * 2. node->list_lock 46 * 3. slab_lock(page) (Only on some arches and for debugging) 47 * 48 * slab_mutex 49 * 50 * The role of the slab_mutex is to protect the list of all the slabs 51 * and to synchronize major metadata changes to slab cache structures. 52 * 53 * The slab_lock is only used for debugging and on arches that do not 54 * have the ability to do a cmpxchg_double. It only protects the second 55 * double word in the page struct. Meaning 56 * A. page->freelist -> List of object free in a page 57 * B. page->counters -> Counters of objects 58 * C. page->frozen -> frozen state 59 * 60 * If a slab is frozen then it is exempt from list management. It is not 61 * on any list. The processor that froze the slab is the one who can 62 * perform list operations on the page. Other processors may put objects 63 * onto the freelist but the processor that froze the slab is the only 64 * one that can retrieve the objects from the page's freelist. 65 * 66 * The list_lock protects the partial and full list on each node and 67 * the partial slab counter. If taken then no new slabs may be added or 68 * removed from the lists nor make the number of partial slabs be modified. 69 * (Note that the total number of slabs is an atomic value that may be 70 * modified without taking the list lock). 71 * 72 * The list_lock is a centralized lock and thus we avoid taking it as 73 * much as possible. As long as SLUB does not have to handle partial 74 * slabs, operations can continue without any centralized lock. F.e. 75 * allocating a long series of objects that fill up slabs does not require 76 * the list lock. 77 * Interrupts are disabled during allocation and deallocation in order to 78 * make the slab allocator safe to use in the context of an irq. In addition 79 * interrupts are disabled to ensure that the processor does not change 80 * while handling per_cpu slabs, due to kernel preemption. 81 * 82 * SLUB assigns one slab for allocation to each processor. 83 * Allocations only occur from these slabs called cpu slabs. 84 * 85 * Slabs with free elements are kept on a partial list and during regular 86 * operations no list for full slabs is used. If an object in a full slab is 87 * freed then the slab will show up again on the partial lists. 88 * We track full slabs for debugging purposes though because otherwise we 89 * cannot scan all objects. 90 * 91 * Slabs are freed when they become empty. Teardown and setup is 92 * minimal so we rely on the page allocators per cpu caches for 93 * fast frees and allocs. 94 * 95 * Overloading of page flags that are otherwise used for LRU management. 96 * 97 * PageActive The slab is frozen and exempt from list processing. 98 * This means that the slab is dedicated to a purpose 99 * such as satisfying allocations for a specific 100 * processor. Objects may be freed in the slab while 101 * it is frozen but slab_free will then skip the usual 102 * list operations. It is up to the processor holding 103 * the slab to integrate the slab into the slab lists 104 * when the slab is no longer needed. 105 * 106 * One use of this flag is to mark slabs that are 107 * used for allocations. Then such a slab becomes a cpu 108 * slab. The cpu slab may be equipped with an additional 109 * freelist that allows lockless access to 110 * free objects in addition to the regular freelist 111 * that requires the slab lock. 112 * 113 * PageError Slab requires special handling due to debug 114 * options set. This moves slab handling out of 115 * the fast path and disables lockless freelists. 116 */ 117 118 static inline int kmem_cache_debug(struct kmem_cache *s) 119 { 120 #ifdef CONFIG_SLUB_DEBUG 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS); 122 #else 123 return 0; 124 #endif 125 } 126 127 void *fixup_red_left(struct kmem_cache *s, void *p) 128 { 129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) 130 p += s->red_left_pad; 131 132 return p; 133 } 134 135 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) 136 { 137 #ifdef CONFIG_SLUB_CPU_PARTIAL 138 return !kmem_cache_debug(s); 139 #else 140 return false; 141 #endif 142 } 143 144 /* 145 * Issues still to be resolved: 146 * 147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do. 148 * 149 * - Variable sizing of the per node arrays 150 */ 151 152 /* Enable to test recovery from slab corruption on boot */ 153 #undef SLUB_RESILIENCY_TEST 154 155 /* Enable to log cmpxchg failures */ 156 #undef SLUB_DEBUG_CMPXCHG 157 158 /* 159 * Mininum number of partial slabs. These will be left on the partial 160 * lists even if they are empty. kmem_cache_shrink may reclaim them. 161 */ 162 #define MIN_PARTIAL 5 163 164 /* 165 * Maximum number of desirable partial slabs. 166 * The existence of more partial slabs makes kmem_cache_shrink 167 * sort the partial list by the number of objects in use. 168 */ 169 #define MAX_PARTIAL 10 170 171 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ 172 SLAB_POISON | SLAB_STORE_USER) 173 174 /* 175 * These debug flags cannot use CMPXCHG because there might be consistency 176 * issues when checking or reading debug information 177 */ 178 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ 179 SLAB_TRACE) 180 181 182 /* 183 * Debugging flags that require metadata to be stored in the slab. These get 184 * disabled when slub_debug=O is used and a cache's min order increases with 185 * metadata. 186 */ 187 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) 188 189 #define OO_SHIFT 16 190 #define OO_MASK ((1 << OO_SHIFT) - 1) 191 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ 192 193 /* Internal SLUB flags */ 194 #define __OBJECT_POISON 0x80000000UL /* Poison object */ 195 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ 196 197 /* 198 * Tracking user of a slab. 199 */ 200 #define TRACK_ADDRS_COUNT 16 201 struct track { 202 unsigned long addr; /* Called from address */ 203 #ifdef CONFIG_STACKTRACE 204 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ 205 #endif 206 int cpu; /* Was running on cpu */ 207 int pid; /* Pid context */ 208 unsigned long when; /* When did the operation occur */ 209 }; 210 211 enum track_item { TRACK_ALLOC, TRACK_FREE }; 212 213 #ifdef CONFIG_SYSFS 214 static int sysfs_slab_add(struct kmem_cache *); 215 static int sysfs_slab_alias(struct kmem_cache *, const char *); 216 static void memcg_propagate_slab_attrs(struct kmem_cache *s); 217 #else 218 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } 219 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) 220 { return 0; } 221 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } 222 #endif 223 224 static inline void stat(const struct kmem_cache *s, enum stat_item si) 225 { 226 #ifdef CONFIG_SLUB_STATS 227 /* 228 * The rmw is racy on a preemptible kernel but this is acceptable, so 229 * avoid this_cpu_add()'s irq-disable overhead. 230 */ 231 raw_cpu_inc(s->cpu_slab->stat[si]); 232 #endif 233 } 234 235 /******************************************************************** 236 * Core slab cache functions 237 *******************************************************************/ 238 239 static inline void *get_freepointer(struct kmem_cache *s, void *object) 240 { 241 return *(void **)(object + s->offset); 242 } 243 244 static void prefetch_freepointer(const struct kmem_cache *s, void *object) 245 { 246 prefetch(object + s->offset); 247 } 248 249 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) 250 { 251 void *p; 252 253 if (!debug_pagealloc_enabled()) 254 return get_freepointer(s, object); 255 256 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p)); 257 return p; 258 } 259 260 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) 261 { 262 *(void **)(object + s->offset) = fp; 263 } 264 265 /* Loop over all objects in a slab */ 266 #define for_each_object(__p, __s, __addr, __objects) \ 267 for (__p = fixup_red_left(__s, __addr); \ 268 __p < (__addr) + (__objects) * (__s)->size; \ 269 __p += (__s)->size) 270 271 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ 272 for (__p = fixup_red_left(__s, __addr), __idx = 1; \ 273 __idx <= __objects; \ 274 __p += (__s)->size, __idx++) 275 276 /* Determine object index from a given position */ 277 static inline int slab_index(void *p, struct kmem_cache *s, void *addr) 278 { 279 return (p - addr) / s->size; 280 } 281 282 static inline int order_objects(int order, unsigned long size, int reserved) 283 { 284 return ((PAGE_SIZE << order) - reserved) / size; 285 } 286 287 static inline struct kmem_cache_order_objects oo_make(int order, 288 unsigned long size, int reserved) 289 { 290 struct kmem_cache_order_objects x = { 291 (order << OO_SHIFT) + order_objects(order, size, reserved) 292 }; 293 294 return x; 295 } 296 297 static inline int oo_order(struct kmem_cache_order_objects x) 298 { 299 return x.x >> OO_SHIFT; 300 } 301 302 static inline int oo_objects(struct kmem_cache_order_objects x) 303 { 304 return x.x & OO_MASK; 305 } 306 307 /* 308 * Per slab locking using the pagelock 309 */ 310 static __always_inline void slab_lock(struct page *page) 311 { 312 VM_BUG_ON_PAGE(PageTail(page), page); 313 bit_spin_lock(PG_locked, &page->flags); 314 } 315 316 static __always_inline void slab_unlock(struct page *page) 317 { 318 VM_BUG_ON_PAGE(PageTail(page), page); 319 __bit_spin_unlock(PG_locked, &page->flags); 320 } 321 322 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) 323 { 324 struct page tmp; 325 tmp.counters = counters_new; 326 /* 327 * page->counters can cover frozen/inuse/objects as well 328 * as page->_refcount. If we assign to ->counters directly 329 * we run the risk of losing updates to page->_refcount, so 330 * be careful and only assign to the fields we need. 331 */ 332 page->frozen = tmp.frozen; 333 page->inuse = tmp.inuse; 334 page->objects = tmp.objects; 335 } 336 337 /* Interrupts must be disabled (for the fallback code to work right) */ 338 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 339 void *freelist_old, unsigned long counters_old, 340 void *freelist_new, unsigned long counters_new, 341 const char *n) 342 { 343 VM_BUG_ON(!irqs_disabled()); 344 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 345 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 346 if (s->flags & __CMPXCHG_DOUBLE) { 347 if (cmpxchg_double(&page->freelist, &page->counters, 348 freelist_old, counters_old, 349 freelist_new, counters_new)) 350 return true; 351 } else 352 #endif 353 { 354 slab_lock(page); 355 if (page->freelist == freelist_old && 356 page->counters == counters_old) { 357 page->freelist = freelist_new; 358 set_page_slub_counters(page, counters_new); 359 slab_unlock(page); 360 return true; 361 } 362 slab_unlock(page); 363 } 364 365 cpu_relax(); 366 stat(s, CMPXCHG_DOUBLE_FAIL); 367 368 #ifdef SLUB_DEBUG_CMPXCHG 369 pr_info("%s %s: cmpxchg double redo ", n, s->name); 370 #endif 371 372 return false; 373 } 374 375 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, 376 void *freelist_old, unsigned long counters_old, 377 void *freelist_new, unsigned long counters_new, 378 const char *n) 379 { 380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 382 if (s->flags & __CMPXCHG_DOUBLE) { 383 if (cmpxchg_double(&page->freelist, &page->counters, 384 freelist_old, counters_old, 385 freelist_new, counters_new)) 386 return true; 387 } else 388 #endif 389 { 390 unsigned long flags; 391 392 local_irq_save(flags); 393 slab_lock(page); 394 if (page->freelist == freelist_old && 395 page->counters == counters_old) { 396 page->freelist = freelist_new; 397 set_page_slub_counters(page, counters_new); 398 slab_unlock(page); 399 local_irq_restore(flags); 400 return true; 401 } 402 slab_unlock(page); 403 local_irq_restore(flags); 404 } 405 406 cpu_relax(); 407 stat(s, CMPXCHG_DOUBLE_FAIL); 408 409 #ifdef SLUB_DEBUG_CMPXCHG 410 pr_info("%s %s: cmpxchg double redo ", n, s->name); 411 #endif 412 413 return false; 414 } 415 416 #ifdef CONFIG_SLUB_DEBUG 417 /* 418 * Determine a map of object in use on a page. 419 * 420 * Node listlock must be held to guarantee that the page does 421 * not vanish from under us. 422 */ 423 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) 424 { 425 void *p; 426 void *addr = page_address(page); 427 428 for (p = page->freelist; p; p = get_freepointer(s, p)) 429 set_bit(slab_index(p, s, addr), map); 430 } 431 432 static inline int size_from_object(struct kmem_cache *s) 433 { 434 if (s->flags & SLAB_RED_ZONE) 435 return s->size - s->red_left_pad; 436 437 return s->size; 438 } 439 440 static inline void *restore_red_left(struct kmem_cache *s, void *p) 441 { 442 if (s->flags & SLAB_RED_ZONE) 443 p -= s->red_left_pad; 444 445 return p; 446 } 447 448 /* 449 * Debug settings: 450 */ 451 #if defined(CONFIG_SLUB_DEBUG_ON) 452 static int slub_debug = DEBUG_DEFAULT_FLAGS; 453 #else 454 static int slub_debug; 455 #endif 456 457 static char *slub_debug_slabs; 458 static int disable_higher_order_debug; 459 460 /* 461 * slub is about to manipulate internal object metadata. This memory lies 462 * outside the range of the allocated object, so accessing it would normally 463 * be reported by kasan as a bounds error. metadata_access_enable() is used 464 * to tell kasan that these accesses are OK. 465 */ 466 static inline void metadata_access_enable(void) 467 { 468 kasan_disable_current(); 469 } 470 471 static inline void metadata_access_disable(void) 472 { 473 kasan_enable_current(); 474 } 475 476 /* 477 * Object debugging 478 */ 479 480 /* Verify that a pointer has an address that is valid within a slab page */ 481 static inline int check_valid_pointer(struct kmem_cache *s, 482 struct page *page, void *object) 483 { 484 void *base; 485 486 if (!object) 487 return 1; 488 489 base = page_address(page); 490 object = restore_red_left(s, object); 491 if (object < base || object >= base + page->objects * s->size || 492 (object - base) % s->size) { 493 return 0; 494 } 495 496 return 1; 497 } 498 499 static void print_section(char *level, char *text, u8 *addr, 500 unsigned int length) 501 { 502 metadata_access_enable(); 503 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, 504 length, 1); 505 metadata_access_disable(); 506 } 507 508 static struct track *get_track(struct kmem_cache *s, void *object, 509 enum track_item alloc) 510 { 511 struct track *p; 512 513 if (s->offset) 514 p = object + s->offset + sizeof(void *); 515 else 516 p = object + s->inuse; 517 518 return p + alloc; 519 } 520 521 static void set_track(struct kmem_cache *s, void *object, 522 enum track_item alloc, unsigned long addr) 523 { 524 struct track *p = get_track(s, object, alloc); 525 526 if (addr) { 527 #ifdef CONFIG_STACKTRACE 528 struct stack_trace trace; 529 int i; 530 531 trace.nr_entries = 0; 532 trace.max_entries = TRACK_ADDRS_COUNT; 533 trace.entries = p->addrs; 534 trace.skip = 3; 535 metadata_access_enable(); 536 save_stack_trace(&trace); 537 metadata_access_disable(); 538 539 /* See rant in lockdep.c */ 540 if (trace.nr_entries != 0 && 541 trace.entries[trace.nr_entries - 1] == ULONG_MAX) 542 trace.nr_entries--; 543 544 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) 545 p->addrs[i] = 0; 546 #endif 547 p->addr = addr; 548 p->cpu = smp_processor_id(); 549 p->pid = current->pid; 550 p->when = jiffies; 551 } else 552 memset(p, 0, sizeof(struct track)); 553 } 554 555 static void init_tracking(struct kmem_cache *s, void *object) 556 { 557 if (!(s->flags & SLAB_STORE_USER)) 558 return; 559 560 set_track(s, object, TRACK_FREE, 0UL); 561 set_track(s, object, TRACK_ALLOC, 0UL); 562 } 563 564 static void print_track(const char *s, struct track *t) 565 { 566 if (!t->addr) 567 return; 568 569 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", 570 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); 571 #ifdef CONFIG_STACKTRACE 572 { 573 int i; 574 for (i = 0; i < TRACK_ADDRS_COUNT; i++) 575 if (t->addrs[i]) 576 pr_err("\t%pS\n", (void *)t->addrs[i]); 577 else 578 break; 579 } 580 #endif 581 } 582 583 static void print_tracking(struct kmem_cache *s, void *object) 584 { 585 if (!(s->flags & SLAB_STORE_USER)) 586 return; 587 588 print_track("Allocated", get_track(s, object, TRACK_ALLOC)); 589 print_track("Freed", get_track(s, object, TRACK_FREE)); 590 } 591 592 static void print_page_info(struct page *page) 593 { 594 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", 595 page, page->objects, page->inuse, page->freelist, page->flags); 596 597 } 598 599 static void slab_bug(struct kmem_cache *s, char *fmt, ...) 600 { 601 struct va_format vaf; 602 va_list args; 603 604 va_start(args, fmt); 605 vaf.fmt = fmt; 606 vaf.va = &args; 607 pr_err("=============================================================================\n"); 608 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); 609 pr_err("-----------------------------------------------------------------------------\n\n"); 610 611 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 612 va_end(args); 613 } 614 615 static void slab_fix(struct kmem_cache *s, char *fmt, ...) 616 { 617 struct va_format vaf; 618 va_list args; 619 620 va_start(args, fmt); 621 vaf.fmt = fmt; 622 vaf.va = &args; 623 pr_err("FIX %s: %pV\n", s->name, &vaf); 624 va_end(args); 625 } 626 627 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) 628 { 629 unsigned int off; /* Offset of last byte */ 630 u8 *addr = page_address(page); 631 632 print_tracking(s, p); 633 634 print_page_info(page); 635 636 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", 637 p, p - addr, get_freepointer(s, p)); 638 639 if (s->flags & SLAB_RED_ZONE) 640 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, 641 s->red_left_pad); 642 else if (p > addr + 16) 643 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); 644 645 print_section(KERN_ERR, "Object ", p, 646 min_t(unsigned long, s->object_size, PAGE_SIZE)); 647 if (s->flags & SLAB_RED_ZONE) 648 print_section(KERN_ERR, "Redzone ", p + s->object_size, 649 s->inuse - s->object_size); 650 651 if (s->offset) 652 off = s->offset + sizeof(void *); 653 else 654 off = s->inuse; 655 656 if (s->flags & SLAB_STORE_USER) 657 off += 2 * sizeof(struct track); 658 659 off += kasan_metadata_size(s); 660 661 if (off != size_from_object(s)) 662 /* Beginning of the filler is the free pointer */ 663 print_section(KERN_ERR, "Padding ", p + off, 664 size_from_object(s) - off); 665 666 dump_stack(); 667 } 668 669 void object_err(struct kmem_cache *s, struct page *page, 670 u8 *object, char *reason) 671 { 672 slab_bug(s, "%s", reason); 673 print_trailer(s, page, object); 674 } 675 676 static void slab_err(struct kmem_cache *s, struct page *page, 677 const char *fmt, ...) 678 { 679 va_list args; 680 char buf[100]; 681 682 va_start(args, fmt); 683 vsnprintf(buf, sizeof(buf), fmt, args); 684 va_end(args); 685 slab_bug(s, "%s", buf); 686 print_page_info(page); 687 dump_stack(); 688 } 689 690 static void init_object(struct kmem_cache *s, void *object, u8 val) 691 { 692 u8 *p = object; 693 694 if (s->flags & SLAB_RED_ZONE) 695 memset(p - s->red_left_pad, val, s->red_left_pad); 696 697 if (s->flags & __OBJECT_POISON) { 698 memset(p, POISON_FREE, s->object_size - 1); 699 p[s->object_size - 1] = POISON_END; 700 } 701 702 if (s->flags & SLAB_RED_ZONE) 703 memset(p + s->object_size, val, s->inuse - s->object_size); 704 } 705 706 static void restore_bytes(struct kmem_cache *s, char *message, u8 data, 707 void *from, void *to) 708 { 709 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); 710 memset(from, data, to - from); 711 } 712 713 static int check_bytes_and_report(struct kmem_cache *s, struct page *page, 714 u8 *object, char *what, 715 u8 *start, unsigned int value, unsigned int bytes) 716 { 717 u8 *fault; 718 u8 *end; 719 720 metadata_access_enable(); 721 fault = memchr_inv(start, value, bytes); 722 metadata_access_disable(); 723 if (!fault) 724 return 1; 725 726 end = start + bytes; 727 while (end > fault && end[-1] == value) 728 end--; 729 730 slab_bug(s, "%s overwritten", what); 731 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", 732 fault, end - 1, fault[0], value); 733 print_trailer(s, page, object); 734 735 restore_bytes(s, what, value, fault, end); 736 return 0; 737 } 738 739 /* 740 * Object layout: 741 * 742 * object address 743 * Bytes of the object to be managed. 744 * If the freepointer may overlay the object then the free 745 * pointer is the first word of the object. 746 * 747 * Poisoning uses 0x6b (POISON_FREE) and the last byte is 748 * 0xa5 (POISON_END) 749 * 750 * object + s->object_size 751 * Padding to reach word boundary. This is also used for Redzoning. 752 * Padding is extended by another word if Redzoning is enabled and 753 * object_size == inuse. 754 * 755 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with 756 * 0xcc (RED_ACTIVE) for objects in use. 757 * 758 * object + s->inuse 759 * Meta data starts here. 760 * 761 * A. Free pointer (if we cannot overwrite object on free) 762 * B. Tracking data for SLAB_STORE_USER 763 * C. Padding to reach required alignment boundary or at mininum 764 * one word if debugging is on to be able to detect writes 765 * before the word boundary. 766 * 767 * Padding is done using 0x5a (POISON_INUSE) 768 * 769 * object + s->size 770 * Nothing is used beyond s->size. 771 * 772 * If slabcaches are merged then the object_size and inuse boundaries are mostly 773 * ignored. And therefore no slab options that rely on these boundaries 774 * may be used with merged slabcaches. 775 */ 776 777 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) 778 { 779 unsigned long off = s->inuse; /* The end of info */ 780 781 if (s->offset) 782 /* Freepointer is placed after the object. */ 783 off += sizeof(void *); 784 785 if (s->flags & SLAB_STORE_USER) 786 /* We also have user information there */ 787 off += 2 * sizeof(struct track); 788 789 off += kasan_metadata_size(s); 790 791 if (size_from_object(s) == off) 792 return 1; 793 794 return check_bytes_and_report(s, page, p, "Object padding", 795 p + off, POISON_INUSE, size_from_object(s) - off); 796 } 797 798 /* Check the pad bytes at the end of a slab page */ 799 static int slab_pad_check(struct kmem_cache *s, struct page *page) 800 { 801 u8 *start; 802 u8 *fault; 803 u8 *end; 804 int length; 805 int remainder; 806 807 if (!(s->flags & SLAB_POISON)) 808 return 1; 809 810 start = page_address(page); 811 length = (PAGE_SIZE << compound_order(page)) - s->reserved; 812 end = start + length; 813 remainder = length % s->size; 814 if (!remainder) 815 return 1; 816 817 metadata_access_enable(); 818 fault = memchr_inv(end - remainder, POISON_INUSE, remainder); 819 metadata_access_disable(); 820 if (!fault) 821 return 1; 822 while (end > fault && end[-1] == POISON_INUSE) 823 end--; 824 825 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); 826 print_section(KERN_ERR, "Padding ", end - remainder, remainder); 827 828 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); 829 return 0; 830 } 831 832 static int check_object(struct kmem_cache *s, struct page *page, 833 void *object, u8 val) 834 { 835 u8 *p = object; 836 u8 *endobject = object + s->object_size; 837 838 if (s->flags & SLAB_RED_ZONE) { 839 if (!check_bytes_and_report(s, page, object, "Redzone", 840 object - s->red_left_pad, val, s->red_left_pad)) 841 return 0; 842 843 if (!check_bytes_and_report(s, page, object, "Redzone", 844 endobject, val, s->inuse - s->object_size)) 845 return 0; 846 } else { 847 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { 848 check_bytes_and_report(s, page, p, "Alignment padding", 849 endobject, POISON_INUSE, 850 s->inuse - s->object_size); 851 } 852 } 853 854 if (s->flags & SLAB_POISON) { 855 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && 856 (!check_bytes_and_report(s, page, p, "Poison", p, 857 POISON_FREE, s->object_size - 1) || 858 !check_bytes_and_report(s, page, p, "Poison", 859 p + s->object_size - 1, POISON_END, 1))) 860 return 0; 861 /* 862 * check_pad_bytes cleans up on its own. 863 */ 864 check_pad_bytes(s, page, p); 865 } 866 867 if (!s->offset && val == SLUB_RED_ACTIVE) 868 /* 869 * Object and freepointer overlap. Cannot check 870 * freepointer while object is allocated. 871 */ 872 return 1; 873 874 /* Check free pointer validity */ 875 if (!check_valid_pointer(s, page, get_freepointer(s, p))) { 876 object_err(s, page, p, "Freepointer corrupt"); 877 /* 878 * No choice but to zap it and thus lose the remainder 879 * of the free objects in this slab. May cause 880 * another error because the object count is now wrong. 881 */ 882 set_freepointer(s, p, NULL); 883 return 0; 884 } 885 return 1; 886 } 887 888 static int check_slab(struct kmem_cache *s, struct page *page) 889 { 890 int maxobj; 891 892 VM_BUG_ON(!irqs_disabled()); 893 894 if (!PageSlab(page)) { 895 slab_err(s, page, "Not a valid slab page"); 896 return 0; 897 } 898 899 maxobj = order_objects(compound_order(page), s->size, s->reserved); 900 if (page->objects > maxobj) { 901 slab_err(s, page, "objects %u > max %u", 902 page->objects, maxobj); 903 return 0; 904 } 905 if (page->inuse > page->objects) { 906 slab_err(s, page, "inuse %u > max %u", 907 page->inuse, page->objects); 908 return 0; 909 } 910 /* Slab_pad_check fixes things up after itself */ 911 slab_pad_check(s, page); 912 return 1; 913 } 914 915 /* 916 * Determine if a certain object on a page is on the freelist. Must hold the 917 * slab lock to guarantee that the chains are in a consistent state. 918 */ 919 static int on_freelist(struct kmem_cache *s, struct page *page, void *search) 920 { 921 int nr = 0; 922 void *fp; 923 void *object = NULL; 924 int max_objects; 925 926 fp = page->freelist; 927 while (fp && nr <= page->objects) { 928 if (fp == search) 929 return 1; 930 if (!check_valid_pointer(s, page, fp)) { 931 if (object) { 932 object_err(s, page, object, 933 "Freechain corrupt"); 934 set_freepointer(s, object, NULL); 935 } else { 936 slab_err(s, page, "Freepointer corrupt"); 937 page->freelist = NULL; 938 page->inuse = page->objects; 939 slab_fix(s, "Freelist cleared"); 940 return 0; 941 } 942 break; 943 } 944 object = fp; 945 fp = get_freepointer(s, object); 946 nr++; 947 } 948 949 max_objects = order_objects(compound_order(page), s->size, s->reserved); 950 if (max_objects > MAX_OBJS_PER_PAGE) 951 max_objects = MAX_OBJS_PER_PAGE; 952 953 if (page->objects != max_objects) { 954 slab_err(s, page, "Wrong number of objects. Found %d but should be %d", 955 page->objects, max_objects); 956 page->objects = max_objects; 957 slab_fix(s, "Number of objects adjusted."); 958 } 959 if (page->inuse != page->objects - nr) { 960 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", 961 page->inuse, page->objects - nr); 962 page->inuse = page->objects - nr; 963 slab_fix(s, "Object count adjusted."); 964 } 965 return search == NULL; 966 } 967 968 static void trace(struct kmem_cache *s, struct page *page, void *object, 969 int alloc) 970 { 971 if (s->flags & SLAB_TRACE) { 972 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", 973 s->name, 974 alloc ? "alloc" : "free", 975 object, page->inuse, 976 page->freelist); 977 978 if (!alloc) 979 print_section(KERN_INFO, "Object ", (void *)object, 980 s->object_size); 981 982 dump_stack(); 983 } 984 } 985 986 /* 987 * Tracking of fully allocated slabs for debugging purposes. 988 */ 989 static void add_full(struct kmem_cache *s, 990 struct kmem_cache_node *n, struct page *page) 991 { 992 if (!(s->flags & SLAB_STORE_USER)) 993 return; 994 995 lockdep_assert_held(&n->list_lock); 996 list_add(&page->lru, &n->full); 997 } 998 999 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) 1000 { 1001 if (!(s->flags & SLAB_STORE_USER)) 1002 return; 1003 1004 lockdep_assert_held(&n->list_lock); 1005 list_del(&page->lru); 1006 } 1007 1008 /* Tracking of the number of slabs for debugging purposes */ 1009 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1010 { 1011 struct kmem_cache_node *n = get_node(s, node); 1012 1013 return atomic_long_read(&n->nr_slabs); 1014 } 1015 1016 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1017 { 1018 return atomic_long_read(&n->nr_slabs); 1019 } 1020 1021 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) 1022 { 1023 struct kmem_cache_node *n = get_node(s, node); 1024 1025 /* 1026 * May be called early in order to allocate a slab for the 1027 * kmem_cache_node structure. Solve the chicken-egg 1028 * dilemma by deferring the increment of the count during 1029 * bootstrap (see early_kmem_cache_node_alloc). 1030 */ 1031 if (likely(n)) { 1032 atomic_long_inc(&n->nr_slabs); 1033 atomic_long_add(objects, &n->total_objects); 1034 } 1035 } 1036 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) 1037 { 1038 struct kmem_cache_node *n = get_node(s, node); 1039 1040 atomic_long_dec(&n->nr_slabs); 1041 atomic_long_sub(objects, &n->total_objects); 1042 } 1043 1044 /* Object debug checks for alloc/free paths */ 1045 static void setup_object_debug(struct kmem_cache *s, struct page *page, 1046 void *object) 1047 { 1048 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) 1049 return; 1050 1051 init_object(s, object, SLUB_RED_INACTIVE); 1052 init_tracking(s, object); 1053 } 1054 1055 static inline int alloc_consistency_checks(struct kmem_cache *s, 1056 struct page *page, 1057 void *object, unsigned long addr) 1058 { 1059 if (!check_slab(s, page)) 1060 return 0; 1061 1062 if (!check_valid_pointer(s, page, object)) { 1063 object_err(s, page, object, "Freelist Pointer check fails"); 1064 return 0; 1065 } 1066 1067 if (!check_object(s, page, object, SLUB_RED_INACTIVE)) 1068 return 0; 1069 1070 return 1; 1071 } 1072 1073 static noinline int alloc_debug_processing(struct kmem_cache *s, 1074 struct page *page, 1075 void *object, unsigned long addr) 1076 { 1077 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1078 if (!alloc_consistency_checks(s, page, object, addr)) 1079 goto bad; 1080 } 1081 1082 /* Success perform special debug activities for allocs */ 1083 if (s->flags & SLAB_STORE_USER) 1084 set_track(s, object, TRACK_ALLOC, addr); 1085 trace(s, page, object, 1); 1086 init_object(s, object, SLUB_RED_ACTIVE); 1087 return 1; 1088 1089 bad: 1090 if (PageSlab(page)) { 1091 /* 1092 * If this is a slab page then lets do the best we can 1093 * to avoid issues in the future. Marking all objects 1094 * as used avoids touching the remaining objects. 1095 */ 1096 slab_fix(s, "Marking all objects used"); 1097 page->inuse = page->objects; 1098 page->freelist = NULL; 1099 } 1100 return 0; 1101 } 1102 1103 static inline int free_consistency_checks(struct kmem_cache *s, 1104 struct page *page, void *object, unsigned long addr) 1105 { 1106 if (!check_valid_pointer(s, page, object)) { 1107 slab_err(s, page, "Invalid object pointer 0x%p", object); 1108 return 0; 1109 } 1110 1111 if (on_freelist(s, page, object)) { 1112 object_err(s, page, object, "Object already free"); 1113 return 0; 1114 } 1115 1116 if (!check_object(s, page, object, SLUB_RED_ACTIVE)) 1117 return 0; 1118 1119 if (unlikely(s != page->slab_cache)) { 1120 if (!PageSlab(page)) { 1121 slab_err(s, page, "Attempt to free object(0x%p) outside of slab", 1122 object); 1123 } else if (!page->slab_cache) { 1124 pr_err("SLUB <none>: no slab for object 0x%p.\n", 1125 object); 1126 dump_stack(); 1127 } else 1128 object_err(s, page, object, 1129 "page slab pointer corrupt."); 1130 return 0; 1131 } 1132 return 1; 1133 } 1134 1135 /* Supports checking bulk free of a constructed freelist */ 1136 static noinline int free_debug_processing( 1137 struct kmem_cache *s, struct page *page, 1138 void *head, void *tail, int bulk_cnt, 1139 unsigned long addr) 1140 { 1141 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1142 void *object = head; 1143 int cnt = 0; 1144 unsigned long uninitialized_var(flags); 1145 int ret = 0; 1146 1147 spin_lock_irqsave(&n->list_lock, flags); 1148 slab_lock(page); 1149 1150 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1151 if (!check_slab(s, page)) 1152 goto out; 1153 } 1154 1155 next_object: 1156 cnt++; 1157 1158 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1159 if (!free_consistency_checks(s, page, object, addr)) 1160 goto out; 1161 } 1162 1163 if (s->flags & SLAB_STORE_USER) 1164 set_track(s, object, TRACK_FREE, addr); 1165 trace(s, page, object, 0); 1166 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ 1167 init_object(s, object, SLUB_RED_INACTIVE); 1168 1169 /* Reached end of constructed freelist yet? */ 1170 if (object != tail) { 1171 object = get_freepointer(s, object); 1172 goto next_object; 1173 } 1174 ret = 1; 1175 1176 out: 1177 if (cnt != bulk_cnt) 1178 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", 1179 bulk_cnt, cnt); 1180 1181 slab_unlock(page); 1182 spin_unlock_irqrestore(&n->list_lock, flags); 1183 if (!ret) 1184 slab_fix(s, "Object at 0x%p not freed", object); 1185 return ret; 1186 } 1187 1188 static int __init setup_slub_debug(char *str) 1189 { 1190 slub_debug = DEBUG_DEFAULT_FLAGS; 1191 if (*str++ != '=' || !*str) 1192 /* 1193 * No options specified. Switch on full debugging. 1194 */ 1195 goto out; 1196 1197 if (*str == ',') 1198 /* 1199 * No options but restriction on slabs. This means full 1200 * debugging for slabs matching a pattern. 1201 */ 1202 goto check_slabs; 1203 1204 slub_debug = 0; 1205 if (*str == '-') 1206 /* 1207 * Switch off all debugging measures. 1208 */ 1209 goto out; 1210 1211 /* 1212 * Determine which debug features should be switched on 1213 */ 1214 for (; *str && *str != ','; str++) { 1215 switch (tolower(*str)) { 1216 case 'f': 1217 slub_debug |= SLAB_CONSISTENCY_CHECKS; 1218 break; 1219 case 'z': 1220 slub_debug |= SLAB_RED_ZONE; 1221 break; 1222 case 'p': 1223 slub_debug |= SLAB_POISON; 1224 break; 1225 case 'u': 1226 slub_debug |= SLAB_STORE_USER; 1227 break; 1228 case 't': 1229 slub_debug |= SLAB_TRACE; 1230 break; 1231 case 'a': 1232 slub_debug |= SLAB_FAILSLAB; 1233 break; 1234 case 'o': 1235 /* 1236 * Avoid enabling debugging on caches if its minimum 1237 * order would increase as a result. 1238 */ 1239 disable_higher_order_debug = 1; 1240 break; 1241 default: 1242 pr_err("slub_debug option '%c' unknown. skipped\n", 1243 *str); 1244 } 1245 } 1246 1247 check_slabs: 1248 if (*str == ',') 1249 slub_debug_slabs = str + 1; 1250 out: 1251 return 1; 1252 } 1253 1254 __setup("slub_debug", setup_slub_debug); 1255 1256 unsigned long kmem_cache_flags(unsigned long object_size, 1257 unsigned long flags, const char *name, 1258 void (*ctor)(void *)) 1259 { 1260 /* 1261 * Enable debugging if selected on the kernel commandline. 1262 */ 1263 if (slub_debug && (!slub_debug_slabs || (name && 1264 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) 1265 flags |= slub_debug; 1266 1267 return flags; 1268 } 1269 #else /* !CONFIG_SLUB_DEBUG */ 1270 static inline void setup_object_debug(struct kmem_cache *s, 1271 struct page *page, void *object) {} 1272 1273 static inline int alloc_debug_processing(struct kmem_cache *s, 1274 struct page *page, void *object, unsigned long addr) { return 0; } 1275 1276 static inline int free_debug_processing( 1277 struct kmem_cache *s, struct page *page, 1278 void *head, void *tail, int bulk_cnt, 1279 unsigned long addr) { return 0; } 1280 1281 static inline int slab_pad_check(struct kmem_cache *s, struct page *page) 1282 { return 1; } 1283 static inline int check_object(struct kmem_cache *s, struct page *page, 1284 void *object, u8 val) { return 1; } 1285 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, 1286 struct page *page) {} 1287 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, 1288 struct page *page) {} 1289 unsigned long kmem_cache_flags(unsigned long object_size, 1290 unsigned long flags, const char *name, 1291 void (*ctor)(void *)) 1292 { 1293 return flags; 1294 } 1295 #define slub_debug 0 1296 1297 #define disable_higher_order_debug 0 1298 1299 static inline unsigned long slabs_node(struct kmem_cache *s, int node) 1300 { return 0; } 1301 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) 1302 { return 0; } 1303 static inline void inc_slabs_node(struct kmem_cache *s, int node, 1304 int objects) {} 1305 static inline void dec_slabs_node(struct kmem_cache *s, int node, 1306 int objects) {} 1307 1308 #endif /* CONFIG_SLUB_DEBUG */ 1309 1310 /* 1311 * Hooks for other subsystems that check memory allocations. In a typical 1312 * production configuration these hooks all should produce no code at all. 1313 */ 1314 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) 1315 { 1316 kmemleak_alloc(ptr, size, 1, flags); 1317 kasan_kmalloc_large(ptr, size, flags); 1318 } 1319 1320 static inline void kfree_hook(const void *x) 1321 { 1322 kmemleak_free(x); 1323 kasan_kfree_large(x); 1324 } 1325 1326 static inline void *slab_free_hook(struct kmem_cache *s, void *x) 1327 { 1328 void *freeptr; 1329 1330 kmemleak_free_recursive(x, s->flags); 1331 1332 /* 1333 * Trouble is that we may no longer disable interrupts in the fast path 1334 * So in order to make the debug calls that expect irqs to be 1335 * disabled we need to disable interrupts temporarily. 1336 */ 1337 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP) 1338 { 1339 unsigned long flags; 1340 1341 local_irq_save(flags); 1342 kmemcheck_slab_free(s, x, s->object_size); 1343 debug_check_no_locks_freed(x, s->object_size); 1344 local_irq_restore(flags); 1345 } 1346 #endif 1347 if (!(s->flags & SLAB_DEBUG_OBJECTS)) 1348 debug_check_no_obj_freed(x, s->object_size); 1349 1350 freeptr = get_freepointer(s, x); 1351 /* 1352 * kasan_slab_free() may put x into memory quarantine, delaying its 1353 * reuse. In this case the object's freelist pointer is changed. 1354 */ 1355 kasan_slab_free(s, x); 1356 return freeptr; 1357 } 1358 1359 static inline void slab_free_freelist_hook(struct kmem_cache *s, 1360 void *head, void *tail) 1361 { 1362 /* 1363 * Compiler cannot detect this function can be removed if slab_free_hook() 1364 * evaluates to nothing. Thus, catch all relevant config debug options here. 1365 */ 1366 #if defined(CONFIG_KMEMCHECK) || \ 1367 defined(CONFIG_LOCKDEP) || \ 1368 defined(CONFIG_DEBUG_KMEMLEAK) || \ 1369 defined(CONFIG_DEBUG_OBJECTS_FREE) || \ 1370 defined(CONFIG_KASAN) 1371 1372 void *object = head; 1373 void *tail_obj = tail ? : head; 1374 void *freeptr; 1375 1376 do { 1377 freeptr = slab_free_hook(s, object); 1378 } while ((object != tail_obj) && (object = freeptr)); 1379 #endif 1380 } 1381 1382 static void setup_object(struct kmem_cache *s, struct page *page, 1383 void *object) 1384 { 1385 setup_object_debug(s, page, object); 1386 kasan_init_slab_obj(s, object); 1387 if (unlikely(s->ctor)) { 1388 kasan_unpoison_object_data(s, object); 1389 s->ctor(object); 1390 kasan_poison_object_data(s, object); 1391 } 1392 } 1393 1394 /* 1395 * Slab allocation and freeing 1396 */ 1397 static inline struct page *alloc_slab_page(struct kmem_cache *s, 1398 gfp_t flags, int node, struct kmem_cache_order_objects oo) 1399 { 1400 struct page *page; 1401 int order = oo_order(oo); 1402 1403 flags |= __GFP_NOTRACK; 1404 1405 if (node == NUMA_NO_NODE) 1406 page = alloc_pages(flags, order); 1407 else 1408 page = __alloc_pages_node(node, flags, order); 1409 1410 if (page && memcg_charge_slab(page, flags, order, s)) { 1411 __free_pages(page, order); 1412 page = NULL; 1413 } 1414 1415 return page; 1416 } 1417 1418 #ifdef CONFIG_SLAB_FREELIST_RANDOM 1419 /* Pre-initialize the random sequence cache */ 1420 static int init_cache_random_seq(struct kmem_cache *s) 1421 { 1422 int err; 1423 unsigned long i, count = oo_objects(s->oo); 1424 1425 /* Bailout if already initialised */ 1426 if (s->random_seq) 1427 return 0; 1428 1429 err = cache_random_seq_create(s, count, GFP_KERNEL); 1430 if (err) { 1431 pr_err("SLUB: Unable to initialize free list for %s\n", 1432 s->name); 1433 return err; 1434 } 1435 1436 /* Transform to an offset on the set of pages */ 1437 if (s->random_seq) { 1438 for (i = 0; i < count; i++) 1439 s->random_seq[i] *= s->size; 1440 } 1441 return 0; 1442 } 1443 1444 /* Initialize each random sequence freelist per cache */ 1445 static void __init init_freelist_randomization(void) 1446 { 1447 struct kmem_cache *s; 1448 1449 mutex_lock(&slab_mutex); 1450 1451 list_for_each_entry(s, &slab_caches, list) 1452 init_cache_random_seq(s); 1453 1454 mutex_unlock(&slab_mutex); 1455 } 1456 1457 /* Get the next entry on the pre-computed freelist randomized */ 1458 static void *next_freelist_entry(struct kmem_cache *s, struct page *page, 1459 unsigned long *pos, void *start, 1460 unsigned long page_limit, 1461 unsigned long freelist_count) 1462 { 1463 unsigned int idx; 1464 1465 /* 1466 * If the target page allocation failed, the number of objects on the 1467 * page might be smaller than the usual size defined by the cache. 1468 */ 1469 do { 1470 idx = s->random_seq[*pos]; 1471 *pos += 1; 1472 if (*pos >= freelist_count) 1473 *pos = 0; 1474 } while (unlikely(idx >= page_limit)); 1475 1476 return (char *)start + idx; 1477 } 1478 1479 /* Shuffle the single linked freelist based on a random pre-computed sequence */ 1480 static bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1481 { 1482 void *start; 1483 void *cur; 1484 void *next; 1485 unsigned long idx, pos, page_limit, freelist_count; 1486 1487 if (page->objects < 2 || !s->random_seq) 1488 return false; 1489 1490 freelist_count = oo_objects(s->oo); 1491 pos = get_random_int() % freelist_count; 1492 1493 page_limit = page->objects * s->size; 1494 start = fixup_red_left(s, page_address(page)); 1495 1496 /* First entry is used as the base of the freelist */ 1497 cur = next_freelist_entry(s, page, &pos, start, page_limit, 1498 freelist_count); 1499 page->freelist = cur; 1500 1501 for (idx = 1; idx < page->objects; idx++) { 1502 setup_object(s, page, cur); 1503 next = next_freelist_entry(s, page, &pos, start, page_limit, 1504 freelist_count); 1505 set_freepointer(s, cur, next); 1506 cur = next; 1507 } 1508 setup_object(s, page, cur); 1509 set_freepointer(s, cur, NULL); 1510 1511 return true; 1512 } 1513 #else 1514 static inline int init_cache_random_seq(struct kmem_cache *s) 1515 { 1516 return 0; 1517 } 1518 static inline void init_freelist_randomization(void) { } 1519 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) 1520 { 1521 return false; 1522 } 1523 #endif /* CONFIG_SLAB_FREELIST_RANDOM */ 1524 1525 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) 1526 { 1527 struct page *page; 1528 struct kmem_cache_order_objects oo = s->oo; 1529 gfp_t alloc_gfp; 1530 void *start, *p; 1531 int idx, order; 1532 bool shuffle; 1533 1534 flags &= gfp_allowed_mask; 1535 1536 if (gfpflags_allow_blocking(flags)) 1537 local_irq_enable(); 1538 1539 flags |= s->allocflags; 1540 1541 /* 1542 * Let the initial higher-order allocation fail under memory pressure 1543 * so we fall-back to the minimum order allocation. 1544 */ 1545 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; 1546 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) 1547 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); 1548 1549 page = alloc_slab_page(s, alloc_gfp, node, oo); 1550 if (unlikely(!page)) { 1551 oo = s->min; 1552 alloc_gfp = flags; 1553 /* 1554 * Allocation may have failed due to fragmentation. 1555 * Try a lower order alloc if possible 1556 */ 1557 page = alloc_slab_page(s, alloc_gfp, node, oo); 1558 if (unlikely(!page)) 1559 goto out; 1560 stat(s, ORDER_FALLBACK); 1561 } 1562 1563 if (kmemcheck_enabled && 1564 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) { 1565 int pages = 1 << oo_order(oo); 1566 1567 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node); 1568 1569 /* 1570 * Objects from caches that have a constructor don't get 1571 * cleared when they're allocated, so we need to do it here. 1572 */ 1573 if (s->ctor) 1574 kmemcheck_mark_uninitialized_pages(page, pages); 1575 else 1576 kmemcheck_mark_unallocated_pages(page, pages); 1577 } 1578 1579 page->objects = oo_objects(oo); 1580 1581 order = compound_order(page); 1582 page->slab_cache = s; 1583 __SetPageSlab(page); 1584 if (page_is_pfmemalloc(page)) 1585 SetPageSlabPfmemalloc(page); 1586 1587 start = page_address(page); 1588 1589 if (unlikely(s->flags & SLAB_POISON)) 1590 memset(start, POISON_INUSE, PAGE_SIZE << order); 1591 1592 kasan_poison_slab(page); 1593 1594 shuffle = shuffle_freelist(s, page); 1595 1596 if (!shuffle) { 1597 for_each_object_idx(p, idx, s, start, page->objects) { 1598 setup_object(s, page, p); 1599 if (likely(idx < page->objects)) 1600 set_freepointer(s, p, p + s->size); 1601 else 1602 set_freepointer(s, p, NULL); 1603 } 1604 page->freelist = fixup_red_left(s, start); 1605 } 1606 1607 page->inuse = page->objects; 1608 page->frozen = 1; 1609 1610 out: 1611 if (gfpflags_allow_blocking(flags)) 1612 local_irq_disable(); 1613 if (!page) 1614 return NULL; 1615 1616 mod_zone_page_state(page_zone(page), 1617 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1618 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1619 1 << oo_order(oo)); 1620 1621 inc_slabs_node(s, page_to_nid(page), page->objects); 1622 1623 return page; 1624 } 1625 1626 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) 1627 { 1628 if (unlikely(flags & GFP_SLAB_BUG_MASK)) { 1629 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 1630 flags &= ~GFP_SLAB_BUG_MASK; 1631 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 1632 invalid_mask, &invalid_mask, flags, &flags); 1633 } 1634 1635 return allocate_slab(s, 1636 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); 1637 } 1638 1639 static void __free_slab(struct kmem_cache *s, struct page *page) 1640 { 1641 int order = compound_order(page); 1642 int pages = 1 << order; 1643 1644 if (s->flags & SLAB_CONSISTENCY_CHECKS) { 1645 void *p; 1646 1647 slab_pad_check(s, page); 1648 for_each_object(p, s, page_address(page), 1649 page->objects) 1650 check_object(s, page, p, SLUB_RED_INACTIVE); 1651 } 1652 1653 kmemcheck_free_shadow(page, compound_order(page)); 1654 1655 mod_zone_page_state(page_zone(page), 1656 (s->flags & SLAB_RECLAIM_ACCOUNT) ? 1657 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, 1658 -pages); 1659 1660 __ClearPageSlabPfmemalloc(page); 1661 __ClearPageSlab(page); 1662 1663 page_mapcount_reset(page); 1664 if (current->reclaim_state) 1665 current->reclaim_state->reclaimed_slab += pages; 1666 memcg_uncharge_slab(page, order, s); 1667 __free_pages(page, order); 1668 } 1669 1670 #define need_reserve_slab_rcu \ 1671 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) 1672 1673 static void rcu_free_slab(struct rcu_head *h) 1674 { 1675 struct page *page; 1676 1677 if (need_reserve_slab_rcu) 1678 page = virt_to_head_page(h); 1679 else 1680 page = container_of((struct list_head *)h, struct page, lru); 1681 1682 __free_slab(page->slab_cache, page); 1683 } 1684 1685 static void free_slab(struct kmem_cache *s, struct page *page) 1686 { 1687 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { 1688 struct rcu_head *head; 1689 1690 if (need_reserve_slab_rcu) { 1691 int order = compound_order(page); 1692 int offset = (PAGE_SIZE << order) - s->reserved; 1693 1694 VM_BUG_ON(s->reserved != sizeof(*head)); 1695 head = page_address(page) + offset; 1696 } else { 1697 head = &page->rcu_head; 1698 } 1699 1700 call_rcu(head, rcu_free_slab); 1701 } else 1702 __free_slab(s, page); 1703 } 1704 1705 static void discard_slab(struct kmem_cache *s, struct page *page) 1706 { 1707 dec_slabs_node(s, page_to_nid(page), page->objects); 1708 free_slab(s, page); 1709 } 1710 1711 /* 1712 * Management of partially allocated slabs. 1713 */ 1714 static inline void 1715 __add_partial(struct kmem_cache_node *n, struct page *page, int tail) 1716 { 1717 n->nr_partial++; 1718 if (tail == DEACTIVATE_TO_TAIL) 1719 list_add_tail(&page->lru, &n->partial); 1720 else 1721 list_add(&page->lru, &n->partial); 1722 } 1723 1724 static inline void add_partial(struct kmem_cache_node *n, 1725 struct page *page, int tail) 1726 { 1727 lockdep_assert_held(&n->list_lock); 1728 __add_partial(n, page, tail); 1729 } 1730 1731 static inline void remove_partial(struct kmem_cache_node *n, 1732 struct page *page) 1733 { 1734 lockdep_assert_held(&n->list_lock); 1735 list_del(&page->lru); 1736 n->nr_partial--; 1737 } 1738 1739 /* 1740 * Remove slab from the partial list, freeze it and 1741 * return the pointer to the freelist. 1742 * 1743 * Returns a list of objects or NULL if it fails. 1744 */ 1745 static inline void *acquire_slab(struct kmem_cache *s, 1746 struct kmem_cache_node *n, struct page *page, 1747 int mode, int *objects) 1748 { 1749 void *freelist; 1750 unsigned long counters; 1751 struct page new; 1752 1753 lockdep_assert_held(&n->list_lock); 1754 1755 /* 1756 * Zap the freelist and set the frozen bit. 1757 * The old freelist is the list of objects for the 1758 * per cpu allocation list. 1759 */ 1760 freelist = page->freelist; 1761 counters = page->counters; 1762 new.counters = counters; 1763 *objects = new.objects - new.inuse; 1764 if (mode) { 1765 new.inuse = page->objects; 1766 new.freelist = NULL; 1767 } else { 1768 new.freelist = freelist; 1769 } 1770 1771 VM_BUG_ON(new.frozen); 1772 new.frozen = 1; 1773 1774 if (!__cmpxchg_double_slab(s, page, 1775 freelist, counters, 1776 new.freelist, new.counters, 1777 "acquire_slab")) 1778 return NULL; 1779 1780 remove_partial(n, page); 1781 WARN_ON(!freelist); 1782 return freelist; 1783 } 1784 1785 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); 1786 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); 1787 1788 /* 1789 * Try to allocate a partial slab from a specific node. 1790 */ 1791 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, 1792 struct kmem_cache_cpu *c, gfp_t flags) 1793 { 1794 struct page *page, *page2; 1795 void *object = NULL; 1796 int available = 0; 1797 int objects; 1798 1799 /* 1800 * Racy check. If we mistakenly see no partial slabs then we 1801 * just allocate an empty slab. If we mistakenly try to get a 1802 * partial slab and there is none available then get_partials() 1803 * will return NULL. 1804 */ 1805 if (!n || !n->nr_partial) 1806 return NULL; 1807 1808 spin_lock(&n->list_lock); 1809 list_for_each_entry_safe(page, page2, &n->partial, lru) { 1810 void *t; 1811 1812 if (!pfmemalloc_match(page, flags)) 1813 continue; 1814 1815 t = acquire_slab(s, n, page, object == NULL, &objects); 1816 if (!t) 1817 break; 1818 1819 available += objects; 1820 if (!object) { 1821 c->page = page; 1822 stat(s, ALLOC_FROM_PARTIAL); 1823 object = t; 1824 } else { 1825 put_cpu_partial(s, page, 0); 1826 stat(s, CPU_PARTIAL_NODE); 1827 } 1828 if (!kmem_cache_has_cpu_partial(s) 1829 || available > s->cpu_partial / 2) 1830 break; 1831 1832 } 1833 spin_unlock(&n->list_lock); 1834 return object; 1835 } 1836 1837 /* 1838 * Get a page from somewhere. Search in increasing NUMA distances. 1839 */ 1840 static void *get_any_partial(struct kmem_cache *s, gfp_t flags, 1841 struct kmem_cache_cpu *c) 1842 { 1843 #ifdef CONFIG_NUMA 1844 struct zonelist *zonelist; 1845 struct zoneref *z; 1846 struct zone *zone; 1847 enum zone_type high_zoneidx = gfp_zone(flags); 1848 void *object; 1849 unsigned int cpuset_mems_cookie; 1850 1851 /* 1852 * The defrag ratio allows a configuration of the tradeoffs between 1853 * inter node defragmentation and node local allocations. A lower 1854 * defrag_ratio increases the tendency to do local allocations 1855 * instead of attempting to obtain partial slabs from other nodes. 1856 * 1857 * If the defrag_ratio is set to 0 then kmalloc() always 1858 * returns node local objects. If the ratio is higher then kmalloc() 1859 * may return off node objects because partial slabs are obtained 1860 * from other nodes and filled up. 1861 * 1862 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 1863 * (which makes defrag_ratio = 1000) then every (well almost) 1864 * allocation will first attempt to defrag slab caches on other nodes. 1865 * This means scanning over all nodes to look for partial slabs which 1866 * may be expensive if we do it every time we are trying to find a slab 1867 * with available objects. 1868 */ 1869 if (!s->remote_node_defrag_ratio || 1870 get_cycles() % 1024 > s->remote_node_defrag_ratio) 1871 return NULL; 1872 1873 do { 1874 cpuset_mems_cookie = read_mems_allowed_begin(); 1875 zonelist = node_zonelist(mempolicy_slab_node(), flags); 1876 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { 1877 struct kmem_cache_node *n; 1878 1879 n = get_node(s, zone_to_nid(zone)); 1880 1881 if (n && cpuset_zone_allowed(zone, flags) && 1882 n->nr_partial > s->min_partial) { 1883 object = get_partial_node(s, n, c, flags); 1884 if (object) { 1885 /* 1886 * Don't check read_mems_allowed_retry() 1887 * here - if mems_allowed was updated in 1888 * parallel, that was a harmless race 1889 * between allocation and the cpuset 1890 * update 1891 */ 1892 return object; 1893 } 1894 } 1895 } 1896 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 1897 #endif 1898 return NULL; 1899 } 1900 1901 /* 1902 * Get a partial page, lock it and return it. 1903 */ 1904 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, 1905 struct kmem_cache_cpu *c) 1906 { 1907 void *object; 1908 int searchnode = node; 1909 1910 if (node == NUMA_NO_NODE) 1911 searchnode = numa_mem_id(); 1912 else if (!node_present_pages(node)) 1913 searchnode = node_to_mem_node(node); 1914 1915 object = get_partial_node(s, get_node(s, searchnode), c, flags); 1916 if (object || node != NUMA_NO_NODE) 1917 return object; 1918 1919 return get_any_partial(s, flags, c); 1920 } 1921 1922 #ifdef CONFIG_PREEMPT 1923 /* 1924 * Calculate the next globally unique transaction for disambiguiation 1925 * during cmpxchg. The transactions start with the cpu number and are then 1926 * incremented by CONFIG_NR_CPUS. 1927 */ 1928 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) 1929 #else 1930 /* 1931 * No preemption supported therefore also no need to check for 1932 * different cpus. 1933 */ 1934 #define TID_STEP 1 1935 #endif 1936 1937 static inline unsigned long next_tid(unsigned long tid) 1938 { 1939 return tid + TID_STEP; 1940 } 1941 1942 static inline unsigned int tid_to_cpu(unsigned long tid) 1943 { 1944 return tid % TID_STEP; 1945 } 1946 1947 static inline unsigned long tid_to_event(unsigned long tid) 1948 { 1949 return tid / TID_STEP; 1950 } 1951 1952 static inline unsigned int init_tid(int cpu) 1953 { 1954 return cpu; 1955 } 1956 1957 static inline void note_cmpxchg_failure(const char *n, 1958 const struct kmem_cache *s, unsigned long tid) 1959 { 1960 #ifdef SLUB_DEBUG_CMPXCHG 1961 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); 1962 1963 pr_info("%s %s: cmpxchg redo ", n, s->name); 1964 1965 #ifdef CONFIG_PREEMPT 1966 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) 1967 pr_warn("due to cpu change %d -> %d\n", 1968 tid_to_cpu(tid), tid_to_cpu(actual_tid)); 1969 else 1970 #endif 1971 if (tid_to_event(tid) != tid_to_event(actual_tid)) 1972 pr_warn("due to cpu running other code. Event %ld->%ld\n", 1973 tid_to_event(tid), tid_to_event(actual_tid)); 1974 else 1975 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", 1976 actual_tid, tid, next_tid(tid)); 1977 #endif 1978 stat(s, CMPXCHG_DOUBLE_CPU_FAIL); 1979 } 1980 1981 static void init_kmem_cache_cpus(struct kmem_cache *s) 1982 { 1983 int cpu; 1984 1985 for_each_possible_cpu(cpu) 1986 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); 1987 } 1988 1989 /* 1990 * Remove the cpu slab 1991 */ 1992 static void deactivate_slab(struct kmem_cache *s, struct page *page, 1993 void *freelist) 1994 { 1995 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; 1996 struct kmem_cache_node *n = get_node(s, page_to_nid(page)); 1997 int lock = 0; 1998 enum slab_modes l = M_NONE, m = M_NONE; 1999 void *nextfree; 2000 int tail = DEACTIVATE_TO_HEAD; 2001 struct page new; 2002 struct page old; 2003 2004 if (page->freelist) { 2005 stat(s, DEACTIVATE_REMOTE_FREES); 2006 tail = DEACTIVATE_TO_TAIL; 2007 } 2008 2009 /* 2010 * Stage one: Free all available per cpu objects back 2011 * to the page freelist while it is still frozen. Leave the 2012 * last one. 2013 * 2014 * There is no need to take the list->lock because the page 2015 * is still frozen. 2016 */ 2017 while (freelist && (nextfree = get_freepointer(s, freelist))) { 2018 void *prior; 2019 unsigned long counters; 2020 2021 do { 2022 prior = page->freelist; 2023 counters = page->counters; 2024 set_freepointer(s, freelist, prior); 2025 new.counters = counters; 2026 new.inuse--; 2027 VM_BUG_ON(!new.frozen); 2028 2029 } while (!__cmpxchg_double_slab(s, page, 2030 prior, counters, 2031 freelist, new.counters, 2032 "drain percpu freelist")); 2033 2034 freelist = nextfree; 2035 } 2036 2037 /* 2038 * Stage two: Ensure that the page is unfrozen while the 2039 * list presence reflects the actual number of objects 2040 * during unfreeze. 2041 * 2042 * We setup the list membership and then perform a cmpxchg 2043 * with the count. If there is a mismatch then the page 2044 * is not unfrozen but the page is on the wrong list. 2045 * 2046 * Then we restart the process which may have to remove 2047 * the page from the list that we just put it on again 2048 * because the number of objects in the slab may have 2049 * changed. 2050 */ 2051 redo: 2052 2053 old.freelist = page->freelist; 2054 old.counters = page->counters; 2055 VM_BUG_ON(!old.frozen); 2056 2057 /* Determine target state of the slab */ 2058 new.counters = old.counters; 2059 if (freelist) { 2060 new.inuse--; 2061 set_freepointer(s, freelist, old.freelist); 2062 new.freelist = freelist; 2063 } else 2064 new.freelist = old.freelist; 2065 2066 new.frozen = 0; 2067 2068 if (!new.inuse && n->nr_partial >= s->min_partial) 2069 m = M_FREE; 2070 else if (new.freelist) { 2071 m = M_PARTIAL; 2072 if (!lock) { 2073 lock = 1; 2074 /* 2075 * Taking the spinlock removes the possiblity 2076 * that acquire_slab() will see a slab page that 2077 * is frozen 2078 */ 2079 spin_lock(&n->list_lock); 2080 } 2081 } else { 2082 m = M_FULL; 2083 if (kmem_cache_debug(s) && !lock) { 2084 lock = 1; 2085 /* 2086 * This also ensures that the scanning of full 2087 * slabs from diagnostic functions will not see 2088 * any frozen slabs. 2089 */ 2090 spin_lock(&n->list_lock); 2091 } 2092 } 2093 2094 if (l != m) { 2095 2096 if (l == M_PARTIAL) 2097 2098 remove_partial(n, page); 2099 2100 else if (l == M_FULL) 2101 2102 remove_full(s, n, page); 2103 2104 if (m == M_PARTIAL) { 2105 2106 add_partial(n, page, tail); 2107 stat(s, tail); 2108 2109 } else if (m == M_FULL) { 2110 2111 stat(s, DEACTIVATE_FULL); 2112 add_full(s, n, page); 2113 2114 } 2115 } 2116 2117 l = m; 2118 if (!__cmpxchg_double_slab(s, page, 2119 old.freelist, old.counters, 2120 new.freelist, new.counters, 2121 "unfreezing slab")) 2122 goto redo; 2123 2124 if (lock) 2125 spin_unlock(&n->list_lock); 2126 2127 if (m == M_FREE) { 2128 stat(s, DEACTIVATE_EMPTY); 2129 discard_slab(s, page); 2130 stat(s, FREE_SLAB); 2131 } 2132 } 2133 2134 /* 2135 * Unfreeze all the cpu partial slabs. 2136 * 2137 * This function must be called with interrupts disabled 2138 * for the cpu using c (or some other guarantee must be there 2139 * to guarantee no concurrent accesses). 2140 */ 2141 static void unfreeze_partials(struct kmem_cache *s, 2142 struct kmem_cache_cpu *c) 2143 { 2144 #ifdef CONFIG_SLUB_CPU_PARTIAL 2145 struct kmem_cache_node *n = NULL, *n2 = NULL; 2146 struct page *page, *discard_page = NULL; 2147 2148 while ((page = c->partial)) { 2149 struct page new; 2150 struct page old; 2151 2152 c->partial = page->next; 2153 2154 n2 = get_node(s, page_to_nid(page)); 2155 if (n != n2) { 2156 if (n) 2157 spin_unlock(&n->list_lock); 2158 2159 n = n2; 2160 spin_lock(&n->list_lock); 2161 } 2162 2163 do { 2164 2165 old.freelist = page->freelist; 2166 old.counters = page->counters; 2167 VM_BUG_ON(!old.frozen); 2168 2169 new.counters = old.counters; 2170 new.freelist = old.freelist; 2171 2172 new.frozen = 0; 2173 2174 } while (!__cmpxchg_double_slab(s, page, 2175 old.freelist, old.counters, 2176 new.freelist, new.counters, 2177 "unfreezing slab")); 2178 2179 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { 2180 page->next = discard_page; 2181 discard_page = page; 2182 } else { 2183 add_partial(n, page, DEACTIVATE_TO_TAIL); 2184 stat(s, FREE_ADD_PARTIAL); 2185 } 2186 } 2187 2188 if (n) 2189 spin_unlock(&n->list_lock); 2190 2191 while (discard_page) { 2192 page = discard_page; 2193 discard_page = discard_page->next; 2194 2195 stat(s, DEACTIVATE_EMPTY); 2196 discard_slab(s, page); 2197 stat(s, FREE_SLAB); 2198 } 2199 #endif 2200 } 2201 2202 /* 2203 * Put a page that was just frozen (in __slab_free) into a partial page 2204 * slot if available. This is done without interrupts disabled and without 2205 * preemption disabled. The cmpxchg is racy and may put the partial page 2206 * onto a random cpus partial slot. 2207 * 2208 * If we did not find a slot then simply move all the partials to the 2209 * per node partial list. 2210 */ 2211 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) 2212 { 2213 #ifdef CONFIG_SLUB_CPU_PARTIAL 2214 struct page *oldpage; 2215 int pages; 2216 int pobjects; 2217 2218 preempt_disable(); 2219 do { 2220 pages = 0; 2221 pobjects = 0; 2222 oldpage = this_cpu_read(s->cpu_slab->partial); 2223 2224 if (oldpage) { 2225 pobjects = oldpage->pobjects; 2226 pages = oldpage->pages; 2227 if (drain && pobjects > s->cpu_partial) { 2228 unsigned long flags; 2229 /* 2230 * partial array is full. Move the existing 2231 * set to the per node partial list. 2232 */ 2233 local_irq_save(flags); 2234 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2235 local_irq_restore(flags); 2236 oldpage = NULL; 2237 pobjects = 0; 2238 pages = 0; 2239 stat(s, CPU_PARTIAL_DRAIN); 2240 } 2241 } 2242 2243 pages++; 2244 pobjects += page->objects - page->inuse; 2245 2246 page->pages = pages; 2247 page->pobjects = pobjects; 2248 page->next = oldpage; 2249 2250 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) 2251 != oldpage); 2252 if (unlikely(!s->cpu_partial)) { 2253 unsigned long flags; 2254 2255 local_irq_save(flags); 2256 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); 2257 local_irq_restore(flags); 2258 } 2259 preempt_enable(); 2260 #endif 2261 } 2262 2263 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) 2264 { 2265 stat(s, CPUSLAB_FLUSH); 2266 deactivate_slab(s, c->page, c->freelist); 2267 2268 c->tid = next_tid(c->tid); 2269 c->page = NULL; 2270 c->freelist = NULL; 2271 } 2272 2273 /* 2274 * Flush cpu slab. 2275 * 2276 * Called from IPI handler with interrupts disabled. 2277 */ 2278 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) 2279 { 2280 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2281 2282 if (likely(c)) { 2283 if (c->page) 2284 flush_slab(s, c); 2285 2286 unfreeze_partials(s, c); 2287 } 2288 } 2289 2290 static void flush_cpu_slab(void *d) 2291 { 2292 struct kmem_cache *s = d; 2293 2294 __flush_cpu_slab(s, smp_processor_id()); 2295 } 2296 2297 static bool has_cpu_slab(int cpu, void *info) 2298 { 2299 struct kmem_cache *s = info; 2300 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); 2301 2302 return c->page || c->partial; 2303 } 2304 2305 static void flush_all(struct kmem_cache *s) 2306 { 2307 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); 2308 } 2309 2310 /* 2311 * Use the cpu notifier to insure that the cpu slabs are flushed when 2312 * necessary. 2313 */ 2314 static int slub_cpu_dead(unsigned int cpu) 2315 { 2316 struct kmem_cache *s; 2317 unsigned long flags; 2318 2319 mutex_lock(&slab_mutex); 2320 list_for_each_entry(s, &slab_caches, list) { 2321 local_irq_save(flags); 2322 __flush_cpu_slab(s, cpu); 2323 local_irq_restore(flags); 2324 } 2325 mutex_unlock(&slab_mutex); 2326 return 0; 2327 } 2328 2329 /* 2330 * Check if the objects in a per cpu structure fit numa 2331 * locality expectations. 2332 */ 2333 static inline int node_match(struct page *page, int node) 2334 { 2335 #ifdef CONFIG_NUMA 2336 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) 2337 return 0; 2338 #endif 2339 return 1; 2340 } 2341 2342 #ifdef CONFIG_SLUB_DEBUG 2343 static int count_free(struct page *page) 2344 { 2345 return page->objects - page->inuse; 2346 } 2347 2348 static inline unsigned long node_nr_objs(struct kmem_cache_node *n) 2349 { 2350 return atomic_long_read(&n->total_objects); 2351 } 2352 #endif /* CONFIG_SLUB_DEBUG */ 2353 2354 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) 2355 static unsigned long count_partial(struct kmem_cache_node *n, 2356 int (*get_count)(struct page *)) 2357 { 2358 unsigned long flags; 2359 unsigned long x = 0; 2360 struct page *page; 2361 2362 spin_lock_irqsave(&n->list_lock, flags); 2363 list_for_each_entry(page, &n->partial, lru) 2364 x += get_count(page); 2365 spin_unlock_irqrestore(&n->list_lock, flags); 2366 return x; 2367 } 2368 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ 2369 2370 static noinline void 2371 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) 2372 { 2373 #ifdef CONFIG_SLUB_DEBUG 2374 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, 2375 DEFAULT_RATELIMIT_BURST); 2376 int node; 2377 struct kmem_cache_node *n; 2378 2379 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) 2380 return; 2381 2382 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", 2383 nid, gfpflags, &gfpflags); 2384 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", 2385 s->name, s->object_size, s->size, oo_order(s->oo), 2386 oo_order(s->min)); 2387 2388 if (oo_order(s->min) > get_order(s->object_size)) 2389 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", 2390 s->name); 2391 2392 for_each_kmem_cache_node(s, node, n) { 2393 unsigned long nr_slabs; 2394 unsigned long nr_objs; 2395 unsigned long nr_free; 2396 2397 nr_free = count_partial(n, count_free); 2398 nr_slabs = node_nr_slabs(n); 2399 nr_objs = node_nr_objs(n); 2400 2401 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", 2402 node, nr_slabs, nr_objs, nr_free); 2403 } 2404 #endif 2405 } 2406 2407 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, 2408 int node, struct kmem_cache_cpu **pc) 2409 { 2410 void *freelist; 2411 struct kmem_cache_cpu *c = *pc; 2412 struct page *page; 2413 2414 freelist = get_partial(s, flags, node, c); 2415 2416 if (freelist) 2417 return freelist; 2418 2419 page = new_slab(s, flags, node); 2420 if (page) { 2421 c = raw_cpu_ptr(s->cpu_slab); 2422 if (c->page) 2423 flush_slab(s, c); 2424 2425 /* 2426 * No other reference to the page yet so we can 2427 * muck around with it freely without cmpxchg 2428 */ 2429 freelist = page->freelist; 2430 page->freelist = NULL; 2431 2432 stat(s, ALLOC_SLAB); 2433 c->page = page; 2434 *pc = c; 2435 } else 2436 freelist = NULL; 2437 2438 return freelist; 2439 } 2440 2441 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) 2442 { 2443 if (unlikely(PageSlabPfmemalloc(page))) 2444 return gfp_pfmemalloc_allowed(gfpflags); 2445 2446 return true; 2447 } 2448 2449 /* 2450 * Check the page->freelist of a page and either transfer the freelist to the 2451 * per cpu freelist or deactivate the page. 2452 * 2453 * The page is still frozen if the return value is not NULL. 2454 * 2455 * If this function returns NULL then the page has been unfrozen. 2456 * 2457 * This function must be called with interrupt disabled. 2458 */ 2459 static inline void *get_freelist(struct kmem_cache *s, struct page *page) 2460 { 2461 struct page new; 2462 unsigned long counters; 2463 void *freelist; 2464 2465 do { 2466 freelist = page->freelist; 2467 counters = page->counters; 2468 2469 new.counters = counters; 2470 VM_BUG_ON(!new.frozen); 2471 2472 new.inuse = page->objects; 2473 new.frozen = freelist != NULL; 2474 2475 } while (!__cmpxchg_double_slab(s, page, 2476 freelist, counters, 2477 NULL, new.counters, 2478 "get_freelist")); 2479 2480 return freelist; 2481 } 2482 2483 /* 2484 * Slow path. The lockless freelist is empty or we need to perform 2485 * debugging duties. 2486 * 2487 * Processing is still very fast if new objects have been freed to the 2488 * regular freelist. In that case we simply take over the regular freelist 2489 * as the lockless freelist and zap the regular freelist. 2490 * 2491 * If that is not working then we fall back to the partial lists. We take the 2492 * first element of the freelist as the object to allocate now and move the 2493 * rest of the freelist to the lockless freelist. 2494 * 2495 * And if we were unable to get a new slab from the partial slab lists then 2496 * we need to allocate a new slab. This is the slowest path since it involves 2497 * a call to the page allocator and the setup of a new slab. 2498 * 2499 * Version of __slab_alloc to use when we know that interrupts are 2500 * already disabled (which is the case for bulk allocation). 2501 */ 2502 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2503 unsigned long addr, struct kmem_cache_cpu *c) 2504 { 2505 void *freelist; 2506 struct page *page; 2507 2508 page = c->page; 2509 if (!page) 2510 goto new_slab; 2511 redo: 2512 2513 if (unlikely(!node_match(page, node))) { 2514 int searchnode = node; 2515 2516 if (node != NUMA_NO_NODE && !node_present_pages(node)) 2517 searchnode = node_to_mem_node(node); 2518 2519 if (unlikely(!node_match(page, searchnode))) { 2520 stat(s, ALLOC_NODE_MISMATCH); 2521 deactivate_slab(s, page, c->freelist); 2522 c->page = NULL; 2523 c->freelist = NULL; 2524 goto new_slab; 2525 } 2526 } 2527 2528 /* 2529 * By rights, we should be searching for a slab page that was 2530 * PFMEMALLOC but right now, we are losing the pfmemalloc 2531 * information when the page leaves the per-cpu allocator 2532 */ 2533 if (unlikely(!pfmemalloc_match(page, gfpflags))) { 2534 deactivate_slab(s, page, c->freelist); 2535 c->page = NULL; 2536 c->freelist = NULL; 2537 goto new_slab; 2538 } 2539 2540 /* must check again c->freelist in case of cpu migration or IRQ */ 2541 freelist = c->freelist; 2542 if (freelist) 2543 goto load_freelist; 2544 2545 freelist = get_freelist(s, page); 2546 2547 if (!freelist) { 2548 c->page = NULL; 2549 stat(s, DEACTIVATE_BYPASS); 2550 goto new_slab; 2551 } 2552 2553 stat(s, ALLOC_REFILL); 2554 2555 load_freelist: 2556 /* 2557 * freelist is pointing to the list of objects to be used. 2558 * page is pointing to the page from which the objects are obtained. 2559 * That page must be frozen for per cpu allocations to work. 2560 */ 2561 VM_BUG_ON(!c->page->frozen); 2562 c->freelist = get_freepointer(s, freelist); 2563 c->tid = next_tid(c->tid); 2564 return freelist; 2565 2566 new_slab: 2567 2568 if (c->partial) { 2569 page = c->page = c->partial; 2570 c->partial = page->next; 2571 stat(s, CPU_PARTIAL_ALLOC); 2572 c->freelist = NULL; 2573 goto redo; 2574 } 2575 2576 freelist = new_slab_objects(s, gfpflags, node, &c); 2577 2578 if (unlikely(!freelist)) { 2579 slab_out_of_memory(s, gfpflags, node); 2580 return NULL; 2581 } 2582 2583 page = c->page; 2584 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) 2585 goto load_freelist; 2586 2587 /* Only entered in the debug case */ 2588 if (kmem_cache_debug(s) && 2589 !alloc_debug_processing(s, page, freelist, addr)) 2590 goto new_slab; /* Slab failed checks. Next slab needed */ 2591 2592 deactivate_slab(s, page, get_freepointer(s, freelist)); 2593 c->page = NULL; 2594 c->freelist = NULL; 2595 return freelist; 2596 } 2597 2598 /* 2599 * Another one that disabled interrupt and compensates for possible 2600 * cpu changes by refetching the per cpu area pointer. 2601 */ 2602 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, 2603 unsigned long addr, struct kmem_cache_cpu *c) 2604 { 2605 void *p; 2606 unsigned long flags; 2607 2608 local_irq_save(flags); 2609 #ifdef CONFIG_PREEMPT 2610 /* 2611 * We may have been preempted and rescheduled on a different 2612 * cpu before disabling interrupts. Need to reload cpu area 2613 * pointer. 2614 */ 2615 c = this_cpu_ptr(s->cpu_slab); 2616 #endif 2617 2618 p = ___slab_alloc(s, gfpflags, node, addr, c); 2619 local_irq_restore(flags); 2620 return p; 2621 } 2622 2623 /* 2624 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) 2625 * have the fastpath folded into their functions. So no function call 2626 * overhead for requests that can be satisfied on the fastpath. 2627 * 2628 * The fastpath works by first checking if the lockless freelist can be used. 2629 * If not then __slab_alloc is called for slow processing. 2630 * 2631 * Otherwise we can simply pick the next object from the lockless free list. 2632 */ 2633 static __always_inline void *slab_alloc_node(struct kmem_cache *s, 2634 gfp_t gfpflags, int node, unsigned long addr) 2635 { 2636 void *object; 2637 struct kmem_cache_cpu *c; 2638 struct page *page; 2639 unsigned long tid; 2640 2641 s = slab_pre_alloc_hook(s, gfpflags); 2642 if (!s) 2643 return NULL; 2644 redo: 2645 /* 2646 * Must read kmem_cache cpu data via this cpu ptr. Preemption is 2647 * enabled. We may switch back and forth between cpus while 2648 * reading from one cpu area. That does not matter as long 2649 * as we end up on the original cpu again when doing the cmpxchg. 2650 * 2651 * We should guarantee that tid and kmem_cache are retrieved on 2652 * the same cpu. It could be different if CONFIG_PREEMPT so we need 2653 * to check if it is matched or not. 2654 */ 2655 do { 2656 tid = this_cpu_read(s->cpu_slab->tid); 2657 c = raw_cpu_ptr(s->cpu_slab); 2658 } while (IS_ENABLED(CONFIG_PREEMPT) && 2659 unlikely(tid != READ_ONCE(c->tid))); 2660 2661 /* 2662 * Irqless object alloc/free algorithm used here depends on sequence 2663 * of fetching cpu_slab's data. tid should be fetched before anything 2664 * on c to guarantee that object and page associated with previous tid 2665 * won't be used with current tid. If we fetch tid first, object and 2666 * page could be one associated with next tid and our alloc/free 2667 * request will be failed. In this case, we will retry. So, no problem. 2668 */ 2669 barrier(); 2670 2671 /* 2672 * The transaction ids are globally unique per cpu and per operation on 2673 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double 2674 * occurs on the right processor and that there was no operation on the 2675 * linked list in between. 2676 */ 2677 2678 object = c->freelist; 2679 page = c->page; 2680 if (unlikely(!object || !node_match(page, node))) { 2681 object = __slab_alloc(s, gfpflags, node, addr, c); 2682 stat(s, ALLOC_SLOWPATH); 2683 } else { 2684 void *next_object = get_freepointer_safe(s, object); 2685 2686 /* 2687 * The cmpxchg will only match if there was no additional 2688 * operation and if we are on the right processor. 2689 * 2690 * The cmpxchg does the following atomically (without lock 2691 * semantics!) 2692 * 1. Relocate first pointer to the current per cpu area. 2693 * 2. Verify that tid and freelist have not been changed 2694 * 3. If they were not changed replace tid and freelist 2695 * 2696 * Since this is without lock semantics the protection is only 2697 * against code executing on this cpu *not* from access by 2698 * other cpus. 2699 */ 2700 if (unlikely(!this_cpu_cmpxchg_double( 2701 s->cpu_slab->freelist, s->cpu_slab->tid, 2702 object, tid, 2703 next_object, next_tid(tid)))) { 2704 2705 note_cmpxchg_failure("slab_alloc", s, tid); 2706 goto redo; 2707 } 2708 prefetch_freepointer(s, next_object); 2709 stat(s, ALLOC_FASTPATH); 2710 } 2711 2712 if (unlikely(gfpflags & __GFP_ZERO) && object) 2713 memset(object, 0, s->object_size); 2714 2715 slab_post_alloc_hook(s, gfpflags, 1, &object); 2716 2717 return object; 2718 } 2719 2720 static __always_inline void *slab_alloc(struct kmem_cache *s, 2721 gfp_t gfpflags, unsigned long addr) 2722 { 2723 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); 2724 } 2725 2726 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) 2727 { 2728 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2729 2730 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, 2731 s->size, gfpflags); 2732 2733 return ret; 2734 } 2735 EXPORT_SYMBOL(kmem_cache_alloc); 2736 2737 #ifdef CONFIG_TRACING 2738 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 2739 { 2740 void *ret = slab_alloc(s, gfpflags, _RET_IP_); 2741 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); 2742 kasan_kmalloc(s, ret, size, gfpflags); 2743 return ret; 2744 } 2745 EXPORT_SYMBOL(kmem_cache_alloc_trace); 2746 #endif 2747 2748 #ifdef CONFIG_NUMA 2749 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) 2750 { 2751 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2752 2753 trace_kmem_cache_alloc_node(_RET_IP_, ret, 2754 s->object_size, s->size, gfpflags, node); 2755 2756 return ret; 2757 } 2758 EXPORT_SYMBOL(kmem_cache_alloc_node); 2759 2760 #ifdef CONFIG_TRACING 2761 void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 2762 gfp_t gfpflags, 2763 int node, size_t size) 2764 { 2765 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); 2766 2767 trace_kmalloc_node(_RET_IP_, ret, 2768 size, s->size, gfpflags, node); 2769 2770 kasan_kmalloc(s, ret, size, gfpflags); 2771 return ret; 2772 } 2773 EXPORT_SYMBOL(kmem_cache_alloc_node_trace); 2774 #endif 2775 #endif 2776 2777 /* 2778 * Slow path handling. This may still be called frequently since objects 2779 * have a longer lifetime than the cpu slabs in most processing loads. 2780 * 2781 * So we still attempt to reduce cache line usage. Just take the slab 2782 * lock and free the item. If there is no additional partial page 2783 * handling required then we can return immediately. 2784 */ 2785 static void __slab_free(struct kmem_cache *s, struct page *page, 2786 void *head, void *tail, int cnt, 2787 unsigned long addr) 2788 2789 { 2790 void *prior; 2791 int was_frozen; 2792 struct page new; 2793 unsigned long counters; 2794 struct kmem_cache_node *n = NULL; 2795 unsigned long uninitialized_var(flags); 2796 2797 stat(s, FREE_SLOWPATH); 2798 2799 if (kmem_cache_debug(s) && 2800 !free_debug_processing(s, page, head, tail, cnt, addr)) 2801 return; 2802 2803 do { 2804 if (unlikely(n)) { 2805 spin_unlock_irqrestore(&n->list_lock, flags); 2806 n = NULL; 2807 } 2808 prior = page->freelist; 2809 counters = page->counters; 2810 set_freepointer(s, tail, prior); 2811 new.counters = counters; 2812 was_frozen = new.frozen; 2813 new.inuse -= cnt; 2814 if ((!new.inuse || !prior) && !was_frozen) { 2815 2816 if (kmem_cache_has_cpu_partial(s) && !prior) { 2817 2818 /* 2819 * Slab was on no list before and will be 2820 * partially empty 2821 * We can defer the list move and instead 2822 * freeze it. 2823 */ 2824 new.frozen = 1; 2825 2826 } else { /* Needs to be taken off a list */ 2827 2828 n = get_node(s, page_to_nid(page)); 2829 /* 2830 * Speculatively acquire the list_lock. 2831 * If the cmpxchg does not succeed then we may 2832 * drop the list_lock without any processing. 2833 * 2834 * Otherwise the list_lock will synchronize with 2835 * other processors updating the list of slabs. 2836 */ 2837 spin_lock_irqsave(&n->list_lock, flags); 2838 2839 } 2840 } 2841 2842 } while (!cmpxchg_double_slab(s, page, 2843 prior, counters, 2844 head, new.counters, 2845 "__slab_free")); 2846 2847 if (likely(!n)) { 2848 2849 /* 2850 * If we just froze the page then put it onto the 2851 * per cpu partial list. 2852 */ 2853 if (new.frozen && !was_frozen) { 2854 put_cpu_partial(s, page, 1); 2855 stat(s, CPU_PARTIAL_FREE); 2856 } 2857 /* 2858 * The list lock was not taken therefore no list 2859 * activity can be necessary. 2860 */ 2861 if (was_frozen) 2862 stat(s, FREE_FROZEN); 2863 return; 2864 } 2865 2866 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) 2867 goto slab_empty; 2868 2869 /* 2870 * Objects left in the slab. If it was not on the partial list before 2871 * then add it. 2872 */ 2873 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { 2874 if (kmem_cache_debug(s)) 2875 remove_full(s, n, page); 2876 add_partial(n, page, DEACTIVATE_TO_TAIL); 2877 stat(s, FREE_ADD_PARTIAL); 2878 } 2879 spin_unlock_irqrestore(&n->list_lock, flags); 2880 return; 2881 2882 slab_empty: 2883 if (prior) { 2884 /* 2885 * Slab on the partial list. 2886 */ 2887 remove_partial(n, page); 2888 stat(s, FREE_REMOVE_PARTIAL); 2889 } else { 2890 /* Slab must be on the full list */ 2891 remove_full(s, n, page); 2892 } 2893 2894 spin_unlock_irqrestore(&n->list_lock, flags); 2895 stat(s, FREE_SLAB); 2896 discard_slab(s, page); 2897 } 2898 2899 /* 2900 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that 2901 * can perform fastpath freeing without additional function calls. 2902 * 2903 * The fastpath is only possible if we are freeing to the current cpu slab 2904 * of this processor. This typically the case if we have just allocated 2905 * the item before. 2906 * 2907 * If fastpath is not possible then fall back to __slab_free where we deal 2908 * with all sorts of special processing. 2909 * 2910 * Bulk free of a freelist with several objects (all pointing to the 2911 * same page) possible by specifying head and tail ptr, plus objects 2912 * count (cnt). Bulk free indicated by tail pointer being set. 2913 */ 2914 static __always_inline void do_slab_free(struct kmem_cache *s, 2915 struct page *page, void *head, void *tail, 2916 int cnt, unsigned long addr) 2917 { 2918 void *tail_obj = tail ? : head; 2919 struct kmem_cache_cpu *c; 2920 unsigned long tid; 2921 redo: 2922 /* 2923 * Determine the currently cpus per cpu slab. 2924 * The cpu may change afterward. However that does not matter since 2925 * data is retrieved via this pointer. If we are on the same cpu 2926 * during the cmpxchg then the free will succeed. 2927 */ 2928 do { 2929 tid = this_cpu_read(s->cpu_slab->tid); 2930 c = raw_cpu_ptr(s->cpu_slab); 2931 } while (IS_ENABLED(CONFIG_PREEMPT) && 2932 unlikely(tid != READ_ONCE(c->tid))); 2933 2934 /* Same with comment on barrier() in slab_alloc_node() */ 2935 barrier(); 2936 2937 if (likely(page == c->page)) { 2938 set_freepointer(s, tail_obj, c->freelist); 2939 2940 if (unlikely(!this_cpu_cmpxchg_double( 2941 s->cpu_slab->freelist, s->cpu_slab->tid, 2942 c->freelist, tid, 2943 head, next_tid(tid)))) { 2944 2945 note_cmpxchg_failure("slab_free", s, tid); 2946 goto redo; 2947 } 2948 stat(s, FREE_FASTPATH); 2949 } else 2950 __slab_free(s, page, head, tail_obj, cnt, addr); 2951 2952 } 2953 2954 static __always_inline void slab_free(struct kmem_cache *s, struct page *page, 2955 void *head, void *tail, int cnt, 2956 unsigned long addr) 2957 { 2958 slab_free_freelist_hook(s, head, tail); 2959 /* 2960 * slab_free_freelist_hook() could have put the items into quarantine. 2961 * If so, no need to free them. 2962 */ 2963 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU)) 2964 return; 2965 do_slab_free(s, page, head, tail, cnt, addr); 2966 } 2967 2968 #ifdef CONFIG_KASAN 2969 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) 2970 { 2971 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); 2972 } 2973 #endif 2974 2975 void kmem_cache_free(struct kmem_cache *s, void *x) 2976 { 2977 s = cache_from_obj(s, x); 2978 if (!s) 2979 return; 2980 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); 2981 trace_kmem_cache_free(_RET_IP_, x); 2982 } 2983 EXPORT_SYMBOL(kmem_cache_free); 2984 2985 struct detached_freelist { 2986 struct page *page; 2987 void *tail; 2988 void *freelist; 2989 int cnt; 2990 struct kmem_cache *s; 2991 }; 2992 2993 /* 2994 * This function progressively scans the array with free objects (with 2995 * a limited look ahead) and extract objects belonging to the same 2996 * page. It builds a detached freelist directly within the given 2997 * page/objects. This can happen without any need for 2998 * synchronization, because the objects are owned by running process. 2999 * The freelist is build up as a single linked list in the objects. 3000 * The idea is, that this detached freelist can then be bulk 3001 * transferred to the real freelist(s), but only requiring a single 3002 * synchronization primitive. Look ahead in the array is limited due 3003 * to performance reasons. 3004 */ 3005 static inline 3006 int build_detached_freelist(struct kmem_cache *s, size_t size, 3007 void **p, struct detached_freelist *df) 3008 { 3009 size_t first_skipped_index = 0; 3010 int lookahead = 3; 3011 void *object; 3012 struct page *page; 3013 3014 /* Always re-init detached_freelist */ 3015 df->page = NULL; 3016 3017 do { 3018 object = p[--size]; 3019 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ 3020 } while (!object && size); 3021 3022 if (!object) 3023 return 0; 3024 3025 page = virt_to_head_page(object); 3026 if (!s) { 3027 /* Handle kalloc'ed objects */ 3028 if (unlikely(!PageSlab(page))) { 3029 BUG_ON(!PageCompound(page)); 3030 kfree_hook(object); 3031 __free_pages(page, compound_order(page)); 3032 p[size] = NULL; /* mark object processed */ 3033 return size; 3034 } 3035 /* Derive kmem_cache from object */ 3036 df->s = page->slab_cache; 3037 } else { 3038 df->s = cache_from_obj(s, object); /* Support for memcg */ 3039 } 3040 3041 /* Start new detached freelist */ 3042 df->page = page; 3043 set_freepointer(df->s, object, NULL); 3044 df->tail = object; 3045 df->freelist = object; 3046 p[size] = NULL; /* mark object processed */ 3047 df->cnt = 1; 3048 3049 while (size) { 3050 object = p[--size]; 3051 if (!object) 3052 continue; /* Skip processed objects */ 3053 3054 /* df->page is always set at this point */ 3055 if (df->page == virt_to_head_page(object)) { 3056 /* Opportunity build freelist */ 3057 set_freepointer(df->s, object, df->freelist); 3058 df->freelist = object; 3059 df->cnt++; 3060 p[size] = NULL; /* mark object processed */ 3061 3062 continue; 3063 } 3064 3065 /* Limit look ahead search */ 3066 if (!--lookahead) 3067 break; 3068 3069 if (!first_skipped_index) 3070 first_skipped_index = size + 1; 3071 } 3072 3073 return first_skipped_index; 3074 } 3075 3076 /* Note that interrupts must be enabled when calling this function. */ 3077 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) 3078 { 3079 if (WARN_ON(!size)) 3080 return; 3081 3082 do { 3083 struct detached_freelist df; 3084 3085 size = build_detached_freelist(s, size, p, &df); 3086 if (!df.page) 3087 continue; 3088 3089 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); 3090 } while (likely(size)); 3091 } 3092 EXPORT_SYMBOL(kmem_cache_free_bulk); 3093 3094 /* Note that interrupts must be enabled when calling this function. */ 3095 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, 3096 void **p) 3097 { 3098 struct kmem_cache_cpu *c; 3099 int i; 3100 3101 /* memcg and kmem_cache debug support */ 3102 s = slab_pre_alloc_hook(s, flags); 3103 if (unlikely(!s)) 3104 return false; 3105 /* 3106 * Drain objects in the per cpu slab, while disabling local 3107 * IRQs, which protects against PREEMPT and interrupts 3108 * handlers invoking normal fastpath. 3109 */ 3110 local_irq_disable(); 3111 c = this_cpu_ptr(s->cpu_slab); 3112 3113 for (i = 0; i < size; i++) { 3114 void *object = c->freelist; 3115 3116 if (unlikely(!object)) { 3117 /* 3118 * Invoking slow path likely have side-effect 3119 * of re-populating per CPU c->freelist 3120 */ 3121 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, 3122 _RET_IP_, c); 3123 if (unlikely(!p[i])) 3124 goto error; 3125 3126 c = this_cpu_ptr(s->cpu_slab); 3127 continue; /* goto for-loop */ 3128 } 3129 c->freelist = get_freepointer(s, object); 3130 p[i] = object; 3131 } 3132 c->tid = next_tid(c->tid); 3133 local_irq_enable(); 3134 3135 /* Clear memory outside IRQ disabled fastpath loop */ 3136 if (unlikely(flags & __GFP_ZERO)) { 3137 int j; 3138 3139 for (j = 0; j < i; j++) 3140 memset(p[j], 0, s->object_size); 3141 } 3142 3143 /* memcg and kmem_cache debug support */ 3144 slab_post_alloc_hook(s, flags, size, p); 3145 return i; 3146 error: 3147 local_irq_enable(); 3148 slab_post_alloc_hook(s, flags, i, p); 3149 __kmem_cache_free_bulk(s, i, p); 3150 return 0; 3151 } 3152 EXPORT_SYMBOL(kmem_cache_alloc_bulk); 3153 3154 3155 /* 3156 * Object placement in a slab is made very easy because we always start at 3157 * offset 0. If we tune the size of the object to the alignment then we can 3158 * get the required alignment by putting one properly sized object after 3159 * another. 3160 * 3161 * Notice that the allocation order determines the sizes of the per cpu 3162 * caches. Each processor has always one slab available for allocations. 3163 * Increasing the allocation order reduces the number of times that slabs 3164 * must be moved on and off the partial lists and is therefore a factor in 3165 * locking overhead. 3166 */ 3167 3168 /* 3169 * Mininum / Maximum order of slab pages. This influences locking overhead 3170 * and slab fragmentation. A higher order reduces the number of partial slabs 3171 * and increases the number of allocations possible without having to 3172 * take the list_lock. 3173 */ 3174 static int slub_min_order; 3175 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; 3176 static int slub_min_objects; 3177 3178 /* 3179 * Calculate the order of allocation given an slab object size. 3180 * 3181 * The order of allocation has significant impact on performance and other 3182 * system components. Generally order 0 allocations should be preferred since 3183 * order 0 does not cause fragmentation in the page allocator. Larger objects 3184 * be problematic to put into order 0 slabs because there may be too much 3185 * unused space left. We go to a higher order if more than 1/16th of the slab 3186 * would be wasted. 3187 * 3188 * In order to reach satisfactory performance we must ensure that a minimum 3189 * number of objects is in one slab. Otherwise we may generate too much 3190 * activity on the partial lists which requires taking the list_lock. This is 3191 * less a concern for large slabs though which are rarely used. 3192 * 3193 * slub_max_order specifies the order where we begin to stop considering the 3194 * number of objects in a slab as critical. If we reach slub_max_order then 3195 * we try to keep the page order as low as possible. So we accept more waste 3196 * of space in favor of a small page order. 3197 * 3198 * Higher order allocations also allow the placement of more objects in a 3199 * slab and thereby reduce object handling overhead. If the user has 3200 * requested a higher mininum order then we start with that one instead of 3201 * the smallest order which will fit the object. 3202 */ 3203 static inline int slab_order(int size, int min_objects, 3204 int max_order, int fract_leftover, int reserved) 3205 { 3206 int order; 3207 int rem; 3208 int min_order = slub_min_order; 3209 3210 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) 3211 return get_order(size * MAX_OBJS_PER_PAGE) - 1; 3212 3213 for (order = max(min_order, get_order(min_objects * size + reserved)); 3214 order <= max_order; order++) { 3215 3216 unsigned long slab_size = PAGE_SIZE << order; 3217 3218 rem = (slab_size - reserved) % size; 3219 3220 if (rem <= slab_size / fract_leftover) 3221 break; 3222 } 3223 3224 return order; 3225 } 3226 3227 static inline int calculate_order(int size, int reserved) 3228 { 3229 int order; 3230 int min_objects; 3231 int fraction; 3232 int max_objects; 3233 3234 /* 3235 * Attempt to find best configuration for a slab. This 3236 * works by first attempting to generate a layout with 3237 * the best configuration and backing off gradually. 3238 * 3239 * First we increase the acceptable waste in a slab. Then 3240 * we reduce the minimum objects required in a slab. 3241 */ 3242 min_objects = slub_min_objects; 3243 if (!min_objects) 3244 min_objects = 4 * (fls(nr_cpu_ids) + 1); 3245 max_objects = order_objects(slub_max_order, size, reserved); 3246 min_objects = min(min_objects, max_objects); 3247 3248 while (min_objects > 1) { 3249 fraction = 16; 3250 while (fraction >= 4) { 3251 order = slab_order(size, min_objects, 3252 slub_max_order, fraction, reserved); 3253 if (order <= slub_max_order) 3254 return order; 3255 fraction /= 2; 3256 } 3257 min_objects--; 3258 } 3259 3260 /* 3261 * We were unable to place multiple objects in a slab. Now 3262 * lets see if we can place a single object there. 3263 */ 3264 order = slab_order(size, 1, slub_max_order, 1, reserved); 3265 if (order <= slub_max_order) 3266 return order; 3267 3268 /* 3269 * Doh this slab cannot be placed using slub_max_order. 3270 */ 3271 order = slab_order(size, 1, MAX_ORDER, 1, reserved); 3272 if (order < MAX_ORDER) 3273 return order; 3274 return -ENOSYS; 3275 } 3276 3277 static void 3278 init_kmem_cache_node(struct kmem_cache_node *n) 3279 { 3280 n->nr_partial = 0; 3281 spin_lock_init(&n->list_lock); 3282 INIT_LIST_HEAD(&n->partial); 3283 #ifdef CONFIG_SLUB_DEBUG 3284 atomic_long_set(&n->nr_slabs, 0); 3285 atomic_long_set(&n->total_objects, 0); 3286 INIT_LIST_HEAD(&n->full); 3287 #endif 3288 } 3289 3290 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) 3291 { 3292 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < 3293 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); 3294 3295 /* 3296 * Must align to double word boundary for the double cmpxchg 3297 * instructions to work; see __pcpu_double_call_return_bool(). 3298 */ 3299 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 3300 2 * sizeof(void *)); 3301 3302 if (!s->cpu_slab) 3303 return 0; 3304 3305 init_kmem_cache_cpus(s); 3306 3307 return 1; 3308 } 3309 3310 static struct kmem_cache *kmem_cache_node; 3311 3312 /* 3313 * No kmalloc_node yet so do it by hand. We know that this is the first 3314 * slab on the node for this slabcache. There are no concurrent accesses 3315 * possible. 3316 * 3317 * Note that this function only works on the kmem_cache_node 3318 * when allocating for the kmem_cache_node. This is used for bootstrapping 3319 * memory on a fresh node that has no slab structures yet. 3320 */ 3321 static void early_kmem_cache_node_alloc(int node) 3322 { 3323 struct page *page; 3324 struct kmem_cache_node *n; 3325 3326 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); 3327 3328 page = new_slab(kmem_cache_node, GFP_NOWAIT, node); 3329 3330 BUG_ON(!page); 3331 if (page_to_nid(page) != node) { 3332 pr_err("SLUB: Unable to allocate memory from node %d\n", node); 3333 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); 3334 } 3335 3336 n = page->freelist; 3337 BUG_ON(!n); 3338 page->freelist = get_freepointer(kmem_cache_node, n); 3339 page->inuse = 1; 3340 page->frozen = 0; 3341 kmem_cache_node->node[node] = n; 3342 #ifdef CONFIG_SLUB_DEBUG 3343 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); 3344 init_tracking(kmem_cache_node, n); 3345 #endif 3346 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), 3347 GFP_KERNEL); 3348 init_kmem_cache_node(n); 3349 inc_slabs_node(kmem_cache_node, node, page->objects); 3350 3351 /* 3352 * No locks need to be taken here as it has just been 3353 * initialized and there is no concurrent access. 3354 */ 3355 __add_partial(n, page, DEACTIVATE_TO_HEAD); 3356 } 3357 3358 static void free_kmem_cache_nodes(struct kmem_cache *s) 3359 { 3360 int node; 3361 struct kmem_cache_node *n; 3362 3363 for_each_kmem_cache_node(s, node, n) { 3364 kmem_cache_free(kmem_cache_node, n); 3365 s->node[node] = NULL; 3366 } 3367 } 3368 3369 void __kmem_cache_release(struct kmem_cache *s) 3370 { 3371 cache_random_seq_destroy(s); 3372 free_percpu(s->cpu_slab); 3373 free_kmem_cache_nodes(s); 3374 } 3375 3376 static int init_kmem_cache_nodes(struct kmem_cache *s) 3377 { 3378 int node; 3379 3380 for_each_node_state(node, N_NORMAL_MEMORY) { 3381 struct kmem_cache_node *n; 3382 3383 if (slab_state == DOWN) { 3384 early_kmem_cache_node_alloc(node); 3385 continue; 3386 } 3387 n = kmem_cache_alloc_node(kmem_cache_node, 3388 GFP_KERNEL, node); 3389 3390 if (!n) { 3391 free_kmem_cache_nodes(s); 3392 return 0; 3393 } 3394 3395 s->node[node] = n; 3396 init_kmem_cache_node(n); 3397 } 3398 return 1; 3399 } 3400 3401 static void set_min_partial(struct kmem_cache *s, unsigned long min) 3402 { 3403 if (min < MIN_PARTIAL) 3404 min = MIN_PARTIAL; 3405 else if (min > MAX_PARTIAL) 3406 min = MAX_PARTIAL; 3407 s->min_partial = min; 3408 } 3409 3410 /* 3411 * calculate_sizes() determines the order and the distribution of data within 3412 * a slab object. 3413 */ 3414 static int calculate_sizes(struct kmem_cache *s, int forced_order) 3415 { 3416 unsigned long flags = s->flags; 3417 size_t size = s->object_size; 3418 int order; 3419 3420 /* 3421 * Round up object size to the next word boundary. We can only 3422 * place the free pointer at word boundaries and this determines 3423 * the possible location of the free pointer. 3424 */ 3425 size = ALIGN(size, sizeof(void *)); 3426 3427 #ifdef CONFIG_SLUB_DEBUG 3428 /* 3429 * Determine if we can poison the object itself. If the user of 3430 * the slab may touch the object after free or before allocation 3431 * then we should never poison the object itself. 3432 */ 3433 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && 3434 !s->ctor) 3435 s->flags |= __OBJECT_POISON; 3436 else 3437 s->flags &= ~__OBJECT_POISON; 3438 3439 3440 /* 3441 * If we are Redzoning then check if there is some space between the 3442 * end of the object and the free pointer. If not then add an 3443 * additional word to have some bytes to store Redzone information. 3444 */ 3445 if ((flags & SLAB_RED_ZONE) && size == s->object_size) 3446 size += sizeof(void *); 3447 #endif 3448 3449 /* 3450 * With that we have determined the number of bytes in actual use 3451 * by the object. This is the potential offset to the free pointer. 3452 */ 3453 s->inuse = size; 3454 3455 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || 3456 s->ctor)) { 3457 /* 3458 * Relocate free pointer after the object if it is not 3459 * permitted to overwrite the first word of the object on 3460 * kmem_cache_free. 3461 * 3462 * This is the case if we do RCU, have a constructor or 3463 * destructor or are poisoning the objects. 3464 */ 3465 s->offset = size; 3466 size += sizeof(void *); 3467 } 3468 3469 #ifdef CONFIG_SLUB_DEBUG 3470 if (flags & SLAB_STORE_USER) 3471 /* 3472 * Need to store information about allocs and frees after 3473 * the object. 3474 */ 3475 size += 2 * sizeof(struct track); 3476 #endif 3477 3478 kasan_cache_create(s, &size, &s->flags); 3479 #ifdef CONFIG_SLUB_DEBUG 3480 if (flags & SLAB_RED_ZONE) { 3481 /* 3482 * Add some empty padding so that we can catch 3483 * overwrites from earlier objects rather than let 3484 * tracking information or the free pointer be 3485 * corrupted if a user writes before the start 3486 * of the object. 3487 */ 3488 size += sizeof(void *); 3489 3490 s->red_left_pad = sizeof(void *); 3491 s->red_left_pad = ALIGN(s->red_left_pad, s->align); 3492 size += s->red_left_pad; 3493 } 3494 #endif 3495 3496 /* 3497 * SLUB stores one object immediately after another beginning from 3498 * offset 0. In order to align the objects we have to simply size 3499 * each object to conform to the alignment. 3500 */ 3501 size = ALIGN(size, s->align); 3502 s->size = size; 3503 if (forced_order >= 0) 3504 order = forced_order; 3505 else 3506 order = calculate_order(size, s->reserved); 3507 3508 if (order < 0) 3509 return 0; 3510 3511 s->allocflags = 0; 3512 if (order) 3513 s->allocflags |= __GFP_COMP; 3514 3515 if (s->flags & SLAB_CACHE_DMA) 3516 s->allocflags |= GFP_DMA; 3517 3518 if (s->flags & SLAB_RECLAIM_ACCOUNT) 3519 s->allocflags |= __GFP_RECLAIMABLE; 3520 3521 /* 3522 * Determine the number of objects per slab 3523 */ 3524 s->oo = oo_make(order, size, s->reserved); 3525 s->min = oo_make(get_order(size), size, s->reserved); 3526 if (oo_objects(s->oo) > oo_objects(s->max)) 3527 s->max = s->oo; 3528 3529 return !!oo_objects(s->oo); 3530 } 3531 3532 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) 3533 { 3534 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); 3535 s->reserved = 0; 3536 3537 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU)) 3538 s->reserved = sizeof(struct rcu_head); 3539 3540 if (!calculate_sizes(s, -1)) 3541 goto error; 3542 if (disable_higher_order_debug) { 3543 /* 3544 * Disable debugging flags that store metadata if the min slab 3545 * order increased. 3546 */ 3547 if (get_order(s->size) > get_order(s->object_size)) { 3548 s->flags &= ~DEBUG_METADATA_FLAGS; 3549 s->offset = 0; 3550 if (!calculate_sizes(s, -1)) 3551 goto error; 3552 } 3553 } 3554 3555 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ 3556 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) 3557 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) 3558 /* Enable fast mode */ 3559 s->flags |= __CMPXCHG_DOUBLE; 3560 #endif 3561 3562 /* 3563 * The larger the object size is, the more pages we want on the partial 3564 * list to avoid pounding the page allocator excessively. 3565 */ 3566 set_min_partial(s, ilog2(s->size) / 2); 3567 3568 /* 3569 * cpu_partial determined the maximum number of objects kept in the 3570 * per cpu partial lists of a processor. 3571 * 3572 * Per cpu partial lists mainly contain slabs that just have one 3573 * object freed. If they are used for allocation then they can be 3574 * filled up again with minimal effort. The slab will never hit the 3575 * per node partial lists and therefore no locking will be required. 3576 * 3577 * This setting also determines 3578 * 3579 * A) The number of objects from per cpu partial slabs dumped to the 3580 * per node list when we reach the limit. 3581 * B) The number of objects in cpu partial slabs to extract from the 3582 * per node list when we run out of per cpu objects. We only fetch 3583 * 50% to keep some capacity around for frees. 3584 */ 3585 if (!kmem_cache_has_cpu_partial(s)) 3586 s->cpu_partial = 0; 3587 else if (s->size >= PAGE_SIZE) 3588 s->cpu_partial = 2; 3589 else if (s->size >= 1024) 3590 s->cpu_partial = 6; 3591 else if (s->size >= 256) 3592 s->cpu_partial = 13; 3593 else 3594 s->cpu_partial = 30; 3595 3596 #ifdef CONFIG_NUMA 3597 s->remote_node_defrag_ratio = 1000; 3598 #endif 3599 3600 /* Initialize the pre-computed randomized freelist if slab is up */ 3601 if (slab_state >= UP) { 3602 if (init_cache_random_seq(s)) 3603 goto error; 3604 } 3605 3606 if (!init_kmem_cache_nodes(s)) 3607 goto error; 3608 3609 if (alloc_kmem_cache_cpus(s)) 3610 return 0; 3611 3612 free_kmem_cache_nodes(s); 3613 error: 3614 if (flags & SLAB_PANIC) 3615 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n", 3616 s->name, (unsigned long)s->size, s->size, 3617 oo_order(s->oo), s->offset, flags); 3618 return -EINVAL; 3619 } 3620 3621 static void list_slab_objects(struct kmem_cache *s, struct page *page, 3622 const char *text) 3623 { 3624 #ifdef CONFIG_SLUB_DEBUG 3625 void *addr = page_address(page); 3626 void *p; 3627 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * 3628 sizeof(long), GFP_ATOMIC); 3629 if (!map) 3630 return; 3631 slab_err(s, page, text, s->name); 3632 slab_lock(page); 3633 3634 get_map(s, page, map); 3635 for_each_object(p, s, addr, page->objects) { 3636 3637 if (!test_bit(slab_index(p, s, addr), map)) { 3638 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); 3639 print_tracking(s, p); 3640 } 3641 } 3642 slab_unlock(page); 3643 kfree(map); 3644 #endif 3645 } 3646 3647 /* 3648 * Attempt to free all partial slabs on a node. 3649 * This is called from __kmem_cache_shutdown(). We must take list_lock 3650 * because sysfs file might still access partial list after the shutdowning. 3651 */ 3652 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) 3653 { 3654 LIST_HEAD(discard); 3655 struct page *page, *h; 3656 3657 BUG_ON(irqs_disabled()); 3658 spin_lock_irq(&n->list_lock); 3659 list_for_each_entry_safe(page, h, &n->partial, lru) { 3660 if (!page->inuse) { 3661 remove_partial(n, page); 3662 list_add(&page->lru, &discard); 3663 } else { 3664 list_slab_objects(s, page, 3665 "Objects remaining in %s on __kmem_cache_shutdown()"); 3666 } 3667 } 3668 spin_unlock_irq(&n->list_lock); 3669 3670 list_for_each_entry_safe(page, h, &discard, lru) 3671 discard_slab(s, page); 3672 } 3673 3674 /* 3675 * Release all resources used by a slab cache. 3676 */ 3677 int __kmem_cache_shutdown(struct kmem_cache *s) 3678 { 3679 int node; 3680 struct kmem_cache_node *n; 3681 3682 flush_all(s); 3683 /* Attempt to free all objects */ 3684 for_each_kmem_cache_node(s, node, n) { 3685 free_partial(s, n); 3686 if (n->nr_partial || slabs_node(s, node)) 3687 return 1; 3688 } 3689 return 0; 3690 } 3691 3692 /******************************************************************** 3693 * Kmalloc subsystem 3694 *******************************************************************/ 3695 3696 static int __init setup_slub_min_order(char *str) 3697 { 3698 get_option(&str, &slub_min_order); 3699 3700 return 1; 3701 } 3702 3703 __setup("slub_min_order=", setup_slub_min_order); 3704 3705 static int __init setup_slub_max_order(char *str) 3706 { 3707 get_option(&str, &slub_max_order); 3708 slub_max_order = min(slub_max_order, MAX_ORDER - 1); 3709 3710 return 1; 3711 } 3712 3713 __setup("slub_max_order=", setup_slub_max_order); 3714 3715 static int __init setup_slub_min_objects(char *str) 3716 { 3717 get_option(&str, &slub_min_objects); 3718 3719 return 1; 3720 } 3721 3722 __setup("slub_min_objects=", setup_slub_min_objects); 3723 3724 void *__kmalloc(size_t size, gfp_t flags) 3725 { 3726 struct kmem_cache *s; 3727 void *ret; 3728 3729 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 3730 return kmalloc_large(size, flags); 3731 3732 s = kmalloc_slab(size, flags); 3733 3734 if (unlikely(ZERO_OR_NULL_PTR(s))) 3735 return s; 3736 3737 ret = slab_alloc(s, flags, _RET_IP_); 3738 3739 trace_kmalloc(_RET_IP_, ret, size, s->size, flags); 3740 3741 kasan_kmalloc(s, ret, size, flags); 3742 3743 return ret; 3744 } 3745 EXPORT_SYMBOL(__kmalloc); 3746 3747 #ifdef CONFIG_NUMA 3748 static void *kmalloc_large_node(size_t size, gfp_t flags, int node) 3749 { 3750 struct page *page; 3751 void *ptr = NULL; 3752 3753 flags |= __GFP_COMP | __GFP_NOTRACK; 3754 page = alloc_pages_node(node, flags, get_order(size)); 3755 if (page) 3756 ptr = page_address(page); 3757 3758 kmalloc_large_node_hook(ptr, size, flags); 3759 return ptr; 3760 } 3761 3762 void *__kmalloc_node(size_t size, gfp_t flags, int node) 3763 { 3764 struct kmem_cache *s; 3765 void *ret; 3766 3767 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 3768 ret = kmalloc_large_node(size, flags, node); 3769 3770 trace_kmalloc_node(_RET_IP_, ret, 3771 size, PAGE_SIZE << get_order(size), 3772 flags, node); 3773 3774 return ret; 3775 } 3776 3777 s = kmalloc_slab(size, flags); 3778 3779 if (unlikely(ZERO_OR_NULL_PTR(s))) 3780 return s; 3781 3782 ret = slab_alloc_node(s, flags, node, _RET_IP_); 3783 3784 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); 3785 3786 kasan_kmalloc(s, ret, size, flags); 3787 3788 return ret; 3789 } 3790 EXPORT_SYMBOL(__kmalloc_node); 3791 #endif 3792 3793 #ifdef CONFIG_HARDENED_USERCOPY 3794 /* 3795 * Rejects objects that are incorrectly sized. 3796 * 3797 * Returns NULL if check passes, otherwise const char * to name of cache 3798 * to indicate an error. 3799 */ 3800 const char *__check_heap_object(const void *ptr, unsigned long n, 3801 struct page *page) 3802 { 3803 struct kmem_cache *s; 3804 unsigned long offset; 3805 size_t object_size; 3806 3807 /* Find object and usable object size. */ 3808 s = page->slab_cache; 3809 object_size = slab_ksize(s); 3810 3811 /* Reject impossible pointers. */ 3812 if (ptr < page_address(page)) 3813 return s->name; 3814 3815 /* Find offset within object. */ 3816 offset = (ptr - page_address(page)) % s->size; 3817 3818 /* Adjust for redzone and reject if within the redzone. */ 3819 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { 3820 if (offset < s->red_left_pad) 3821 return s->name; 3822 offset -= s->red_left_pad; 3823 } 3824 3825 /* Allow address range falling entirely within object size. */ 3826 if (offset <= object_size && n <= object_size - offset) 3827 return NULL; 3828 3829 return s->name; 3830 } 3831 #endif /* CONFIG_HARDENED_USERCOPY */ 3832 3833 static size_t __ksize(const void *object) 3834 { 3835 struct page *page; 3836 3837 if (unlikely(object == ZERO_SIZE_PTR)) 3838 return 0; 3839 3840 page = virt_to_head_page(object); 3841 3842 if (unlikely(!PageSlab(page))) { 3843 WARN_ON(!PageCompound(page)); 3844 return PAGE_SIZE << compound_order(page); 3845 } 3846 3847 return slab_ksize(page->slab_cache); 3848 } 3849 3850 size_t ksize(const void *object) 3851 { 3852 size_t size = __ksize(object); 3853 /* We assume that ksize callers could use whole allocated area, 3854 * so we need to unpoison this area. 3855 */ 3856 kasan_unpoison_shadow(object, size); 3857 return size; 3858 } 3859 EXPORT_SYMBOL(ksize); 3860 3861 void kfree(const void *x) 3862 { 3863 struct page *page; 3864 void *object = (void *)x; 3865 3866 trace_kfree(_RET_IP_, x); 3867 3868 if (unlikely(ZERO_OR_NULL_PTR(x))) 3869 return; 3870 3871 page = virt_to_head_page(x); 3872 if (unlikely(!PageSlab(page))) { 3873 BUG_ON(!PageCompound(page)); 3874 kfree_hook(x); 3875 __free_pages(page, compound_order(page)); 3876 return; 3877 } 3878 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); 3879 } 3880 EXPORT_SYMBOL(kfree); 3881 3882 #define SHRINK_PROMOTE_MAX 32 3883 3884 /* 3885 * kmem_cache_shrink discards empty slabs and promotes the slabs filled 3886 * up most to the head of the partial lists. New allocations will then 3887 * fill those up and thus they can be removed from the partial lists. 3888 * 3889 * The slabs with the least items are placed last. This results in them 3890 * being allocated from last increasing the chance that the last objects 3891 * are freed in them. 3892 */ 3893 int __kmem_cache_shrink(struct kmem_cache *s) 3894 { 3895 int node; 3896 int i; 3897 struct kmem_cache_node *n; 3898 struct page *page; 3899 struct page *t; 3900 struct list_head discard; 3901 struct list_head promote[SHRINK_PROMOTE_MAX]; 3902 unsigned long flags; 3903 int ret = 0; 3904 3905 flush_all(s); 3906 for_each_kmem_cache_node(s, node, n) { 3907 INIT_LIST_HEAD(&discard); 3908 for (i = 0; i < SHRINK_PROMOTE_MAX; i++) 3909 INIT_LIST_HEAD(promote + i); 3910 3911 spin_lock_irqsave(&n->list_lock, flags); 3912 3913 /* 3914 * Build lists of slabs to discard or promote. 3915 * 3916 * Note that concurrent frees may occur while we hold the 3917 * list_lock. page->inuse here is the upper limit. 3918 */ 3919 list_for_each_entry_safe(page, t, &n->partial, lru) { 3920 int free = page->objects - page->inuse; 3921 3922 /* Do not reread page->inuse */ 3923 barrier(); 3924 3925 /* We do not keep full slabs on the list */ 3926 BUG_ON(free <= 0); 3927 3928 if (free == page->objects) { 3929 list_move(&page->lru, &discard); 3930 n->nr_partial--; 3931 } else if (free <= SHRINK_PROMOTE_MAX) 3932 list_move(&page->lru, promote + free - 1); 3933 } 3934 3935 /* 3936 * Promote the slabs filled up most to the head of the 3937 * partial list. 3938 */ 3939 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) 3940 list_splice(promote + i, &n->partial); 3941 3942 spin_unlock_irqrestore(&n->list_lock, flags); 3943 3944 /* Release empty slabs */ 3945 list_for_each_entry_safe(page, t, &discard, lru) 3946 discard_slab(s, page); 3947 3948 if (slabs_node(s, node)) 3949 ret = 1; 3950 } 3951 3952 return ret; 3953 } 3954 3955 static int slab_mem_going_offline_callback(void *arg) 3956 { 3957 struct kmem_cache *s; 3958 3959 mutex_lock(&slab_mutex); 3960 list_for_each_entry(s, &slab_caches, list) 3961 __kmem_cache_shrink(s); 3962 mutex_unlock(&slab_mutex); 3963 3964 return 0; 3965 } 3966 3967 static void slab_mem_offline_callback(void *arg) 3968 { 3969 struct kmem_cache_node *n; 3970 struct kmem_cache *s; 3971 struct memory_notify *marg = arg; 3972 int offline_node; 3973 3974 offline_node = marg->status_change_nid_normal; 3975 3976 /* 3977 * If the node still has available memory. we need kmem_cache_node 3978 * for it yet. 3979 */ 3980 if (offline_node < 0) 3981 return; 3982 3983 mutex_lock(&slab_mutex); 3984 list_for_each_entry(s, &slab_caches, list) { 3985 n = get_node(s, offline_node); 3986 if (n) { 3987 /* 3988 * if n->nr_slabs > 0, slabs still exist on the node 3989 * that is going down. We were unable to free them, 3990 * and offline_pages() function shouldn't call this 3991 * callback. So, we must fail. 3992 */ 3993 BUG_ON(slabs_node(s, offline_node)); 3994 3995 s->node[offline_node] = NULL; 3996 kmem_cache_free(kmem_cache_node, n); 3997 } 3998 } 3999 mutex_unlock(&slab_mutex); 4000 } 4001 4002 static int slab_mem_going_online_callback(void *arg) 4003 { 4004 struct kmem_cache_node *n; 4005 struct kmem_cache *s; 4006 struct memory_notify *marg = arg; 4007 int nid = marg->status_change_nid_normal; 4008 int ret = 0; 4009 4010 /* 4011 * If the node's memory is already available, then kmem_cache_node is 4012 * already created. Nothing to do. 4013 */ 4014 if (nid < 0) 4015 return 0; 4016 4017 /* 4018 * We are bringing a node online. No memory is available yet. We must 4019 * allocate a kmem_cache_node structure in order to bring the node 4020 * online. 4021 */ 4022 mutex_lock(&slab_mutex); 4023 list_for_each_entry(s, &slab_caches, list) { 4024 /* 4025 * XXX: kmem_cache_alloc_node will fallback to other nodes 4026 * since memory is not yet available from the node that 4027 * is brought up. 4028 */ 4029 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); 4030 if (!n) { 4031 ret = -ENOMEM; 4032 goto out; 4033 } 4034 init_kmem_cache_node(n); 4035 s->node[nid] = n; 4036 } 4037 out: 4038 mutex_unlock(&slab_mutex); 4039 return ret; 4040 } 4041 4042 static int slab_memory_callback(struct notifier_block *self, 4043 unsigned long action, void *arg) 4044 { 4045 int ret = 0; 4046 4047 switch (action) { 4048 case MEM_GOING_ONLINE: 4049 ret = slab_mem_going_online_callback(arg); 4050 break; 4051 case MEM_GOING_OFFLINE: 4052 ret = slab_mem_going_offline_callback(arg); 4053 break; 4054 case MEM_OFFLINE: 4055 case MEM_CANCEL_ONLINE: 4056 slab_mem_offline_callback(arg); 4057 break; 4058 case MEM_ONLINE: 4059 case MEM_CANCEL_OFFLINE: 4060 break; 4061 } 4062 if (ret) 4063 ret = notifier_from_errno(ret); 4064 else 4065 ret = NOTIFY_OK; 4066 return ret; 4067 } 4068 4069 static struct notifier_block slab_memory_callback_nb = { 4070 .notifier_call = slab_memory_callback, 4071 .priority = SLAB_CALLBACK_PRI, 4072 }; 4073 4074 /******************************************************************** 4075 * Basic setup of slabs 4076 *******************************************************************/ 4077 4078 /* 4079 * Used for early kmem_cache structures that were allocated using 4080 * the page allocator. Allocate them properly then fix up the pointers 4081 * that may be pointing to the wrong kmem_cache structure. 4082 */ 4083 4084 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) 4085 { 4086 int node; 4087 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 4088 struct kmem_cache_node *n; 4089 4090 memcpy(s, static_cache, kmem_cache->object_size); 4091 4092 /* 4093 * This runs very early, and only the boot processor is supposed to be 4094 * up. Even if it weren't true, IRQs are not up so we couldn't fire 4095 * IPIs around. 4096 */ 4097 __flush_cpu_slab(s, smp_processor_id()); 4098 for_each_kmem_cache_node(s, node, n) { 4099 struct page *p; 4100 4101 list_for_each_entry(p, &n->partial, lru) 4102 p->slab_cache = s; 4103 4104 #ifdef CONFIG_SLUB_DEBUG 4105 list_for_each_entry(p, &n->full, lru) 4106 p->slab_cache = s; 4107 #endif 4108 } 4109 slab_init_memcg_params(s); 4110 list_add(&s->list, &slab_caches); 4111 return s; 4112 } 4113 4114 void __init kmem_cache_init(void) 4115 { 4116 static __initdata struct kmem_cache boot_kmem_cache, 4117 boot_kmem_cache_node; 4118 4119 if (debug_guardpage_minorder()) 4120 slub_max_order = 0; 4121 4122 kmem_cache_node = &boot_kmem_cache_node; 4123 kmem_cache = &boot_kmem_cache; 4124 4125 create_boot_cache(kmem_cache_node, "kmem_cache_node", 4126 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); 4127 4128 register_hotmemory_notifier(&slab_memory_callback_nb); 4129 4130 /* Able to allocate the per node structures */ 4131 slab_state = PARTIAL; 4132 4133 create_boot_cache(kmem_cache, "kmem_cache", 4134 offsetof(struct kmem_cache, node) + 4135 nr_node_ids * sizeof(struct kmem_cache_node *), 4136 SLAB_HWCACHE_ALIGN); 4137 4138 kmem_cache = bootstrap(&boot_kmem_cache); 4139 4140 /* 4141 * Allocate kmem_cache_node properly from the kmem_cache slab. 4142 * kmem_cache_node is separately allocated so no need to 4143 * update any list pointers. 4144 */ 4145 kmem_cache_node = bootstrap(&boot_kmem_cache_node); 4146 4147 /* Now we can use the kmem_cache to allocate kmalloc slabs */ 4148 setup_kmalloc_cache_index_table(); 4149 create_kmalloc_caches(0); 4150 4151 /* Setup random freelists for each cache */ 4152 init_freelist_randomization(); 4153 4154 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, 4155 slub_cpu_dead); 4156 4157 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n", 4158 cache_line_size(), 4159 slub_min_order, slub_max_order, slub_min_objects, 4160 nr_cpu_ids, nr_node_ids); 4161 } 4162 4163 void __init kmem_cache_init_late(void) 4164 { 4165 } 4166 4167 struct kmem_cache * 4168 __kmem_cache_alias(const char *name, size_t size, size_t align, 4169 unsigned long flags, void (*ctor)(void *)) 4170 { 4171 struct kmem_cache *s, *c; 4172 4173 s = find_mergeable(size, align, flags, name, ctor); 4174 if (s) { 4175 s->refcount++; 4176 4177 /* 4178 * Adjust the object sizes so that we clear 4179 * the complete object on kzalloc. 4180 */ 4181 s->object_size = max(s->object_size, (int)size); 4182 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); 4183 4184 for_each_memcg_cache(c, s) { 4185 c->object_size = s->object_size; 4186 c->inuse = max_t(int, c->inuse, 4187 ALIGN(size, sizeof(void *))); 4188 } 4189 4190 if (sysfs_slab_alias(s, name)) { 4191 s->refcount--; 4192 s = NULL; 4193 } 4194 } 4195 4196 return s; 4197 } 4198 4199 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) 4200 { 4201 int err; 4202 4203 err = kmem_cache_open(s, flags); 4204 if (err) 4205 return err; 4206 4207 /* Mutex is not taken during early boot */ 4208 if (slab_state <= UP) 4209 return 0; 4210 4211 memcg_propagate_slab_attrs(s); 4212 err = sysfs_slab_add(s); 4213 if (err) 4214 __kmem_cache_release(s); 4215 4216 return err; 4217 } 4218 4219 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) 4220 { 4221 struct kmem_cache *s; 4222 void *ret; 4223 4224 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) 4225 return kmalloc_large(size, gfpflags); 4226 4227 s = kmalloc_slab(size, gfpflags); 4228 4229 if (unlikely(ZERO_OR_NULL_PTR(s))) 4230 return s; 4231 4232 ret = slab_alloc(s, gfpflags, caller); 4233 4234 /* Honor the call site pointer we received. */ 4235 trace_kmalloc(caller, ret, size, s->size, gfpflags); 4236 4237 return ret; 4238 } 4239 4240 #ifdef CONFIG_NUMA 4241 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, 4242 int node, unsigned long caller) 4243 { 4244 struct kmem_cache *s; 4245 void *ret; 4246 4247 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 4248 ret = kmalloc_large_node(size, gfpflags, node); 4249 4250 trace_kmalloc_node(caller, ret, 4251 size, PAGE_SIZE << get_order(size), 4252 gfpflags, node); 4253 4254 return ret; 4255 } 4256 4257 s = kmalloc_slab(size, gfpflags); 4258 4259 if (unlikely(ZERO_OR_NULL_PTR(s))) 4260 return s; 4261 4262 ret = slab_alloc_node(s, gfpflags, node, caller); 4263 4264 /* Honor the call site pointer we received. */ 4265 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); 4266 4267 return ret; 4268 } 4269 #endif 4270 4271 #ifdef CONFIG_SYSFS 4272 static int count_inuse(struct page *page) 4273 { 4274 return page->inuse; 4275 } 4276 4277 static int count_total(struct page *page) 4278 { 4279 return page->objects; 4280 } 4281 #endif 4282 4283 #ifdef CONFIG_SLUB_DEBUG 4284 static int validate_slab(struct kmem_cache *s, struct page *page, 4285 unsigned long *map) 4286 { 4287 void *p; 4288 void *addr = page_address(page); 4289 4290 if (!check_slab(s, page) || 4291 !on_freelist(s, page, NULL)) 4292 return 0; 4293 4294 /* Now we know that a valid freelist exists */ 4295 bitmap_zero(map, page->objects); 4296 4297 get_map(s, page, map); 4298 for_each_object(p, s, addr, page->objects) { 4299 if (test_bit(slab_index(p, s, addr), map)) 4300 if (!check_object(s, page, p, SLUB_RED_INACTIVE)) 4301 return 0; 4302 } 4303 4304 for_each_object(p, s, addr, page->objects) 4305 if (!test_bit(slab_index(p, s, addr), map)) 4306 if (!check_object(s, page, p, SLUB_RED_ACTIVE)) 4307 return 0; 4308 return 1; 4309 } 4310 4311 static void validate_slab_slab(struct kmem_cache *s, struct page *page, 4312 unsigned long *map) 4313 { 4314 slab_lock(page); 4315 validate_slab(s, page, map); 4316 slab_unlock(page); 4317 } 4318 4319 static int validate_slab_node(struct kmem_cache *s, 4320 struct kmem_cache_node *n, unsigned long *map) 4321 { 4322 unsigned long count = 0; 4323 struct page *page; 4324 unsigned long flags; 4325 4326 spin_lock_irqsave(&n->list_lock, flags); 4327 4328 list_for_each_entry(page, &n->partial, lru) { 4329 validate_slab_slab(s, page, map); 4330 count++; 4331 } 4332 if (count != n->nr_partial) 4333 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", 4334 s->name, count, n->nr_partial); 4335 4336 if (!(s->flags & SLAB_STORE_USER)) 4337 goto out; 4338 4339 list_for_each_entry(page, &n->full, lru) { 4340 validate_slab_slab(s, page, map); 4341 count++; 4342 } 4343 if (count != atomic_long_read(&n->nr_slabs)) 4344 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", 4345 s->name, count, atomic_long_read(&n->nr_slabs)); 4346 4347 out: 4348 spin_unlock_irqrestore(&n->list_lock, flags); 4349 return count; 4350 } 4351 4352 static long validate_slab_cache(struct kmem_cache *s) 4353 { 4354 int node; 4355 unsigned long count = 0; 4356 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4357 sizeof(unsigned long), GFP_KERNEL); 4358 struct kmem_cache_node *n; 4359 4360 if (!map) 4361 return -ENOMEM; 4362 4363 flush_all(s); 4364 for_each_kmem_cache_node(s, node, n) 4365 count += validate_slab_node(s, n, map); 4366 kfree(map); 4367 return count; 4368 } 4369 /* 4370 * Generate lists of code addresses where slabcache objects are allocated 4371 * and freed. 4372 */ 4373 4374 struct location { 4375 unsigned long count; 4376 unsigned long addr; 4377 long long sum_time; 4378 long min_time; 4379 long max_time; 4380 long min_pid; 4381 long max_pid; 4382 DECLARE_BITMAP(cpus, NR_CPUS); 4383 nodemask_t nodes; 4384 }; 4385 4386 struct loc_track { 4387 unsigned long max; 4388 unsigned long count; 4389 struct location *loc; 4390 }; 4391 4392 static void free_loc_track(struct loc_track *t) 4393 { 4394 if (t->max) 4395 free_pages((unsigned long)t->loc, 4396 get_order(sizeof(struct location) * t->max)); 4397 } 4398 4399 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) 4400 { 4401 struct location *l; 4402 int order; 4403 4404 order = get_order(sizeof(struct location) * max); 4405 4406 l = (void *)__get_free_pages(flags, order); 4407 if (!l) 4408 return 0; 4409 4410 if (t->count) { 4411 memcpy(l, t->loc, sizeof(struct location) * t->count); 4412 free_loc_track(t); 4413 } 4414 t->max = max; 4415 t->loc = l; 4416 return 1; 4417 } 4418 4419 static int add_location(struct loc_track *t, struct kmem_cache *s, 4420 const struct track *track) 4421 { 4422 long start, end, pos; 4423 struct location *l; 4424 unsigned long caddr; 4425 unsigned long age = jiffies - track->when; 4426 4427 start = -1; 4428 end = t->count; 4429 4430 for ( ; ; ) { 4431 pos = start + (end - start + 1) / 2; 4432 4433 /* 4434 * There is nothing at "end". If we end up there 4435 * we need to add something to before end. 4436 */ 4437 if (pos == end) 4438 break; 4439 4440 caddr = t->loc[pos].addr; 4441 if (track->addr == caddr) { 4442 4443 l = &t->loc[pos]; 4444 l->count++; 4445 if (track->when) { 4446 l->sum_time += age; 4447 if (age < l->min_time) 4448 l->min_time = age; 4449 if (age > l->max_time) 4450 l->max_time = age; 4451 4452 if (track->pid < l->min_pid) 4453 l->min_pid = track->pid; 4454 if (track->pid > l->max_pid) 4455 l->max_pid = track->pid; 4456 4457 cpumask_set_cpu(track->cpu, 4458 to_cpumask(l->cpus)); 4459 } 4460 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4461 return 1; 4462 } 4463 4464 if (track->addr < caddr) 4465 end = pos; 4466 else 4467 start = pos; 4468 } 4469 4470 /* 4471 * Not found. Insert new tracking element. 4472 */ 4473 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) 4474 return 0; 4475 4476 l = t->loc + pos; 4477 if (pos < t->count) 4478 memmove(l + 1, l, 4479 (t->count - pos) * sizeof(struct location)); 4480 t->count++; 4481 l->count = 1; 4482 l->addr = track->addr; 4483 l->sum_time = age; 4484 l->min_time = age; 4485 l->max_time = age; 4486 l->min_pid = track->pid; 4487 l->max_pid = track->pid; 4488 cpumask_clear(to_cpumask(l->cpus)); 4489 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); 4490 nodes_clear(l->nodes); 4491 node_set(page_to_nid(virt_to_page(track)), l->nodes); 4492 return 1; 4493 } 4494 4495 static void process_slab(struct loc_track *t, struct kmem_cache *s, 4496 struct page *page, enum track_item alloc, 4497 unsigned long *map) 4498 { 4499 void *addr = page_address(page); 4500 void *p; 4501 4502 bitmap_zero(map, page->objects); 4503 get_map(s, page, map); 4504 4505 for_each_object(p, s, addr, page->objects) 4506 if (!test_bit(slab_index(p, s, addr), map)) 4507 add_location(t, s, get_track(s, p, alloc)); 4508 } 4509 4510 static int list_locations(struct kmem_cache *s, char *buf, 4511 enum track_item alloc) 4512 { 4513 int len = 0; 4514 unsigned long i; 4515 struct loc_track t = { 0, 0, NULL }; 4516 int node; 4517 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * 4518 sizeof(unsigned long), GFP_KERNEL); 4519 struct kmem_cache_node *n; 4520 4521 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), 4522 GFP_TEMPORARY)) { 4523 kfree(map); 4524 return sprintf(buf, "Out of memory\n"); 4525 } 4526 /* Push back cpu slabs */ 4527 flush_all(s); 4528 4529 for_each_kmem_cache_node(s, node, n) { 4530 unsigned long flags; 4531 struct page *page; 4532 4533 if (!atomic_long_read(&n->nr_slabs)) 4534 continue; 4535 4536 spin_lock_irqsave(&n->list_lock, flags); 4537 list_for_each_entry(page, &n->partial, lru) 4538 process_slab(&t, s, page, alloc, map); 4539 list_for_each_entry(page, &n->full, lru) 4540 process_slab(&t, s, page, alloc, map); 4541 spin_unlock_irqrestore(&n->list_lock, flags); 4542 } 4543 4544 for (i = 0; i < t.count; i++) { 4545 struct location *l = &t.loc[i]; 4546 4547 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) 4548 break; 4549 len += sprintf(buf + len, "%7ld ", l->count); 4550 4551 if (l->addr) 4552 len += sprintf(buf + len, "%pS", (void *)l->addr); 4553 else 4554 len += sprintf(buf + len, "<not-available>"); 4555 4556 if (l->sum_time != l->min_time) { 4557 len += sprintf(buf + len, " age=%ld/%ld/%ld", 4558 l->min_time, 4559 (long)div_u64(l->sum_time, l->count), 4560 l->max_time); 4561 } else 4562 len += sprintf(buf + len, " age=%ld", 4563 l->min_time); 4564 4565 if (l->min_pid != l->max_pid) 4566 len += sprintf(buf + len, " pid=%ld-%ld", 4567 l->min_pid, l->max_pid); 4568 else 4569 len += sprintf(buf + len, " pid=%ld", 4570 l->min_pid); 4571 4572 if (num_online_cpus() > 1 && 4573 !cpumask_empty(to_cpumask(l->cpus)) && 4574 len < PAGE_SIZE - 60) 4575 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4576 " cpus=%*pbl", 4577 cpumask_pr_args(to_cpumask(l->cpus))); 4578 4579 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && 4580 len < PAGE_SIZE - 60) 4581 len += scnprintf(buf + len, PAGE_SIZE - len - 50, 4582 " nodes=%*pbl", 4583 nodemask_pr_args(&l->nodes)); 4584 4585 len += sprintf(buf + len, "\n"); 4586 } 4587 4588 free_loc_track(&t); 4589 kfree(map); 4590 if (!t.count) 4591 len += sprintf(buf, "No data\n"); 4592 return len; 4593 } 4594 #endif 4595 4596 #ifdef SLUB_RESILIENCY_TEST 4597 static void __init resiliency_test(void) 4598 { 4599 u8 *p; 4600 4601 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); 4602 4603 pr_err("SLUB resiliency testing\n"); 4604 pr_err("-----------------------\n"); 4605 pr_err("A. Corruption after allocation\n"); 4606 4607 p = kzalloc(16, GFP_KERNEL); 4608 p[16] = 0x12; 4609 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", 4610 p + 16); 4611 4612 validate_slab_cache(kmalloc_caches[4]); 4613 4614 /* Hmmm... The next two are dangerous */ 4615 p = kzalloc(32, GFP_KERNEL); 4616 p[32 + sizeof(void *)] = 0x34; 4617 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", 4618 p); 4619 pr_err("If allocated object is overwritten then not detectable\n\n"); 4620 4621 validate_slab_cache(kmalloc_caches[5]); 4622 p = kzalloc(64, GFP_KERNEL); 4623 p += 64 + (get_cycles() & 0xff) * sizeof(void *); 4624 *p = 0x56; 4625 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", 4626 p); 4627 pr_err("If allocated object is overwritten then not detectable\n\n"); 4628 validate_slab_cache(kmalloc_caches[6]); 4629 4630 pr_err("\nB. Corruption after free\n"); 4631 p = kzalloc(128, GFP_KERNEL); 4632 kfree(p); 4633 *p = 0x78; 4634 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); 4635 validate_slab_cache(kmalloc_caches[7]); 4636 4637 p = kzalloc(256, GFP_KERNEL); 4638 kfree(p); 4639 p[50] = 0x9a; 4640 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); 4641 validate_slab_cache(kmalloc_caches[8]); 4642 4643 p = kzalloc(512, GFP_KERNEL); 4644 kfree(p); 4645 p[512] = 0xab; 4646 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); 4647 validate_slab_cache(kmalloc_caches[9]); 4648 } 4649 #else 4650 #ifdef CONFIG_SYSFS 4651 static void resiliency_test(void) {}; 4652 #endif 4653 #endif 4654 4655 #ifdef CONFIG_SYSFS 4656 enum slab_stat_type { 4657 SL_ALL, /* All slabs */ 4658 SL_PARTIAL, /* Only partially allocated slabs */ 4659 SL_CPU, /* Only slabs used for cpu caches */ 4660 SL_OBJECTS, /* Determine allocated objects not slabs */ 4661 SL_TOTAL /* Determine object capacity not slabs */ 4662 }; 4663 4664 #define SO_ALL (1 << SL_ALL) 4665 #define SO_PARTIAL (1 << SL_PARTIAL) 4666 #define SO_CPU (1 << SL_CPU) 4667 #define SO_OBJECTS (1 << SL_OBJECTS) 4668 #define SO_TOTAL (1 << SL_TOTAL) 4669 4670 static ssize_t show_slab_objects(struct kmem_cache *s, 4671 char *buf, unsigned long flags) 4672 { 4673 unsigned long total = 0; 4674 int node; 4675 int x; 4676 unsigned long *nodes; 4677 4678 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); 4679 if (!nodes) 4680 return -ENOMEM; 4681 4682 if (flags & SO_CPU) { 4683 int cpu; 4684 4685 for_each_possible_cpu(cpu) { 4686 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, 4687 cpu); 4688 int node; 4689 struct page *page; 4690 4691 page = READ_ONCE(c->page); 4692 if (!page) 4693 continue; 4694 4695 node = page_to_nid(page); 4696 if (flags & SO_TOTAL) 4697 x = page->objects; 4698 else if (flags & SO_OBJECTS) 4699 x = page->inuse; 4700 else 4701 x = 1; 4702 4703 total += x; 4704 nodes[node] += x; 4705 4706 page = READ_ONCE(c->partial); 4707 if (page) { 4708 node = page_to_nid(page); 4709 if (flags & SO_TOTAL) 4710 WARN_ON_ONCE(1); 4711 else if (flags & SO_OBJECTS) 4712 WARN_ON_ONCE(1); 4713 else 4714 x = page->pages; 4715 total += x; 4716 nodes[node] += x; 4717 } 4718 } 4719 } 4720 4721 get_online_mems(); 4722 #ifdef CONFIG_SLUB_DEBUG 4723 if (flags & SO_ALL) { 4724 struct kmem_cache_node *n; 4725 4726 for_each_kmem_cache_node(s, node, n) { 4727 4728 if (flags & SO_TOTAL) 4729 x = atomic_long_read(&n->total_objects); 4730 else if (flags & SO_OBJECTS) 4731 x = atomic_long_read(&n->total_objects) - 4732 count_partial(n, count_free); 4733 else 4734 x = atomic_long_read(&n->nr_slabs); 4735 total += x; 4736 nodes[node] += x; 4737 } 4738 4739 } else 4740 #endif 4741 if (flags & SO_PARTIAL) { 4742 struct kmem_cache_node *n; 4743 4744 for_each_kmem_cache_node(s, node, n) { 4745 if (flags & SO_TOTAL) 4746 x = count_partial(n, count_total); 4747 else if (flags & SO_OBJECTS) 4748 x = count_partial(n, count_inuse); 4749 else 4750 x = n->nr_partial; 4751 total += x; 4752 nodes[node] += x; 4753 } 4754 } 4755 x = sprintf(buf, "%lu", total); 4756 #ifdef CONFIG_NUMA 4757 for (node = 0; node < nr_node_ids; node++) 4758 if (nodes[node]) 4759 x += sprintf(buf + x, " N%d=%lu", 4760 node, nodes[node]); 4761 #endif 4762 put_online_mems(); 4763 kfree(nodes); 4764 return x + sprintf(buf + x, "\n"); 4765 } 4766 4767 #ifdef CONFIG_SLUB_DEBUG 4768 static int any_slab_objects(struct kmem_cache *s) 4769 { 4770 int node; 4771 struct kmem_cache_node *n; 4772 4773 for_each_kmem_cache_node(s, node, n) 4774 if (atomic_long_read(&n->total_objects)) 4775 return 1; 4776 4777 return 0; 4778 } 4779 #endif 4780 4781 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) 4782 #define to_slab(n) container_of(n, struct kmem_cache, kobj) 4783 4784 struct slab_attribute { 4785 struct attribute attr; 4786 ssize_t (*show)(struct kmem_cache *s, char *buf); 4787 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); 4788 }; 4789 4790 #define SLAB_ATTR_RO(_name) \ 4791 static struct slab_attribute _name##_attr = \ 4792 __ATTR(_name, 0400, _name##_show, NULL) 4793 4794 #define SLAB_ATTR(_name) \ 4795 static struct slab_attribute _name##_attr = \ 4796 __ATTR(_name, 0600, _name##_show, _name##_store) 4797 4798 static ssize_t slab_size_show(struct kmem_cache *s, char *buf) 4799 { 4800 return sprintf(buf, "%d\n", s->size); 4801 } 4802 SLAB_ATTR_RO(slab_size); 4803 4804 static ssize_t align_show(struct kmem_cache *s, char *buf) 4805 { 4806 return sprintf(buf, "%d\n", s->align); 4807 } 4808 SLAB_ATTR_RO(align); 4809 4810 static ssize_t object_size_show(struct kmem_cache *s, char *buf) 4811 { 4812 return sprintf(buf, "%d\n", s->object_size); 4813 } 4814 SLAB_ATTR_RO(object_size); 4815 4816 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) 4817 { 4818 return sprintf(buf, "%d\n", oo_objects(s->oo)); 4819 } 4820 SLAB_ATTR_RO(objs_per_slab); 4821 4822 static ssize_t order_store(struct kmem_cache *s, 4823 const char *buf, size_t length) 4824 { 4825 unsigned long order; 4826 int err; 4827 4828 err = kstrtoul(buf, 10, &order); 4829 if (err) 4830 return err; 4831 4832 if (order > slub_max_order || order < slub_min_order) 4833 return -EINVAL; 4834 4835 calculate_sizes(s, order); 4836 return length; 4837 } 4838 4839 static ssize_t order_show(struct kmem_cache *s, char *buf) 4840 { 4841 return sprintf(buf, "%d\n", oo_order(s->oo)); 4842 } 4843 SLAB_ATTR(order); 4844 4845 static ssize_t min_partial_show(struct kmem_cache *s, char *buf) 4846 { 4847 return sprintf(buf, "%lu\n", s->min_partial); 4848 } 4849 4850 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, 4851 size_t length) 4852 { 4853 unsigned long min; 4854 int err; 4855 4856 err = kstrtoul(buf, 10, &min); 4857 if (err) 4858 return err; 4859 4860 set_min_partial(s, min); 4861 return length; 4862 } 4863 SLAB_ATTR(min_partial); 4864 4865 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) 4866 { 4867 return sprintf(buf, "%u\n", s->cpu_partial); 4868 } 4869 4870 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, 4871 size_t length) 4872 { 4873 unsigned long objects; 4874 int err; 4875 4876 err = kstrtoul(buf, 10, &objects); 4877 if (err) 4878 return err; 4879 if (objects && !kmem_cache_has_cpu_partial(s)) 4880 return -EINVAL; 4881 4882 s->cpu_partial = objects; 4883 flush_all(s); 4884 return length; 4885 } 4886 SLAB_ATTR(cpu_partial); 4887 4888 static ssize_t ctor_show(struct kmem_cache *s, char *buf) 4889 { 4890 if (!s->ctor) 4891 return 0; 4892 return sprintf(buf, "%pS\n", s->ctor); 4893 } 4894 SLAB_ATTR_RO(ctor); 4895 4896 static ssize_t aliases_show(struct kmem_cache *s, char *buf) 4897 { 4898 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); 4899 } 4900 SLAB_ATTR_RO(aliases); 4901 4902 static ssize_t partial_show(struct kmem_cache *s, char *buf) 4903 { 4904 return show_slab_objects(s, buf, SO_PARTIAL); 4905 } 4906 SLAB_ATTR_RO(partial); 4907 4908 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) 4909 { 4910 return show_slab_objects(s, buf, SO_CPU); 4911 } 4912 SLAB_ATTR_RO(cpu_slabs); 4913 4914 static ssize_t objects_show(struct kmem_cache *s, char *buf) 4915 { 4916 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); 4917 } 4918 SLAB_ATTR_RO(objects); 4919 4920 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) 4921 { 4922 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); 4923 } 4924 SLAB_ATTR_RO(objects_partial); 4925 4926 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) 4927 { 4928 int objects = 0; 4929 int pages = 0; 4930 int cpu; 4931 int len; 4932 4933 for_each_online_cpu(cpu) { 4934 struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial; 4935 4936 if (page) { 4937 pages += page->pages; 4938 objects += page->pobjects; 4939 } 4940 } 4941 4942 len = sprintf(buf, "%d(%d)", objects, pages); 4943 4944 #ifdef CONFIG_SMP 4945 for_each_online_cpu(cpu) { 4946 struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial; 4947 4948 if (page && len < PAGE_SIZE - 20) 4949 len += sprintf(buf + len, " C%d=%d(%d)", cpu, 4950 page->pobjects, page->pages); 4951 } 4952 #endif 4953 return len + sprintf(buf + len, "\n"); 4954 } 4955 SLAB_ATTR_RO(slabs_cpu_partial); 4956 4957 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) 4958 { 4959 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); 4960 } 4961 4962 static ssize_t reclaim_account_store(struct kmem_cache *s, 4963 const char *buf, size_t length) 4964 { 4965 s->flags &= ~SLAB_RECLAIM_ACCOUNT; 4966 if (buf[0] == '1') 4967 s->flags |= SLAB_RECLAIM_ACCOUNT; 4968 return length; 4969 } 4970 SLAB_ATTR(reclaim_account); 4971 4972 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) 4973 { 4974 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); 4975 } 4976 SLAB_ATTR_RO(hwcache_align); 4977 4978 #ifdef CONFIG_ZONE_DMA 4979 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) 4980 { 4981 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); 4982 } 4983 SLAB_ATTR_RO(cache_dma); 4984 #endif 4985 4986 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) 4987 { 4988 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); 4989 } 4990 SLAB_ATTR_RO(destroy_by_rcu); 4991 4992 static ssize_t reserved_show(struct kmem_cache *s, char *buf) 4993 { 4994 return sprintf(buf, "%d\n", s->reserved); 4995 } 4996 SLAB_ATTR_RO(reserved); 4997 4998 #ifdef CONFIG_SLUB_DEBUG 4999 static ssize_t slabs_show(struct kmem_cache *s, char *buf) 5000 { 5001 return show_slab_objects(s, buf, SO_ALL); 5002 } 5003 SLAB_ATTR_RO(slabs); 5004 5005 static ssize_t total_objects_show(struct kmem_cache *s, char *buf) 5006 { 5007 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); 5008 } 5009 SLAB_ATTR_RO(total_objects); 5010 5011 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) 5012 { 5013 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); 5014 } 5015 5016 static ssize_t sanity_checks_store(struct kmem_cache *s, 5017 const char *buf, size_t length) 5018 { 5019 s->flags &= ~SLAB_CONSISTENCY_CHECKS; 5020 if (buf[0] == '1') { 5021 s->flags &= ~__CMPXCHG_DOUBLE; 5022 s->flags |= SLAB_CONSISTENCY_CHECKS; 5023 } 5024 return length; 5025 } 5026 SLAB_ATTR(sanity_checks); 5027 5028 static ssize_t trace_show(struct kmem_cache *s, char *buf) 5029 { 5030 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); 5031 } 5032 5033 static ssize_t trace_store(struct kmem_cache *s, const char *buf, 5034 size_t length) 5035 { 5036 /* 5037 * Tracing a merged cache is going to give confusing results 5038 * as well as cause other issues like converting a mergeable 5039 * cache into an umergeable one. 5040 */ 5041 if (s->refcount > 1) 5042 return -EINVAL; 5043 5044 s->flags &= ~SLAB_TRACE; 5045 if (buf[0] == '1') { 5046 s->flags &= ~__CMPXCHG_DOUBLE; 5047 s->flags |= SLAB_TRACE; 5048 } 5049 return length; 5050 } 5051 SLAB_ATTR(trace); 5052 5053 static ssize_t red_zone_show(struct kmem_cache *s, char *buf) 5054 { 5055 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); 5056 } 5057 5058 static ssize_t red_zone_store(struct kmem_cache *s, 5059 const char *buf, size_t length) 5060 { 5061 if (any_slab_objects(s)) 5062 return -EBUSY; 5063 5064 s->flags &= ~SLAB_RED_ZONE; 5065 if (buf[0] == '1') { 5066 s->flags |= SLAB_RED_ZONE; 5067 } 5068 calculate_sizes(s, -1); 5069 return length; 5070 } 5071 SLAB_ATTR(red_zone); 5072 5073 static ssize_t poison_show(struct kmem_cache *s, char *buf) 5074 { 5075 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); 5076 } 5077 5078 static ssize_t poison_store(struct kmem_cache *s, 5079 const char *buf, size_t length) 5080 { 5081 if (any_slab_objects(s)) 5082 return -EBUSY; 5083 5084 s->flags &= ~SLAB_POISON; 5085 if (buf[0] == '1') { 5086 s->flags |= SLAB_POISON; 5087 } 5088 calculate_sizes(s, -1); 5089 return length; 5090 } 5091 SLAB_ATTR(poison); 5092 5093 static ssize_t store_user_show(struct kmem_cache *s, char *buf) 5094 { 5095 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); 5096 } 5097 5098 static ssize_t store_user_store(struct kmem_cache *s, 5099 const char *buf, size_t length) 5100 { 5101 if (any_slab_objects(s)) 5102 return -EBUSY; 5103 5104 s->flags &= ~SLAB_STORE_USER; 5105 if (buf[0] == '1') { 5106 s->flags &= ~__CMPXCHG_DOUBLE; 5107 s->flags |= SLAB_STORE_USER; 5108 } 5109 calculate_sizes(s, -1); 5110 return length; 5111 } 5112 SLAB_ATTR(store_user); 5113 5114 static ssize_t validate_show(struct kmem_cache *s, char *buf) 5115 { 5116 return 0; 5117 } 5118 5119 static ssize_t validate_store(struct kmem_cache *s, 5120 const char *buf, size_t length) 5121 { 5122 int ret = -EINVAL; 5123 5124 if (buf[0] == '1') { 5125 ret = validate_slab_cache(s); 5126 if (ret >= 0) 5127 ret = length; 5128 } 5129 return ret; 5130 } 5131 SLAB_ATTR(validate); 5132 5133 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) 5134 { 5135 if (!(s->flags & SLAB_STORE_USER)) 5136 return -ENOSYS; 5137 return list_locations(s, buf, TRACK_ALLOC); 5138 } 5139 SLAB_ATTR_RO(alloc_calls); 5140 5141 static ssize_t free_calls_show(struct kmem_cache *s, char *buf) 5142 { 5143 if (!(s->flags & SLAB_STORE_USER)) 5144 return -ENOSYS; 5145 return list_locations(s, buf, TRACK_FREE); 5146 } 5147 SLAB_ATTR_RO(free_calls); 5148 #endif /* CONFIG_SLUB_DEBUG */ 5149 5150 #ifdef CONFIG_FAILSLAB 5151 static ssize_t failslab_show(struct kmem_cache *s, char *buf) 5152 { 5153 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); 5154 } 5155 5156 static ssize_t failslab_store(struct kmem_cache *s, const char *buf, 5157 size_t length) 5158 { 5159 if (s->refcount > 1) 5160 return -EINVAL; 5161 5162 s->flags &= ~SLAB_FAILSLAB; 5163 if (buf[0] == '1') 5164 s->flags |= SLAB_FAILSLAB; 5165 return length; 5166 } 5167 SLAB_ATTR(failslab); 5168 #endif 5169 5170 static ssize_t shrink_show(struct kmem_cache *s, char *buf) 5171 { 5172 return 0; 5173 } 5174 5175 static ssize_t shrink_store(struct kmem_cache *s, 5176 const char *buf, size_t length) 5177 { 5178 if (buf[0] == '1') 5179 kmem_cache_shrink(s); 5180 else 5181 return -EINVAL; 5182 return length; 5183 } 5184 SLAB_ATTR(shrink); 5185 5186 #ifdef CONFIG_NUMA 5187 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) 5188 { 5189 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); 5190 } 5191 5192 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, 5193 const char *buf, size_t length) 5194 { 5195 unsigned long ratio; 5196 int err; 5197 5198 err = kstrtoul(buf, 10, &ratio); 5199 if (err) 5200 return err; 5201 5202 if (ratio <= 100) 5203 s->remote_node_defrag_ratio = ratio * 10; 5204 5205 return length; 5206 } 5207 SLAB_ATTR(remote_node_defrag_ratio); 5208 #endif 5209 5210 #ifdef CONFIG_SLUB_STATS 5211 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) 5212 { 5213 unsigned long sum = 0; 5214 int cpu; 5215 int len; 5216 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); 5217 5218 if (!data) 5219 return -ENOMEM; 5220 5221 for_each_online_cpu(cpu) { 5222 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; 5223 5224 data[cpu] = x; 5225 sum += x; 5226 } 5227 5228 len = sprintf(buf, "%lu", sum); 5229 5230 #ifdef CONFIG_SMP 5231 for_each_online_cpu(cpu) { 5232 if (data[cpu] && len < PAGE_SIZE - 20) 5233 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); 5234 } 5235 #endif 5236 kfree(data); 5237 return len + sprintf(buf + len, "\n"); 5238 } 5239 5240 static void clear_stat(struct kmem_cache *s, enum stat_item si) 5241 { 5242 int cpu; 5243 5244 for_each_online_cpu(cpu) 5245 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; 5246 } 5247 5248 #define STAT_ATTR(si, text) \ 5249 static ssize_t text##_show(struct kmem_cache *s, char *buf) \ 5250 { \ 5251 return show_stat(s, buf, si); \ 5252 } \ 5253 static ssize_t text##_store(struct kmem_cache *s, \ 5254 const char *buf, size_t length) \ 5255 { \ 5256 if (buf[0] != '0') \ 5257 return -EINVAL; \ 5258 clear_stat(s, si); \ 5259 return length; \ 5260 } \ 5261 SLAB_ATTR(text); \ 5262 5263 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); 5264 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); 5265 STAT_ATTR(FREE_FASTPATH, free_fastpath); 5266 STAT_ATTR(FREE_SLOWPATH, free_slowpath); 5267 STAT_ATTR(FREE_FROZEN, free_frozen); 5268 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); 5269 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); 5270 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); 5271 STAT_ATTR(ALLOC_SLAB, alloc_slab); 5272 STAT_ATTR(ALLOC_REFILL, alloc_refill); 5273 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); 5274 STAT_ATTR(FREE_SLAB, free_slab); 5275 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); 5276 STAT_ATTR(DEACTIVATE_FULL, deactivate_full); 5277 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); 5278 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); 5279 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); 5280 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); 5281 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); 5282 STAT_ATTR(ORDER_FALLBACK, order_fallback); 5283 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); 5284 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); 5285 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); 5286 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); 5287 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); 5288 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); 5289 #endif 5290 5291 static struct attribute *slab_attrs[] = { 5292 &slab_size_attr.attr, 5293 &object_size_attr.attr, 5294 &objs_per_slab_attr.attr, 5295 &order_attr.attr, 5296 &min_partial_attr.attr, 5297 &cpu_partial_attr.attr, 5298 &objects_attr.attr, 5299 &objects_partial_attr.attr, 5300 &partial_attr.attr, 5301 &cpu_slabs_attr.attr, 5302 &ctor_attr.attr, 5303 &aliases_attr.attr, 5304 &align_attr.attr, 5305 &hwcache_align_attr.attr, 5306 &reclaim_account_attr.attr, 5307 &destroy_by_rcu_attr.attr, 5308 &shrink_attr.attr, 5309 &reserved_attr.attr, 5310 &slabs_cpu_partial_attr.attr, 5311 #ifdef CONFIG_SLUB_DEBUG 5312 &total_objects_attr.attr, 5313 &slabs_attr.attr, 5314 &sanity_checks_attr.attr, 5315 &trace_attr.attr, 5316 &red_zone_attr.attr, 5317 &poison_attr.attr, 5318 &store_user_attr.attr, 5319 &validate_attr.attr, 5320 &alloc_calls_attr.attr, 5321 &free_calls_attr.attr, 5322 #endif 5323 #ifdef CONFIG_ZONE_DMA 5324 &cache_dma_attr.attr, 5325 #endif 5326 #ifdef CONFIG_NUMA 5327 &remote_node_defrag_ratio_attr.attr, 5328 #endif 5329 #ifdef CONFIG_SLUB_STATS 5330 &alloc_fastpath_attr.attr, 5331 &alloc_slowpath_attr.attr, 5332 &free_fastpath_attr.attr, 5333 &free_slowpath_attr.attr, 5334 &free_frozen_attr.attr, 5335 &free_add_partial_attr.attr, 5336 &free_remove_partial_attr.attr, 5337 &alloc_from_partial_attr.attr, 5338 &alloc_slab_attr.attr, 5339 &alloc_refill_attr.attr, 5340 &alloc_node_mismatch_attr.attr, 5341 &free_slab_attr.attr, 5342 &cpuslab_flush_attr.attr, 5343 &deactivate_full_attr.attr, 5344 &deactivate_empty_attr.attr, 5345 &deactivate_to_head_attr.attr, 5346 &deactivate_to_tail_attr.attr, 5347 &deactivate_remote_frees_attr.attr, 5348 &deactivate_bypass_attr.attr, 5349 &order_fallback_attr.attr, 5350 &cmpxchg_double_fail_attr.attr, 5351 &cmpxchg_double_cpu_fail_attr.attr, 5352 &cpu_partial_alloc_attr.attr, 5353 &cpu_partial_free_attr.attr, 5354 &cpu_partial_node_attr.attr, 5355 &cpu_partial_drain_attr.attr, 5356 #endif 5357 #ifdef CONFIG_FAILSLAB 5358 &failslab_attr.attr, 5359 #endif 5360 5361 NULL 5362 }; 5363 5364 static struct attribute_group slab_attr_group = { 5365 .attrs = slab_attrs, 5366 }; 5367 5368 static ssize_t slab_attr_show(struct kobject *kobj, 5369 struct attribute *attr, 5370 char *buf) 5371 { 5372 struct slab_attribute *attribute; 5373 struct kmem_cache *s; 5374 int err; 5375 5376 attribute = to_slab_attr(attr); 5377 s = to_slab(kobj); 5378 5379 if (!attribute->show) 5380 return -EIO; 5381 5382 err = attribute->show(s, buf); 5383 5384 return err; 5385 } 5386 5387 static ssize_t slab_attr_store(struct kobject *kobj, 5388 struct attribute *attr, 5389 const char *buf, size_t len) 5390 { 5391 struct slab_attribute *attribute; 5392 struct kmem_cache *s; 5393 int err; 5394 5395 attribute = to_slab_attr(attr); 5396 s = to_slab(kobj); 5397 5398 if (!attribute->store) 5399 return -EIO; 5400 5401 err = attribute->store(s, buf, len); 5402 #ifdef CONFIG_MEMCG 5403 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { 5404 struct kmem_cache *c; 5405 5406 mutex_lock(&slab_mutex); 5407 if (s->max_attr_size < len) 5408 s->max_attr_size = len; 5409 5410 /* 5411 * This is a best effort propagation, so this function's return 5412 * value will be determined by the parent cache only. This is 5413 * basically because not all attributes will have a well 5414 * defined semantics for rollbacks - most of the actions will 5415 * have permanent effects. 5416 * 5417 * Returning the error value of any of the children that fail 5418 * is not 100 % defined, in the sense that users seeing the 5419 * error code won't be able to know anything about the state of 5420 * the cache. 5421 * 5422 * Only returning the error code for the parent cache at least 5423 * has well defined semantics. The cache being written to 5424 * directly either failed or succeeded, in which case we loop 5425 * through the descendants with best-effort propagation. 5426 */ 5427 for_each_memcg_cache(c, s) 5428 attribute->store(c, buf, len); 5429 mutex_unlock(&slab_mutex); 5430 } 5431 #endif 5432 return err; 5433 } 5434 5435 static void memcg_propagate_slab_attrs(struct kmem_cache *s) 5436 { 5437 #ifdef CONFIG_MEMCG 5438 int i; 5439 char *buffer = NULL; 5440 struct kmem_cache *root_cache; 5441 5442 if (is_root_cache(s)) 5443 return; 5444 5445 root_cache = s->memcg_params.root_cache; 5446 5447 /* 5448 * This mean this cache had no attribute written. Therefore, no point 5449 * in copying default values around 5450 */ 5451 if (!root_cache->max_attr_size) 5452 return; 5453 5454 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { 5455 char mbuf[64]; 5456 char *buf; 5457 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); 5458 5459 if (!attr || !attr->store || !attr->show) 5460 continue; 5461 5462 /* 5463 * It is really bad that we have to allocate here, so we will 5464 * do it only as a fallback. If we actually allocate, though, 5465 * we can just use the allocated buffer until the end. 5466 * 5467 * Most of the slub attributes will tend to be very small in 5468 * size, but sysfs allows buffers up to a page, so they can 5469 * theoretically happen. 5470 */ 5471 if (buffer) 5472 buf = buffer; 5473 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) 5474 buf = mbuf; 5475 else { 5476 buffer = (char *) get_zeroed_page(GFP_KERNEL); 5477 if (WARN_ON(!buffer)) 5478 continue; 5479 buf = buffer; 5480 } 5481 5482 attr->show(root_cache, buf); 5483 attr->store(s, buf, strlen(buf)); 5484 } 5485 5486 if (buffer) 5487 free_page((unsigned long)buffer); 5488 #endif 5489 } 5490 5491 static void kmem_cache_release(struct kobject *k) 5492 { 5493 slab_kmem_cache_release(to_slab(k)); 5494 } 5495 5496 static const struct sysfs_ops slab_sysfs_ops = { 5497 .show = slab_attr_show, 5498 .store = slab_attr_store, 5499 }; 5500 5501 static struct kobj_type slab_ktype = { 5502 .sysfs_ops = &slab_sysfs_ops, 5503 .release = kmem_cache_release, 5504 }; 5505 5506 static int uevent_filter(struct kset *kset, struct kobject *kobj) 5507 { 5508 struct kobj_type *ktype = get_ktype(kobj); 5509 5510 if (ktype == &slab_ktype) 5511 return 1; 5512 return 0; 5513 } 5514 5515 static const struct kset_uevent_ops slab_uevent_ops = { 5516 .filter = uevent_filter, 5517 }; 5518 5519 static struct kset *slab_kset; 5520 5521 static inline struct kset *cache_kset(struct kmem_cache *s) 5522 { 5523 #ifdef CONFIG_MEMCG 5524 if (!is_root_cache(s)) 5525 return s->memcg_params.root_cache->memcg_kset; 5526 #endif 5527 return slab_kset; 5528 } 5529 5530 #define ID_STR_LENGTH 64 5531 5532 /* Create a unique string id for a slab cache: 5533 * 5534 * Format :[flags-]size 5535 */ 5536 static char *create_unique_id(struct kmem_cache *s) 5537 { 5538 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); 5539 char *p = name; 5540 5541 BUG_ON(!name); 5542 5543 *p++ = ':'; 5544 /* 5545 * First flags affecting slabcache operations. We will only 5546 * get here for aliasable slabs so we do not need to support 5547 * too many flags. The flags here must cover all flags that 5548 * are matched during merging to guarantee that the id is 5549 * unique. 5550 */ 5551 if (s->flags & SLAB_CACHE_DMA) 5552 *p++ = 'd'; 5553 if (s->flags & SLAB_RECLAIM_ACCOUNT) 5554 *p++ = 'a'; 5555 if (s->flags & SLAB_CONSISTENCY_CHECKS) 5556 *p++ = 'F'; 5557 if (!(s->flags & SLAB_NOTRACK)) 5558 *p++ = 't'; 5559 if (s->flags & SLAB_ACCOUNT) 5560 *p++ = 'A'; 5561 if (p != name + 1) 5562 *p++ = '-'; 5563 p += sprintf(p, "%07d", s->size); 5564 5565 BUG_ON(p > name + ID_STR_LENGTH - 1); 5566 return name; 5567 } 5568 5569 static int sysfs_slab_add(struct kmem_cache *s) 5570 { 5571 int err; 5572 const char *name; 5573 int unmergeable = slab_unmergeable(s); 5574 5575 if (unmergeable) { 5576 /* 5577 * Slabcache can never be merged so we can use the name proper. 5578 * This is typically the case for debug situations. In that 5579 * case we can catch duplicate names easily. 5580 */ 5581 sysfs_remove_link(&slab_kset->kobj, s->name); 5582 name = s->name; 5583 } else { 5584 /* 5585 * Create a unique name for the slab as a target 5586 * for the symlinks. 5587 */ 5588 name = create_unique_id(s); 5589 } 5590 5591 s->kobj.kset = cache_kset(s); 5592 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); 5593 if (err) 5594 goto out; 5595 5596 err = sysfs_create_group(&s->kobj, &slab_attr_group); 5597 if (err) 5598 goto out_del_kobj; 5599 5600 #ifdef CONFIG_MEMCG 5601 if (is_root_cache(s)) { 5602 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); 5603 if (!s->memcg_kset) { 5604 err = -ENOMEM; 5605 goto out_del_kobj; 5606 } 5607 } 5608 #endif 5609 5610 kobject_uevent(&s->kobj, KOBJ_ADD); 5611 if (!unmergeable) { 5612 /* Setup first alias */ 5613 sysfs_slab_alias(s, s->name); 5614 } 5615 out: 5616 if (!unmergeable) 5617 kfree(name); 5618 return err; 5619 out_del_kobj: 5620 kobject_del(&s->kobj); 5621 goto out; 5622 } 5623 5624 void sysfs_slab_remove(struct kmem_cache *s) 5625 { 5626 if (slab_state < FULL) 5627 /* 5628 * Sysfs has not been setup yet so no need to remove the 5629 * cache from sysfs. 5630 */ 5631 return; 5632 5633 #ifdef CONFIG_MEMCG 5634 kset_unregister(s->memcg_kset); 5635 #endif 5636 kobject_uevent(&s->kobj, KOBJ_REMOVE); 5637 kobject_del(&s->kobj); 5638 kobject_put(&s->kobj); 5639 } 5640 5641 /* 5642 * Need to buffer aliases during bootup until sysfs becomes 5643 * available lest we lose that information. 5644 */ 5645 struct saved_alias { 5646 struct kmem_cache *s; 5647 const char *name; 5648 struct saved_alias *next; 5649 }; 5650 5651 static struct saved_alias *alias_list; 5652 5653 static int sysfs_slab_alias(struct kmem_cache *s, const char *name) 5654 { 5655 struct saved_alias *al; 5656 5657 if (slab_state == FULL) { 5658 /* 5659 * If we have a leftover link then remove it. 5660 */ 5661 sysfs_remove_link(&slab_kset->kobj, name); 5662 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); 5663 } 5664 5665 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); 5666 if (!al) 5667 return -ENOMEM; 5668 5669 al->s = s; 5670 al->name = name; 5671 al->next = alias_list; 5672 alias_list = al; 5673 return 0; 5674 } 5675 5676 static int __init slab_sysfs_init(void) 5677 { 5678 struct kmem_cache *s; 5679 int err; 5680 5681 mutex_lock(&slab_mutex); 5682 5683 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); 5684 if (!slab_kset) { 5685 mutex_unlock(&slab_mutex); 5686 pr_err("Cannot register slab subsystem.\n"); 5687 return -ENOSYS; 5688 } 5689 5690 slab_state = FULL; 5691 5692 list_for_each_entry(s, &slab_caches, list) { 5693 err = sysfs_slab_add(s); 5694 if (err) 5695 pr_err("SLUB: Unable to add boot slab %s to sysfs\n", 5696 s->name); 5697 } 5698 5699 while (alias_list) { 5700 struct saved_alias *al = alias_list; 5701 5702 alias_list = alias_list->next; 5703 err = sysfs_slab_alias(al->s, al->name); 5704 if (err) 5705 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", 5706 al->name); 5707 kfree(al); 5708 } 5709 5710 mutex_unlock(&slab_mutex); 5711 resiliency_test(); 5712 return 0; 5713 } 5714 5715 __initcall(slab_sysfs_init); 5716 #endif /* CONFIG_SYSFS */ 5717 5718 /* 5719 * The /proc/slabinfo ABI 5720 */ 5721 #ifdef CONFIG_SLABINFO 5722 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) 5723 { 5724 unsigned long nr_slabs = 0; 5725 unsigned long nr_objs = 0; 5726 unsigned long nr_free = 0; 5727 int node; 5728 struct kmem_cache_node *n; 5729 5730 for_each_kmem_cache_node(s, node, n) { 5731 nr_slabs += node_nr_slabs(n); 5732 nr_objs += node_nr_objs(n); 5733 nr_free += count_partial(n, count_free); 5734 } 5735 5736 sinfo->active_objs = nr_objs - nr_free; 5737 sinfo->num_objs = nr_objs; 5738 sinfo->active_slabs = nr_slabs; 5739 sinfo->num_slabs = nr_slabs; 5740 sinfo->objects_per_slab = oo_objects(s->oo); 5741 sinfo->cache_order = oo_order(s->oo); 5742 } 5743 5744 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) 5745 { 5746 } 5747 5748 ssize_t slabinfo_write(struct file *file, const char __user *buffer, 5749 size_t count, loff_t *ppos) 5750 { 5751 return -EIO; 5752 } 5753 #endif /* CONFIG_SLABINFO */ 5754